
Two-phase slug flows in helical pipes:

Slug frequency alterations and helicity fluctuations

M. Gourmaa,∗, P. G. Verdinb

aCranfield University, Energy & Power Engineering Institute. Cranfield MK43 0AL UK
bCranfield University, Oil & Gas Engineering Centre. Cranfield MK43 0AL UK

Abstract

Air-water numerical simulations in the slug flow regime have been per-

formed in horizontal helical pipes and the effects of geometries on the flow

regime have been investigated. Depending on the length of the helix, outlet

slug frequencies have been reduced with various degrees of efficiency. Cor-

relations between mean tangential velocity and helicity density fluctuations

have been identified and investigated qualitatively. These flow fields show

smaller time scales than those obtained in volume fractions fluctuations.

Shifts observed in the tangential velocity and mean helicity fluctuations to

smaller time scales (high frequencies) are associated with regime transitions.

For a slug flow undergoing a continuous transition to the annular flow regime,

it is shown that the presence of slower (low frequencies) helicity fluctuations

is attributed to the variations in the axial velocity. Finally, the analysis of

the helicity at gas-liquid interface confirms the presence of the mixing zone

at the slug front.
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1. Introduction

Helical coiled pipes are commonly used in industrial applications such as

power generation, process plants, refrigeration and heat recovery systems,

pharmaceutical and food industries. Related published work is available,

such as the one from Naphon and Wongwises (2006), where the authors

reviewed investigations on various flows in curved lines.

Pressure drop and two phase friction factors in helical lines has received

considerable attention to predict transition to turbulent regimes, see Xin

et al. (1997) and Zhao et al. (2003). Simulations from Vashisth and Nigam

(2009) and Saffari and Moosavi (2014) predicted void fraction distribution,

friction factors and velocity profiles as well as shear stress in vertical coil

air-water flow systems. Murai et al. (2006) conducted experiments with a

vertical set up; they concluded that the transition from bubbly to plug flow

is quickened and that pressure fluctuations in the slugs body present lower

amplitudes with higher frequencies than in gas bubbles. Experiments on

boiling flow in small diameter coils by Cioncolini et al. (2008) showed that

heating effects are adequately fitted using a modified Lockhart-Martinelli

correlation. A similar approach was conducted by Mandal and Das (2002)

with various coil diameters and flow rates when considering isothermal con-

ditions.

To understand the physical mechanisms involved in the inception of tur-

bulence in coiled devices, investigations have been carried out by Germano

(1982). He concluded that at low Reynolds number, curvature and torsion

appear to have first and second order effects on the transition to turbulent

flows. Recently, Ciofalo et al. (2014) showed that torsion has little influence
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on turbulence, while an increase in curvature leads to confined fluctuations

near outer wall regions.

It is acknowledged by Narasimha and Sreenivasan (1979), and Sreeni-

vasan and Strykowski (1983), that transitions to turbulent flow regimes

are delayed in helical lines and occur at Reynolds numbers well above the

level required for a similar straight pipe. This is largely attributed to

secondary re-circulations. Furthermore, numerical studies by Hüttl and

Friedrich (2000) showed that turbulence is inhibited by high curvature. The

work from Di Piazza and Ciofalo (2011) confirmed the occurrence of a tran-

sitional unsteady regime between the stationary and the turbulent state;

they associated this intermediate state to Dean travelling waves.

The classical theories of turbulence are dominated by the concept of

the energy cascade to the small scales as postulated by Kolmogorov (1941).

However, it was discovered by Moreau (1961) and Moffatt (1969) that helic-

ity has also an important role in the dynamics of fluids with large structures.

It was shown that the joint cascade of both energy and helicity to small scales

takes place if the system has large helical scales, see for example Brissaud

et al. (1973) and Kraichnan (1973). Several scientists such as Rogers and

Moin (1987), Polifke and Schtilman (1989), Levich et al. (1991), Yokoi and

Yoshizawa (1993), Levich (2009), speculated that helicity fluctuations are

fundamental to turbulence.

The control of flow regimes in pipelines is highly important for petro-

chemical industries. To that end, laboratory and field experiments are com-

monly carried out with various devices and tools to obtain accurate predic-

tions. Slug flow regimes are frequently encountered at industrial scales. In

the field, they are mainly due to the topology of the terrain (severe slugging)
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and may occur at low flow rates, (De Henau and Raithby, 1995). Slug flows

are a concern for the integrity of the production facilities. Fabre and Liné

(1992) explained that “the slug flow pattern results in sequences of long

bubbles almost filling the pipe cross-section, successively followed by liquid

slugs that may contain small bubbles”. Studies in this field of research in-

clude the mathematical modeling of slug predictions, the experimental slug

characterizations and the detailed mechanisms of slug inceptions. A com-

prehensive investigations on gas-liquid slug flows can be found in Dukler and

Hubbard (1975), Moalem et al. (1991), Andreussi et al. (1993) and Kadri

et al. (2010). An extended analysis is available in Hurlburt and Hanratty

(1975). The intermittency and the statistical character of slug flow regimes

are demonstrated and commonly recognised through various publications,

see Nydal et al. (1992), Paglianti et al. (1996), Gopal and Jepson (1997) and

van Hout et al. (2001).

