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prognostics: Application to gears and
bearings of rotating machinery
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Abstract
Health condition monitoring for rotating machinery has been developed for many years due to its potential to reduce
the cost of the maintenance operations and increase availability. Covering aspects include sensors, signal processing,
health assessment and decision-making. This article focuses on prognostics based on physics-based models. While the
majority of the research in health condition monitoring focuses on data-driven techniques, physics-based techniques are
particularly important if accuracy is a critical factor and testing is restricted. Moreover, the benefits of both approaches
can be combined when data-driven and physics-based techniques are integrated. This article reviews the concept of
physics-based models for prognostics. An overview of common failure modes of rotating machinery is provided along
with the most relevant degradation mechanisms. The models available to represent these degradation mechanisms and
their application for prognostics are discussed. Models that have not been applied to health condition monitoring, for
example, wear due to metal–metal contact in hydrodynamic bearings, are also included due to its potential for health
condition monitoring. The main contribution of this article is the identification of potential physics-based models for
prognostics in rotating machinery.
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Introduction

Prognostics and Health Management (PHM) refers to
the capability to assess the current (diagnostics) and
future (prognostics) health state of a system, which can
be a machine, a process or a vehicle. As a result, the
maintenance plan can be optimized depending on the
current health status of the system called predictive
maintenance or condition-based maintenance (CBM),
instead of relying on historical data and life estimation
calculations (preventive maintenance) or reacting only
when a failure occurs (reactive maintenance).1

The main benefits of a CBM strategy are the time
and cost reduction due to the higher efficiency of
planned maintenance and the optimization of the

component life compared to preventive strategies.2

However, these benefits must overcome the additional
cost of the technology required to implement CBM.
Additional benefits include the reduced mean mainte-
nance time due to fault localization, the reduced dis-
ruption and the increased safety due to the reduction of
unexpected failures.3,4
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The information generated by a PHM system can be
divided into diagnostics and prognostics: diagnostics
includes anomaly detection, fault isolation, fault classi-
fication and its uncertainty;5 while prognostics include
the estimation of the remaining useful life (RUL), the
uncertainty of the prediction and incipient fault detec-
tion. Also diagnostics and prognostics knowledge can
be used for future improvements of the design.6,7

In order to evaluate the health of a system, the vari-
ous techniques are commonly categorized into data-
driven models (DDMs), physics-based models (PbMs)
and hybrid models.8–10 DDMs are based on statistical-
and machine-learning techniques and do not rely on the
knowledge of the physics that govern the system or its
degradation mechanisms:9 these techniques have proven
successful for fault detection,11 classification12 and RUL
estimation.13 PbMs consist in the use of mathematical
models that describe the physics of the component to
assess its current and future health. The performance of
PbMs depends on the capability of the models to accu-
rately represent the failure and degradation phenomena.
Hybrid models refer to the integration of different mod-
els, either using various approaches depending on the
task, for instance a DDM for diagnostics and a PbM for
prognostics,14–18 or a combination of several models that
represent the same phenomena to obtain a more robust
health assessment, so-called ensemble models.19,20

The main advantages of machine-learning tech-
niques are their potential to be used in several systems
as knowledge of the physics of the system is not
required, thus being easily scalable to different systems.
However, there are problems such as risk of over fit-
ting16 and the necessity of large training data sets com-
pared to PbM approaches.9 Additionally, the synergies
between PbMs and models used during the design
phase make them particularly suitable when the health
condition monitoring system is being developed during
the design phase.10 However, PbMs are not easily scal-
able because they are system specific and it can be chal-
lenging to obtain measurable indicators directly related
to the outputs of the PbM.5

Reviews covering the state of the art of health condi-
tion monitoring for rotating machinery have already
been published focusing on the methodologies and algo-
rithms of PHM in rotating equipment,9,21 and specific
techniques such as the empirical mode decomposition
for fault diagnosis22 and vibration analysis.23 However,
the state of the art of PbM for rotating machinery has
not been reviewed in depth; papers focused on PHM for
rotating machinery normally include a section mention-
ing significant PbM approaches, but the description of
the principles behind those models is limited. This article
describes the principles behind the most relevant PbM
for rotating machinery and the factors that have to be
taken into account when selecting a model for PHM are
discussed.

The aim of this article is to review the state of the
art of prognostics for rotating machinery based on
PbMs. The most important failure modes and the mod-
els available to represent their degradation mechanisms
are identified, including not only the models already
applied on PHM for rotating machinery, but also mod-
els that can potentially be used in the future. The con-
cept of PbM and a brief review of parameter estimators
are presented in the PbM approach section. Failure
modes of rotating machinery section include common
failure modes of rotating machinery and examples of
PHM solutions for them. The well-accepted models of
degradation mechanisms of rotating machinery are
described in the relevant degradation models section.
Finally, the section ‘Conclusion’ summarizes the find-
ings of the article and discusses the challenges of apply-
ing PbMs for diagnostics and prognostics of rotating
machinery.

PbM approach

PbM approaches, also referred to as model-based
approaches, assess the health of the system by solving a
set of equations derived from engineering and science
knowledge,5 either for diagnostics or for prognostics.
However, the main advantage of PbMs consists of
using degradation models to predict long-term beha-
viour.24 A generic process to develop prognostics based
on PbMs that consider a set of equations that define
the dynamics and the degradation of the system was
proposed by Luo et al.25 and is shown in Figure 1. It
consists of a model of the system and its degradation,
where fast dynamic variables represent the behaviour
of the system, and slow dynamic variables determine

Figure 1. Physics-based approach.25
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degradation of the system, where random scenarios are
simulated and compared to measurable data to identify
the appropriate scenario (feature estimation) and esti-
mate the RUL.

Normally, for diagnostics, a fault is detected by
comparison between the outputs of the PbM and the
measurements from the real system. An example of
diagnostics using PbMs is the classification of bearing
defects by measuring the natural frequencies of the
components of the bearing, obtained from knowledge
of the physics of the system, and deviations from nor-
mal values are used as health indicators as shown by
Li et al.26

It should be noted that to develop prognostics cap-
abilities, prior knowledge of the current health status
of the system (diagnostics) is required. For prognostics
based on PbMs, degradation models are used to repre-
sent the degradation mechanisms of the system and the
RUL can be estimated as an output of these models.
For instance, degradation models based on Paris law27

to represent crack growth have been used by several
authors to estimate the RUL of systems subject to
fatigue.14,28–33

Health condition monitoring algorithms are nor-
mally classified into PbMs and DDMs, but the benefits
of both approaches can be combined to obtain more
robust algorithms called hybrid models. Orsagh et al.34

proposed a generic framework (Figure 2) that used
DDMs for diagnostics and a PbM for prognostics of
bearings spalling by combining sensor data for diag-
nostics with model-based and historical data for prog-
nostics. A similar approach is proposed by Zio and Di
Maio,14 who applied Paris law for crack growth estima-
tion (prognostics) and a relevance vector machine
method for fault detection (diagnostics), while
Pantelelis et al.15 were able to detect faults in a naval
turbocharger combining finite element models of the
system and an artificial neural network (ANN) for
fault identification using vibration analysis.

For prognostics, regardless of the approach (PbM,
DDM or hybrid), the health condition monitoring
algorithm will provide an assessment of the current
health of the system, normally by measuring a health
indicator, and a prediction of the future health of the
system. That prediction should be as accurate as possi-
ble, but there are always errors between the predicted
value of a health indicator and the measured one.
Thus, it is important to have the capability to adjust
the model in order to minimize these differences based
on the past errors between the predicted health indica-
tor and the measured ones. PbMs can be combined
with parameter estimators to minimize these errors in
real time.2 A unified formulation has been proposed by
Jaw and Wang35 to implement parameter estimators
into PbMs given a generic set of system equations. The
most common parameter estimators are shown in
Table 1. Linear estimators are less computationally
expensive, but if the system behaviour is clearly more
sophisticated non-linear algorithms are needed.

Failure modes of rotating machinery

The development of PbMs requires an understanding of
the system during normal operation and when a failure
occurs. A failure is considered when a function of the sys-
tem cannot be executed. It should be noted that ‘failure
mode’ refers to the description of how a function of the
system is no longer fulfilled, and a ‘degradation mechan-
ism’ refers to the process that leads to a failure.45

The main contribution of this article is the review of
potential degradation models that can be used for
health condition monitoring. Those degradation
mechanisms represent the phenomena behind a specific
failure mode. This section describes relevant failure
modes and their degradation mechanisms. A compre-
hensive review of those degradation mechanisms is
given in the following section.

The most common failure modes of typical compo-
nents of rotating machinery are analysed and current
health condition monitoring algorithms are discussed;
these algorithms are summarized in Table 2. Three typ-
ical components of rotating machinery are considered:

� Gears;
� Rolling bearings;
� Hydrodynamic bearings.

Figure 2. Hybrid model.34

Table 1. Parameter estimators.

