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Abstract 

Studies of climate change impacts on agricultural land use generally consider sets of climates 

combined with fixed socio-economic scenarios, making it impossible to compare the impact 

of specific factors within these scenario sets.  Analysis of the impact of specific scenario 

factors is extremely difficult due to prohibitively long run-times of the complex models.  This 

study produces and combines metamodels of crop and forest yields and farm profit, derived 

from previously developed very complex models, to enable prediction of European land use 

under any set of climate and socio-economic data.  Land use is predicted based on the 

profitability of the alternatives on every soil within every 10’ grid across the EU.  A 

clustering procedure reduces 23871 grids with 20+ soils per grid to 6714 clusters of common 

soil and climate.  Combined these reduce runtime 100 thousand-fold.  Profit thresholds define 

land as intensive agriculture (arable or grassland), extensive agriculture or managed forest, or 

finally unmanaged forest or abandoned land.  The demand for food as a function of 

population, imports, food preferences and bioenergy, is a production constraint, as is 

irrigation water available.  An iteration adjusts prices to meet these constraints.  A range of 

measures are derived at 10’ grid-level such as diversity as well as overall EU production. 

There are many ways to utilise this ability to do rapid What-If analysis of both impact and 

adaptations.  The paper illustrates using two of the 5 different GCMs (CSMK3, HADGEM 

with contrasting precipitation and temperature) and two of the 4 different socio-economic 

scenarios (“We are the world”, “Should I stay or should I go” which have contrasting 

demands for land), exploring these using two of the 13 scenario parameters (crop breeding for 

yield and population) .  In the first scenario, population can be increased by a large amount 

showing that food security is far from vulnerable.  In the second scenario increasing crop 

yield shows that it improves the food security problem. 
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Introduction 

 

There are many different scales and approaches to modelling agricultural land use and 

ecosystems in Europe and the impact of climate change.  A global equilibrium model such as 

CAPRI, (Britz (ed) 2005) divides the whole world into a number of regions and aims to 

model the progression of cropping and (equilibrium) prices due to trade over time, typically in 

response to future EU policies.  Naturally the agricultural detail in a region, particularly 

outside Europe, cannot be as great as a regional model such as shown in Holman et al. (2005) 

which considers all the soils within a 5km grid. Regional models need an alternative scheme 

to deal with trade and external prices. Audsley et al. (2006) adopt a compromise and model all 

the soil association polygons in Europe and use a scenario input parameter to indicate the 

influence of trade outside Europe.  Morris et al. (2005) adopt a similar approach of calculating 

the land use within the UK given a scenario and demonstrating the contradictions between the 

consequences for imports and the scenario assumptions. A number of studies use the concept 

of modifying the gross margins of the crops on the farm to a scenario (Hanley et al. 2012). 

 

It is therefore important to be clear as to the type of questions this study is aimed at 

addressing.  This study aims to examine how non-urban land in Europe will be used over a 

timescale of 40+ years.  Thus land which is not currently used for agriculture may become 

suitable so the study must consider the underlying property of the land, soil and climate, not 

its current cropping.  In addition socio- and techno-economic changes may mean that more 

(or less) agricultural land is needed so that land which is currently marginal may be cropped 

or vice-versa, so the study must consider the profitability of the land.  In consequence the 

objective of the model can be defined as to calculate the profitability of every piece of soil in 

Europe in any defined future. 

 

Many studies of the impacts of climate change on agricultural land use have considered 

futures as sets of climates rigidly combined with (usually four!) socio-economic scenarios.  

(Hossell et al. 1996, Rounsevell et al. 2003, Holman et al. 2005, Rounsevell et al. 2005, 

Audsley et al. 2006, Lehtonen et al. 2006, van Meijl et al. 2006).  However as individual 

reports it is impossible to compare the impact of specific factors within these scenario sets.  

Thus whether the effects observed are due to the change in rainfall, temperature, population, 

oil price, crop breeding or any of the other parameters of the scenario, is a matter of 

speculation. What-if questions by the reader cannot be answered.  

 

It can also be impossible to carry out many iterations of a complex model as the run-times are 

prohibitively long.  The work of Audsley et al. (2006) is an example of this problem.  This 

analysis considered four socioeconomic-climate scenarios and iterated to a solution where 

production met the demand in each scenario.  This required very long run-times so that any 

more detailed investigation of the impact of any specific factor was impossible or at best 

extremely limited. 

 

The problem can be thought of as a balance between precision (number of distinct regions of 

the study area) and accuracy (detail and time step of the simulation) versus solution time.  

However in many cases there is very little difference between regions that are analysed, for 

example neighbouring regions with much the same soil type and climate. Similarly a daily 

time step often considerably overstates the accuracy of the crop yield predictions, which are 

usually founded on soil moisture.  The estimate of the yield in the future climate relative to 

the current climate is generally more accurate and fulfils a large part of the requirement from 

the model.  Other estimates such as suitability for the crop can be derived from data that is no 



more detailed than monthly.  Thus it ought to be possible to reduce solution time with only a 

small loss of precision and accuracy. 

 

This study aims to allow rapid solutions and iteration. It takes the results of Audsley et al. 

(2006) and derives metamodels with very short run-times.  Combined with forestry and water 

availability models, it enables examination of factors within the scenarios, and hence key 

sensitivities and adaptation strategies.  The first section of the paper describes the modelling 

system, the second the metamodels and finally examples of using the modelling system. 

 

1. Modelling system 

 

1.1 Overview 

 

The overall objective is to predict agricultural land use under any scenario set of climate and 

socio- and techno-economic data.  Profitability of each possible land use is modelled for 

every soil across the EU, the assumption being that in the timescale being considered (2050), 

use will change to that which has become the most profitable.  Metamodels of crop, forest 

yields, and optimal cropping and profit are derived from the outputs of the previously 

developed very complex models (Audsley et al. 2006, Keenan et al. 2011, Wimmer et al. in 

prep).  Land use in a grid is then allocated based on profit, see Figure 1. If profit is above a 

threshold it is intensive agriculture (arable or grassland).  If profit is above a lower threshold 

it is extensive agriculture or managed forest and finally it is either unmanaged forest or 

abandoned land.  

