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SUMMARY
A historical review is made of the methods adopted in vehicle
design.

This is divided into two sections, vehicles with chassis frames
and integral structures.

Complete solutions have been obtained for all types of chassis frames
by Erz and the results of this work are given. The simple frame structural
analysis has been extended for buses, with semi-integral and integral
construction.

Private car structural analysis has been very approximate using
pencil and paper methods, various approaches have been tried with little
success. The advent of the digital computer has made the analysis of
such complex structures possible and the two basic methods of 'displacements’
and !force' are described. The matrix force method due to Argyris is
treated in detail with a complete analysis of a simplified box van structure
under idealised loading. This method has been chosen for economy in computer
space and its appllcatlon to a more complex structure, an integral Land Rover,
is indicated. »

With the advent of very large computers it is probsble that displacement
methods will take precedence as less work in ‘choosing' the idealisation and
redundant systems is involved.
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Introduction

Vehicle development has grown through many centuries and it has
never been necessary for a vehicle with a new power unit to be structurally
different from its immediate predecessors. Consequently the first
vehicles with internal combustion engines were able to function satis-
factorily by using existing horse drawn techniques of coach building -
the size of wooden or metal frames required to carry the load safely had
been arrived at after generations of experience in coach building.
There was no need to drastically re-think the structural problem of the
horse-less carriage whereas the first aeroplanes would not fly unless
the theoretically lightest structure was used. The necessarily different
approach has led to the position today where nearly every advance in
structural analysis is made by aircraft engineers and nearly all surface
vehicles are designed on a basis of experience. " '

The considerable advances in vehicle structural efficiency have be:n
largely achieved by intelligent application of the lessons of ever more
extensive and rigorous testing. This statement is still basically true
in spite of analyses of vehicle structures made in the past.

If there is a movement towards the use of structural analysis in the
vehicle industry at the present time it is caused as much by the need to
cut down the time spent testing a new design as by the desire for greater
structural efficiency. Where there are resl gains to be achieved by
meking the lightest possible vehicle as in racing cars and air transportable
vehicles structural analysis is found to be most often used. 4,

In order to base analysis on reasonable loading cases much more _
information is required than at Present available. Only static loading
cases are used and these are based on intuition or on the highest acceleration
recorded on one vehicle in a series of tests or by assuming that one wheel
is resting on a bump of a given size. Faced with this dearth of information
a programme of measuring the loads existing between the suspension system
and the body structure has been started at the A.5.A.E. References 1 and 2.
The tests can only be regarded as preliminary but indicate that the long=
itudinal forces are likely to be greater than the vertical forces and that
the vertical forces are not likely to exceed twice the static load.

Extensive tests on military vehicles to establish the acceleration
environment for equipment, Ref. 3, glving a maximum acceleration of Lg
provide a further guide in establishing a realistic loading case for
vehicle structures. It is with this very serious limitation in mind that
the work carried out so far on vehicle structural analysis is reviewed and
modern methods suggested for future use.
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Stressing éfathe frame for static loading as a simple beam must have
been carried out from the early days of vehicle design. The methods in
use at the time (1948) are summarised by Dean-Averns, Ref. 14, and the




stressing cases considered for a typical public service vehicle were: =

1, Static loading for chassis only.

2. Static loading for body and load.

3. Braking reactions (load transfer due to maximum braklng,
0.5 g. at that time). \

It is emphasised that these static calculations can only be relevant
as comparative stressing cases and Dean-Averns states that if the stress
level is kept to 6 tons/sq.ins. the frame will be strong enough for a .
public service vehicle. Elementary calculations of this type are still
the only ones carried out by many design organisations since the continual
testing of similar chassis frames allows the maximum stress level to be
accurdtely adjusted to suit the type of frame used.

The torsional stiffness of a chassis assumes great importance when
independent front suspension of the wishbone type is used and the stresses
involved in frame torsion may well be greater than thosevdue to bending.~

Dean=-Averns, Ref. k, again supplles g first attempt at solving thls
problem by comparing the torsional stiffness of ladder frames and those
with cruciform bracing. His assumption that a quarter of a rectangular
frame may be treated as two cantilevers is incorrect as can be seen from
fig. 1. The correct solution to this problem is given in detail in
Appendix 2, and also by Cooke in Ref. 5, using strain energy methods.

A comprehensive discussion of the torsional stiffness of chassis
frames was published by K. Erz in 1957, Ref. 6. The complete formulae
for determining the loads and deflections of a ladder frame are given
under the assumption that the side members and cross members are loaded
in torsion and bending based on symmetry and Engineers Theory of Bending.
He draws attention to the importance of including the effect of warping
inhibition at the ends of the cross members when they are of open section
~ and subject to torsion. This effect is expressed as a factor multiplying
the torsional stiffness of the section of the cross member. - The factor.
is a function of the torsion stiffness and the torsion bendlng or warping
constant. ‘ .

)
i.e 5 =5 —E—p
e \» @ L- L
5 tanh 5
where J* = Modified torsional stiffness constant. :
: J = Normal torsional stiffness constant (free warping)
b o= &
T NED
I = Warping constant for section

‘Table 1 gives formulae originally obtained by Bergmann, Ref. T, for the




constant I' for various sections commonly used as chassis frame cross
members .

A further simplification made by Erz was to ignore the effect of
bending deflections of the individual members compared with the torsional
"deflections for the conventional open section chassis frame.

The deformed shape of the frame is then shown in Fig. 2, and the
calculation of loads and the frame stiffness becomes statically determinate.
An example is given in the paper showing that this simplification gives a
theoretical error of only M%. Further justification can be found in
table 2, which compares the measured torsional stiffness of five chassis
frames with the theoretical torsional stiffness calculated by the simplified
method (column S; assuming fréee warping of the cross members and column
S- assuming that warping is completely inhibited).

“ Frames 2a and 2b were the same except that the thickness of the
channel section side members was increased from 6 mm. to 7 mm. (say /4"
to 9/32") and only a 4% increase in torsional stiffness was obtained.
Frames 3a and 3b were again similar except that the flanges of the side
members were increased from 70 to 80 mm. (2.75 inches to 3.15 inches).
In this case 14% higher torsional rigidity was measured indicating that
it is more economical to increase the flange width to obtain torsionally
stiff frames. o

Erz next compares the torsional stiffness of ladder, trapezoidal,
cruciform and backbone type frames. The results shown in Fig. 3, refer
to frames of equal weight made up of closed section members and he states
that for open. double flange section members the order of stiffness of the
various types is the same but the difference in magnitude is greater.

When discussing the merits of stiff v flexible frames several design

points are brought out to minimise stress concentration and it is emphasized
that flexible frames must not be too nmarrow as the stiffening effect of
warping inhibition of open section cross members is confined to the ends

of the cross members, consequently wide ladder frames are less stiff than
narrow ones. An analysis scheme for a space frame chassis is also
suggested and formulae for a flat rectangular base type chassis are given
but comparative torsional stiffnesses are not given for these alternatives.

The principles used in the complete analysis of the ladder frame are
extended by Michelberger, Ref. 8 and 9 to include the effects of the vehicle
sides as additional beams, Fig. 4. This author assumes that torsion cannot
be transmitted to cross members where they meet the sides of the vehicle.

It is interesting to note that the method adopted by these authors to solve
the redundant structure problem is basically the same as used in the matrix
force method, in fact Michelberger sets out the calculation in matrix fom.

A recent contribution to ladder frame design has been made by Seitler
Ref. 10, who has shown that since cross members made of circular tubes
induce no 'torsion bending' the stresses at the joints are much lower and
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a very stiff frame can be made with considersble saving in weight.

Tt is clear that the original frame that he has improved was very
stiff compared with a typical rivetted frame and he admits that rivets
do, in fact, relieve the very high stresses at the Jjoints of open section
frames.

~ This review of work on frames is by no means comprehensive but indicates
the recent emphasis on torsion as the important loading condition.

Vehicles with integral structures

If the integral structure is a box type, e.g. a closed van, the
gsolution can be approached by conventional shell theory. Since torsion
is usually the most important-case the Bredt-Batho formula may well be -
sufficient. ° If substantial corner members run the length of the vehicle
the extension of thin wall torsion theory to box beams with corner membters
has been familar to aircraft stress analysis for a long time. References
11 and 12, give simple and comprehensive treatments respectively.

Car like structures differ radically from the near symmetrical shell
and may be approached as a fixed jointed framework. Swallow, Ref. 13,
treats one side of a vehicle in this way, as shown in Fig. 5. He also
suggested that a torsional calculation can be made treating the body shell
as six flat frames. Garrett, Ref. 1, attempted a piecemeal analysis of
an integral car structure, in particular treating the sill as the main
beam support member for the vehicle and considering in detall gill to inner
wing member connections. : ‘ i ‘ T

The cross member connecting the front spring hanger brackets of the
rear spring (the heelboard) is also treated in detail in the first part
of the article. : o ' L Lo

In part 2, Garrett stresses the front end structure, starting with
the suspension loads and treating the main front structure as a horizontal
portal freme (see Fig. 6), and finally considering the cross member at the
base of this portal, the toeboard. :

Johnson and Heyl, Ref. 15, discuss the possible load paths in a
typical American car body but conclude that measurement of existing structure
is the best guide to future design. They produce useful bending moment
curves on a typical body side from extensive strain gauge testing.

Erz, Ref. 6, attempts the analysis of an integral bus or coach by
approximate methods. He first considers symmetrical bending of the
vehicle and assumes the whole body side acts as a beam. The main cut-out
is taken to be ‘the rear door, a front door is also present but the loads
are expected to'be small as a rear engined vehicle only is discussed.
The bending moment at the centre of the door opening is replaced by hori-
zontal loads in the camt rail and sill, the horizontal load in the cant rail




is then distributed to the window uprights in proportion to their local
bending stiffness.

