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Determinants of Asymmetric Return Comovements of Gold and other Financial Assets  

 

Abstract 

 

Using conditional time-varying copula models, we characterize the dependence structure of 

return comovements of gold and other financial assets (stocks, bonds, real estate and oil) during 

economic expansion and contraction regimes. We also investigate which key macroeconomic 

and non-macroeconomic variables significantly impact the asset return comovements using a two 

stage Markov Switching Stochastic Volatility (MSSV) framework. Our results show that the 

non-macro variables have significant influence on the return comovements. We find that gold is 

an inappropriate hedge against interest rate changes for real-estate and oil-based portfolios, while 

for bond portfolios, gold offers a good hedge against inflation uncertainty. We also provide 

evidence that the “flight to safety” phenomenon is due to the implied volatility of the stock 

market, rather than the observed stock market uncertainty. Finally, we forecast the asset return 

comovements and examine their economic significance. We show that a dynamic MSSV model 

which includes the macroeconomic and non-macroeconomic variables yields superior forecast of 

future asset return comovements when compared with a multivariate conditional covariance 

model. 

 

JEL classification: C32, C58, C51, G17 

Keywords: Gold, Asset return comovements, forecasting, Markov Switching stochastic volatility 

model, dependence structure  
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1. Introduction 

In the wake of the economic downturn during 2007-08, returns of different asset classes have 

shown evidence of strong linkages. Declining house prices in the US led to the collapse of 

various financial institutions, triggering a steep decline in equity markets, commodity prices and 

real estate values globally. The oil prices also witnessed high volatility with prices reaching 

US$147 per barrel in July 2008 and dropping below US$60 per barrel within the next four 

months (Chan et al., 2011). In addition, the stimulated response by the Federal Reserve led to 

extremely low interest rates in many economies, driving up the demand for government bonds 

and causing a steep decline in yields. On the other hand, corporate bond spreads widened 

appreciably whilst the gold prices reached new highs.  

 

These developments provide anecdotal evidence of increased linkages between financial, 

commodities and real estate markets, triggering a renewed interest amongst academics and 

practitioners in examining asset allocation strategies for effective diversification of risk during 

turbulent economic conditions. However, asset allocation strategies can be properly executed 

only if the nature of return comovements of various asset returns is well understood. Guidolin 

and Timmermann (2007) show that since asset return comovements are time varying and 

dynamic in nature, investors require information about conditional distribution of the asset 

returns for implementing dynamic asset allocation strategies. Further, asset return comovements 

change due to changes in economic conditions and/or changes in non-macroeconomic factors. 

For example, Piplack and Straetmans (2010) show that asset return comovements change during 

periods of market stress. Thus, in constructing an optimal portfolio, it is critical to identify the 

economic circumstances and understand the impact of macro and non-macro factors on asset 

return comovements. 

 

While extant literature extensively studies the return comovements of conventional financial 

assets such as stocks and bonds, research on return comovements of other financial assets is 

sparse. In particular, despite the importance of gold as a hedge and/or a safe haven, studies 

investigating the dependence structure of gold returns and other assets are rare. Amongst them, 

the prominent studies by Tully and Lucey (2007) and Batten and Lucey (2009) model the 

volatility of gold futures market, while Baur (2012) examine the asymmetric nature of gold 
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volatility. These studies analyze some specific volatility characteristics of gold, but do not focus 

on examining the dependence structure of gold returns with other assets. Far fewer studies 

examine the relationship between gold and other financial assets. Exceptions include Baur and 

Lucey (2010) and Baur and McDermott (2010). They demonstrate that gold acts as a safe-haven 

investment in volatile market conditions. Yet, in extreme market conditions Treasury bond 

returns and not gold are negatively correlated to stock returns (Piplack & Straetmans, 2010). 

Fewer studies examine the correlation between gold and other asset returns. Cashin et al. (2002) 

show that there exists significant correlation between oil and gold for the period 1960 to 1985. 

Pindyck and Rotemberg (1990) confirm similar findings for oil and gold price levels. Šimáková 

(2011) shows that there exists a long term relationship between gold and oil prices. However, 

research examining the economic sources that impact the relationship between gold and other 

asset returns is sparse. Most of these studies exhibit the link between gold and oil prices through 

inflation channel. The studies empirically show that when inflation rises, the price of gold as a 

good also rises (Hooker, 2002; Hunt, 2006). Furlong et al. (1996) find that increase in oil prices 

positively affects prices of all other assets. Most interestingly, none of these existing studies 

analyze the extreme comovements of gold and other asset returns.  

 

Therefore, a model capable of capturing the time varying linkages between gold and other 

financial assets and the effects of macroeconomic and non-macro factors influencing the 

dependence structures of the return comovements is required. For instance, if market linkages 

between gold and other financial assets increases in times of economic crisis, then the 

effectiveness of gold as safe haven may be compromised. Alternatively, if the dependence 

decreases in periods of economic contraction, the diversification benefit of investing in gold is 

enhanced.  

 

Against this backdrop, the paper makes new and incremental contributions to the existing 

literature in the following ways. First, while research widely acknowledges that return 

distributions of financial assets are non-normal, the extant literature primarily uses linear 

dependence measure to examine the asset market linkages. Even though the linear dependence 

structure is simple to use, it fails to accurately characterize the non-normal distributions of the 

asset returns (Jondeau & Rockinger, 2006). We, therefore, use dynamic conditional copula 
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model for characterizing the regime switching dependence structure of gold and other asset 

return comovements during different economic regimes. Second, in contrast to previous studies 

we use a two stage Markov switching stochastic volatility (MSSV) framework which enables us 

to capture the dynamics and the structural changes in the state variables in forecasting the return 

comovements. Third, using the key determinants, the paper examines the performance of copula 

based models for forecasting the gold-paired asset return comovements. Finally, we demonstrate 

how investors with different risk appetite may be able to use our proposed approach for making 

optimal portfolio choices. 

 

Our paper reports several key findings. First, we confirm that the dependence structures of gold 

and other asset return comovements show significant regime-switching behavior both in terms of 

statistical and economic significance, which corresponds to periods of economic expansion and 

economic. Importantly, the transition probabilities of the different regimes indicate that 

investment in gold leads to risk diversification. Second, examining the factor contributions, we 

find that the model fit worsens considerably when the non-macro factors are dropped for the all 

the pairs except for gold- real estate pair. This signifies the importance of considering the impact 

of economic uncertainty in asset allocation for portfolio diversification. Third, we show that rise 

in interest rates, has a positive impact on gold-oil and gold-real estate return comovements. This 

suggests that gold is an inappropriate hedge against interest rate changes for real-estate and oil-

based portfolios. Fourth, we find that inflation positively impacts the return comovements of all 

asset pairs except for the gold and real estate. This implies that gold is a good hedge against 

inflation for real estate based investments. Fifth, amongst the non-macro variables we find that 

uncertainty parameters and the illiquidity variables are significant. In particular, we show that for 

bond portfolios, gold makes a good hedge against inflation uncertainty. Sixth, consistent with 

previous literature (Baur and Lucey, 2010; Baur and McDermott, 2010) we find evidence to 

support previously reported findings that gold acts as a safe-haven investment, particularly in 

volatile stock market conditions. Further, we show that during the economic contraction phase 

increase in demand for gold potentially triggers increase in bond investments. In contrast, the 

negative impact of bond illiquidity during either of the phases suggests that decrease in demand 

for bond indicates a rise in gold investments. Seventh, our findings suggest that the observed 

“flight to safety” phenomenon in the gold and equity market is due to the implied volatility of the 
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stock market, rather than the observed stock market uncertainty. Further with the increase in risk 

aversion, the return comovements across gold and other assets also increases. Finally, our 

research shows that the dynamic strategy which incorporates regime switching framework 

outperforms the multivariate conditional covariance strategy in forecasting asset return 

comovements. Investors with different risk-appetites are able to enhance their portfolio 

optimization choices by utilizing the analytical approach proposed in the study.  

 

The rest of the paper is organized as follows: Section 2 discusses the methodology employed to 

model the dynamics of the dependence structure models using the MSSV model and copula 

model and data used in the study. Section 3 discusses the empirical findings and finally Section 4 

concludes the paper. 

 

2. Methodology and Data Used 

2.1 The Dynamic Dependence Structure Model 

We employ a Markov Switching framework in investigating the dependence structure and allow 

each state variable to follow an evolutionary process which is presented in the following section. 

Although autoregressive conditional heteroskedasticity (ARCH) models can be employed to 

tackle this issue (Bollerslev et al., 1988; Engle, 1982), the standard normally and independently 

distributed (NID) assumption of the error term is often violated in practice. We, therefore, 

specify a model for the state variables that allows each of the vectors to follow an independent 

stochastic volatility (ISV) process. The stochastic volatility (SV) specification builds in a time-

varying variance process for each of the elements of the structural factors, by allowing the 

variance to be a latent process. 

 

We specify the MS model, which defines the dependence structure (𝑦𝑡) as 

𝑦𝑡 = ∑ 𝜑𝑙𝑆𝑡𝑥𝑙,𝑡
𝑆 + 휀𝑡

𝐿

𝑙=1

 (1) 

where L denotes the number of switching coefficients, 𝑋𝑙,𝑡 represents the explanatory state 

variables, 𝑆𝑡 represents the regime of the variable at time t, and 휀𝑡~𝑃(𝜙𝑆𝑡
) with 𝑝(𝜙) as the 

probability density function of the innovations, defined by the vector (𝜙). Each of the 
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independent state variables follows a Markov switching stochastic volatility (MSSV) process, 

which we discuss next. 

 

Our aim is to make the model parsimonious and yet flexible. Therefore, in contrast to the ARCH-

type models, we allow the log volatility of the state variables to evolve stochastically over time. 

Following the discrete convention (Ball and Torous, 1999; Shephard, 1996), we characterize the 

SV model as an extension of the time-diffusion process 

∆𝑥𝑡 = 𝑎 + 𝑏𝑥𝑡−1 + 𝜎𝑡𝑥𝑡−1
𝛾

휀𝑡 

 
(2) 

where 𝛾 represents the diffusion term, ∆𝑥𝑡 = 𝑥𝑡 + 𝑥𝑡−1 and 휀𝑡 is the standard normal random 

variable. The residual of the above equation is 𝑒𝑡 = 𝜎𝑡𝑥𝑡−1
𝛾

휀𝑡. The model allows the volatility 

(𝜎) to evolve stochastically, following a first-order autoregressive process 

𝑙𝑜𝑔𝜎𝑡
2 = 𝜔 + 𝜑𝑙𝑜𝑔𝜎𝑡−1

2 + 𝜂𝑡 
(3) 

where 𝜂𝑡 ∼ 𝑁(0, 𝜎𝜂
2), 𝑖. 𝑖. 𝑑. is the disturbance term. It makes the variance subject to random 

shocks, making the process stochastic. We transform the residuals in equation (2) to 𝑒𝑡 = Δ𝑥𝑡 −

𝑎 − 𝑏𝑥𝑡−1, which allows us to formulate a quasi-likelihood function by employing Kalman 

filtering. The log of the squared residuals is  

𝑙𝑜𝑔𝑒𝑡
2 = 𝑙𝑜𝑔𝜎𝑡

2 + 2𝛾𝑙𝑜𝑔𝑥𝑡−1 + 𝑙𝑜𝑔휀𝑡
2 

 
(4) 

Considering 𝑧𝑡 = 𝑙𝑜𝑔𝑒𝑡
2 and 𝑔𝑡 = 𝑙𝑜𝑔𝜎𝑡

2 equation (13) reduces to 

𝑧𝑡 = 𝑔𝑡 + 2𝛾𝑙𝑜𝑔𝑥𝑡−1 + 𝑙𝑜𝑔휀𝑡
2 

(5) 

where 𝑔𝑡 = 𝜔 + 𝜑𝑔𝑡−1 + 𝜂𝑡. Next, we discuss the MSSV model, which is employed to examine 

the dynamics of the dependence structure. 