Multiphase flow modelling and slug flow regimes (in particular in one di-

mensional codes) are widely approached using multi-fluid models, see Bonizzi

and Issa (2003), Issa and Kempf (2003), Gourma and Jia (2015), for exam-

ple. In a three dimensionnal linear pipe, a CFD approach with a level set

model is adopted in Lakehal et al (2012) while a Volume of Fluid (VOF)

model described in Bartosiewicz et al (2008), Febres and Nieckele (2010) and

more recently in Lu (2015), is validated for predicting a slug flow regime.

Engineers have designed new forms of tubing that can be used as sepa-

rators in multiphase flows or as slug regime controllers. Such sub-systems

can be used as a compact conditioning device (Di Matteo, 2003; Vidnes and

Engvik, 2014). The flow regime can be altered by damping slugs partly or

totally. In industrial applications, pipelines usually have diameters greater
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than 50mm with elongated coiled sub-systems and low amplitude ratio with

high curvatures.

This work is not directed to perform statistical analysis on slug charac-

teristics such as frequencies, lengths and velocities. The objective is to gain

some insight into slug flow interactions with helical sub-systems through the

investigation of several aspects: i.) analyse the slug frequency alterations

based on the length of the helical devices, ii.) establish qualitative corre-

lations between mean tangential velocity and helicity density fluctuations,

iii.) justify the appearance of small time scales (high frequencies) and large

time scales (low frequencies) in the mean helicity density histograms and

their link to flow regimes, iv.) analyse the gas-liquid helicity density to

predict zones of low helicity intensity (high turbulence intensity).

Simulations described here were conducted with the volume of Fluid

model (VOF) and the k−ε turbulence model embedded in the CFD package

Fluent (2006).

2. Mathematical Model

2.1. The V olume of F luid Model

The volume of fluid model originated by Nichols et al. (1984) is imple-

mented in most commercial CFD software. This model is based on the

assumption that two or more fluids are not inter-penetrating. Variables and

properties in each cell are functions of the phase fractions, as detailed in the

Fluent (2006) user guide. Based on this definition, the continuity equations

for liquid and gas volume fractions αl and αg can be written as:

∂tαi +∇· (αi ~u) = 0 , (1)
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where the subscript i denotes either the liquid (l) or the gas (g) phase. The

momentum equation uses a single velocity field ~u acting on the mixture with

a density ρ = αg· ρg + αl· ρl and a viscosity µ = αG·µg + αl·µl.

The momentum balance in conservative form is:

∂tρ~u+∇· (ρ~u~u) = −∇p+∇· τ + ρ·~g + ρ· ~F (2)

where, τ is the deviatoric stress tensor, given by:

τ = µ· (∇~u+∇~uT ) (3)

with p the pressure. The last term on the right hand side of Equation 2

represents the interfacial surface tension F between phases which can be

expressed as:

F = σij·
κi· ∇αi

1
2
(ρi + ρj)

, (4)

and Indices i and j represent again the two phases, σij is the surface tension

coefficient, and κi is the curvature at the interface where the surface tension

is calculated.

2.2. The k − ε Turbulence Model

The k− ε turbulence scheme belongs to the two-equation eddy-viscosity

turbulence model family. It has been used in industry for decades due to

its good compromise between numerical demands and stability. The scheme

is semi-empirical. All fields are decomposed as ~ψ = ψ + ~ψ′, where the first

term stands for the large scale (averaged) and the second term represents the

fluctuating part. Hence two additional transport equations must be solved

6



to compute the Reynolds stresses: the first one for the turbulent kinetic

energy k, and the second for the rate of turbulence dissipation ε:

∂tρ· k +∇· (ρ u k) = ∇· ((µ+
µt
σk

)∇k) +Gk − ρ· ε (5)

∂tρ· ε+∇· (ρ u ε) = ∇· ((µ+
µt
σε

)∇ε) + C1·
ε

k
·Gk + C2· ρ·

ε2

k
(6)

Quantities C1, C2, σε and σk are empirical constants. The turbulent

viscosity µt is derived from k and ε and involves an experimental constant

Cµ ' 0.09:

µt = ρ·Cµ·
k2

ε
(7)

The source term of turbulence Gk appearing in Equations 5 and 6, is a

function of the turbulent viscosity and velocity gradients:

Gk = µt· (∇u+∇uT )· ∇uT − 2

3
k· ∇u (8)

Transport equations are solved for k and ε, the turbulent viscosity µt is

computed and the Reynolds stresses are determined and substituted into

the momentum equations. The new velocity components are used to update

the turbulence generation term Gk, and the process is repeated.