I
i.e. N = e p (See Fig. T).
r . ZJ. Ir :

The critical bending moment is assumed to be at the base of the
upright and is given by Mp /3 hy Qp + VWhere the factor 2/3 is an
assumption. r

The shear load at the centre of the rear door is assumed to be
distributed between the cant rail and the door sill in proportion to their
bending stiffness. These separate shear forces produce a bending moment
on the cant rail and door sill respectively which are arbitrarily increased
by 50% to allow for the 'fixed end' effects on the beams. Referring to
Fig. 8, the cant rail shear force

Iy

= ——
Q‘%‘ T,

and the maximum bending‘moment

My = 0.75 QD
similarly the door sill shear force QL I Q, and the maximum bending
moment M, = 0.75Q,Lb.

For tdrsion the vehicleris treated as a thin tube in torsion about -
a transverse axis. First the torsion about this axis is calculated from
the known couple Md about the longitudinal axis as shown in Flg 9
.|  The shear flow q round the edgs of the roof, ends and floor is then
P calculated by the Bredt-Batho formula:

. T
e = 2p°

where A is the area of the side of the vehicle.

This shear flow is resisted by the windcw>uprights in bending as
before:

My

. . r
= N h krand L] L] l
r /3 1 ZII- q

“? . The same shéar flow q must also act on the front end of the vehicle and
the maximum lateral moment on the windscreen pillar will therefore be:
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, _
Mtp = 21399 for the case of a single windscreen.

It is clear that this type of analysis could be used on a passenger
car and Brzoska, Ref. 16, indicates this possibility at the end of his
paper. '

The_analysis of redundant structures

Before describing in detail the digital computer method chosen for
further study it is necessary to examine briefly some of the methods
that have been proposed for general structural analysis and their
application to integral wveliicle structure.

Basically all analyses must start by idealising the real system since
any real structure is infinitely redundant and an approximation must be ”
made to cbtain a workable order of redundancy or number of unknowns.

The problem is, therefore, to establish an acceptable approximation to

the actual structure. This problem can be solved in two ways, either

real vehicle structures can be analysed with various idealisations and

the results compared with tests on an actual vehicle, or simplified
structures embodying certain essential characteristics of present vehicle
structures can be analysed and tested. Again the degree of idealisation
may be varied and the calculation made more complicated until agreement
between theory and practice is achieved. Of these two methods the second
has been adopted at the A.S.A.E. as the main streams of student thesis work
and two of these theses have been completed (Ref. 17 and 18) analysing
essentially the same structure statically and dynamically. Even the highly
simplified structures adopted, see fig. 10, proved too ambitious for a one
year thesis and a more recent thesis analysed an even simpler structure
fig. 11.

To take this work a stage further and to gain experience with a more
complicated structure a much simplified Land Rover structure is being
analysed under the present contract. '

The analysis of a complete car structure by using a digital computer
has been successfully carried out in America and is briefly reported in
Ref. 19. This programme appears comprehensive but requires a fairly large
computer to handle it and is not likely to provide the most economical
approach to the analysis. -

Qisplacement and force methods
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There are essentially two basic methods of structural analysis, one,
choosing displacements as unknowns and finding the value of these displacements
to satisfy the’ conditions of equilibrium of forces at every point in the
structure, these are known as 'Displacement Methods'. The second method
chooses forces as unknowns and finds the values of these forces to satisfy
compatibility conditions in the structure; these are known as 'Force Me;hg@??gﬁf

Pt




Since the true structure cannot be analysed the conditions can
only apply at points specified by the idealisation adopted.

A useful method of deciding which basic method to use is given by
Michelberger (Ref. 8). 'If the possible node displacements of the
system exceeds the degree of redundancy it is generally better to use a
Force Method and vice-versa'.

Examples are shown in Figures 12 and 13.

This rule must be used with caution as the best method is often
dependent on the ease of setting up the equations, since with large
computers it is better to set up a large number of simple equations than
a few difficult ones. The McKenna paper Ref. 19, previously
mentioned is an example of this where a displacement method has been used,
involving 6 equations for each node in a structure of about 100 nodes.
(Fig. 14). McKenna's method is basically the same as the Livesley
Displacement method described in Ref. 20, and sumarised later in
this report. The A.S.A.E. Thesis of Mann, Ref. 17, used the matrix force
method attributed to Argyris, Ref. 2, for stress analysis. The A.S.A.E.
Thesis of Cuthill, Ref. 18, used the matrix displacement method given also
in Ref. 21, for obtaining the stiffness matrix of the complete structure
defined at a large number of points to obtain the dynamic characteristics
of the structure.

In the two theses referred to the relevant matrices were set up and
computer programmes run but time was not available for sufficient checking
of the input data to obtain accurate results. The matrix displacement
method of Argyris condenses the matrix to be inverted (or the number of
simultaneous equations to be solved) to the number of the external forces
or inertia forces defined in the system. By using these condensation i
techniques the Argyris methods are the ones most suited to small computers
of which Pegasus is an example.

The matrix force method
'As a simple example consider the L pin jointed bars supporting a
single load as in Fig. 15a. This system clearly has two indeterminacies
or redundancies and could be solved quite simply by writing two simultaneous
equations asguming unknown forces in any two of the bars. '

Tt will now be used to show how the Argyris method uses simple concepts
to build up these equations. First choose as a basic system sufficient
structure to support the external load system (bars 1 and 4) and replace the
external load by a unit load.

This iéuspown in Fig. 15b, and the loads in all the members due to this
load system can be written as




.

where by 1s a matrix having as many rows as there are loads in the system
and as many columns as there are different values of the external load R
to be considered. = Many writers use the term stress resultant for the
load in a member due to one particular type of loading, e.g. a separate
stress resultant exists for the bending moment and the direct load in a
member. Morice, Ref. 22, defines a stress resultant as the integral

of a stress over an area or the integral of a stress moment about a chosen
axes, the area need not be normal to the axis of the gection but is usually
taken to be so.

Since linear structures are assumed it seems no disadvantage to refer
to a stress resultant as a load, bending moment or shear force existing
in a member at any point as long as there is no confusion with the external
load system. In the notation of the matrix force method all such 1nternal
loads, moments, etc. are denoted by S.

In the present example for a single value of the external load R,
S will be a four row single column matrix having values Sp, Sz, etc.
as the final (correct) load in bar 1, 2, etc.

Clearly the contribution of the basic system to the S matrix will be
boR = boiR = Soi

 bozR = 8p2 = 0
bosR = Soz =
bosR = Sos

Tn order to include the effect of the redundant members the external
force is ignored and two self equilibrating systems are chosen (one for
each 1ndeterm1nacy) from the structure where an unknown load X in any one

member will give loads in all the other members of the self equibrating
system but zero loads in the remainder of the structure.

Such a system is shown in Fig. 16a, where X, is the unknown load in
bar 2. Again this can be replaced by a unit load end from simple statics
the loads in the other bars can be found and written as:-

biiz
bizz
biza (= 0)

D14z

See Fig. 16b.




Multiplying each of these by the unknown load X we have

S112 = biis X2
Si22 = bize Xz
S132 = bizz X2 (= 0)
S142 = braz X2

A similar result will be obtained by taking an unknown load in bar 3,
in the self equilibrating system shown in Fig. 16b.

The loads in all the members due to this load system will be

S113 = bi135Xs
Si23 = Dbisz Xz (= 0)
S133 = Dbizs X3

L]

S143 byas X3

Since the structure is linear the principle of superposition holds

and
Sl.= Sor + S112 + 8113 = DogR + briz Xo + bi35 X3
Sz = Soz + Si22 + Si23 = bozR + bizz Xz + bizs X3
53 = Soz + Size + Sis3 = bozR + bize Xz + b1z X5

Sa = 504 T S1a2 + Bis3 = bisR + b1g2Xa + D1e3X3 (l)
or in matrix form 8 = bR + ;X

Equation (1) expresses the equilibrium condition for the whole structure
and to solve for X it is necessary to satisfy compatibility conditions for
the structure. In this simple case it can be seen that if cuts are made
in bars 2 and 3 the loads X5 and Xs must be chosen such that the displacement
across the cut is zero. : ,

The displacement across each cut (sometimes called the ! corresponding
displacement' for the Xp and Xs forces) can be found by the application
of the unit load principle which states: =

'The displacement in any direction due to a load system acting on or
in a structure is the sum of the deflections in each member of the structure
due to that load system multipligd by the load in each member due to a unit
load in the direction considered’

* The unit load can be supported by any part of the structure able to
do so. Thus a statically determinate part of the structure may be used to
connect the unit load to the supports. The deflection in each member must

be the true deflections when the whole structure is taking the load.



Thus if the final displacements of the members of the 4 bar structure
are vy, Vo, Vs, V4 and the loads in each member due to a unit load in
say the Xp direction are knowm the corresponding displacement for Xp can
be found and equated to zero. Now the loads in each member due to a
unit load Xp are byip, bizz, P13z, bias. The compatibility condition
for detemining X5 is, therefore:=-
Dr1avy + biazVe + bizovs + bieave = 0
There will be a similar condition for Xs
b113vVe + biazve + bizzvs + biasve = O.

In matrix form the complete compatibility condition will be:-
blIV =0 ' (2\

The relation between the final load in bar 1 say and‘the final
displacement between the ends of the bar can be expressed either in terms
of the stiffness or the flexibility of the bar. It is more convenient
in this enalysis to choose the flexibility f; so that:i-

vy =Ty S;

Similarly

ve = f2 Sz
vz = f3 S3
ve = F4 Sa

In matrix form v=f S (3)

Where f in this case a diagonal matrix and is called the 'matrix of
unassembled flexibilities!.:

The compatibility condition now becomes: -

‘bl,f S = O
or bl'f(boR + D13X) =0
i.e. = by/fbiX = - by'fb R.

L vi = = (by'fby) > (bl'fbo)R (%)




Equation (4) is often written:

X=-D*DR (4a)
where
D = bll'fbl
ot

This is a useful notation as D and Dy can be made definite stages
in the computer programme.

The stress analysis of the structure is now obtained by substituting
equation (l4a) in Equation (1).

S = (b, = b1D™ D )R (5)

The displacement of the structure (r) in the direction of the
external load R can also be found from the unit load method since the
matrix by is & matrix of the loads in all the members due to a unit
external load in the R direction and the displacement of all members under
the load system R is given by v.