 

This is a generalization of the SV and the MS model. This model allows the volatility to vary 

across different regimes. Since assumption of constant volatility in the regimes will either 

underestimate or overestimate volatility, the MSSV model enables different estimates of the 

elasticity of variance (𝛾). We define the MSSV model as 
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𝑧𝑡 = 𝑔𝑡 + 2𝛾𝑙𝑜𝑔𝑥𝑡−1 + 𝑙𝑜𝑔휀𝑡
2 

𝑔𝑡 = 𝜔𝑚 + 𝜑𝑔𝑡−1 + 𝜂𝑡  

(6) 

 

In contrast to classical SV model, in the above equation we define 𝜔𝑚 = 𝑙𝑜𝑔𝜎𝑚
2 , which allows 

us to capture different regimes at a particular point in time.  With the regimes governing the 

dynamic behaviour of the estimated state variables, we condition a particular regime and 

calibrate the density of the variable of interest. In this parameterization of the MS model, the 

transition probabilities from state m to state n in time t are defined as 𝑝𝑚𝑛 = 𝑃𝑟[𝑆𝑡 = 𝑚|𝑆𝑡−1 =

𝑛]. It should be noted that for 𝑚 = 1, … , 𝑀, only 𝑀(𝑀 − 1) needs to be specified as 𝑝𝑚𝑛 =

𝑃𝑟[𝑆𝑡 = 𝑀|𝑆𝑡−1 = 𝑛] = 1 − ∑ 𝑃𝑟[𝑆𝑡 = 𝑚|𝑆𝑡−1 = 𝑛]𝑀−1
𝑚=1 . In our model we allow the 

unconditional volatility to change between different states by allowing (𝜎𝑖) in equation (2) to 

take values of 𝑚 𝜖 {1, … , 𝑀} at time 𝑡. The corresponding equation transforms to 

∆𝑥𝑡 = 𝑎 + 𝑏𝑥𝑡−1 + 𝜎𝑚𝑥𝑡−1
𝛾

휀𝑡 
(7) 

An important component of the structure of the MS model is that the switching of the states 

follows a stochastic process. Thus, identifying states based on distributional characteristics of the 

regime switching variable, such as (𝜇 ± 𝜎), i.e. mean plus or minus standard deviation, would 

lead to a restricted form of the switching model failing to capture the true dynamics of the 

dependence structure. However, a weak regime classification will imply that the model is unable 

to successfully distinguish between the regimes from the behaviour of the data, leading to 

misspecification.  In order to address this issue, we identify the regimes based on regime 

switching classification. An ideal switching model should classify the regimes sharply, i.e. the 

regime transition probabilities (𝑝𝑚𝑛) should be close to 0 or 1. Based on Ang and Bekaert (2002) 

we construct the regime classification statistic (RCS) for M states as 

𝑅𝐶𝑆(𝑀) = 100𝑀2
1

𝑇
∑ (∏ 𝑝𝑚𝑡

𝑀

𝑚=1
)

𝑇

𝑡=1
  

where  𝑝𝑚𝑡 = 𝑃𝑟 (𝑆𝑡 = 𝑚|𝐼𝑇) indicates the regime transition probabilities and 100𝑀2 serves as 

a normalizing constant to keep the statistic between 0 and 100. A value of 0 signifies perfect 

regime classification, whereas a value of 100 implies that the regimes are not capable of 

distinguishing the behaviour of the data, i.e. dependence structure, across the defined regimes 

and hence they are irrelevant. 
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We use Kalman filter for estimating the MSSV model. However, the above procedures make the 

process exclusively path dependent. Hence, to remove the path dependence we compute the 

conditional expectation of the log-volatility forecast by taking the weighted average output of the 

previous iteration. We then calculate the regime probabilities based on Smith’s (2002) 

modification of Hamilton’s (1989) filter (the estimation process is explained in Appendix A).  

 

In order to robustly examine the forecasting of asset return comovements, it is essential to 

consider a reasonably adequate hold-off sample period. Therefore, we choose 16 years of 

observation to estimate the model parameters and forecast returns comovements for 9 years.  

Moreover, since it is not a prior assumption that our switching model outperforms a single 

regime model, forecasting is repeated for different subsamples. In essence, we fit the model for 4 

years and estimate one step ahead forecast, delete the first observation and add the next one and 

then again re-estimate a one-step ahead forecast. In order to evaluate the possible changes in the 

pattern of the asset return comovements, we carry out forecasting exercise for two subsamples. 

In the first one, we estimate the model for the period 1987 to 2002 and forecast return 

comovements for 2003 to 2012 period. For the second part estimate the model for 2003 to 2012 

and forecast return comovements for 1987 to 1996 period. 

 

To investigate the quality of the forecast, the median of squared errors are calibrated for both the 

regime switching MSSV model and the non-regime switching stochastic volatility model. 

Further, based on Pagan and Schwert (1990) we run a forecast efficiency regression to examine 

whether the regime switching model outperforms the non-regime model (NRM). We model the 

forecast efficiency regression as 𝑣𝑟𝑐,𝑡 = 𝛼 + 𝛽𝑣𝑟𝑐,𝑡 + 𝜖𝑡. In this framework, if the mean and the 

variance forecast of the asset return comovements (𝑣𝑟𝑐,𝑡) are unbiased, then the regression 

implies that  𝛼 = 0 and 𝛽 = 1. To test the forecasting efficiency, the regression model is 

estimated using ordinary least square wherein standard errors are corrected for autocorrelation 

and heteroskedastic following Newey and West (1987). Further, we correct the standard errors 

for the uncertainty originating from the estimation of the factors. Since we use a rolling sample 

for our forecasting, based on West and McCracken (1983) we multiply the Newey-West standard 

errors by √(1 − 𝜋2 3⁄ ) , where 𝜋 = 10 16⁄ , i.e. forecasting period by parameter estimation 

period. 
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2.2 Estimating the State Variables 

We consider a variety of macro and non-macroeconomic variables for forecasting the return 

comovements that have been used in the existing literature. We include three macro-economic 

factors: risk free rate (𝑟𝑓𝑡), output gap (𝑜𝑡), and inflation (𝑖𝑡). These variables predominantly 

affect both cash flows and discount rates and hence affect asset values (d’Addona and Kind, 

2006). However, it is not always easy to predict their precise impact on asset returns. Since 

interest rates affect most of the variations in asset returns, we include nominal risk-free rate. To 

capture the impact of long term interest rates, we include nominal risk-free rate, expected 

inflation and term premium. In order to capture the effect of the term premium and the inflation 

premium we use two direct ‘economic’ risk proxies i.e., output uncertainty (𝑜𝑢𝑡), inflation 

uncertainty (𝑖𝑢𝑡). Further, liquidity affects asset prices in two central ways. First, in illiquid 

markets, beta may fail to quickly respond to economic shocks. Second, economic shocks that 

increase liquidity may have a positive impact on asset returns. Moreover, monetary policy can 

affect liquidity in financial markets. It may increase borrowing constraints and/or trigger trading 

activity, influencing asset return comovements. Existing studies by Chordia et al. (2005) and 

Goyenko et al. (2009) are rather inconclusive about the liquidity effects. To address this issue, 

we consider unconstrained proxies of use bond, stock and gold market illiquidity shocks in our 

model. We capture stock market illiquidity (𝑙𝑟𝑡) by using capitalization-based proportion of zero 

daily returns across all listed firms in the US market, i.e. Standard and Poor’s (S&P) 500 index 

and for bond market illiquidity (𝑑𝑠𝑡), we use bid-ask spreads across all securities, i.e. one month, 

three months, and one, two, three, five, seven, ten, twenty and thirty years of maturity.  

 

Plosser and Rouwenhorst (1994) and Estrella and Hardouvelis (2012) use the term spread (𝑡𝑠𝑡) 

as a leading indicator of economic activity. Yet, more recent evidence shows that the spread is 

not as informative as it has been in the past. In particular, Dotsey (1998) and Henry et al. (2004) 

show that the relationship between business cycles and economic output behave asymmetrically. 

Ocal (2006) provides evidence of asymmetric relations between economic output and growth. 

Therefore, the existence of a non-linear relationship between these variables is more likely. We 

use an alternative measure to capture the different regimes of the business cycle. Our measure of 



11 
 

modified depth of recession (𝑑𝑟𝑡) is based on Lee and Wang’s (2012) estimate of business cycle 

proxy. This measure enables us to study its impact for both recession and expansion regimes.  

 

Our model, thus, includes the following economic state variables: the risk free rate (rft), output 

gap (ot), inflation (it), and risk aversion (rat) and eight non-macroeconomic variables, i.e. output 

uncertainty (out), inflation uncertainty (iut), gold market illiquidity (𝑔𝑖𝑙𝑟𝑡), bond market 

illiquidity (dst), equity market illiquidity (lrt), variance premium (vpt), term spread (tst) and the 

depth of recession (drt). We collect these variables in a vector (𝐾𝑡) to identify our explanatory 

structural factors (𝑋𝑡). Appendix B provides a description and the construction method of these 

state variables. 

 

We use a two-stage structural framework to examine the influence of these state variables on the 

joint dependence structure. This approach has three key economic implications i) it allows the 

dynamics of the state variables to depend on the expectations of future values as is true in cases 

of macro-models, ii) it captures the contemporaneous correlation between the fundamental state 

variables and, iii) it captures the structural changes in the macro-economic relationships. Further, 

we impose structural restrictions inspired by New-Keynesian dynamics in identifying the 

macroeconomic variables which also accommodate for heteroskedastic shocks. Appendix B 

provides the description of the variables used. 

 

For identifying structural shocks, we split the state variables into two sets: i) “macro 

variables (𝑚𝑣)”, 𝐾𝑡,𝑚𝑣 = [𝑟𝑓𝑡 , 𝑜𝑡, 𝑖𝑡, 𝑟𝑎𝑡]′  and ii) “other variables (𝑜𝑣)”, i.e. 𝐾𝑡,𝑜𝑣 =

[𝑜𝑢𝑡 , 𝑖𝑢𝑡, 𝑔𝑖𝑙𝑟𝑡, 𝑑𝑠𝑡, 𝑙𝑟𝑡, 𝑣𝑝𝑡, 𝑡𝑠𝑡 , 𝑑𝑟𝑡]′. The ‘other variables’ (𝑜𝑣) include the non-macroeconomic 

variables. For modelling  𝐾𝑡,𝑚𝑣 we employ a New Keynesian model, which we discuss below. 

To identify the  𝐾𝑡,𝑜𝑣 shocks we characterize a simple empirical model where 𝑜𝑣 depend on 𝑚𝑣.  

 

Following Bekaert et al.’s (2010) New-Keynesian model, we formulate the structural model 

for 𝑋𝑡,𝑚𝑣. The model comprises three equations i) the demand (IS) equation, ii) the aggregate 

supply (AS) equation and iii) the forward feeding monetary policy (MP) rule. This allows us to 

capture the time-varying risk aversion dynamics in the structural model. 
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𝑟𝑓𝑡 = 𝛼𝑀𝐹 + 𝜏𝑟𝑓𝑡−1 + (1 − 𝜏)[𝑎(𝑆𝑡
𝑀𝑃)𝐸𝑡(𝑖𝑡+1) + 𝑏(𝑆𝑡

𝑀𝑃)𝑜𝑡] + 𝑋𝑡
𝑟𝑓

 (8) 

𝑜𝑡 = 𝛼𝐼𝑆 + 𝜔𝐸𝑡(𝑜𝑡+1) + (1 − 𝜔)𝑜𝑡−1 + 𝜃𝑟𝑎𝑡 − 𝜑(𝑟𝑓𝑡 − 𝐸𝑡(𝑖𝑡+1)) + 𝑋𝑡
𝑜 (9) 

𝑖𝑡 = 𝛼𝐴𝑆 + 𝜆𝐸𝑡(𝑖𝑡+1) + (1 − 𝜆)𝑖𝑡−1 + 𝜑𝑜𝑡 + 𝑋𝑡
𝑖 (10) 

𝑟𝑎𝑡 = 𝛽𝑟𝑎 + 𝛾𝑟𝑎𝑡−1 + 𝑋𝑡
𝑟𝑎 (11) 

 

The parameter (𝜏) in the equation (8) represents the forward-looking monetary policy smoothing 

estimate. Cho and Moreno (2006) show that changes in monetary policy significantly influence 

macro dynamics and structural shocks. We, therefore, introduce a standard Markov-chain 

process that allows the monetary policy to vary across two regimes (𝑆𝑡
𝑀𝑃) with constant 

transition probabilities.  

