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Abstract17

18

The Everglades ecosystem in Florida, USA, is naturally phosphorus (P) limited,19

and faces threats of ecosystem change and associated losses to habitat,20

biodiversity, and ecosystem function if subjected to high inflows of P and other21

nutrients. In addition to changes in historic hydropattern, upstream agriculture22

(sugar cane, vegetable, citrus) and urbanization has placed the Everglades at risk23

due to nutrient-rich runoff. In response to this threat, the Stormwater Treatment24

Areas (STAs) were constructed along the northern boundary of the Everglades as25
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engineered ecological systems designed to retain P from water flowing into the26

Everglades. This research investigated data collected over a period from 2002 to27

2014 from the interior of the STAs using data mining and analysis techniques28

including a) exploratory methods such as Principal Component Analysis to test29

for patterns and groupings in the data, and b) modelling approaches to test for30

predictive relationships between environmental variables. The purpose of this31

research was to reveal and compare spatial trends and relationships between32

environmental variables across the various treatment cells, flow-ways, and STAs.33

Common spatial patterns and their drivers indicated that the flow-ways do not34

function along simple linear gradients; instead forming zonal patterns of P35

distribution that may increasingly align with the predominant flow path over36

time. Findings also indicate that the primary drivers of the spatial distribution of37

P in many of these systems relate to soil characteristics. The results suggest that38

coupled cycles may be a key component of these systems; i.e. the movement and39

transformation of P is coupled to that of nitrogen (N).40

41

Keywords: phosphorus, data mining, stormwater treatment areas, constructed42

wetland, Everglades, water quality43

44

1. Introduction45

46

The Stormwater Treatment Areas (STAs), located around the northern boundary47

of the Everglades in Florida, USA, were constructed over a period from 1994 to48

2013. As a set of engineered ecological systems, the general purpose and49

function of the STAs is to reduce phosphorus (P) in runoff water prior to50



discharging to the Everglades Protection Area. They consist of a series of51

shallow, freshwater marshes divided into flow-ways and treatment cells by52

interior levees and control structures, populated with emergent or submergent53

aquatic vegetation (EAV and SAV, respectively) (Chen et al., 2015). The54

Everglades as a system is naturally P limited (Entry, 2014; McCormick et al.,55

1996), and so the water it receives must meet stringent requirements for ultra-56

low levels of water P (Pietro and Ivanoff, 2015). Since 1995, the STAs have57

treated approximately 16.5 billion m3 inflow volume, retained approximately58

1,727 metric tons (mt) of total phosphorus (TP), lowering phosphorus surface59

water concentrations from an overall annual TP of 140 micrograms per liter (µg60

L-1) to 37 µg L-1 (flow weighted mean; South Florida Water Management District,61

2015), and improving further in most recent years to exhibit outflow62

concentrations averaging between 15-25 µg L-1 (South Florida Water63

Management District et al., 2015). STA-2 and STA-3/4 are two of the best64

performing STAs, and have recorded reductions in surface water P from 100 and65

87 µg L-1 at inflow structures, respectively, to 23 and 18 µg L-1 at outflow (Pietro66

and Ivanoff, 2015).67

68

The STAs are wetland systems, and the controls on the P removal process are69

therefore set by the internal biogeochemical, ecological and physical processes70

and conditions in each cell, in each STA (Ivanoff et al., 2013). Phosphorus71

reduction from each STA must be maximized in order to meet stringent72

regulatory effluent limits, which implies that these natural processes must be73

manipulated (engineered) to maximize P retention. Phosphorus in surface water74

can have various forms; from soluble reactive to forms of organic and particulate75



P with varied degrees of recalcitrance (Reddy and DeLaune, 2008). The retention76

of P in these systems needs to therefore consider these different forms.77

78

There are abiotic processes of P retention, including P sorption to the STA soil79

particulates (Reddy et al., 1999) and particulate (co)-precipitation with cations80

such as calcium (Ca), magnesium (Mg), iron (Fe), and aluminium (Al) (Malecki-81

Brown et al., 2007). Factors that influence these processes are surface flow rate82

and path (Kadlec and Wallace, 2009) but also water and soil chemistry (e.g.83

concentrations of Ca, Mg, Fe and Al), pH, and the oxidation reduction potential84

(Reddy et al., 1999). Ideally this P then gets buried, or retained by the sediment85

within the wetland, resulting in gradually lower soil P-levels as water flows from86

the inflow point towards the outflow points (P gradient), similar to what has87

been observed in the nearby Water Conservation Area 2A (DeBusk et al., 1994).88

There are circumstances under which P is transported along the hydrologic89

gradient due to sediment re-suspension, P desorption from the sediment matrix,90

or poor vegetation condition. In properly performing STAs, these are limited and91

water column P could be reduced further down the flow-way, reducing the slope92

of the gradient. Uptake and retention of P by plants is generally (though not93

exhaustively; dependent upon plant type) considered to be short-term and rapid;94

while abiotic/physical retention processes tend to be longer term and are95

considered to account for 50-70% of permanent storage (Richardson, 1999).96

97

Biological cycling of P involves direct uptake of available P by plant and98

microbial communities (Newman et al., 2001) to meet their physiological99

requirements, action of extracellular enzymes on complex organic P to release P100



uptake (Corstanje et al., 2007) and the release of P from the biological101

decomposition of organic material. Under anaerobic environments,102

decomposition of organic material is slow, resulting in formation and accretion103

of peat; forming another sink for P as long as the peat remains intact. Biological P104

cycling and the resulting spatial distribution of the different forms of P is highly105

complex, as it is driven by coupled P, N and C cycles; determined by redox106

conditions and characterized by the plant ecology (Chen et al., 2015; Orem et al.,107