Linear estimators Non-linear estimators

Least square33,36,37 Extended Kalman filter19,29,38–40

Linear Kalman filter41,42 Particle filter28,31,43,44
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Gears

Gears are subjected to high cyclic loads and harsh
environments, thus being able to monitor the health of
the gears is of major importance. In this review, the fail-
ure modes of gears are classified following the guide-
lines of the ISO 10825:1995,87 which classifies gear
failures as shown in Figure 3. Each failure mode will be
described and their corresponding PHM solutions will
be briefly reviewed.

Scuffing (Figure 4(a)) consists in damage in the slid-
ing direction due to metal–metal contact caused by
insufficient lubrication, causing the subsequent transfer
of material and increased vibrations and noise. Castro
and Seabra46 proposed a simplified model that does not
consider surface parameters and a more sophisticated

mixed lubrication model that required roughness para-
meters to detect scuffing in gears under a variety of
speeds, torques and oil bath temperatures. Therefore,
scuffing can be modelled using wear models, in particu-
lar models that predict metal–metal contact between
the teeth.

Permanent deformations include indentation and
scratches that can be caused by foreign objects, or per-
manent deformation of the teeth. Permanent deforma-
tion consists of plastic deformation, which occurs

Figure 3. Gear damage terminology.

Table 2. Health condition monitoring algorithms classified by
component and failure mode.

Gears Bearings

Scuffing46 Fatigue: spalling/pitting34,36,37,47–59

Pitting60–64 Localized defects65–69

Crack detection70,71 Wear72–74

Crack length
estimation32,75–77

Damage location26,78–82

Tooth breakage11,62,83 Geometrical imperfections26,55

Contaminants84

Metal–metal contact85,86

Figure 4. Gear defects: (a) scuffing,46 (b) pitting60 and (c)
crack.32
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under excessively high stresses; thus, excessive load can
cause permanent deformations; the accumulated plastic
deformation mechanism consists of low cycle fatigue
(LCF).

The cyclic stresses produced in gears also cause high
cycle fatigue (HCF), characterized by removal of mate-
rial. This type of damage can be divided into pitting
and spalling. Pitting consists of surface fatigue between
rolling and sliding contacts, leading to small scattered
holes as shown in Figure 4(b). If initial pitting is not
detected, it can lead to spalling, which consists of
macro-pitting caused by the association of small cracks
into bigger ones.87 The degradation mechanisms and
the differences between pitting and spalling have been
discussed in depth by Ding and Rieger.88 Pitting and
spalling are caused by stresses that do not lead to per-
manent plastic deformations; instead, the main degra-
dation mechanism is driven by the high number of
cycles for a relatively low load. This degradation
mechanism is HCF.

Cracks (Figure 4(c)) are caused by defects in the gear
due to deficient material properties, the manufacturing
process or fatigue.87 Crack detection has caught the
attention of several authors and promising results have
been obtained not only for diagnostics, but also for
prognostics through the estimation of the crack length
and its correlation with the RUL.

For diagnostics, simple DDMs as statistical para-
meters can be used as health status features. For
instance, Zakrajsek and Lewicki70 detected spur gear
tooth cracks before complete fracture occurred using
several statistical estimators. For prognostics of cracks,
Feng et al.75 used spectrum features to detect a crack
and predict its evolution. However, the results were
only based on simulations. A more common approach
for prognostics consists of a PbM based on Paris law27

to model the degradation mechanism and estimate the
crack growth rate, which is an indicator of the RUL.
Kacprzynski et al.76 proposed the combination of Paris
law along with a simplified two-dimensional (2D) finite
element analysis (FEA) for RUL estimation. This
approach was extended by Li and Lee,32 who devel-
oped a dynamic model of a transmission to estimate
the loads, a FEA to infer the stresses and an algorithm
based on Paris law to obtain the RUL. The same
approach was later used by Kacprzynski et al.77 for
prognostics of H-60 helicopter gear cracks using a more
sophisticated three-dimensional (3D) FEA to estimate
the loads, including crack initiation and crack propaga-
tion PbMs. Therefore, it is evident that the most suit-
able degradation models consist of representing crack
growth.

Tooth breakage, total or partial, can have diverse
causes and be produced by a single very high load or
after a few cycles of high loads and the fracture can
vary from ductile to brittle fracture.87 Using vibration

analysis, Wu et al.83 differentiated between broken,
worn or healthy teeth applying the support vector
machine (SVM) technique. Partial breakage of the
tooth, called chipping, can also be detected by looking
at the differences in the mesh frequency side bands in
the time–frequency domain.11,62 This failure mode is
caused by a single event; there is no continuous degra-
dation from healthy to faulty conditions.

Bearings

Rolling bearings. Bearings are necessary to provide sup-
port for the rotating machinery, transmitting the axial
and radial loads from the rotating component to the
structure, and to minimize the friction losses in the slid-
ing direction. This section will analyse rolling bearings,
and hydrodynamic bearings will be covered in the next
subsection. The failure modes are normally classified
depending on the components that are damaged, differ-
entiating between inner race, outer race, rolling ele-
ments and cage failures.26,79,80

The failure modes of rolling bearings can also be
divided into failures caused by excessive operational
conditions, by the lubricant and by assembly and disas-
sembly errors89 as shown in Figure 5.

Being able to detect lubrication anomalies, which
are responsible of 50% of all the premature bearing
failures in oil-lubricated bearings90, would help to
detect incipient failures by controlling the cause of the
damage instead of the effect. Iyer et al.91 reviewed the
techniques available to detect lack of lubrication and
contamination and stated that even if ferrous debris
sensors and oil condition monitoring can provide very
valuable information, they cannot be applied to oil
bath lubricated bearings.

Figure 5. Damage causes in rolling bearings.
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Most of the research has been focused on detecting
defects through vibration analysis and acoustic emis-
sion (AE). El-Thalji and Jantunen92 stated that bearing
faults are assumed to produce impulses that affect the
vibration spectrum and conducted an extensive review
of the state of the art of PHM of rolling bearings cover-
ing bearing faults, monitoring techniques and signal
processing methods. Previous reviews of health moni-
toring of rolling bearings can also be found.93–96

Sunnersjö55 studied the changes in the vibration
response of rolling bearings subjected to geometrical
imperfections, spalling and abrasive wear using time-
history diagrams, spectrograms and time–frequency
analysis. Spalling also was studied by Sawalhi and
Randall56 using vibration analysis and time–frequency
analysis to take into account the low-frequency spec-
trum of the incipient spalling and the high-frequency
impulsive response of severe spalling. The effect of con-
taminants in the vibration response of rolling bearings
is analysed by Maru et al.,84 who found significant dif-
ferences in root mean square (RMS) values for frequen-
cies between 600 and 10,000Hz and compare the effect
of contaminants using different particle sizes.

AE techniques have also proven to be effective in
detecting defects in lubricated sliding contacts, includ-
ing rolling and hydrodynamic bearings. Boness and
McBride74 found an empirical relationship between
AE, RMS and wear volume removed. An effect caused
by adhesive and abrasive degradation mechanisms in
lubricated point contacts. Price et al.58 used AE and
vibration analysis in the time and frequency domain
showing the potential of AE to detect incipient pitting
with a high signal-to-noise (S-N) ratio. Guo and
Schwach59 studied the effectiveness of AE parameters
to detect rolling contact fatigue in point contacts, find-
ing that RMS and amplitude were the better indicators
of surface defects. Rahman et al.50 were able to detect
and localize incipient fatigue damage in rolling contacts
using the AE hit count rate. Choudhury and Tandon66

detected incipient inner race and roller bearing faults
by measuring AE counts. He et al.67 applied a more
sophisticated technique, the wavelet scalogram in the
time–frequency domain, to detect defects in rolling ele-
ment bearings using AE under different operational
conditions.

AE has also proven effective in detecting micro-
cracks in the surfaces of axial bearings earlier than with
vibration analysis by looking at the hit count rate and
the amplitude of the signal.51,52 Elforjani and Mba53

also detected and located fatigue damage in axial bear-
ings using AE. Jamaludin and Mba68,69 proved that
AE is a powerful technique to detect damage of rolling
bearings at extremely low speeds.

Less common techniques have also been used and
compared to vibration and AE analysis. For instance,
Kim et al.65 compared vibration analysis with

ultrasounds using statistical parameters in the time
domain and spectral analysis to detect damage in roll-
ing bearings and obtained better results using ultra-
sounds for low bearing speeds. Sun et al.72 compared
AE and an electrostatic wear monitoring method that
measures the electrical charge in the bearing and corre-
lated it with the wear degradation finding that both
techniques are able to detect wear caused by metal–
metal contact. Harvey et al.73 also validated an electro-
static wear detection method for rolling contacts able
to detect seeded faults prior the total failure occurred.

