

1

Available online at www.prace-ri.eu

Partnership for Advanced Computing in Europe

Optimising UCNS3D, a High-Order finite-Volume WENO

Scheme Code for arbitrary unstructured Meshes

Thomas Ponweisera,*, Panagiotis Tsoutsanisb,†

aResearch Institute for Symbolic Computation (RISC), Johannes Kepler University, Altenberger Straße 69, 4040 Linz, Austria
bCentre for Computational Engineering Sciences, Cranfield University, College Rd, Cranfield MK43 0AL, United Kingdom

Abstract

UCNS3D is a computational-fluid-dynamics (CFD) code for the simulation of viscous flows on arbitrary unstructured meshes.

It employs very high-order numerical schemes which inherently are easier to scale than lower-order numerical schemes due to

the higher ratio of computation versus communication. In this white paper, we report on optimisations of the UCNS3D code

implemented in the course of the PRACE Preparatory Access Type C project “HOVE” in the time frame of February to August

2016. Through the optimisation of dense linear algebra operations, in particular matrix-vector products, by formula rewriting,

pre-computation and the usage of BLAS, significant speedups of the code by factors of 2 to 6 have been achieved for

representative benchmark cases. Moreover, very good scalability up to the order of 10,000 CPU cores has been demonstrated.

Keywords: CFD, WENO, Unstructured meshes, ILES, Turbulance, RANS, Hypersonic, Fortran, MPI, BLAS, MKL

1. Introduction

Unstructured grids have been widely used in science and engineering for their ability to accurately represent

complicated geometries in an efficient manner. This particular arbitrariness in terms of the shape of the considered

geometric elements such as hexahedral, tetrahedral, prismatic and pyramidal elements and in terms of their

unstructured memory pattern poses a number of challenges for the development of numerical methods and

computing algorithms especially when high-order of accuracy and excellent computing performance is required.

UCNS3D is a finite-volume CFD code for arbitrary unstructured meshes which employs high-order weighted-

essentially-non-oscillatory (WENO) numerical schemes for e.g. LES simulations of canonical flows and RANS

simulations of full aircraft geometries during take-off and landing. For a more comprehensive description of the

employed computational method, we refer to [1] and [2].

UCNS3D is entirely written in Fortran 95. For parallelisation, UCNS3D can be run in MPI-only or hybrid mode

(MPI + OpenMP). In the original code version, only METIS (for mesh domain decomposition) and TecIO (for

output in Tecplot format) have been used as external libraries. The new code version additionally uses the Fortran

95 interface to BLAS provided by Intel MKL (usage of other BLAS implementations is possible) for dense linear

algebra operations which we identified as computational hotspots.

Preliminary studies of UCNS3D have demonstrated that the code’s parallel efficiency is proportional to the

spatial order of accuracy of the chosen numerical scheme; in other words higher-order schemes scale better than

lower-order ones since the ratio of computation to communication is increasing as the spatial order of accuracy

increases. Due to the very satisfying scalability of UCNS3D already in its original version, the main focus of this

project was intra-node performance optimisation. In particular, the core WENO reconstruction algorithm was

already known as computational hotspot where 92% of the computational time has been spent with dense linear

algebra operations, in particular with matrix-vector products and dot-products.

* Principal PRACE expert, E-mail address: thomas.ponweiser@risc-software.at
† Principal investigator, E-mail address: panagiotis.tsoutsanis@cranfield.ac.uk

2

This white paper is structured as follows: In Section 2 and Section 3, we shortly introduce the benchmark cases

and HPC systems which have been used throughout for performance analysis of UCSN3D. Section 4 reports in

detail on the applied optimisations and their impact on program performance. In Section 5, we compare the original

and new code version with respect to performance and scalability. Finally, in Section 6 we summarise the project

outcomes and give a short outlook on possible future improvements of UCNS3D.

2. Benchmark cases

2.1. Taylor Green Vortex

The Taylor-Green Vortex is the first case to be assessed in three dimensions. This case features transition to

turbulence in the Taylor–Green vortex (TGV). The TGV has been used as fundamental prototype for vortex

stretching and consequent production of small-scale eddies, to address the basic dynamics of transition to

turbulence based on DNS, as well as on ILES and classical LES (based on subgrid scale models).

