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MEASURING THE POTENTIAL FOR SELF-CONNECTIVITY IN GLOBAL AIR 
TRANSPORT MARKETS: IMPLICATIONS FOR AIRPORTS AND AIRLINES

ABSTRACT
One of the strategies that air travellers employ to save money is self-connectivity, i.e. travelling with a 
combination of tickets where the airline/s involved do not handle the transfer themselves. Both airports and 
airlines, particularly low-cost carriers, have recently started catering to the needs of this type of passengers with 
the introduction of transfer fees or the development of self-connection platforms. The evidence provided by the 
existing literature, however, suggests that the degree of implementation of these strategies falls short of its true 
potential. In order to investigate how much self-connectivity could be observed in global air transport markets, 
this paper develops a forecasting model based on a zero-inflated Poisson regression on MIDT data. We identify 
the airports that have the highest potential to facilitate self-connections, as well as the factors that hinder or 
facilitate the necessary airline agreements at major locations. The results from this paper have many implications 
in regards to the widespread implementation of self-connection services and the future of the air travel industry.

Keywords: Self-connectivity; air transport networks; connection builder; Poisson regression.
__________________________________________________________________________________________

1. INTRODUCTION
In recent times, low-cost carriers (LCCs) have experienced increased competitive pressures. 
They have become less able to exploit new sources of latent demand in mature air transport 
markets and have suffered from increasing route density problems (de Wit and Zuidberg, 
2012). LCCs have also been affected by the reconversion of holiday charter operators into 
scheduled airlines with business models that are relatively close to the low-cost paradigm 
(Dobruszkes, 2013). In this context, a widely reported process of “hybridization” has occurred, 
with many LCCs adopting several characteristics of traditional full-service operators 
(Klophaus et al., 2012), with whom they now compete more directly (Morrell, 2005). These 
characteristics include, price bundling, codesharing agreements, and the operation of 
connecting flights on top of their traditional point-to-point services (Morandi et al., 2015; 
Fageda et al., 2015). In Europe, Vueling and Air Berlin were among the first LCCs to start 
offering flight transfers in their hub at Barcelona and Palma de Mallorca respectively. Another 
example is Norwegian, which charges a connecting fee primarily to cover the costs of 
transferring passenger baggage between its own flights. Globally, Air Arabia (UAE) and 
Citilink (Indonesia) are known for offering flight connections at their main bases (ICAO, 
2014). The provision of these services shows that LCCs are interested in generating new 
sources of revenue by catering to the needs of self-connecting passengers, who design their 
own flight itineraries outside the boundaries of traditional airline connectivity with the 
objective to save money. These passengers travel on a combination of multiple tickets and take 
care of their own baggage transfers since the airline/s involved do not handle the transfer 
themselves. This definition includes both inline LCC transfers as well as other types of interline 
connections (ViaMilano, 2016). In some LCC airport bases is common to see price-sensitive 
passengers sleeping in the terminal to self-transfer between late-evening and early-morning 
flights. Some well-known cases are London-Stansted, Bergamo and Bordeaux airports. 

A few European airports have also shown interest in tapping this segment of demand (Fageda 
et al., 2015). For example, London Gatwick and Milano Malpensa implemented new platforms 
to facilitate self-connections and improve travel experience. In exchange for a fee paid during 
the reservation process (available from online booking platform/s that participate in the 
scheme), self-connecting passengers at Gatwick are offered, at the very least, a baggage 
transfer service as well as insurance against the risk of missing their onward flight in the event 
of delays (Gatwick Airport, 2015). Gatwick is indeed a special case, and the success of these 
programmes depends critically on airlines signing up to these services (in order to increment 
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the potential number of self-connecting itineraries covered at each airport)1. From airlines’ 
perspective, the advantage of participating in such schemes may be linked to the potential 
benefits that interline connectivity brings in terms of economies of traffic density (Starkie, 
2007). 

From the airport’s perspective, a direct benefit is linked to increased non-aeronautical revenues 
generated by the extra connecting passengers (Malighetti et al., 2008). However, they can also 
benefit in terms of route development, particularly if self-connections help improving the way 
in which short-haul low-cost frequencies feed passengers to long-haul flights, thus making 
international routes more sustainable in the long term (Fageda et al., 2015) and potentially 
developing the airports’ position as international gateway. In relation to this, the CEO of 
Gatwick Airport argues that their “diverse short- and long-haul airline mix” improves the 
airport’s suitability to host a self-connection platform (The Independent, 2015). Another 
argument in support of that idea is the development of low-cost long-haul services (De Poret 
et al., 2015) that effectively expands the scope of LCC self-connectivity to long-haul markets 
as new opportunities arise for passengers to find cheap fares in these longer routes. The 
negotiations between Ryanair and Norwegian (who operates long-haul frequencies) in regards 
to possible collaboration clearly indicate that airlines are keen to develop those travel 
opportunities (CAPA, 2016). 

In spite of the above, the fact that self-connectivity is primarily a passenger strategy to save in 
airfares indicates that price-sensitive leisure travellers would remain the key target for this type 
of self-connection platforms (Burghouwt, 2007; Maliguetti et al., 2008; Fageda et al., 2015; 
OAG, 2016)2. This fits nicely with the kind of passengers and destinations that LCCs all over 
the world typically focus on: short-to-medium-haul holiday markets (Dobruszkes, 2013). 
Hence, it is not surprising to find many short-to-medium-haul Mediterranean destinations 
among the self-connecting routes promoted by Gatwick and Milano airports even in markets 
that are well served by direct frequencies or traditional flight connections (See e.g. Gatwick 
Airport, 2015; Via Milano, 2016). 

The existence of both short/medium and long-haul dimensions of self-connectivity suggests 
that a complex assessment of an airport’s potential to develop this type of traffic platforms is 
warranted, yet still not available in the literature. Depending on an airport’s geographic location 
and airline mix, different patterns of specialization in self-connecting routes could appear. In 
addition, while the existing literature on the topic of self-connectivity is scarce (Malighetti et 
al., 2008), it clearly concludes that there is substantial potential for interline connectivity to be 
exploited by passengers. The previous contributions, however, are exclusively based on airlines 
schedules data and hence, there is room to improve on existing methods by adding information 
on actual itineraries flown by passengers. An exploratory study on this topic will be particularly 
valuable in the current early stages of implementation by airports and airlines worldwide. 

In this context, we aim to evaluate the potential for widespread development of this type of 
traffic and the implications for airports and airlines. To that end, we use a Quality of Service 
Index (QSI) methodology, based on coefficients obtained using a zero-inflated Poisson 
regression on global MIDT data for June 2014, to forecast the amount of traffic that could be 
captured by self-connecting travel alternatives created using a connections builder (CB) 

1 The airlines that have signed up to Gatwick Connects service are (September 2016): Aer Lingus, Air Europa, 
British Airways, easyJet, Flybe, Meridiana, Mornarch, Norwegian, TAP, Thomas Cook, Virgin Atlantic, 
WestJet and WOW Air. 
2 Nevertheless, the characteristics of the self-connecting passenger may vary depending on the market and region. 
For example, the promotional video of GatwickConnects seems to target young couples and business travellers. 
In this regard, more research is needed to fully understand the different profiles of the self-connecting passenger.
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algorithm. We identify the airports that have the highest potential to facilitate self-connections 
and investigate (with a second-stage regression) the role that geographic location, destination 
mix, or airline dominance play in generating that potential. In addition, we discuss the factors 
that hinder or facilitate the necessary airline agreements at the major locations. 

The rest of this paper is structured as follows: Section 2 provides a review of the literature in 
all subjects relevant to the paper and discusses our main contributions. Section 3 introduces the 
case study, describes the MIDT dataset, and the methodology, including the connections 
builder and Poisson regression. Section 4 presents the results and discusses their main business 
implications. Finally, Section 5 summarizes our findings, addresses the limitations of our 
model, and proposes new paths for future research.

2. LITERATURE REVIEW
We build on existing literature to justify the scope of our contributions and define our 
methodological process. The phenomenon of self-connectivity was firstly defined by 
Burghouwt (2007) as “self-help hubbing”. Later, it was analysed in more detail by Malighetti 
et al. (2008) and hinted by Jimenez et al. (2013). More recently, Fichert and Klophaus (2016) 
and Maertens et al. (2016) scoped the self-connectivity market out. Using data on airline 
schedules, Malighetti et al. (2008) developed a method to find the quickest-travel-time 
itineraries3 within the European air transport network. Their main conclusion is that the 
majority (two thirds) of the fastest indirect itineraries were provided outside the scope of the 
airline alliances. In regards to the airports with the highest potential, their results reveal that 
airports that are relatively “central” to the European network, in both a geographical and a 
topological sense, are found to be the ones with the highest potential for self-connections (e.g. 
Munich, Paris-CDG, Stockholm, Helsinki). Fichert and Klophaus (2016) explore the self-
connecting, hubbing and codesharing options of seven European airlines and suggest that 
airports support of self-connections is a soft approach for connection building. Using the same 
type of supply data as Malighetti et al. (2008) and an SQL method, Maertens et al. (2016) also 
assess the potential of transfers between European LCC services. They identify Barcelona, 
London Gatwick and London Stansted as the airports with the largest LCC transfer potential. 
Overall, the studies above support the hypothesis that there is indeed a large opportunity for 
widespread development of self-connecting travel services.

From a methodological perspective, however, we aim to advance their methods by 
complementing the airline schedules with data on actual passenger demand (MIDT) that 
provides indication of the passengers’ full itineraries. This is a novel contribution to the 
literature on self-connectivity in airline networks. It is a relevant improvement since it allows 
us to assign a value to each travel option based on observed demand: 1) how many passengers 
do actually want to travel between any two places? 2) how strongly competitive are all available 
travel options that passengers have actually taken within the same market? Furthermore, we 
employ a second-stage regression to identify the drivers of airport self-connectivity, 
particularly those related to airport centrality (as suggested by Malighetti et al., 2008’s results) 
and airline/destination mix as suggested by Gatwick Airport.

Answering to this last question is a typical challenge faced by airport marketing practitioners, 
particularly when working in the area of route development. In this context, Halpern and 
Graham (2013) note the widespread use of connection-building (CB) algorithms that feed on 

3 In this paper, we refer to a travel alternative, travel option or travel itinerary as a sequence of flights between the 
passenger’s point of origin and ultimate destination. Most origin and destination markets can be served by multiple 
travel alternatives, which can be either direct (non-stop) or indirect (involving at least one flight connection).
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airline schedules and return a set of valid travel itineraries (non-stop or indirect4) for the 
selected market/s. The validity of these itineraries is ensured by introducing minimum 
connecting time (MCT) restrictions (Veldhuis, 1997; Burghouwt and de Wit, 2005). For 
simplicity, many applications employ constant MCTs depending on the type of connection (i.e., 
domestic or international). This is the approach implemented by Malighetti et al., (2008) when 
evaluating self-connectivity in the European network (a 60-minute threshold was set for intra-
European connections). We aim to improve on that method by using published MCTs that are 
specific to the relevant airport and airlines. This will allow the CB algorithm to deliver a more 
precise set of valid travel itineraries. A second advantage of that approach is that the quality of 
airport connectivity will more closely reflect the characteristics of each airport, particularly 
their terminal layouts that is one of the factors behind the published MCT values5. A second 
challenge for the design of a CB algorithm is to define rules to discard unrealistic travel 
itineraries that should not be included within a pool of competitive travel options for 
passengers. To that end, the established approach is to define maximum connecting times 
and/or maximum geographic detours (for example, to exclude itineraries that involve 
backtracking). Seredyński et al. (2014) combined both types of impedances in relation to the 
non-stop travel time in each market (thus defining a maximum travel time increase). They 
showed how this approach helps the CB to return fewer unrealistic itineraries. We will 
implement this approach in our methodology. 