2014; Reddy et al., 2011).108

109

Extensive sampling has been conducted over a period from 2002 to 2014, in110

which soil, surface water and macrophytes have been sampled within the STA111

cells, resulting in a large dataset of observations. Coupled with hyper-spectral112

measurements made through various aerial surveys, the results comprise a fairly113

comprehensive dataset on the spatial variation in key components of the STA114

ecosystem. Here, we report on a broad scale analysis of these datasets, in order115

to determine common trends across the various flow-ways in the STAs, and in116

individual STAs. The expectation here is that common biogeochemical processes117

will generate common multivariate patterns across STAs. We then considered,118

given the extent and comprehensiveness of the datasets under consideration,119

implications for future monitoring of these systems.120

121

2. Materials and Methods122

2.1. Study Area123

124



The STAs, operated by the South Florida Water Management District, cover an125

effective treatment area of circa 230 km2. There are five STAs: STA-1E, STA-1W,126

STA-2, STA-3/4, and STA-5/6 (Figure 1); STA-5/6 was formerly two separate127

STAs until water year (WY) 2010. The STAs vary in size and location, and each is128

constructed with sets of interconnected cells forming treatment ‘flow-ways’.129

Data from surface water (sampled along internal transects within the treatment130

cells), floc (i.e. flocculant; loosely clumped particles either suspended in the131

water column or resting atop the soil, analogous to litter in terrestrial systems),132

and soil collected within the various cells were available for analysis, and have133

been previously described and used to evaluate conditions within the STAs (e.g.134

Pietro and Ivanoff, 2015; Reddy et al., 2009). Normalized Difference Vegetation135

Index (NDVI) and vegetation class and habitat maps were derived from recent-136

year hyper-spectral imagery at a resolution of approximately 1 square foot to137

represent the approximate current state of vegetation within the cells. The138

available datasets were diverse in spatial extents, subjects (e.g. soil samples,139

surface water transects, vegetation coverage) and data types (e.g. categorical vs.140

continuous), necessitating a data mining approach capable of addressing this141

diversity. Below we describe the structure of each STA; specifics of data142

availability are described in the sections that follow.143

144

STA-1E began full operation in 2006-2007 and consists of three flow-ways;145

Eastern, Western, and Central. Due to data availability only the Central Flow-way146

was analyzed here. STA-1W’s Eastern and Western flow-ways were in operation147

from 1994 as the Everglades Nutrient Removal (ENR) project, with an additional148

Northern flow-way constructed in 2000. All three flow-ways were analyzed. STA-149



2 Cells 1-3, each single-cell flow-ways, were operational from 2000 onwards.150

Additional cells, 4-8, involve multi-cell flow-ways and became operational151

between 2008 and 2012 but were not studied here due to insufficient data152

availability. STA-3/4 consists of three flow-ways (Flow-ways 1, 2 and 3) and153

became operational in 2004; all were included in analysis. STA-5 originally154

consisted of three flow-ways, denoted Flow-ways 1, 2 and 3; each consisting of a155

combination of two cells. Flow-ways 1 and 2 became operational in 1999; Flow-156

way 3 in 2008. Flow-ways 4 and 5 were later added, flow-capable in 2010, but157

not studied here. Combination with STA-6 to form STA-5/6 added three158

additional flow-ways; 6, 7 and 8, of which Flow-ways 7 and 8 are single cell flow-159

ways (operational in 1998), and Flow-way 6 (not analyzed) couples two cells (6-160

4, flow-capable in 2010 and 6-2, constructed in 2006).161

162

2.2. Data quality control163

164

Quality control checks were performed on all datasets at various stages of the165

data compilation. Blank or null records were treated as no data and not zero. For166

soil and floc data, parameter values were reported within specific ranges of the167

profile, typically ranging from 0 to 10 cm. Some records included data on the168

upper profile (0-10 cm), lower profile (10-30 cm), and full profile combined (0-169

30 cm). In some cases soil nutrients within selected STA cells were measured at170

variable depth increments (e.g. 0-2, 2-4, 4-6 cm, etc.). In such cases, all171

parameters for relevant increments were averaged into a single 0-10 cm field for172

analysis to ensure consistency across the dataset (including bulk density). In173

some other cases, the sampling depth of the upper profile did not reach 10 cm,174



but these were still marked as the upper profile. The full profile value was very175

rarely given, and was calculated only for the datasets that were subsequently176

used in the data mining analysis. In these instances, the average of the upper and177

lower profile was used.178

179

2.3. Data Analysis180

2.3.1. Preparation of datasets for data mining181

182

The following rules were applied for inclusion of the data measured within the183

STAs: (1) There must be at least 10 observations for a given STA cell and year184

(an arbitrary cutoff point but sufficient to allow the calculation of meaningful185

statistics) and (2) There must be at least one instance of at least 10 observations186

per year within all STA cells in a flow-way. Seasonality at temporal scales finer187

than full years was not considered here. Additionally, any GIS data with full188

coverage of STA cells were considered. These included vector maps of vegetation189

class and habitat, NDVI rasters, and topography rasters representing the190

elevation differences of the STA floor at various year intervals. The resulting191

flow-ways included in data mining and their available data are listed in Table 1.192

Table 1. List of flow-ways included in interpolation and their available data193
including years and number of observations (n). Surface water quality data are194
from transects internal to each treatment cell.195
STA Flow-way Cells STA Data Availability
STA-1E Central 3 to 4N

to 4S
Soil/floc (2004, 07, 09, 10; n=97)
Surface water (2013; n=16)
Macrophyte nutrients (2009; n=46)
Hyper-spectral imagery (2011-12)