 

1.2 The complex models 

 

The water and flood models are described elsewhere in this issue (Wimmer et al. this issue,   

Mokrech et al. this issue), so we concentrate here on the crop, forest and farm models. 

 

The crop model (Audsley et al. 2006) is a daily time step simulation which predicts the 

average yield over 30 years with a) limited nitrogen and water, b) no limit to nitrogen and c) 

no limit to water and nitrogen, d) sowing date e) harvest date, if the crop was feasible.  Output 

is available for soils across Europe and a range of future climates.  The model simulates 

winter and spring wheat, barley and oilseed rape, potatoes, maize, sunflower, soya, cotton, 

grass and olives.  Input consists of soil, climate and crop management data.  

The forest model GOTILWA+ (Growth Of Trees Is Limited by WAter), (Keenan et al. 2008, 

2011); http://www.creaf.uab.es/GOTILWA+) is a process-based terrestrial biogeochemical 

model of forest growth developed to explore how forests are influenced by water stress, tree 

stand structure, management techniques, soil properties, and climate (including CO2) change. 

GOTILWA+ simulates tree growth, and the associated carbon and water fluxes for different 

tree species in different environments, thus reflecting a site-species specific ecophysiological 

suitability. Stands can be even or uneven-aged. No bioclimatic limits are set, and indeed 

indirect bioclimatic limits can only be considered through the direct effect of climate on the 

physiological processes of the forest. Five species were simulated over a wide range of 

climate conditions: Pinus sylvestris, Pinus halepensis, Pinus pinaster, Quercus ilex and Fagus 

sylvatica with unmanaged forest and with uneven aged and even aged management.  These 

were species which covered the range of climates across Europe.   



The land use model (Annetts and Audsley 2002) is a mechanistic farm-based optimising 

linear programming model of long-term strategic agricultural land use.  Crops are defined by 

their gross margin, the amount and timing of labour and machinery required, restrictions on 

crop rotations, and their sowing and harvest dates.  Gross margins are determined from the 

yield, which is a function of soil and climate, and where relevant irrigation.  Soil workability 

is also a function of soil and climate.  Farmer uncertainty over actual prices and yields is 

simulated by ten combinations of yields and prices, from which the average cropping 

represents the expected land use for this soil and climate.  The decision variables are crop 

areas, crop rotations, operational timing within its feasible period and amount of labour and 

machinery, which determine the farm profit for the given soil and climate.   

 

1.3 Soil input data 

 

There are 23871 10’ grids across the EU with 20+ soils per grid with more than 0.1% (20ha) 

in the grid (Panagos et al. 2012) which are reduced to a smaller number of distinct elements 

using a clustering procedure.  The soil data file is derived from an intersection of the 

European soil database (eusoils.jrc.ec.europa.eu/data.html) with the CLIMSAVE 10’ grid.  

There are 143,955 soil type-grid combinations, with up to 47 different soil types (officially 

known as Soil Typological Units) within each grid square, and a total of 5,107 different soil 

types.  

  

The soil attribute database for each soil type was reduced to those parameters required by the 

meta-models for crop yield, forestry and land use such as Available Water Capacity (AWC) at 

four suctions from Saturation to Permanent Wilting Point, stoniness, and soil texture.  On this 

basis many soil types are identical and the total is reduced to 582 distinct soils. 

 

A proportion of each grid can be identified as urban or not possible for agro-forestry using the 

CORINE database (for example the land use category Bare Rock) (Bossard et al. 2000).  

These categories were used to eliminate the no soil or very shallow soil types.   

 

Finally a clustering procedure was applied to the soil data to produce 182 similar soil types. 

This used the Akaike Information Criteria (AIC) optimum for loss of information.  However 

note that it is actually possible to cluster more or less tightly depending on run time desired. 

 

1.4 Climate input data 

 

The climate data per grid (M. Dubrovsky et al. this issue) consists of the monthly 

precipitation, temperatures, evapotranspiration, radiation and wind. The data were processed 

to that required by the metamodels: summer and winter temperature, potential 

evapotranspiration, precipitation, and days (from 1
st
 January) until average temperature > 0

o
C 

and 6
o
C.  An analysis of key data split summer into April-June and July-Sept. 

 

The same clustering procedure was applied to the baseline climate data for the 23,871 grid 

squares, which was assumed uniform over a grid, and produced 170 clusters (Supplement 

Figure 4).  As with soils it is possible to use more or fewer clusters than the AIC-defined 

optimum. Analysis of the clusters showed that there was very little loss of precision if the 

climate change was applied to all grids within a cluster. Thus it is assumed that all climates 

have the same clustering.   

 



Combining the soil and climate clusters results in 6714 distinct soil-climate elements to be 

analysed, representing a 97% reduction in calculations required.  

 

1.5 Scenario input data 

 

The parameters used to define the socio-economic scenarios are typically expressed as either a 

percentage change from the current value or a change in the percentage. The linked models 

use other parameters such as level of flood defences but those relevant to the land use model 

are listed in Table 1 with the values defined in two of the scenarios (Kok et al. in prep).  They 

affect either demand for production, land available or level of production. 

 

2. The metamodelling system 

 

2.1 The metamodels 

 

The complex crop model was simulated by a series of neural network models using a subset 

of the input and output data from the full model from the previous study (Audsley et al. 