Regarding the health condition monitoring algo-
rithms, machine learning also proved to be a useful
approach commonly used for fault classification. Paya
et al.78 obtained features from the wavelet transform,
later used for training and testing an ANN capable of
differentiating between bearing faults in the inner race
of the bearing and faults in the adjacent gears; while
Jack and Nandi80 compared bearing features from time
and frequency domains by combining an ANN and a
SVM algorithm to detect inner race, outer race, ball
and cage faults. Li et al.26 used the frequency domain
of the vibration signal from rolling bearings to detect
ball and inner race damage along with looseness using
the fundamental bearing frequencies as features to train
an ANN. Tang et al.79 also detected cracks in bearings
and classified them as ball, inner race or outer race
crack with 92% accuracy in a wind turbine transmis-
sion using a SVM algorithm. Du et al.81 also differen-
tiated between ball, inner and outer race failures using
a modified SVM algorithm with 94% accuracy.

Health condition monitoring algorithms based on
PbMs are not too many when compared to DDMs.
However, there are important examples of PbMs for
rolling bearings. McFadden and Toozhy47 detected
spalling using a PbM that calculates the characteristic
frequency of damage caused by spalling and synchro-
nously averaged the frequency response with the rotat-
ing speed of the shaft and was able to detect spalling
and estimate the distribution of the damage in the inner
race. Zong et al.97 developed a PbM to identify spalling
in the inner rig using a FEA model of the defect and its
vibration response. Another important PbM for prog-
nostics of rolling bearings was introduced by Li et al.,37

who were able to estimate the RUL as a function of the
size of the spalls using a deterministic degradation
model similar to Paris law, further improved to include
the stochastic of the failure.36 Orsagh et al.34 later
applied a similar approach to detect spalling and esti-
mate the RUL in rolling bearing. Qiu et al.48 proposed
a different PbM approach to detect damage in bear-
ings, consisting in a dynamic model of the bearing that
correlates the natural frequencies and their amplitude,
obtained from the vibration response, with the stiffness
of the system. This approach is later integrated with a
degradation model that defines the damage as a
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function of the stiffness and can be used to estimate the
RUL of the bearing. However, Sun et al.82 argue that
methods based on characteristic frequencies are not
accurate enough and proposes a DDM based on fuzzy
logic to classify outer race, inner race and ball bearing
faults with 94.7% accuracy.

Different rolling failure modes have been analysed.
Some failure modes, such as contaminants and geome-
trical imperfections, are caused by external factors and
degradation mechanisms cannot be modelled, because
the particle size or composition of contaminants and
the dimensions of the geometrical imperfections are
unknown. Fault isolation techniques to differentiate
between inner/outer or ball failures lead to wear of the
faulty sub-component; the fundamental frequencies of
the components can be modelled and monitored to
localize the failure. In order to track spalling and pitting
in rolling bearings, as it occurs with gears, the degrada-
tion mechanism consist of fatigue due to excessive
cycles and loading. HCF models and spalling growth
models, similar to Paris law can be used.

Hydrodynamic bearings. The function of hydrodynamic
bearings and rolling bearings is identical: to provide
low friction in the sliding direction and to transmit the
radial and axial loads. The main difference is the type
of contact, in which both surfaces slide without any
intermediate component.

The most typical failure modes of hydrodynamic
bearings98 are shown in Table 3. Zeidan and Herbage99

also reached the same conclusions after analysing the
most common failures of hydrodynamic bearings.

Dirt, incorrect assembly and defects in the manufac-
turing process are particularly difficult to monitor.
Thus, most of the research has been focused on detect-
ing insufficient lubrication, which is directly related to
metal–metal contact and leads to rapid degradation.
The main failure mechanism related to insufficient
lubrication is scuffing, already discussed for gears,
which eventually develops into seizure.100 Tanaka101

demonstrates experimentally the effect of flow rate and
speed in the lubrication phenomena by measuring
eccentricity and cavitation under insufficient

lubrication compared to fully flooded lubrication. Even
if a film of lubricant remains and there is not metal–
metal contact, fatigue damage can occur due to the cyc-
lic stresses on the surface of the bearing as shown by
Huang et al.,102 who studied fatigue wear in hydrody-
namic bearings.

A variety of failure analysis of hydrodynamic bear-
ings can be found in the literature. Vencl and Rac103

studied the failures of over 180 engine bearings, finding
that abrasive wear is the predominant degradation
mechanism, followed by adhesive and fatigue wear, as
shown in Figure 6. They also identified the causes cor-
responding to each degradation mechanism:

� Contaminants in the lubricant: provoke abrasive
wear;

� Overload: provokes fatigue wear caused by
excessive stresses on the surfaces of the bearing;

� Insufficient clearance: provokes adhesive wear;
� Insufficient lubrication: provokes adhesive wear;
� Metal–metal contact: provokes adhesive wear.

A comparison between temperature measurements,
electric resistance, vibration analysis and metallic particle
measurements for detecting metal–metal contact has been
conducted by Okamoto et al.,85 proving the following:

� Vibration analysis at high frequencies can detect
metal–metal contact.

� Temperature analysis yields good results, but its
sensitivity depends on the location of the sensor.

� Electrical resistance and debris analysis are effec-
tive in detecting metal–metal contact.

Moosavian et al.86 used vibration analysis to detect
oil starvation using ANNs while a less common tech-
nique, AE, has also proven successful for detecting
metal–metal contact.104 It should be noted that research
on wear and fatigue detection of sliding contacts can
also be applied to hydrodynamic bearings taking into
consideration line contact instead of point contact.

Table 3. Major causes of premature hydrodynamic bearing
failure.

Major causes of premature bearing failure

Dirt 45.4%
Incorrect assembly 12.8%
Misalignment 12.6%
Insufficient lubrication 11.4%
Overloading 8.1%
Corrosion 3.7%
Improper journal finish 3.2%
Other 2.8%

Figure 6. Percentage occurrence of types of hydrodynamic
bearing damage.103

Cubillo et al. 7

 at Cranfield University on September 22, 2016ade.sagepub.comDownloaded from 

http://ade.sagepub.com/


As it occurs with rolling bearings, many failure
modes cannot be modelled based on their degradation
mechanism because the parameters of the degradation
mechanism are unknown, for example, dirt, incorrect
assembly, misalignment, geometrical imperfections.
However, the underlying degradation mechanisms of
some important failure modes can be modelled and
used for PHM. Insufficient lubrication, which leads to
scuffing, is caused due to wear in the contact between
the journal and the support. This failure mode can be
monitored with a degradation model capable of model-
ling the wear and friction in the contact.

Failure modes and their degradation
mechanisms

PbMs describe the phenomena of a system under
healthy and faulty conditions. They have the potential
to assess the health of the system (diagnosis) and pre-
dict the RUL by tracking the degradation of the sys-
tem. Therefore, the degradation mechanisms and their
correspondent models of a failure mode should be iden-
tified in order to develop prognostics capabilities based
on PbMs.

However, degradation models require inputs to esti-
mate the severity of the deterioration of the system and
feedback about the current degradation particularly for
prognostics. This information is obtained through sen-
sors, known operational conditions and measured or
known environmental conditions.

A common challenge when PbMs are developed is
that the inputs of the degradation model are ‘internal
loads’ that are not always measured directly. Instead,

there is information about ‘external loads’.45 A PbM is
required to relate the external and internal loads, plus
the degradation model that assesses the health of the
system. Therefore, not only a degradation model is
needed, but also a PbM relates the measured variables
with the inputs of the degradation model.

Some of the failure modes described in the previ-
ous section can potentially be modelled using PbMs.
Tables 4 and 5 summarize the type of degradation
models that can be applied to each failure mode.
Additional models to relate external and internal
loads are also included.

Relevant degradation models

The importance of representing accurately the physics
of the system has already been mentioned in previous
sections. This section reviews the models of the most
relevant degradation mechanisms of rotating machin-
ery. Common failure modes of rotating machinery and
their corresponding degradation mechanisms were
identified. The aim of this section is to serve as a tool
to select the most appropriate models to represent these
mechanisms. Additionally, the understanding of the
most critical variables and parameters of each degrada-
tion mechanism will help to identify what phenomena
should be monitored. The following degradation
mechanisms are covered:

� Creep;
� Fatigue;
� Fatigue and creep;
� Wear.

Table 4. Gears failure modes, degradation mechanisms and potential PbMs.

Failure mode Degradation mechanism PbM

Scuffing Wear, metal–metal contact Stribeck curve, mixed lubrication model
Permanent deformation Excessive loading leading to plastic deformation Low cycle fatigue, structural analysis
Pitting and spalling Excessive cycles/load High cycle fatigue
Cracks Excessive cycles/load Crack growth model (Paris law)
Tooth breakage Single event (excessive load) Structural analysis

PbMs: physics-based models.

Table 5. Bearings failure modes, degradation mechanisms and potential PbMs.