 

The parameters (𝜔) and (𝜆) in the equations (9) and (10) represent the degree of IS and AS 

forward-looking behaviour respectively. The parameter (𝜑) estimates the impact of real interest 

rate on the output gap and (𝜙) the effect of output gap on inflation. A high positive value of 𝜑 

and 𝜙 will indicate that monetary transmission mechanism has a significant influence on 

economy’s output and inflation. The state variable (𝑟𝑎𝑡) accommodates stochastic risk aversion 

to the demand equation of the New-Keynesian model that nests on Campbell and Cochrane’s 

(1995) external habit model. In particular (𝑟𝑎𝑡) represents the local curvature of the utility 

function. The parameter (𝜃) measures counteracting effect of consumption-smoothing and 

precautionary-savings of risk aversion on the real economy. 

 

For the non-macroeconomic variables, we characterize the structural model as: 

𝐾𝑡,𝑜𝑣 = 𝛼𝑜𝑣(𝑆𝑡) + 𝛽𝑜𝑣𝐾𝑡−1,𝑜𝑣 + ∑ 𝐾𝑡,𝑚𝑣

𝑚𝑣

𝑜𝑣
+ 𝑋𝑡,𝑜𝑣 

(12) 

where 𝑆𝑡 represents the set of regime variables that drive the coefficient matrices.  𝐾𝑡,𝑜𝑣 is 

modelled based on Hamilton’s (1989) specifications.  𝛽𝑜𝑣 is a diagonal matrix, ∑ 𝑚𝑎𝑡𝑟𝑖𝑥 𝑚𝑣
𝑜𝑣 is a 

8 × 4  matrix, which appropriates contemporaneous covariance with the macro variables  𝐾𝑡,𝑚𝑣 

and  𝑋𝑡,𝑜𝑣 is the vector of uncorrelated structural shocks of the “other variables”. Employing 

Equation (12), the non-macroeconomic factors, may partially exhibit autoregressive dynamics of 

the macro-state variables. Further,  𝑋𝑡,𝑜𝑣 should be interpreted as non-macroeconomic variables 
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related shocks. Finally, allowing the drifts to depend on the regime variable 𝑆𝑡 enables us to 

model the structural changes in the liquidity parameters (Hasbrouck, 2009). 

 

2.3 Estimation of the Dependence Structures 

We model return comovements based on the copula theory. Copula (C) is defined as a function 

that couples multiple distribution functions of Random Variables (RV) to their unidimensional 

unit-dimensional distribution function. Application of this cumulative distribution function 

(CDF) is derived from the Sklar Theorem (Sklar 1959). The theorem states that for a joint 

distribution function 𝐻𝑋,𝑌(𝑥, 𝑦) for all x, y, a function, copula 𝐶(𝑢, 𝑣), can be characterized in 

�̅� ∈ (−∞, ∞)  such that ))(),((),( yFxFCyxH YXXY  , where 𝐹𝑋(𝑥) and 𝐹𝑌(𝑦) are the marginal 

distribution functions. 

 

2.3.1 Conditional Copula 

Let the conditional CDF of two RV (X and Y) and a given conditioning vector K be 𝐻𝑥𝑦|𝑘(𝑥, 𝑦|𝑘) 

and the marginal distributions be 𝐹𝑥|𝑘(𝑥|𝑘) and 𝐹𝑦|𝑘(𝑦|𝑘). Then there exists a copula C, such that 

𝐻𝑥𝑦|𝑘(𝑥, 𝑦|𝑘) = 𝐶 (𝐹𝑥|𝑘(𝑥|𝑘), 𝐹𝑦|𝑘(𝑦|𝑘)) = 𝐶(𝑢, 𝑣) 
(13) 

where (𝑥, 𝑦|𝐾) = 𝑘and (𝑥, 𝑦)𝜖�̅� × 𝑅. In equation (13), u and v are the realizations of 𝑈 ≡

𝐹𝑥|𝑘(𝑥|𝑘) and 𝑉 ≡ 𝐹𝑦|𝑘(𝑦|𝑘), given 𝐾 = 𝑘. U and V are the conditional probability integrals of 

the RV, X and Y (Sklar 1959).  

 

Tail dependence allows us to capture the behaviour of the RV during periods of extreme events. 

It measures the probability of occurrence of extreme movements in one variable, given that the 

other variable witnesses an extreme deviation from the mean.  In this study, we examine the tail 

dependence using the Modified Joe-Clayton (MJC) copula. Using MJC instead of a normal Joe-

Clayton copula allows us to model the asymmetry of the tail dependence irrespective of the 

functional form of the copula used. The Joe-Clayton copula is defined as: 

𝐶𝐽𝐶(𝑢, 𝑣|𝜏𝑈, 𝜏𝐿) = 1 − ({[1 − (1 − 𝑢)𝜃]
−𝛿

+ [1 − (1 − 𝑣)𝜃]
−𝛿

− 1}
−1 𝛿⁄

)

1 𝜃⁄

   (14) 
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where 𝜏𝐿 𝑎𝑛𝑑 𝜏𝑈 are the probability of the RV in lower or upper joint tails respectively, 𝜃 =

1 𝑙𝑜𝑔2(2 − 𝜏𝑈)⁄ , 𝛿 = −1 𝑙𝑜𝑔2(𝜏𝐿)⁄  and 𝜏𝑈 ∈ [0, 1], 𝜏𝐿 ∈ [0, 1]. A key limitation of the Joe-

Clayton copula is that there is some level of asymmetry due to its functional form, even though 

the two tail dependence measures are equal. In order to overcome this limitation, we use MJC 

which is characterized as: 

𝐶𝑀𝐽𝐶(𝑢, 𝑣|𝜏𝑈 , 𝜏𝐿) =
1

2
× (𝐶𝐽𝐶(𝑢, 𝑣|𝜏𝑈 , 𝜏𝐿) + 𝐶𝐽𝐶(1 − 𝑢, 1 − 𝑣|𝜏𝑈 , 𝜏𝐿) + 𝑢 + 𝑣 − 1)  (15) 

 

The above modification of the Joe-Clayton copula ensures that the tail dependence is not 

asymmetric when 𝜏𝑈 = 𝜏𝐿. Next, we discuss the copula model specifications. 

 

2.3.2 Copula Model Specifications 

It is well established that financial returns generally do not follow a normal distribution but 

rather adhere to Student’s t-distribution (Hu, 2010). Building on this, we model each marginal 

distribution of the asset returns employing an Autoregressive Moving Average ARMA (p, q)-

Exponential Generalized Autoregressive Conditional Heteroskedastic EGARCH (1, 1)-t model to 

accommodate for differential impacts in return volatility clustering. Then, we estimate the scale-

free measure of dependence, which preserves the dependence structure during the simulation of 

the RV. 

 

Marginal Model: We assume that the distributions of the equity returns follow an ARMA (p, q)-

EGARCH (1, 1)-t process (Nelson 1991). The model is characterized as 

 

𝑋𝑖,𝑡 = 𝜃𝑖 + ∑ 𝛽𝑗

𝑝

𝑗=1

𝑋𝑖,𝑡−𝑗 + ∑ 𝛼𝑘

𝑞

𝑘=1

휀𝑖,𝑡−𝑘 + 휀𝑖,𝑡 

(16) 

log(𝜎𝑡
2) = 𝑎0 + ∑ 𝑎1𝑗

𝑝

𝑗=1

log(𝜎𝑡−𝑗
2 ) + ∑ 𝑎2𝑖

𝑞

𝑖=1

|
휀𝑡−𝑖

𝜎𝑡−𝑖
| + ∑ 𝑎3𝑗

𝑞

𝑗=1

(
휀𝑡−𝑗

𝜎𝑡−𝑗
) 

(17) 

  

√
𝑑

𝜎𝑖,𝑡
2 (𝑑 − 2)

. 휀𝑖.𝑡|𝐼𝑡−1~𝑖. 𝑖. 𝑑. 𝑡𝑑𝑖 

(18) 
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where  𝑋𝑖,𝑡 is the asset return series, 𝜃𝑖 and 휀𝑖,𝑡−1 are the conditional mean and error term, which 

is the news relating to the volatility from one lag period. 𝛽𝑗 is the autoregressive component and 

𝛼𝑘 is the moving average parameter. The noise process 휀𝑡 represented in Equation 4 follows a 

skewed Student’s-t distribution with (𝑑) degrees of freedom and (𝜎𝑡
2) conditional variance. 

(𝜎𝑡−𝑗
2 ) is the GARCH component and the leverage effect is captured by 𝑎3 . The information 

contained about the volatility of the lagged period is captured by 휀𝑡−1 which represents the 

ARCH component. The information set is considered as the condition vector ‘k’. The order of 

the ARMA term ‘p’ is determined using Akaike Information Criteria (AIC).  

 

In our study, we estimate ARMA (p, q) – EGARCH (1, 1) model for each of the financial return 

time-series. We select the most appropriate lag orders for each of the return series using the AIC, 

observing the conditional variance equation as an EGARCH (1, 1)-t process. The mean equations 

of the equity returns of India, US, UK, Germany, France, Canada and Japan follow ARMA (1, 

1), ARMA (3, 3), ARMA (4, 4), ARMA (1, 1), ARMA (1, 1), ARMA (1, 1) and ARMA (3, 3) 

processes, respectively. We confirm that the marginal models are free from autocorrelation and 

heteroskedastic effects (results are not reported here but can be provided on request). To evaluate 

the adequacy of the marginal estimations, we conduct misspecification tests following Diebold et 

al. (1998). We examine the correlograms of (𝑢�̂� − �̅�)𝑙 and (𝑣�̂� − �̅�)𝑙 for ‘l’ ranging from one to 

four. The values u and v are the probability integral transformations of the estimates of the 

marginal models. The correlograms confirm the absence of any serial correlation in the first four 

moments, which indicates that our marginal models are correctly specified.  

 

Tail Dependence Measure: The tail dependence measure is another property of the copula that is 

very useful in analyzing the joint tail dependence of bivariate distributions. Tail dependence 

estimates the probability of the RV in lower or upper joint tails. Intuitively, this measures the 

tendency of the asset returns to co-move up and down together. 

𝜏𝑈 = 𝐿𝑡𝑢→1𝑃[𝑋 ≥ 𝐹𝑋
−1(𝑢)/𝑌 ≥ 𝐹𝑌

−1(𝑢)] = 𝐿𝑡𝑢→1

1 − 2𝑢 + 𝐶(𝑢, 𝑢)

1 − 𝑢
 (19) 

𝜏𝐿 = 𝐿𝑡𝐿→𝑜𝑃[𝑋 ≥ 𝐹𝑋
−1(𝑢)/𝑌 ≥ 𝐹𝑌

−1(𝑢)] = 𝐿𝑡𝐿→0

𝐶(𝑢, 𝑢)

1 − 𝑢
 

 

(20) 
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where  𝜏𝑈, 𝜏𝐿𝜖[0,1] and 𝐹𝑋
−1 and 𝐹𝑌

−1 are the marginal density functions of the RV series. If the 

tail dependence measures are positive then upper or lower tail dependence exists, i.e. 

𝜏𝑈(𝜏𝐿) measures the probability of the RV-X being above (below) a high (low) quantile, given 

that the RV-Y is above (below) a high (low) quantile.  

 

We allow for the tail dependence estimate to follow an evolution process that captures the level 

changes. We define the evolution process as 

𝜏𝑡
𝑈/𝐿

= Θ (𝛽0
𝑈/𝐿

+ 𝛽1
𝑈/𝐿

𝜏𝑡−1
𝑈/𝐿

+ 𝛽2
𝑈/𝐿 1

𝑞
∑|𝑢𝑡−𝑖 − 𝑣𝑡−𝑖| + 𝛽3

𝑈/𝐿
𝐷

𝑞

𝑖=1

) 

 

(21) 

where Θ =  
1

1+𝑒−𝑥  is a logistic transformation that is used to keep 𝜏𝑡
𝑈/𝐿

 in [0,1] at all times. The 

dependence parameter follows an ARMA (1, q) process, characterized by 𝛽1, the autoregressive 

term, and 𝛽2, the forcing variable. While the former term accounts for the persistence effect, the 

latter term captures the variation effect of the dependence parameter. We add a dummy variable 

term  𝛽3𝐷 to allow for level variation in the dependence. The dummy variable takes the value ‘0’ 

for economic expansion regime and ‘1’ otherwise. We obtain the dependence parameter of the 

Student-t and MJC copula models using the maximum likelihood (ML) method (see the 

estimation process in Appendix A). 