=1 ! - -1 ‘
T =D, f(bo byD DO)R (6)

In the case of the simple example where there is one external load
R, Equation 6 expresses the flexibility of the structure to the external.
load and the matrix coefficient of R is a scalar. In general where R
is a matrix of several external loads each taking several values this
coefficient is also a matrix and is usually denoted as F the 'overall
flexibility of the assembled structure'.

L}

.. r=TFR

F

i

: 4 - { =1
‘ b 'fb_ (1:)O fby) D D,

,_Since f is always a symmetrical matrix bo’fbl is the transpose of
bl o w0

o] .
. o 7 ( pel
. F=b'fb -D'D™*D (7
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It can be seen from this introduction to the method that all the
static properties of the structure can be determined from matrix
manipulation of the three basic matrices by, by and fi. The analyst
is now left with the ideal isation of the real structures, the choice
of the basic system and the choice of the redundant force systems.

The matrix displacement method

S e G Pt 0 B A G0 T o e P S 0 B G G S Y D e D O N W6 DD D M

This method is a direct parallel with the matrix force method just
described and the same 4 bar problem can be used to illustrate the
method.

If r is the displacement of the loaded structure in the direction
of (and at the point of application of) the external load R the displacements
apy etc. of the bars due to a unit value of r can be found and the
displacements of each bar (v) written down:~-

»

Voir = 8p1 « T |
Vo2 = 8g2 « T {
Y in matrix form v = a_r - (8)
Vo3 = 803 « T { o 0
¢
Vos = 804 - T |}

[}

If u is the displacement of the structure at the node point normal
to the applied load; the displacements a;; etc. of the bars due to a uni®
displacement in the u direction can be found and the extensions or
displacements of the bars again written:-

Vll = all . u,\\!
Vio = 810 . U { . .

2= 12 in matrix form vy = aju (9)
Vi3 = Q33 « U

Vig = 814 - U

La

.. Total displacement of the bars is:=-

V1 = Vo1 + Vi1 = @o1r + ajju etc. in matrix form v = v_ + vy (10)

The load in bar 1 due to a displacement vy is Sy = kpvy where k3 is
the stiffness of bar 1.
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.". for all bars: S = kv in matrix form (11)

The equilibrium condition for the structure is that the total force
in the u direction is zero.

Now the resolved component of S; in the u direction is equal to S
multiplied by the same factor as was used to resolve u into the bar 1.
direction, i.e. azz:

".°. Totel force in the u direction is

a1y S1 + aip Sp + @13 S3 + Ajs S4 = 83’8

.*. The equilibrium condition is a;‘S = 0 : (12)

But S = kv

i

kvo + kvy
=k a,r + kaju

. al'S = al’kao T+ al’kalu = 0
or u= - (a;'ka;)* al’kaor ' (13)
or u=«-C1t c,r (13a)

where C = ay’'kay

C = ai'ka
o ()

i In the particular case of the example chosen u is known to be zero
i but in general it is given by equation (13a).

From equations (10) and (13a)

= - -1 -
v = [ao a,C Co}r (z4)
and the matrix of the loads in the members is given by

§ =kv=kla - aC™Clr . (15)

in termé'bfdthe deflection r, but the external load R is the resolved sum
of the loads S in the r direction, i.e.

e a ! g=a ! o a.TL
R=a'8=a k:ao a;C CO]r (16)




But R = Kr

Where K is 'overall stiffness of the assembled structure' for the
external load system R and is the inverse of the matrix F defined in
equation (7).

This matrix K can now be defined in terums of the resolution coefficients
ap and a as '

=g ! 0 ipmy
Kfaokao c/c*c, (7

Tn order to determine the loads in the members it is necessary to
first calculate K, then use equation (16) to calculate r, i.e. r =K iR
and then equation (15) to calculate S. ,

The advantage of this method lies in its use for frameworks where
the a_ and a; matrices are simply obtained from geometry. Further the
fact %hat all possible displacements are taken into account .in one or
other of the matrices reduces the chances of error compared with the force .
method where the order of redundancy must be estimated and the redundant
systems ere left to the choice of the analyst. The method can be extended
to fixed jointed frameworks and to panelled structures but the possible
displacements are large in these cases and the size of computer required
increases rapidly.

The Livesley displacement method

In this method an alternative method is used to obtain the overall
atiffness matrix of the structure in the directions of the external loads
(the K matrix). : :

Tt applies mainly to frameworks and although it may be extendable
to panelled structures panels are normally replaced by a diagonal rod.
As in the Argyris formulation all orthogonal displacements of the nembers
in the structure are considered, the axes being defined for the whole
structure. Rotation matrices are used to resolve the displacements along
the directions of the members of the structure and these rotation matrices
serve also to transform the known stiffness in the direction of the mamber
into an effective stiffness in the direction of the co~ordinate axis.
(See Fig. 18). It is clear that the rotation matrices, taken for all
members, are equivalent to the ag and a; matrices of the Argyris method.
The product of the stiffnesses and deflections in the main co~ordinate
directions give the loads exerted by a member at the node point in question.
The external load, if any, at the point can now be equated to the sum of
these loads: = : e

%

o
Pt
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W= T kT (8, NG
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where:

Wa = Matrix of external loads at point A (1n main co~ordinate
directions)

T = Rotation matrix.

kAB = Stiffness of member along its own direction

AA = Matrix of displacements of point A. (in main co~-ordinate
directions). ‘

AB = Matrix of displacements of p01nt B. (in main co~ordinate
directions).

The sum is taken over all members converging on point A.

Equations of this type can be built up for all points in the
structure and by inserting the known conditions at each point (e g. zero
external load where appropriate, zero displacement at supports), the
simultaneous equations can be condensed to form a set equal to the number

- of external loads. The coefficient matrix of this set of simultaneous

equations. is the K matrix of the system.

The advantages of the method would appear to be that it builds up
the coefficients for each equation using simple small rotation matrices
compared with the large a, and a; matrices that have to be prepared for
the Argyris method. The disadvantage lies in the condensation of the
simultaneous equations which is not automatic in the references seen by
the writer. Some caombination of the two approaches would be possible by
combining the rotation matrix idea into the Argyris method so that the
ap and a; matrices can be built up in the computer. _

Idealisation of a_structure

The Matrix Force method was originally devised for highly redundant
continuous stressed skin structures which could be broken down into a
rectangular grid of stress carrying panels with stringers at their boundaries.
The major assumption was made that the panels only carry shear and that the
shear Tlow in each panel is constant. The stringers are assumed to take
only the end load and this end load varies linearly along the stringer.
This idealisation offends the principles of shear diffusion and campatibility
of the local displacement between the stringer and the panel. These
errors are small and can always be made negligible by taking a fine enough
grid.-

The 1deallsatlon has been shown to glve very good results for typical
aircraft stressed skin construction. It is clear that van bodies and bus
bodies can be idealised in this way and the worked example in Appendix 1
is of a simple van body.
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For fuselagé analysis Argyris and Kelsey, Ref. 23, prbpose to
assume that the frames take bending while the remainder of the structure
is limited to end load and shear.

The combining of bending and end loads in a member bordering a shear
panel further offends compatibility conditions but it is shown in Ref. 2k
that it gives good agreement with measured loads in a structure.containing
a large cutout or doorway. '

The basic matrix force method is not confined to this type of
structure and the analysis of a rectangular frame in torsion is given in
Appendix 2.

When the idealisation of the structure has been made it is necessary
to determine its indeterminacy or order of redundancy.

Very general formulae have been obtained for doing this for frame-
works by Henderson and Bickley, Ref. 25, and explained more simply by
Morice, Ref. 21. The Fframeworks may be either fixed or pin jointed or
with mixed joints. The principle on which the formulae are based is that
any two dimensional ring with rigid joints has three indeterminacies and
a three dimensional ring has six indeterminacies.

i.e. n, = 3R = 3 (M - N+ 1) For plane frames . .-_ (18a)
and ng = 6R = 6 (M ~-N+ 1) For 3-Dimensional frames (18v)
vhere n, = No. of indeterminacies for a stiff jointed frame.

R = No. of complete rings in the structure.

M = No. of members in the structure

N =“ No. of nodes (joints) in the structure.

The supports for the structure must be included in a special way
and examples of such stiff jointed frames are shown in Fig. 19. Departures
from completely stiff frameworks are dealt with by subtracting a number
of "releases' e.g.: a hinge removing a bending moment across a joint.

Indeterminacy n=n_ =T ' (19)

where r is No. of releases.

The difficulty in using the method arises in assessing the number of releases
in any framework and in guarding against mechanisms (n < 0) which may arise
in part of a structure while the overall formulae gives a statically deter-
minate (n = 0) or redundant result (n> 0).
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This last point can be checked by treating the structure piecemeal or
by ensuring that the equilibrium equations(one for each redundancy) are
linearly independent. The matrix force method requires that the D
matrix (see equation ha) represents linearly independent equations so
that this condition must be fulfilled.

Equation (l8a) can be simply modifiedbfor a structure made up of
shear carrying panels set in rigid jointed rings of framework

n, = 3(M-N‘+l)+P : (20a)

where P is the number of Panels.

Releases are applied only to the surrounding framework.

For the original Agyris assumption of the framework carrying end
loads only the number of releases are the same as for a pin-jointed

structure.

In a plane structure r =2M = N : (21)

If a bending stiffness is assumed et ahy joint between the ends of
two members this reduces the releases by one.

An example of this is given in Figures 20a and 20b.

The same argument can be applied to a three dimensional structure
containing shear carrying panels. In structures like the van body of
Appendix 1 each surface acts as a plane redundant structure and to obtain
the three dimensional result it 1is necessary to replace each plane
redundant structure by a single panel before applying the formulae.

n=6M-N+1)+P =1 (22)

where r = 5M - BN | (23)

Tt can be seen from Figure 2la that for cube like structures the
indeterminacy is zero. An example of a two bay structure is given in
Tig. 21lb showing an indeterminacy of one.