Failure mode Degradation mechanism PbM

Inner/outer/ball failure
(rolling bearing only)

Wear Fundamental frequencies model to identify faulty sub-component

Spalling/pitting/cracks Excessive cycles/load Spalling growth estimation model/stiffness model
changes in frequency spectrum

Insufficient lubrication Wear, metal–metal contact Stribeck curve, mixed lubrication model

PbMs: physics-based models.
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The amount of health condition monitoring algo-
rithms based on PbMs is limited, as opposed to
DDMs. PbMs are not scalable between different sys-
tems; additionally, they require a good understanding
of the phenomena behind a failure mode. However,
health monitoring using PbM is particularly useful in
prognostic algorithms due to their potential to estimate
the current and future health of the system based on
degradation models. The models described in this sec-
tion are summarized in Table 6.

Creep

Creep consists of a permanent deformation that can be
caused by low loads under high temperature due to the
formation of voids in the grain boundaries (GBs) of the
material that extends until it becomes inter-granular
and fracture occurs. The creep phenomenon is time
and temperature dependent. Creep is divided into three
stages depending on the creep rate, defined in equation
(1), where e is the deformation and t is the time:126

� First stage: initially, there is primary creep, with
a decelerating creep rate.

� Second stage: stable minimum creep rate, called
secondary creep, which covers most of the time.

� Third stage: creep rate, called tertiary creep,
accelerates until fracture occurs.

Creep rate=
De
Dt

ð1Þ

The Larson Miller parameter (LMP), shown in equa-
tion (2), is commonly used to characterize creep beha-
viour, reducing the problem from two variables, time
and temperature, to only one: the LMP. The correlation
between maximum stress and LMP depending on the
material can be obtained experimentally. However, this
equation is purely experimental and does not rely on
the physics of the degradation mechanism. It also
implies constant temperature along time. Thus, for vari-
able conditions, a cumulative damage rule is required.
For instance, a parameter D can be used if stress and
temperature levels vary over time to take into account
the damage on each instant as shown in equation (3),
where Dti is the duration of a constant loading period

and Dtr, i is the rupture time for the given loading condi-
tion, obtained from equation (2). The failure is esti-
mated when D is above 160

LMP=(T (8F)+ 460)3 (20+log10(t))3 10�3 ð2Þ

D=
Xn periods

i= 1

Di =
Xn periods

i= 1

Dti

Dtr, i
ð3Þ

Instead of using the LMP, a physics-related model
that is commonly used to represent creep behaviour is
Norton creep law, as shown in equation (4), where s is
the stress level; T is the temperature; and A, n and p are
material constants. It should be noted that Norton
creep law is only able to represent the second stage of
creep behaviour and does not consider material beha-
viour at a microscopic level.45 More complex models
that take into account these effects are able to estimate
the first and third stages as well127,128

Creep rate=ATnsm ð4Þ

The application of creep models for health condition
monitoring has been focused on hot sections of turbine
blades. Chin105 proposed a prognostic approach that
estimates the RUL of turbine blades based on a creep
model that estimates the stresses based on temperature
and time. A similar approach was applied by Baraldi
et al.19,44 to predict creep degradation of turbine blades
based on Norton law and Particle Filter (PF) or a
Kalman filter for parameter estimation; however, only
simulated data were used. Yu and Zhou106 proposed a
creep model based on FEA and the Kachanov–
Rabotnov (K-R) model129,130 to assess damage of high
temperature threaded joins by taking into account the
damage due to stress relaxation and reduced preload
instead of using permanent deformation as the health
indicator.

Fatigue

Fatigue occurs in systems subject to cyclic loading, due
to thermal and mechanical stresses. The degradation
mechanism differs between HCF and LCF. HCF stres-
ses are below the yield stresses and Ds (stress range) is
the factor that controls the degradation mechanism.
However, for LCF, the stress level is above the yield

Table 6. Health condition algorithms based on PbMs.

Creep Fatigue Creep and fatigue Wear

Baraldi et al.,19,44

Chin105 and Yu and Zhou106
Fatigue48,77 Vogel et al.,107 Daroogheh et al.,108

Bray et al.,109 Wu et al.110 and Tinga et al.111
General wear112

Cracks14,28–32,113,114 Fretting115–118

Spalling35,37,119–123 Metal–metal contact46,124,125

PbMs: physics-based models.
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stress limit and there is plastic deformation. Thus, De
(strain range) is the magnitude that controls the
degradation.45

For HCF, Wöhler131 demonstrated that the cyclic
stress range is the driven factor of fatigue degradation
based on experimental fatigue data of railroad axles;
thus, it should be represented using S-N curves that cor-
relate the number of cycles and a characteristic stress
level. The use of experimental S-N curves can be used
for life prediction of metallic structures subject to fati-
gue. Analytical equations for the appropriate metallic
structure can be found in well-accepted standards such
as the British Standard 7608:2014,132 which also pro-
vides the standard deviation as shown in equation (5),
where Nf is the number of cycles; sa is the stress ampli-
tude; SD is the allowed standard deviation; and Co, d
and m are parameters dependent on the geometry.

Apart from the stress range, the mean stress sm is
also an important factor that has to be taken into
account, which is normally described as a stress ratio
R=smax=smin. The relation between all these variables
is shown in Figure 7.

Basquin law133 proposed a stress-based analytical
equation based on the experimental work of Wöhler,131

as shown in equation (6), where Nf also refers to the
number of cycles, sa is the stress amplitude, s0f is the
fatigue strength coefficient and b is the fatigue strength
exponent. It should be noted that any discontinuity in
the material, bad surface quality or internal stresses
negatively affect the life of the component.45 These det-
rimental factors are particularly critical under high tem-
peratures as shown by Boardman,134 who studied the
detrimental effect of higher temperature and notches in
the fatigue life of a variety of alloys.

log (Nf )= log (C0)� d 3 SD� m 3 log(sa) ð5Þ

sa =
Ds

2
=s0f (2Nf )

b ð6Þ

For LCF, plastic deformation is the main factor that
controls the failure mechanism; Manson–Coffin law is
commonly used to represent this degradation

mechanism.135,136 This method considers that cyclic life
depends on the deformation using a power law as shown
in equation (7), where Dep is the plastic strain range and
c and ef are experimental constants. A more accurate
model, the Manson and Halford model, considers the
elastic and plastic component of the strain, thus being
able to represent LCF and HCF degradation mechan-
isms, as shown in equation (8), where D represents the
ductility, su is the ultimate tensile strength and E is the
Young’s modulus.126 Kacprzynski et al.76 evaluated the
plastic strain of a helicopter gear tooth using an FEA
model and later applies Manson–Coffin law to evaluate
the number of cycles until crack initiation occurs.

Dea =
Dep

2
= ef (2Nf )

c ð7Þ

De=D0:6 3 N�0:6
f +

3:5 3 su

E

� �
3 N�0:12

f ð8Þ

A cumulative damage rule is required to take into
account variable loading conditions. The simplest and
a well-accepted approach were proposed by Miner,137

as shown in equation (9), where D is the cumulative
damage, ni are the current number of cycles under the
actual loading condition and Ni are the number of
cycles until failure, which is estimated if D is above 1.
It should be noted that this approach considers the
RUL independent of the order of the loads. Similar
equations can be used to represent different types of
cumulative damage. For instance, Qiu et al.48 proposed
a similar cumulative rule that is a function of the stiff-
ness of the system instead of the number of cycles

D=
Xload p

i= 1

ni

Ni

ð9Þ

Cracks are a common consequence of fatigue dam-
age, and the degradation mechanism that ultimately
leads to failure due to fracture of the component. The
previous models do not consider the physics that lead
to the fracture and only rely on empirical results. An
alternative approach is to predict the failure based on
fracture mechanics. Crack growth is divided into three
regions:45

� First region: slow crack growth and the crack
length is not considered significant;

� Second region: the crack growth rate becomes
significant and constant;

� Third region: the crack becomes unstable and
the propagation rate increases until fracture
occurs.

The initial length and the propagation rate of the
crack can be estimated and used as an indicator of the

Figure 7. Fatigue parameters.
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RUL of a system subject to fatigue. The most widely
accepted model for crack growth, the Paris law, was
proposed based on experiments that proved the corre-
lation between crack length and number of cycles by
Paris et al.,27 as shown in equation (10), where a is the
crack length; N is the number of cycles; m and b are
parameters of the material; and K is an intensity coeffi-
cient that depends on the geometry and type of crack.
A similar equation introduced by Hoeprich121 can be
used to represent spall area growth in bearings, as
shown in equation (11), where D is the defect area, C0

and n material parameters, validated with experimental
results by Li et al.122 and further improved to consider
thermal effects by Kotzalas and Harris.123 It should be
noted that specific degradation models can also be used
for prognostics. For instance, the rolling contact fati-
gue model proposed by Sadeghi et al.138 based on the
crack propagation and crack initiation has the poten-
tial to be used for PHM

da

dN
=mDKb ð10Þ

dD

dN
=C0Dn ð11Þ

Paris law represents the second region of crack
growth but does not take into account the initial crack
length and the instability of the crack. However, for
PHM, being able to represent only the second region of
the crack growth using Paris law has proven sufficient
to model the degradation of the system. This is shown
by Corbetta et al.,28 who estimated the crack growth on
structures and the uncertainty of the prediction com-
bining the PbM with PF for parameter estimation. Ray
and Tangirala29 also estimated the RUL based on Paris
law but using a Kalman filter for parameter estimation.
Orchard et al.30 applied both PF and an extended
Kalman filter (EKF) on a crack growth model based
on Paris law to estimate crack length in the plate of the
gearbox of a helicopter. Pais and Kim114 developed a
fatigue crack growth PbM for prognostics of aerospace
panels by computing a FEA model and a fatigue crack
growth model as a function of the usage history, a
modified Paris law to consider variable amplitude loads
was used.