 

We examine the performance of the copula models based on AIC, and Bayesian information 

criteria (BIC). The former is adjusted for small sample bias (Rodriguez 2007) and the latter is a 

goodness-of-fit test for the copula models to compare the different dependence structures. 

3. Empirical Results 

3.1. Data Description 

We use S&P GSCI Gold index (G), Standard and Poor’s (S&P) 500 index (E), US 10 year 

Government bond return index (B), West Texas Instrument – WTI crushing crude oil spot prices 

per barrel (O) and S&P Case-Shiller Composite-10 home price index (RE). We estimate the 

dependence structures of four bivariate-asset pairs between gold and other assets by using time-
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varying conditional copula model. We calculate monthly returns to calibrate the ex-post 

quarterly dependence structure from the fourth quarter of 1987 to the fourth quarter of 2012. 

 

<<Insert Table 1>> 

 

Table 1 presents the summary statistics of the asset returns. Panel (A) of Table 1 shows that the 

annualized mean return of oil is the highest (6.33) than any other assets followed by equity and 

bond returns of 6.27 and 5.52 percent, respectively. The standard deviation of returns too is the 

highest for oil (33 percent) followed by equity (16.42 percent). Except for gold, returns of the 

other assets are negatively skewed. Returns for all assets show excess kurtosis, indicating that 

their distributions have a fatter tail and the probability of extreme variances is highly likely. The 

Jarque-Bera test statistics in Panel (B) of Table 1 confirm that the unconditional distributions of 

the asset returns are not normal. The Lagrangian Multiplier (LM) test to examine the presence of 

serial correlation of the squared return up to ten lags, confirms the presence of ARCH effects. 

Autocorrelation tests with correction for heteroskedasticity for lag orders 1, 5 and 10 confirm the 

presence of volatility clustering. 

 

Panel (C) of Table 1 presents the mean and the standard deviation of the return comovements for 

the various asset pairs. The comovements for all asset pairs are positive except for equity-gold (-

0.047) and real estate-gold (-0.091) which suggests that gold returns are negatively correlated to 

the returns from equity and real estate. The average comovements is highest for the gold-oil pair 

(0.18) followed by equity-bond (0.11). The summary statistics show excess skewness and 

kurtosis which suggests that the distributions of return comovements have fatter tails and thus 

extreme variance is highly probable. 

 

For using copula to examine the bivariate distributions, we first estimate the univariate marginal 

distribution of each asset returns. We use ARMA (p, q) – EGARCH (1, 1) model for each return 

series. We select the most appropriate lag order for each return series using the Akaike 

information criteria (AIC). The mean equations of equity, bond, real estate, gold and oil follow 

ARMA (2, 2), ARMA (5, 5), ARMA (7, 7), ARMA (6, 6) and ARMA (7, 6), respectively. We 

confirm that the marginal models are free from autocorrelation and heteroskedastic effects. 
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Further, to evaluate the adequacy of the marginal models, we conduct misspecification tests 

following Diebold et al. (1998). We examine the correlograms of (�̂�𝑡 − �̅�)𝑙 and (𝑣𝑡 − �̅�)𝑙 for ‘l’ 

ranging from one to four. The values u and v are the probability integral transformations of the 

estimates of the marginal models. The correlograms confirm absence of any serial correlation in 

the first four moments, which indicates that our marginal models returns are correctly specified. 

We do not report results here but these can be provided on request.  

 

For examining the determinants of return comovements, we include four macroeconomic 

variables, i.e. the risk free rate (rf), output gap (o), inflation (i), and risk aversion (ra) and eight 

non-macroeconomic variables, i.e. output uncertainty (ou), inflation uncertainty (iu), gold market 

illiquidity (𝑔𝑖𝑙𝑟𝑡), bond market illiquidity (ds), equity market illiquidity (lr), variance premium 

(vp), term spread (ts) and the depth of recession (dr). Next, we discuss each of these state 

variables and examine their regime switching behaviour. 

 

3.2 Dependence Structure Dynamics 

We begin by determining whether there is evidence of regime switching behavior for each of the 

various dependence structures of gold return comovements. Panel C of Table 2 shows the 

transition probabilities and the expected durations
1
 of the regimes. The findings indicate 

significant transition probabilities for both the regimes, i.e. the dependence structure expansion 

phase (Regime 1) and the dependence structure contraction phase (Regime 2). The two regimes 

are identified using the Regime Classification Statistic (RCS). 

 

The transition probability and the expected duration values presented in Panel C of Table 2 show 

that the dependence structure (DS) contraction regime tends to be considerably longer than the 

expansion regime. This suggests that investment in gold offers considerable diversification as the 

DS tends to stay in its lower state. This is further supported by low standard deviation observed 

for the expansion regime. However for the gold-bond and gold-oil pairs, we find higher standard 

deviations in the expansion regime. The key implication of these results is that the dependence 

                                                           
1
 Following Hamilton’s (1989) formula we estimate the expected duration of the regimes as ∑ 𝑖𝑝11(22)

𝑖−1∞
𝑖=0 (1 −

𝑝11(22)), where 𝑝11(22) are the transition probabilities in Regime 1 (Regime 2). 
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structure increases faster than it decreases for these pairs which suggest volatility concordance 

for the gold-bond and gold-oil returns.  

 

Figure 1 presents the time path of the dependence structures of the return comovements. It also 

shows the lower and the upper tails of the dependence structures. For all pairs, the dependence 

structures significantly differ from white noise and reveal useful information. For gold-bond and 

gold-oil pairs, we find that the dependence measure of lower tail is higher than the upper tail. 

This suggests that there is higher probability that these asset pairs will be affected by extreme 

events during the bear market than during the bull market. Further, the lower tails for these pairs 

show several peaks during the economic crisis periods, with the highest ones observed during the 

recent sub-prime led crisis. For other pairs, there is no evidence of tail dependence and hence 

extreme events are less likely to affect the gold-equity and gold-real estate asset pairs. This 

indicates that gold returns are not significantly affected by the extreme downturns or upturns in 

the stock and real estate markets. The results suggest that gold is a good hedge for stock and real 

estate based portfolios, especially during contractionary periods.  

For the gold-equity pair, we find evidence of negative dependence during both phases of the 

economy. The average dependence measure is -0.046 and -0.047 during economic contraction 

and expansion phases, respectively. This suggests that investment in gold can provide a good 

hedge for equity-based portfolios. For the gold-real estate pair too, the average dependence 

measure is -0.091. In contrast, for gold-bond pair we observe positive a higher average 

dependence of 0.044 in the contraction phase compared with 0.027 for the expansion phase. The 

significant lower tail dependence for the gold-bond pair suggests a high probability of extreme 

gold-bond return comovements during the bear market. Likewise, the gold-oil return 

comovements is also positive (0.18) in the lower tail which suggests that the gold and oil returns 

have a high probability of extreme comovements in the crisis period. Consequently, gold may 

not be a good hedge for oil-based portfolios. Overall, we find evidence of return concordance 

between gold-bond and gold-oil during periods of economic contraction. The dependence 

structures of the return comovements vary significantly across the different asset pairs. This 

suggests that macroeconomic and non-macro factors affect the different return comovements 

differently. Thus understanding of the effects of economic and non-macroeconomic factors on 
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the comovements of asset return dynamics is highly valuable for the strategic asset allocation. 

We examine the factor exposures of asset return comovements in the next section.  

<<Insert Table 2>> 

<<Insert Figure 3>> 

3.3. Factor Exposure 

The factor exposures of the macro and the non-macro variables for the dependence structure 

expansion state (Regime 1) and for the dependence structure contraction state (Regime 2) are 

reported in Panels A and B of Table 2. It is interesting to observe that the factor exposures are 

not only different for the various dependence structures but they are also varying across the 

regimes. Thus, the MSSV model is appropriate for capturing the time-vary dynamics of the 

sources of return comovements.   

 

We first focus on the macro economic variables (Panel A of Table 2). Interest rate negatively 

affects the gold-equity (G/E) dependence structure however its impact on gold-real estate (G/RE) 

and gold-oil (G/O) is positive. In other words when IR increases, the return comovements of 

these pairs also increase, which implies that rise in interest rates, has a positive impact on gold-

oil and gold-real estate return comovements. This suggests that gold is inappropriate in hedging 

against interest rate changes for real-estate and oil-based portfolios. Inflation has a positive 

influence on return comovements during the economic contraction phase except for G/RE. This 

indicates that gold is a good hedge against inflation for real-estate based investments. Output gap 

(O) has a negative coefficient indicating that positive output gap shocks have an inverse effect on 

the return comovements. Finally, we show that as investors become more risk averse, the return 

comovements across gold and other assets increase.  

 

The effects of the non-macroeconomic variables are presented in Panel B of Table 2. We find 

that uncertainty parameters and the illiquidity variables play a more prominent role in 

influencing the return comovements. Output uncertainty positively affects the dependence 

structure of G/B during both the economic phases and of G/O during the contraction regime. In 

contrast, inflation uncertainty (IU) bears a negative sign and shows considerable explanatory 

power. The findings show that for bond portfolios, gold makes a good hedge against inflation 

uncertainty. The positive impact of IU on gold-equity is potentially consistent with the learning 
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models of Veronesi (1999), in which the uncertainty decreases the equity risk premium. Most 

intriguing is the negative significance of IU on G/O which indicates a possibly negative 

relationship between the interest rates and inflation uncertainty consistent with the findings of 

Juster and Taylor (1975). Further, Cukierman and Meltzer (1986) argue that unanticipated 

inflation can be generated in order to stimulate economies by reducing the interest rates. 

Concerning the liquidity factors, while stock illiquidity negatively affects the DSs during the 

expansion phases, it has a positive impact on the G/E pair during the economic contraction 

phase. The former suggests that economic recovery drives investors and traders from less liquid 

gold into highly liquid and riskier assets like equities and the resulting price-pressure leads to 

negative return comovements. The highly significant negative impact of gold liquidity (GLIR) 

on G/E during the economic contraction phase is potentially consistent with the findings of Baur 

and Lucey (2010) and Baur and McDermott (2010), suggesting that gold acts as a safe-haven 

investment in volatile market conditions. The positive of impact of GLIR on G/B during the 

economic expansion phase indicates that increase in demand for gold during contraction period 

triggers increase in bond investments. In contrast the negative impact of bond illiquidity during 

either of the phases suggests that decrease in demand for bond indicates a rise in gold 

investments.  

 

Finally, variance premium negatively impacts the return comovements in both regimes, 

especially for the G/E pair. The variance premium measure allows us to capture the non-linearity 

in the consumption growth technology, which depends positively on implied volatility of stock 

returns but negatively on observed volatility. Thus, it allows us to establish whether the “flight-

to-safety” effect is due to the risk-premium component of the implied volatility, or due to general 

stock market uncertainty. Since, variance premium is high in recession; a negative coefficient 

suggests that the observed “flight to safety” phenomenon in the gold and equity market is due to 

the implied volatility of the stock market.  

 

3.4. Factor Contributions 

Next we investigate to what extent the macro and non-macroeconomic factors contribute to the 

model fit in explaining the asset return comovements of different asset pairs. Table 3 reports the 

results. Based on the information criteria, i.e. AIC and BIC, the findings indicate that the model 
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fit worsens considerably when the non-macro factors are dropped for all the pairs except for the 

gold-real estate pair. In particular among the non-macro factors, uncertainty, illiquidity and 

variance premium contribute significantly in explaining the variations of the dependence 

structure. Among the macroeconomic variables, the interest rate, inflation and risk aversion play 

a dominant role. In particular, we note that inflation uncertainty has considerable explanatory 

powers. Overall, our findings indicate that non-macro factors contribute significantly in 

explaining the dynamics of the asymmetric dependence structure of gold and other asset return 

comovements.  

<<Insert Table 3>> 
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3.5 Forecasting performance of asset return comovements 

Table 4 presents the median of squared errors and the coefficients of the forecast efficiency 

regression for the MSSV and the non-regime switching models. The results are reported for the 

rolling forecasting for both the sub-samples. It is evident that for the MSSV model, the median 

of squared errors are significantly lower and the null hypotheses of 𝛼 = 0 and 𝛽 = 1 cannot be 

rejected. This indicates that the MSSV model adequately captures the dynamics of the asset 

return comovements. 

