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Abstract 

A sub-grain size finite element modelling approach is presented in this paper to investigate variations in fracture 

mechanics parameters for irregular crack paths. The results can be used when modelling intergranular and 

transgranular crack growth where creep and fatigue are the dominant failure mechanisms and their crack paths are 

irregular. A novel method for sub-grain scale finite element mesh consisting of multiple elements encased in 

~m sized grains has been developed and implemented in a compact tension, C(T), mesh structure. The 

replicated shapes and dimensions were derived from an isotropic metallic grain structure using representative 

random sized grain shapes repeated in sequence ahead of the crack tip. In this way the effects of crack tip angle 

ahead of the main crack path can be considered in a more realistic manner. A comprehensive sensitivity analysis has 

been performed for elastic and elastic-plastic materials using ABAQUS and the stress distributions, the stress 

intensity factor and the J-integral have been evaluated for irregular crack paths and compared to those of obtained 

from analytical solutions. To examine the local and macroscopic crack path effects on fracture mechanics 

parameters, a few extreme cases with various crack-tip angles have been modelled by keeping the macroscopic 

crack path parallel to the axis of symmetry. The numerical solutions from these granular mesh structures have been 

found to be in relatively good agreements with analytical solutions.  
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Nomenclature 

a Crack length 

B Specimen thickness 

Bn Net specimen thickness between side-grooves 

c Uncracked ligament 

E  Elastic (Young’s) modulus 

E' Effective elastic modulus ( = E for plane stress and E/(1- v
2
) for plane strain) 

H Geometry function in displacement approach for estimation of J-integral   

J Fracture mechanics parameter for plastically deforming material  
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J e  Elastic component of J-integral 

J p Plastic component of J-integral 

K , KI  Stress intensity factor, Mode-I stress intensity factor 

N Plastic hardening exponent 

P Load 

Pp0 Plastic normalising load  

q Crack growth direction 

r Radial distance ahead of the crack tip 

W Specimen width 

Ws Strain energy density 

Y Shape function 

θ Crack tip angle 

  Geometry function in displacement approach for J-integral estimation  

Δp
 

Plastic displacement  

  Nominal stress 

σyy
 Stress distribution in y direction ahead of the crack tip for an elastically deforming material 

σY
 

Yield stress  

σ0.2
 

0.2% proof stress 

σp0 Normalising stress in Ramberg-Osgood material model 

σref
 Reference stress 

σe von Mises equivalent stress 

 

1. Introduction 

A significant number of high temperature components undergo creep or creep/fatigue loading conditions. 

Assessments are normally required to evaluate the safety of either real or postulated defects in plant components. In 

addition, there is a need to assess irregular defects in plant components in a sufficiently accurate manner. Defect 

assessments in these components need laboratory crack growth data to estimate the remaining life [1-3]. Fracture 

toughness, fatigue and creep crack growth (CCG) tests are usually performed on the compact tension, C(T), fracture 

specimen geometry. The specimens are often side grooved to promote crack growth along the plane of the initial 

starter crack. However, due to the intergranular nature of CCG process, small deviations in the crack path are 

observed in test specimens (see Figure 1). 

Crack paths are often considered straight in macroscopic scale when evaluating the fracture mechanics 

parameters such as K and J for the case of elastic and elastic-plastic materials, respectively. However, realistic 

solutions will be provided when the crack deviations above and below the symmetry line are taken into account. The 

influence of crack tip angle on fracture mechanics parameters K and J is investigated in this paper by extending the 

crack using defined increments is such a way that intergranular deviations are modelled whereas the macroscopic 
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crack path remains straight. The numerical results from these studies on the straight and deviating crack paths are 

validated through comparisons to the existing analytical solutions for macroscopically straight crack paths. 

The level of accuracy and scatter in the data from experimental testing and numerical modelling helps to 

determine the confidence of the life assessments calculations. As a first step, it is important to compare the 

numerical solutions of the elastic K and plastic J parameters to the available analytical solutions, by implementing  

regular and irregular crack paths in mesh structures. For this purpose a novel method of meshing which replicates a 

polycrystalline grain structure is developed. This would allow the development of simulation methods where 

damage can grow and coalesce on grain boundaries to form micro-crack and large cracks in an irregular pattern 

similar to a real case shown in Figure 1. The finite element (FE) method used as a tool to examine fracture 

mechanics problems at a range of length scales is ideal for this purpose. 