A second element of our methodology is forecasting, for which there is a wide range of 
established methods, including gravity models (Grosche et al., 2007), logistic regression 
(Coldren et al., 2003; Coldren and Koppelman, 2005), Neural Networks (e.g., Zhang and Qi, 
2005), or the Quality of Service Index-QSI (Tembleque-Villalta and Suau-Sanchez, 2015). 
According to Halpern and Graham (2013), QSI models have been adopted as an industry 
standard and are widely applied by airports to forecast market shares of new routes. In order to 
improve the applicability of our results in a practitioner context, we adopt the QSI method to 
our case study. QSI models assign a weighted “score” to each travel alternative based on a set 
of predictors of passenger choice. Market shares are then calculated as the ratio between the 
individual scores and the sum of the scores of all travel alternatives in each origin and 
destination market. Wei and Hansen (2006) highlight the arbitrary nature of predictor weights 
on most QSI applications as a common criticism levied on these models. In order to address 
this shortcoming, we calibrate the variable weights using an econometric regression on MIDT 
data. In accordance with the nature of passenger bookings, we model it as count data and 
employ both Poisson and negative binomial regression models (Mao et al., 2015). These have 
been used for air travel demand forecasting (Johansson et al., 2011; Mao et al., 2015) as well 
as in areas like airline reservation systems (Lee, 1990) and airline safety (Madsen et al., 2015). 
Our case study, however, is different from previous applications in which we also need to 
model the absence of demand for the majority of valid itineraries available in air transport 
networks. We employ zero-inflated models to that end, which is a first in this subject area.

The most common predictors of air travel demand include fares, frequencies (typically over an 
average week), connecting times, number of stops, travel detours (both geographical and in 
terms of travel time), aircraft type, booking class (e.g. business vs. economy), or departure time 
(Tembleque-Villalta and Suau-Sanchez, 2015). All these variables will be included in our 
regression model, except booking class, for which information is not available. The broader 
literature on airport choice has also established the importance of airport surface accessibility 
(Ashford and Bencheman, 1987; Windle and Dresner, 2002; Pels et al., 2003; Johnson et al., 

4 Only flight itineraries up to two stops are typically included since demand for longer itineraries is marginal 
(Coldren and Koppelman, 2005).
5 Airports with multiple terminals tend to have longer MCTs.
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2014; Hess and Polak, 2005; Lieshout et al., 2015). However, we cannot account for this 
variable either due to the lack of information about the place of residence of passengers. 

This paper also contributes to the literature on LCC interline agreements, which already 
includes theoretical (Kawamori and Lin., 2011) and empirical studies (Morandi et al., 2014). 
Past contributions focus mainly on alliance membership and codesharing, with no previous 
discussions on self-connection agreements. However, we argue that, due to the similarities with 
other types of interline collaboration, the incentives of LCCs to enter into these agreements 
must be linked to the same factors that explain the existence of LCC codeshares, which were 
investigated by Morandi et al. (2014). These authors highlight the positive impact of 
reciprocity, which is likely to be a relevant factor for self-connections as well since the feeding 
airline (the airline that serves the first leg) assumes the risk of passenger compensation if its 
flight is delayed. The lack of symmetry in traffic flows (which we will be able to measure with 
our data) may result in an unbalanced distribution of risk between both airlines. We will build 
part of our exploratory discussion on potential self-connection agreements on this concept. 

In summary, we contribute to the literature on self-connectivity in airline networks by 
employing data on passenger demand and published minimum connecting times to improve 
the quality of our connectivity and forecasting models. While we use established methods (such 
as CB, QSI, and econometric regression), we adapt them to the characteristics of our case study 
by using zero-inflated count data models. Regarding the results, we provide the first regression 
analysis on the drivers of airport self-connectivity, the first ranking of airports based on 
demand-weighted potential for self-connectivity as well as the first discussion on the hurdles 
and facilitating factors of airline self-connecting agreements. 

3. DATA AND METHODOLOGY
3.1. Case study and datasets
We focus on global air transport markets, as represented by the passenger itineraries included 
in our MIDT dataset for the first week of June 2014. Each record contains information on the 
ticketing airline, as well as the points of origin and destination, the connecting airports (up to 
two intermediate stops), and the number of passengers. In total, the MIDT dataset contains 1.4 
million different itineraries in 462,599 origin-destination markets, involving slightly over 54 
million passengers, 23% of which (12.3 million) travel indirectly (i.e. with at least an 
intermediate stop) to their destinations. Table 1 shows the distribution of this global demand 
for indirect air travel by geographical markets. The largest market for connections by far is the 
North American one, followed by Asia-Pacific and the European Economic Area (EEA). These 
three intra-regional markets account for 46.5% of global connections. In regards to 
intercontinental markets, the busiest ones connect the three aforementioned regions as well as 
North America with Latin America and Caribbean.
Table 1. Distribution of global passenger connections by geographical markets (June 2014)

(passengers travelling between)

EEA Rest of 
Europe 

(non-EEA)

Africa Asia-Pacific Latin 
America and 

Caribbean

Middle East North America

EEA 936,695 341,641 247,556 889,945 314,126 200,643 865,668
Rest of Europe (non-EEA) 178,775 23,292 118,056 16,253 52,745 90,279
Africa 88,813 158,819 17,218 81,815 110,605
Asia-Pacific 1,621,334 86,000 398,835 728,782
Latin America and Caribbean 544,963 19,651 835,993
Middle East 81,660 155,747
North America 3,172,362
Source: MIDT

Table 2 shows the top-ten intermediate hubs in the sample when all markets are considered. As 
expected, US hubs dominate the ranking due to their massive domestic connectivity. In 
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addition, note the relatively high positions of airports like Dubai and Istanbul that have 
experienced explosive growth over the last decade. Only Frankfurt and Paris-CDG represent 
European airports in this top ten. Other European hubs, such as Heathrow or Amsterdam are 
not present due to the reduced (or inexistent) amount of domestic connections. Table 2 also 
shows the top-ten airlines according to global passenger bookings. Note the presence of three 
LCCs such as Southwest, Ryanair, and Easyjet, which supports the hypothesis that a large 
number of self-connecting travel alternatives will be found among these airlines that do not 
typically transfer flights with themselves or other airlines.  
Table 2. Top-ten hub airports and airlines in the sample (1st week June 2014)

Airport Code Originating 
Passengers

Connecting 
Passengers

Ticketing Airline Code Bookings

Atlanta ATL          291,752 651,432 Delta DL          2,346,046 
Dallas/Fort Worth DFW          255,737 404,912 Southwest WN          2,220,766 
Chicago O'Hare ORD          370,466 378,298 United Airlines UA          2,036,182 
Frankfurt FRA          261,662 368,446 Ryanair FR          1,833,086 
Dubai DXB          266,684 342,911 American Airlines AA          1,488,161 
Charlotte CLT          103,261 322,001 Easyjet U2          1,274,616 
Istanbul Ataturk IST          281,084 317,483 China Southern CZ          1,182,269 
Amsterdam AMS          279,568 252,845 US Airways US          1,128,890 
London Heathrow LHR          486,672 242,263 China Eastern MU          1,019,959 
Houston Intercontinental IAH          172,038 241,843 All Nippon Airways NH              848,634  

Source: MIDT,

Table 3 provides summary statistics on the available price data. While the average fare of non-
stop trips is lower than indirect trips, the price distributions present substantial overlap between 
itinerary types, thus indicating that it is possible to find indirect itineraries that undercut their 
non-stop counterparts. The quality of the price data is not optimal tough. Only 28.8% of 
itineraries in the MIDT dataset include price information. This poor coverage limits the role 
that airfares can play in our QSI model. 
Table 3. Distribution of prices per type of itinerary (1st week June 2014)

USD Mean s.d. Min Max
non-stop fares 271.27 261.60 10.00 7,312.00
1-stop fares 464.25 568.52 10.00 19,803.00
2-stop fares 605.26 697.84 10.00 18,918.00

Source: MIDT

The original sources of information for the MIDT dataset are Global Distributions Systems 
(GDSs) such as Galileo, Sabre, or Amadeus, among others. MIDT is a common data source in 
the construction of airport route development reports (Halpern and Graham, 2013). The raw 
data on the passenger bookings has been adjusted by the provider (OAG Traffic Analyser) 
using a proprietary algorithm based on frequencies and supplied seats in each flight sector. The 
reliability of these adjustments has been discussed in past studies that also employed these 
types of datasets for connectivity purposes (e.g, Suau-Sanchez et al., 2015, 2016). 

The CB algorithm is built on a dataset of global flight schedules during the first week of June 
2014, whose primary source is the OAG Schedules dataset. After simple data processing, the 
supply dataset comprises 655,987 unique records of scheduled passenger flight departures for 
747 airlines that offered 89.7 million seats across a network of 2,998 commercial airports. Each 
record indicates the operating airline, alliance membership (if applicable), flight number, origin 
and destination airport codes, aircraft type, number of seats, flight distance, departure and 
arrival times, and departure and arrival terminals (if applicable). Finally, we also have a dataset 
of minimum connecting times, including the airports’ default values plus around 68,000 airline-
specific exceptions. This was obtained from the OAG Connections Analyser. 
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3.2 Connection Builder
The passengers’ choice of itinerary is affected by many variables, one of which is flight 
frequency. This is measured using a CB method that finds all valid travel itineraries for the 
observed origin and destination markets. For each MIDT record, a search is made in the 
schedules dataset for all valid flight combinations from the origin airport/city to the destination 
airport/city (up to a maximum of two stops). Airports in multi-airport systems are considered 
mutual substitutes and hence pooled together as they belong to the same market. The reason 
for this is that self-connecting passengers tend to be price-sensitive passengers (Burghouwt, 
2007; Maliguetti et al., 2008; Fageda et al., 2015; OAG, 2016). They are usually footloose and 
look for the ground transport option (Hess and Polak, 2005) and airport that allows them to 
complete the overall itinerary in the most affordable way.

No interline restrictions are imposed through flight connections within the same alliance as 
flagged as such. For a flight combination to be valid, it must meet the published minimum 
connecting times6. 

CB should also be able to discriminate between realistic and unrealistic flight combinations 
(Redondi et al., 2011; Seredyński et al., 2014; Grosche and Klophaus, 2015). To that end, we 
impose a maximum allowable geographic detour for each market (ratio between indirect and 
non-stop flight distance). In order to mitigate the influence of outliers (exceptionally large 
detours are observed for a negligible share of passenger itineraries), we discard every flight 
combination found by the CB algorithm that is above the 95% percentile of the market-specific 
distribution of geographic detour calculated from the itineraries in the MIDT file. An additional 
constraint is imposed in regards to maximum travel time increase (ratio between total indirect 
travel time, including flight connections, and non-stop travel time7). That limit is established 
at the 95% percentile in the distribution of travel time increase. This distribution includes all 
passenger bookings in traditional flight combinations within a one-hour window with respect 
to the best weekly indirect travel time in the market8. 