 

In contrast the null hypotheses of 𝛼 = 0 and  𝛽 = 1, can be significantly rejected for the NRS 

models. This suggests that the non-regime switching models are effective in capturing the 

extreme return comovements. The findings of 𝛼 ≠ 0 and 𝛽 ≠ 1 indicate that the non-regime 

switching model either underestimates or overestimates the true volatility of asset return 

comovements. To distinguish between the two cases, i.e. high and low volatility of return 

comovements, we re-estimate the forecast efficiency by allowing a break in the regression line at 

the median forecast. Thus, we estimate two pairs of (𝛼, 𝛽) coefficients. One pair, (𝛼+, 𝛽+) for 

forecasts above the median and another pair, (𝛼−, 𝛽−) for forecasts below the median. The 

results are presented in the Table 5. The findings indicate that (𝛼+, 𝛽+) are significantly different 

from (0,1). The estimated coefficients of 𝛽+ indicates that non-regime models overestimate the 

true variance. These observations are similar for both samples. 

 

These findings imply that the MSSV framework captures the persistence in volatility shocks. For 

instance, if shocks are more persistent in periods of economic contraction than in periods of 

economic recovery, this is effectively captured by the regime parameters. Moreover, our Markov 

switching model is able to capture the ‘pressure smoothening’ effects of those shocks that are not 

persistent and are followed by low volatility regimes. 

<<Insert Table 4>> 

<<Insert Table 5>> 

 

3.6 Economic Value of Asset Return Comovements 

Knowledge of the variables that drive the asset return comovements will be useful for investors 

in improving their asset allocation decisions. In this subsection, we examine whether this is true 
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for a short-horizon dynamic strategy. In short-horizon dynamic strategy investors seek to 

maximize their one-period utility and do not hedge against future changes in the investment 

opportunity set (Fleming et al., 2001). Since short-horizon dynamic strategy ignores the hedging 

component, it is expected to underperform the optimal strategy under Merton’s (1973) 

framework. Therefore, compared to an optimal strategy, a short-horizon strategy sets a higher bar 

for significant economic value added.  

 

Fleming et al.’s (2001) framework does not allow an analytical solution for the optimal portfolio. 

Therefore, they evaluate their short-horizon dynamic strategy by examining two sub-optimal 

portfolios relating to maximum-mean and minimum-variance. To overcome this issue, we 

assume a power utility function over terminal wealth, i.e. 𝑈(𝑊𝑇) = 𝑊𝑇
1−𝛾 (1 − 𝛾)⁄ , where 𝛾 is 

the risk aversion coefficient of the utility function. Based on Campbell and Viceira (2002), one-

period optimal asset allocation is defined as 

𝐴𝑡
𝑤 =

1

𝛾
Σ𝑡

−1(𝐸𝑡𝑟𝑡+1 − 𝑅𝑓𝑡. 𝐼 − 𝜎𝑡
2 2⁄ ) (14) 

where  𝐴𝑡
𝑤 is the vector of asset weights, Σ𝑡 is the conditional asset return covariance matrix, 

𝐸𝑡𝑟𝑡+1 is the expected asset return vector, 𝑅𝑓𝑡 is the risk-free rate, 𝐼 = [1, 1]′ and 𝜎𝑡
2 is the vector 

of asset variances.  

 

Below, we present a comparison of two strategies: a multivariate conditional covariance (MCC) 

strategy and a dynamic strategy. In the MCC strategy, investors employ the multivariate 

conditional covariance using diagonal BEKK model for forecasting one-period ahead return 

comovements and in the dynamic strategy, the investors base their forecast on the 

macroeconomic and the non-macroeconomic variables. The investors form their portfolio based 

on Equation (14) and rebalance them at the end of each quarter. The portfolio formation period is 

1987 to 2002 and the investment period is from 2003 to 2012. The portfolio includes gold, 

equities, bond, real estate and oil. 

 

We use Willing-to-Pay (WTP) as a measure of certainty equivalence to evaluate the economic 

value. WTP is defined as the maximum fee (𝑓) an investor is willing to pay for holding a 

dynamic strategy over the other strategy. WTP is defined as: 
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𝑊𝑇𝑃 = 𝑠𝑢𝑝 {𝑓|𝐸 (𝑈(𝑊𝐸𝑀𝐴/𝑀𝐶𝐶)) ≤ 𝐸 (𝑈(𝑊𝑑𝑦𝑛𝑎𝑚𝑖𝑐 − 𝑓))} (15) 

 

Considering terminal wealth 𝑊𝑇 = 𝑊𝑖 ∏ (1 + 𝑟𝑡)𝑇
𝑡=1 , where 𝑊𝑖  is investor’s initial wealth, 

expected log-utility is defined using 

 

𝑊𝑙𝑜𝑔(𝑈(𝑊𝑇)) = (1 − 𝛾) ∑ 𝑙𝑜𝑔(1 + 𝑟𝑡)
𝑇

𝑡=1
+ (1 − 𝛾)𝑙𝑜𝑔𝑊𝑖 − 𝑙𝑜𝑔(1 − 𝛾) 

                   = (1 + 𝛾)𝑇. log (1 + 𝑟𝑡)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ + (1 − 𝛾)𝑙𝑜𝑔𝑊𝑖 − 𝑙𝑜𝑔(1 − 𝛾) 

(16) 

 

The above equation suggests that 𝑈(𝑊𝑇) is log normally distributed. Therefore, expected utility 

is computed as 

𝑈(𝑊𝑇)̅̅ ̅̅ ̅̅ ̅̅ ̅ = 𝑒𝑥𝑝 ((1 + 𝛾)𝑇. log (1 + 𝑟𝑡)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

+
1

2
(1 − 𝛾)2𝑇2𝑉𝑎�̂�(𝑙𝑜𝑔(1 + 𝑟𝑡)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅)) .

𝑊𝑖
1−𝛾

1 − 𝛾
 

(17) 

 

Table 6 compares the performance of the two strategies for various levels of risk aversion and 

the-risk free rate. The last column reports the bootstrapped p-values of the 

hypothesis: 𝐻𝑛𝑢𝑙𝑙: 𝑊𝑇𝑃 ≤ 0. The main findings are as follows. First, for constant relative risk 

aversion investors, the dynamic strategy outperforms the MCC strategy, i.e. for all instances the 

hypothesis 𝑊𝑇𝑃 ≤ 0 is rejected. Second, the findings show that the dynamic strategy is more 

risky. In other words the mean and the volatility are higher for the dynamic strategy. However, 

the Sharpe ratios indicate that in the dynamic strategy, investors are better rewarded. Third, the 

WTP decreases with increase in risk aversion (𝛾). This suggests that higher risk aversion 

discourages investors in holding riskier assets, thus making it difficult to differentiate between 

either of the strategies. Fourth, the WTP increases with increase in risk-free rate. This is because, 

the dynamic strategy investors are more informed in taking advantage of the diversification 

opportunities arising from the influence of risk-free rate on the asset return comovements.  

 

Overall, the findings reported in Table 6 indicate that the dynamic strategy outperforms the MCC 

strategy. The findings imply that both understanding the dynamics and the influence of 
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macroeconomic and non-macroeconomic variables on asset return comovements enhances 

investor’s optimal portfolio choices.   

<<Insert Table 6>> 

4. Conclusions  

Considerable time variation in the asset return comovements has been of key interest to portfolio 

managers and academic researchers. Much of the research in this area has been restricted to the 

conventional financial assets, i.e. stocks and bonds. In particular, despite the importance of gold 

as a hedge commodity and a safe haven, studies investigating the dependence structure of gold 

returns and other assets are rare. Further, there is little research on the impact of changes in the 

real economy and non-macro factors on the dynamics of return comovements of gold and other 

financial assets. Also, the extant research has examined the asset return comovements by using 

linear correlation as a measure of comovements. However, it is well documented in the literature 

that linear correlation fails to provide an accurate estimate of the dependence structure when 

dealing with multivariate distributions with complex dynamic characteristics (Chan, et al., 2011; 

Reboredo, 2011). Under such circumstances, the copula technique that we employ enables us to 

examine return comovements during the extremes. 

 

Using data from 1987 to 2012 for gold and three different asset classes and several macro and 

non-macro variables, we report a number of significant findings. First, we confirm that the 

dependence structures of gold and other asset return comovements show significant regime-

switching behavior both in terms of statistical and economic significance, which corresponds to 

periods of economic expansion and economic contraction. Importantly, the transition 

probabilities of the different regimes indicate that investment in gold leads to risk diversification. 

Second, examining the factor contributions, we find that the model fit worsens considerably 

when the non-macro factors are dropped for all the pairs except for gold-real estate dependence 

structure. This signifies the importance of considering the impact of economic uncertainty on 

financial markets prior to asset allocation for portfolio diversification. Third, we show that that 

rise in interest rates, has a positive impact on gold-oil and real-estate return comovements. This 

suggests that gold is an inappropriate hedge against interest rate changes for real estate and oil-

based portfolios. Fourth, we find that inflation positively impacts the return comovements of all 
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the asset pairs except for gold and real estate. This implies that gold is a good hedge against 

inflation for real-estate based investments. Fifth, amongst the non-macro variables we find that 

uncertainty parameters and the illiquidity variables are more prominent. In particular, we show 

that for bond portfolios, gold makes a good hedge against inflation uncertainty. Sixth, consistent 

with previous literature we find evidence to suggest that gold acts as a safe-haven investment, 

particularly in volatile stock market conditions. Further, we reveal that during the economic 

contraction phase increase in demand for gold potentially triggers increase in bond investments. 

In contrast, the negative impact of bond illiquidity during either of the phases suggests that 

decrease in demand for bond indicates a rise in gold investments. Seventh, our findings suggest 

that the observed “flight to safety” phenomenon in the gold and equity market is due to the 

implied volatility of the stock market, rather than the observed stock market uncertainty. Finally, 

we show that increase in investors’ risk aversion is associated with increase in the return 

comovements of gold and other assets. 

 

The study also makes significant contributions to the extant literature on forecasting of return 

comovements. The evidence presented in the paper shows that the MSSV framework is effective 

in capturing the persistence in volatility shocks. Moreover, the model is able to capture the 

‘pressure smoothening’ effects of those shocks that are not persistent. Overall, our research 

suggests that the dynamic strategy incorporating regime switching framework outperforms the 

multivariate conditional covariance strategy in forecasting multi-asset return comovements. 

Investors with different risk-appetites are able to enhance their portfolio optimisation choices by 

utilising the analytical approach proposed in the study. 
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Table 1: Summary Statistics
 

Panel A: Descriptive Statistics of Asset Returns (1987 – 2012) 

   Equity (E) Bond (B) Real Estate (RE) Gold (G) Oil (O)  

Mean (%) 6.274 5.524 3.394 5.438 6.331  

Standard Deviation (%) 16.428 1.293 2.730 15.449 33.000  

Kurtosis 3.854 0.138 0.611 1.986 1.687  

Skewness -1.114 -0.165 -0.726 0.064 -0.357  

Panel B: Diagnostics (1987-2012) 

 Equity (E) Bond (B) Real Estate (RE) Gold (G) Oil (O)  

Jarque-Bera statistics 208.3** 

(0.000) 

7.7** 

(0.020) 

31.5** 

(0.000) 

45.7** 

(0.000) 

48.4** 

(0.000)  

ARCH LM statistic (1) 31.586** 

(0.000) 

17.737** 

(0.000) 

1741.764** 

(0.000) 

4.586** 

(0.033) 

13.676** 

(0.000)  

ARCH LM statistic (5) 17.489** 

(0.000) 

8.571** 

(0.000) 

371.920** 

(0.000) 

3.003** 

(0.016) 

4.563** 

(0.000)  

ARCH LM statistic (10) 12.804** 

(0.000) 

4.903** 

(0.000) 

190.231** 

(0.000) 

1.927** 

(0.041) 

2.913** 

(0.001)  

Ljung-Box statistic (1) 9.293** 

(0.045) 

9649.404** 

(0.000) 

4232.160** 

(0.000) 

4.433** 

(0.036) 

5.757** 

(0.017)  

Ljung-Box statistic (5) 1.254 

(0.282) 

1932.252** 

(0.000) 

914.690** 

(0.000) 

3.005** 

(0.011) 

3.223** 

(0.007)  

Ljung-Box statistic (10) 0.869 

(0.562) 

971.691** 

(0.000) 

452.606** 

(0.000) 

1.619 

(0.100) 

2.156** 

(0.022)  

Panel C: Descriptive Statistics of the Dependence Structures 

   Mean Standard Error 

Standard 

Deviation Kurtosis Skewness  

Equity-Bond (EB) 0.1131 0.0124 0.1250 5.2245 1.9484  

Equity-Real estate (ERe) 0.0777 0.0072 0.0720 -0.9398 -0.0323  

Equity- Gold (EG) -0.047 0.0037 0.0370 -0.3393 -0.0670  

Equity-Oil (EO) 0.1048 0.0297 0.2980 -0.1854 0.1111  

Bond-Real estate (BRe) 0.1125 0.0048 0.0487 -0.1293 -0.3535  

Bond-Gold (BG) 0.0286 0.0072 0.0726 4.1310 -0.8807  

Bond-Oil (BO) 0.0168 0.0007 0.0074 5.3784 -1.7145  

Real estate-Gold (ReG) -0.091 0.0035 0.0356 1.0910 1.0125  

Real estate-Oil (ReO) 0.0046 0.0044 0.0437 1.8548 0.3699  

Gold-Oil (GO) 0.1802 0.0166 0.1672 -0.3301 -0.2617  
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Note: Panel A represents the descriptive statistics of the asset returns. The sample period is from the 

fourth quarter of 1987 to the fourth quarter of 2012. The returns are annualized from the monthly 

observations. Annualized return = [(1+monthly mean return)
12

 - 1], Annualized standard deviation = 

[monthly standard deviation
2/112 ]. Panel B provides the diagnostic test results. Under the normality null 

hypothesis, Jarque-Bera test statistic follows a Chi-square distribution with fixed (2) degrees of freedom. 