2006). The sampling of the calibration dataset used to develop the metamodels took into 

account values outside ± 1 standard deviation from the mean of each parameter (both input 

and output). From the interval between 1 and 2 standard deviations, two-thirds of the data 

were used for model calibration and of those data points above/below 3 standard deviations 

90% were used for model calibration. The procedure for the meta-model development first 

focused on the selection of the most suitable ANN design (e.g. input parameter selection, 

number of layers and hidden layers). One hundred iterations of the best design were then run 

and the top five performing artificial neural networks (ANN) were selected to increase 

robustness of the final estimate. When needed, the ANNs were combined with temperature 

thresholds to account for limiting factors not well covered by the input parameters. Using 

these criteria, the number of locations at which the meta-models under/over predicted possible 

crops decreased by more than 2/3.  In order to ensure coherence, the models predicted first the 

unlimited yield and then the difference due to limitations.  Supplement Figure 5 illustrates the 

type of outcomes predicted by the model for 4 crops of different types for HadCM3 climate 

model (M. Dubrovsky et al. this issue).  Spring barley and winter wheat yields show relatively 

either no change or modest mean yield increases across the EU with both crops becoming 

suitable in the north of Europe.  Yields are mostly affected by increased CO2 levels with 

relatively small impacts of expected drying in the south and wetter climate in the north. Large 

areas become suitable for grain maize under the future climate, and also soybean. The yields 

of grain maize decrease in some parts of southern Europe but increase in higher latitudes and 

over much of Central Europe. The MPEH5 climate leads to similar results. 

 

In order to train the forest model neural network, around 1000 cells were selected across 

Europe to explore the response of GOTILWA.  Cells were selected to ensure the 

representativity of the range of climatic (environmental) conditions and to include the more 

extreme conditions by selecting the cells with higher and lower values for each input variable 

(Table 6.1). This selection allows extrapolation to be avoided because the climatic conditions 

of the predicted period are between the range of the climatic conditions used in the GOTILWA 

simulations. Simulations were run from 1950 until 2100 using climatic data from predictions 

of the GCM HadCM3 in the A1B emissions scenario. The span of predictions in the 

CLIMSAVE project is until 2050. For each cell, simulations were conducted for all five 

species, all management regimes and with 5 different levels of effective soil volume to 

produce the key outputs including Carbon, Net Primary Productivity and the yield of timber 



from managed forests. The neural networks were built and  run using the Cascade 2 algorithm 

from the Fast Artificial Neural Networks library (Nissen 2005). The Cascade2 algorithm starts 

with an empty neural network and then adds neurons one by one, while it trains the neural 

network. New neurons are trained separate from the real network, then the most promising of 

these candidate neurons is inserted into the neural network. Then the output connections are 

trained and new candidate neurons are prepared. The candidate neurons are created as 

shortcut connected neurons in a new hidden layer, which means that the final neural network 

will consist of a number of hidden layers with one shortcut connected neuron in each. 

 

The predictions of the neural network were tested against data from cells not used for training. 

Although there is inevitable scatter, there is a strong 1:1 relationship (R
2
=0.918) between the 

outputs of metaGOTILWA+ and GOTILWA+.  Supplement Figure 6 and Figure 7 show 

typical output from the metamodel. 

 

The approach taken to develop the land use meta-model was to use the full SFARMOD-LP to 

systematically populate the input parameter space and then to create a meta-model that relates 

the input parameters to the SFARMOD-LP outputs.  In order to fully cover the parameter 

input space, SFARMOD-LP was run with 20,000 randomly selected sets of input data:  

 gross margins for each crop 

 net precipitation used in the SFARMOD-LP workability formula 

 a summer temperature (which modifies the harvest and sowing dates for each crop) 

Output included percentage of the area of each crop, number of dairy cows, fixed costs and 

profit per hectare. These 44000 results were then used to create the meta-model.  A number of 

approaches were taken to fit the meta-modelling but the most reliably successful proved to be 

a regression rather than a neural network approach.  The regressions break the model into 

steps to allow the effect of scenario variables to be included.  The steps estimate first the 

percentage of the area of each crop, then the costs of dairy cows (concentrates) then the fixed 

costs of labour and machinery and finally the profitability of this element. Regressions were 

fitted to key combinations of input parameters such as the ratio of gross margins.  The 

regressions predict the nominal percentage of each crop, which are then scaled to 100%.  

Regressions then predict the number of dairy cows as a function of the forage areas, yields 

and summer precipitation, predict the annual labour and machinery costs as a function of soil 

type and rainfall and finally predict the profit. (Full details of the regressions and goodness of 

fit are listed in the Electronic Supplement). Supplement Figure 8 shows typical errors in 

fitting crop areas. 

 

2.2 Procedure to predict land use 

 

The crop model provides the yield with no irrigation, Y0 and the yield with no water limit, 

Ym.  To determine the optimum level of irrigation, the yield for any level of irrigation is 

required. Yield due to irrigation I is assumed to follow the curve Y(I) = Ym(1-exp(-k(W+I))) 

where W is the water naturally available to the crop from soil and climate in this element.  

Fitted to the full model output, k=0.0021 for potatoes. Given that Y(0)=Y0 it is possible to 

combine this with Y(I) eliminating W, Y(I)=Ym(1-exp(-kI)(1-Y0/Ym)).  To find the optimum 

gross margin, irrigation is increased in steps of 100mm effective irrigation, taking account of 

the scenario efficiency factor. 

 

The land use model then calculates the profitability (net farm profit before deducting non-

operational farm costs such as rent) of each element as intensive arable or intensive grassland 

whichever is greater.  If the profit is greater than €350/ha it is defined as intensive agriculture. 



 

The forest profitability is the annual equivalent profit of a total Net Present Value (NPV), 

where V is calculated as V/(1-(1+r)
n
), n is the life of the forest and r is the discount rate, taken 

as 3%.  The NPV of a cash flow P after n years is P/(1+r)
n
.  Prior to the final harvest there are 

a number of interventions when a proportion of the wood is harvested, the number being a 

function of the growth rate. The total NPV of the forest is the sum of the NPV of all these 

harvests and costs.  The forest species and management with the highest profit is taken as the 

species that would be grown currently. If the forest or extensive grassland profit are greater 

than €150/ha, then the element is allocated to whichever gives greater profit. When 

calculating the Impact of a future (climate change) scenario, the basic assumption is that the 

species does not change, because the life of a forest is typically over 100 years.  It is thus 

possible for the forest to become abandoned as unprofitable. An alternative assumption is that 

adaptation changes the forest to the best species (if any exists). 