Usually it is recommended that a focused mesh at the crack tip should be employed to evaluate fracture 

mechanics parameters (see e.g. [4]).  However this approach is limited to stationary and straight crack tip which 

does not cater for crack growth modelling unless computationally intensive remeshing techniques are employed. 

This is unrealistic and therefore methods need to be examined to evaluate the fracture mechanics parameters J and 

K, for growing cracks which are irregular in shape. These methods require explicit modelling of the grain structure 

to simulate realistic intergranular crack paths. In this paper a number of crack tip angles have been examined and the 

elastic-plastic energy release rates for crack extensions along different directions are investigated and verified 

through comparisons with analytical and straight crack path solutions. 

 

2. Elastic-Plastic Deformation Models 

The Ramberg-Osgood material model is widely used to describe the stress-strain behaviour of strain hardening 

materials. In non-dimensional, uniaxial form it may be written as 

휀
휀𝑝0⁄ = 𝜎

𝜎𝑝0⁄ + 𝛼 (𝜎
𝜎𝑝0⁄ )

𝑁

 (1) 

where σ and  are the stress and strain, respectively, 𝛼 is a material constant and p0 and p0 are the normalising 

(plastic) stress and strain. Note that there is no precise yield stress in this material law, but the non-linear (power-

law) response typically dominates when  > p0 and p0 is often taken to be the 0.2% proof stress of the material. 

For multiaxial loading conditions, Eqn (1) may still be applied by employing the von Mises equivalent stress, e, in 

calculations. 

 

3. Estimation Methods For Fracture Mechanics Parameters  

In this section an outline of the methods used to derive appropriate fracture mechanics parameters for laboratory 

specimens is presented.  

 

3.1. Linear Elastic K Field Solution 

For an infinitely sharp crack tip under linear elastic conditions, the crack tip stress field is described by the stress 

intensity factor, K, according to the relationship [5] 



4 

 

𝜎𝑖𝑗 =
𝐾

√2𝜋𝑟
𝑓𝑖𝑗(𝜃) (2) 

where r is the radial distance from the crack tip at an arbitrary crack tip angle, θ.  The stresses in the loading 

direction can be found by defining 

𝑓𝑦𝑦 =  𝑐𝑜𝑠 (
𝜃

2
) × (1 + 𝑠𝑖𝑛 (

𝜃

2
) × 𝑠𝑖𝑛 (

3𝜃

2
)) (3) 

For a sharp crack in a finite body, the stress intensity factor can be estimated using   

𝐾 = 𝑌 (
𝑎

𝑊
) 𝜎√𝑎 (4) 

where σ is the applied stress, Y(a/W) is a dimensionless function of the geometry and a is the crack length. For a 

C(T) specimen the nominal applied stress can be defined as [6] 

𝜎 =
𝑃

√𝐵𝐵𝑛𝑊
 (5) 

where W is the specimen width, B is thickness, Bn is net thickness between the side grooves and P is the applied 

load. 

 

3.2. J-Definition and HRR Stress Distribution Field 

For a non-linear power law hardening material, the stress distribution field near the crack tip can be defined in terms 

of J-integral by HRR equation (Hutchinson [7, 8] and Rosengren & Rice [9])   

𝜎𝑖𝑗

𝜎𝑝𝑜

= [
𝐽

𝛼휀𝑝0𝜎𝑝𝑜𝐼𝑁𝑟
]

1
𝑁+1

�̃�𝑖𝑗(𝜃; 𝑁) (6) 

where σij is the stress tensor, r is the radial distance from the crack tip and �̃�𝑖𝑗 is a non-dimensional function of crack 

tip angle θ and plastic deformation stress exponent N, values of which are provided in  [10]. In Eqn (6), the material 

parameters 𝛼, εp0 and σp0 are as defined in the Ramberg-Osgood model (Eqn (1)) and IN is a dimensionless constant 

which can be estimated using [11]  

For plane stress: 𝐼𝑁 = 7.2√0.12 + 1/𝑁 − 2.9/𝑁 (7) 

 

  For plane strain: 𝐼𝑁 = 10.3√0.13 + 1/𝑁 − 4.6/𝑁 (8) 

The non-linear elastic crack tip parameter, J, may be evaluated from a line integral along a contour surrounding 

a crack tip [12]. An anticlockwise contour, Г, is defined such that  

𝐽 = ∫ 𝑊𝑠𝑑𝑥2 − 𝑇𝑖 (
𝜕𝑢𝑖

𝜕𝑥1

)