Zio and Di Maio14 combined Paris law with a SVM
algorithm to select the appropriate degradation model
to estimate crack length. Oppenheimer and Loparo31

also calculated the RUL of rotor shafts due to cracks
using Paris law, while Li and Lee32 combined a dynamic
model that estimates the stresses on a gear with Paris
law to represent the degradation to estimate the RUL
of the gear. A more sophisticated algorithm is proposed
by Kacprzynski et al.,76 who estimated the RUL of heli-
copter gears by modelling the first region (crack initia-
tion) using Manson–Coffin law presented above to

estimate the number of cycles until a crack initiates and
using Paris law to estimate the crack growth afterwards.
The spall degradation formula presented in equation
(11) has been applied for RUL estimation of rolling
bearings by Orsagh et al.34 and Li et al.,36,37 while Slack
and Sadeghi120 developed a more sophisticated explicit
finite element (FE) spalling model that predicts the
number of cycles until failure by modelling the crack
initiation in the sub-surface and its propagation. For
diagnostics, Fu and Gao113 developed a PbM capable
of estimating the natural frequency response of a crack
in a fan blade assessing its size and location.

Creep and fatigue

When alternative loads are coupled with creep defor-
mation, both degradation mechanisms, creep and fati-
gue, interact with each other and cannot be treated
independently.45 The most relevant method to represent
this behaviour is strain range partitioning (SRP).139

The SRP method assumes that different strain ranges
produce different hysteresis loops and differentiates
between two types of deformation: GB sliding and
attendant slip plane (SP) sliding; the former is consid-
ered when creep is the main failure mechanism and
applies to slow cycles, and the latter applies to degrada-
tion caused mainly by fatigue, consisting of deforma-
tion due to cyclic loading.126 Depending on the type of
the strain during the tension and compression phase of
the hysteresis loop, four possible scenarios can occur as
shown in Figure 8. Once the scenario is identified, the
number of cycles to failure can be obtained as a

Figure 8. Four SRP hysteresis scenarios: (a) PP, (b) PC, (c) CP,
(d) CC, where P refers to plastic strain and C refers to creep
strain during tension and compression phases.
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function of the strain range. Vogel et al.107 used the
SRP method to predict crack initiation in a jet engine’s
combustor liner and correlate them with experimental
results.

However, the SRP method is not the only valid
approach. Daroogheh et al.108 modelled the creep–fati-
gue behaviour of turbine blades considering both
mechanisms independent of each other and calculated
the cumulative damage using the rain flow method.
Bray et al.109 used a FEA approach that incorporates
creep and fatigue routines to calculate damage in pipe
joints. Complex models that take into account the
microstructure of the material can also be used to
obtain more accurate results as the framework pro-
posed by Wu et al.110 Tinga et al.111 developed a degra-
dation model of creep–fatigue that estimated the
number of cycles until failure for single crystal Ni-
based alloys, obtaining adequate agreement with
experimental results.

Wear

Wear, also referred to as abrasion and scuffing, is a
degradation mechanism caused by friction between two
sliding surfaces associated with loss of material, includ-
ing damage due to direct contact between the surfaces
and damage caused by the fluid between the surfaces.45

However, the modelling of wear is particularly challen-
ging due to the high influence of external factors that
affect the contact such as the environment.118 Wear can
also be considered as a dissipation of energy mainly
controlled by friction,140 and it is classified as follows:
adhesive and abrasive (depending on the hardness of
the materials in contact141), corrosive, thermal and fati-
gue wear.112

Adhesive wear can be modelled using Archard’s law,
as shown in equation (12), where Vwear is the wear vol-
ume, H is the material hardness, W is the load, L is the
sliding distance and K is the wear coefficient. Using this
law, more complex wear models can be obtained by
modifying the value of the constant K, as shown by
Watson et al.,112 who applied variants of Archard’s law
to represent adhesive, abrasive and corrosive wear

Vwear =K
WL

3H

� �
ð12Þ

Fatigue wear leads to cracks initiated below the sur-
face. After a number of cycles these cracks develop into
pitting or spalling with the subsequent removal of
material. A degradation model for wear caused by sub-
surface fatigue has been proposed by Ghosh et al.,142

who provided an experimental correlation between
wear and crack propagation, which is a function of the
shear stress on the surface as shown in equation (13),
where N is the number of cycles to failure; a and b are

empirical constants; and Q is the contact shear stress
that depends on the friction coefficient and load
applied

log (N )= a � log (Q)+ b ð13Þ

However, wear is controlled by Friction. Therefore,
more accurate models should predict the friction
between the sliding surfaces as well. The friction force
is defined as the opposing force to the motion of a
body to another and depends on the normal force and
the friction coefficient. For non-lubricated contacts,
Coulomb law143 can be applied, considering the friction
coefficient constant and independent of the speed and
load, as shown in equation (14). Where FT is the fric-
tion force, m is the friction coefficient and FN is the
normal force, but for lubricated contact in motion
hydrodynamic theory must be applied

FT =mFN ð14Þ

For lubricated sliding contacts, the friction is divided
into four regions depending on the type of contact as
shown in Figure 9: hydrodynamic lubrication, elasto-
hydrodynamic lubrication (EHL), mixed lubrication
and boundary lubrication, where the friction coefficient
is represented as a function of a lubrication parameter,
the Sommerfeld number S, which includes the effect of
speed, load and viscosity.

Hydrodynamic contacts in rotating machinery, typi-
cally rolling and hydrodynamic bearings, are designed
to operate on the hydrodynamic region, where the con-
tact is fully lubricated and the friction forces are exclu-
sively caused by the shear stresses of the lubricant. The
fluid can be considered laminar and a simplified version
of the Reynolds equation144 using dimensionless para-
meters can be integrated along the bearing to calculate
the film thickness and pressure distribution as shown in
equation (15), where h� is the dimensionless film thick-
ness, p� is the dimensionless pressure, x� is the radial
coordinate, y� is the axial coordinate; and R and L are

Figure 9. Qualitative Stribeck curve: friction (m), Sommerfeld
number (N: speed, p: load, h: dynamic viscosity of the lubricant,
R: radius of the bearing, c: clearance of the bearing).
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the dimensionless radius and length, respectively.145

The friction force is calculated by integrating the shear
stress t along the bearing area as shown in equation
(16), which requires the lubricant speed gradient on the
surface, as shown in equation (17), thus obtaining the
friction force as a function of the film thickness (18),
where U is the relative speed and h is the dynamic
viscosity

∂

∂x�
h�3

∂p�

∂x�

� �
+

R

L

� �2
∂

∂y�
h�

∂p�

∂y�

� �
=

∂h�

∂x�
ð15Þ

F =

ðL

0

ðtotalarc

0

tdxdy=

ðL

0

ðtotalarc

0

h
∂u

∂z
dxdy ð16Þ

∂u

∂z
=

U

h
ð17Þ

F =

ðL

0

ðtotalarc

0

Uh

h
dxdy ð18Þ

For plain journal bearings, the film thickness h can
be obtained as a function of the geometry and the
eccentricity ratio e, as shown in equation (19), where c
is the clearance and u is the radial angle. Thus, an ana-
lytical solution of the Reynolds equation (15) is
obtained (equation (20)), where p is the pressure distri-
bution as a function of the radial angle u, the relative
speed between the sliding surfaces U, the eccentricity
ratio e, the axial position y, the dynamic viscosity h

and geometrical parameters: radius R, clearance c and
bearing length L. The friction force can be obtained
analytically as shown in equation (21).145 Alternatively,
Sinanoglu et al.146 successfully estimated the pressure
variations of a journal bearing using an ANN, but sev-
eral pressure sensors along the bearing were required to
train the network

h(u)= c(1+ e � cos (u)) ð19Þ

p=
3 � U � h � sin (u)

R � c2(1+ e � cos (u))3
L2

4
+ y2

� �
ð20Þ

F =
2phULR

c
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(1� e2)

p ð21Þ

The EHL regime applies under heavily loaded condi-
tions. The deformation of the bearings caused by the
load significantly affects the film thickness and should
be considered by the model. Thus, a structural analysis
is required to calculate the radial deformation along the
bearing d(u, y) caused by the pressure filed and should
be included in the calculation of the film thickness as
shown in equation (22). EHL models have been used
for estimating the minimum film thickness based on
operational conditions, as shown by Choi et al.,147 who

combined a multi-flexible dynamic model of the bear-
ing with an EHL model that calculates the pressure dis-
tribution and film thickness

h(u, y)= c(1+ e � cos (u))+ d(u, y) ð22Þ

An alternative approach is to use computational
fluid dynamics (CFD) for hydrodynamic lubrication
and to combine it with computational structural analy-
sis for EHL. Stefani and Rebora148 developed a CFD
model that takes into account the wall convection, the
thermo-mechanical deformations and the mixing phe-
nomena in the groove, while Jin and Zuo149 also used a
CFD model to study the effect of different groove
depths in journal bearings.