In the present study, the TGV has been selected to assess the dissipation rates of WENO schemes and their

dependence upon the type of mesh. The mesh size is considered significantly larger than the Kolmogorov scale,

thus the simulations are performed using the 3D compressible Euler equations. The TGV is an incompressible

flow that evolves from a two-dimensional initial velocity profile of the form:

𝑢(𝑥, 0) = sin(𝑘𝑥) cos(𝑘𝑦) cos(𝑘𝑧) ,
𝑣(𝑥, 0) = − cos(𝑘𝑥) sin(𝑘𝑦) cos(𝑘𝑧) ,
𝑤(𝑥, 0) = 0

With density and pressure being given by:

𝜌(𝑥, 0) = 1,

𝑝(𝑥, 0) = 100 +
𝜌

16
[cos(2𝑧) + 2 cos(2𝑥) + cos(2𝑦) − 2]

Meshes consisting of up to 2 million elements and 560 million reconstructed degrees of freedom where simulated.

The following figure demonstrated the temporal evolution of the isosurfaces of the Q-criterion at the finest

tetrahedral mesh using a WENO 6th order scheme.

Figure 1: The Taylor Green Vortex case

3

2.2. Large Eddy Simulation (LES) of the airflow past an airfoil

The second benchmark was the transitional flow past the SD7003 airfoil, which was simulated in the implicit

large eddy simulation context (ILES) using a WENO 4th order scheme, at a mesh of 5 million cells for a Mach

number of 0.2 and a Reynolds number of 60,000. The instantaneous flow field is illustrated in the following

figure where isosurfaces of the Q-criterion is visualised and is used coloured by the velocity magnitude.

Figure 2: The LES case (transitional flow around an air foil)

2.3. Reynolds-averaged Navier–Stokes (RANS) of an aircraft at transonic cruise conditions

The third benchmark was the transonic flow of the Common Research Model of the 5th Drag Prediction workshop

on a hybrid unstructured mesh of 11 million cells using a WENO 5th order scheme at Mach number 0.85 and a

Reynolds number of 5 million for constant lift CL=0.5.

The obtained drag coefficient of simulations using 2nd to 5th-order of accuracy in two meshes, is compared with

the experimental values. It is noticeable from the figure below that as the order of accuracy is increased the

agreement with the experimental value is better, and we accelerate the convergence to a grid-independent solution

by using higher-order numerical methods.

The grids and performance improvement in terms of total drag coefficient drag counts is shown in the figure that

follows.

Figure 3: The RANS case: Mesh geometry and total drag coefficient

4

3. HPC resources

In the course of this project we used the PRACE Tier-1 HPC systems HAZELHEN and SuperMUC. In the latter

case, we were using Sandy Bridge nodes (aka. Phase 1 thin nodes) as well as Haswell nodes (aka. Phase 2 nodes).

Table 1 gives an overview of the main characteristics of these systems.

 HAZELHEN SuperMUC

Sandy Bridge nodes

SuperMUC

Haswell nodes

Computing Site High Performance Computing

Center Stuttgart (HLRS)

Leibniz Supercomputing

Centre (LRZ)

Leibniz Supercomputing

Centre (LRZ)

Location Stuttgart, Germany Garching, Germany Garching, Germany

Processor Type Intel Haswell E5-2680 v3 Intel Sandy Bridge E5-2680 Intel Haswell E5-2697 v3

Processor Frequency 2.5 GHz 2.7 GHz 2.6 GHz

Cores per node 24 16 28

Memory per node 128 GB 32 GB 64 GB

Number of nodes 7712 9216 3072

Interconnect Cray Aries Infiniband FDR10 Infiniband FDR14

Table 1: Description of HPC resources

4. Performance analysis and optimisation

4.1. Build procedure and Profiling Setup

All performance results reported in this section are based on profiling runs of the pure-MPI variant of UCNS3D

on SuperMUC thin nodes (Phase 1) with Intel Vtune Amplifier 2015. As underlying MPI implementation we used

Intel MPI 5.1.3. We compiled the code with Intel Fortran compiler version 16.0.3. In order to collect trace data

with performance metrics attributed to source-lines, we instructed the compiler to include debugging symbols. The

exact compilation flags were -i4 -r8 -g –DNDEBUG -debug inline-debug-info -O3 -ipo -xHOST. It is worth noting

that enabling inter-procedural optimisation (-ipo) has shown to have a quite significant effect on performance

(≈ 30% speedup).

The full command-line for profiling UCNS3D with Intel Vtune was:

mpiexec -gtool "amplxe-cl -collect hotspots -no-auto-finalize -r [odir]:0-15=node-wide"
 -n [procs] ./ucns3d_p

Here, odir is the profiling output directory and procs the total number of MPI processes. Note that for reducing

the amount of trace data, we were measuring the activity of the first 16 MPI ranks only (i.e. all processes running

on the first computation node) and combined the results into one single profiling output directory (0-15=node-

wide). For this reason, all timings given in this section have to be read as total CPU seconds spent by the first 16

MPI ranks for the given routine or source line.