𝛤

𝑑𝑠 (9) 

where Ti is the traction vector, ui  is the displacement vector, s is the arc length along Г and Ws is the strain energy 

density which can be expressed as 

𝑊𝑠 = ∫ 𝜎𝑖𝑗𝑑휀𝑖𝑗

𝜀𝑖𝑗

0

 (10) 
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with σij  and εij , the stress and strain tensors, respectively. Alternatively the value of J may be obtained from the 

potential energy release rate of a cracked body [12, 13]. The line integral solution for J is difficult to solve 

numerically, therefore alternative methods have been proposed to evaluate the J parameter. A brief review of the 

relevant methods is next described. A detailed description of all the available methods is provided in [14]. 

 

3.3. Load Line Displacement Approach, JLLD 

The potential energy of a cracked body may be related to the load, P, and the displacement along the load line, Δ
LLD

.  

In order to obtain the value of J directly from the load-displacement curve, it is convenient to split J into elastic and 

plastic parts [15]. The elastic component of J, Je, can be calculated using the linear elastic stress intensity factor, K, 

and the effective elastic modulus, E', (= E for plane stress and E/(1-v
2
) for plane strain conditions) by 

𝐽𝑒 =
𝐾2

𝐸′
 (11) 

The plastic component of J, Jp, may be estimated using 

𝐽𝑝 =
𝑃𝛥𝑝

𝐵𝑛(𝑊 − 𝑎)
𝐻𝜂 (12) 

where 𝛥𝑝 is the plastic load line displacement and H and η are geometry dependent parameters which can be defined 

as H = N/(N+1) and η = 2.2 for a C(T) specimen [16]. 

 

3.4. EPRI Estimation Method, JEPRI 

Under small scale yielding (SSY) conditions, the elastic component of J may be estimated from K evaluated at the 

effective crack length, ae, and the effective elastic modulus. The plastic component of J may also be given by the 

EPRI solutions [17]. Therefore, an estimate of the total value of J using the EPRI approach, here denoted JEPRI, is 

given by the sum of the SSY and plastic components as 

𝐽𝐸𝑃𝑅𝐼 =
𝐾2(𝑎𝑒)

𝐸′
+ 𝛼휀𝑝0𝜎𝑝0𝑐ℎ1(

𝑎

𝑊
; 𝑁)[𝑃/𝑃𝑝0]

𝑁+1
 (13) 

where h1 is a dimensionless function of normalised crack length and hardening exponent, N, and c is the 

characteristic length scale for the geometry (e.g. uncracked ligament). In Eqn (13), Pp0  is the plastic normalising 

load which is given by 

For plane stress                  : 𝑃𝑝0 = 1.071𝛹𝑐𝜎𝑝0 

                                                  For plane strain                   : 𝑃𝑝0 = 1.455𝛹𝑐𝜎𝑝0 
(14) 

where Ψ is defined as 

𝛹 = √[(2𝑎/𝑐)2 + 2(2𝑎/𝑐) + 2] − [(2𝑎/𝑐) + 1] (15) 

Solutions of h1 have been obtained numerically and tabulated in [17]. 

 

3.5. Domain Integral and VCE Method 

The calculation of the J-integral using the line integral approach (see Eqn (9)) is unfavourable in FE models.  Area 

and volume integrals are therefore implemented in numerical codes, for 2D and 3D analyses, respectively. For an 
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arbitrary crack path the ‘J-vector’ is introduced, the first component of which is identical to the J-integral and 

corresponds to the case of a straight crack along the x1 axis (see Figure 2). 

A virtual crack extension (VCE) technique, was introduced by Parks and Hellen [18, 19] and improved by 

deLorenzi [20, 21] to calculate the J-vector. In this approach, the crack tip is ‘virtually’ translated by small crack 

extension in a given direction and J is defined as an energy release rate for a small fictitious crack extension. The 

domain integral approach which was proposed by Shih [22, 23] is used in the finite element code ABAQUS [24] and 

is similar to the VCE method. In the absence of body forces, thermal strains and crack face tractions, the J-vector for 

a linear or nonlinear elastic material under quasistatic conditions can be written as    

𝐽 = ∫ (𝜎𝑖𝑗

𝜕𝑢𝑗

𝜕𝑥1

− 𝑤𝛿1𝑖)

𝐴∗

𝜕𝑞

𝜕𝑥𝑖

𝑑𝐴 (16) 

where A* is the area enclosed by Г*= Г1+ Г++ Г- -Г0  and Г1, Г+, Г-, Г0 are outer contour, upper crack face, lower 

crack face and inner contour, respectively (see Figure 2). In Eqn (16), q is the normalised virtual displacement, 

which may be associated with an angle θ, and thus is generally defined in the FE codes as the q-vector.  