 

The remaining elements are unmanaged, and are allocated to unmanaged forest if the Net 

Primary Productivity (NPP) is positive and greater than the grass yield of extensive grass, else 

the land use is very extensive grass.  Otherwise the elements are classed as abandoned. Note 

that the areas unsuitable for agriculture (such as bare rock) have previously been eliminated 

so this last class is often very small. 

 

Finally the elements are allocated back to the 10’ grids to provide the proportion of each grid 

having each land use, the area of each crop, the average yield of each crop, the amount of 

irrigation and measures such as diversity.  Figure 2 illustrates the detailed results produced by 

the modelling for one of the NUTS2 regions of Europe.  In addition details of the crops, their 

yields and nitrate leaching exist at the same scale.  The sum of the grids provides the total 

production of each commodity.  

 

2.3 Calibration 

 

The output from the system was compared with the yields and areas of crops and forest at a 

NUTS2 level from the Eurostat agricultural database (ec.europa.eu/Eurostat).  Tests of the 

differences between these yields resulted in using a calibration procedure to scale the nutrient 

unlimited yields to allow for reduced inputs in CEEC countries, to allow for the effect of 

disease pressure on yields in high rainfall situations and to update the yields to modern levels.  

These are applied at a NUTS2 level, though as far as possible the factors are kept the same at 

a NUTS1 level. Note that forests in the data are not differentiated between managed and 

unmanaged. Not all the data for all the NUTS2 are available, for example Greece.  The profit 

thresholds were also calibrated as 350 and 150.  The resulting fit for arable and grassland use 

versus the NUTS2 level Eurostat data are shown in Supplement Figure 9. Supplement Figure 

10 shows the map of intensive agriculture land use (arable and grassland) in Europe for the 

baseline conditions.   

 

2.4 Scenario analysis 

 

The analysis of a scenario proceeds in a number of steps.  The first step is to determine the 

demand for each commodity type.  Demand is proportional to population.  Reduced ruminant 

meat preference reduces the grazed meat demand but increases other food demands.  

Reducing non-ruminant preference reduces the crop needed for livestock feed and increases 

food crops required.  Reduced food imports increase the food production required. Bioenergy 

production increases the production of arable crops required. 



 

Changes to yields and suitability lead to changes in the area of crops and EU total production 

and potentially under or oversupply.  Similarly there could be too high a demand for irrigation 

water versus the amount available calculated by the water model (F. Wimmer et al., this 

issue). The model matches supply and demand by modifying crop prices and basin water 

price.  

 

a) Linked metamodels 

1. Other linked models calculate the change in the area of Urban and Flooded land (M. 

Mokrech et al. this issue) which are deducted from the elements pro-rata.  Flooded 

land is defined as either unusable for agriculture or restricted to grassland. 

2. For every element, the Crop metamodel calculates the yield of crops and the Forest 

metamodel calculates the yield of species as managed and unmanaged forest.  

4. The Water metamodel calculates the water available for irrigation in each water basin 

(Wimmer, F. et al. in prep).  Grids are pre-allocated to 91 water basins. 

5. The Protected Areas metamodel calculates the proportion of each grid which is 

protected and has to be extensive grassland, forest or abandoned land use. 

b) Land use metamodel and iterative analysis 

1. The procedure (section 3.2) is used to calculate the land use in each grid for the given 

set of prices and hence total production of each commodity group. 

2. Total production of each commodity group is compared with the required demand, and 

prices adjusted.  At the same time if water used for irrigation in any basin exceeds 

water available, the basin’s water price is increased. Crops are allocated to commodity 

groups: cereals, carbohydrate, protein, oil, cotton, milk, meat and timber.  

3. The model iterates (from 1) until demand is satisfied (or cannot be met) and basin 

water use is not more than is available.  It is possible that demand cannot be met, for 

example due to a large increase in population, reduction in imported food or increase 

in land used for bioenergy.      

c) Post modelling analysis 

For each grid, in addition to the area and yield of each crop, the nitrate leaching, fertiliser 

and pesticide use are estimated.  Food production is calculated as TJ output and kcal per 

person per day.  Food output includes food which is subsequently fed to livestock such as 

pigs and chicken and is thus greater than kcal food required by a person. Finally a 

Shannon land use diversity index is calculated based on the 6 land use types. 

 

3. Results 

 

There are many ways to utilise this ability to do rapid What-If analyses of both impact and 

adaptation.  What is the effect of using one of the five different GCMs?  Or what is the effect 

of increasing or decreasing summer or winter temperature or precipitation? Or what is the 

effect of increasing population, oil price or bioenergy cropping?  Or what is the effect of 

breeding higher yielding crops, of more efficient irrigation, reducing meat consumption, or of 

increasing the land set aside for biodiversity.   

 

To illustrate this, two of the 5 different GCMs and two of the four different socio-economic 

scenarios were selected.  HADGEM and CSMK3 GCMs are illustrated in Supplement Figure 

11. HADGEM shows much lower levels of precipitation and almost no areas with an increase, 

whereas CSMK3 shows much greater temperature increases in the North.  The “We are the 

World” (WaW) socio-economic scenario (Table 1) has limited population growth, reduced 

meat consumption and increased crop yield potentials, whereas “Should I stay or Should I go” 



(SISOG) has increased population, increased meat consumption and reduced crop yields.  

Both reduce food imports.   Figure 3 shows the impact.  There is a clear shift of intensive land 

use to the north, but in WaW this is accompanied by a loss of production in the South.  In 

SISOG intensive land use increases everywhere and in HADGEM the required production 

was impossible in spite of massive increases in the area used for intensive food production. 

