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Abstract 

Alkaline industrial wastes are considered as potential resources for the mitigation of CO2 

emissions by simultaneously capturing and sequestering CO2 through mineralization. 

Mineralization safely and permanently stores CO2 through its reaction with alkaline earth 

metals. These elements are found in a variety of abundantly available industrial wastes that 

have high reactivity with CO2, and that are generated close to the emission point-sources. 

Among all suitable industrial wastes, steelmaking slag has been deemed the most promising 

given its high CO2 uptake potential. In this article, we review recent publications related to 

the influence of process parameters on the carbonation rate and conversion extent of 

steelmaking slags, comparing and analyzing them in order to define the present state of the 

art. Furthermore, the maximum conversions resulting from different studies are directly 

compared using a new index, the Carbonation Weathering Rate (CWR), which normalizes the 

results based on particle size and reaction duration. To date, the carbonation of Basic Oxygen 
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Furnace steelmaking slag, under mild conditions, presents both the highest carbonation 

conversion and CWR, with values equal to 93.5% and 0.62 µm/min, respectively.                                                                                            
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Weathering rate 

1. INTRODUCTION 

Since measurements of atmospheric CO2 began in Mauna Loa (Hawaii), on March 1958, the 

annual mean concentration has increased from 315.97 ± 0.12 ppmv to a markedly historical 

value of 400.83 ± 0.12 ppmv (in 2015);1 this is an elevation of about 27% over the last six 

decades. In the same timeframe, the global land and ocean surface temperature anomaly 

(defined with respect to the period 1901-2000) has increased by exactly 1°C, from an annual 

average of 0.11°C to 1.11°C.2 This correlation, and extensive climate studies, strongly 

suggests a link between CO2 emissions and global warming. In fact, it has been suggested, by 

climate modeling, that if the anthropogenic CO2 emissions continue to follow the current 

trends, the mean surface temperature of the Earth will be raised by 2.1–4.6 °C, if the CO2 

concentration doubles from pre-industrial levels.3 

Following these serious threats, at the Paris climate conference (COP21), in December 2015, 

195 countries adopted the first-ever universal, legally binding global climate deal (to come 

into force in 2020), which sets out a global action plan to limit global warming to “well 

below 2°C”, and preferably below 1.5°C.4 To mitigate the anthropogenic CO2 emissions, 

several solutions have been proposed. Among solutions that include the improvement of fuel 

conversion efficiency and the usage of renewable fuels, carbon capture and storage (CCS) is 

considered an essential technology in the global effort to mitigate climate change,5 and it is a 

solution that could allow continued use of fossil fuels while reducing greenhouse gas (GHG) 



emissions.6 CCS technology, though largely still under demonstration (e.g., IEAGHG 

Weyburn-Midale CO2 Monitoring and Storage Project, concluded in 2012, has stored 22 Mt 

of CO2),
7 is still regarded as a promising technology for climate change mitigation. 

Among the various CCS mechanisms, mineral trapping is attractive as it manages to store 

CO2 by transforming it into a solid carbonate mineral, which can remain stable over 

geological timeframes.8 This process can occur either naturally, under ambient conditions, or 

in laboratory/industrial settings, under controlled conditions. Naturally occurring CO2 

mineralization is known as “silicate weathering”.9 CO2 reacts exothermically with alkaline 

earth metals-bearing silicates, forming thermodynamically stable and environmentally benign 

carbonates. Typical reactions are exemplified by:10
 

CaSiO3(s) + CO2(g) + 2H2O(l) → CaCO3(s) + H4SiO4(aq) + heat (90 kJ/mol CO2)   (1) 

Mg2SiO4(s) + 2CO2(g) + 2H2O(l) → 2MgCO3(s) + H4SiO4(aq) + heat (89 kJ/mol CO2)  (2) 

Mg3Si2O5(OH)4(s) + 3CO2(g) + 2H2O(l) → 3MgCO3(s) + 2H4SiO4(aq) + heat (64 kJmol CO2) (3) 