Several contour integral evaluations are possible at each location along a crack. In a finite element model each 

evaluation can be thought of as the virtual motion of a block of material surrounding the crack tip (in two 

dimensions-2D) or surrounding each node along the crack line (in three dimensions-3D). Each block is defined by 

contours, where each contour is a ring of elements completely surrounding the crack tip or the nodes along the crack 

line from one crack face to the opposite crack face. These rings of elements are defined recursively to surround all 

previous contours. 

 

4. FE Model Development 

4.1. Mesh Design and Specimen Geometry 

In this paper the grain structure of a polycrystalline material has been incorporated into a finite element model. A 

number of approaches have previously been employed to model the grain structure including idealistic hexagonal 

grains (see e.g. [25-27]) and more realistic grain structures can be produced using the mathematical formulation 

‘Voronoi tessellation’ (see e.g. [28]). A simpler approach has been employed in this work to generate a realistic grain 

structured mesh. Based on a microstuructural image of Type 316H stainless steel, a unit cell has been developed in 

ABAQUS (see Figure 3(a)). The individual grains have been defined by partitioning inside the unit cell. A linear 

pattern has been used to expand the grain structured unit cell in x and y directions. For clarity, a grain has been 

highlighted in Figure 3 to indicate the repetitive cell structure. The boundaries of the unit cell are designed in a way 

such that it may be rotated by 90˚, 180˚ and 270˚ and fitted into the combined strucurure. The grain size ranges 

between around 50 – 150 μm, which is typical for 316H stainless steel material. Although there is no physical grain 

boundary region in reality, grain boundary elements have been defined to accommodate intergranular damage in 

future work. Having examined different values of thickness for grain boundaries, the optimum size found to prevent 

element distortion was 1 μm.  Different material properties may be assigned to various grains and grain boundaries, 

however, for simplicity uniform properties have been used here. 
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The unit cell grain mesh structure has been integrated into the crack tip region of a 2D model of a C(T) 

geometry, as illustrated in Figure 4. In accordance with [1], standard sized C(T) specimen has been modelled of 

width, W = 50 mm and thickness to with ratio B/W= 0.5. The crack is developed from a notch of root radius 0.25 

mm, which represents an electro discharge machined (EDM) notch, located at a distance of 20 mm from the load 

line. A refined mesh has been employed along the crack tip zone, which is progressively coarsened away from the 

crack front. Two dimensional plane stress (PS) and plane strain (PE) continuum four noded reduced integration point 

elements (type CPE4R and CPS4R) have been employed to enable the evaluation of contour integrals. The 

minimum element size within the grain structured region close to the crack tip is 5 μm in this mesh. 

The material properties employed are detailed in Table 1. A range of crack lengths and applied loads have been 

examined under both plane stress and plane strain conditions, as detailed in Table 2. The ratio of the reference stress, 

σref, to the yield stress, σY, often taken to be the 0.2% proof stress of a material, provides an indication of the levels 

of plasticity in the specimens and can be defined as [11]  

𝜎𝑟𝑒𝑓

𝜎𝑌

=
𝑃

𝑃𝐿𝐶

 (17) 

where P is the applied load and PLC is the plastic collapse load, solutions of which are provided in [11]. The 

normalised reference stress ratios for each load and crack length considered in this work are provided in Table 2.  

Transgranular crack propagation has been represented by effectively removing elements from the relevant 

grains directly ahead of the initial EDM notch, whereas intergranular crack growth has been simulated by removing 

the appropriate grain boundary elements. Note that for the case of intergranular crack growth, the crack deviates 

somewhat from (above and below) the specimen’s centre line. 