STA-1W Eastern 1A and
1B to 3

Soil/floc (Eastern/Western FW only:
1995-97, 99; all FW: 2003-08, 10;
n=1006)

Surface water (2003, 04, 09-13; n=2689)
Western 2A and

2B to 4



Northern 5A to 5B Macrophyte nutrients (Eastern/Western
FW only: 1996, 97; all FW: 2003, 04,
08-10; n=262)

Hyper-spectral imagery (2011-12)
STA-2 Flow-way 1 1 Soil/floc (2003, 07, 09-11; n=830)

Surface water (2003-10, 13, 14; n=1126)
Macrophyte nutrients (2003, 09, 10;

n=91)
Hyper-spectral imagery (2011-12)

Flow-way 2 2
Flow-way 3 3

STA-3/4 Flow-way 1 1A to 1B Soil/floc (2004, 07, 10; n=1272)
Surface water (2003-10, 13, 14; n=1134)
Macropyte nutrients (2010-12; n=58)
Hyper-spectral imagery (2011-2012)

Flow-way 2 2A to 2B
Flow-way 3 3A to 3B

STA-5/6 Flow-way 1 1A to 1B Soil/floc (FW 1/2: 2002, 03, 07-11; n=617.
FW 7/8: 2003, 07-11; n=138)

Surface water (FW 1/2: 2013; n=74)
Macrophyte nutrients (FW 1/2: 2002, 03;

n=147. FW 7/8: 2003; n=31)
Hyper-spectral imagery (all FW: 2011-12)

Flow-way 2 2A to 2B
Flow-way 7 5
Flow-way 8 3

196

197

2.3.2. Interpolation of flow-way data within STA cells198

199

Interpolation was done using an Empirical Bayesian Kriging (EBK) algorithm.200

For Bayesian geostatistical analysis, we used the Gaussian Spatial Linear Mixed201

Model as formulated by Diggle et al. (1998) without fixed effects:202

203

�(��) = �(��) + �

204

where the random variable �(��) is an � ×1 vector of observed values at205

locations s�, s�, … , s�; � represents the spatial random effect which is a Gaussian206

process with mean of 0, variance of �� (partial sill) and correlation function207

�(ℎ;�), for which we selected an exponential correlation function: �(ℎ;�) =208

exp(−
�

�
); and � is an � ×1 vector of errors with mean of 0 and variance of209



��(nugget variance). These semivariogram parameters were estimated using210

restricted maximum likelihood (REML). The EBK tool produced 1137 pairs of211

interpolated and standard error maps which, together with other spatial212

datasets available (described above in 2.3.1), were sampled with 100 randomly213

distributed points (separated by at least fifty feet) within each STA cell.214

215

2.3.3. Multivariate Analysis216

217

Multivariate analysis used a combination of exploratory and modeling tools to218

identify underlying patterns in the data. Within each treatment flow-way, data219

from all available years were pooled to facilitate a single, data-rich analysis. For220

initial calculation of summary statistics, the record set within each cell221

containing the greatest number of observations for each year of coverage was222

selected, and the mean and standard deviation of TP measurements were223

calculated across all recorded years in Microsoft Excel (Microsoft, 2003). The224

mean and standard deviation of key soil nutrients (i.e. total phosphorus, nitrogen225

and carbon) were calculated for entire STAs. Principal components analysis226

(PCA) and clustering analysis (CA) were used in an exploratory mode using JMP227

(SAS, 2013); PCA to determine the main axis of variation the datasets, and CA to228

determine if there were any meaningful groups in the observations. The primary229

goals were: (a) to determine if there are any consistent main drivers of variation230

across the flow-ways (i.e. do the flow-ways and STAs behave consistently across231

the board, or is each a unique system responding to unique operational232

circumstances); and (b) within each flow-way, to determine if there are natural233

groupings of multivariate data (e.g. are observations from areas around the234



inflow sufficiently similar in floc, soil and vegetation characteristics to cluster,235

and sufficiently distinct from other areas). We used a combination of Ward’s and236

k-means clustering methods (Corstanje et al., 2009). Ward’s is a minimum237

variance, hierarchical clustering method which produces a scree plot, that in turn238

allows us to both identify the optimal number of clusters and establish the seeds239

which are then used to run the k-means clustering process. This was then240

followed by Stepwise Canonical Discriminant (SCD) analysis in JMP (SAS, 2013)241

to help identify the primary drivers of the clusters.242

243

Subsequently, we applied a set of non-linear, hierarchical structured models244

using Statistica (StatSoft, 2014) to predict surface water TP concentrations245

(Classification and Regression Trees; CART). Where no surface water TP data246

were available (as was the case in 10 out of 24 cells: STAs 1E, 2 Cell 2 only, 3/4,247

and 6), floc TP was substituted as the best available indicator of TP and its248

drivers in the flowing system. The CART approach has a number of advantages;249

the method is not sensitive to non-normal data, it accepts categorical as well as250

continuous data (needed as soil series and soil parent material are categorical,251

whereas soil organic matter is continuous) and it is not confounded by the252

presence of non-linear relationships (Breiman et al., 1984; McCune and Grace,253

2002). Bayesian Belief Networks (BBNs), having similar advantages in their254

ability to handle non-normal and categorical data, were also created using Netica255

(Norsys, 2014) to predict the most recently available NDVI and TP256

(preferentially in surface water if available, otherwise in floc or soil as described257

above) in each cell. BBNs are graphical probabilistic models; graphical in that258

they represent the variables that affect the response of interest (e.g. floc or259



surface water P) in the form of a network, and probabilistic in that the260

relationships between the drivers and response are conditioned by a probability261

(Taalab et al., 2015). Bayesian inference is thus based on a set of prior262

probabilities that can be updated as new information becomes available. In this263

case, some knowledge of potential drivers of P dynamics was available from the264