3. Helicity fluctuations and turbulence

The importance of helicity in turbulence was first recognised in plasma

physics. The helicity density h(r, t) is a pseudo-scalar defined locally (Mof-

fatt, 1969) as h = ~u· ~ω (r, t). It is interpreted as a measure of the entangle-

ment of the vorticity field lines ~ω (r, t) = ∇∧ ~u (r, t).

The total helicity over the material volume (control) bounded with the

surface ∂D on which ~ω·~n|∂D = 0 is given by:

HD (t) =

∫
D

~u (r, t) · ~ω (r, t) · d3r (9)
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To draw attention on the role of helicity in turbulence (energy cascade

process), the momentum balance in non conservative form is considered.

Taking into account the mass conservation for the mixture density ρ(r, t)

and rearranging the non-linear term into (~u· ∇)~u = ~ω ∧ ~u + 1
2
∇· ~u~u) in the

acceleration balance, Equation 2 is reformulated as:

ρ· (∂t~u+ ~ω ∧ ~u+
1

2
∇· ~u~u) = −∇·σ + ρ·~g + ρ· ~F (10)

Using the identity matrix Id, the stress tensor is σ = p Id − τ . With some

manipulations the momentum balance above can be re-written as:

∂t~u+ ~ω ∧ ~u = −∇·
(
σ

ρ
+

1

2
~u~u

)
+

(
σ

ρ2

)
∇ρ+ ~g + ~F (11)

The second term on the right hand side of Equation 11 vanishes everywhere

except in the vicinity of the gas-liquid interface. Assuming an incompressible

interface with a constant density, ρ = (ρl + ρg)/2, it follows ∇ρ = 0.

An energy cascade to small scales is an inherent aspect of turbulence in

classical mechanics (Chen et al., 2003). It was stated by Hussain (1986),

and Rogers and Moin (1987) that the inception of turbulence results from

the non-linear term (~ω ∧ ~u) becoming dominant over the linear dissipative

term (∇· τ). The non-linear term is related to the helicity via the following

trigonometric relation:

(~u· ~ω)2 + (~ω ∧ ~u)2 = |u|2· |ω|2 (12)

This relation indicates that the high helicity density (~u· ~ω = ±|u||ω|) tends

to inhibit the non-linear interactions (convection) and therefore minimises

the magnitude of the energy cascade to small scales.

In the present work, the mean helicity density per unit surface over

a surface Sb(x) of axial coordinate x is monitored. Following Reynolds’
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decomposition, the helicity density can be approximated into a mean and a

fluctuating part:

H (x, t) = 〈u·ω (r, t) + u′·ω′ (r, t)〉Sb

=

(∫
Sb

u·ω (r, t) · dS +

∫
Sb

u′·ω′ (r, t) · dS
)
/Sb(x)

= H (x, t) +H′ (x, t)

(13)

The helicity density is expressed with h = ui·ωi = ui· εijk∂kuj. Its fluctuat-

ing part is represented by h′ = u′i·ω′i = u′i· εijk∂ku′j which is related to the

Reynolds stress Rij = u′i·u′j, where εijk is the Levi-Civita unit tensor. The

instantaneous helicity H (x, t) fluctuates and can take positive and negative

values.

4. Numerical Simulations

Petrochemical industries use coiled sub-systems of curvatures five to ten

times larger with an amplitude ten times smaller than those usually studied

and reported in the literature. The different geometries used in this work are

described in the following section; their size correspond to devices present

in industrial applications.

4.1. Helical devices geometries

Helical coiled devices are manufactured by meandering a pipe of diameter

d around a cylinder ofSimulation and experimental study of phase segrega-

tion in helical pipes diameter |D−d| at a constant elevation λ per revolution

along the cylinder, as schematised in Figure 1.

The dimensional parameters characterising an helix are the curvature δ

and the torsion τ which are function of the pitch, λ, which is the height of

one complete helix turn, measured parallel to the axis of the helix:

δ = d/(D2 + λ2) and τ = λ/(D2 + λ2) (14)
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Long pipes (L ≈ 40D) are needed for slug flow simulations. Predictions

with short pipes can lead to incorrect slug frequencies (Lakehal, 2011) and

therefore to erroneous slug flow characterisations. In addition, since slug

flows are asymmetric and highly intermittent, 3D geometries are required

and only statistically averaged parameters such as slug frequencies, lengths

and translational velocities are meaningful.