4.2. Intra-node performance optimisation

Throughout this sub-section, all profiling results correspond to the small Taylor Green Vortex case with 6th

order of spatial accuracy, running with a total of 512 MPI processes. In our analyses we focus on the main time-

marching part of the code only, i.e. we intentionally disregard initialisation phase (mesh loading, decomposition)

and output routines.

First profiling results with Intel Vtune confirmed what already has been seen from manual time measurement

and log output: The main computational hotspot was the WENO reconstruction algorithm, implemented in the

routine wenoweights and accounting for 92% of the runtime. Within this routine the most costly part (≈ 70%) was

the computation of a matrix gradchar together with a vector smoothind, which are computed for each mesh element.

Almost all of the remaining computation time (≈ 25%) has been spent within a sub-routine called

gradients_mean_lsq. In effect, all hotspot operations were dense linear algebra operations, i.e. matrix-vector

products and dot products, which have been computed using the Fortran intrinsic matmul function.

As a first straight-forward approach, we replaced all identified hotspot matrix-vector products with the

equivalent call to GEMV provided by the Fortran 95 BLAS binding from Intel MKL, version 11.3. As can be seen in

5

Table 2, in the columns “Original Code” and “Preliminary Code (GEMV)”, in this way the computation of

gradchar and smoothind could be speeded up by a factor of 5.

Routine Original Code

Time

Preliminary Code (GEMV)

Time | Speedup

Final Code (GEMM)

Time | Total Speedup

wenoweights 3073 s 1466 s | 2 × 478 s | 6.5 ×

├ gradchar_smoothind 2135 s 429 s | 5 × 197 s | 10 ×

└ gradients_mean_lsq 780 s 367 s | 2 × 157 | 5 ×

Table 2: CPU times and speedups for hotspot routine wenoweights and two of its sub-routines.

The sub-routines have been speeded up by a factor of 10 and 5 respectively,

resulting in an overall speedup for wenoweights by a factor of 6.5.

For the sub-routine gradients_mean_lsq, a simple replacement of matmul by GEMV did not give any speedup. Here,

the unfortunate data layout of the involved matrix objects turned out to be the performance limiting factor. As can

be seen in Figure 4, the two hotspot matrix-vector products within gradients_mean_lsq involve for each mesh

element with index LL two matrix objects ILOCAL_RECON3(I)%STENCILS(LL,:,:) and

ILOCAL_RECON3(I)%INVMAT(LL,:,:). Considering Fortran’s column major data layout convention, this means that

the entries of any of these matrices are scattered in memory with a stride equal to the number of mesh elements

(of course for contiguous memory access the index LL should come last, not first). In a preliminary version of the

code, we therefore copied the two matrix objects into two temporary matrices stencil and invmat with contiguous

data layout before passing them to GEMV (see Figure 5). In this way, the computational time for the two matrix-

vector products dropped from originally 728 seconds to 280 seconds, corresponding to a total speedup of a factor

2 for gradients_mean_lsq.

Having a closer look at the code in Figure 5, one might realise that the two matrix-vector products together with

the enclosing loop construct can be re-formulated as two matrix-matrix products, namely:

matrix_2 = stencilT ∙ matrix_1 and SOL_M = invmat ∙ matrix_2. By substituting for matrix_2 and by exploiting

associativity, it can be seen that SOL_M can be alternatively computed as SOL_M = (invmat ∙ stencilT) ∙ matrix_1. In

fact it turns out that the matrix product (invmat ∙ stencilT) does not depend on time and therefore can be

precomputed. These observations lead to the final and new version of gradients_mean_lsq, which can be seen in

Figure 6: The matrix product (invmat ∙ stencilT) is now precomputed in the code’s initialisation phase for each

mesh element index LL as ILOCAL_RECON3(I)%invmat_stencilt(:,:,LL) (with cache-friendly contiguous data

layout). In this way, within gradients_mean_lsq only one matrix-matrix product remains, and the routine is now 5

times faster than in the original code version. As additional positive side-effect, also a significant amount of

memory could be saved by entirely removing the now unneeded matrix-arrays ILOCAL_RECON3(I)%STENCILS(:,:,:)

and ILOCAL_RECON3(I)%INVMAT(:,:,:) (also the two temporary matrices stencil and invmat have been removed

again in the final code version).