Table 4 shows the top ten airports in regards to the number of potential flight combinations 
identified by the CB algorithm under the above restrictions. Initially, a flight combination is 
labelled as “self-connecting” if either: 1) both arriving and departure airlines are LCCs 
(following the list provided by ICAO, 2014)9, or 2) arriving and departure airlines are not part 
of the same alliance (including all subsidiaries of partner airlines). This broad definition, 
however, leaves some traditional flight connections misclassified, such as those provided in 
virtue of out-of-alliance interlining agreements and the transfer services already provided by 
LCCs at selected locations. We identify these cases if by cross-checking our CB flight 

6 Previous studies consider a standard minimum connecting time of 45 minutes for all airport (See for example 
Veldhuis (1997), Burghouwt and de Wit (2005), Burghouwt (2007), Suau-Sanchez and Burghouwt (2012) or 
Maertens et al. (2016)). The application of a clear and consistent airport-specific criterion for minimum connecting 
times (i.e., the published minimum connecting times) allows us to provide a more transparent appraisal 
comparable across markets. We acknowledge, however, that the implementation of a self-connectivity platform 
could involve a modification of the minimum connecting times. For example, ViaMilano only connects flights 
with a MCT of 90 minutes.
7 In the absence of direct flights, a hypothetical non-stop travel time is calculated using average travel speeds for 
the relevant aircraft, trip distance, and direction of travel. 
8 This is meant to allow for variability across frequencies in the same itinerary (a similar arbitrary threshold was 
imposed by Redondi et al., 2011). To determine the 95% percentile in the distribution of travel time increase, we 
carry out an auxiliary computation: MIDT passenger bookings are distributed across the weekly CB frequencies 
- that match the MIDT itineraries- according to available seat capacity. Well-connected frequencies fill up quickly 
with passengers from different markets so several rounds of processing are used to re-allocate overcapacity 
passengers in less attractive frequencies.
9 This applies to either flight connection in the case of 2-stop itineraries.
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combinations against the published Minimum Connecting Times, as it is common that airlines 
providing those special connections file an exception to the airport’s default values. As seen in 
Table 4, there is indeed a latent potential for self-connectivity in the worldwide air transport 
network, to be exploited primarily by US and European hubs. 
Table 4. Airports with the largest number of potential connections

Airport Code Total flight combinations:
1- and 2-stop

1-stop 2-stop Self-Connecting Potential:
Flight Combinations

Chicago O’Hare ORD 2,347,620 1,416,252 931,368 1,329,946
Atlanta ATL 2,133,629 1,433,229 700,400 919,061
Frankfurt FRA 1,526,101 451,983 1,074,118 537,119
Denver DEN 1,227,234 611,557 615,677 712,287
Dallas/Fort Worth DFW 973,254 571,342 401,912 310,151
London Heathrow LHR 941,825 364,539 577,286 498,307
Amsterdam AMS 910,721 288,204 622,517 313,617
Los Angeles LAX 896,524 482,658 413,866 727,895
Houston Intercontinental IAH 824,178 426,255 397,923 206,992
Minneapolis/St. Paul MSP 797,839 344,292 453,547 263,320

The outcome of this stage is a dataset of 16.8 million unique itineraries that the CB identified 
as valid travel alternatives within the selected markets. These records include all fields that 
identify the individual flights taken by the passengers, such as operating airlines, flight 
numbers, departure and arrival times and terminals, and seat capacity.

3.3 Poisson regression and QSI model
Once we have obtained an initial set of travel itineraries for all sample markets, we combine 
the CB information with the passenger bookings in our MIDT dataset in order to develop a 
forecasting model10. With that model, the goal is to produce 1) a baseline scenario that 
represents the current situation (as of June 2014) in terms of self-connectivity, and 2) two 
different development scenarios that show predicted self-connecting traffic flows in the event 
of a widespread implementation of self-connectivity platforms, such as GatwickConnects or 
ViaMilano. 

The combination of the CB flight frequencies with the MIDT weekly passenger bookings 
returns a dataset of 3.03 million consolidated itineraries11. 74.92% of the consolidated records 
(2,271,082) did not have any passenger bookings. These itineraries are kept in the dataset 
because, for our research purposes, it is crucial to understand the factors that make valid 
itineraries (that meet all published minimum connecting times) not capture any demand. The 
self-connecting nature of many of these itineraries is expected to be one of these factors.

The dependent variable is the number of weekly passenger bookings per itinerary. Table 5 
provides some descriptive statistics on this variable. Note that bookings only take non-negative 
integer values; hence, it can be defined as count data (Mao et al., 2015). Poisson regressions 
are typically used to model count data. However, these models are restrictive in the sense that 
the Poisson distribution assumes that the conditional mean is equal to the conditional variance. 
This assumption is not met by our data (Table 5), which shows clear signs of overdispersion.
Table 5. Descriptive statistics of dependent variable

variable n mean variance Zero obs p1 p75 p90 p95 p99 max
bookings 3,031,314 16.86 35,216.66 2,271,082 0 1 9 25 367 31,422

10 The MIDT data only indicates the ticketing airline, which may not operate all flights in indirect passenger 
itineraries. Thus, we cannot simply measure self-connectivity from the MIDT file and we need to model it.
11 The reason this dataset is smaller than the CB one is that CB frequencies need to be aggregated by airport 
codes to match the MIDT format. Since CB and MIDT records are, at this stage, aggregated at an airport code 
level -not at a flight number level- seat capacity restrictions are assumed to be met. Otherwise, there would be 
tickets in the MIDT file that could not have been sold.
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One way to deal with the high variance is to account for the distortion associated to the 
excessive amount of zero-booking travel itineraries. To that end, we employ a zero-inflated 
Poisson regression in order to separate between “true zeros” and “excess zeros” (Greene, 1994). 
This method models two separate data generation processes for each observation (one that 
generates zero counts and another generating Poisson counts), with the result of a Bernoulli 
trial indicating which process is used. Thus, for travel itinerary i (Yi), the zero-generating 
process is chosen with probability φi and the Poisson process with probability (1- φi):

(1) 𝜇𝑖 = exp (𝑥'
𝑖𝛽)

(2) 𝑃(𝑌𝑖 = 0|𝑥𝑖�,𝑧𝑖) = 𝜑𝑖(𝑧𝑖'𝛾) + (1 ‒ 𝜑𝑖(𝑧𝑖'𝛾))exp ( ‒ 𝜇𝑖)

(3) 𝑃(𝑌𝑖 = 𝑦𝑖|𝑥𝑖�,𝑧𝑖) = (1 ‒ 𝜑𝑖(𝑧𝑖'𝛾))
𝜇𝑖

𝑦𝑖exp ( ‒ 𝜇𝑖)

𝑦𝑖!

The φi probability is modelled against the characteristics of each observation (zi) using a logistic 
function with parameters γ to be estimated. The Poisson process has mean  that is regressed 𝜇𝑖

against the characteristics of each observation (xi) using a log-linear specification with 
parameters β to be estimated. The mean and variance of the zero-inflated Poisson model are 
given by:

(4)  𝐸(𝑦𝑖|𝑥𝑖�,𝑧𝑖) = 𝜇𝑖(1 ‒ 𝜑𝑖)

(5) 𝑉(𝑦𝑖|𝑥𝑖�,𝑧𝑖) = 𝜇𝑖(1 ‒ 𝜑𝑖)(1 + 𝜇𝑖𝜑𝑖)

As seen in Eq. 5, this model allows for overdispersion (variance is higher than the mean). An 
extra component of overdispersion can be introduced by employing a zero-inflated negative 
binomial regression, with identical formulation as above except for an extra parameter of 
unobserved heterogeneity for each observation, which follows a Gamma distribution with 
mean 1 and variance . The conditional variance of this model is given by12:𝛼

(6) )𝑉(𝑦𝑖|𝑥𝑖�,𝑧𝑖) = 𝜇𝑖(1 ‒ 𝜑𝑖)(1 + 𝜇𝑖(𝜑𝑖 + 𝛼)

In order to estimate both models, there is need to define the x and z variables. In accordance 
with the previous literature, the following predictors of passenger choice are included:

1) Total weekly frequencies per itinerary: count data can be treated as the product of an 
incidence rate (in our case, bookings per individual frequency within each itinerary) and an 
exposure (frequencies per itinerary). In order to be consistent with that conceptualization, we 
define weekly frequencies as exposure variable, with its coefficient is restricted to 1. The 
interpretation of the remaining coefficients is thus made in terms of incidence rate. 

2) Seat capacity at market and itinerary levels: we separate between direct and indirect (1-stop 
and 2-stops) seats. The reason is that the attribution of indirect capacity to a specific origin-
destination market is diluted by the fact that this capacity is likely dominated by the respective 
non-stop markets. An indicator of concentration in seat capacity across airlines (the HHI: 
Hirschmann-Herfindhal Index) and the share of the ticketing airline’s seat capacity to total 
market capacity are included as well in order to control for the effects of market dominance.

3) Number of stops and average airfares:  Borrowing from Coldren and Koppelman (2005), we 
create a set of dummy variables that indicate whether the itinerary is non-stop, one-stop- or 
two-stops in comparison with best available itinerary in each market. For example, we find 
one-stop itineraries that operate in markets where non-stop connections are either available or 
not. This two-level categorisation aims to capture the diversity in competitive environments 
across all sample itineraries. In regards to prices, due to data restrictions traditional itineraries 

12 When α=0 the negative binomial converges into the Poisson model.
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are given average fares per type of connection between airport-pair markets (i.e. prices are not 
airline-specific). Self-connecting travel options with missing fare data are given a sum of the 
average non-stop prices for each travel segment (as if the flight segments were bought 
separately). As a consequence, these price variables only aim to capture additional demand 
effects linked to number of stops and self-connectivity. To that end, we identify the indirect 
itineraries that present the best average fares in each market and also calculate the difference 
between an itinerary’s fare and the best in the market.

4) Travel time increase (TTI): It is expected that itineraries with longer travel times (related to 
either geographic detour of flight transfers) are less attractive to passengers. The impact of TTI 
is differentiated according to number of stops.

5) Connectivity: The model accounts for two aspects of airline connectivity that can have an 
impact in demand. First, the proportion of self-connecting frequencies in the consolidated 
itinerary13. Second, inter-terminal connectivity labels those itineraries where a transfer between 
different terminals is required at any time during the trip.

6) Other: The Poisson model is completed with other common predictors of passenger choice, 
such as aircraft type (calculated as seats per frequency), market length (great circle distance 
from origin to destination), and departure time (morning: 6am-12pm; afternoon: 12pm-6pm; 
and evening: 6pm-12am, all times UTC). In addition, we include fixed effects for the largest 
hubs and airlines in order to capture any unobserved heterogeneity.