Two-phase air water simulations were performed in a number of helical

geometries comprising body lengths of L=3m, 6m and 12m with an am-

plitude ratio αR = 1.0. The sketches of several coiled lines are shown in

Figures 1 and 2. Figure 1 shows a helical system assembled in three parts:

a 1m long inlet part, a 3m long helix body and a 3m long outlet section.

Figure 2 shows the unstructured mesh generated for such systems for helix

body lengths of 6m and 12m. All systems investigated in this work have the

Figure 1: 3D Helical system of L=3m helix body length.

same inlet and outlet lengths: 1m and 3m, respectively. Only the helix body

lengths were modified accordingly. Note that in the following the sub-system

denotes either the 3m, 6m or the 12m long helix while the system denotes

the 1m long straight pipe upstream of the sub-system, the sub-system itself
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Figure 2: 6m long (right) and 12m long (left) helices.

and the 3m long straight pipe downstream of the sub-system.

4.2. Methodology

Slug flow simulations have initially been carried out with the VOF model

in relatively long linear pipe of length L = 30m and of diameter D =

0.078m. These simulations in straight pipes were totally separated from

the current ones performed in helical systems. The straight pipe diameter

was however identical to the inlet diameter of the helical systems. Flow

field data (pressure, velocity, volume fraction, turbulent kinetic energy and

turbulent intensity of each phase) have been recorded during the process at

x = 27m every 10−3s.

Due to the nature of slug flows, the choice of the time-step is critical

to capture the flow behaviour, especially in the vicinity of the liquid-gas

interface. Multiphase flow simulations in 3D geometries are however very

expensive in terms of CPU time and memory. Even if such a time-step

might seem too large to capture all features of the flow, several initial tests

have been performed before running the full simulation. A compromise had

to be established to speed-up the calculation to an acceptable level without

missing crucial information. The same constant time-step ∆tlin = 10−3s was
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Superficial velocity
Case reference Gas Water

USG [m/s] USL [m/s]

Case 1 4.016 0.519

Case 2 8.03 1.04

Case 3 8.0 0.6

Table 1: Initial flow conditions

finally applied to the helical systems when injecting the data extracted from

the separate straight pipe simulation for a period of time typically between

30 and 40 seconds (real time).

5. Simulation Results

The flow conditions used in this work are reported in Table 1. An isother-

mal two-phase air and water system at atmospheric pressure with a surface

tension σij = 0.072 N/m is considered. According to the flow map from

Manolis (1995), all cases investigated here are in the slug flow regime. Ex-

periments relative to Case 1 were performed by Manolis (1995) while ex-

periments relative to Cases 2 and 3 were conducted by Fisher et al. (2009).

Simulations were performed under these conditions and the water volume

fraction αl was plotted at different positions down the system, including

the inlet section. To prevent potential outlet effects commonly encountered

in CFD simulations, αl was monitored 0.5m before the outlet section of

the whole system. Tangential mixture velocities and helicity densities were

recorded immediately after the helix body, this is discussed in details in

Section 5.2.
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5.1. Slug frequency alteration

The redistribution of gas and liquid through different geometries is anal-

ysed in terms of slug frequency alterations induced by the sub-systems under

specific flow conditions. As a reminder the sub-system denotes either the

3m, 6m or the 12m long helix.

The slug frequency is a characteristic of a regime and is estimated as

the ratio of the number of slugs crossing a pipe section per second. Slug

frequencies at the outlet section of the helix (more precisely 0.5m before the

outlet) are determined and compared to those obtained at the inlet section

of the sub-systems for all three cases listed in Table 1.

5.1.1. Test case 1, USG = 4.016m/s, USL = 0.519m/s

The first case investigated (Case 1) has the lowest flow velocities among

all cases investigated in this work. Figure 3 shows the inlet and outlet traces

of water volume fraction for helices lengths of 3m, 6m and 12m.

To isolate travelling waves from stable slugs, a liquid peak is considered

and accounted for a slug when the liquid volume fraction is found higher or

equal to αl = 0.8. Based on this approach, the slug frequency at the inlet

section is Nin ' 0.34 s−1. It can be seen that such a helical system can

reduce the number of slugs and its efficiency increases with the reduction of

the helix length. Outlet frequencies are estimated around Nout = 0.21 s−1,

Nout = 0.24 s−1 and Nout = 0.26 s−1 for the 3m, 6m and 12m helices,

respectively. This shows a reduction of slugs around 38%, 29% and 24% for

the 3m, 6m and 12m long helices, respectively.

A helical system could also be used as a flow separator. Figure 4 shows

the 3D contour plot of the volume fraction of air for the 12m long helix,

where the red color represents pure air, the blue color represents pure water
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Case 1: Comparison of liquid holdups

Figure 3: Inlet and outlet liquid volume fraction for 3m, 6m and 12m long helices. Case
1: USG = 4.016m/s, USL = 0.519m/s

and the turquoise color the liquid-gas interface. In this figure, a slug body is

apparent, followed by a large core gas region and an annular liquid pattern.

