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Introduction
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A number of equations have been derived for predicting the shear
angle (¢ in Fig. 1) in orthogonal metal cutting. The best known of
these is due to Merchant (1) who by assuming that the value of shear
angle would be such as to give a minimum expendwture of Work obtained
the relation

+

-5
i
=]
IR

. .

 where O is the tool rake angle (Fig. 1) and A is the mean angle of
friction between the chip and the tool along the tool-chip interface.

Lee and Shaffer (2) applied ideal slip-line field theory to the
problem and obtained the equation

¢ = X ¢+ a = A | (2)
L ; ,

Equations (1) and (2) predict that an increase in rake angle or a
decrease in friction angle will give an increase in shear angle and this
is consistent with experience. However, both equations also predict a
unique value of ¢ for a given value of A - & and it can be seen from the
experimental values of ¢ given in figure 2 that this is not the case.

It is clear from experiments that ¢ varies with material and cutting
speed, and yet except for associated variations in A equations (1) and
(2) take no account of these.

By allowing that the shear strength along the shear plane (AB in
Fig. 1) would increase with increase in the normal stress on this plane
Merchant (1) derived the equation

20 = C+C =~ A ' . k‘ (3)

where C measures the dependance of shear strength on normal stress.
Subsequent work has shown that the values of C required to satisfy
experimental work cannot be explained in terms of the dependance of shear
strength on normal stress. It is also difficult to understand from this
equation why ¢ should vary with cutting speed and feed in the way it is
known to.

More recently Kobayashi and Thomsen (3) have 1ntroduced the cnncept
of effectiveness which is essentially a measure of the departure from the
minimum energy solution of Merchant (1), i.e. equation (1). An effective=-
ness of unity corresponds to equation (l) and smaller values of effective-
ness give a lower value of ¢ for a given value of A = & than equation (l)
By choosing suitable values of effcctiveness it is possible to satisfy
any experimental value of ¢. Although useful in coliasting ex perLAaacal




data, e.g. it appears that effectiveness is constant for a given
material and cutting speed, the value of the analysis is limited by
the lack of any obvious fundamental relationship between effectiveness
and work material properties or cutting speed.

Variable flow stress thgggg
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It is implicit in all of the above theories that the normal stress
acting on the shear plane does not vary alorng the length of the shear
plane. That this is only true for a material vhose flow siress
does not change during cutting can be shown as follows.

Let us assume for simplicity that the removed metal chip is formed in a
parallel sided shear zone as shown in fig. 3, with AB, CD and EF directions
of maximum shear stress (and incidentally directions of maximum shear
strain rate as well). Consider the equilibrium of the small element

of the shear zone shown in fig. L.

As the work material passes through this zone its flow stress will
change as a result of work-hardening, thermal softening etc. Therefore,
let the shear flow stress along CD (i.e. the initial shear flow stress
at zero plastic strain) be k = «%, and let the shear flow stress along EF
be k.+-%§. The total change in shear flow stress is then Ak. Resolving
forces paraliel‘to AB gives J

Lk A
(p + Ap)Asy + (& = 55)sz = Ay + (k + T Nsz
and simplifying

Ak
by = Zoyle2 - ()

where Ap is the change in hydrostatic stress across the element, Osy is

the width of the shear zone and Ass is measured along AB. Because AB is

a direction of maximum shear stress the hydrostatic stress p (Fig. 4) is
also the normal stress on AB, equation (U4) therefore expresses the variation
of this stress along AB. It is clear from this equation that the normal
stress p is only constant along AB when &k = 0, i.e. for a material of
constant flow stress.

The flow stress of a material is known to vary in cutting and it is
common experience that the chip is much harder than the parent material
from which it is removed. Any theory which neglects this effect can
therefore be expected to give poor results. Let us now consider a theory
based on equation (4). :

If we neglect any forces on the clearance Tace of the tool, AB will
transmit the resultant cutting force. The shear force on AB is

F o= k—= | (5)
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where t (Fig. 3) is the depth of cut and therefore EEE o is the length

of AB, and k is the shear flow stress along AB. The normal compressive
force on AB can be calculated from the normal stress distribution along

AB. For a parallel sided shear zone %&_ in equation (4) will be constant
s

1
and the normal stress distribution along AB will be linear. Therefore,
the total normal compressive force acting on AB will be

T _ pA'F'pB t (6)

N T 2 sin ¢

where Py and pp are the hy&rostatic (i.e. normal) stresses at A and B
respectively. The angle of inclination of the resultant cutting force
with AB (6 in Fig. 3) can now be found from equations (5) and (6), that is

. y Pa + Pp '
L,anaz'l‘;;::wmgr (7)

The angle © can also be expressed in terms of the frictional condition
along the tool-chip interface and as can be seen from Fig. 5

6 =¢ +X -0 (8)