7) Zero-generating process: this equation aims to separate “excess zeros” from the “true zeros” 
in the sample. The way we adapt this conceptualization to our case study is the following. 
Excess zeros represent itineraries that were not easily accessible to passengers because of not 
appearing alongside traditional flight connections in reservation systems and required an extra 
search effort by the passenger. Thus, one can expect self-connecting itineraries to be 
disproportionately empty of bookings as they may be actually unknown to the air travellers that 
do not wish to make that effort when planning their journey. This contrasts to the role of self-
connectivity in the Poisson model, where it is interpreted as an impedance to informed 
passengers that may or may not self-connect depending on the other aspects of the itinerary. 
TTI is the second variable that can explain a disproportionate amount of zero-bookings for 
travel itineraries. This is linked to the fact that our CB model may have actually left in some 
unrealistic itineraries (despite all filters, this is always to be expected as argued by Seredyński 
et al., 2014). Including TTI in the zero-generating process helps to control for that. 

The estimation output is presented in Table 6. Both equations are globally significant and the 
signs of the coefficients are similar. Market seat capacity is generally shown to have a negative 
impact on the average number of bookings per frequency within each itinerary. This is 
interpreted as a sign of passengers spreading out among a higher number of competitive travel 
options, as also indicated by the negative impact of the itinerary’s capacity share. The dummy 
variables related to number of stops yield the expected results, 2-stop itineraries tend to have 
less passengers per frequency than 1-stop itineraries and the negative impact of indirect travel 
is exacerbated by the availability of better frequencies. Interestingly, having the lowest fares 
tends to boost demand only when indirect travel undercuts direct travel. As expected, price 
differentials have negative impact on demand in most cases. Travel Time Increases associated 
to indirect travel have, overall, a negative impact on the number of passengers per itinerary. 
Inter-terminal connections are seen as a burden by passengers, and the same applies to self-
connections in 1-stop itineraries. The coefficients for departure times indicate that morning 
frequencies are preferred to other times. Aircraft size and great circle distance have reasonable 

13 Given an airport itinerary and ticketing airline, both traditional and self-connecting travel options can be found. 
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values: larger and more comfortable aircraft boosts demand (Tembleque-Villata and Suau-
Sanchez, 2015) and market length reduces the intensity of air travel demand, which is mostly 
intra-regional in our dataset (Table 1). As expected, self-connectivity increases the probability 
of an itinerary to capture zero bookings14, and the same applies to Travel Time Increase for 2-
stop itineraries. Vuong’s test (Vuong, 1989) confirms the significance of the zero-inflated 
models with respect to the base Poisson and Negative Binomial specifications.
Table 6. Estimation output 

zero-inflated Poisson  zero-inflated negative binomialDependent variable: bookings
coeff. s.d. prob. coeff. s.d. prob.

Non-stop weekly seat capacity (market) -1.14E-07 1.78E-08 0.000 -1.38E-05 3.43E-07 0.000
1-stop weekly seat capacity (market) 1.28E-07 1.12E-09 0.000 -1.29E-06 1.92E-08 0.000
2-stops weekly seat capacity (market) -2.15E-07 4.38E-09 0.000 -1.20E-06 2.86E-08 0.000
HHI of weekly seat capacity (market) -2.02E-02 1.28E-03 0.000 0.992240 1.09E-02 0.000
Share of weekly seat capacity to total market capacity (itinerary) -2.92E-01 1.07E-03 0.000 -1.057182 8.83E-03 0.000
Non-stop weekly seat capacity (itinerary) -1.42E-06 4.76E-08 0.000 5.00E-05 2.29E-06 0.000
1-stop weekly seat capacity (itinerary) -1.79E-05 4.92E-08 0.000 -1.07E-05 2.50E-07 0.000
2-stops weekly seat capacity (itinerary) -4.51E-04 2.52E-06 0.000 -2.61E-04 3.40E-06 0.000
1-stop itinerary in non-stop market -2.106131 3.08E-03 0.000 -2.397251 1.28E-02 0.000
1-stop itinerary in non-stop market: Lowest fare 0.032840 9.80E-03 0.001 0.056405 2.75E-02 0.040
1-stop itinerary in non-stop market: Difference to lowest fare -0.008993 4.51E-03 0.046 -0.028910 9.36E-03 0.002
1-stop itinerary in 1-stop market -1.874847 2.89E-03 0.000 -2.196788 1.25E-02 0.000
1-stop itinerary in 1-stop market: Lowest fare -0.055605 8.39E-03 0.000 0.039869 2.28E-02 0.080
1-stop itinerary in 1-stop market: Difference to lowest fare -0.090083 4.81E-03 0.000 -0.070715 1.06E-02 0.000
2-stops itinerary in non-stop market -2.966003 4.03E-02 0.000 -4.219023 5.95E-02 0.000
2-stops itinerary in non-stop market: Lowest fare 0.269284 1.66E-01 0.105 0.267041 1.94E-01 0.170
2-stops itinerary in non-stop market: Difference to lowest fare -0.060706 5.56E-02 0.275 -0.001420 6.21E-02 0.982
2-stops itinerary in 1-stop market -2.601100 3.65E-02 0.000 -3.531690 5.66E-02 0.000
2-stops itinerary in 1-stop market: Lowest fare -0.597798 8.63E-02 0.000 -0.686731 1.25E-01 0.000
2-stops itinerary in 1-stop market: Difference to lowest fare -0.222151 3.56E-02 0.000 -0.269850 4.69E-02 0.000
2-stops itinerary in 2-stops market -2.099883 3.60E-02 0.000 -2.506499 5.61E-02 0.000
2-stops itinerary in 2-stops market: Lowest fare 0.334446 7.53E-02 0.000 0.321725 1.13E-01 0.004
2-stops itinerary in 2-stops market: Difference to lowest fare 0.026283 3.66E-02 0.473 -0.085622 5.04E-02 0.089
Travel Time Increase (Itinerary) -0.349767 7.02E-04 0.000 -0.175307 2.25E-03 0.000
1-stop itinerary: Lowest TTI -0.723232 2.97E-03 0.000 -0.588159 1.08E-02 0.000
1-stop itinerary: Difference to lowest TTI -0.747854 2.43E-03 0.000 -0.671225 8.56E-03 0.000
2-stops itinerary: Lowest TTI -0.533219 3.66E-02 0.000 -0.527000 5.75E-02 0.000
2-stops itinerary: Difference to lowest TTI -0.783746 3.29E-02 0.000 -1.039928 5.08E-02 0.000
Inter-terminal connection -0.136117 9.10E-04 0.000 -0.189768 3.70E-03 0.000
1-stop itinerary: Self-Connection -0.975686 1.22E-03 0.000 -0.748737 4.59E-03 0.000
2-stops itinerary: Self-Connection -0.123097 5.58E-03 0.000 0.336646 1.21E-02 0.000
Morning Departure -0.004886 5.94E-04 0.000 0.014162 4.47E-03 0.002
Afternoon Departure -0.050817 6.25E-04 0.000 -0.017077 4.56E-03 0.000
Evening Departure -0.118919 6.68E-04 0.000 -0.040425 4.78E-03 0.000
Great circle distance (market) -0.000058 1.01E-07 0.000 -0.000040 5.68E-07 0.000
Average aircraft size (itinerary) 0.006813 2.93E-06 0.000 0.007270 3.45E-05 0.000
Constant 3.880323 9.68E-04 0.000 3.471244 9.43E-03 0.000
ln(total weekly frequencies per itinerary) 1 (exposure) 1 (exposure)
+ airline effects
+ hub effects
Excess zeros        
1-stop itinerary: Self-Connection 3.051099 0.005856 0.000 4.927875 1.59E-02 0.000
2-stops itinerary: Self-Connection 1.987548 0.008755 0.000 2.694027 1.46E-02 0.000
1-stop itinerary: TTI 0.057389 0.002875 0.000 -0.122985 4.86E-03 0.000
2-stops itinerary: TTI 2.234952 0.005599 0.000 2.552701 9.99E-03 0.000
Constant -2.264076 0.006761 0.000  -3.980780 1.55E-02 0.000
Overdispersion
alpha     1.276802 2.73E-03 0.000
Observations: 3,031,314 Chi2 (156) 2.28E+08 Chi2 (156) 1.24E+06
non-zero: 760,232  Prob 0.000   Prob 0.000

14 In the Poisson model, for 1-stop itineraries self-connections are approximately 21 times more probable to 
capture zero bookings (e3.05). For 2-stop itineraries, the effect is 7.3 (e1.98).
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The significance of the extra dispersion coefficient (alpha) is also evident from the estimation 
output. In spite of that, the choice of one model for the purposes of forecasting demand will be 
based on goodness-of-fit. To that end, we evaluate the deviation between the system-wide 
amount of indirect travel predicted by the model and the actual one (12.378 million 
passengers). For the Poisson model, the deviation is 0.07% while the negative binomial 
deviates in 1.5%. Hence, all forecasts will be based on the Poisson equation.

The regression coefficients are applied to the original CB travel itineraries in order to obtain 
detailed predictions of self-connecting traffic flows. The predicted values from the Poisson 
model will be interpreted as Quality of Service “scores”. Market shares for each individual CB 
itinerary are then calculated as the ratio between the CB itinerary scores and the sum of the 
scores of all CB itineraries in the same origin and destination market. The total number of 
MIDT bookings per market are then distributed across itineraries according to their market 
shares to obtain a prediction of potential traffic (thus assigning a value to the individual flight 
connection). This leads to our baseline scenario of self-connectivity.

The first development scenario (Development 1) is obtained using the same procedure with 
two key changes: 1) removing the effect of self-connection coefficients in the Poisson 
processes, 2) increasing the price of self-connecting itineraries in 40 USD per transfer15. This 
will lead to a forecast of the amount of self-connection traffic in the event of a widespread 
development of platforms like GatwickConnect or Via Milano that eliminate the risk associated 
to self-connectivity (e.g. risk of losing onward flight, baggage transfer) and makes it more 
comparable to traditional connectivity. Note, however, that whilst self-connectivity risk is 
eliminated, these platforms still face two significant barriers or burdens. Firstly, the lack of 
customer awareness of their existence. Secondly, customers usually book their flights 
considering the origin and the destination, the choice of the intermediate hub might depend on 
different factors (e.g., price, airline loyalty, past experience, etc.). In other words, booking 
through a self-connecting platform forces the customer to change their booking routines and 
start the booking process thinking about the hub, rather than the origin and the destination.

In this regard, the second development scenario (Development 2) not only includes all of the 
above, but it also removes the effect of self-connectivity from the zero-generating process. This 
has as a goal predicting the traffic in the event all connecting/self-connecting itinerary options 
are available and visible to the customer during the booking process. In other words, self-
connection options would be comparable to traditional connections.

3.4 Second-stage regression
A second-stage linear regression on the baseline predictions at each airport will attempt to 
identify the drivers of airport self-connectivity. This model includes the following variables: 
1) the number of potential self-connections (potential) as measured in Table 2. 2) Degree 
centrality (degree): number of destinations served by the airport. 3) Betweenness centrality 
(betweenness): proportion of worldwide origin and destination pairs for which the airport lies 
in a shortest-path-length16 itinerary. 4) Share of low-cost seats (slcc). 5) HHI of airline/alliance 
seat capacity (hhiall): this includes unallied airlines as individual entities. 6) Route diversity: 
difference between the 97.5% and 2.5% percentile in the distribution of flight distance at the 

15 This is intended to match the price for self-connectivity at Gatwick (GBP 27.50). Alternative prices we also 
used (from USD 20 to USD 50) without a significant impact on the results.
16 Path length is measured by number of flights.
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airport. Two other variables considered, average length of haul (alh) and closeness centrality 
(closeness)17, were later discarded due to high correlation with other variables.