CART analysis and a review of the existing P process literature; the network thus265

consisted of those variables that the previous CART models identified as drivers.266

For both CART and BBN approaches, model fitness and the strongest predictor267

variables were of primary interest.268

269

3. Results270

3.1. Summary Statistics271

272

Data on TP from internal surface water transects and TP, total carbon (TC) and273

nitrogen (TN) from soil samples in all STAs and across all available years were274

pooled and their summary statistics calculated (Tables 2 and 3), but275

distributions were highly variable in terms of timing, data type, number of276

observations, and data were not available or complete for all cells and flow-ways.277

Cell 2A in STA-5/6 achieved the highest overall mean internal surface water TP278

(0.216 mg L-1) followed by STA-1W’s Cell 5A (0.129 mg L-1). The Cells with the279

lowest mean internal surface water TP were STA-3/4’s Cell 3B (0.012 mg L-1)280

and STA-1W’s Cell 4 (0.024 mg L-1). Variability was present in the data, both281

within sets of records and between different years and cells; most standard282

deviations tended to fall proportionally between 30% and 80% of their283

associated means. Total soluble phosphorus (TSP) and soluble reactive284



phosphorus (SRP) in internal surface water were variable in their proportional285

relationship with TP (not shown); combined across all STAs, TSP averaged286

roughly half of TP (59.2%) with a standard deviation of 15.4%, and SRP averaged287

28.1% of TP with a standard deviation of 14.6%. As these statistics summarize288

the data for entire treatment cells they do not address spatial patterns within289

individual cells (this is explored below in section 3.3); however in flow-ways290

composed of multiple cells, an apparent trend of decreasing mean TP was visible291

along the length of the flow-ways from the summary statistics, evidencing the292

removal of phosphorus from surface water as it flows through the STAs. The293

greatest proportional drop was in Flow-way 2 in STA-5/6, where Cell 2A294

exhibited a mean TP of 0.216 mg L-1 and Cell 2B a mean of 0.062 mg L-1.295

296

Table 1: Summary statistics for all combined data on total surface water297
phosphorus [mg L-1] sampled within the STAs (internal surface water transect).298
SD = Standard Deviation, N = number of observations. Values marked ‘n/a’299
represent cells where summary data were insufficient for calculation of300
summary statistics.301

STA Flow-way Cells Mean SD N
STA-1E Central 3 n/a n/a 0

4N 0.108 0.017 16
4S n/a n/a 0

STA-1W Eastern 1A 0.106 0.049 8
1B 0.065 0.044 159
3 0.030 0.018 95

Western 2A 0.123 0.069 77
2B 0.047 0.022 89
4 0.024 0.012 70

Northern 5A 0.129 0.051 54
5B 0.071 0.079 699

STA-2 Flow-way 1 1 0.044 0.036 197
Flow-way 2 2 n/a n/a 0
Flow-way 3 3 0.034 0.024 606

STA-3/4 Flow-way 1 1A to 1B n/a n/a 0
Flow-way 2 2A to 2B n/a n/a 0
Flow-way 3 3A 0.037 0.005 4



3B 0.012 0.001 42
STA-5/6 Flow-way 1 1A 0.064 0.048 12

1B 0.031 0.023 16
Flow-way 2 2A 0.216 0.074 12

2B 0.062 0.045 16
Flow-way 7 5 n/a n/a 0
Flow-way 8 3 n/a n/a 0

302
303

Table 3: Summary statistics for all combined data on total soil phosphorus [TP;304
mg kg-1], total carbon [TC; g kg-1] and total nitrogen [TN; g kg-1] sampled within305
the STAs. SD = Standard Deviation, N = number of observations.306
STA Soil TP (mg kg-1) Soil TC (g kg-1) Soil TN (g kg-1)

Mean SD N Mean SD N Mean SD N
STA-1E 241 207 294 85.2 63.3 294 5.7 4.3 294
STA-1W 550 237 1405 432 57.6 1322 26.5 4.2 1319
STA-2 611 250 1166 392 51.2 1078 23.1 3.7 1078
STA-3/4 718 243 1858 346 74.2 1857 22.1 5.0 1857
STA-5/6 727 315 952 285 111 783 20.5 7.8 783

307

308

Data for TP, TC and TN in soil and floc across the STAs were analyzed at the STA309

level. STA-5/6 exhibited the highest mean levels of soil TP (727 mg kg-1), while310

STA-1W achieved the highest values for both mean TC (432 g kg-1) and mean TN311

(26.5 g kg-1). STA-1E had the lowest mean values for all three nutrients; 241 mg312

kg-1 TP, 85.2 g kg-1 TC, and 5.7 g kg-1 TN. Variability was highest in STA-5/6313

across all three nutrients; exhibiting a standard deviation of 315 mg kg-1 TP, 111314

g kg-1 TC, and 7.8 g kg-1 TN. TP variability was lowest in STA-1E (standard315

deviation of 207 mg kg-1), while STA-2 displayed the lowest variability for both316

TC (51.2 mg kg-1) and TN (3.7 g kg-1). Note that these statistics represent317

averages across entire treatment cells or STAs; Table 3 reports the associated318

variability (as standard deviations).319

320

3.2. Multivariate Analysis Results321



322

Principal Component Analysis (PCA) results are characteristically not323

straightforward to interpret and do not involve clear cutoffs to determine324

whether or not a component variable can be considered specifically important or325

unimportant, so focus was placed on determining and reporting those variables326

that were clearly the strongest drivers and/or recurred consistently across STAs.327

Results varied by cell, but the most commonly identified variables related to soil328