It is necessary to carry out this procedure before using the matrix
force method because although the condition of non-singularity of the
D matrix ensures that the redundant systems chosen are independent it does
not ensure that the correct number has been chosen to correspond with the
idealisation assumed, ' : '

To assist in visualising the shear panel end load carrying bar type
of structure a form of model has been devised that reproduces most of the
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characteristics of the idealised structure. The indeterminacy of

simple sections of the structure can be demonstrated with this model
technique and mechanisms can be avoided as they show up clearly in the
model. Basically the model consists of flat bars that can rotate aboubt
separate pins at each end, and diamond shaped panels that are slotted
where they meet the bars at the apex of the dismond. For a single plane
structure the bars clearly constitute a pin jointed system. Since the
panels are slotted normal to the edge member bar only a shear force can
be transmitted to the panel. The only difference between the model and
the idealisation is that in the model the shear force is transferred from
the bar to the panel at the mid point of the bar instead of along the
length of the bar as a constant sheaf flow. Since the idealisation offends
compatibility in this respect it is clearly impossible to meke a model to
reproduce the theoretical idedl isation exactly. Where two planes: meet
spiders of pins are provided which connect the planes at the bar inter=-
sections. The idealisation calls for ball joints of zero radius and the
model does not represent this condition accurately. The essential
components of the model technique are shown in Fig. 22, and the structure
analysed in Appendix 1 is shown built up from model components in Fig. 23.

The Land Rover project

The application of the formulae for determining the order of redundancy
of the structure shows that the number 52 assumed in the work reported in
Ref. 26, is incorrect. '

Most of the work during the period since Ref. 26, was issued has been
devoted to an endeavour to find a method of combining the two dimensional
and the three-dimensional formulae into a comprehensive formulae for this
type of structure. This attempt has failed and-while the simple formulae
deal adequately with the main box structure aft of the scuttle the front
end structure is complicated by having modified egg—bax'characteristics.
The application of the Pormulae to this section has been checked by an
analysis of this structure making various assumptions. The fact that the
work reported in Ref. 26, is incorrect has given the opportunity to revise
the idealisation of the structure in view of a detailed analysis of the
structure in the plane of the bomnet top. The results of the two detailed
analyses will be given first followed by an estimation of the order of
redundancy of the structure as at present idealised. A diagram of the
structure to be analysed in its modified form is given in Fig. 24, showing
the node numbering system used. '

Simplified agalysis of front end structure
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The simplified structure was made statically determinate in all possible
planes so that the analysis concentrates. on the three dimensional egg box
effect, it has' been shown that indeterminacies in individual planes can be
incorporated simply. For this reason the sections of rudimentary chassis
which take bending moment only are left out, further, the outside face of the




iy
bl
)
o

- 19 =

wing is assumed to be a rectangular panel with no cutout for the wheel.

Three cross members are retained across the bonnet top but the
bending stiffness of the ring previously suggested is omitted.

The structure appears as in Fig. 25, with an iméginary panel cg,
continuing the vehicle floor across the wheel arch.  The order of
redundancy of this structure for symmetrical loads is shown to be 2.

The panel c, was removed in the computer analys1s by the use of the
Argyris cut out procedure given in Ref. 21 and 27 and briefly in Appendix 1.
Since the order of redundancy is so low this analysis could be done by
pencil and paper methods but it was found that the condensing of the data
from the 31 loads defined in the structure to the four coefficients of
the two simultaneous equations was time consuming and led to errors.

It was, therefore, decided to use Pegasus and to gain experience in using
the condensation techniques proposed in Ref. 23, and also the methods of
reading in data using zero sub-matrices were developed. Since the matrix
division was only concerned with 2 x 2 matrices the computer time for this
programme was only a few minutes. The results are shown in Fig. 26.

It was proposed that the basic systems for the final calculation
should be made up of a set of systems transferring the loads at the extremities
of the cross members to the longitudinals of the rudimentary chassis and
each concentrated load on the chassis would then be supported by the axle
loads. This method was adopted for the first programme of the simplified
front end structure but to ensure its accuracy another programme was run
using basic systems that linked each down load with the support points.
The results of this programme were identical within rounding off limits and
the equivalence of the two systems established. It can be seen from Figs.
27a and 27b that the first method gives much more simple basic systems.

Since the simplified analysis assumed two redundancies and then
effectively removed one of them by making a cut out it seemed reasonable
that a programme could be written with Jjust one redundancy for the whole
front end. Advantage was also taken of the fact that the loading assumed
gave no loads in the outside panels by and bg or in the remaining floor
panel ci. The structure to be analysed could then be represented as in
Fig. 28. ~ ‘

This analysis also gave the samé result showing that the front end
structure has only one redundancy due to the three cross members in the
bonnet top plane.

Structure in plane of the bonnet top
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It was originally proposed to idealise the structure in- this plané
with a stiff. rlng round the bonnet openlng
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A completely stiff ring in one plane has three redundancies and
the computation would be simplified if these eould be omitted., The
structure was analysed in the two forms shown in Figs. 29a and 29b,
with 4 redundancies for the first case and 6 in the second (Fig. 30).
(The indeterminacy formulae indicate 8 redundancies, but for symmetrical
loadings 2 on each side will De identical). A symmetrical load was
imposed on each system by assuming unit tension in the member joining
points 69 and 69‘. This method of loading is not satisfactory in that
the unit external load is divided between direct tension in the member
(approx. 0.98 of the load) and the load taken by the remainder of the
structure. Since the relative flexibilities of these local paths are
different the remainder of the structure is only dealing with approx.
.02 of a unit load and all loads in the members are small.

Redundant system No. 2 used in the analysis represents the structure
in the plane of the bonnet top with no bending stiffness included, and
for symmetrical loads it is a sufficient structure. By reducing the
load at point 69 in the member 69-4h to the mean value computed for the
two redundant structures the comparative table of loads table 3 can be
drawn up.

“From the table it can be seen that the end loads are within 10%
for the three idealisations except for Fasy and Fgax where the actual
loads are small. The errors due to ignoring the corner fixations on
the shear loads in panels cg and cg are approximately 14% but again the i
actual shear loads are small.  The conclusion can therefore be .drawn
that for symmetrical loading the bendlng stiffnesses may be’ 1gnored for -
this plane structure.

This simplification allows a reduction of 6 redundant systems and j
T loads to be defined in the structure. : |

It is clear that for future work on torsion some of these bending
stiffnesses will have to be included since the structure is a mechanism -
for antisymmetrical loading.

Order of redundancy of the structure

I
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It would be instructive to carry out similar detailed analyses of |
other separate parts of the structure since further simplifications as ° ' ]
have been found above may become evident. However, such local analyses i
are time consuming and it is proposed to revert to the original programme ‘
of drawing up ar analysis for the complete structure under symmetrical
loading.

It has already been stated in the section dealing with idealisation }
that good agreement with experiment has been obtained by assuming the ’
members bordering a cut out constitute a stiff ring. The bending stiffness ]
of the joints is assumed infinite and the Engineers theory of bending stiffness
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assumptions applied to the members ignoring the effect of the shear
panel. This idea 1is extensively ugsed in the side view of the proposed
Land Rover. It provides a simple way of dividing up a structure and
allowing for local changes in geometry, e.g. wheel arches. While the
essential repetitive simplicity of the matrix force method will never be
used on irregular structures like vehicle bodywork it is hoped that this
device will go some way to making the writing of programmes standardised.

The order of redundancy of each of the plane structures making up
the integral vehicle is given in Figs. 31 to 34. The floor structure
consists of members in bending under loads normal to the plane; for this
case additional redundancies can be readily seen by making 'cuts' in a
simplified diagram, Fig. 35.

The order of redundancy of the complete structure can now be estimated
from the sum of the individual sections and including one extra for the
three dimensional front end structure. This gives a total of 48 which is
effectively the number of simultaneous equations to be solved by the computer.

Conclusions

The literature on the use of digital computers for structural analysis
is growing fast. Improvements are continually being made in the methods
of analysis used in aircraft design.  Some of these later methods are
outlined in Ref. 28, where the emphasis is on the use of displacement
methods. The larger computers now available make these methods with their
more simple programming possible in spite of the large increase in the
amount of information to be processed. The swing to displacement methods
is not complete and the force method is used by Denke in the same refererce
to analyse non=-linear structures. The editor of Ref. 28, advances the
ideas first suggested by Argyris of using force and displacement methods
on the same structure and ensuring that the true solution lies between the
bounds set by the two methods. He shows that it is necessary to be cone
sistent in the idealisation and the formulation of the equations to ensure
the desired result.

No literature has yet been found dealing with the vehicle problem which
may be summarised as a combination of fixed jointed frameworks and parelleled
structures. The results obtained by Marsden, Ref. 2k, indicated that the
force method can be simply adapted to give satisfachory results for thisg vyme
of structure in one case. It is hoped that the simplified Land Rover analysis
will confirm this. , ’ ‘




Beferences
1. Goff, R.W.
2. Grace, G.R.

10.

Cardwell, D.

Dean-Averns, R.

Cooke, C.J.

Ertz, K.

Bergmann, W.

Michelberger, P.

Michelberger, P.

seitler, W.

- 20 -

'Measurement of Input Loads into a
Vehicle Structure’

" A.S.A.E. Thesis, 1962.

'Measurement of Input Loads into a
Vehicle Structure’
A.S.A.E. Thesis, 1963.

'The Acceleration of Military Vehicles'
A.S.A.E. Symposium on Vehicle Ride,
Edited by G.H. Tidbury.

Pergamon Press, 1963.

' Automobile Chassis Design'
T1iffe, 1948.

'Strain Energy Theory Applied to the
Chassis Frame'

Data Sheet 1k.

Automotive Design Engineering, Vol. 2,
No. 1k, October 1963.

"Uber die durch Unebenheiten der Fahrbahn
hervorgerufene Verdrehung von
Strassenfahrzeugen’

A.T.Z. No. 4 April, No. 6 June, No. 11
November, No. 12 December, 1957.

'Beitrag zur Untersuchung werwindungsnach-
gieliger Ackerwagen - Rahmenwerke'
Dissertation Techn. Hochschule,

Brunswick, 1952.