The null hypothesis of the ARCH-LM test is: there is no evidence of ARCH effect. We conduct the test at 

lags 1, 5 and 10 with corresponding 1, 5, 10 degrees of freedom. Tests using other lags yield the same 

results. The Jarque-Bera test statistics in Panel (B) confirm that the unconditional distributions of the 

asset returns are not normal. We conduct the Ljung-Box test for serial correlation, corrected for 

heteroskedasticity at lags 1, 5 and 10. The p-values are reported in the parentheses. The significant LM 

statistics confirm the presence of autoregressive conditional heteroskedastic (ARCH) effects. The Ljung-

Box test also reports that most of the asset returns are serially correlated for at least one of the lag orders. 

Panel C reports the descriptive statistics of the dependence measures of the different asset pairs for the 

period 1987 to 2012: equity and bond (EB), equity and real estate (Ere), equity and gold (EG), equity and 

oil (EO), bond and real estate (BRe), bond and gold (BG), bond and oil (BO), real estate and gold (ReG), 

real estate and oil (ReO) and gold and oil (GO). The estimates of the copula parameters can be provided 

on request. The summary statistics show excess skewness and kurtosis which suggests that the 

distributions have a fatter tail and thus extreme variance is highly probable. 

** signifies rejection of the null hypothesis at 5 percent level. 
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Table 2: Summary of Significant Factor Exposure 
a 

Panel A: Macroeconomic Factor exposure of Dependence Structures       

  
DS 

Regimes 

  Macroeconomic Factors 

     Constant RF O I RA 

   Panel A Regime 1 

(EC) 

0.021 -1.222*** 0.061 0.161** 1.173*** 

   
Gold-

Equity 

(0.494) (0.000) (0.555) (0.028) (0.000) 

   Regime 2 

(EE) 

0.018 -0.474** -0.270*** 0.381 0.093 

   (0.287) (0.047) (0.001) (0.052) (0.597) 

   Panel B Regime 1 

(EC) 

-0.088*** 0.443 -1.270*** 0.422** -0.071 

   
Gold-

Bond 

(0.000) (0.173) (0.000) (0.029) (0.782) 

   Regime 2 

(EE) 

0.039 -0.349 -0.033 -0.067 0.533*** 

   (0.417) (0.063) (0.573) (0.299) (0.000) 

   Panel C Regime 1 

(EC) 

0.180 -0.493 0.443*** -0.322** 0.216 

   Gold-

Real 

Estate 

Regime 

(0.954) (0.297) (0.000) (0.012) (0.409) 

   
Regime 2 

(EE) 

0.019*** 0.972*** 0.134 0.479*** -0.416 

   
(0.005) (0.005) (0.621) (0.008) (0.121) 

   Panel D Regime 1 

(EC) 

1.004 0.729*** -0.146 -0.128 0.410** 

   

Gold-Oil 

(0.762) (0.005) (0.186) (0.192) (0.034) 

   Regime 2 

(EE) 

0.036*** 0.757** 0.461* 0.028 0.683*** 

   (0.005) (0.040) (0.094) (0.845) (0.000) 
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Panel B: Non-Macroeconomic Factor exposure of Dependence Structures 

   DS 

Regimes 

Non-macroeconomic Factors 

  OU IU LR DS GLIR TS VP DR 

Panel A Regime 1 

(EC) 

0.807 1.020** 0.353*** 0.316 -1.580*** -0.301 -0.318** -0.109 

Gold-

Equity 

(0.114) (0.046) (0.009) (0.159) (0.003) (0.065) (0.032) (0.503) 

Regime 2 

(EE) 

-0.712 0.529 -0.218** 0.023 0.171 -0.081 -0.384*** 0.541*** 

(0.122) (0.332) (0.023) (0.701) (0.123) (0.670) (0.001) (0.000) 

Panel B Regime 1 

(EC) 

0.040*** -1.708*** 0.195 -1.146*** 1.079*** -1.485*** -0.117 0.528* 

Gold-

Bond 

(0.002) (0.000) (0.251) (0.000) (0.000) (0.000) (0.416) (0.062) 

Regime 2 

(EE) 

0.078*** -1.164*** -0.360*** -0.328*** 0.006 -0.402*** -0.248** 0.334*** 

(0.000) (0.006) (0.000) (0.008) (0.934) (0.000) (0.018) (0.001) 

Panel C Regime 1 

(EC) 

-0.067 0.315 -0.165 -0.093 -0.564*** -0.074 0.156 0.986** 

Gold-

Real 

Estate 

Regime 

(0.932) (0.216) (0.317) (0.750) (0.000) (0.776) (0.594) (0.012) 

Regime 2 

(EE) 

-0.078 -0.036 -0.386*** 0.227 0.140 -0.403 0.039 -0.395* 

(0.897) (0.944) (0.009) (0.212) (0.290) (0.103) (0.831) (0.063) 

Panel D Regime 1 

(EC) 

0.037*** -0.167*** -0.016 -0.159 0.061 -0.409 -0.172 -0.292 

Gold-Oil 

(0.001) (0.000) (0.134) (0.336) (0.495) (0.204) (0.202) (0.101) 

Regime 2 

(EE) 

-0.505 -0.703 -0.009 -0.242 -0.179* 0.054 0.065 0.065 

(0.437) (0.470) (0.969) (0.309) (0.069) (0.711) (0.594) (0.708) 

Panel C: Model Characteristics 

         DS 

Regimes 

      

       SD TP Duration 

     Panel A Regime 1 0.021** 0.68*** 3.16 
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Gold-

Equity 

(EC) (0.041) (0.018)   

     Regime 2 

(EE) 

0.064** 0.73** 3.68 

     (0.019) (0.056)   

     Panel B Regime 1 

(EC) 

0.067** 0.45** 1.84 

     
Gold-

Bond 

(0.037) (0.037)   

     Regime 2 

(EE) 

0.021** 0.81** 5.31 

     (0.027) (0.029)   

     Panel C Regime 1 

(EC) 

0.018** 0.79** 4.94 

     Gold-

Real 

Estate 

Regime 

(0.040) (0.037)   

     
Regime 2 

(EE) 

0.025** 0.84** 6.42 

     
(0.039) (0.041)   

     Panel D Regime 1 

(EC) 

0.65*** 0.88** 8.58 

     

Gold-Oil 

(0.031) (0.039)   

     Regime 2 

(EE) 

0.032** 0.89** 9.31 

     (0.023) (0.034)             

a
Note: The table reports the summary the parameter estimation results of the Markov switching stochastic volatility models of the twelve state 

variables for the various dependence structure of gold and other asset returns. Regime 1 corresponds to the expansion regime of the dependence 

measure and Regime 2 corresponds to the contraction regime of the dependence measure. The expansion regime of the dependence structure 

relates to economic contraction (EC) phase and the contraction regime of the dependence structure relates to economic expansion (EE) phase. In 

panel A we report the factor exposure of the macroeconomic variables. In the set of macroeconomic state variables RF is risk free rate, O is output 

gap, I is inflation and RA is risk aversion. In Panel B we report the factor exposure of the non-macroeconomic variables. In the set of non-macro 

factors OU is output uncertainty, IU inflation uncertainty, LR measure equity illiquidity, DS is bond illiquidity measure, GLIR is gold liquidity 

factor, TS is term spread, VP is variance premium and DR is depth of recession. In Panel C we report the model characteristics. SD reports the 

standard deviation of the regime states. TP corresponds to the transition probabilities of the two regimes. TP for Regime 1 refers to the probability 

of the dependence measure to stay in the expansion regime and TP for Regime 2 corresponds to the probability of the dependence measure to stay 
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in contraction regime.  The p-values are reported in parenthesis. Duration corresponds to the expected duration of the dependence measure in the 

expansion regime (Regime 1) and in the contraction regime (Regime 2). The sample period is from the fourth quarter 1987 to the fourth quarter 

212.  

** corresponds to 5 percent significance level and *** corresponds to one percent significance level. 
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Table 3: Factor Contributions to Model Performance 
a 

Model Performance Full Model Minus non-Macro Factors  Minus Macro Factors 

Panel A: Gold-Equity Dependence Structure 

AIC -391.583 -220.013 -253.836 

BIC -355.241 -213.402 -201.534 

Panel B: Gold-Bond Dependence Structure 

AIC -239.127 -215.289 -246.278 

BIC -165.904 -208.677 -253.976 

Panel C: Gold-Real Estate Dependence Structure 

AIC -168.608 -243.788 -189.917 

BIC -95.384 -207.176 -137.615 

Panel D: Gold-Oil Dependence Structure 

AIC -212.133 -119.949 -130.545 

BIC -160.902 -97.337 -118.242 

a 
Note: The table reports the factor contributions for the Markov switching stochastic volatility models. 

Panels A to D report the factor contributions of the various dependence structures. The set of 

macroeconomic state variables include risk free rate, output gap, inflation, and risk aversion. The non-

macro factors are output uncertainty, inflation uncertainty, equity illiquidity measure, bond illiquidity 

measure, gold liquidity, term spread, variance premium and depth of recession. AIC is Akaike 

information criterion and BIC is Bayesian information criterion. 
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Table 4: Forecasting performance of MSSV and non-regime switching stochastic volatility model 

Forecasted Sample 1 Sample 2 

Asset-Return MSE 

(MSSV-

NRSM) 

𝛼  𝛽 MSE 

(MSSV-

NRSM) 

𝛼  𝛽 

Comovements MSSV NRSM MSSV NRSM MSSV NRSM MSSV NRSM 

Equity-Bond 0.013 0.000 0.003 0.995 -0.248 0.014 0.000 0.004 0.968 2.514 

  (0.042) (1.000)  (0.059) (0.826) (0.038) (0.011) (1.000) (0.049)  (0.113) (0.028) 

Equity-Real Estate 0.006 0.000 0.001 0.976 1.269 0.010 0.000 0.002 1.017 1.160 

  (0.081) (1.000) (1.000) (0.234) (0.087) (0.038) (1.000) (0.098) (0.162) (0.061) 

Equity-Gold 0.036 0.000 0.002 1.013 3.245 0.082 0.000 0.000 1.019 0.016 

  (0.024) (1.000)  (0.099) (0.808)  (0.000) (0.019) (1.000) (1.000) (0.166) (0.000) 

Equity-Oil 0.033 0.000 -0.001 1.042 1.590 0.053 0.000 0.028 0.962 0.141 

  (0.044) (1.000) (1.000) (0.178)  (0.025) (0.068) (1.000) (0.031) (0.411) (0.000) 

Bond-Real Estate 0.063 0.000 -0.001 0.898 7.295 0.003 0.000 0.001 1.009 0.308 

  (0.069) (1.000) (1.000) (0.181) (0.000) (0.029) (1.000) (1.000)  (0.922) (0.000) 