 

How secure is food security in WaW?  This can be examined by, for example, increasing 

population from its current 5% level, to successively 15%, 25%, 33% (the maximum 

allowed).  In none of these cases is food security a problem, which suggests food security is 

not vulnerable in this scenario.  Figure 3 shows that with a 25% increase in population, 

intensive agriculture increases in most areas of Europe. 

 

What will solve the food security problem in SISOG?  One idea is to increase crop yields 

(more investment in breeding research) by 5, 15, 25, 35%.  Figure 3 shows the effect of 15% 

which solves the food security problem but still requires large increases in intensive land use. 

(+26% of current) 

 

Finally there is nothing about the models that requires them to be used at an EU 10’ grid 

scale.  The models were applied to Scotland by replacing the input data by 5km
2
 grid data for 

soils and climate.  Supplement Figure 12 shows the output baseline intensive agriculture for 

Scotland. A large amount here is extensive grassland agriculture. 

 

5. Discussion and Conclusion 

 

Metamodels operating on clustered data have successfully replaced complex models in 

predicting land use.  It can be estimated that clustering has reduced run-time by a factor of 36 

and that metamodels using monthly not daily data have reduced time by a factor of about 

3000.  One run of the crop and forest yield models on 6174 cells requires 6.8 secs on a 3Ghz 

Intel Core 2™ Duo and the farm model requires 0.5 secs per iteration.  The typical 20 secs 

overall when added to the other modules is 4-5 times longer than desirable to be ‘interactive’. 

 

Whilst there must be some loss of precision this is tempered by the fact that the complex 

models themselves are far from perfect in predicting yields and land use.  Thus whilst it is 

possible to discover locations where the results are poor, it is far from obvious whether this is 

additional metamodelling error or complex model error.  In fact the ability to view and 

analyse the results in great detail, which has become available due to this system, is in this 

respect both a benefit and a curse since results are open to severe scrutiny. Thus whilst the 

models do well when understanding the aggregate performance of the EU to climate change, 

there is great temptation for users to dwell on the fine scale of their own communities. 

 

The study has shown the advantage of being able to carry out iterations rapidly and thus 

match supply and demand for food and water, even though the iterations have to be restricted 

to limit the time delay.  However the system does not clearly indicate potential contradictions 

between the scenario assumptions and the results.  The study calculates that WaW has 

considerable surplus land which would tend to generate more exports (fewer imports) than the 

scenario indicates.  Conversely SISOG needs more production and hence would require more 

imports, contradicting the scenario value.  However these are only potential contradictions 

since nothing is known about the rest of the world.  It may be (and it is quite likely) that in 

WaW, world food supply is high and prices low and that in SISOG world food supply is in 

crisis. 



 

Having the ability to examine many scenarios allows a user to examine the many parameters 

which make up the more common Forecasted Scenarios.  During testing it has rapidly become 

clear that population, yield increase and imports have by far the biggest impact - greater than 

climate.  Choice of climate model however can cause significant differences if vulnerability is 

close as with the SISOG scenario. 

 

Having identified vulnerabilities, the system is easy to use to examine the level of 

vulnerability, for example increasing population by 20% to try to generate a problem. 

Similarly with adaptations to solve problems such as by increasing yields.  Note that this 

adaptation already exists in WaW and solves the food security problem identified in SISOG. 

 

An obvious conclusion of any modelling study is the need to increase the scope or precision 

of the crop, forest and land use models.  This need is long acknowledged by on-going projects 

such as AgMIP and MACSUR.  For example, what if crops were bred more drought tolerant?  

This however ignores the 80-20 rule, that 80% of the answer is obtained with 20% of the 

effort and thus a lot more effort may be needed to increase precision, whilst providing little 

new information to policy.  And this needs to be done without compromising speed of model 

solutions.   
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Table 1: Scenario variables relevant to land use model and their values in two of the scenarios 

Scenario Variable 

Scenario 

We Are 

The World 

Should I Stay 

or Should I go 

% Population change 5 23 

% GDP change 94 -36 

% change in dietary preference for ruminant meat  -21 11 

% change in dietary preference for non-ruminant meat -21 0 

% reduction in labour needed per current hour. 44 5 

% change in agricultural yields 15 -3 

% change in irrigation efficiency: (100mm of water 

applied has the effect of 100+%) 

26 -21 

% increase of arable land used for bioenergy 

production 

2 2 

Change in % food imports: (Negative means less 

imported) 

-13 -13 

% change in oil price.   73 163 

% of land set aside for biodiversity  0 0 

Reduce diffuse pollution factor: (Reduces N, yield and 

leaching).  

1 1.1 

 
 

 
Figure 1 Example of soils in a grid being allocated to most profitable use by the models (A-
arable, G-grassland, E-extensive, F-forest) 
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Figure 2 Illustration of detailed results for % land use by 10’ grid for one NUTS2 region 

(AT12) 
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Figure 3 Intensive agricultural land use in 2050 for two climates and two scenarios a) 

CSMK3+” We are the World” b) HADGEM+” We are the World” c) CSMK3+“Should 

I Stay or Should I go” d) HADGEM+“Should I Stay or Should I go” e) c with yield 

+15% f) b with population +25%  

-100 to -75.1 (%)

-75 to -50.1 (%)

-50 to -25.1 (%)

-25 to -10.1 (%)

-10 to -5.1 (%)

-5 to -0.1 (%)

0 (%)

0.1 to 4.9 (%)

5 to 9.9 (%)

10 to 24.9 (%)

25 to 49.9 (%)

50 to 74.9 (%)

75 to 100 (%)



Electronic Supplement 

 
Climate input data 

 

Clustering was applied to the baseline climate data for the 23,871 grid squares, assumed 

uniform over a grid, which produced 170 clusters (Figure 4).  It is possible to use more or less 

clusters than the AIC-defined optimum.  

 

The metamodels 

 

The complex crop model was simulated by a series of neural network models  Figure 5 

illustrates the type of outcomes predicted by the model for 4 crops of different types for 

HadCM climate model (M. Dubrovsky et al. this issue).  Spring barley and winter wheat 

yields show relatively either no change or modest mean yield increases across the EU with 

both crops becoming suitable in the north of Europe mostly affected by increased CO2 levels 

with relatively small impacts of expected drying in the south and wetter climate in the north. 