 

4.2. Contour Integral Evaluation 

The focused mesh design which is conventionally used to evaluate contour integrals cannot be employed in the 

granular mesh design. Therefore, methods to enable contour integral evaluation in this mesh structure have been 

examined and validated against alternative analytical solutions. To perform a contour integral analysis in ABAQUS, 

the crack front, the crack tip or crack line, and the crack extension direction must be defined. The crack front and 

crack tip can be chosen to be at the same node. It is generally known that the results from the first few contours 

around the crack tip may be inaccurate. Therefore, if the crack front is defined as a larger area surrounding the crack, 

the contour values are expected to converge quicker and the path independency being improved [24]. When the 

crack tip angle deviates from the normal to the loading direction, errors will increase in the J-contour analysis. 

However, as long as the main crack is normal to the loading direction and the number of contours is extended 

beyond the crack tip, the results should converge towards a straight crack. 

To evaluate the contour integral around a non-planar intergranular crack, the first contour may be defined at 

some distance away from the crack tip, to improve the accuracy of the solutions obtained. Examples of the crack 

front defined for the case of transgranular and intergranular cracks are illustrated in Figure 5(a) and Figure 6(a), 

respectively. A total number of 50 contours have been used in this analysis, which extend to a distance of 

approximately 250 μm ahead of the crack tip. The 25th and 50th contours are illustrated in Figure 5(b,c) and Figure 

6(b,c) for straight and deviating cracks, respectively. 
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When analysing the deviating intergranular path, three crack tip locations have been considered, as shown in 

Figure 7(a)-(c). Five different combinations of crack tip locations and virtual crack extensions have been examined, 

as identified in Figure 8. For Cases 1, 2 and 3 the virtual crack growth direction, q, is considered to move along the 

plane of the initial notch tip i.e. q = (1,0), which corresponds to the general macroscopic crack growth direction. 

Alternatively, for the cases where the crack tip is at an angle, as seen in Figure 7 (b) and (c), the analysis has also 

been performed by assuming the virtual crack extension, q, to be in the direction defined by the grain boundary 

(Cases 4 and 5 in Figure 8). 

 

5. Results and Discussion 

A finite element mesh design has been developed that will enable the intergranular creep crack growth and 

transgranular fatigue crack growth to be examined and related to fracture mechanics parameters. The K and J 

contour integrals have been evaluated for both a deviating (intergranular) and straight (transgranular) crack path and 

verified against analytical solutions. 

The elastic values of the normalised J parameter, Je/(σa), evaluated at each of the fifty contours in a straight 

(transgranular) and deviating (intergranular) crack of normalised length a/W = 0.44 for an applied load of 30 kN, 

and assuming plane stress conditions, for example, are shown in Figure 9. Similarly, the total (elastic + plastic 

components) of the J contour integral values normalised by the yield stress and the crack length, J/(σYa), are shown 

in Figure 10, for a normalised reference stress value σref/σY = 1.6. For the examples shown in these figures Cases 1 

and 2, identified in Figure 8, have been shown where the q-vector was defined as (1,0) i.e. along a macroscopically 

straight crack path. Also shown in Figure 9 and Figure 10 are the analytical solutions for the elastic and total values 

of J (see Eqns (11) and (13)), respectively. 

As can be seen in Figure 9 and Figure 10, good agreement is found between the elastic and total values of J for 

the case of a straight crack, except for the first few contours as expected. However, for the case of a deviating crack 

under elastic conditions, it is observed in Figure 9 that a large number of contours, which are sufficiently remote 

from the crack tip region, are required in order to obtain a value close to the analytical solution. As shown in Figure 

6 when the number of contours increases, a wider contour region forms ahead of the crack tip. When the contours 

get sufficiently far away from the crack tip region, the effect of the deviating crack path becomes less significant and 

thus the expected contour values are obtained. It is therefore apparent that the meandering crack face has a 

significant effect on the path dependency of the elastic component of the J contour integral. The influence of the 

crack tip region may be accommodated for, by evaluating the contour integral at a sufficient distance from the crack 

tip. For the elastic-plastic case shown in Figure 10, the deviating crack appears to have two distinct values of the J 

parameter close to the crack tip (contours 1-18) and further from the crack tip (contour numbers > 22). Unlike the 

elastic case (Figure 9), the values for the remote contours fall slightly below that of the analytical solution (1.9% 

error for Case 1 and 5.1% error for Case 2), but are apparently path independent. Note that significant crack tip 

blunting may take place under plastic deformation conditions, which may influence the results obtained. 