4. RESULTS AND DISCUSSION
Table 7 provides a summary of the results for each of the three scenarios. The baseline model 
estimates that approximately 4% of passenger bookings in global air transport markets involve 
at least one self-connection. This share increases to 7% in the development 1 scenario 
(widespread of self-connectivity platforms) and it doubles to 15% in the development 2 
scenario (self-connections fully visible in booking platforms). This growth comes at the 
expense of both non-stop traffic and traditional connectivity. Overall, the share of indirect air 
travel increases above from 22.93% to 28.77%. Table 8 indicates that the self-connections are 
heavily concentrated in airports located in Europe, North America, and Asia-Pacific. From the 
perspective of the origin and destination markets (Table 9), intra-regional self-connectivity 
represents approximately two-thirds of global self-connections. This is consistent with the 
frequency distribution of self-connectivity according to market length (great circle distance 
from origin to destination). While these connections are observed in all kinds of routes, the 
highest frequency appears in markets around 2,000 km. This is consistent with the findings by 
Fageda et al. (2015), which point out the increased likelihood of self-connections in short-haul 
routes that have more daily frequencies. As seen in Figure 1, there is a clear divide between 
short/medium-haul and long-haul self-connectivity. This result seems to relax the requirement 
of having a diverse mix of short and long-haul destinations in order to capture self-connecting 
passengers and suggest that there may be opportunities for specialization by focusing on either 
of the two primary demand segments for these services. Some airports may want to focus on 
short-haul touristic markets and, for others, the airline and destination mix will create long-
haul self-connection opportunities. Thus, having a well-developed long-haul destination 
network does not seem to be a requisite for strong self-connectivity. 
Table 7. Breakdown of passenger itineraries under different scenarios

Baseline (weekly traffic)  Development 1 (weekly traffic)  Development 2 (weekly traffic)
Itinerary Bookings % Itinerary Bookings % Itinerary Bookings %
Non-stop 41,638,173 77.07% Non-stop 40,882,499 75.67% Non-stop 38,484,108 71.23%
Indirect Traditional 10,190,087 18.86% Indirect Traditional 9,199,773 17.03% Indirect Traditional 7,389,050 13.68%
Self-Connecting 2,196,296 4.07% Self-Connecting 3,942,284 7.30% Self-Connecting 8,151,398 15.09%
Total 54,024,556   Total 54,024,556   Total 54,024,556  

Table 8. Geographic distribution of self-connecting traffic according to hub location (baseline scenario)
Hub location % self-con pax
EEA 21.4%
Rest of Europe (non-EEA) 3.0%
Africa 1.7%
Asia-Pacific 29.2%
Latin America and Caribbean 7.7%
Middle East 3.7%
North America 33.5%

Table 9. Geographic distribution of self-connecting traffic per origin and destination market (baseline scenario)

(passengers travelling between)

EEA Rest of 
Europe 

(non-EEA)

Africa Asia-Pacific Latin 
America and 

Caribbean

Middle East North America

EEA 9.32% 2.37% 1.58% 4.71% 2.15% 1.51% 4.71%
Rest of Europe (non-EEA) 1.07% 0.17% 0.88% 0.13% 0.44% 0.52%
Africa 0.66% 0.76% 0.10% 0.56% 0.55%
Asia-Pacific 22.90% 0.48% 3.15% 5.37%
Latin America and Caribbean 5.62% 0.17% 4.57%
Middle East 0.62% 1.16%

17 Closeness centrality is defined as the inverse of the sum of the minimum distances (in terms of number of 
flights) between each airport and all other airports in the network.
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North America       23.78%

Figure 1. Distribution of self-connecting traffic according to market length (baseline scenario)

Table 10 indicates the top airports in each region according to predicted numbers of weekly 
self-connections under the three scenarios. The table also reports the actual number of 
passenger connections handled by each airport (as indicated in the MIDT file) alongside the 
baseline predicted values. While the model is highly accurate in replicating the system-wide 
amounts of direct and indirect travel, the comparison between the airport-specific values allows 
us to assess the accuracy of the model in a much stronger way. The average deviation between 
the airport-specific actual and baseline connecting traffic is 8.3%. This level of accuracy 
ensures that rankings based on actual and predicted traffic flows are highly consistent (rank 
correlation 90%+). At first sight, results indicate that the largest levels of self-connectivity are 
currently experienced by the airports with also the highest levels of traditional connectivity. 
This includes major European hubs such as Heathrow or Frankfurt, Atlanta and Chicago in the 
US, as well as Hong Kong and Dubai. In the European case, however, the major airports are 
not the ones that would benefit the most from the introduction of self-connection services. 
Second-tier airports with substantial LCC presence such as Barcelona, Gatwick, or Manchester 
experience the highest increases in connecting traffic in the development scenarios. In fact, 
most airports experience increases in connecting traffic with few exceptions, such as Frankfurt. 
Upon inspection of the raw data, this surprising result reveals a vulnerability of the primary 
German hub in intra-European markets, with passengers leaking from Frankfurt to alternative 
hubs such as Rome and Vienna. 

The launch of the GatwickConnect service in late 2015 is clearly supported by our data, as it 
is the recently announced strategy of Ryanair to start offering connecting services at Barcelona 
Airport (CAPA, 2016). In Gatwick, self-connections represent almost 80% of all connectivity 
currently offered. The implementation of self-connection platforms is expected to increase this 
proportion even further and thus become the defining element of the hub experience offered at 
Gatwick. Regarding the particular markets served via self-connections, our analysis reveals 
that Gatwick can leverage its mix of airlines and destinations to capture self-connections 
to/from Europe’s main cities as well as in North America. This contrasts with the geographical 
profiles of Barcelona and Copenhagen airports, whose potential for self-connectivity is mainly 
concentrated in Southern and Northern Europe, respectively. This suggests that patterns of hub 
dominance may arise as airports leverage their geographical position to capture self-
connections.

The importance of geography is again evident from the second-stage regression results. Table 
11 provides both standardized and unstandardized coefficients. Aside from the number of 
available flight connections, betweenness centrality is found to have the largest impact on the 
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potential for self-connectivity. Airports that lie in a high proportion of shortest-path itineraries 
between other airports will generate more opportunities for passengers to build attractive travel 
itineraries on their own outside the boundaries of traditional flight connectivity. This result 
points at the largest hubs in each region (e.g. Frankfurt) as well as airports that serve as 
gateways between continents (e.g. Istanbul). As expected, the total market share of low-cost 
carriers operating at an airport facilitates the existence of self-connections as it does reduced 
airline dominance, both of which increase the viability of intra-LCC or inter-alliance transfers. 
On the other hand, the diversity of routes offered by an airport does not seem to have a 
significant impact on self-connectivity, which is linked to the aforementioned idea that airports 
can develop this type of traffic by focusing mostly on short-haul intra-regional markets. These 
conclusions complement the results obtained by previous contributions in this subject area 
(Malighetti et al., 2008) and serve to contextualize the views expressed by industry players in 
the early stages of implementation of self-connecting services (The Independent, 2015).
Table 10. Top airports according to predicted self-connectivity (weekly traffic)

Baseline  Development 1  Development 2Airport Code Actual 
connecting 
pax 
(MIDT)

Total
connecting pax

self-
con

% 
self-
con

Total 
connecting 

pax

∆ pax 
(%)

self-
con

% 
self-
con

Total 
connecting 

pax

∆ pax 
(%)