Mixed lubrication refers to the region in which par-
tial metal–metal contact occurs and part of the load is
transmitted by asperities. In this situation, surface para-
meters must be taken into account and the complexity
and quantity of unknown parameters increase. Gelinck
and Schipper150 have developed a mixed lubrication
model for line contacts which was later improved and
validated for point contacts by Liu,151 and which
agreed with experimental results as shown by Lu
et al.152 The mixed lubrication model first calculates the
film thickness and applies the mixed lubrication model
if h\ hlim is true; otherwise, the contact is considered
hydrodynamic, h being the minimum film thickness and
hlim the limit at which mixed lubrication occurs. The
mixed lubrication model assumes a percentage of the
load transmitted through asperities, d2, and compares
the pressure distribution transmitted through the aspe-
rities with the pressure distribution considering a
Hertzian contact; d2 is updated until equation (23) con-
verges, where F3/2 is illustrated in equation (24), �n is the
dimensionless density of asperity summits, �ss is the
dimensionless standard deviation of the asperity height
distribution, W is the load, A is the apparent contact
area, pmax is the maximum Hertzian pressure and F�s is
the standardized Gaussian distribution

2

3
�n�s3=2

s F3=2

h

�ss

� �
=

W

Ad2 pmax

ð23Þ

F3
2
(u)=

ð‘

u

(s� u)
3
2F�s (s)ds ð24Þ

The Greenwood and Williamson153 asperity contact
model was used to calculate the load transmitted
through the asperities, by considering spherical sum-
mits with a height that follows a Gaussian distribution
subject to elastic deformation.

Under mixed lubrication, the friction coefficient is
calculated as a function of the shear stress of the lubri-
cant for the load transmitted through the lubricant
(equation (16)) and using Coulomb law (equation (14))
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for the load transmitted through the asperities as shown
in equation (25), where m is the friction coefficient, mc

is the friction coefficient for a dry contact, F is the fric-
tion force, W is the load and t is the shear stress of the
lubricant

m=
F

W
=

mcWd2 +
ÐL
0

Ðtotal arc

0

tdxdy

W
ð25Þ

Faraon154 presented a similar approach for line con-
tacts further improved for starved contacts by Faraon
and Schipper.155 For point contact, Hua et al.156 devel-
oped a mixed lubrication model that calculates the film
thickness, pressure and temperature along the contact
considering conductive thermal effects and stated the
potential of the mixed lubrication model for scuffing
prediction. Hu and Zhu157 did not take into account the
thermal effects but included the surface deformation in
the calculation of the film thickness for EHL and mixed
lubrication. A similar approach was used to detect scuff-
ing in gears using a mixed lubrication model by Castro
and Seabra.46 Wang et al.158 developed a mixed lubrica-
tion model that evaluates the influence of misalignment
in hydrodynamic bearings under severe conditions that
was validated using temperature data and stresses the
influence of surface parameters when the film thickness
is of the same order of magnitude as the roughness of
the surface. Under boundary conditions, the lubricant
does not transmit any of the load, and Coulomb and
dry contact models are more suitable.

Stribeck curve modes can be applied to any lubri-
cated contact, point contact models are normally used
for ball rolling bearings, whereas line contact models are
used for hydrodynamic and roller bearings. However,
Wang et al.159 developed a Stribeck curve model vali-
dated with experimental results for deep-groove ball
bearings by calculating the torque produced by elastic
hysteresis, hydrodynamic lubrication, slip, and friction
between balls, cage and guiding lands using a complete
different approach based on the energy lost.

PbMs for PHM based on degradation caused by
wear are limited. However, the techniques to model
wear presented above have the potential to be applied
to PHM. Wear models have been used by Zhang
et al.160 to detect failures in piston bearings as a func-
tion of temperature, friction and roughness.

A variant of wear fatigue, called fretting, is associ-
ated with the small amplitude oscillatory motion
between two solid surfaces in contact.115 Leonard
et al.116 modelled a fretting in a line contact and calcu-
late the severity of wear as a function of the number of
cycles using Coulomb law (equation (14)) to represent
the friction, a FE to represent the stresses and
Archard’s law to take into account the cumulative
damage. Kasarekar et al.117 evaluated the fretting

fatigue life depending on the roughness of the surfaces
in contact estimating the crack initiation using the
Smith Watson Topper fatigue theory and Archard’s
law to model the wear. Quraishi et al.118 also calculated
the fretting fatigue life as a function of friction and
loading using the Ramberg–Osgood equation and vali-
dated it with experimental results, while Walvekar
et al.115 also validated a fretting model that consists of
a FEA model that computes the stresses and strains
during each cycle and uses an exponential law to model
the cumulative fatigue damage.

Li and Kahraman125,161 proposed a PbM to calcu-
late the fatigue life of point contacts due to micro-
pitting caused by metal–metal contact that was
validated with experimental results by assuming crack
propagation negligent compared to clack initiation.
However, thermal effects were not considered. Li
et al.124 experimentally validated a similar model that
predicted wear of point contacts, by integrating the cal-
culation of the friction coefficient and a heat transfer
model that estimated the friction coefficient and the
temperature. Marble and Morton119 validated a degra-
dation model for wear caused by spalling in rolling
bearings as a function of the area of the defect, the load
and material constants. Watson et al.112 developed an
algorithm capable of predicting the RUL of clutches by
combining a dynamic model of the system and wear
degradation models based on Archard’s law presented
above taking into account corrosive, adhesive and
abrasive wear.

Discussion

In the previous sections, the most common failure
modes of gears and bearings of rotating machinery were
reviewed with focus on the PHM methods for each fail-
ure mode. Special attention was given to the PbM
approaches available in the literature. The correspond-
ing degradation mechanisms and PbMs were identified
and the potential degradation models presented.

The use of PbMs, particularly for prognostics, has
some advantages when compared to DDMs. However,
to choose between one or the other, each failure mode
has to be analysed independently. As shown in previous
sections, many relevant failure modes are not suitable
for a PbM approach, because the physics of failure can-
not be modelled or because even if the degradation was
modelled successfully, the inputs of those models would
be unknown. Misalignment, geometrical errors or dirt
are common failure modes for which PbMs are particu-
larly challenging.

Another additional difficulty of using PbMs for
PHM is the necessary understanding of the physics of
failure. If enough data are available, DDM can provide
a correlation between the measured variables of a
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system and its health without further analysis of the
physics of failure; moreover, if PHM is developed in a
variety of systems and failure modes, DDM approaches
are scalable, because each system and failure mode does
not require a deep analysis of the phenomena as
opposed to PbM approaches.

However, large data sets of healthy and faulty con-
ditions are not always available; besides, if new sensors
are incorporated, information about their readings
would not be available, which means that in many
cases additional testing would be needed. An additional
aspect, particularly for prognostics, is that DDMs
require a significant amount of faulty data sets, but for
high valuable assets, for example, aerospace, the failure
rate is normally low and faulty data sets are rare.

The necessary understanding of the physics of failure
of PbM approaches can be considered as a drawback
due to the additional effort and expertise required, but
also as an opportunity, because it provides an algo-
rithm based on physical principles in which the relation
between the PbM inputs and the health of the system is
well understood; thus, the reasoning and health indica-
tors have a physical meaning. A PbM can be modelled
with shorter data sets than DDMs, because data are
needed for adjusting the parameters and validating the
model, whereas DDMs, particularly those based on
artificial intelligence, require training data, validation
data and are subject to overfitting. In addition, the
knowledge about the physics of failure has synergies
with the design process and can facilitate the certifica-
tion, because the principles behind the algorithm are be
justified by proven physical principles.

On one hand, DDMs can be used for diagnostics
and prognostics, but their architecture is different. For
diagnostics, the algorithm should distinguish between
two states (healthy and unhealthy), whereas for prog-
nostics the algorithm should identify the degree of
degradation and its future heath values, making prog-
nostics particularly challenge for DDMs. On the other
hand, PbMs can also be used for diagnostics and prog-
nostics, but for prognostics the assessment of the degree
of degradation in the present and future is defined by
the degradation model, which is the reason why PbMs
are particularly suitable for prognostics. However, the
degradation estimated by a PbM differs from the real
degradation of the system. If there is an additional way
of assessing the degree of degradation, for example, a
sensor measuring the temperature of a bearing, directly
related to the friction due to metal–metal contact, then
a parameter estimator can be used to correct the model
parameters and adjust the estimated RUL.