Good agreement has been found between the elastic crack tip stress field evaluated from the finite element 

analysis and the K field solution (eqn (2) ), as shown for example in Figure 11 where the normalised stress parallel 
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to the loading direction, σyy/σ, is plotted against normalised crack tip distance for the case of transgranular and 

intergranular cracks at a/W=0.44. The equivalent crack tip stress fields obtained from each of the cases considered 

are also compared to the HRR field solution in Figure 12. Due to the mesh geometry, the node from which the stress 

values is being extracted may be located at some arbitrary crack tip angle, θ, thus the HRR field solutions are shown 

for θ = 0˚ and θ = 20˚ for comparison purposes. The normalised equivalent stress calculated is in relatively good 

agreement with the HRR field solution under plane stress conditions for all cases considered. Under plane strain 

conditions the evaluated stress falls between the HRR field solution at θ = 0˚ and θ = 20˚, for the straight crack and 

also the deviating crack with r/a > 0.01. Due to the localised crack tip constraint effects close to the deviating crack 

tip, the stress calculated is found to be higher than that of the straight crack and HRR field solution under plane 

strain conditions. 

A comparison of the contour integral values obtained for the range of crack lengths and stress states examined 

are next presented. The stress intensity factor under Mode-I dominant conditions is first presented in Figure 13, 

where excellent agreement is found between the FE and analytical solution for the range of crack length examined 

for the effectively straight (transgranular) crack. Similarly, the elastic components of the J parameter, presented in 

the normalised form, are in agreement with the analytical solutions under both plane stress and plane strain 

conditions, as shown in Figure 14. 

The elastic value of the J parameter is shown in Figure 15 for all the deviating (intergranular) crack cases 

examined. Case 1-3, where the q = (1,0), are in relatively good agreement with the analytical solutions, with Cases 1 

and 2 being almost identical. However, for Cases 4-5, where the crack is assumed to grow along the grain boundary 

direction (see Figure 8), the values of J predicted are less than that of Cases 1 and 2, and the analytical solution. 

Hence, the energy release rate for crack path deviation along these grain boundaries in Cases 4 and 5 is less than that 

of a straight fronted crack. This can be attributed to the contribution of shear stresses present at the deviating crack 

tip, which may increase with crack length. As indicated in Figure 16, the Mode-I component of linear elastic stress 

intensity factor, KI, for Cases 4-5 falls significantly below the values found in Cases 1-3, and below the analytical 

solution. Note that the KI values for Cases 1-3 are close to the analytical solution. A conservative estimate of KI will 

therefore be obtained if the straight crack solution is applied to the case of a deviating crack. 

The total values of J, from an elastic-plastic analysis, have also been evaluated and are compared to the load 

line displacement and EPRI solutions (Eqns (11)─(13)) for a transgranular and intergranular crack in Figure 17 and 

Figure 18, respectively. Excellent agreement is found between the FE calculations and analytical solutions for all 

cases examined for the transgranular crack. For the intergranular crack, as shown in  Figure 18,  the normalised J 

values evaluated in the  FE analysis for Cases 1-3 (with the q-vector defined as (1,0)) are close to displacement and 

EPRI estimations under both plane stress and plane strain conditions. The lowest value of J is calculated in the FE 

analysis when the q-vector is defined in a direction parallel to load axis i.e. the crack driving force normal to the 

loading direction is small suggesting that the crack will not move in that direction, though in reality this is the path 

that an intergranular crack may take. The LLD displacement measurements obtained from the FE analyses may be 

considered identical for Cases 1-5, and hence the same values of the J parameter were found from the LLD 

measurement method. Also included in this figure are the J parameter solutions based on the LLD method for a 
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straight crack. The results from the straight and deviating crack are almost identical, indicating that the load line 

displacement measurements remote from the crack tip are uninfluenced by the small variations in the crack profile. 

This mesh may therefore be used in future work to examine creep damage and intergranular crack growth effects on 

the macroscopic response of specimens tested at elevated temperatures. 