self-
con

% 
self-
con

inline iter hhi

Europe                 

Frankfurt FRA 368,446 395,396 43,477 11.0% 390,736 -1.2% 68,570 17.5% 397,965 1.9% 132,838 33.4% 0.1% 63.9% 0.013
London Heathrow LHR 242,263 215,391 39,759 18.5% 224,715 4.3% 66,439 29.6% 253,074 12.6% 128,330 50.7% 0.0% 85.5% 0.018
Rome Fiumicino FCO 116,467 117,439 33,404 28.4% 134,656 14.7% 58,517 43.5% 181,448 34.7% 119,564 65.9% 1.4% 62.1% 0.014
Paris CDG CDG 235,461 193,559 31,892 16.5% 203,715 5.2% 56,712 27.8% 228,094 12.0% 111,809 49.0% 0.8% 93.8% 0.014
Amsterdam AMS 252,845 244,110 31,047 12.7% 245,655 0.6% 50,450 20.5% 265,131 7.9% 102,040 38.5% 1.2% 0.0% 0.027
Istanbul Ataturk IST 317,483 298,053 25,083 8.4% 295,043 -1.0% 45,876 15.5% 296,032 0.3% 91,825 31.0% 3.1% 36.8% 0.051
London Gatwick LGW 19,618 25,067 19,830 79.1% 37,459 49.4% 33,043 88.2% 66,426 77.3% 63,154 95.1% 22.6% 44.4% 0.072
Madrid MAD 139,298 121,985 19,618 16.1% 126,088 3.4% 33,150 26.3% 138,601 9.9% 62,166 44.9% 2.3% 75.9% 0.023
Munich MUC 165,207 193,892 18,538 9.6% 195,323 0.7% 33,448 17.1% 211,365 8.2% 75,108 35.5% 0.0% 81.8% 0.037
Copenhagen CPH 81,596 87,216 15,173 17.4% 93,381 7.1% 26,682 28.6% 114,357 22.5% 58,415 51.1% 1.9% 77.2% 0.045
Moscow Domod. DME 46,540 40,533 14,780 36.5% 47,709 17.7% 24,015 50.3% 64,472 35.1% 44,711 69.3% 0.0% 0.0% 0.026
Brussels BRU 48,388 49,059 10,692 21.8% 54,823 11.7% 19,491 35.6% 72,998 33.2% 43,779 60.0% 0.8% 0.0% 0.008
Vienna VIE 76,528 90,152 10,588 11.7% 93,213 3.4% 19,676 21.1% 107,549 15.4% 44,591 41.5% 0.0% 0.0% 0.031
Barcelona BCN 29,882 38,380 10,033 26.1% 42,679 11.2% 17,748 41.6% 58,971 38.2% 38,899 66.0% 2.8% 24.7% 0.023
Manchester MAN 9,493 12,201 8,256 67.7% 15,828 29.7% 12,262 77.5% 26,679 68.5% 23,911 89.6% 3.4% 60.1% 0.005
North America
Atlanta ATL 651,432 702,573 67,118 9.6% 731,907 4.2% 148,694 20.3% 822,465 12.4% 349,222 42.5% 5.9% 83.1% 0.126
Los Angeles LAX 186,786 140,442 66,126 47.1% 184,340 31.3% 121,453 65.9% 274,871 49.1% 231,852 84.3% 5.0% 92.2% 0.017
Chicago O'Hare ORD 378,298 351,860 57,708 16.4% 380,025 8.0% 113,440 29.9% 454,046 19.5% 248,343 54.7% 0.2% 88.5% 0.167
Phoenix PHX 176,720 162,777 51,001 31.3% 200,024 22.9% 105,789 52.9% 285,211 42.6% 218,870 76.7% 27.3% 19.3% 0.201
Denver DEN 227,300 254,780 49,558 19.5% 275,494 8.1% 97,009 35.2% 334,435 21.4% 201,325 60.2% 0.3% 0.0% 0.106
Las Vegas LAS 46,355 46,021 42,611 92.6% 83,711 81.9% 80,602 96.3% 168,783 101.6% 166,346 98.6% 34.7% 31.0% 0.126
New York JFK JFK 133,871 89,648 38,851 43.3% 113,202 26.3% 69,004 61.0% 159,454 40.9% 128,163 80.4% 12.3% 82.5% 0.045
San Francisco SFO 96,911 100,976 27,171 26.9% 115,530 14.4% 51,711 44.8% 155,130 34.3% 109,210 70.4% 3.3% 86.1% 0.035
Fort Lauderdale FLL 26,740 24,758 22,629 91.4% 44,697 80.5% 42,792 95.7% 88,280 97.5% 86,821 98.3% 24.4% 67.3% 0.042
Dallas/Ft Worth DFW 404,912 402,533 21,686 5.4%  388,822 -3.4% 44,540 11.5%  371,127 -4.6% 98,369 26.5% 1.4% 90.2% 0.075
Asia-Pacific
Hong Kong HKG 185,700 188,726 44,841 23.8% 210,164 11.4% 83,498 39.7% 273,006 29.9% 176,782 64.8% 0.0% 17.9% 0.008
Kuala Lumpur KUL 132,999 118,216 44,621 37.7% 136,137 15.2% 75,990 55.8% 181,987 33.7% 140,441 77.2% 14.0% 53.6% 0.041
Delhi DEL 88,946 74,075 40,120 54.2% 85,319 15.2% 58,847 69.0% 111,028 30.1% 93,208 83.9% 7.9% 55.9% 0.026
Mumbai BOM 89,520 60,222 33,848 56.2% 72,856 21.0% 52,934 72.7% 105,142 44.3% 92,013 87.5% 10.8% 57.2% 0.029
Singapore SIN 155,875 171,709 33,813 19.7% 178,251 3.8% 60,381 33.9% 203,021 13.9% 119,948 59.1% 2.7% 73.3% 0.006
Bangkok BKK 124,824 125,294 20,806 16.6% 125,858 0.5% 34,522 27.4% 135,355 7.5% 67,083 49.6% 0.0% 0.0% 0.004
Beijing PEK 133,034 137,512 17,799 12.9% 138,152 0.5% 32,210 23.3% 143,254 3.7% 62,797 43.8% 0.0% 78.1% 0.037
Tokyo Haneda HND 116,381 113,444 17,668 15.6% 117,825 3.9% 34,863 29.6% 129,269 9.7% 68,587 53.1% 0.6% 80.6% 0.163
Tokyo Narita NRT 96,722 91,472 17,614 19.3% 93,850 2.6% 28,741 30.6% 102,262 9.0% 54,296 53.1% 0.4% 66.4% 0.014
Sydney SYD 66,395 78,514 16,438 20.9% 84,108 7.1% 28,429 33.8% 101,512 20.7% 57,234 56.4% 7.5% 66.3% 0.041
Africa-Middle East
Dubai DXB 342,911 333,533 40,881 12.3% 338,972 1.6% 72,419 21.4% 349,752 3.2% 136,908 39.1% 0.0% 65.8% 0.017
Abu Dhabi AUH 151,026 119,356 18,303 15.3% 122,947 3.0% 31,729 25.8% 138,157 12.4% 63,045 45.6% 0.2% 66.4% 0.027
Johannesburg JNB 69,293 50,677 11,244 22.2% 52,032 2.7% 16,255 31.2% 56,796 9.2% 28,976 51.0% 0.7% 51.3% 0.038
Doha DOH 231,307 190,144 10,335 5.4% 184,988 -2.7% 20,704 11.2% 183,362 -0.9% 47,134 25.7% 0.0% 39.1% 0.045
Jeddah JED 32,454 29,424 8,777 29.8% 34,081 15.8% 15,356 45.1% 44,813 31.5% 29,953 66.8% 3.6% 57.7% 0.027
Lat-America & Caribbean
S.Paulo Guarulhos GRU 133,106 110,404 50,098 45.4% 121,726 10.3% 72,990 60.0% 146,643 20.5% 114,814 78.3% 16.6% 62.1% 0.055
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Mexico City MEX 94,830 78,020 11,232 14.4% 82,189 5.3% 22,184 27.0% 93,697 14.0% 45,730 48.8% 24.7% 41.9% 0.087
S.Paulo Viracopos VCP 29,861 11,403 11,090 97.3% 15,769 38.3% 15,500 98.3% 23,618 49.8% 23,435 99.2% 89.5% 0.0% 0.803
Brasilia BSB 34,464 46,030 7,807 17.0% 44,035 -4.3% 13,714 31.1% 45,097 2.4% 25,077 55.6% 1.1% 0.0% 0.131
S.Paulo Congonhas CGH 23,091 27,028 7,492 27.7%  28,444 5.2% 13,629 47.9%  35,499 24.8% 26,279 74.0% 33.8% 0.0% 0.286

Table 11. Second-stage regression: drivers of self-connectivity
Dependent variable: self-connecting potential Coef. Robust s.d. t Prob Beta
Potential connections 0.031 0.003 9.880 0.000 0.627
Degree centrality 18.522 11.663 1.590 0.113 0.100
Betweenness centrality 262370.900 110448.400 2.380 0.018 0.251
Share of Low-Cost Carriers 1176.879 685.501 1.720 0.086 0.052
HHI Alliance -2877.010 877.456 -3.280 0.001 -0.078
Route Diversity 0.037 0.105 0.350 0.725 0.010
Constant 174.971 557.429 0.310 0.754
+199 country fixed-effects      

Tables 12 also provides several airport-specific indicators that aim to characterize the 
complexity in the implementation of self-connecting platforms from the airport perspective as 
well as the hypothetical airline negotiations at each location. The most obvious indicator of 
such complexity is the proportion of self-connections over total connections, which signals 
how much disruption to airport operations will be caused by the implementation of the self-
connecting services. A high proportion of self-connectivity suggests that the airport may not 
be currently operating as a traditional hub and hence lack the necessary infrastructure and 
resorces to handle transfer passengers. For example, converting the 80% of connections at 
Gatwick (baseline levels) from being self-made to having them handled by airport staff may 
create a substantial pressure on airport baggage handling systems. On top of that, we also report 
the proportion of self-connecting passengers that would require an inter-terminal transfer (iter). 
The rates of inter-terminal transfer are significant for most airports and hence, they are an 
important factor to take into account while evaluating the feasibility and timescales of 
implementation. The variability across airports, however, suggests that, from a cost 
perspective, self-connecting charges should be different depending on the size and complexity 
of the airport’s terminal layout. This is a factor that airports without inter-terminal transfers 
(e.g. Vienna) could exploit to achieve a pricing advantage.

From the airline perspective, there is a clear divide between LCC-dominated and other airports 
as the first translates into a higher share of inline self-connectivity. This would allow for an 
initial implementation of these services that is not fully dependent on interline negotiations. 
This, again, points at Gatwick as an ideal location to promote self-connectivity (Table 12). 
Similar conditions are present in Las Vegas or Ft. Lauderdale airports. The complexity of 
airline negotiations, in any case, will benefit from a reduction in the number of actors involved. 
We characterize that by calculating the Hirschmann-Herfindahl Index (HHI) on the interline 
traffic flows: the higher the HHI the more concentrated is interlining activity among fewer 
airlines. Our results show that airports like Vienna, Copenhagen, or Phoenix may benefit from 
a higher concentration in self-connecting frequencies, and thus simpler negotiations, in 
comparison with other airports of the same geographical region.

Table 12 provides information on the top airlines according to self-connecting traffic in the 
three scenarios. As in the airport case, the airlines are grouped in geographical regions as per 
their home countries. Results indicate that LCCs like Ryanair, Easyjet, Southwest, and Varig 
are the ones with the highest baseline levels of self-connectivity in each region as well as the 
highest potential for growth in the development scenarios. In spite of that, we also find 
traditional network carriers such as Delta or British Airways highly ranked. Since self-
connectivity occurs between a feeding airline (that operates the first flight) and an onward 
airline, it is worth looking at the potential onward partners for each major carrier (Table 13). 
The first conclusion is that Southwest has the easiest implementation due to the largest 
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proportion of inline self-connectivity (33.29%). Among the other LCCs we can mention, in 
descending order, Ryanair (23.78%), Easyjet (19.18%), and Jetblue (16.89%). This table also 
reveals the existence of a high degree of reciprocity between some airlines, for example, Delta 
and Southwest would be one another’s top onward partner. On the European side, there is also 
good reciprocity between Easyjet and Air France. While there may be other considerations that 
prevent airlines from entering into interline agreements with direct competitors (e.g. American 
and United), the existence of reciprocity can be expected to facilitate negotiations. In this case, 
it can serve to achieve a more balanced distribution of risk between the partners (we argue that 
there is a higher risk for the feeding airline in regards to passenger compensation if its flight is 
delayed), as well as in terms of shared seat capacity. Thus, the values presented in Table 13 
could be used as a guideline on potential self-connection partners.

Table 12. Top airlines according to predicted self-connectivity (weekly traffic)
Baseline  Development 1  Development 2

Airline Code Pax. 
Connections18

Self-
connect

% 
conn.

Pax. 
Connections

Increase 
conn (%)

Self-
connect

% 
conn.

Pax. 
Connections

Increase 
conn. (%)

Self-
connect

% 
conn.