TC, soil TN, soil and floc bulk density (BD), soil and floc TP, and soil and floc ash-329

free dry weight (AFDW) as the greatest contributors to variability in the data330

(Table 4). Cluster analysis identified 3 or 4 clusters in most cells, with spatial331

structure to cluster membership apparent in some but not all cells (Table 5).332

333

Table 4: Summary of the main outcomes from Principal Component Analysis334
(soil/floc/surface water parameters separated by semicolon). Abbreviations:335
total phosphorus (TP), total carbon (TC), total nitrogen (TN), bulk density (BD),336
sulfur (S), calcium (Ca), iron (Fe), macrophyte nutrient (macro), exchange337
capacity (exc), surface water (sw), alkalinity (Alk) ash-free dry weight (AFDW).338
Note that data availability was not consistent (e.g. few surface water339
observations in STA-1E Cells 3 and 4S) so PCA may not accurately reflect the340
importance of underrepresented variables in some cells.341

STA Flow-way Cell PCA main variables % var explained
by PC1,..,PC3

STA-1E Central 3 Soil TC, TN, AFDW, BD, TP,
Ca

80.25

4N Soil AFDW, BD, TC, Ca, Fe,
TP

79.58

4S Soil AFDW, BD, TC, TN, TP,
Ca, Fe

77.77

STA-1W Northern 5A Soil AFDW, BD, TC, TN, TP;
floc AFDW; sw TP

83.23

5B Floc BD, TC, AFDW; sw Ca,
P

68.01

Eastern 1 n/a* 57.49
3 Soil Al exc, Fe exc, TN, Alk,

AFDW, BD, K; sw TP
76.59

Western 2 Soil Fe, BD, TC; sw TP, Ca,
AFDW

81.34



4 Soil AFDW, Fe, TC, TN; sw
Ca, TP

81.66

STA-2 1 1 Soil TC, TN, TP; floc TC; sw
TP

75.09

2 2 Floc BD, TC, TN, TP 72.19
3 3 Soil macroDryWt, TC; sw

Ca, TP
77.98

STA-3/4 1 1A Soil BD, TN; floc BD, TP 72.54
1B Soil TP, TN, BD; floc TN;

sw TN
71.78

2 2A Soil BD, TC, TN; floc BD,
TC, TN

63.12

2B Soil TC, TP, TN, BD 71.71
3 3A Soil TC, TN, BD, TP; sw Ca,

TP
74.21

3B Floc TC, TN; sw Ca, P 69.59
STA-5/6 1 1A Soil macro TN, Fe, BD; floc

DryWt; sw Ca
72.11

1B Soil TC, TN, S, TP; floc
dryWt, AFDW; sw TP

79.28

2 2A Soil TC, TP, AFDW; floc BD;
sw TP

77.99

2B Soil TN, TP, BD, TC 77.17
7 5 Soil AFDW, TC, TN, Ca; floc

moisture
77.90

8 3 Soil AFDW, Fe, macro
AFDW, TC; floc AFDW

77.87

* STA-1W Cell 1 PCA results consisted of similar and low average values, not342
highlighting any particular driving variables.343

344
Table 5: List of analyzed flow-ways by age, number of clusters and observed345
spatial pattern of clusters (maps of cluster patterns available in supplementary346
material).347
STA Flow-way Oper. start

year
Cell No.

clusters
Observed cluster
pattern

STA-1E Central 2006/7 3 4 Zonal
4N 3 Zonal
4S 3 Zonal

STA-1W Eastern 1994 1 3 Zonal gradient
3 4 Zonal gradient

Western 1994 2 4 Zonal gradient
4 4 Tenuous zonal gradient

Northern 2000 5A 4 Zonal
5B 4 Tenuous zonal gradient

STA-2 Flow-way 1 2000 1 5 Zonal gradient
Flow-way 2 2000 2 4 Zonal
Flow-way 3 2000 3 4 Zonal gradient

STA-3/4 Flow-way 1 2004 1A 5 Zonal
2004 1B 4 Zonal



Flow-way 2 2004 2A 4 Zonal
2004 2B 3 Zonal

Flow-way 3 2004 3A 3 Tenuous zonal gradient
2004 3B 5 Zonal

STA-5/6 Flow-way 1 1999 1A 6 Tenuous zonal gradient
1999 1B 3 Tenuous zonal gradient

Flow-way 2 1999 2A 4 Zonal
1999 2B 3 Zonal

Flow-way 7 1998 5 3 Zonal gradient
Flow-way 8 1998 3 5 Zonal gradient

348

349

CART analysis consistently found the strongest predictor variables for surface350

water and floc TP to be other variables relating to P content (i.e. P in different351

forms such as SRP, etc.) in soil, floc, and surface water; soil and floc BD; and soil352

and floc TN. Measures relating to AFDW, TC and Ca also showed occasional353

influence but were less widespread. Maps of CART model standard error by354

location (not pictured) did not generally reveal any spatial relationships with355

direction of flow, but did in some cases reveal zonal structures similar to the356

cluster analysis (described below in 3.3).357

358

Analysis with BBNs identified the strongest consistent predictors of recent year359

NDVI to be variables relating to: vegetation type and cover, NDVI from previous360

years, surface water TP, soil and floc TN, and soil and floc TC. BBNs predicting361

surface water TP were most influenced by: other forms of surface water P, soil362