 

6. Conclusions 

A sub-grain scale finite element (FE) fracture mechanics analysis has been presented in this paper. A novel unit cell 

structure to represent an isotropic material microstructure has been used to allow irregular crack paths being 

modelled. Methods have been examined to evaluate the fracture mechanics parameters J and K in FE analyses on a 

compact tension, C(T), geometry using a mesh appropriate for the evaluation of both intergranular and transgranular 

crack paths. The finite element model consider irregular grain paths at grain size level whilst the macro crack path is 

kept parallel to the axis of symmetry. Realistic grain and grain boundary microstructures were modelled in the mesh 

employed, and straight transgranular and deviating intergranular crack paths considered. Excellent agreement was 

found between the FE contour integral values and analytical solutions for K and J for the case of a straight fronted 

transgranular crack. Good agreement was also found between the corresponding crack tip stress fields. Reasonable 

values of K and J parameters could also be achieved from the FE contour integral values of a deviating crack when 

the contours selected were adequately far from the crack tip. The elastic and plastic components of the J parameter 

for a deviating crack were found to be in reasonable agreement with the analytical solutions when the virtual crack 

growth direction (q-vector) was defined as the macroscopic crack growth direction. However, significant differences 

were found between the analytical and FE contour integral values of a deviating crack when the crack growth 

direction was considered to continue at the angle defined by its grain boundary. The results of the J parameter 

obtained from the straight and deviating crack based on the load line displacement method are almost identical, 

indicating that the load line displacement measurements remote from the crack tip are uninfluenced by the small 

variations in the crack front geometry. 
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Tables: 
Table 1: 316H stainless steel material properties at 550˚C  

 

v 0.3 

E 140 GPa 

N 3 

𝛼 5.79 

σp0 170 MPa 

 

 

Table 2: The normalised reference stress values at different crack lengths and load levels, under PS and PE 

conditions 

 

a/W 0.44 0.46 0.48 0.50 0.52 0.54 0.56 0.58 0.60 0.62 0.64 0.66 0.68 0.70 

30kN-PS 1.22 1.33 1.45 1.59 1.74 1.92 2.12 2.36 2.63 2.95 3.32 3.77 4.30 4.95 

30kN-PE 0.83 0.91 1.00 1.10 1.21 1.33 1.48 1.65 1.84 2.07 2.34 2.67 3.05 3.53 

40kN-PS 1.63 1.77 1.93 2.12 2.32 2.56 2.83 3.14 3.50 3.93 4.43 5.02 5.74 6.60 

40kN-PE 1.11 1.22 1.33 1.46 1.61 1.78 1.97 2.20 2.46 2.77 3.13 3.56 4.07 4.70 

 

 

 

 

 

 

 

 

Figures: 
 

 

Figure 1: Intergranular creep cracking in 1/2CrMoV. 
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Figure 2: Inner and outer contours forming a closed contour around the crack tip 

 

 

Figure 3: Illustration of the (a) unit cell of grains and (b) two dimensional linear pattern expansion of unit 

cells 

 

 

Figure 4: C(T) specimen grain mesh structure 
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Figure 5: Illustration of (a)1st (b)25th (c)50th contours around the crack tip for a straight crack 

 

 

 

 

Figure 6: Illustration of (a)1st (b)25th (c)50th contours around the crack tip for a deviating crack 

 

 

 

 

Figure 7: Examination of different crack tip angles at a triple junction in a deviating crack 

 

 

 

 

Figure 8: Definition of q-vector for possible crack deviation conditions at a triple junction 
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Figure 9: Local and Global values of normalised J-elastic for a deviating crack under 30kN plane stress 

conditions at a/W=0.44 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10: Local and Global values of normalised J for a deviating crack under 40kN plane stress conditions 

at a/W=0.44 
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Figure 11: Normalised K-field stress distribution ahead of the crack tip in the y-direction under 30kN applied 

load for a straight and deviating crack at a/W=0.44  

 

 

 

 

 

 

 

Figure 12-Normalised equivalent stress distribution ahead of the crack tip under 30kN applied load for a 

straight and deviating crack at a/W=0.44 
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Figure 13: Normalised  KI v.s. a/W data for straight crack under 30kN applied load 

 

 

 

 

 

 

 

 

 

 

Figure 14: Normalised Je v.s. a/W data for straight crack under 30kN plane stress and plane strain conditions 
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Figure 15: Normalised Je plotted against a/W for a deviating crack under 30kN plane stress and plane strain 

conditions 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 16: Normalised KI plotted against a/W for a deviating crack under 30kN applied load 
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Figure 17: Normalised J-total plotted against a/W for a straight crack under 30kN and 40kN applied load 

 

 

 

 

 

 

 

 

 

 

Figure 18: Normalised J-total plotted against a/W for a deviating crack under 40kN applied load 
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