'Die Untersuching von Autobussen mit
Bodenrahmen oder Fahrgestell auf
Verdrehung'

Actina Teknica Vol. 35, 1961.

'Quasisymmetrische Dimensionierung
Asymetrischer (Fahrzeug ~) Konstruktionen'.
Actina Teknica Vol. 36, 1961.

'Die Entwicklung im Rahmembau fur

Nutzfahrzeuge' _

Technische Rundschau No. 16, 1962.
(Summarized as 'Fundemental Reappraisal
of the Chassis Frame' Automotive Design
Engineering, Page 87, Vol. 2, No. 1k,
Oct. 1963).

"




11.

l2l

13.

1k,

150

16.

17.

18.

19.

20‘

21.

22.

25.

Williems, D.

Argyris, J.H. and
Dunne, P.C.

Swallow, W.

Garrett, T.K.

Johnson, P.0., and
Heyl, R.G.

Brzoska, L.

Mann, C.W.

Cuthill, I.M.

McKenna, E.R.
McMinn, S.J.
Argyris, J.H. and
Kelsey, S.

Morice, P.B.

Argyris, J.H. and
Kelsey, 8.

'An Introduction to the Theory of
Aircraft Structures.
Arnold, 1960.

'The General Theory of Cylindrical

and Conical Tubes under Torsion and
Bending Loads'.

Jdnl. Roy. Aero. Soc., Feb., Sept.,

Nov. 1947 and May, June, 1949.

'Unification of Body and Frame'
Proceedings of the Institution of
Automobile Engineers, Vol. 33, 1938=39.

'Structural Design' Automobile Engineer,

Part 1, March 1953, Part 2, April, 1953.

 "Stress Engineering as applied to

Automobile Bodies'
S.A.E. Quarterly Transactions Vol. 2,
No. 3, July 1948.

!Basic Problems in the Statics of Self
Supporting Vehicle Bodies, Archwim Budowy
Maszin, Vol. 2, No. L4, 1955.

Vol. 3, No. 1, 1956 (In Polish).

"The Stress Analysis of a Model Car Body!'
A.S.A.E. Thesis 1963.

'An Investigation into the Analysis of
Vehicle Structural Vibrationss:
A.S.A.E. Thesis 1963.

'Computer Evaluation of Automobile
Body Structure'. Am. Soc. Body Eng. 1961.

'Matrices for Structural Analysis.
Spon. 1962.

'Energy Theorems and Structural Analysis'
Butterworths, 1960.

'Linear Structural Analysis'
Thames and Hudson, 1959.

'Modern Fuselage Analysis and the Elastic
Aircraft!
Butterworths,1963.




2k,

25.

26.

27.

28.

Marsden, F.D.

Henderson, J.C. and
Bickley, W.G.
Tidbury, C.H.

Hoskin,

Veubeke, F.De. (Editor)

- 2 -

'Analysis of a Structure with a large
Cut out by the Matrix Force Method'
A.S.A.E. Thesis, 196k4.

'Statical Inderminacy of a Structure!
Aircraft Engineering, December 1955.

'Light Weight Vehicle Structures'
A.S.A.E. Memo No. 1, 1963.

'A Note on Modifications in Redundant
Structures!

Australian Department of Supply, Structures
and Materials Note 280.

'"Matrix Methods of Structural Analysis'
Agardograph 72, Pergamon Press, 196L.




-3
n
»

2+h
3b,

(B9 2b,-3x)

3n’b’ - 8b, 2 + &b hc,

het6hib+ 6hzc+ 12h,E+Bc.

b ,
12 I:thbf—Bhfb‘xﬁ 6hb ¢ 6hix,c,~ 1 2h,b,c2+BSx by ]

b? - p2

12

CT O 2bpby g - B
t
2 3 .3 2 2
r = ih; [2(b,+ b)-3x (b~ b,)]

TABLE 1

TORSIONAL RIGIDITY in ft/lbs/rad DIFFERENCE S,- S,
| CALCULATION TEST _ in%o of
FRAME| Uninhibited Totally In 7t lbs calculation
warping. inhibjted
S| | PN oo S3
| I512 966! 9406 255 2.6
) 1432 9973 8828 145 .
® 1975 10530 9154 976 9.
3 @ 1751 13530 12910 620 4.
® 1817 16350 14690 1660 10.2

TABLE 2.




TABLE 3
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Loads Non-redundant Bonnet top Bonnet top
Defined in Basic System
the Structure 2 1 2
Féo - 69’y + 1 + .983 + .983
Mo, + 0 + 000199 + .000208
Mg, + 0 + 0 - 0000745
Mgy + 0 + 0 + 0000490
Mg, + 0 - 000897 - .0000923
F6Sy - .0278 - .0291 - .0293
Feg - Lly + JOUks + 0460 + 40459
Fory +0 + .0000089 + .000026)
Feay +0 - .0000199 ~ .0000405
F69 - Ly - .0167 - .0169 - .0166
Flix - .0295 - .0308 - .0310
Flox - .0197 - .0210 - .0215
Flzx - .0098 - .00924 - .00859
Fego + .0295 + .0308 + 0310
Fox + .0197 + 0211 + .0215
Feoy + .0098 + 0092k + 00859
Cg - .0016L - .00171 - .00172
c, + .00098 + .000975 + .000945
Cq + .00098 + .000925 + .000861
Cq + .00098 + 00092k + .000858
+ L0445 + .0460 + .0k59
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Appendix 1

2GS e en oy om s a

Matrix force smalysis of an idealised van body

The structure to be analysed is shown in Fig. 1. It will be
seen that the structure is symmetrical and is symmetrically loaded
about a vertical plane through the longitudinal centre line. The
structure itself is doubly symmetrical and it would be possible to
analyse one quarter. The loading 1s not symmetrical about the lateral
centre line and while this could be allowed for by combining symmetrical
and unsymmetrical longitudinal loading it is physically more simple to
understand the analysis of half the structure with two separate loads
applied R; and Rp. The structure is an example of the end load carrying
edge member, shear carrying panel type referred to in the report and the
window will be allowed for by applying the Argyris cut-out technique.

This assumes that a panel of the same gauge and material as the
surrounding panels is assumed to be in place of the window for the main
analysis, a modification is then made such that the final load in the
panel is zero.

Numbering system and sign convention

No attempt is to be made in this example analysis to use condensation
techniques which avoid specifying a given load more than once in the
matrices, it is, therefore, necessary to number the members in some
arbitrary sequence. The chosen system is shown in Figs. 2 and 3.
Since there may be a different load at each end of the edge members,
the ends are numbered as shown, i,e. each load in the structure or row
in the S matrix will have a bar number and an end number. The shear
panels only have one load and consequently occupy only one row each in the
S matrix. ‘ ‘

The sign convention is equally arbitrary and is shown in Fig. k.
The essential points about this convention are (a) the loads acting on
& member are always drawn and appear in the matrices, (b) the 1oads are
always drawn +'¢ and if they carry a negative sign act in the opposite
direction to the arrow. The convention can be expressed in words as
follows: =

1. A load applying tension to one end of a bar is +7¢

2. A shear flow is +'¢ when the force acting on the edge furthest from
an axis is acting in the +'¢ direction of that axis, e.g. for a
panel in the x,y plane in positive shear the edge of the panel
‘furthest from the axis (most +'C value of x) will be acted on by
a force in the +y direction.
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Basic system
Assuming that it is stable the simplest section of the structure
that can support the external load is the lower half of the body side.

This is shown in Fig. 5 with the loads necessary for equilibrium
with the external load system equivalent to Ry =k (2%, +42).

This value of Ry is chosen rather than unity to avoid writing
fractions at every point in the diagram. When numbers are substituted
the division has to be made in each case or the external load R; may be
divided by h (20 + 42). The basic system is statically determinate and
in order to obtain the load values shown in the figure it is only necessary
to start at one corner say rod c; end 1, where the support load h(ﬂl +'%2)
is inducing a compression of that amount. It is evident that the load
end 2 of ¢y must be zero as there is no reacting structure and the shear
flow in panel e; is thus determined.

If q is shear flow in ez

qh=-h{ly +42) + 0

. (o} - (‘e’l +’&2) ete.

i

The other basic system is similar and is shown in detail in Fig. 6.
The b, matrix can now be written assuming the rows are allocated in
consecutive order, although only 15 of the T4 load defining rows have
entries the by matrix is a T4 row by 2 column matrix and zeros must be
put in where necessary, see table 1. ‘ *

Order_of redundancy
The structure as idealised is a mechanism for tin joints, the ends
are therefore assumed to be stiff in shear to stabilise the structure.

It has béen shown that a cuboid of this nature is simply stiff and
the order of redundancy will be the sum of the orders for the three plane
structures, (roof, floor and side). :

The opposite side should also be included but will clearly behave
the same as the side being analysed.

For each face, M = No. of bars = 17
' N = No. of nodes = 12
P = No. of panels = 6

.*. TFor a stiff structure n =3 (M«N+1)+P =2k
For pin joints, releases, r = 2M ~ N =22

.°. Order of redundancy = n = 2
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The total redundancies in the amalysis will therefore be 6 and
the by matrix will have T4 rows by 6 columns.

The simplest single plane self equilibrating system whereby all
members in the system have forces induced but have zero reactions on the
remainder of the structure is the four panel X system of Argyris. The
whole structure is divided into the six overlapping systems shown in
Fig. 7, the floor and roof systems are not standard in that only two of
the four panels exist in the analysis but the presence of the missing
structure can be allowed for. The load distribution in system Xs is
shown in Fig. 8, again the load in the 'starting' panel e; is chosen as

o instead of + 1, to avoid fractions. The equations will solve
correctly for the unknown X; .... Xz for any base value of the load
system so that it is not necessary to correct for the change from + 1
to +'£2, but to preserve the simplicity of the example this has in fact
been done when substltutlng figures.