BD, soil TN, soil TC, and soil TP.363

364

3.3. Spatial Trends365

366



Spatial patterns varied to a degree among treatment flow-ways. For instance, floc367

and macrophyte characteristics dominated the models which predicted surface368

water TP in STA-5/6; soil physical properties (e.g. bulk density) described many369

of the spatial patterns in the treatment flow-ways of STA-3/4, etc.370

Notwithstanding this, some general observations can be made regarding all371

treatment flow-ways: (1) there are clear zonal patterns consistently present in372

these systems that are, in many cases, independent of the direction of flow and373

do not exhibit a simple linear gradient (Figure 2 shows STA-3/4 Flow-way 3 as374

an example of purely zonal pattern; other examples include Flow-ways 1 and 2 in375

the same STA and STA-1E's Central Flow-way, shown in supplementary376

material); however these zonal patterns appear to align along the direction of377

flow in the case of some older STAs and flow-ways (Figure 3 shows STA-1W's378

Eastern flow-way as an example of zone-based gradient pattern; other examples379

include STA-1W's Western Flow-way, STA-2's Flow-ways 1 and 3, and STA-5/6's380

Flow-ways 7 and 8, shown in supplementary material and summarized in Table381

5); (2) There is some consistency in the spatial arrangement of these zones over382

the treatment flow-ways, such as surface water TP concentration being highest383

close to the inflow structures and there closely associated with a zone of higher384

floc and soil TP concentrations. Following these points, there is rarely any385

further consistency in the spatial organization of zones, or in their386

characterization, across flow-ways; but 3) soil TN often becomes an important387

factor characterizing the zone around the outflow (e.g. STA-1W, STA-3/4).388

389

4. Discussion and Conclusions390

4.1. Summary Statistics391



392

Two results stood out from the cell-wide summary statistics that were consistent393

with expectations. Firstly, the lowest mean values of internal surface water TP394

were found in flow-ways present in STAs 2 and 3/4, which have been previously395

cited as being two of the best-performing STAs for P removal (Pietro and Ivanoff,396

2015). Secondly, all flow-ways consisting of multiple cells exhibited a trend of397

decreasing TP along the length of the flow-way (cell-wide summary statistics did398

not consider internal spatial patterns of single-cell flow-ways; these are399

discussed below), demonstrating the effects of P removal by the system at the400

STA scale. Taken broadly, this is consistent with the expectation that wetlands401

experiencing a uniform sheet flow should exhibit P decreases along a402

longitudinal flow-based gradient (Walker and Kadlec, 2011).403

404

4.2. Multivariate Analysis405

406

In considering the outputs from the data-mining analysis for the flow-ways; PCA407

is a general dimension reduction technique in which the underlying variation is408

maintained. It was used here because it is one of the primary steps in any409

multivariate data analysis as well as an effective way to represent variation in410

the data. Generally the PCA was successful, with an average of 75% of the411

variation explained. The most common variables identified as influential in the412

PC loadings were soil TC, soil TN, soil and floc BD, soil and floc TP and soil and413

floc AFDW. It should be noted that this particular analysis does not take into414

account non-continuous data (e.g. categorical variables such as soil series and415

parent material). In essence, the outcome from this analysis is an effective416



summarization of the data but with little further insight into drivers, mainly417

highlighting that most of the within cell/within flow-way variation is driven by418

sediment nutrient concentrations and, to a lesser degree, floc TC and nutrient419

content.420

421

Cluster analysis resulted in cluster memberships that could be assigned to the422

original data, revealing spatial patterns and structure in the data. Of interest here423

were two points; do the data resolve clearly in clusters, and if so, how many (i.e.424

how many classes of data are there in an STA flow-way), and are these classes425

meaningful in any way? In general, most cells could be described by 3 to 5426

clusters and only in one case (STA-5/6 Cell 1A; 6 clusters) were more clusters427

needed (see Table 5). Clusters consistently grouped spatially into zone features428

which did not appear to be tied to cell location within the flow path in many429

cases; however in some cells these zonal features were observed to align along430

the direction of flow. While not an unequivocal relationship, these 'zone-based431

gradient' patterns appeared more likely to occur in older STAs and flow-ways432

(Table 5). Patterns seemed only tenuously related to flow path at best in STAs-1E433

and -3/4 (completed in 2007 and 2004, respectively), and generally more434

obviously following the flow gradient in STA-1W (completed in 1994-2000),435

STA-2 (completed in 2000), and STA-5/6 (completed in 1998/9).436

437

The CART and BBN analyses both revealed similar relationships and driving438

variables in the data. Surface water TP was found to share consistently strong439

linkages with other forms of phosphorus in surface water (e.g. SRP and TSP) as440

well as in floc and soil. Nitrogen, carbon, and bulk density in soil and floc also441



factored in frequently; this highlights the potential importance of soil properties442

to P dynamics in the STAs, as well as the possibility of coupled cycles wherein P,443

N, and possibly C dynamics share co-dependencies and interrelationships.444

445

4.3. Observed Relationships and Drivers of P Dynamics446

447

It is evident from studies in the Everglades and elsewhere (Bayley and Mewhort,448

2004; Bostic and White, 2007; Gu and Dreschel, 2008; Riggsbee et al., 2012), that449

plant communities actively regulate P dynamics in wetlands. In the STAs, low450

levels of water column P are achieved using strategic combinations of SAV and451

EAV to address P in different forms and in different stages of the flow-ways452

(Chen et al., 2015). In projecting this fact on the data mining exercise, one would453

expect the spatial patterns of soil P to reflect plant community composition, and454

plant communities would be expected to be a strong determinant in any455

predictive model for soil or floc P. In our analysis this was only rarely the case;456

however these effects may be obscured by the fact that much of the available457

data on vegetation composition were categorical (e.g. vegetation class and458

habitat type; NDVI being the notable exception as a continuous variable), and459

thereby only possible to include in CART and BBN analyses. Both CARTs and460

BBNs modeling surface water TP did not commonly reveal vegetation-related461

measures as key predictors, but BBNs predicting NDVI frequently did highlight462

surface water TP as an important driver (i.e. TP did not appear driven by463

vegetation, but vegetation appeared driven by TP). Linkages between TP and464

vegetation therefore may not be direct or omnipresent, but our analysis shows465

support for some relationships.466



467

Where P is limiting, or effectually buried, and therefore not available for the468

plant communities, this may be reflected as plant stress (i.e. P limitation), which469

can be remotely determined using NDVI (Henrik, 2012). The hypothesis is that470

the indication of effective functioning of an STA is that, in the lower reaches of a471

flow path, the vegetation may become P-limited. As a first instance, predictive472

modeling of NDVI should indicate whether this is responsive to floc and soil473

nutrient status. For BBNs predicting NDVI this indeed was the case; the strongest474

predictors consistently included floc and soil nutrients, along with surface water475