Different degradation models commonly used in
rotating machinery have been presented, from simple
analytical equations to complex models based on CFD
and FEA. All the inputs of a degradation model should
be monitored or estimated, which means that when

deciding which model should be used, even if a more
complex model apparently is more accurate, a simpler
model with less inputs and parameters may provide
similar results if most of its inputs and parameters must
be estimated. The computational time and memory are
limited, which can be an additional drawback of using
more complex models.

Creep models have been proposed for PHM using the
Norton law that relates the deformation as a function of
time and temperature. The proposed PbMs have the
potential to be used in the future for prognostics of com-
ponents subject to high temperatures. Fatigue is one of
the best known degradation mechanisms. The majority
of PbMs for prognostics are based on fatigue principles,
either using HCF and LCF models or modelling the
crack growth. Therefore, failure modes mainly caused
by fatigue are ideal candidates for PbM approaches due
to the extensive literature and options available.

In systems subject to mechanical stresses and high
temperature, the degradation is caused by fatigue and
creep. However, both degradation mechanisms are
coupled and cannot be considered independent of each
other. The correlation between fatigue and creep is
understood and there are PbMs for prognostics in com-
bustor liners and turbine blades, but they are more
complex than fatigue or creep models.

Wear is a broad degradation mechanism and the
physics behind it differ between dry and lubricated con-
tacts. Dry contacts and fretting are normally modelled
using analytical equations but depend on empirical
parameters. Prognostics PbMs have been proposed
based on wear in dry contacts; however, lubricated con-
tacts are more relevant in rotating machinery.

Wear in lubricated contacts is minimized due to the
lubricant film; this film is produced by the relative motion
between the surfaces. Under normal condition, wear is
negligible, but if the film cannot transmit the load partial
metal–metal occurs with the subsequent degradation.
The physics of failure are complex because hydrody-
namic, mechanical and thermal phenomena are coupled;
however, there are several PbMs capable of modelling
this degradation mechanism. However, few health condi-
tion monitoring algorithms have been proposed.

Conclusion

The area of PbM for health condition monitoring of
rotating machinery has been reviewed in this article
including the most common parameter estimator tech-
niques and failures modes of rotating machinery along
with the models available to represent their degradation
mechanisms.

Although comprehensive review papers on PHM for
rotating machinery are available, approaches based on
PbM have not been extensively reviewed in comparison
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with DDM approaches. The development of a PHM
system based on the physics of the system requires a
good understanding of the failure modes and their
degradation mechanisms. This article aims to serve as a
tool to identify common failure modes and their corre-
sponding degradation mechanisms, and to provide a
review of the models available to represent the degrada-
tion for prognostics based on PbMs.

Rotating machinery components are subject to a
variety of failure modes. Although diagnostics for
rotating machinery has been extensively studied,
research in prognostics is more limited. Vibration anal-
ysis and AEs are the main diagnostics and prognostics
techniques for gears. PbM approaches commonly con-
sist of a dynamics model of the system that correlates
the vibration signal with the stresses plus a crack
growth model that estimates the RUL.

In rolling bearings, vibration and AE along with
temperature analysis are the most common techniques.
PbMs have been applied using a degradation formula
similar to Paris law to represent spalling or the identifi-
cation of the natural frequencies of each rotating com-
ponent and the amplitude of their response for fault
identification and fault isolation. It should also be
noted that promising results using AE compared to
vibration analysis rely on a high S-N ratio.

Research in PHM for hydrodynamic bearings is
more limited. Most of the research focuses on detecting
metal–metal contact using temperature, vibration anal-
ysis, AEs or metallic particle measurement using DDM
approaches. However, the hydrodynamic phenomena
are well understood and there are models available, but
the potential of these models has not been used for
health condition monitoring.

Even if PbMs for PHM have the potential to obtain
more accurate predictions, they are not suitable for
every system and failure mode. The following limita-
tions of applying PbMs for diagnostics and prognostics
should be taken into account:

� Some degradation mechanisms cannot be mod-
elled; thus, PbMs cannot be developed.

� PbM algorithms are not scalable between differ-
ent systems as opposed to DDM algorithms.

� Expert knowledge is required.
� Additional measurement of the health is prefer-

able to minimize prognosis errors.

However, prognostics PbM approaches have several
advantages that can make them ideal for certain sys-
tems and failure modes:

� Large data sets are not required as opposed to
DDMs.

� Understanding of the system and the physics of
failure may be used in other areas (design) and is
easily justified for certification purposes.

� Health indicators based on degradation models
have a physical meaning.

� The prognostics architecture based on PbMs is
defined by the degradation model, whereas prog-
nostics DDMs have complex architectures to
identify the current and future degree of
degradation.

After this review, it has been shown that relatively
simple formulas, for example, creep and fatigue mod-
els, can be easily implemented for prognostics based on
PbM, while more complex formulas may also be used
for more accurate predictions or for complex phenom-
ena where different physics are involved, for example,
creep in combination with fatigue or hydrodynamic
lubrication combined with metal–metal contact. For
more precise results sophisticated models can be used,
for example, numerical methods such as FEA or CFD
analysis, or models that take into account the micro-
structure of the material for creep.

It should be noted that a more complex model would
led to more accurate predictions assuming that all the
parameters required by the model are known. However,
the number of sensors is limited and certain parameters
can only be estimated; thus, less accurate than if all the
parameters are well known. For the design of prognos-
tics capabilities, it may be preferable to develop simple
models with measurable parameters instead of complex
models that require several assumptions and estimated
values. This is due to the following reasons: the accu-
racy may not be significantly increased if many para-
meters are estimated, and more complex models require
more computational power, which could be a limiting
factor in the design of PHM solutions.

Declaration of conflicting interests

The author(s) declared no potential conflicts of interest with
respect to the research, authorship and/or publication of this
article.

Funding

The author(s) disclosed receipt of the following financial sup-
port for the research, authorship and/or publication of this
article: The research leading to these results has received
funding from the European Union Seventh Framework
Programme (FP7/2007-2013) under Grant Agreement No.
605779 (project RepAIR). The text reflects the authors’ views.
The European Commission is not liable for any use that may
be made of the information contained therein. For further
information, see http://www.rep-air.eu/. Adrian Uriondo –
Proof reading and advice.

16 Advances in Mechanical Engineering

 at Cranfield University on September 22, 2016ade.sagepub.comDownloaded from 

http://ade.sagepub.com/


References

1. Kothamasu R, Huang SH and Verduin WH. System

health monitoring and prognostics – a review of current

paradigms and practices. Int J Adv Manuf Tech 2006; 28:
1012–1024.

2. Jennions IK. Integrated vehicle health management: per-

spectives on an emerging field. Warrendale, PA: SAE

International, 2011.
3. MacConnell JH. ISHM & design: a review of the benefits

of the ideal ISHM system. In: Proceedings of the 2007

IEEE aerospace conference, Seattle, WA, 3–10 March
2007, pp.1–18. New York: IEEE.

4. Baroth E, Powers WT, Fox J, et al. IVHM (Integrated

Vehicle Health Management) techniques for future space

vehicles. In: Proceedings of the 37th joint propulsion con-

ference and exhibit 2001, Salt Lake City, UT, 8–11 July

2011, pp.1–10. AIAA.
5. Sikorska JZ, Hodkiewicz M and Ma L. Prognostic mod-

elling options for remaining useful life estimation by

industry. Mech Syst Signal Pr 2011; 25: 1803–1836.
6. Lee J, Wu F, Zhao W, et al. Prognostics and health man-

agement design for rotary machinery systems – reviews,

methodology and applications. Mech Syst Signal Pr

2014; 42: 314–334.

7. Engel SJ, Gilmartin BJ, Bongort K, et al. Prognostics,
the real issues involved with predicting life remaining. In:

Proceedings of the IEEE aerospace conference proceed-

ings, Big Sky, MT, 18–25 March 2000, vol. 6,

pp.457–470. New York: IEEE.
8. Eker OF, Camci F and Jennions IK. Major challenges in

prognostics: study on benchmarking prognostics data-

sets. In: Proceedings of the PHM, Dresden, 3–5 July

2012, vol. 3, pp.1–8. PHM Society.
9. Heng A, Zhang S, Tan ACC, et al. Rotating machinery

prognostics: state of the art, challenges and opportuni-

ties. Mech Syst Signal Pr 2009; 23: 724–739.
10. Luo J, Namburu M, Pattipati K, et al. Model-based

prognostic techniques [maintenance applications]. In:

Proceedings of the IEEE systems readiness technology con-

ference (AUTOTESTCON 2003), Anaheim, CA, 22–25

September 2003, pp.330–340. New York: IEEE.
11. Li C and Liang M. Time–frequency signal analysis for

gearbox fault diagnosis using a generalized synchros-
queezing transform. Mech Syst Signal Pr 2012; 26:

205–217.
12. Mu-jun X and Shi-Yong X. Fault diagnosis of air

compressor based on RBF neural network. In: Proceed-

ings of the 2011 international conference on mechatronic

science, electric engineering and computer (MEC), Jilin,
China, 19–22 August 2011, pp.887–890. New York:

IEEE.
13. Ferreiro S, Arnaiz A, Sierra B, et al. Application of Baye-

sian networks in prognostics for a new Integrated Vehicle

Health Management concept. Expert Syst Appl 2012; 39:

6402–6418.
14. Zio E and Di Maio F. Fatigue crack growth estimation

by relevance vector machine. Expert Syst Appl 2012; 39:

10681–10692.
15. Pantelelis NG, Kanarachos AE and Gotzias N. Neural

networks and simple models for the fault diagnosis of

naval turbochargers. Math Comput Simulat 2000; 51:

387–397.