Simulation results for this case show clearly that the transition to a slug-
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Figure 4: Snapshot of air and water distributions downstream of the 12m long helix
(t=27.0s). Red color: pure air, blue color: pure water, turquoise color: air-water interface

plug flow regime is obtained.
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5.1.2. Test case 2, USG = 8.03m/s, USL = 1.04m/s

The second case investigated is characterised by higher velocities than for

Case 1. The slug frequency at the inlet section Nin = 0.53 s−1 is therefore

also higher than in the previous case. When comparing the water volume

fraction, it appears that the values at the outlet show larger variations than

at the inlet, see Figure 5. The inlet volume fraction is rarely below 0.2 while

outlet values below 0.2 appear frequently for all three helix sub-systems. The

flow exhibits a transition to faster fluctuations after 12s in the 3m long helix.

A similar transition is visible after 25s in the 12m long device. However, no

such increase of fluctuations takes place during the simulation performed

with the 6m long helix.

Once again, the shortest device is more efficient in reducing the number

of slugs: Nout = 0.25 s−1, Nout = 0.47 s−1 and Nout = 0.39 s−1 for the 3m,

6m and 12m-long helices. This corresponds to a reduction of the number of

slugs around 53%, 11% and 26% for the 3m, 6m and 12m helix sub-systems,

respectively. Surprisingly, the largest helix seems more efficient in reducing

the number of slugs than the medium one. At that stage, it is difficult to

explain this phenomenon, this could be case specific.
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Case 2: Comparison of liquid holdups

Figure 5: Inlet and outlet liquid volume fraction for 3m, 6m and 12m long helices. Case
2: USG = 8.03m/s, USL = 1.04m/s

5.1.3. Test case 3, USG = 8.0m/s, USL = 0.6m/s

For the third case, the inlet slug frequency is Nin ' 0.2 s−1. The volume

fraction at the outlet plotted for the 3m long helix in Figure 6 exhibits fast
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variations. This intermittent behaviour does not characterise a slug flow
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Case 3: Comparison of liquid holdups

Figure 6: Inlet and outlet liquid volume fraction for 3m, 6m and 12m long helices. Case
3: USG = 8.0m/s, USL = 0.6m/s

regime, the peaks being too numerous and not large enough to be slugs.

3D contour plots of volume fraction are shown in Figures 7 and 8. These
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Figure 7: Snapshot of regular liquid film distribution in the 3m long helix at t=28.4s,
Case 3. Red color: pure air, blue color: pure water, turquoise color: air-water interface

Figure 8: Snapshot liquid distribution in the 3m long helix at t=32.6s, Case 3. Red color:
pure air, blue color: pure water, turquoise color: air-water interface

3D contour plots have been selected at specific times (t=28.4s and t=32.6s)

when the volume fraction at the outlet is above αl = 0.8 (see Figure 6). As

can be seen, the structure of the flow indicates that it is in a critical regime.

The outlet liquid peaks shown in Figure 5 reflect the continuous transitional

flow regime between slug flow and annular flow with a non stable film.

For the 6m-long results displayed in Figure 6, the outlet histogram of

liquid volume fraction very frequently fluctuates around 0.6, with large slug

bodies or a succession of slugs. The corresponding flow structure is shown
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Figure 9: Snapshot of slugs travelling in the 6m long helix at t=23.8s, Case 3. Red color:
pure air, blue color: pure water, turquoise color: air-water interface

Figure 10: Snapshot of slug travelling in the 12m long helix at t=31.60s, Case 3. Red
color: pure air, blue color: pure water, turquoise color: air-water interface
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in Figure 9, where the instantaneous flow at the outlet section of the helix

is visible along with two successive slugs headed by a high liquid volume

fraction.

The response of the 12m long helix is also plotted in Figure 6. The cor-

responding flow structure displayed on Figure 10 shows similarities with the

one obtained with the 3m long helix.

When looking at slug frequency alteration for Case 3, none of the three

devices investigated behaves identically to the other one. The liquid volume

fraction in the 3m long helix exhibits faster fluctuations than in the 12m

long helix. The liquid hold-up in the 6m long helix, however, shows slower

variations with large slugs. Globally, the liquid height in the 6m long helix

is higher than in the 3m and 12m long helices. The outlet slug frequency

in both the 3m and the 12m long helices is subject to high uncertainties,

as it is difficult to differentiate slug bodies from sporadic fluctuations in the

liquid film.