Note that through similar code transformations, i.e. the replacement of matrix-vector products and enclosing

loop constructs with matrix-matrix products, we were also able to optimise the subroutine gradchar_smoothind,

although no further opportunities for precomputation have been detected. As can be seen in Table 2, these

additional transformations doubled the speedup for gradchar_smoothind from a factor of 5 in the preliminary code

version to a factor of 10.

6

Figure 4: Hotspot operations in the sub-routine gradients_mean_lsq. Two matrix-vector products are computed using Fortran’s intrinsic

matmul function. The total computation time is 728 seconds for these two products.

Figure 5: An improved, but still preliminary version of gradients_mean_lsq. For improved data access, the matrix objects are copied into

temporaries before passing them to GEMV. The computation time dropped from originally 728 to 280 seconds, still the two copies are more

costly than the actual computation.

7

Figure 6: Final version of gradients_mean_lsq. Two matrix-vector products and their enclosing loop construct have been replaced by

two matrix-matrix products, one of which is precomputed once in the code’s initialisation phase. The computational time dropped from

originally 728 to 106 seconds, corresponding to a speedup of almost factor 7.

4.3. Optimisation of MPI Communications

In addition to intra-node performance optimisation, we also had a look on the MPI Communication performance

of UCNS3D. For this purpose, we used the more communication-intensive LES benchmark case, running with

1024 MPI processes.

The most time-consuming communication routine turned out to be exhboundhigher, which is responsible for

exchanging the reconstructed, boundary extrapolated values of each Gaussian quadrature point of the direct-side

halo neighboring elements (for details see also [1], Section 4.2). In the original code version, this routine accounted

for 12% of the runtime of the time-marching part of the code – most of which was spent within MPI_Barrier.

However, for correctness of the program, explicit synchronisation at that particular point was not needed, as

synchronisation occurs implicitly within the MPI_Sendrecv calls for data transmission anyway. As can be seen in

Table 3, just removing the call to MPI_Barrier made the routine approximately 3 times faster. An additional

speedup of approximately 15% could be gained by replacing the blocking MPI_Sendrecv calls with non-blocking

communications, i.e. MPI_ISend, MPI_IRecv and MPI_Waitall.

Note that also the usage of MPI-3 sparse collective operations (i.e. MPI_Dist_graph_create_adjacent and

MPI_Neighbour_alltoallw with tailored MPI Types for avoiding the overhead of manual send and receive buffer

packing and unpacking), was considered. However, from the profiling data it got apparent that in fact the time for

copying data to and from send and receive buffers was negligible, which is why this approach has not been

implemented.

Routine Original Code

Time

No Barrier

Time | Speedup

Non-blocking comm.

Time | Total Speedup

exhboundhigher 9194 s 3084 s | 3 × 2642 s | 3.5 ×

├ MPI_Barrier 9137 s - -

├ MPI_Sendrecv 31.7 s 3059 s -

└ MPI_Waitall - - 2616 s

Table 3: Runtime of the routine exhboundhigher.

By removing an unneeded MPI_Barrier, the routine could be speeded up by a factor of 3.

An additional speedup of 15% could be gained by switching from blocking to non-blocking communications.

8

5. Results

In this section, we compare the performance of the original version (dashed lines) and new version (solid lines)

of UCNS3D running at different core-counts on the SuperMUC Sandy Bridge nodes (displayed in red) and

SuperMUC Haswell nodes (in green) as well as HAZELHEN (in blue). On the vertical scale, the average

computation time of one single simulation time step is displayed. Note that due to limited CPU time budget,

unfortunately measurements for some of the data points are missing.

For the large Taylor Green Vortex case with 2nd order of spatial accuracy, the new code version is 40 to 50%

faster than the original one (see Figure 7). The performance benefit gets higher, when the order of the numerical

scheme is increased: Looking again at the large Taylor Green Vortex case, this time with 6th order of spatial

accuracy, the speedup ranges between factors of 5 and 6.5 (Figure 8). For the Large Eddy Simulation case (Figure

9) as well as for the Reynolds-averaged Navier-Stokes case (Figure 10), which both use 4th order of spatial

accuracy, the new code is approximately twice as fast.

Generally, it can be seen that the code scales very well up to several thousand cores.

Figure 7: Strong scalability results for the Taylor Green Vortex case with 2nd order of spatial accuracy.

A speedup between 40 and 50% has been achieved.

Figure 8: Strong scalability results for the Taylor Green Vortex case with 6th order of spatial accuracy.

The achieved speedup factor for the new code version ranges between 5 and 6.5.