Bond-Gold 0.019 0.000 0.001 0.931 0.479 0.063 0.000 0.002 1.020 0.799 

  (0.068) (1.000) (1.000) (0.176) (0.000) (0.076) (1.000) (0.099) (0.775) (0.048) 

Bond-Oil 0.049 0.000 0.000 0.900 18.045 0.020 0.000 0.000 0.984 0.217 

  (0.014) (1.000) (1.000) (0.102) (0.000) (0.049) (1.000) (1.000) (0.870) (0.000) 

Real Estate-Gold 0.041 0.000 0.002 0.917 -0.461 0.025 0.000 0.000 0.909 2.781 

  (0.040) (1.000)  (0.099) (0.179) (0.006) (0.028) (1.000) (1.000) (0.176) (0.000) 

Real Estate-Oil 0.040 0.000 0.008 0.943 4.926 0.010 0.000 0.000 0.944 1.450 

  (0.018) (1.000) (0.049) (0.149)  (0.004) (0.088) (1.000) (1.000) (0.449) (0.041) 
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Gold-Oil 0.012 0.000 0.003 0.961 -0.056 0.029 -0.001 -0.004 1.094 14.256 

  (0.048) (1.000)  (0.057) (0.149) (0.000) (0.051) (1.000) (0.061) (0.122) (0.000) 

Note: This table reports the difference between the median of square errors of MSSV models and the non-regime switching models (NRSM) and 

forecast efficiency regression estimates of the MSSV model and the non-regime switching model (NRSM). The parameters are estimated for two 

forecasting periods, i.e. Sample 1 and Sample 2. In sample 1, the models are estimated for the period 1987 to 2002 and forecasting is done for the 

period 2003 to 2012. In sample 2, the models are estimated for the period 2003 to 2012 and forecasted for the period 1987 to 1996. The forecasting 

estimates are calibrated for ten pairs of asset return comovements. It is evident that the MSSV model’s median square errors are significantly 

lower than the non-regime switching models. This indicates that MSSV models outperform the non-regime switching models in out-of-sample 

forecasting of asset return comovements. This finding is observed for both the samples. The forecast efficient regression estimates show that the 

(𝛼, 𝛽) values are not significantly different from (0, 1). In the forecast efficiency regression framework, if the mean and the variance forecast of 

the asset return comovements are unbiased, then the regression implies that  𝛼 = 0 and 𝛽 = 1. However, the (𝛼, 𝛽) estimates for the non-regime 

models are significantly different from (0, 1). The findings of 𝛼 ≠ 0 and 𝛽 ≠ 1 indicate that the non-regime switching model forecasts either 

underestimates or overestimates the true volatility of asset return comovements or both during phases of high and low volatility in return 

comovements. The findings indicate that in contrast to the MSSV approach, the non-regime switching models yield biased forecasts. The standard 

errors are in parenthesis. 
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Table 5: Below and above median forecasting performance of MSSV and non-regime switching stochastic volatility model 

Panel A: Sample 1 

Forecasted Below Median Forecast Above Median Forecast 

Asset-Return 𝛼− 𝛽− 𝛼+ 𝛽+ 

Comovements MSSV NRSM MSSV NRSM MSSV NRSM MSSV NRSM 

Equity-Bond 0.000 -0.003 0.994 4.435 0.000 0.003 1.016 -0.122 

  1.000 0.098 0.126 0.000 1.000 0.091  0.128  0.021 

Equity-Real Estate 0.000 -0.001 0.952 12.887 0.000 0.000 0.977 0.307 

  1.000 0.109 0.101 0.000 1.000 1.000 0.107 0.000 

Equity-Gold 0.000 -0.002 1.058 3.989 0.000 0.020 0.927 0.700 

  1.000 0.091 0.279 0.000 1.000 0.047 0.109 0.000 

Equity-Oil 0.000 0.018 1.015 2.301 0.000 0.002 0.989 0.046 

  1.000 0.015 0.100 0.000 1.000 0.102 0.126 0.000 

Bond-Real Estate 0.000 0.002 0.905 1.475 0.000 0.000 0.924 0.447 

  1.000 0.090 0.108 0.000 1.000 1.000 0.101 0.000 

Bond-Gold 0.000 -0.004 0.938 1.907 0.000 0.000 0.903 0.029 

  1.000 0.092 0.112 0.000 1.000 1.000 0.100 0.000 

Bond-Oil 0.000 0.000 0.905 1.935 0.000 0.001 1.033 0.464 

  1.000 1.000 0.106 0.000 1.000 0.180  0.421 0.000 

Real Estate-Gold 0.000 0.000 1.027 5.600 0.000 0.003 1.038 -4.116 

  1.000 1.000 0.546 0.000 1.000 0.091 0.604 0.000 

Real Estate-Oil 0.000 0.009 0.911 3.353 0.000 0.006 1.033 0.122 

  1.000 0.091 0.101 0.000 1.000 0.091  0.5067  0.046 

Gold-Oil 0.000 0.012 1.025 7.324 -0.001 0.000 1.055 -0.017 
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  1.000 0.039 0.258 0.000 1.000 1.000 0.258 0.000 

Panel B: Sample 2 

Forecasted Below Median Forecast Above Median Forecast 

Asset-Return Alpha  Beta Alpha  Beta 

Comovements MSSV NRSM MSSV NRSM MSSV NRSM MSSV NRSM 

Equity-Bond 0.000 0.004 1.019 7.531 0.000 0.007 0.981 -0.593 

  (1.000) (0.091) (0.234) (0.000) (1.000) (0.091) (0.654) (0.000) 

Equity-Real Estate 0.000 0.003 1.029 1.666 0.000 0.001 0.932 -2.479 

  (1.000) (0.090)  (0.595) (0.060) (1.000) (0.182) (0.288) (0.000) 

Equity-Gold 0.000 0.000 1.017 0.986 0.000 0.003 0.986 -0.017 

  (1.000) (1.000) (0.329) (0.372) (1.000) (0.091) (0.649) (0.029) 

Equity-Oil 0.000 0.000 1.060 0.755 0.000 0.040 0.977 -0.299 

  (1.000) (1.000) (0.129) (0.047) (1.000) (0.026) (0.329) (0.032) 

Bond-Real Estate 0.000 0.000 1.017 1.591 0.000 0.000 0.987 0.169 

  (1.000) (1.000) (0.378) (0.000) (1.000) (1.000) (0.629) (0.000) 

Bond-Gold 0.000 0.000 1.022 2.699 0.000 0.004 0.954 -6.029 

  (1.000) (1.000) (0.281) (0.000) (1.000) (0.091)  (0.322) (0.000) 

Bond-Oil 0.000 0.000 1.004 1.321 0.000 0.000 0.969 0.107 

  (1.000) (1.000) (0.529) (0.047) (1.000) (1.000) (0.627) (0.000) 

Real Estate-Gold 0.000 -0.001 0.908 5.070 0.000 0.000 0.989 -0.667 

  (1.000) (0.091) (0.418) (0.000) (1.000) (1.000) (0.482)  (0.002) 

Real Estate-Oil 0.000 0.000 0.992 3.074 0.000 0.000 0.967 0.359 

  (1.000) (1.000) (0.483) (0.000) (1.000) (1.000) (0.258) (0.027) 

Gold-Oil 0.000 -0.030 1.017 2.469 -0.001 0.010 0.955 0.408 
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  (1.000) (0.042) (0.329) (0.000) (1.000) (0.037)  (0.386) (0.032) 

Note: This table reports the forecast efficiency regression estimates of the MSSV model and the non-regime switching model (NRSM). The 

parameters are estimated for two forecasting periods, i.e. Sample 1 and Sample 2. In sample 1, the models are estimated for the period 1987 to 

2002 and forecasting is done for the period 2003 to 2012. In sample 2, the models are estimated for the period 2003 to 2012 and forecasted for the 

period 1987 to 1996. Panel A and Panel B report the forecast efficient regression estimates for Sample 1 and Sample 2, respectively. The 

forecasting estimates are calibrated for ten pairs of asset return comovements. For each of the samples the forecasting efficient regression is 

estimated allowing for a break in the regression at the median forecast. Therefore, the table reports the forecast efficiency regression estimates for 

below median (𝛼−, 𝛽−) and for above median (𝛼+, 𝛽+). In this framework, if the mean and the variance forecast of the asset return comovements 

are unbiased, then the regression implies that  𝛼 = 0 and 𝛽 = 1. For the MSSV model, the (𝛼−,  𝛽−) and the (𝛼+, 𝛽+) estimates are not 

significantly different from (0, 1). However, for the non-regime switching model the (𝛼+, 𝛽+) estimates are significantly different from (0, 1). In 

particular, it is evident that the 𝛽+ values are significantly less than one. This shows that in periods of high asset return comovements (economic 

contraction phase) return comovements. In a similar vein the positive 𝛽+ values during periods of low asset return comovements, suggests that the 

non-regime switching model underestimates the true variance of the return covariance during the economic expansion phase. Alternatively, the 

findings indicate that the non-regime switching models provide biased out-of-sample forecasts. This observation is consistent across both the 

samples. The standard errors are in parenthesis. 
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Table 6: Economic value of forecasting asset return comovements 

  MCC Strategy Dynamic Strategy     

  Mean Std. Dev SR Mean Std. Dev SR WTP p-value 

𝛾 = 5                 

0.5% 18.00 19.02 0.92 21.16 20.71 0.99 0.19 0.091 

1.0% 17.25 18.26 0.89 19.80 19.79 0.95 0.36 0.071 

1.5% 16.63 17.39 0.87 19.04 19.07 0.92 0.41 0.055 

2.0% 15.89 16.34 0.85 18.72 19.00 0.88 0.56 0.046 

2.5% 15.04 15.48 0.81 18.01 18.03 0.86 0.87 0.024 

3.0% 14.34 14.18 0.80 17.80 17.62 0.84 1.24 0.001 

3.5% 13.65 12.85 0.79 16.90 16.54 0.81 1.66 0.001 

𝛾 = 10   

 

    

 

  

  0.5% 10.71 11.10 0.92 14.69 14.33 0.99 0.11 0.092 

1.0% 9.76 9.84 0.89 14.19 13.88 0.95 0.34 0.064 

1.5% 8.66 8.23 0.87 13.34 12.87 0.92 0.39 0.059 

2.0% 7.96 7.01 0.85 12.14 11.52 0.88 0.51 0.047 

2.5% 7.36 6.00 0.81 11.14 10.04 0.86 0.53 0.040 

3.0% 6.36 4.20 0.80 10.39 8.79 0.84 0.68 0.015 

3.5% 5.66 2.73 0.79 9.14 6.96 0.81 0.82 0.007 

𝛾 = 15   

 

    

 

  

  0.5% 6.41 6.42 0.92 10.72 10.32 0.99 0.10 0.092 

1.0% 5.81 5.40 0.89 9.60 9.05 0.95 0.32 0.080 

1.5% 5.06 4.09 0.87 8.65 7.77 0.92 0.33 0.079 

2.0% 4.57 3.02 0.85 7.90 6.71 0.88 0.47 0.041 

2.5% 3.73 1.52 0.81 6.65 4.83 0.86 0.50 0.038 

3.0% 3.65 0.81 0.80 5.80 3.33 0.84 0.56 0.022 

3.5% 3.60 0.13 0.79 5.10 1.98 0.81 0.62 0.010 

Note:  The table compares the performance of MCC strategy and the dynamic strategy. The portfolio 

formation starts with 16 years of information (1987 to 2002) and the investment period is from 2003 to 

2012. The annualized mean, standard deviation and the Sharpe ratios are reported for both the strategies. 

It is evident that the dynamic strategy yields higher returns and is more volatile than the MCC strategy. 

However, the Sharpe ratios are higher for the dynamic strategy, suggesting that investors are better 

rewarded for their risky portfolios. The investors are assumed to have power utility function and constant 

relative risk aversion represented as 𝛾. The Willing-to-pay (WTP) certainty equivalence measure 

computes the maximum fee (𝑓) an investor is willing to pay for holding a dynamic strategy over the other 
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strategy. The last column reports the bootstrapped p-values of the hypothesis: 𝐻𝑛𝑢𝑙𝑙: 𝑊𝑇𝑃 ≤ 0. The 

hypothesis is rejected for all the cases at 10, 5 or 1 percent significance levels. The findings show that the 

dynamic strategy outperforms the MCC strategy. 