At this stage, it is unclear whether or not slug reduction is obtained

under these flow conditions in either the 3m or the 12m long devices. The

difficulty arises due to the permanent transition from the slug flow regime

to the annular flow regime. Distinguishing between slugs and bursts in the

liquid film renders the estimate of the slug frequency highly uncertain.

All simulation results obtained in this work are summarised in Tables 2,

3 and 4. Table 2 compares the slug frequency in the 3m long helix with

available experimental data.
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Case 1 Case 2 Case 3
Inlet Freq(1/s) Inlet Freq(1/s) Inlet Freq(1/s)

Num inlet Freq 0.34 0.53 0.2

Num outlet Freq 0.21 0.25 -

Exp outlet Freq 0.20 0.27 0.11

Num slug reduction 38.2% 52.8% -

Table 2: Numerical vs Experimental frequencies: 3m long helix

Case 1 Case 2 Case 3
Inlet Freq(1/s) Inlet Freq(1/s) Inlet Freq(1/s)

Num inlet Freq 0.34 0.53 0.2

Num outlet Freq 0.24 0.47 0.24

Num slug reduction 29.4% 11.3% -

Table 3: Numerical frequencies: 6m long helix

Case 1 Case 2 Case 3
Inlet Freq(1/s) Inlet Freq(1/s) Inlet Freq(1/s)

Num inlet Freq 0.34 0.53 0.2

Num outlet Freq 0.26 0.39 0.26

Num slug reduction 23.5% 26.4% -

Table 4: Numerical frequencies: 12m long helix

As can be seen, slug frequencies at the outlet section of this device agree

well with experimental measurements for Cases 1 and 2. However, as men-

tioned previously, numerical results for Case 3 are difficult to establish; they

are therefore not reported in this table. Tables 3 and 4 summarise the nu-

merical efficiency of the 6m and 12m long sub-systems. It appears clearly

that these helix lengths are efficient in reducing the number of slugs under
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specific flow conditions. At a high superficial gas velocity rate associated

with a low superficial liquid velocity, the flow becomes highly unstable and

difficult to analyse. Under these specific conditions, the flow is probably in

a transitional regime, from slug to annular.

5.2. Helicity and tangential velocity fluctuations

It is important to understand the correlations and the coupling between

the fluctuating velocity and helicity density. This work aims at investigating

the correlation between averaged cross sectional tangential velocity and he-

licity density fluctuations. For this analysis, the tangential mixture velocity

and the helicity variations have been recorded across a helix section located

at the outlet of the sub-systems, i.e. 3m upstream of the outlet section of

the whole system.

5.2.1. Test case 1, USG = 4.016m/s, USL = 0.519m/s

Tangential velocity and helicity fluctuations are plotted on Figures 11,

12 and 13 for Case1. The signals are characterised by smaller time scale

(higher frequency) than those exhibited previously in Figures 3, 5 and 6 for

inlet and outlet volume fractions. The reported red ovals and red lines on

all graphs indicate two categories of correlations which have been identified.

In the first category, a fast positive or negative change in the tangential

velocity leads to a fast positive or negative variation of the mean helicity, as

indicated by the vertical red lines.
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Figure 11: Histograms of the 3m long helix. Case 1
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Figure 12: Histograms of the 6m long helix. Case 1
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Figure 13: Histograms of the 12m long helix. Case 1

For the second category, a very quick change in the orientation of the

tangential velocity always produces a negative (left handed) helicity with a

wide peak, as indicated with red ovals.

5.2.2. Test case 2, USG = 8.03m/s, USL = 1.04m/s

Tangential velocity and helicity traces are shown on Figures 14, 15 and

16 for the second test case. As in the previous case, one can notice that

tangential velocity and helicity fluctuations are characterised by smaller time

scale (higher frequency) than those exhibited previously in Figures 3, 5 and

6 for inlet and outlet volume fractions.

Histograms in Figures 14 and 16 present a similar behaviour regarding

time scale. Transitions to an even smaller time scale (higher frequency) took

place at times t = 12s and t = 25s in the 3m and 12m long helices.
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Figure 14: Histograms of the 3m long helix. Case 2
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Figure 15: Histograms of the 6m long helix. Case 2
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Figure 16: Histograms of the 12m long helix. Case 2

Recorded correlations in these cases are mainly of first category and oc-

cur at post-transition stages (high frequency). The transition to higher fre-

quencies advocates for a qualitative change in the slug flow structure. Such

changes were not recorded in the histogram in Figure 15, where correlations

in the signals are predominantly of first category.

5.2.3. Test case 3, USG = 8.0m/s, USL = 0.6m/s

The intermittent behaviour of the tangential velocity in Figure 17 (Case

3, 3m long helix) exhibits a high frequency from the start of the simulation

without transitions. The reported correlations to helicity density fluctua-

tions are again of first category. The major difference in the helicity density

histogram lies in the presence of two distinct time scales in its fluctuations,

see Figure 18 for a detailed view. The presence of a larger time scale (low

frequency) is likely to be driven by the variations of the axial velocity rather
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Figure 17: Histograms of 3m long helix. Case 3

than by the tangential velocity fluctuations.