TP and other measures of vegetation health and composition. Note however that476

prolonged exposure to low P concentrations may trigger a shift in plant477

community composition to species that are more adapted to the low levels; such478

a shift would be reflected in categorical habitat variables but not necessarily by a479

decrease in NDVI. This highlights the importance of vegetation-related measures480

beyond NDVI, and in turn the importance of methods such as BBNs that can481

consider categorical expressions of vegetation community.482

483

4.4. Spatial Patterns of P and their Implications484

485

The observation that consistent spatial patterns appear zonal rather than based486

on simple gradients is probably the most significant finding of the data mining, in487

that the processes controlling P in these systems operate in zones in the488

treatment flow-way, rather than along a smooth linear gradient as would be the489

expectation (see Table 5). These zones are observed repeatedly across STAs and490

flow-ways, and are consistently present as modeling outcomes (e.g. cluster491



analysis and CART outputs) and as such are unlikely to be a modeling artifact.492

There are a number of implications from approaching the STA flow-ways as493

zones rather than a simple gradient. From a research perspective, the relative494

importance of different factors, transformation and transport pathways of P495

occurs in spatial patterns, and the form and shape of these patterns indicates the496

relative importance of particular pathways. Likewise, this affects the497

experimental sampling design, as these would then target zones rather than498

seeking to measure along a gradient (biased sampling). From a management499

perspective, this could simplify management options in that the operation and500

management strategies can be directed at particular zones within a treatment501

flow-way rather than an entire cell or the full flow-way, particularly once the502

drivers of these zones are better understood. Nevertheless, in older STAs (e.g.503

STA-1W, -2, and -5/6) these zonal patterns appeared to align more frequently504

and obviously with the direction of flow, suggesting that P dynamics may505

function largely in zonal patterns but slowly shift toward a zone-based gradient506

pattern over the operational time of an STA. Of particular note, STA-2 flow-way 3507

exhibited a strong gradient pattern in the cluster analysis result and has been508

previously studied as one of the longest-running and best-performing treatment509

flow-ways (Juston and Debusk, 2011; Juston et al., 2013).510

511

The finding of zonal patterns of P concentrations in the STAs (whether forming512

zone-based flow gradients or not), rather than simple uniform gradients513

decreasing along the axis of water flow, differs from previous findings and the514

usual expectation of P dynamics in wetlands (e.g. Kadlec, 1999; Walker and515

Kadlec, 2011). One possible explanation for this difference is that the treatment516



cells may be wide enough to allow partial mixing of water rather than a relatively517

uniform sheet flow; this would account for more complex patterns (Walker and518

Kadlec, 2011). If true, this would have implications for the assumptions made in519

future flow modeling efforts in the STAs, and require a more complex520

interpretation of the system than a one-dimensional sheet flow. Chen et al.521

(2015) cautioned that analyses focused solely on inflow and outflow P522

concentrations, while useful, do not consider P removal processes internal to the523

treatment cells, as well as recommending that future studies consider524

multivariate relationships. Doing so here has enabled additional findings, such as525

the potential importance of relationships between P and soil factors, and the526

possibility of P-N coupled cycles impacting dynamics. This latter result, while not527

widely explored previously, is consistent with previous findings in Water528

Conservation Area 2A (WCA 2a) on P and N functional linkages (White and529

Reddy, 2003). Corstanje et al. (2009, 2007) found evidence that areas enriched530

with P in WC-2a are mediated by N related parameters, such as potentially531

mineralizable N and related microbial extracellular enzymatic activities. In STA532

areas closest to the inflow, as P is relatively plentiful, the cycling P is likely to be533

co-mediated by N and its dynamics.534

535

4.5. Data-Mining Advantages and Future Research536

537

Previous studies have examined the extensive data now available for P dynamics538

in the STAs (e.g. Chen et al., 2015; Juston et al., 2013; Pietro and Ivanoff, 2015),539

but this is one of the first known studies to comprehensively make use of the540

diverse data collected in the interior treatment cells and flow-ways (e.g., soils,541



vegetation, internal water quality) and the first to do so at such a broad scale542

through a data mining approach. Doing so has facilitated new findings and543

understanding around the functional P dynamics of the STA systems. Approaches544

making use of these techniques are valuable for identifying biogeochemical545

relationships, and should be considered and further employed in future studies546

of the STAs as well as other engineered wetlands where sufficient data are547

available.548

549

In addition, there remain a number of further considerations moving forward.550

First, many links between plant community composition and P dynamics remain551

unclear beyond known differences between EAV and SAV in P removal (e.g.552

Dierberg et al., 2002; Juston and DeBusk, 2006). In particular, we suspect there is553

an element of scale effect; where these processes occur and are important at554

scales finer than we considered in this study. Second, the approach used here555

focused on data mining techniques, and while effective for exploring patterns in556

the data it lacks a detailed process understanding of P biogeochemistry. The557

incorporation of process understanding and process models (e.g. first order558

equations) into the more stochastic modeling environment considered in this559

study could produce a set of hybrid models which would both reflect process560

knowledge and understanding but also, critically, allow for scaling and mapping.561