North America
Southwest WN 985,273 299,205 30.4% 1,244,895 26.4% 626,940 50.4% 1,847,922 48.4% 1,359,623 73.6%
Delta DL 2,513,203 196,495 7.8% 2,515,693 0.1% 408,184 16.2% 2,581,624 2.6% 910,781 35.3%
United UA 1,818,497 190,918 10.5% 1,855,262 2.0% 388,767 21.0% 1,979,067 6.7% 845,909 42.7%
American Airlines AA 1,426,279 128,853 9.0% 1,435,344 0.6% 267,914 18.7% 1,501,922 4.6% 591,508 39.4%
US Airways US 1,245,738 81,616 6.6% 1,229,430 -1.3% 168,995 13.7% 1,226,529 -0.2% 371,081 30.3%
JetBlue B6 84,122 75,885 90.2% 156,502 86.0% 149,178 95.3% 312,690 99.8% 306,967 98.2%
Air Canada AC 415,104 48,768 11.7% 419,380 1.0% 88,701 21.2% 435,690 3.9% 176,058 40.4%
Airtran Airways FL 46,459 45,849 98.7% 105,739 127.6% 105,189 99.5% 249,065 135.5% 248,628 99.8%
Spirit Airlines NK 44,396 43,245 97.4% 91,628 106.4% 90,651 98.9% 196,848 114.8% 196,140 99.6%
Alaska Airlines AS 212,297 35,743 16.8%  232,192 9.4% 72,039 31.0%  281,512 21.2% 151,908 54.0%
Europe
Easyjet U2 75,270 75,270 100.0% 139,506 85.3% 139,506 100.0% 301,354 116.0% 301,354 100.0%
Lufthansa LH 898,005 65,887 7.3% 880,556 -1.9% 117,175 13.3% 873,305 -0.8% 252,649 28.9%
British Airways BA 388,800 60,624 15.6% 406,846 4.6% 112,370 27.6% 459,410 12.9% 234,125 51.0%
Air France AF 373,577 45,958 12.3% 383,851 2.8% 85,297 22.2% 414,598 8.0% 176,982 42.7%
Ryanair FR 42,879 42,879 100.0% 73,337 71.0% 73,337 100.0% 148,340 102.3% 148,340 100.0%
KLM KL 353,353 37,349 10.6% 353,206 0.0% 63,931 18.1% 368,156 4.2% 133,448 36.2%
SAS SK 302,838 33,490 11.1% 310,110 2.4% 60,112 19.4% 336,298 8.4% 125,156 37.2%
Norwegian DY 110,007 29,191 26.5% 128,723 17.0% 53,278 41.4% 175,747 36.5% 110,772 63.0%
Alitalia AZ 187,724 28,097 15.0% 196,368 4.6% 51,872 26.4% 223,462 13.8% 106,930 47.9%
Vueling VY 77,026 24,798 32.2%  95,364 23.8% 49,610 52.0%  147,762 54.9% 111,456 75.4%
Rest of World
VARIG-gol Airlines G3 135,313 70,354 52.0% 171,053 26.4% 117,266 68.6% 252,938 47.9% 214,036 84.6%
IndiGo Air 6E 58,173 58,173 100.0% 91,705 57.6% 91,705 100.0% 161,077 75.6% 161,077 100.0%
Azul Airlines AD 51,673 50,900 98.5% 74,095 43.4% 73,500 99.2% 118,936 60.5% 118,603 99.7%
China Southern CZ 469,604 46,632 9.9% 475,364 1.2% 96,990 20.4% 512,112 7.7% 215,936 42.2%
Emirates EK 550,340 46,251 8.4% 540,663 -1.8% 81,619 15.1% 513,609 -5.0% 157,110 30.6%
Air China CA 302,803 43,000 14.2% 323,887 7.0% 91,880 28.4% 388,189 19.9% 209,767 54.0%
AirAsia AK 42,166 42,166 100.0% 71,874 70.5% 71,874 100.0% 133,874 86.3% 133,874 100.0%
Jet Airways India 9W 111,616 40,820 36.6% 123,930 11.0% 68,973 55.7% 163,568 32.0% 126,548 77.4%
Air India AI 122,738 39,903 32.5% 129,989 5.9% 66,696 51.3% 160,516 23.5% 118,316 73.7%
China Eastern MU 369,333 38,351 10.4%  378,276 2.4% 80,683 21.3%  415,615 9.9% 180,552 43.4%

18 Passenger connections, in this table, are treated as “enplanements”. Thus, indirect passengers are counted more 
than once, even if they travel within the same airline. 
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Table 13. Top-10 onward airlines for the busiest feeding airlines (development 2 scenario)
Feeding Southwest Delta United American Airlines Jetblue

Southwest 33.29% Southwest 23.26% American Airl. 26.46% United Airl. 36.89% JetBlue 16.89%
Delta 18.67% Airtran 16.42% Southwest 18.80% Delta 19.82% Delta 16.20%
US Awys. 13.11% United 15.08% Delta 17.47% Southwest 10.66% Southwest 12.04%
United 12.36% American Airl. 12.73% US Awys. 6.45% Spirit Airl. 4.29% United 10.67%
American Airl. 4.90% US Awys. 10.70% Frontier Airl. 4.52% JetBlue 2.71% American Airl. 9.32%
Airtran Awys. 3.08% JetBlue 3.10% Alaska Airl. 2.97% Alaska Airl. 2.13% US Awys. 9.30%
Alaska Airl. 2.79% Spirit Airl. 2.19% Virgin America 2.50% Virgin America 2.05% Spirit Airl. 3.42%
Frontier Airl. 2.51% Alaska Airl. 1.63% JetBlue 2.48% Air Canada 1.54% Virgin America 1.42%
JetBlue 1.97% Air Canada 1.42% Spirit Airl. 2.36% Lufthansa 1.28% Alaska Airl. 1.39%
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Spirit Airl. 1.56% Frontier Airl. 1.28% British Awys. 2.13% Air France 1.04% British Awys. 1.24%
Feeding Easyjet Lufthansa  British Airways Air France Ryanair

Easyjet 19.18% Air Berlin 11.20% Lufthansa 7.81% Easyjet 9.42% Ryanair 23.78%
KLM 7.80% Condor 7.52% United 7.31% Lufthansa 7.78% Alitalia 6.63%
Air France 7.65% British Awys. 5.53% Easyjet 4.47% United 3.62% Vueling 6.60%
Alitalia 5.67% Air France 4.75% Delta 4.31% British Awys. 3.48% Easyjet 6.32%
British Awys. 4.71% Delta 4.26% Air Canada 4.01% American Airl. 3.36% Iberia 4.01%
Norwegian 3.38% Alitalia 2.98% SAS 3.89% SAS 3.07% Air Europa 3.99%
Ryanair 2.95% US Awys. 2.84% Aer Lingus 3.28% Turkish Airl. 2.81% Aer Lingus 3.34%
Lufthansa 2.81% Emirates 2.67% South African Awys. 3.22% Air Canada 2.44% Lufthansa 3.04%
Vueling Airl. 2.70% Vueling Airl. 2.50% Emirates 3.11% Vueling 2.40% TAP Portugal 2.73%
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SAS 2.35% Aeroflot 2.38% Turkish Airl. 2.85% Emirates 2.28% Aegean Airl. 2.17%

5. SUMMARY, LIMITATIONS, AND FUTURE RESEARCH
Self-connecting passengers are those travelling with a combination of tickets where the 
airline/s involved do not handle the flight transfer themselves. In recent years, airports have 
started catering to the needs of these passengers by offering self-connection services that reduce 
the risks and hassle involved in such practices. This paper analyses the potential for self-
connectivity in global air transport markets. In particular, we identify the airports that have the 
highest potential to capture self-connecting traffic, and we discuss several implementation 
challenges from both airport and airline perspectives. A Quality of Service Index (QSI) 
methodology, based on coefficients from a zero-inflated Poisson regression on MIDT data, is 
employed to predict the amount of potential traffic that could be captured by self-connecting 
travel alternatives identified with a connections builder (CB) algorithm. A second-stage linear 
regression examines the drivers of self-connectivity at the individual airports.

The results from the Poisson regression indicate that self-connectivity is indeed perceived as a 
burden, in comparison with traditional flight connections. In addition, it also increases the 
probability of a valid travel itinerary (which meets all minimum connecting times between the 
flights) to capture zero bookings. This is interpreted as a consequence of the fact that self-
connecting travel options arise only out of an additional search effort undertook by informed 
passengers. Our baseline scenario estimates that about 4% of global air travel is currently self-
connecting. This proportion is predicted to increase between three to four times if self-
connectivity achieved similar characteristics to traditional flight connections with the 
widespread of self-connectivity platforms. Overall, self-connections are concentrated in 
airports and markets within Europe, North America, and Asia-Pacific. The highest frequency 
of self-connections is observed in markets around 2,000 km, which places the majority of self-
connectivity in an intra-regional scope. Thus, having a well-developed long-haul network does 
not seem to be a requisite for strong self-connectivity.

Results indicate that airports that play a central role in air transport networks enjoy a larger 
potential for self-connectivity. Other facilitating factors are the dominance of low-cost carriers 
(LCCs) and airline concentration. In absolute terms, the largest amount of interline connections 
are still observed at primary regional hubs, though LCC-dominated airports such as Gatwick 
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or Manchester present the highest rates of traffic growth in the event of a widespread 
development of self-connecting services. Results also show clear patterns of hub dominance in 
self-connecting routes that arise when airports leverage their geographical position, destination 
mix, and seat capacity to offer new indirect services in markets where there is room for 
additional competition. 

We also investigate the conditions offered by each airport that affect the complexity of the 
implementation of self-connecting platforms. First, we report the proportion of self-connecting 
frequencies that would involve an inter-terminal transfer as a proxy for the increased pressure 
on the airport baggage handling systems. The rates of inter-terminal transfer are significant for 
most airports and hence, they are an important factor to take into account while evaluating the 
feasibility and timescales of implementation. From the airline perspective, there is a clear 
divide between LCC-dominated and other airports as the first allows for a higher share of inline 
self-connectivity. This would allow for an initial implementation of these services that is not 
dependent on interline negotiations. The complexity of those negotiations, however, will 
benefit from a reduction in the number of actors involved. Our results show that airports like 
Gatwick, Vienna, and Copenhagen may benefit from a higher concentration in self-connecting 
frequencies, and thus simpler negotiations, in comparison with other airports. Results also 
indicate that LCCs like Easyjet, Ryanair, and Southwest have the highest potential to benefit 
from self-connectivity, with Southwest having the simplest implementation due to the largest 
proportion of inline connections. However, there is also room for traditional carriers as well as 
an element of traffic reciprocity that is expected to increase the likelihood of successful airline 
partnerships. 

These results, however, should be interpreted with caution and always in consideration of the 
limitations of our approach. Firstly, the potential agreements described in our discussion 
section need to be evaluated according to other factors, such as the competitive environment in 
the affected markets at each location. Airlines would need to consider if their self-connecting 
travel options may actually end up stealing passengers from direct frequencies the airline is 
offering elsewhere. The lack of incentives for airlines to enter in said agreement can place 
significant constraints on the widespread development scenarios presented in this paper. This 
detailed analysis is left for future research. In this regard, the implementation of such 
agreements and platforms is also challenged by the need of solving the awareness problems of 
airport-driven connection platforms (Maertens et al., 2016), the ‘baggage through-check’ 
problem (OAG, 2016) and increasing demands to the baggage systems that might require of 
additional investment. Concerning the ‘missed-connection problem’, Grimme (2008) considers 
that this has been overcome with the insurance included in self-connecting schemes.

Secondly, our QSI includes capacity limits at market and itinerary levels, this helps obtaining 
realistic forecast values, but future research could include capacity limits at the flight level, 
which could be more adequate for detailed airline strategy purposes. 

Thirdly, the power of airports and options for airline-airport cooperation need to be reassessed. 
The current general view is that airports have very limited capacity to exert power and influence 
over airline decisions and strategies for self-connectivity. Yet, propositions like ViaMilano 
prove that airports can proactively find self-connectivity solutions with little airline 
involvement. Other airports like Chongqing Jiangbei International Airport in China provide a 
free hotel night stay for international passengers connecting between late-evening and early-
morning flights. In this regard, cooperation between airlines and airports can help taking full 
advantage of this niche market, which could be mutually beneficial in those markets with 
limited organic growth (i.e. North America and Europe). In fact, in industry gatherings (e.g., 
Global Airport Development, European Aviation Conference, Passenger Terminal Expo) there 
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is an increasing agreement on the need for closer cooperation between airlines and airports. 
Some airports and airlines could indeed build upon existing base of self-transfer passengers 
and create additional revenue streams by facilitating the connections. 