0,125

0,25

0,5

1

2

4

8

16

32 64 128 256 512 1024 2048

It
er

at
io

n
 T

im
e

[s
]

Number of Processes

Taylor Green Vortex (2nd order spatial accuracy)

Supermuc SB (orig)

Supermuc SB (new)

Supermuc HW (orig)

Supermuc HW (new)

0,25

0,5

1

2

4

8

16

32

64

256 512 1024 2048 4096 8192 16384 32768

It
er

at
io

n
 T

im
e

[s
]

Number of Processes

Taylor Green Vortex (6th order spatial accuracy)

Hazelhen (orig)

Hazelhen (new)

Supermuc SB (orig)

Supermuc SB (new)

Supermuc HW (orig)

Supermuc HW (new)

9

Figure 9: Strong scalability results for the LES case, using 4th order of spatial accuracy.

A consistent speedup of factor 2 can be observed for the new code version.

Figure 10: Strong scalability results for the RANS case, using 4th order of spatial accuracy.

The speedup factor for the new code version is almost 2.

6. Conclusion

In this project, the performance of the CFD code UCNS3D has been improved significantly (1) by using BLAS

for dense linear algebra operations instead of Fortran’s intrinsic functions, (2) by reformulating loops of matrix-

vector products to matrix-matrix products, (3) by identification and precomputation of time-independent matrix-

matrix products and (4) by switching from blocking communications with explicit barrier synchronization to non-

blocking communications with implicit synchronisation for halo data exchange. The performance benefit of the

new code version grows as the accuracy order of the considered numerical scheme is increased. For 2nd order we

observe a speedup of up to 50%, for 4th order a speedup of factor 2 and for 6th order a speedup of factor 5 and

higher. The scalability of the code is very satisfactory up to core counts in the order of 10-thousand cores.

1

2

4

8

16

32

512 1024 2048 4096 8192

It
er

at
io

n
 T

im
e

[s
]

Number of Processes

Large Eddy Simulation

Supermuc SB (orig)

Supermuc SB (new)

Supermuc HW (orig)

Supermuc HW (new)

0,125

0,25

0,5

1

2

4

512 1024 2048 4096 8192 16384

It
er

at
io

n
 T

im
e

[s
]

Number of Processes

Reynolds-averaged Navier-Stokes

Hazelhen (orig)

Hazelhen (new)

Supermuc SB (orig)

Supermuc SB (new)

Supermuc HW (orig)

Supermuc HW (new)

10

6.1. Outlook

Due to constrained time and effort, the performance of the hybrid (MPI+OpenMP) variant of UCNS3D has not

been investigated and optimised in the scope of this project. This is still left open for possible future developments

on UCNS3D or even a follow-up project. Moreover, in order to increase the scalability of UCNS3D to the order

of 100-thousand cores, it will as well be necessary to work on the initialisation and IO routines of the code, part

of which are still sequential. Additional optimisation potential in the initialization phase of the code may also arise

from using LAPACK for performing e.g. QR factorisations.

Acknowledgements

This work was financially supported by the PRACE project funded in part by the EU’s Horizon 2020 research

and innovation programme (2014-2020) under grant agreement 653838. We acknowledge that the results in this

paper have been achieved using the PRACE Research Infrastructure resources HAZELHEN at the High-

Performance Computing Center Stuttgart (HLRS), Germany and SuperMUC at the Leibniz Supercomputing

Centre (LRZ) in Garching near Munich, Germany.

References

[1] Tsoutsanis P, Antoniadis AF & Drikakis D (2014) WENO schemes on arbitrary unstructured meshes for laminar, transitional and

turbulent flows, Journal of Computational Physics, 256 254-276.

[2] Tsoutsanis P, Titarev VA & Drikakis D (2011) WENO schemes on arbitrary mixed-element unstructured meshes in three space

dimensions, Journal of Computational Physics, 230 (4) 1585-1601.

Cranfield University

CERES https://dspace.lib.cranfield.ac.uk

School of Aerospace, Transport and Manufacturing (SATM) Staff publications (SATM)

2016

Optimising UCNS3D, a High-Order

finite-Volume WENO Scheme Code for

arbitrary unstructured Meshes

Ponweiser, Thomas

Partnership for Advanced Computing in Europe

Thomas Ponweiser and Panagiotis Tsoutsanis. Optimising UCNS3D, a High-Order

finite-Volume WENO Scheme Code for arbitrary unstructured Meshes. Available online at www.prace-ri.eu

www.prace-ri.eu

Downloaded from Cranfield Library Services E-Repository