*, **, *** represents significance at 10, 5 and 1 percent levels 
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Figure 1: Time-path of the Dependence Structures 
a 

Panel A: Regimes of Equity-Gold Dependence Structure 

 

 

Panel B: Regimes of Bond-Gold Dependence Structure 
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Panel C: Regimes of Real estate-Gold Dependence Structure 

 

 

Panel D: Regimes of Gold-Oil Dependence Structure 

 

 

a 
Note: Panel A to D shows the time path of the time-varying dependence structure of the four 

asset-pairs. The average dependence measures for the period 1987 to 2012 of the different asset 

pairs are: Gold-Equity (G/E) = -0.047, Gold-Bond (G/B) = 0.029, Gold-Real Estate (G/RE) = -

0.091 and Gold and Oil (G/O) = 0.180. The average dependence measures for the asset pairs 
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during the expansion period are: G/E = -0.047, B/G = 0.027, B/O = 0.017, G/RE = -0.094 and 

G/O = 0.162.  The average dependence measure for the asset pairs during the contraction period 

are: G/E = -0.046, G/B = 0.044, G/RE = -0.069 and G/O = 0.321. The lower tail corresponds to 

economic contractionary phase and the upper tail corresponds to economic expansionary phase. 

Here we compute the dependence structure of monthly return comovements to present a more 

informed description. 
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Appendix A 

Estimation filter for the MSSV model 

The Kalman filter employed for projection is an iterative process. It forecasts the state variable at 

‘t+1’ period and updates it when zt is observable in the equation (6). For deriving the filtering 

equations we denote: 

 

𝑔𝑡|𝑡−1
(𝑚,𝑛)

= 𝐸[𝑔𝑡|𝑆𝑡 = 𝑚, 𝑆𝑡−1 = 𝑛, 𝜓𝑡−1], 𝑝𝑡|𝑡−1
(𝑚,𝑛)

= 𝐸 [(𝑔𝑡 − 𝑔𝑡|𝑡−1
(𝑚,𝑛)

) |𝑆𝑡 = 𝑚, 𝑆𝑡−1 = 𝑛, 𝜓𝑡−1] 

 

and 𝑔𝑡|𝑡−1
𝑚 = 𝐸[𝑔𝑡|𝑆𝑡 = 𝑚, 𝜓𝑡−1], 𝑝𝑡|𝑡−1

𝑚 = 𝐸[(𝑔𝑡 − 𝑔𝑡|𝑡−1
𝑚 )|𝑆𝑡 = 𝑚, 𝜓𝑡−1] 

   

Following Smith (2002), we first forecast log-volatility and then update the previous forecasted 

estimate. The sequential steps are: 

 

Step 1: The log-volatility is forecast using: 

𝑔𝑡|𝑡−1
(𝑚,𝑛) = 𝜔𝑚 + 𝜑𝑚𝑔𝑡|𝑡−1

𝑛  
(A- 1) 

𝑝𝑡|𝑡−1
(𝑚,𝑛) = 𝜑𝑚

2 𝑝𝑡|𝑡−1
𝑛 + 𝜎𝑚

2

 (A- 2) 

Step 2: The forecasted estimate is updated using 

𝑔𝑡|𝑡
(𝑚,𝑛) = 𝑔𝑡|𝑡−1

(𝑚,𝑛)
+ 𝑝𝑡|𝑡−1

(𝑚,𝑛)
(𝑝𝑡|𝑡−1

(𝑚,𝑛)
+

𝜋2

2
)

−1

(𝑍𝑡 − 𝑍𝑡|𝑡−1
(𝑚,𝑛)

) (A- 3) 

𝑝𝑡|𝑡
(𝑚,𝑛) = 𝑝𝑡|𝑡−1

(𝑚,𝑛)
− 𝑝𝑡|𝑡−1

(𝑚,𝑛)
(𝑝𝑡|𝑡−1

(𝑚,𝑛)
+

𝜋2

2
)

−1

𝑝𝑡|𝑡−1
(𝑚,𝑛)

 (A- 4) 

The conditional densities are computed using the following equation 

𝑓(𝑍𝑡|𝑆𝑡 = 𝑚,𝑆𝑡−1 = 𝑛, 𝜓𝑡−1)

=
1

√2𝜋 (𝑝
𝑡|𝑡−1
(𝑚,𝑛)

+
𝜋2

2 )

− 𝑒𝑥𝑝 (
− (𝑍𝑡 − 𝑍𝑡|𝑡−1

(𝑚,𝑛)
)

2

2 (𝑝
𝑡|𝑡−1
(𝑚,𝑛)

+
𝜋2

2 )
)

−1

𝑝𝑡|𝑡−1
(𝑚,𝑛)

 

(A- 5) 

It can be noted that the above procedures makes our process exclusively path dependent. Hence, 

to remove the path dependence we rely on Kim (1994) as stated in Smith (2002). We compute 

the conditional expectation of the log-volatility forecast by taking the weighted average output of 

the previous iteration using the formulations stated below. 
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𝑔𝑡|𝑡
𝑚 =

∑ 𝑃𝑟[𝑆𝑡 = 𝑚, 𝑆𝑡−1 = 𝑛|𝜓𝑡]𝑔𝑡|𝑡
(𝑚,𝑛)𝑁

𝑛=1

𝑃𝑟[𝑆𝑡 = 𝑚|𝜓𝑡]
 (A- 6) 

𝑝𝑡|𝑡
𝑚 =

∑ 𝑃𝑟[𝑆𝑡 = 𝑚, 𝑆𝑡−1 = 𝑛|𝜓𝑡] (𝑝𝑡|𝑡
(𝑚,𝑛) + (𝑔𝑡|𝑡

𝑛 − 𝑔𝑡|𝑡
(𝑚,𝑛)

)
2

)𝑁
𝑛=1

𝑃𝑟[𝑆𝑡 = 𝑚|𝜓𝑡]
 

(A- 7) 

 

We calculate the regime probabilities based on Smith’s (2002) modification of Hamilton’s 

(1989) filter. First, we estimate the regime probabilities using 

 

𝑃𝑟[𝑆𝑡 = 𝑚, 𝑆𝑡−1 = 𝑛|𝜓𝑡] = 𝑃𝑟[𝑆𝑡 = 𝑚|𝑆𝑡−1 = 𝑛] × 𝑃𝑟[𝑆𝑡−1 = 𝑚|𝜓𝑡−1] 
(A- 8) 

 

The term 𝑃𝑟[𝑆𝑡−1 = 𝑚|𝜓𝑡−1] in the equation (A- 8) is the previous iteration filter output. Next we 

calibrate the joint density using 

 

𝑓(𝑍𝑡 , 𝑆𝑡 = 𝑚, 𝑆𝑡−1 = 𝑛|𝜓𝑡−1)

= 𝑓(𝑍𝑡|𝑆𝑡 = 𝑚, 𝑆𝑡−1 = 𝑛, 𝜓𝑡−1) × 𝑃𝑟[𝑆𝑡−1 = 𝑚|𝜓𝑡−1] 
(A- 9) 

 

where 𝑓(𝑍𝑡 , 𝑆𝑡 = 𝑚, 𝑆𝑡−1 = 𝑛|𝜓𝑡−1) is defined previously in equation (A- 5). In step three we 

integrate the regimes to calculate the unconditional density as given in equation (A- 10) and then 

we update the probability of the regimes in state‘t’ using equation (A- 11). 

𝑓(𝑍𝑡|𝜓𝑡−1) = ∑ ∑ 𝑓(𝑍𝑡|𝑆𝑡 = 𝑚, 𝑆𝑡−1 = 𝑛, 𝜓𝑡−1)

𝑁

𝑛=1

𝑀

𝑚=1

   (A- 10) 

𝑃𝑟[𝑆𝑡 = 𝑚, 𝑆𝑡−1 = 𝑛|𝜓𝑡−1] =
𝑓(𝑍𝑡|𝑆𝑡 = 𝑚, 𝑆𝑡−1 = 𝑛, 𝜓

𝑡−1
)

𝑓(𝑍𝑡|𝜓
𝑡−1

)
 (A- 11) 
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Appendix B 

Data Description 

Output Gap (ot): Gross Domestic Product (GDP) is the measure of output. The gap is the 

percentage difference between the output and its expected output gap. 

Expected Output Gap (ge):It is estimated as 

𝐸𝑡[𝑔𝑒] = 𝐸𝑡 [
𝐺𝐷𝑃𝑡

𝐺𝐷𝑃𝑡
(

𝐺𝐷𝑃𝑡+1

𝐺𝐷𝑃𝑡+1
𝑞𝑡 − 1)] = 𝐺𝐷𝑃𝑡

𝐸𝑡 [
𝐺𝐷𝑃𝑡+1

𝐺𝐷𝑃𝑡
]

𝐺𝐷𝑃𝑡+1
𝑞𝑡  

 

Where GDPt is the level of real GDP at time t and 𝐺𝐷𝑃𝑡+1
𝑞𝑡

 is the quadratic trend value of real 

GDP. To measure [
𝐺𝐷𝑃𝑡+1

𝐺𝐷𝑃𝑡
], the median of the survey response from Survey of Professional 

Forecasters (SPF) is used when available. 

Output Uncertainty (out): Mean of SPF’s real output volatility.  

Inflation (it measured as 𝜋): Log difference of the Consumer Price Index (CPI) for all items for 

all urban consumers. 

Expected Inflation 𝜋𝑒: Treasury Inflation Protected (TIP) note subtracted from ten-year Treasury 

note 

Inflation Uncertainty (iut measured as 𝜋𝑢): It will be estimated as the fractional uncertainty 

measure of inflation [
𝜋𝑒−𝜋

𝜋
]. 

Risk Aversion Factor (rat): The measure of the risk aversion factor is based on external habit 

specifications of Campbell and Cochrane (1995) taken from Baele et al. (2010). The values are 

considered from Bekaert and Engstrom (2010). 

Nominal Risk-free Rate (Rf): Three-month Treasury bill rate 

Stock Market Illiquidity (lrt): We first measure the trading intensity using turnover ratio. The 

quarterly turnover is calculated by dividing the total trading volume over a quarter by the 

average market value during the quarter. We then construct the illiquidity ratio as suggested by 

Amihud (2002), i.e. 𝑙𝑟𝑡 = 𝑁−1 ∑ (|𝑁  𝑅𝑁𝑡|/𝑇𝑢𝑟𝑛𝑜𝑣𝑒𝑟𝑁𝑡), where |𝑅𝑁𝑡| is the absolute daily return, 

N is the number of trading days in a quarter t and 𝑇𝑢𝑟𝑛𝑜𝑣𝑒𝑟𝑁𝑡is the daily turnover of day d in 

quarter t. We consider capitalization-based zero daily returns across all listed firms. Importantly, 

Amihud (2002) shows that this measure of illiquidity is highly positively correlated with the 

price impact that coincides with the bid-ask spread in standard-size transactions. Also, 
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Hasbrouck (2009) shows that this illiquidity measure performs better than the other measure of 

liquidity. 

Bond Market Illiquidity (dst): Bid-ask spreads across all securities, i.e. one month , three months, 

and one, two, three, five, seven, ten, twenty and thirty years of maturity. 

Gold market liquidity factor (GLIRt): The gold liquidity factor is estimated as the change in open 

interest 

Variance Premium (vp): The difference between ex-post realized variance and variance swap 

rate. 

Term Spread (tst): Difference between ten-year and three-month Treasury bill yields. This will 

serve as a proxy for short term economic condition. 

Depth of recession (drt):It is based on Lee and Wang’s (2012) estimate of business cycle proxy. 
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Appendix C 

Turning Points in the Business Cycle 

Turning Point Date Expansion (E)/Contraction (C) Months in Phase 

0 8/1987 E1 35 

1 7/1990 C1 8 

2 3/1991 E2 120 

3 3/2001 C2 8 

4 11/2001 E3 73 

5 12/2007 C3 18 

6 6/2009 E4 40 

Notes: The turning points of the business cycle are based on the NBER-official dates of troughs 

and peaks (NBER, 2013). The sample period is from the fourth quarter of 1987 to the fourth 

quarter of 2012, yielding 302 monthly observations. Each month in the sample is divided into 

either an expansionary phase or a contractionary phase based on the turning point. The 

expansionary period has 268 months and the contractionary period has 34 months. 

 

 