The superposition of the two modes of frequency suggests that the flow

is unstable and undergoes a perpetual bifurcation between two regimes. The

large time scale seen in the histogram always shows a positive helicity den-

sity, suggesting that velocity and vorticty tend to be misaligned.

The examination of the fluctuating helicity densities shown in Figures 19

and 20 reveals a trend toward the alignment of vorticity and velocity fields.

However, this trend is altered by sporadic jumps in the intensity of the he-

licity density. In addition, not all jumps are correlated to the tangential

velocity intermittency.
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Figure 18: Closer view of the previous graph in Figure 17: 3m long helix
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29



#$%&&

#$&&&

#'%&&

#'&&&

#%&&

&

%&&

'&&&

'%&&

% '& '% $& $% (& (% )& )%

*
+

,-.
-/
0

12
34

5

6-2+145

#)

#(

#$

#'

&

'

$

(

)

% '& '% $& $% (& (% )& )%

6
7

8
9

;
+

,
12

34
5

*+,-< => ?@'$ 2 78A BC@'

Figure 20: Histograms of the 12m long helix. Case 3

To summarise, the fluctuations of tangential velocity and helicity density

present smaller time scales compared to volumes fraction variations. The

helicity density exhibits intermittent behaviours with persistent right handed

mean helicities for Case 1, Case 2 at pre-transitions stages, and for Case 3

in the 3m long helix.

The mean helicity reaches maximum peaks, they are reported in Table 5.

However, the values within each case, i.e. with the same flow rates, appear

very different. For Cases 1 and 2, the maximum values are reached for both

the 3m and the 6m long helices, around 140m/s2 and 800m/s2 respectively

and down to 80m/s2 and to 500m/s2 in the 12m long helix for the respective

cases. Case 3, however, shows large variations in the maximum mean helicity

with peaks reaching values around 800m/s2, 40m/s2 and 2500m/s2.

30



Max helicity [m/s2]

helix length Case 1 Case 2 Case 3
3m 140 800 800

6m 140 800 40

12m 80 500 2500

Table 5: Maximum helicity values for all helix lengths

When looking at the tangential velocity fluctuations, the maximum peak,

4m/s, is reached in Case 3 for the 12m helix; the maximum helicity was also

obtained for this case and for this helix length. Overall, the maximum peaks

of tangential velocity do not exceed 0.3m/s for Case 1and 1.4m/s for Case 2.

5.3. Helicity analysis in VOF model

Unstable two-phase flows in cylindrical lines produce local helicity densi-

ties. It is observed experimentally and numerically that heterogeneous flows

even in linear lines are non vorticity free.

If the mixture velocity of the non-miscible fluids is ~umix = αg ~ug + αl~ul,

then the total helicity density can be expressed as:

h (r, t) = ~umix· ∇ ∧ (αg ~ug + αl~ul)

= ~umix· (∇αg ∧ ~ug + αg· ∇ ∧ ~ug +∇αl ∧ ~ul + αl· ∇ ∧ ~ul)

= ∇αg· (~ug ∧ ~ul) + ~umix· (αg· ∇ ∧ ~ug + αl· ∇ ∧ ~ul)

(15)

In the equation above, the scalar identity product, ~a·~b∧~c = ~b·~c∧~a was used.

At the gas-liquid interface, the volume fraction αk 7→ α (r, t) with k = g, l,

then the helicity becomes:

h (r, t) = ∇α· (~ug ∧ ~ul) + α2 (~ug + ~ul) · ∇ ∧ (~ug + ~ul) (16)
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The first term on the right hand side of Equation 16 stands for the

helicity generated by the interface. The second term contains the helicity

of each phase and the helicity due to the velocities cross coupling. In the

case of single phase flows, the total helicity density changes its sign across

attachment or separation vortex lines. In two-phase flows, predicting the

helicity density sign is complicated by the presence of the interface. Based on

the statement from Hussain (1986), and Rogers and Moin (1987) in Section 3,

the locations of high energy cascade are obtained where the minimum values

of helicity at the gas-liquid interface are present.

The diffusion of turbulence occurring at the interface is still an open

problem in mathematical modelling; the VOF model uses a single k− ε field

for each phase. The turbulence diffusion has certainly a significant impact

on the vorticity field which is repercuted on the helicity density.

For the sake of simplify, a stable slug flow is considered here. It has been

widely demonstrated in Bendiksen (1984) and van Hout et al. (2002), that

the translational slug front velocity is given by ~uTS = 1.29·α (~ug + ~ul) + ~wg

where wg = 0.54·
√
g· d. The translational slug velocity being mainly axial

and assuming that it is non-rotational, ∇∧ ~uTS = 0.