Such an approach could better explore the process-based reasons for the zonal562

patterns observed here and their potential relationships with flow-way age.563

Finally, future research should seek to effectively consider the interaction564

between different datasets available from the STAs in order to rigorously565

consider time series analysis and pulsed events. A future study which initiates566



with a thorough decomposition of the STA inflow and outflow data (volume and567

concentrations), considers the stochasticity of this data and then moves to568

incorporate it in the models of flow-way behavior should generate significant569

insights in the STA dynamics, and to what degree performance is related to570

stochastic events (e.g. storms or droughts) vs. deterministic processes (e.g. P571

biogeochemistry, SAV, periphyton). Eventually this will relate to a measure of the572

resilience of these systems; expressed as their capacity to withstand pressures573

and maintain long term performance.574

575

4.6. Conclusions576

577

In conclusion, the use of data mining approaches on STA treatment cell and flow-578

way data has identified, in a very general sense, spatial patterns in these systems.579

These patterns are consistently zone-based across all flow-ways, which suggests580

that the flow-ways function first as zonal systems rather than simple linear581

gradient systems. Our analysis suggests that the primary drivers of the spatial582

distribution of P in many of these systems are related to soil characteristics, and583

that the zonal patterns of P distribution may begin to follow the predominant584

flow path over time. The data further suggest the importance of coupled cycles in585

these systems; in other words, the movement and transformation of P is coupled586

to that of N.587
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Figures712

713

Figure 1: Locations of the Stormwater Treatment Areas in south Florida, USA,714

indicating individual treatment cells and direction of flow. Bolded flow-way715

names and darkened arrows denote flow-ways included in analysis.716

717

718



719

Figure 2: Spatial patterns detected by cluster (A) and CART (B) analyses – an720

example for STA-3/4 flow-way 3. Image B represents the distribution of721

CART nodes (symbol numbers represent the number of nodes in the CART722

model) corresponding to the prediction of surface water total P723

(concentration denoted by symbol color). Note that patterns are724

predominantly zonal and only tenuously aligned with flow direction.725

726

727

728



729

Figure 3: Spatial patterns detected by cluster (A) and CART (B) analyses – an730

example for STA-1W Eastern flow-way. Image B represents the distribution731

of CART nodes (symbol numbers represent the number of nodes in the732

CART model) corresponding to the prediction of surface water total P733

(concentration denoted by symbol color). Note that zonal patterns appear734

largely aligned with flow direction, indicating a gradient-based behavior to735

the individual zones.736

737



A datamining approach to identifying spatial patterns of P forms in the Stormwater

Treatment Areas in the Everglades, US

Corstanje, R., Grafius, D.R., Zawadzka, J., Moreira J., Vince, G., Ivanoff, D., Pietro, K.

Supplementary Materials

These maps show the K-mean clusters and tree nodes resulting from Classification and

Regression Trees (CARTs) analysis performed within particular flow-ways of the

Stormwater Treatment Areas (STAs) that had sufficient data to do so. Please note that, in

the case of CARTs, the results are only shown for the flow-ways with availability of data on

total surface water phosphorus.



Figure S1: Cluster analysis for STA-1E Central flow-way. Arrows indicate the direction of

water flow through the flow-way.



A B

Figure S2: Results of A – cluster analysis, and B – CARTs analysis for STA-1W Eastern flow-way. Arrows indicate the direction

of water flow through the flow-way. Numbers in CART results indicate the number of nodes in the CART model.
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Figure S2: Results of A – cluster analysis, and B – CARTs analysis for STA-1W Western flow-way. Arrows indicate the direction

of water flow through the flow-way. Numbers in CART results indicate the number of nodes in the CART model.



A B

Figure S3: Results of A – cluster analysis, and B – CARTs analysis for STA-1W Northern flow-way. Arrows indicate the

direction of water flow through the flow-way. Numbers in CART results indicate the number of nodes in the CART model.



A B

Figure S4: Results of A – cluster analysis, and B – CARTs analysis for STA-2 flow-way 1. Arrows indicate the direction of water

flow through the flow-way. Numbers in CART results indicate the number of nodes in the CART model.



A B

Figure S5: Results of A – cluster analysis, and B – CARTs analysis for STA-2 flow-way 3. Arrows indicate the direction of water

flow through the flow-way. Numbers in CART results indicate the number of nodes in the CART model.



Figure S6: Cluster analysis for STA-2 flow-way 2. Arrows indicate the direction of water flow through the flow-way.
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Figure S7: Results of cluster analysis for A – STA-3/4 flow-way 2 and B – STA-3/4 flow-way 1. Arrows indicate the direction of

water flow through the flow-way.
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Figure S8: Results of A – cluster analysis, and B – CARTs analysis for STA-3/4 flow-way 3. Arrows indicate the direction of

water flow through the flow-way. Numbers in CART results indicate the number of nodes in the CART model.
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Figure S9: Results of A – cluster analysis, and B – CARTs analysis for STA-5/6 flow-way 1. Arrows indicate the direction of

water flow through the flow-way. Numbers in CART results indicate the number of nodes in the CART model.
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Figure S11: Results of A – cluster analysis, and B – CARTs analysis for STA-5/6 flow-way 2. Arrows indicate the direction of

water flow through the flow-way. Numbers in CART results indicate the number of nodes in the CART model.
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Figure S10: Results of cluster analysis for A – STA-5/6 flow-way 7 and B – STA-5/6 flow-way 8. Arrows indicate the direction

of water flow through the flow-way.