The main drawback of the natural weathering process in terms of mineralization is the very 

slow kinetics, mainly due to the very low concentration of CO2 in rainwater (approximately 

1–2 mg/L).11 In the last two decades, many researchers have been working on accelerating 

the reactions between CO2 and alkaline minerals. Seifritz12 was one of the first to propose the 

accelerated carbonation process in which carbon dioxide of high pressure and high purity 

reacts with alkaline materials in the presence of moisture, in order to accelerate the reaction 

to a timescale of a few minutes or hours. The exothermic nature of the occurring reactions is 

a remarkable characteristic of the process (Eqns (1)–(3)). Since a significant amount of 

energy is required as an input for industrial accelerated carbonation (due to required milling, 

pumping, compression, heating, sorbent regeneration, etc.), the heat released by the reaction 



could be recovered and used to compensate the energy input.13 As a result, the costs of the 

process could be lowered.14
 

Accelerated carbonation can be classified into two processes: the direct carbonation, where 

carbonation takes place in a single step (in one reactor), and the indirect carbonation, where 

the alkaline earth metals are first extracted from the mineral matrix in one reactor and 

subsequently carbonated in another reactor.15 Direct carbonation can occur by following two 

procedures: i) under the gas–solid direct dry carbonation, operated at liquid-to-solid (L/S) 

ratio of less than 0.2 L/kg, the alkaline earth metals present in silicate minerals are converted 

directly to carbonates using gaseous or supercritical CO2, and ii) under the aqueous 

(wet/slurry) carbonation, operated at L/S ratio of more than 0.2 L/kg, the alkaline earth 

metals are extracted from the silicate mineral, using acids such as acetic acid,15 and 

subsequently carbonated.16
 

The most commonly used natural silicates containing alkaline earth metal oxides for 

carbonation are olivine (Mg2SiO4), serpentine (Mg3Si2O5(OH)4) and wollastonite (CaSiO3).
17 

An alternative to natural minerals, which require energy-intensive mining and mineral 

processing for utilization, are industrial residues. Several waste materials are qualified as 

efficient reactants for CO2 mineralization due to their high alkaline earth metal content, as 

well as their proximity to CO2 emission point sources. The most common industrial residues 

suitable for this process are: bottom ash and fly ash from municipal solid waste incineration 

processes, pulverized fuel ash produced by coal-fired power plants, iron-making slag, carbon 

steel-making slag, stainless steel-making slags, mining tailings, red mud, asbestos-containing 

residues, and oil-shale processing residues.18 Due to the variable nature of these materials 

(different composition, mineralogy, morphology), each requires a different processing 

technology, the CO2 uptake amounts are highly variable, and the fate of the resulting 



carbonates can be a disposal site (e.g., mine backfill)19 or in a commercial application (e.g., 

building materials).20 

The amount of available alkaline earth metals contained in these residues, worldwide, is 

capable of storing a limited amount of CO2 annually. Kirchofer et al.21 estimate that in the 

USA, industrial alkaline byproducts have the potential to mitigate approximately 7.6 Mt 

CO2/a (7.0 Mt/a by mineralization and 0.6 Mt/a by avoided emissions). If this amount is 

extrapolated worldwide in proportion to the industrial fraction of the nominal gross domestic 

product (GDP) of each country ($3.33T (19.1% of 2014 GDP) for the U.S., $22.8T (30.5% of 

2014 GDP) for the world)22, potentially 52.0 Mt CO2/a could be mineralized using industrial 

residues. This represents a small fraction of CO2 emissions worldwide, which are nearing 40 

Gt CO2/a.23 Although their contribution to the mitigation of GHGs is small, attention should 

be paid to the carbonation of these types of materials for the following reasons: 

• This process can substantially reduce the CO2 emissions of specific industrial sectors, 

where integration with mineral carbonation can be rather efficiently achieved, such as 

iron- and steel-making or cement manufacturing industries. 