The yields of grain maize decrease in some parts of southern Europe and increase in higher 

elevations and over much of Central Europe. Large areas become suitable for grain maize 

under the future climate which is replicated also for soybean.  The MPEH5 climate leads to 

similar results. 

 

Figure 6 shows typical output from the forest model neural network metamodel which 

predicts Carbon, Net Primary Productivity and the yield of timber from managed forests. 

 

The land use meta-model was simulated by regressions which break the model into steps to 

allow the effect of scenario variables to be included.  The details of the regressions are listed 

in the Table 2 and Table 3.  The steps estimate first the percentage of the area of each crop, 

then the costs of dairy cows (concentrates) then the fixed costs of labour and machinery and 

finally the profitability of this element. Figure 8 shows typical errors in fitting crop areas. 

 

The land use model calculates the profitability of each element as intensive arable or intensive 

grassland whichever is greater.  If the profit is greater than €350/ha it is defined as intensive 

agriculture.  

 

The remaining elements are unmanaged, and are allocated to unmanaged forest if the Net 

Primary Productivity (NPP) is positive and greater than the grass yield of extensive grass, else 

the land use is very extensive grass.  Otherwise the elements are classed as abandoned. 

Finally the elements are allocated back to the 10’ grids to provide the proportion of each grid 

having each land use, the area of each crop, the average yield of each crop, the amount of 

irrigation and measures such as diversity.  The calibrated fit for arable and grassland use 

versus the NUTS2 level Eurostat data are shown in Figure 9. Figure 10 shows the map of 

intensive agriculture land use (arable and grassland) in Europe for the baseline conditions.   

 

The difference between the climates from the HADGEM and CSMK3 GCMs are illustrated in  

Figure 11. HADGEM shows much lower levels of precipitation and almost no areas with an 

increase, whereas CSMK3 shows much greater temperature increases in the North.   

 

Finally there is nothing about the models that requires them to be used at EU 10’ grid scale.  

The models were applied to Scotland by replacing the input data by 5km
2
 grid data for soils 



and climate.  The CLIMSAVE IAP (www.climsave.eu) allows analysis both at the EU level 

and for Scotland. Figure 12 shows the CLIMSAVE output screen for baseline intensive 

agriculture for Scotland. A large amount here is extensive grassland agriculture. 



 
Figure 4 Example of UK and Italy meteorological clusters 
 

 



 
Figure 5 Predicted change in crop yields and suitability for unirrigated spring barley, winter wheat, grain 

maize and soybean. 

 



 
 

 

Figure 6 Potential Net Primary Production for the current (L) and 2050 CSMK3 (R) climate predicted by 

MetaGotilwa 
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Figure 7 Comparison of Yields from GOTILWA+ and metaGOTILWA+ for Pinus sylvestris 
evenaged management with different effective soil depths. 
  



 

 

 
Figure 8 Typical errors in fitting percentage areas of crops 

   

 

 

 



 
Figure 9 Fit of arable and grassland land classifications to Eurostat data on cropping 

  



 
 
Figure 10 Map of intensive agriculture for the baseline conditions, % per 10' grid 
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Figure 11 The difference in precipitation (Left) and annual temperature (Right) of the CSMK3 (Top) and 

HADGEM (Bottom) climate models for 2050 A1 medium sensitivity scenario 
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Figure 12 Baseline agricultural production for Scotland 

  



Table 1. Regressions to estimate the percentage of the area in each crop 
 Variable WW SW WB SB Pots SBeet OSR GMaize Cotton Sunflower Soya 

Constant  80.792 0.376 95.03 81.15 21.928 48.794 28.459 107.29 8.321 85.25 35.13 

G Crop GM 29.36 -7.08 -23.8 -53.5 6.03 8.56 -6.175 6.20 2.01 26.3 9.03 

G1 SunflowerGM       -40.35     

G2 G^2 -6.916  21.56 19.68    -0.492  -15.5 -19.8 

Ratio GM/OwnGM, max 10, if negative (^ if less than 200 €/ha) then 0.1       

X1 WW   -43.04^ -42.92^ -5.621^ -10.61 -13.44 -33.55^ -9.156 -15.6 -13.11 

X2 SW            

X3 WB -46.95^    -4.734 -5.186 -8.202 -19.07 -4.549 -9.04 -6.69 

X4 SB  -14.45^          

X5 Pots -0.218 -1.001 -0.440 -1.99  -2.355 -0.852 -0.81 1.3575 0.106 -1.795 

X6 SBeet -1.813 0.499 -0.437 -1.58 -2.891  -3.564 -3.28 -0.924 -9.76 -0.440 

X7 OSR -7.928 0.279 -13.24 2.927 -1.231 -25.52  -5.126 -3.226 -37.9 2.834 

X8 GMaize 1.749 -1.226 5.80 -2.524 -1.300 -5.447 -0.959  -2.563 7.64 6.101 

X9 Cotton -2.479 -0.093 -2.74 -0.701 1.038 -1.014 -0.714 -1.986  0.743 -1.116 

X10 Sunflower 0.715 -0.024 2.50 -0.709 -3.756 -1.752 15.847 -3.551 1.3263  -3.822 

X11 Soya -5.254 0.0995 -5.60 0.549 -1.493 -4.285 2.235 -8.093 -2.021 -2.245  

X12 X6/W8    -17.4   -1.327     

X13 1/X1   -5.00 11.38 0.099 -3.25 -19.93 -8.18 -2.45 -7.59 -4.37 

X14 G*X13      2.13 23.91 7.616 1.407   

X15 G2*X13   5.018 0.374      -0.50 8.527 

X15 1/X7      -1.438      

X16 X7/X6 -0.132 0.0994 -0.65 0.106 -0.006   -0.939 -0.056 -1.196 -0.157 

X17 X13*W9     -0.155       

X18 X8^2 -6.963 0.0624 -9.57  -2.412     -7.27 -5.54 

X19 1/X3 -3.96           

X20 1/X4  -2.15          

X21 G2*X19 1.461           

X22 G2*X20  2.602          

Climate and soil variables          

W1 Workability 3.874 6.462 -1.77 11.16 -2.114 -9.581 12.356 -17.02 -11.93 0.527 3.154 