Fourthly, currently there is limited knowledge on the characteristics of the self-connecting 
passenger. Hence, further research is also required concerning behavioural aspects. This is 
necessary to understand in more detail the passenger profile that self-connects or could 
potentially self-connect in different markets and geographical regions. This analysis could also 
include the issues related to customer awareness of the existence of self-connectivity platforms 
and how they could be overcome, as well as how established booking processes and routines 
could evolve and change in order to give to the hub or the intermediate airport a more prominent 
role in the booking of flights.

Fifthly, we did not have access to information on the actual interlining agreements between the 
airlines. While IATA does indeed provide that information (the Bilateral Interline Traffic 
Agreements – BITA document), the cost of this publication was beyond our research budget. 
As a result, our definition of self-connecting travel may include itineraries in which airlines 
from different alliances do actually provide transfer services using the airport’s default 
minimum connecting times. Further research should aim to implement the information on the 
BITA file to achieve a more precise definition of self-connecting travel.

Our analysis could also underestimate the self-connectivity potential between late-evening and 
early-morning flights. As mentioned in the Introduction, in some LCC airport bases is common 
to see price-sensitive passengers sleeping in the terminal to self-transfer between late-evening 
and early-morning flights. This is a phenomenon taking place in particular airports that might 
require of a specific analysis.

The estimation process will also benefit for higher-quality price and booking class information. 
This would allow for a better characterization on the impact of reduced fares (the most 
important factor for self-connecting passengers) on passenger demand, and to obtain an 
estimation on potential cost savings for passengers and revenue implications for airlines at both 
network and route levels. Any generation of new demand as a result of the availability of new 
frequencies in previously unserved markets, or seat capacity limitations at the flight level are 
not modelled either. With sufficient data, the QSI method can be expanded to include additional 
variables, such as on-time performance at a flight level. This indicator is bound to be of 
relevance, not only for the self-connecting passengers (risk of losing the onward flight), but 
also for the airlines (risk of having to pay compensation) and can bring another level of 
complexity to the airline negotiation process. 

ACKNOWLEDGMENTS
The authors would like to thank Kevin O’Connor and the two anonymous reviewers for their 
comments and suggestions.

REFERENCES
Ashford, N., Bencheman, M., 1987. Passengers’ choice of airport: an application of the multinomial logit model. 

In: Transportation Research Board, Transportation Research Record 1147: Air Transportation Issues. 
Transportation Research Board, Washington, DC, pp. 1–5

Burghouwt, G., 2007. Airline Network Developments in Europe and its Implications for Airport Planning. 
Ashgate, Aldershot.

Burghouwt, G., de Wit, J., 2005. Temporal configurations of European airline networks. Journal of Air Transport 
Management 11, 185–198.



21

CAPA, 2016. Ryanair transfer traffic & interlining; closing the gap with FSCs on product, but not on costs. Centre 
for Aviation. 20/04/2016.

Coldren, G.M., Koppelman, F.S., Kasturirangan, K., Mukherjee, A., 2003. Modelling aggregate air-travel 
itinerary shares: logit model development at a major US airline. Journal of Air Transport Management 9, 361–
369.

Coldren, G.M., Koppelman, F.S., 2005. Modeling the competition among air-travel itinerary shares: {GEV} 
model development. Transportation Research Part A 39 (4), 345-365.

De Poret, M., O'Connell, J., Warnock-Smith, D., 2015. The economic viability of long-haul low cost operations: 
evidence from the transatlantic market. Journal of Air Transport Management 42, 272-281.

De Wit, J.G., Zuidberg, J., 2012. The growth limits of the low cost carrier model. Journal of Air Transport 
Management 21, 17-23.

Dobruszkes, F., 2013. The geography of European low-cost airline networks: a contemporary analysis. Journal of 
Transport Geography 28, 75–88.

Fageda, X., Suau-Sanchez, P., and Mason K., 2015. The evolving low-cost business model: Network implications 
of fare bundling and connecting flights in Europe. Journal of Air Transport Management 42, 289-296.

Fichert, F., Klophaus, R., 2016. Self-connecting, codesharing and hubbing among European LCCs: From point-
to-point to connections? Research in Transportation Business & Management. DOI: 
10.1016/j.rtbm.2016.07.001.

Gatwick Airport, 2015. http://www.gatwickairport.com/at-the-airport/flight-connections/gatwick-connects/
Graham, A., Nenem, S., Dennis, N., 2013. A method for developing a consumer preference centric airline schedule 

quality metric. In: Proceedings of the Air Transport Research Society Annual World Conference, Bergamo, June 
2013.

Greene, W., 1994, Accounting for Excess Zeros and Sample Selection in Poisson and Negative Binomial 
Regression Models. Working paper EC-94-10, Department of Economics, Stern School of Business, New York 
University.

Grimme, 2008. Low cost carrier connecting flights and interlining – A conundrum finally solved? Proceedings of 
the 12th Annual Conference of the Air Transport Research Society, Athens, 2008.

Grosche, T., and Klophaus, R., 2015. Hubs at risk: Exposure of Europe's largest hubs to competition on Transfer 
city Pairs. Transport Policy 43, 55–60.

Grosche, T., Rothlauf, F., and Heinzi, A., 2007. Gravity models for airline passenger volume estimation. Journal 
of  Air Transport Management 13, 175–183.

Halpern, N., and Graham, A., 2015. Airport route development: A survey of current practice. Tourism 
Management 46, 213-221.

Hess, S., and Polak, W., 2005. Mixed logit modelling of airport choice in multi-airport regions. Journal of Air 
Transport Management 11, 59–68.

ICAO, 2014. List of Low-Cost Carriers. http://www.icao.int/sustainability/Documents/LCC-List.pdf
Jimenez, E., Claro, J., Pinho de Sousa, J., 2013. The airport business in a competitive environment. European 

Journal of Transport and Infrastructure Research 13, 315-335.
Johansson, M., Arana-Vizcarrondo, N., Biggerstaff, B., Staples, J., Gallagher, N., and Marano, N., On the 

treatment of airline travelers in mathematical models. PLoS ONE 6 e22151.
Johnson, D., Hess, S., and Matthews, B., 2014. Understanding air travellers' trade-offs between connecting flights 

and surface access characteristics. Journal of Air Transport Management 34, 70-77.
Kawamori, T., Lin, M.H., 2011. Airline Alliances with Low Cost Carriers. Available at: SSRN 1798298.
Klophaus, R., Conrady, R., and Fichert, F., 2012. Low cost carriers going hybrid: evidence from Europe. Journal 

of Air Transport Management 23, 54-58.
Lee, A. 1990. Airline reservations forecasting: probabilistic and statistical models of the booking process. PhD 

Thesis. Massachussets Institute of Technology, September 1990.
Madsen, P., Dillon, R., and Tinsley., C., 2015. Airline Safety Improvement Through Experience with Near-

Misses: A Cautionary Tale. Risk Analysis. In press.
Maertens, S., Pabst, H., Grimme, W., 2016. The scope for low-cost connecting services in Europe – Is self-hubbing 

only the beginning? Research in Transportation Business & Management. DOI: 10.1016/j.rtbm.2016.08.004.
Malighetti, P., Paleari, S., and Redondi, R., 2008. Connectivity of the European airport network: “Self-help 

hubbing” and business implications. Journal of Air Transport Management 14, 53–65.
Mao, L., Wu, X., Huang, Z., and Tatem, A., 2015. Modeling monthly flows of global air travel passengers: An 

open-access  data resource.  Journal of Transport Geography 48, 52–60. 
Morandi, V., Malighetti, P., Paleari, S., and Redondi, R., 2015. Codesharing agreements by low-cost carriers: An 

explorative analysis. Journal of Air Transport Management 42, 184-191.
Morrell, P., 2005. Airlines within airlines: an analysis of US network airline responses to Low Cost Carriers. 

Journal of Air Transport Management 11 (5), 303-312.
OAG, 2016. Self-Connection: The Rise and Roadblocks of a Growing Travel Booking Strategy. OAG Reports.

http://www.gatwickairport.com/at-the-airport/flight-connections/gatwick-connects/


22

Pels, E., Nijkamp, P., and Rietveld, P. 2003. Access to and competition between airports: a case study for the San 
Francisco Bay Area. Transportation Research Part A 37, 71–83.

Redondi, R., Malighetti, P., and Paleari, S., 2015. Hub competition and travel times in the worldwide airport 
network. Journal of Transport Geography 19, 1260–1271.

Starkie, D., 2007. The dilemma of slot concentration at network hubs. In: Czerny, A., Forsyth, P., Gillen, D., 
Niemeier, H.-M. (Eds.), How to Make Slot Markets Work. Ashgate Aldershot, London.

Suau-Sanchez, P., Voltes-Dorta, A., Rodríguez-Déniz, H., 2016. The role of London airports in providing 
connectivity for the UK: Regional dependence on foreign hubs. Journal of Transport Geography 50, 94-104.

Suau-Sanchez, P., Voltes-Dorta, A., Rodríguez-Déniz, H., 2015. Regulatory Airport classification in the US: The 
role of international markets. Transport Policy 37, 157-166.

The Independent, 2015. GatwickConnects: An airport trying to make connections. 18/09/2015.
Tembleque-Villata, M., and Suau-Sánchez, P., 2015. A model to analyse the profitability of long-haul network 

development involving non-hub airports: The case of the Barcelona–Asian market. Case Studies in Transport 
Policy. In Press.

Veldhuis, J., 1997. The competitive position of airline networks. Journal of Air Transport Management 3, 181–
188.

ViaMilano, 2016. http://www.flyviamilano.eu/en/viamilano-transit-service/
Vuong, Q., 1989. Likelihood ratio tests for model selection and non-nested hypotheses. Econometrica 57, 307–

333.
Wei, W., and Hansen, M., 2006. An aggregate demand model for air passenger traffic in the hub-and-spoke 

network. Transportation Research Part A 40, 841–851.
Windle, R., and Dresner, M. 2002. Airport choice in multiple-airport regions. Journal of Transportation 

engineering, 121 (4), 332–337.
Zhang, G.P., Qi, M., 2005. Neural network forecasting for seasonal and trend time series. European Journal of 

Operations Research 60, 501–514.

http://www.flyviamilano.eu/en/viamilano-transit-service/


Cranfield University

CERES https://dspace.lib.cranfield.ac.uk

School of Aerospace, Transport and Manufacturing (SATM) Staff publications (SATM)

2016-10-08

Measuring the potential for

self-connectivity in global air transport

markets: Implications for airports and airlines

Suau-Sanchez, Pere

Elsevier

Pere Suau-Sanchez, Augusto Voltes-Dorta, Héctor Rodríguez-Déniz, Measuring the potential

for self-connectivity in global air transport markets: Implications for airports and airlines, Journal

of Transport Geography, Volume 57, Issue December, 2016, pp.70-82

http://dx.doi.org/10.1016/j.jtrangeo.2016.09.013

Downloaded from Cranfield Library Services E-Repository