• It is a way to make the disposal (landfilling) of such residues less hazardous, in an 

economical way.18,24
 

• This technology also produces carbonates that can be used commercially in several 

applications, for instance, as synthetic aggregates with more favorable characteristics 

regarding their implementation in construction applications, than the untreated raw 

material.20,25
 

Slags are generated during the steel production process, and these amount to approximately 

10 - 15 wt% of the steel produced.26 The slags are classified based on the steel-making 

process; i.e., blast furnace (BF) slags from the iron-making process, basic oxygen furnace 

(BOF) slags or electric arc furnace (EAF) slags from the steel-making process, and argon-



oxygen decarburization (AOD) slags and continuous casting (CC) slags from the refining 

process. These residues have low commercial value due to their composition: little metallic 

iron and large amounts of mixed oxides such as CaO, SiO, MgO, Al2O3 and MnO.27 They 

also contain detectable amounts of toxic components such as As, Cd, Cr, Hg, Pb and Se,28 

which is concerning for their reuse. 

The large generation rate of slags, the limited commercial market, rising landfill fees and 

tightening environmental regulations are a growing concern for the industry. In 2015, the 

worldwide blast furnace slag production was approximately 300-360 Mt based on typical 

ratios of slag to crude iron output.29 Carbonation of iron- and steel-making slags could be an 

efficient technology to store a significant percentage of CO2 emitted from steel-making 

plants, while at the same time reducing their toxicity and generating new revenue streams. 

Opportunely, iron- and steel-making slags also present the highest experimental CO2 uptake 

(ECO2) compared with other industrial wastes. It has been reported that BF slag presents an 

ECO2 uptake of 75–294 g CO2/kg slag;30,31 BOF slag attributes an ECO2 uptake of 

approximately 266 g/kg;32-34 EAF slag has demonstrated an ECO2 uptake of 136–220 

g/kg;35,36 AOD slag has presented ECO2 uptakes of between 190–429 g/kg;37,38 and CC slag 

has realized an ECO2 uptake of 312 g CO2/kg slag.39 

In this review, the effects of different parameters on the carbonation extent and kinetics of 

different types of iron- and steel-making slags under various experimental conditions are 

discussed, compared and analyzed. Furthermore, a new index, the Carbonation Weathering 

Rate (CWR), is introduced to facilitate comparison among results obtained from different 

studies, as different particle sizes are used, and particle size considerably affects carbonation 

rate and conversion. The CWR is the growth rate of the thickness of the reacted layer of a 

carbonated particle, and takes the initial particles size distribution into consideration to 

account for complete and partial conversion depending on particle size. 



 

2. IRON- AND STEEL-MAKING SLAG CARBONATION: A LITERATURE 

REVIEW OF CONVERSION EXTENT AND KINETICS 

In this section, literature on the carbonation of iron- and steel-making slags is reviewed. All 

relevant results from the cited studies are summarized in Tables 1 and 2 to facilitate 

comparison. These results are discussed in the following subsections. 

 

2.1 Blast furnace (BF) slag 

Blast furnace slag is generated during the iron-making stage of the steel manufacturing 

process. The aqueous slurry carbonation kinetics of this type of slag were tested by Chang et 

al.40 using an autoclave reactor and slag particles of less than 44 µm. Four different 

parameters were studied regarding their effect on the carbonation extent of the slag: reaction 

time, temperature, CO2 partial pressure, and liquid-to-solid (L/S) ratio.  

Reaction time: Chang et al.40 found that, up to 60 minutes of reaction duration, the 

carbonation extent increases, and that after this point it levels off. Furthermore, it is also 

noted that the carbonation rate decreases with time within the first 60 minutes. 

Temperature and CO2 pressure: at a pressure of 48.3 bar, the increase of temperature up to 

100 °C leads to an increase of the conversion extent. Further temperature increase over 

100 °C causes a decrease in the conversion extent. This behavior is not observed when the 

partial pressure of CO2 is 89.6 bar (supercritical condition). In this case, the conversion extent 

continues to increase even after 100 °C. This was explained by Chang et al.40 by the fact that, 

with increasing temperature, Ca2+ leaching increases, whereas CO2 dissolution decreases. Up 

to 100 °C, Ca2+ leaching overcame the attenuation of CO2 dissolution, leading to an increase 

of conversion. For temperatures over 100 °C, the reduced CO2 dissolution becomes the 

limiting factor of the carbonation reaction, and the conversion decreases accordingly. 