The loads in redundant system X4 will be similar to Xsz.  Remembering
that X5 is the same as X; and Xg the same as Xp the b; matrix can be
compiled. (The loads in X are given in Fig. 9 ). It will be noted
from table 2 that thlS is done in partitioned form, a separate matrix is
written for all 'a' members, etc,

Partitioning is necessary as the final matrix to be compiled the
' flexibility matrix of the unassembled members' is square and would require
74 rows and T4 columns if used in full. S

Such a matrix requires T4 x Th = 5,476 storage spaces in the computer
out of the 6,142 spaces available so that little else could be stored at

the same time. The partitioned f matrix is made up as follows:=-
fa = 30 x 30 = 900
i‘b='l6xl6='256
£, =16 x 16 = 256 , g
£y = 6x6 = 36 e
T, = 6x6 =_36 '

Total 1L48L spaces

Since the five sub matrices are not required in the computer store =
at the same time, further savings are possible and the whole calciulation -
can be performed with less than 1500 spaces.

The Flexibility Matrix

B weEmY U KD (0 S0 SIS R D OO EK OF U9 G 6 SI G ¥ O

As referred to above this is strictly a matrix of the flexibilities of




w IV =

the unassembled members since the D and D, matrices referred to in the
theory are strictly flexibility matrices as is the F matrix or the
overall flexibility of the structure to the external load.

The displacement of end 1 (51) of a bar having an end load P; at
end 1 and P, at end 2 is

' 1
61 =‘EZE (2P1 + Pg) = fll Pl + flE PZ

.°. The flexibility matriz for the bar a;, say, is

fap = | Tz, flE}
'fg fgg,
et - 81

where f15 = {23 by Maxwells reciprocal'theorem.

The flexibility matrix for the bars consists therefore of a main
diagonal f311, f22y +... ebc. and two, equal, sub-diagonals with every
other space zero. This is only true as long as the rows corresponding
to each end of one bar are kept next to one another and it is normally
advisable to do this. A device exists for reading in this type of square
matrix into the computer without punching all the zeros in the data type,
this device is indicated in the programme.

Some of the panel adjacent to each bar will contribute to the end
load stiffness of the bar and this is normally taken as /g of the cross
gsection area, see Fig. 10. Where there is no actual bar this panel area
is taken to be an equivalent bar.  Where the panel is to be cut out for
the window no area allowance is made for that panel.

The flexibility of a shear carrying panels is only one temm

o= Area _ din
dir -~ G x thickness ~ G t°

Vehicle Data

As the analysis is to be performed on the computer it is necessary
to substitute numbers for the formulae so far used. The following
values have been assumed.

Dimensions -
Total length = 14 ft. 4, = 60 inches
“ 425 = 48 inches
Width = 7 ft. 6 ins. n = U5 inches
Height = 10 ft. h = 60 inches




Material. Aluminium Alloy of a quality used in commercial vehicle
body building is assumed.

.

2% Proof Stress = 19 - 20 tons/sq.in.

Side and Roof Panels, 16 8.W.G. t = .06L inches
Floor Panels /g’ Plate t = .125 inches
Floor sides, centre rail and cross

bearers A" = 1.4} sq. ins.
Waist rail and roof centre rail, ST f
top of window frame, inter-
mediate verticals and roof cross .
members Al
End verticals and roof crossmembers A

0.295 sq.ins.
0. 73 5q. ins.

i

There are no roof contrails except where the window frame occurs,
end load carrylng ‘members are made -solely From the -adjoining panels. -
Loading Cases. Total,Load(lncludlng structure) 5 tons with a- load factor;

of 3g.
(a) TLoad evenly dlstrlbuted over the whole body -
Ry = Rg = 2 hl 'bOIlS.

(v) 2/3 of 1oad evenly distributed in the front half of the body,
the remainder evenly distributed in the rear half

Ry = 3.21 tons .. Ro = 1.61 tons.

PEQ%EE@%E

The prdgramme is written uéing the Pégasus Matrix‘Interpretivé Séhemev
and is given in full. The partitioning scheme mentioned earlier can be
written ass= . :

S= I8 = {b_ R
a a
S Py
S b
c e
Sa Pa ]
S b
e e
Now b=Db =DbyD
. S~ - '....‘:_ e T B
*t ; ?a’ = boa S bla_D DO:‘
oy, “ob P1b
b b, bre
b4 bod big
by boe Fle
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or

o -1
ba ==‘ boa bla D Do ete.

Also it can be shown that:

D= Dby'fby = bi;fabla + blb'-f_bbl_b + ’olc,"'fcblc

Similarly D = by ° f F oeees + bl ’f b
o] a "aoa e e oe

The :remainder of . the“programme is self ‘explanatory except for the
device for reading in the f matrices. This method was added after the
programme was first drafted which explains the high store numbers used.
The programme includes examples of overwriting or re-using a store space
after one part of the calculation is complete; by extreme use of this
and other refinements not included in this simple programme it is possible
to accommodate fairly large problems on Pegasus even with its limited store
space.,

Cut Out Procedure

W ) n S e G e W oy S S Gl o . 0 GG

In principle it is required to introduce an initial displacement H
in the panel ez such that the final load corresponding to eg is zero.

Partition all matrices to separate this row (1n general there will
be‘more than one row)

i.€. S ‘S » b R + b X
e T 17 ' 1g
Sh' ‘boh- ;?ﬂi

The initial displacement H can be written as a column matrlx of the
displacements in all the members:

o

0
H
these displacements will be added to the original displacements v due to

the external load system. The compatibility conditlon for the structure
will now be that the total displacements across the 'cut' redundancies are

zero, i.e.
1; L "‘V“ + 0l\= 0
HON
'Vh— R:%
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where Vv =4V l
g

1]

v is defined in equation (3) of the main text

byt F ,fsg’, + by! [0] =0
IR

~

H

-

1 1. 0 -
or DR + DX + [bl - h] [H} =0

and by F S + by’ [01 =0

. ‘ 1 -
. = D1 w DL p,! '
'+ X==D DR ~-D"Dby H (1.%)
To find H, the final load in the cut out member Sh is zero and
= - DL - D Ly
‘;sgl bog‘ R+ [y, [- DD R - D7lby!, H]
R ‘boh; by,
or
- - -1 - =1 t
0 = boh R blh D DQR blh D" by n H
. - “1 | -1 - =1
R H= [blhD by h] [bOh by, D DOJR , (1.5)
Then
! - o~ - - ' =1 o
= 11 - In D7 DT In? 1 - 1
Sg Do by,D"*D_~D"*D_-D blh[blhD b,_h] [boh by, D™ D_IR (1.6)

This is a simple calculation as bl and b, are the rows of the by and by
matrices corresponding to the cut-out, 1no%hls case single row matrlces.
The additional matrix to be inverted is [by, ' D7t bl ] and in this case

is only a scalar. The values of D and Dy Bave been calculated and can

be retained in the computer. The programme for carrying out this additional
calculation is given as 'BOX VAN WITH WINDOW' Table assuming that computer
sorter is arranged as at the end of the 'BOX VAN', computation. The
calculated values are given in Figs. 11 to 16.




In the Programme as tabulated, the additional symbol E is used
where:

E = D lofH

. = b_ «Db .
s = % 1g"

In pértitioned forms

Sg = Sa = ba | - »bla E
: | Sb bb bib
8, b, 1o
84 b, b1g
Se(l-h) be(l-h) . P1g(1.1)
Se6 P } Pie6

where Se(l 1) refers to row numbers 1 to 4 of the e partitioned matrix.
S,¢ refers to row 6 since S
e o e

and SeS = O=Sh.

refers to row 5 (or panel e

the window)

5



LOAD SYSTEM

h
n(20,+02)

oa

ob

oc

od

o

APPENDIX 1

P e L UL L LU

The b Matrix

had i ahafiond

A

\f

R

T +0

Ly (Brid2)
Ly (Lr+d2)
1.2

1,2

+0

TABLE 1

R2

+0

£.2

4,2

Ly (D)
£y (0ysha)
+0

6 rows of zeros

+0

Ly (Lyibz)
Ly (y4d2)
£,2

2,2

+0

+0

-0y 2

£,2
by (B 2)
L (By4b2)
+0

12 rows of zeros

16 rows of

-n(Ly+2)
+0
n(2by+bs,)
+0

+0

+0

by

+0

Zeros

sy
+0
+0
+0

n(2l,+2) -

+0
~h(ly+lz)
+0

8 rows of zeros

6 rows of zeros

~(Lydz)
ey
oy

Ly
2,
+C£1+&2)

3 rows Of zeros

MEMBER END

a, END
ax
az
az

as

n = N H v

as

-

For ay, as and ag

a7
ay
ag
ag

ag

(I SRV I

g

For ajp to ajs

For by to bg

cy 1
Cy 2
Co 1
Ca 2
cs 1
Cs3 2
Ca 1
Cy 2

For cg to cg

For d; to dg

Shear flow in e;
Shear flow in ez

Shear flow in ez

For e4 to eg.
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(1)

TABLE 2

T 0 G G5 b G A D G D ON o € he e O8O0

The by Matrix

e e s o T O @ €0 o9 v B

Load System: Xy Xo
big = %;- "0 0
.. 2 '(E'l{'z
Lo 0
0 Lo
0 Lls
0 0
0 0
+2lds 0o
w20y o
0 +20: 45
0 +2l s
0 0
0 0
0 0
0 0
70 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0]
.0 o]
0 0
uov. 0
0" 0
0 0
N

4
u

=,
5

iva

Q O O O O O O O O O ¢ éa o
g oo

+
S
o

2

+2b s

5

1

1 L O O O ©
T
Y

0
0
0
0
0
0
0
0
0

Xq

0

0

0
Lyl
Liba
0

0

0

0

0

0

0

0

0

0
+2b Lo
+2bils
0

0

0

0
Liba
Lo
0

0

0

0

0

0

.