In comparing shear angle equations and experimental results it is
usual to plot values of ¢ against values of A = Q. 6 in equation (8)
is then the intercept on the ¢ axis (i.e. the value of ¢ for A - & = 0).
Tn the Lee and Shaffer solution (eguation (2)) pp = pp = k and 6 = L5°.
In the present solution € can be calculated from equation (7) once py and
pp are known. pp (vhich is compressive) is found from the free surface
condition just ahead of A (Fig. 3), that is

p, = k1+2(F -0} (9)

and by applying equation (4) between A and B

Pg = Pp " As; sin ¢ (10)

For a material whose flow stress increases during cutting, therefore, pp
will have a lower compressive (even tensile) value than Pa-

Tt is known from experiments that the length to width ratio of the
shear zone (i.e. ) is reasonably constant for a range of work

ANsy sind
materials and cutting conditions. Therefore, it is the variations in Ak
which have the greatest influence on the values of pp and hence €. The

larger the increase in shear flow stress during cutting the smaller the ey




value of pp and therefore from equation (7) the smaller the value of 6.
In other words mabterials which work~harden rapidly tend, by reason of
equation (10), to produce a lower normel force on AB, and hence lower
values of @ than materials with low work-hardening rates.

In terms of shear angle results small values of © (i.e. small values
of intercept on the ¢ against A - graph) give small values of shear
angle ¢. Therefore, materials which work-harden rapidly can be expected,
according to the present theory, to machine with smaller shear angles
than materials with low work-~hardening rates. With this in mind let us
now reconsider the experimental values of shear angle given in Fig. 2.

The effective stress-effective strain curves for the work materials
represented in Fig. 2 are given in Fig. 6. These were obtained from
compression tests by Kobayashi and Thomsen (4) who also did the cutting
tests for the experimental values of shear angle given in Fig. 2. In
cutting the strain-rates are high (up to 10° per sec) and the stress-strain
curves in Fig. 6, which were obtained at very low strain-rates, do not
really apply. However, it seems reascnable to assume that a material
which work-hardens rapidly at low strain-rates will work-harden relatively
rapidly at high strain-rates. Following this line of reasoning we can
propose that materials with high rates of work-hardening as measured by a
'static! test (e.g. Fig. 6) will machine with smaller values of shear angle
than materials with low rates of work~hardening.

A detailed analysis by Oxley and Welsh (5) has shown that the work-
hardening parameter of importance in estimating shear angles is ﬁ, where
m is the average slope of the stress-strain curve above an effective
strain of 0.2 and k (k = 7%f1) is taken at an effective strain of 0.5.

Values of = obtained in this way for the materials shown in Fig. 6
are given in table 1. From this table we would expect the range of values
of ¢ to be lowest for alpha brass and then in the order SAE 1112 Annealed,
SAE 1112 as received, 6061-T6 AL, and 2024-Th AL.  The experimental values
of ¢ for these materials (Fig. 2) confirm this trend.

MATERTAL m/k
1 SAE 1112 steel (as received) L1k
2  2024-Th aluminium alloy .10
3  SAE 1112 steel (annealed) : .25
I 6061~T6 aluminium alloy 11
5  Alpha brass L2




Figure 7 shows stress-strain curves for four conditions of SAE L4135
steel and table 2 gives the corresponding values of M. Experimental

k

MATERIAL : : By
1 SAE 4135 (Re - 35) .06
2  SAE 4135 (Re - 26) .09
3  SAE 1135 (as received) .21
L SAE 4135 (annealed) .21

TABLE 2

v - -

values of ¢ (Figs. 8 and 9) for the four conditions of the material again show

that the higher the value of % the lower is the range of values of ¢.

The present theory also throws light on the variation of shear angle
with cutting speed. It is well known that at low cutting speeds the shear
angle tends to be much smaller than at high cutting speeds. It is also
known from research in the materials field that an increase in strain-rate
(which would follow from an incrﬁase in cutting speed) gives a decrease
in m and an increase in Xk, i.e.-z decreases. Therefore, at high cutting
speeds we have a high strain-rate a low values of L and therefore, according
to the theory, a high value of shear angle. In reéference (5) calculations
were made to show the influence of cutting speed on shear angle. = These
are reproduced in Fig. 10 and it can be seen that the agreement between
theory and experiment is good.

Finally we can say something about the tendency of some materials to
machine with a discontinuous chip. If the hydrostatic stress in the
region of B (Fig. 3) has a low compressive value or becomes tensile then
the chip is likely to crack in this region. From our theory (equation (10))
we know that high rates of work-hardening give small compressive or even
tensile values of pg. Therefore, we might expect that materials which
work=-harden rapidly will tend to machine with discontinuous chips. This
is known in practice to be the case.
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Flzo. Shear angle values for materials shown in Fig,  {(Kobayashi and Thomscen).
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2024-T4 aluminium slloy O
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SAE 12 steel (as receivedy A
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DIRECTION OF CUTTING

FIG. SHEAR ZONE MODEL OF CHIP FORMATION.
3.

DIRECTION OF CUTTING

FiG.5. DIAGRAM SHOWING RELATIONSHIP
Fﬁ} SHEAR ZONE ELEMENT B¢ h-x
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