W2 W1^2 -0.887 -0.872 -0.184 -1.61 0.032 0.940 -1.77 -2.391 1.722 -0.24 -0.47 

W3 1/W1 0.10 0.170 -0.09 0.34 -0.088 -0.328 0.429 -0.609 -0.460 0 0.022 

W4 Sowingdate 0.395 1.00 1.40 -0.08 -1.217 -2.05 -0.193 0.362 17.4 -0.03 1.95 

W5 Harvest date -1.10 0.73 0.55 -1.34 -0.862 1.55 -0.904 0.651 -1.61 -0.75 -0.75 

W6 1/W5 -0.899 3.125 0.713 -5.69 -4.34 -1.73 -7.751 2.317 -25.6 4.28 1.01 

W7 1/W4 8.48 -23.8 4.45 0.53 1.49 0.56 -2.735 -8.9 -76.6 -0.46 -26.2 

W8 Soil type 0.526 0.90 -0.20 1.51 -0.473 1.40 1.693 -4.27 -0.91 -0.51 0.41 

W9 W8^2     -0.421 -0.203 0.044 0.069 0.010   

W10 If>4deg -0.33 2.78 0.68 0.53 -1.98 -0.291 1.675 1.43 22.3 -0.69 -1.76 

W11 Temp -9.566 20.621 4.852 11.78 -7.561 -10.18 36.13 -15.75 -8.059 -26.0 -19.2 

W12 W1/W8      5.676      

W13 W4^2         -3.008   

             

R-squared  0.880 0.529 0.877 0.744 0.854 0.867 0.742 0.849 0.902 0.624 1.00 
 

AgricLandUse\Daniels\Metamodelling\CLIMSAVE-X2-WWheat_regress, -SWheat_regress, -Wbarley_regress, -SBarley_regress,  

-WOSRape_regress_soil3, -SBeet_regress_soil2, -Cotton_regress_soil2, -GMaize_regress_soil2, -Potatoes_regress_soil2, -
Sunflower_regress, -Soya_regress.xls 

  



Table 2 Regressions to estimate the percentage area of forage crops and dairy cow numbers and costs 
Ratio: crop GM/Fmaize yield Grass 

rotation 

Permanent 

grass 

Forage Maize Dairy cows Cost per 

cow 

X1 WWheat 26.3 77.2 -25.2   

X2 SWheat -10.8  -58.5   

X3 WBarley -30.3 -83.1 -24.3   

X4 SBarley -14.7  -34.7   

X5 Pots 5.12 23.3 -22.1   

X6 SBeet 3.30 -46.3 -3.4   

X7 WOSRape 0.55 -92.2 -17.0   

X8 GrassDM   -963   

X9 SOSRape -1.61     

X10 GMaize -6.36 -5.04 -15.5   

X11 Cotton 3.25 7.44 -4.93   

X12 Sunflower 3.35 -9.09 -1.42   

X13 Soybean 2.08 32.8 -2.91   

X14 Max(X1-X12) -11.1 -17.9 -26.8   

X15 X14^2 0.047 -5.18    

DM yield      

D1 Grass total DM    0.173  

D2 FMaize total DM    0.052  

Crop gross margin      

G1 WWheat -5.57 -23.1    

Climate and soil variables     

W1 Rain,m 0.047 -0.347 -0.171   

W2 Soil index 1.10 17.05 0.338 -0.485  

W3 Grass sumpropn 9.88 58.1 0.576 39.6 -19.4 

W4 N-F hours/10 0.039 -3.32 -0.400   

W5 Harv date 0.215 0.933 0.024   

W6 Sowing date -0.03 0.826 -0.0055   

W7 1/W3   -1.64   

W8 Workability 0.94 6.75    

W9 1/W4 0.895 1.42    

W10 W3^2    -25.9  

Yield of crop      

Y1 Fmaize yield 4.16 3.30 -20.0   

Y2 Grass yield 20.65 -0.619 40.4   

Y3 Y2^2 -0.075 0.140 -6.72   

Y4 Y1^2 -0.76  1.31   

Y5 1/Y2      

Area or crop       

A1 Area of grass     -26.2 

A2 A1^2     0.608 

Constant  -5.10 -114.3 75.1 -11.84 1054.8 

       

R-squared  0.700 0.766 0.535 0.989 0.753 

 

  



 

Table 3 Regressions to fit fixed costs of agriculture on the land 
 Variable Fixed 

Cost 1 

Fixed 

costs 2 

 

H Nov-Feb 

workable hours 

  
P1=1618/(1000-exp(-H/100) 

 Area of crop F1 F2  

X1 WW 3.10 1.60  

X2 SW  4.50  

X3 WB 4.37 -0.85  

X4 SB  4.37  

X5 Pots 11.19 -4.20  

X6 SBeet 3.20 -4.10  

X7 OSR  1.30  

X8 GMaize 4.25 -3.22  

X9 Cotton  5.44  

X10 Sunflower 0.59 0.18  

X11 Soya 2.71 2.81  

    Fixed costs = P1*F1+F2 

R-squared  0.935   

 

  