>4
n

™
S

o o O éo éb ©c O O O 0 0O O O O O O 0O 0 O 0o 0o o o o
*
oo
o

+ O
KN
o

2

+20 4,

0

&

éc O O O O O O 0O O O O O O O O O O o o o o o

™
5"

12

C O O O
oo

+2&I%2
+2b s
0

Member and

End

5
A

ay
a; end
as end
8o end
az end
end
end
end
end

end

&§F&HLLE

ag end
a8g end
a; end
ay end
ag end
ag end
ag end
ag end
a;po end
ayo end
a;; end
ayy end
a2 end
a1z end
a3 end
a2z end
8374 end
ays end
ays end

835 end
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Load System:

1

blb = ;5'2-
1

2

APPENDIX 1

(2)

TABLE 2

T e S @0 0 6D B GU GO 4N P G GB G5 TN W b 6 e

The by Matrix

- e W@ e W away o o an

Xy X2 X3
0 0 0
-l 0
0 0
in(tyids) -nby
0 0
by An(lads)
0 0
0 by
0 0
0 0
0 0
0 0
0 0
0 0
0 0
__'O 0 0
"o 0 0
s
0
+hftyila)
0
by
0
0
s
0
+h(ly#ts)
0
by
0 0 0

(cont.)
Xy Xs Xg |
0 0 0
0 0
0] 0
0 0
0 0
0 0
0 0
0 0
0] 0
lo 0
0 -0
#n(fyids)-nty
0 0
~nby +n('ﬂl+ffz23?
0 0
0 0 -l 3
0 0 0 ]
0
by
0
+h(L+ds)
0
s
0
0
by
0
+h(+ds)
0
s
0 0 0

Member

End

end

"
"
i
If
i
"
i
i

I

"

un
"
a
"

"

end

"
/]
"
4
"
n
i
oW
[
"
"
i
"

"

"
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. The by Matrix (Cont.)

e o €0 6T U o w8 @ o0 K

Load System: Xy Xo X5 Xg X5

Xs Panel
. 1 , n
bld = :E; > 0 ‘ 0 0 ' dl

o
™
Q

N




INST.

- PROGRAMME TAPE

T o 10 o Dy Pt S SO 00D e B A

| END SPACE
NO. %NSTRUCTION AS PUNCHED INSTRUCTION IN STORE

N

BOX VAN :

BLANK TAPE OR 2 F. SHIFTS

J64 .0

(0,30%6) — 1 Read byg into store 180

(1,30%6)" — 181 Transpose by, to by} 360

(0,61/) -» 5499 Read zero and diagonals of fy

, into store 5559

3 (5499)%(3999,100%15) — 3999 Put zeros in spaces 3999 to 5498 5498
L (5500,30/ )+(4000,30X30) — 4000 Main diagonal of f, :} f, starts 4899
5 (5530,30/ }+(4001,30%30) — 4OOL -}_Sec. diagonals of £, | "090
6 (5530,30/ )+(40%0,30%30) — 4030 _
7 (181,6X30)X(4000,30X30) — 1261 Form by Ty 1kko
8" (1261,6530)%(1,30%6) — 181 Form (by’/fby)a 216
9" (0,30%2) — 217 Read by, into store 276
10°  (1261,6X30)%(217,30%2) — 277 Form (b{fb,)a 288
11 (0,16X6) —» 289 Read by}, into store 38L
12 (289,16X6)" - 385 Transpose byp to bif 480
13 (0,32/) - 5560 Read diagonals of f}, into store 5591
1k (5560,16/ )+(4900,16016) — 4900 Main diagonal of
15 (5576,16/ )+(4901,16%16) — 4901 }-Sec dtagomals of 1, }-f igggts 5155
16 (5576,16/ )+(4916,16X16) - 4916 .
17 (385,6X16)X(4900,16X16) - 737 Form byphfp 832
8% (737,6%16)%(289,16X6) — 385 Form (bjfby ), 420
19 (0,16%6) 5 ko1 Read bie into store 516
20 (421,16%6)" - 517 Transpose by to byh 612
21 (0,32/) - 5592 Read diagonals of f. into store 5623
22 (5592,16/)+(5156,16X16) — 5156 Main diagonal of f, ' '
23 (5608,16/)+(5157,16X16) - 5157 1 see. 45 agonals of f;} £, ;;ggts 5h11
ol (5608,16/)+(5172,16X16) - 5172 i '
25 (517,6X16)%(5156,16X16) — 869 Form by &f, 96k
26" (869,6X16)X(k421,16X6) — 517  Form (by'fbi)e 550




INST. | END SPACE
NO. __INSTRUCTION AS PUNCHED INSTRUCTION IN STORE
27" (0,16%2) - 553 » Read b, into store = 58k
28" (869,6X16)%(55%,16%2) - 585 Form (bg £ bg)e 596
29" (0,6%6) =597 Read b1g 1nto store 632
30 (597,6%6)°~ 633 Transpose v‘bld to bl([i - 668
31 (0,6/) — 669 Read fg into store 67k
%2 (633,6%6)%(669,6/) — 675 Form by1g f£g . 710
33" (675,6%6)X(597,6%6) - 633 Form (bif by)g 668
345 (0,6%6) — 669 Read bia into store 70k
35%  (669,6%6)% — 3000 Transpose big 0 bie(Put in 3035
separate part of store for cutout

36 (0,6/) - 71 Read f_ into store 746
37 (3000,6X6)X(741,6/) - 747 Form bie fe : 732
38%  (7h7,6%6)%(669,6%6) — 705 Form (byif by)e ‘ 740
397  (0,6X2) -» 783 Read b, into store , e
Lo (747,6X6)x(783,6X2) — 795 Form (bif bg)e _ 806
N (783,6%2) — Th1 Replace bgye in correct position 752
Lo (795,6%x2) — 753 v Replace (p1f bg)e in correct

‘ position 6L
43 (181,6%6)+(385,6%6) — 181 Add (bif by), to (byf by 216
Wl (181,6%6)+(517,6X6) — 181 A3 (byf by), to sum 216
45 (181,6X6)+(633,6X6) - 181 Ada (bif by)a to sum 216
46 (181,6%6)+(705,6X6) — 181 Add (bif by)e to sum to form D 216
57 (181,6%6) — 3036 Replace total (bif by) = D

for cut out use : 3071

18 (277,6%2)+(585,6%2) - 277 Add (b1f by), to (bif bgly 288
49 (277,6%2)+(753,6%2) - 277 ' Add (byf by)e to sum to form D, 288
50°  (181,6%6),(277,6%2) — 385 Form D™* Dy = Dy 596
51 (1,30%6)X(385,6%2) - 765 Form by gDy 824
52°  (217,30%2)-(765,30%2) — 765 Form by = bog = brgDi 82k
53 (289,16X6)X(385,6X2) — 825 Form bip Di ‘ - 856
54 (421,16x6)X(%585,6%2) — 857 Form by oDy 888
55 (55%,16%2)-(857,16%2) — 857 Form be = bge = biaDy 888
56 (597,6%6)x(385,6%2) — 889 ‘ Form byg Dy | | 900
57 (669,6x6)X(385,6%2) — 901 Form bye D1 - 912

58 (7h1,6x2)-(901,6%2) = 901 Form be = bge = bie Dy 212




END SPACE

l]\:Il(\)T?T. INSTRUCTION AS PUNCHED = .. ‘ INSTRUCTION IN STORE
59 ° (0) - 913 - Read (= 1) into store 913
60°  (913)x(825,16x2) — 825 Form by = = bypD; 856
61°  (913)x(889,6x2) — 889 _ \ Form by = = bygD; 900
62 (0,2X2) — 91k Read R into store 917
63 (765,30%2)X(91k,2%2) — 918 Form §_ = bR 977
64 (825,16X2)%(91k,2%2) —» 978 Form S, = byR 1009
65 (857,16x2)X(91k,2X2) -4.101'0 Form Sc = b _R 1041
66 (889,6x2)X(91k4,2%2) —» 1042 ’ Form Sy = bgR 1053
67 (901,6X2)x(91k,2%2) - 105k Form S, = b R 1065
68 (918,30%2)(6,2) = 0 - ! Read out Sy

69 (978,16%2)(6,2) - © ' Read out S,

70 - (1010,16%2)(6,2)— 0 : Read out S,

71 (10k2,6x2)(6,2)— © Read out S

72 (105k4,6x2)(6,2) - © Read out S,

N.B.

Asterisk after instruction number indicates result is required in store

for future use.

|
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BOX VAN WITH WINDOW

BLANK TAPE OR 2 FIGURE SHIFTS
J6k4.0

INST. - = » o : END SPACE
NO. INSTRUCTION AS PUNCHED INSTRUCTION _IN STORE
0 (905) — 1100 First term of by 1100
1 (911) — 1101 Second term of by 1101
2 (1100,1%2)x(91k,2%2) — 1102 Form bR | 1103
3 (3024,6X1) — 5000 Copy 5th column of by&(=bih) .
v to vacant part of store 5005
L (3036,6%6),(3024,6X1) — 1104 Form D"Yo1 o 1109
5 (5000,1%6)x(1104,6X1) — 1116 Form by D *bip 1116
6 (1116),(1102,1%X2) ~ 1117 Form H 1118
7 (110k4,6x1)x(1117,1X2) =~ 1119 Form E 1130
8 (1,30%6)x(1119,6X2) — 1131 Form by gE 1190
9 (289,16%6)x(1119,6X2) —» 1191 Form bipE 1222
10 (421,16X6)%(1119,6%2) — 1223 Form by oE 125k
11 (597,6X6)%(1119,6X2) — 1255 Form by gk 1266
12 (3000,6xXh)" —1267 Transpose bye(1-k) 1290
13 (1267,4%6)%(1119,6X2) — 1291 Form bie(1-L)E 1298
1h (3030,1%X6)%X(1119,6X2) - 1305 Form byebE 1310
15 (105k,6%2)" — 3100 - Transpose Sq = beR to form R'bL 3111
16 (3100,2%x4)" & 3120 Transpose first 4 columns to form
be(l-h)R 3127
17 (918,30%x2)-(1131,3082) - 1310 Form new S, = b R = by 1369
18 (978,16%2)=(1191,16%2) — 1370 Form new Sy 1401
19 (1010,16%2)~(1223,16X2) - 1402 Form new Sg 1433
20 (10k2,6%2)-(1255,6X2) — 1434 Form new Sg 1445
21 (3120,4%2)-(1291,4%2) — 1446 Form S¢(1.}) 1453
22 (3110,1%2)-(1305,1X2) - 1454 Form Se6 1455
23 (1310,30x2)(6,2) — 0
24 (1370,16%2)(6,2)— 0 },
25 (1202,16%X2)(6,2) = 0
06 (143k,6%2)(6,2) = 0 } Read out new S load matrices
27 (1446,4%2)(6,2)— © 1
J

(14s54,1%2)(6,2) - ©
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Appendix 2

Calculation of frame stiffness by the matrix force method

Each member of the frame is assumed to be loaded in longitudinal
bending and torsion only. The external torsion is applied to the frame
by equal forces at the corners and these can be taken for convenience as
unit forces, i.e. forces of magnitude one pound giving a torque on the
frame of 2b as in Fig. 1.