The mixture velocity can be split into u =
(
u‖, u⊥

)T
, with the paral-

lel component of the axial flow, u‖ and the perpendicular component u⊥

contained in the cross section. The helicity density becomes:

h (r, t) = ∇α· (~ug ∧ ~ul)

= ∇‖α· (~ug ∧ ~ul)‖ +∇⊥α· (~ug ∧ ~ul)⊥

= ∇‖α·
(
~u⊥g ∧ ~u⊥l

)
+∇⊥α·

(
~u⊥g ∧ ~u

‖
l + ~u

‖
g ∧ ~u⊥l

) (17)

where, ∇‖α stands for the gradient in the axial direction (flow direction,

here the x direction) whereas ∇⊥α stands for the transverse gradient com-
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ponent (across the section). The transverse gradient component can also

be decomposed in two components: ∇⊥α =
(
∇if
⊥α, ∇

if
‖ α
)T

, where one

component is parallel to the interface line and the second component is per-

pendicular to it. The compatibility condition at the interface requires the

continuity of parallel and transverse velocities, hence, ~u⊥g = ~u⊥l and ~u
‖
g = ~u

‖
l .

Consequently h (r, t) 7→ 0 at the slug front, also referred to as the mixing

zone.

The flow is assumed annular with a regular liquid film in the axial direc-

tion, i.e. ∇‖α << ∇⊥α. The transition to the annular flow regime occurs

when the gas velocity becomes very hight compared to the liquid velocity.

It is also assumed that |~u⊥k | << |~u
‖
k|, with k = g, l. A first approximation of

the helicity density would be:

h (r, t) ≈ ∇⊥α·
(
~u⊥g ∧ ~u

‖
l + ~u

‖
g ∧ ~u⊥l

)
+ α2

(
~u
‖
g + ~u

‖
l

)
· ∇ ∧

(
~u⊥g + ~u⊥l

)
≈ ∇⊥α· ~u⊥d ∧ ~u

‖
g + 2α2· ~u‖g· ∇ ∧

(
~u⊥g + ~u⊥l

)
(18)

The continuity of the axial velocity and its non-rotational form are assumed

in Equation 18, hence, ~u
‖
g = ~u

‖
l and ∇ ∧ ~u‖k = ~0. The transverse drift

velocity ~u⊥d = ~u⊥g − ~u⊥l contains a circumferential and a radial component.

This drift velocity accounts for the mechanisms of continuous draining and

regeneration of the liquid film due to entrainment and deposition. In the

absence of these mechanisms, i.e. ~u⊥d 7→ ~0, the following can be written:

h (r, t) ≈ 2α2· ~u‖g· ∇ ∧
(
~u⊥g + ~u⊥l

)
≈ α2·

(
~u
‖
g + ~u

‖
l

)
· ∇ ∧

(
~u⊥g + ~u⊥l

) (19)

Omitting the drit velocity from the expression in 18 leads to ignoring

the interface effect and to the invariance of the helicity density under the
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exchange of phase velocities. It also vanishes at the vortex lines of the liquid

film and the gas phase.

6. Conclusions

This study has shown that among all three helices investigated, the 3m

long one is the most effective in reducing the number of slugs. Installing such

a device upstream of large systems could therefore potentially enhance the

safety of production. This conclusion is however based on a limited number

of simulations.

The flow fields investigated here indicate that the mean tangential ve-

locity fluctuations can be strongly correlated to the variations of the mean

helicity density. These fluctuating fields exhibit higher frequencies in com-

parison to volume fraction signals regardless of the stability of the flow

regime. Transitions of the intermittent mean helicity to small time scales

(to high frequencies) are predicted and explained in term of flow regime

transition. The helicity density histogram tends to develop slower fluctu-

ations (lower frequency), these are essentially driven by the axial velocity

variations rather than by tangential fluctuations.

The occurrence of alternating large time scale (low frequencies) with

small time scale (high frequencies) fluctuations in the mean helicity den-

sity are reported, this indicates that the flow undergoes continuous regime

transitions.

The analysis of the helicity density at the gas-liquid interface when using

the VOF model provides valuable information on slug and annular flows. It

confirms the inception of turbulence in the mixing zone (low helicity den-
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sity). It also highlights the presence of transverse drift velocities in the liquid

film.

It is finally worth noting that further analyses are required with a larger

range of flow rates and helix geometries (amplitude ratio and length) to

validate these results and determine the efficiency of such devices for their

use as slug reduction systems, and/or their use as flow separators. Such

study is also required to quantify the correlations between various flow fields

and to shed light on the behaviour of the helicity density during multiphase

flow regime transitions.
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