Table 4 Input at output variables for Crop Yield metamodel 

Input Parameters Crops modelled Output variables for each crop 

Meteorological data 

Annual PET 

April to June PET 

July to September PET 

Annual rainfall 

Percentage rainfall April to June 

Percentage rainfall July to September 

Annual mean temperature 

Mean temperature April-June 

Mean temperature July-September 

Mean temperature December-February 

Mean Tmax during June-August 

Mean Tmin during December-February 

Mean annual sum of global radiation 

Percentage radiation Apr-Jun 

Percentage radiation July-Aug 

Soil data 

Available water content 

Conductivity 

Infiltration rate 

Available water content to 50kPa  

Available water content to 200kPa  

Available water content to 2000kPa  

Available water content to 15000kPa  

Root Depth 

Soil texture code 

CO2 

Winter wheat 

Spring wheat  

Winter barley 

Spring barley 

Winter oilseed rape 

Potatoes  

Grain Maize 

Sunflower 

Soya 

Cotton 

Grass 

Olives  

 

Average yield 

 

Average potential yield with 

no nutrient limitation but 

without irrigation 

 

Average potential yield with 

no water and nutrient 

limitation 

 

Sowing date 

 

Harvest Date 

 

 



Table 5 Input at output variables for Forest metamodel 

Input Parameters Species modelled Management Output variables for each species 

Meteorological data 

Annual Rain 

Annual 

Temperature 

For each month 

Precipitation 

Radiation 

Minimum 

Temperature 

Maximum 

temperature 

Soil data 

Effective Soil 

Volume 

CO2 

Pinus_sylvestris 

Pinus_halepensis 

Pinus_pinaster 

Quercus_ilex 

Fagus_sylvatica                     

 

 

Selfthinning 

Unevenaged  

Evenaged 

Wood yield 

Net Primary Production 

Net Ecosystem Exchange 

Gross Primary Production 

Carbon Stock 

Water Stored in soil 

Basal Area 

Diameter at Breast Height 

Leaf Area Index 

Aboveground Biomass 

Belowground Biomass 

Soil Organic Matter 

Length of the growth period 

 



Table 6 Yield of different types of wood under different managements for the 5 species and harvest costs 

 

     Harvest costs 

 Proportions of Large Round Pulp Fuel Cost Tonnes 

  P.sylvestris   €/ha  

 @ unevenage 5 25 70 0 900 75 

 @ intervention 0 40 60 0 900 75 

 at final cut 73 0 27 0 1300 any 

    P.halepensis       

 @ unevenage 5 25 70 0 900 any 

 @ intervvention 0 40 60 0 900 75 

 at final cut 90 0 10 0 1200 any 

    P.pinaster       

 @ unevenage 5 25 70 0 900 any 

 @ intervention 0 30 70 0 900 75 

 at final cut 70 0 30 0 1300 any 

    Quercus       

 @ unevenage 0 0 0 100 725 any 

 @ intervention 0 0 0 100 725 75 

 at final cut 0 0 0 100 1000 any 

    Fagus         

 @ unevenage 5 15 60 20 900 75 

 @ intervention 0 32 43 25 900 75 

 at final cut 77 0 10 15 1300 any 
 

  



Table 7 Price of wood of each species and type 

 

        

 Price, €/t Large Round Pulp Fuel 

P.sylvestris 70 35 14 0 

P.halepensis 40 20 12 0 

P.pinaster 56 28 15 0 

Quercus 0 0 0 20 

Fagus 40 20 12 12 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Table 8 Meta-model validation performance statistics for the 1980-1990 period of the ensemble mean of the five best performing artificial neural 
networks (ANN) for mean water and nutrient limited yield (Yield_Av), mean water limited yield (Yield_POT) and mean water and nutrient unlimited 

yield (YieldPOTI), sowing date (Sowing) and harvest date (Harvesting). Coefficient of determination (R
2
), root mean square error (RMSE) and mean bias error 

(MBE) were used to evaluate the meta-model performance compared with the original model (Audsley et al. 2006) 

 Metric 

Meta-

model 

output 

Winter 

wheat 

Spring 

wheat 

Winter 

barley 

Spring 

barley 

Winter 

oil seed 

rape Potatoes 

Grain 

maize Sunflower Cotton Soybean Grass Olives 

R
2
 Yield_Av 

(t/ha) 0.81 0.74 0.82 0.75 0.86 0.93 0.86 0.85 0.86 0.86 0.81 0.99 

YieldPOT 

(t/ha) 0.78 0.72 0.75 0.76 0.84 0.90 0.82 0.81 0.91 0.88 0.80 0.99 

YieldPOTI 

(t/ha) 0.88 0.83 0.87 0.86 0.95 0.96 0.94 0.97 0.91 0.98 0.98 0.99 

Sowing 

(days) 0.99 0.98 0.99 0.98 1.00 0.99 0.95 0.99 1.00 0.96 0.75 0.99 

Harvesting 

(days) 0.99 0.99 0.98 0.99 0.99 0.99 0.72 0.97 0.82 0.90 0.83 1.00 

RMSE Yield_Av 0.55 0.53 0.5 0.48 0.45 1.70 0.55 0.12 0.22 0.43 0.43 0.05 

YieldPOT 1.02 1.02 1.01 1.06 0.82 3.01 1.06 0.37 0.42 0.50 1.59 0.05 

YieldPOTI 0.88 0.93 0.86 0.94 0.74 3.53 0.85 0.19 0.89 0.32 1.25 0.05 

Sowing 1.94 3.70 2.11 3.68 0.86 2.82 2.38 1.32 2.70 1.69 8.11 2.55 

Harvesting 2.07 1.86 2.13 2.13 3.56 3.53 8.22 4.96 11.61 3.18 8.21 1.54 

MBE 

 
Yield_Av 0 0 0 0 0 0.02 0.01 0 0 -0.01 0.01 0 

YieldPOT -0.01 0 -0.01 -0.01 -0.01 0.03 0.01 0 0 -0.01 0 0 

YieldPOTI -0.01 0.01 0 0 0 0.04 0.03 0 0.02 0 -0.02 0 

Sowing 0.01 -0.09 0 0 0 0.12 -0.01 0.02 0.01 0.02 -0.04 0.01 

Harvesting -0.02 0.12 -0.01 0 -0.12 0.02 0.24 -0.07 0.03 -0.02 0 -0.01 

 

 

 

 

 

 