16. Saxena A and Saad A. Evolving an artificial neural net-

work classifier for condition monitoring of rotating

mechanical systems. Appl Soft Comput 2007; 7: 441–454.

17. Su H and Chong K-T. Induction machine condition mon-

itoring using neural network modeling. IEEE T Ind Elec-

tron 2007; 54: 241–249.
18. Reda Taha MM and Lucero J. Damage identification for

structural health monitoring using fuzzy pattern recogni-

tion (SEMC 2004 structural health monitoring, damage

detection and long-term performance; Second interna-

tional conference on structural engineering, mechanics

and computation). Eng Struct 2005; 27: 1774–1783.
19. Baraldi P, Mangili F and Zio E. A Kalman filter-based

ensemble approach with application to turbine creep

prognostics. IEEE T Reliab 2012; 61: 966–977.

20. Polikar R. Ensemble based systems in decision making.

IEEE Circ Syst Mag 2006; 6: 21–45.
21. Jardine AKS, Lin D and Banjevic D. A review on

machinery diagnostics and prognostics implementing

condition-based maintenance. Mech Syst Signal Pr 2006;

20: 1483–1510.
22. Lei Y, Lin J, He Z, et al. A review on empirical mode

decomposition in fault diagnosis of rotating machinery.

Mech Syst Signal Pr 2013; 35: 108–126.
23. Sait AS and Sharaf-Eldeen YI. A review of gearbox condi-

tion monitoring based on vibration analysis techniques diag-

nostics and prognostics, vol. 5 (Proceedings of the society

for experimental mechanics series). New York: Springer,

2011, pp.307–324.
24. An D, Kim NH and Choi JH. Options for prognostics

methods: a review of data-driven and physics-based prog-

nostics. In: Proceedings of the 54th AIAA/ASME/ASCE/

AHS/ASC structures, structural dynamics, and materials

conference, Boston, MA, 8–11 April 2013, pp.1–14.

Reston, VA: AIAA.

25. Luo J, Bixby A, Pattipati K, et al. An interacting multiple

model approach to model-based prognostics. In: Proceed-

ings of the 2003 IEEE international conference on systems,

man and cybernetics, Washington, DC, 5–8 October 2003,

vol. 1, pp.189–194. New York: IEEE.

26. Li B, Chow M-Y, Tipsuwan Y, et al. Neural-network-

based motor rolling bearing fault diagnosis. IEEE T Ind

Electron 2000; 47: 1060–1069.

27. Paris PC, Gomez MP and Anderson WE. A rational ana-

lytic theory of fatigue. Trend Eng 1961; 13: 9–14.
28. Corbetta M, Sbarufatti C, Manes A, et al. Sequential

Monte Carlo sampling for crack growth prediction pro-

viding for several uncertainties. In: Proceedings of the 2nd

European conference of the prognostics and health man-

agement society 2014, Nantes, 8–10 July 2014, vol. 5,

pp.1–13. PHM Society.

29. Ray A and Tangirala S. Stochastic modeling of fatigue

crack dynamics for on-line failure prognostics. IEEE T

Contr Syst T 1996; 4: 443–451.
30. Orchard M, Kacprzynski G, Goebel K, et al. Advances

in uncertainty representation and management for parti-

cle filtering applied to prognostics. In: Proceedings of

the prognostics and health management international

Cubillo et al. 17

 at Cranfield University on September 22, 2016ade.sagepub.comDownloaded from 

http://ade.sagepub.com/


conference, Denver, CO, 6–9 October 2008, pp.1–6. New
York: IEEE.

31. Oppenheimer CH and Loparo KA. Physically based
diagnosis and prognosis of cracked rotor shafts. In: Pro-
ceedings of the components and systems diagnostics, prog-

nostics, and health management II, Orlando, FL, 1 April
2002, pp.122–132. Bellingham, WA: SPIE.

32. Li CJ and Lee H. Gear fatigue crack prognosis using
embedded model, gear dynamic model and fracture
mechanics. Mech Syst Signal Pr 2005; 19: 836–846.

33. Coppe A, Pais MJ, Kim N-H, et al. Identification of
equivalent damage growth parameters for general crack
geometry. In: Proceedings of the annual conference of the

prognostics and health management society, Portland, OR,
10–16 October 2010, pp.1–10. PHM Society.

34. Orsagh RF, Sheldon J and Klenke CJ. Prognostics/diag-
nostics for gas turbine engine bearings. In: Proceedings of
the 2003 IEEE aerospace conference, Big Sky, MT, 8–15
March 2003, pp.3095–3103. New York: IEEE.

35. Jaw LC and Wang W. Mathematical formulation of
model-based methods for diagnostics and prognostics. In:
Proceedings of the 2006 ASME 51st turbo expo: power for

land, sea, and air, Barcelona, 8–11 May 2006, pp.691–697.
New York: ASME.

36. Li Y, Kurfess TR and Liang SY. Stochastic prognostics
for rolling element bearings. Mech Syst Signal Pr 2000;
14: 747–762.

37. Li Y, Billington S, Zhang C, et al. Adaptive prognostics
for rolling element bearing condition. Mech Syst Signal

Pr 1999; 13: 103–113.
38. Simon D. A comparison of filtering approaches for air-

craft engine health estimation. Aerosp Sci Technol 2008;
12: 276–284.

39. Wagner J and Shoureshi R. A robust failure diagnostics
scheme for nonlinear thermofluid processes. In: Proceed-
ings of the 1987 American control conference, Minneapo-
lis, MN, 10–12 June 1987, pp.1877–1882. New York:

IEEE.
40. Laroche E, Sedda E and Durieu C. Methodological

insights for online estimation of induction motor para-
meters. IEEE T Contr Syst T 2008; 16: 1021–1028.

41. Simani S. Identification and fault diagnosis of a simulated
model of an industrial gas turbine. IEEE T Ind Inform

2005; 1: 202–216.
42. Peel L. Data driven prognostics using a Kalman filter

ensemble of neural network models. In: Proceedings of

the 2008 international conference on prognostics and health

management (PHM 2008), Denver, CO, 6–9 October
2008, pp.1–6. New York: IEEE.

43. Saha B, Goebel K and Christophersen J. Comparison of
prognostic algorithms for estimating remaining useful life
of batteries. T I Meas Control 2009; 31: 293–308.

44. Baraldi P, Cadinia F, Mangilia F, et al. Prognostics
under different available information. Chem Eng 2013;
33: 163–168.

45. Tinga T. Principles of loads and failure mechanisms: appli-

cations in maintenance, reliability and design. London:
Springer Science & Business Media, 2013.

46. Castro J and Seabra J. Global and local analysis of gear
scuffing tests using a mixed film lubrication model. Tribol
Int 2008; 41: 244–255.

47. McFadden PD and Toozhy MM. Application of

synchronous averaging to vibration monitoring of

rolling element bearings. Mech Syst Signal Pr 2000; 14:

891–906.
48. Qiu J, Seth BB, Liang SY, et al. Damage mechanics

approach for bearing lifetime prognostics.Mech Syst Sig-

nal Pr 2002; 16: 817–829.
49. Warren AW and Guo YB. Acoustic emission monitoring

for rolling contact fatigue of superfinished ground sur-

faces. Int J Fatigue 2007; 29: 603–614.
50. Rahman Z, Ohba H, Yoshioka T, et al. Incipient damage

detection and its propagation monitoring of rolling con-

tact fatigue by acoustic emission. Tribol Int 2009; 42:

807–815.
51. Hort F, Mazal P and Vlasic F. Monitoring of acoustic

emission signal of loaded axial bearings. J Mater Sci Eng

A: Struct Mater Prop Microstruct Process 2010; 1:

717–724.
52. Hort F and Mazal P. Application of acoustic emission for

measuring of contact fatigue of axial bearing. Eng Mech

2011; 18: 117–125.
53. Elforjani M and Mba D. Observations and location of

acoustic emissions for a naturally degrading rolling ele-

ment thrust bearing. J Fail Anal Prev 2008; 8: 370–385.

54. Guo-Lu L, Zhi-Qiang Z, Hai-Dou W, et al. Acoustic

emission monitoring and failure mechanism analysis of

rolling contact fatigue for Fe-based alloy coating. Tribol

Int 2013; 61: 129–137.
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