These forces will give each corner of the frame a vertical displacement
r, in the direction of the local external force. The frame will be
twisted by an angle @ = 2L,
b

2
The torsional stiffness = £b = X
2r/b r

Now the matrix force method will give the flexibility of the frame
in the direction of the applied force, i.e. the dlsplacement per unit
force; this is normally defined as the ¥ matrix, but in this case it is
equal to 4r. As there is only one external force system (four unit
forces constituting a torque) and consequently only one term in the F matrix.

The general formula for the overall flexibility of the structure F
is given by equation (7) as:

An 'element! of the structure is defined as one discrete member under
one type of loading, e.g. each side member (length 2a) is made up of two
elements, one solely in bending and the other in torsion.

Tt is assumed that the structure is always below}the yield point when
both types of loading are applied together, therefore, the effects of each
type of load may be calculated separately and then added.

Notation and Sign Convention

For this example the loads are defined as in Fig. 2.

There are three loads defined for each member, a torsion and a bending
moment at each end. The bending moments at each end will be different but
will be varying linearly along the member (constant shear in the element).

Ba51c System

The external loads can be supported by a system of three elements, the
side members will act as cantilevers supported by the cross member at one
end, which will be only in torsion as in Fig. 3.




The matrix of the loads b, will be a column with only three terms
other than zero, Miy, Méy and Ti4.

If by is partitioned into the column matrix:

b.ls'-{# ,b _, b C}
o) oy? “ox’ Tot

boy refers to moments about the y axis
'bbx ‘refers to moments about the x axis
bot refers to torsion.

Where boy is a column matrix of the four moments My taken in nurerical
order, l.e.

o My May M3y Mgy Moments
boy f‘ (+2a, -0, 0, ) -2a} Values
Similarly
M ix Max M 2% M=x Moments
b = { o, 0, 0, 0} Values

It is desirable to change the numerical order for the columns of box
since Mjy and My refer to the bending moments at each end of the element
1 = k4, It is possible to carry out the analysis if this rule is not
adhered to but it will result in non-zero terms in the flexibility matrix
away from the main and subsidiary diagonals.

Also:
Ti2 Tos Tsa Ta1 . Torsions

b, = {0, 0, 0, -2a} Values.

Redundant syStans

Two redundant systems are required, each being self equilibratings

System 1

0200 b vt 020 qat et wa

Unit torque on cross member l - L4 and the opp051te torque on cross
member 2 = 3. These torques will induce constant bending moments in the




- iii =

side members, 1 - 2 and 3 = 4; see Fig. L.
This system gives the first column of by as {biiy, biix, i1t}

Where each sub-matrix has the Séme significance as for b, and each
row in the sub matrices refers to the same load as for the by case.

Then:

biiy = (-1, -1,  +1, . +1}

buix = ( O, 0, o, o}

b1y = (O, -1, 0, +1}
System 2

- " - .-

Unit torque is now assumed on side members 1 « 2 and 3 ~ L. But
instead of being opposite torques they are in the same direction. This
type of system is suggested by Erz, Ref. 6, and other writers but they
have assumed hinges in the system and the redundant unit load then loads
the members in an unequal way. It is a feature of the Argyris treatment
that self-equilibrating force systems may be taken as part of the structure
without the need for actual 'hinge' or 'cuts' in the system. (In this case
all the members are used in the redundant system, but if the frame had
intermediate cross members the same type of redundant system could be used
involving one bay at a time).

This torsion clearly imposes bending moments in the end cross
members Fig. 5a.

The moment system shown is EQE in equilibrium. Congider the cross
member 1 - 4 and draw the moments in the directions that they are acting
on the element. Fig. 5b.

The cross member can only be in equilibrium if loads are applied at
the ends to produce a total clockwise couple of +2. Fig. 5c.

And similar forces must exist (in the opposite direction) on cross
menmber 2 - 3.

Since there are no external forces these forces must be balanced by
forces acting on the side members, i.e. for member 1 - 2. See Fig. 5d.

Since there is only a torque on this member the anticlockwise couple
of %ﬂ induced by these forces must be equilibrated by My moments at the

ends as shown in Fig. 5Se.

A similar argument applies to the member 3 - 4 which is in equilibrium




under the forces and moments shown in Fig. 5T,

The moments about the y axis at the ends of the side memnbers must
now be balanced by torgques in the cross members, these torques will be
equal to + a/b on 1 - 4 and + a/b on 2 = 3, '

The complete equilibrium load diagram is shown in Fig. 5g.

Tt can be seen from Fig. 5g that this redundant system allows a
variation of bending moment along the cross members which is necessary
in the final analysis since the centre is a point of contra=-flexure.

The second column of by say biz = {biay, bisx, byotl

M 1y ng ng ng Moment

where b1y

]

{ -a/y, +a/b, -a/b, +a/b} Value

Miyx Myx Mzy Msy Moment
byioX = { +1 -1 <1 +1} Value

T12 Tas Tsys Ts1 Torque
biot =  (+#1  +%v 41 . +%/v}Value

Elexibility matrix

o - S SR W W 0 R 0 O 0

The flexibility sub-matrix for an element with linearly varying
bending moment is:

Length 2 1
6EI [1 2}
where each row refers to the load (bending moment) at one end of the element.

If the flexibility matrix is partitioned as follows:

o

f = [f 0
y

0 £

x

0

where the four rows of fy correspond to the rows of boy and biy etc.
then: '




£, = g—%@f;z 10 o

1 2 0 o0

o 0o 2 1

0o 0 1 2

and - B
£, = 6§bxb 2 1 0 07

1 2 0 o0

o 0o 2 1

o o 1 2]

This assumes that all members are of the same material and that

the two side members have the same second moment of
cross members Ib'

The torsicn flexibility matrix has one row for

the form
e - [.2a 0 0 o ¥ Torsi
v = a Ja { orsion
0 _2b_ 0 0 Torsion
G Jb !
2a . .
0 0] G Ja 0 Torsion
0 0 0 &b Torsion
N . G Jb :

The matrix manipulation can now be carried out
matrices as follows:

area I, as do the

each member and takes

inl =2

inl =

=W

in 3 =

in b -1

with the partitioned

+b ., 'F D

b!'fo = 'fb _+b 'f b _+Db P F Db
0 o) oy 'y oy oX X ‘oX ot t ot
1 _ 3 B 1
by fby = bly fyblyfblx £, le + blt £, bog
1 — 1 - 1 1
and b, fby = (b f’bo) = boy fy bly + b, T, blx

ot “t 1t

Each of the right hand side terms may be simply evaluated e.g.:




- VI =

28 [42a, 0, 0, -2a]

- l —
boy fy—M6EIa 2 1 0 O
’ 1 2 0 O
0 0 2 1
0 o 1 2
= 35?‘ [+ha, +2a, -2a, -kal
: a
. ..
!‘ T eeem—— L] -
boy fyboy = 5EIa[-!-ha, +2a, =2a, -hal +2a,
’ ¢
0
»_2a’-
and
b ! £fb == [+ha, +2a, -2a, <kal | -1 -2/v
oy “yuiy = 3EI, ? ’ ’ o
' -1 + /b
+1  =%/p
+1  +%/b
a2
= 8 - =
3BT [~122, =
The matrix which requires inverting is:
I/ La b
D = bt - I i S
D =Py fby EIa+GJb) 0
ha® Lb Lo 4aj>
0 + + +
5b2EIa 3BI, GJ_ ~ BGJ,
e

The inverse of a 2 x 2 diagonal matrix is simply the reciprocal of

each term on the diagonal, 1.e.:

D"l

.

E.E °
a b
° N
¥ \3BEI_ ~ 3EI, @I, GJ

v——ad

.
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The other terms are:

16a° . 8a%p
A 3EIa‘ GJb

D - E?f. - _).'.{’_a_b.. - }-Laz’ l;.a
o f EIa GJ, )’ 3D EI T GT.

i,

b 'Fb
o] (o]

i

|

The matrix multiplication D D7t glves Smely'

-y
_ Lba®  Lab _ ba? L2 I
EI, GJ, 3b(EI )~ ‘G:T"
+ hp 2 l; 1
EI_ " GJ, p2 K
a |
3 b ab® 8b
where k' = — + + + o
3L 3ET, I, G,

This matrix can be further simplified to give: =

- aZp
D, D = [ 1{\5}:1 GJD> :l
DO’D"J-:DO = [- ay, = —r< 9 J X
- ha.(}*m + —*:>

h
EEI EJ“

2 a _o_
ka (EI * GJb> <5EI GJ

The flexibility matrix of the assembled structure is now:

F=5b'fb -D ‘DD
o] O (o] (e}

af ke | 20 e a , b\ _ 4 (e &%
= b <5EIa * GJD> - ha <E1'a+GJb>" K™ \3ET, © G

e
1

2



This expression can be simplified to give

I 3 2 3 '
po b (82, &) (22, el
k" \3EI, GJ 3BT, GJ

’ : b2 =
Since torsional stiffness = ;~ = 5%—

The Frame Torsional Stiffness isi=-

'bzkl

5EIa GJ 3EIb GJ

This result has been obtained by Cooke in Ref.
energy methods. '

5, using strain
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