However, when the CO2 partial pressure was maintained at 89.6 bar, the higher CO2 solubility 

and lower dynamic viscosity permitted the Ca2+ leaching to be the limiting factor of the 

carbonation reaction, even at elevated temperatures over 100 °C. 

Liquid-to-solid ratio: Chang et al.40 reported the optimal L/S ratio to be 10 L/kg. For L/S 

ratio equal to zero (i.e., dry solids), the conversion extent was very low due to the absence of 

water. For L/S values below optimal, the slurry did not mix well in the reactor, resulting in 

poor contact between the solid particles and the reaction fluid. For L/S ratio above the 

optimal, a mass transfer barrier was created due to the excessive presence of water, and the 

ionic strength decreased, slowing leaching and the mixing of CO2 with Ca²⁺ ions. 

 

2.2 Basic oxygen furnace (BOF) slag 

Basic oxygen furnace slag is generated during the steel-making stage of the steel 

manufacturing process. The carbonation kinetics of this type of slag were studied by Huijgen 

et al.41 using a continuously-stirred autoclave reactor, by Chang et al.42-44 using several types 

of reactors (column slurry reactor,42,43 and high-gravity rotating packed bed44), by van 

Zomeren et al.45 using column reactors, by Polettini et al.46 and Baciocchi et al.47 using a 

stirring pressurized stainless steel reactor, and by Tai et al.33 using a continuously-stirred 

high-pressure batch reactor. The direct dry carbonation of BOF slag was tested by Santos et 

al.48, who performed the carbonation experiments using different experimental set-ups 

(thermogravimetric reactor, pressurized basket reactor, atmospheric furnace). The effects of 

temperature, reaction time, CO2 pressure, L/S ratio and particle size on carbonation 

conversion and kinetics were investigated in the aforementioned.  

Temperature:  up to the optimal temperature, which was different in each study, the 

conversion extent and rate increased with the temperature increase. During this regime, Ca2+ 

dissolution and diffusion was the limiting factor of the carbonation conversion, with 



increasing temperature contributing to faster and more complete dissolution. However, 

further increase of temperature resulted in a decrease in both the carbonation extent and rate. 

In this regime, the CO2 solubility becomes the limiting factor of the carbonation; lower 

solubility slowed the reaction rate and ultimately the conversion extent. It also appears that at 

elevated temperatures two phases of carbonation occurred. During the first phase of 

carbonation, much of the available calcium dissolved rapidly into the solution, leading to 

high initial conversion rate. Later on, the reaction considerably slowed as the remaining 

calcium was slow to dissolve and react. As a result, conversion was not maintained at the 

same rate throughout the process. 

There are also occasions where temperature does not have any particular effect on the 

conversion extent or rate, such as reported by van Zomeren et al.,45 where under unsaturated 

conditions (L/S ratio = 0.01-0.1 L/kg), the increase in temperature was not reported as having 

an impact on the carbonation of the tested BOF slag. This, however, can be due to the 

temperature range (5-90 °C in this case) not surpassing the point at which enhanced 

dissolution stops making up for lower CO2 solubility. 

Several studies apply reaction temperatures that are below the optimum (i.e., reaction rate and 

conversion are still improving at the maximum temperature tested). Researchers do this in 

part to save energy demand of the process, which is important from the point of view of 

maximizing net CO2 sequestration. As such, the negative impact of increasing temperature is 

not reported in these works. One example of this is the recent study of Polettini et al.46, where 

temperature increase (up to 100 °C) led to continuous carbonation enhancement. Huijgen et 

al.41, using a similar experimental process, reported the optimum temperature for the 

carbonation of such slags lying at approximately 175 °C. 

Reaction time: the effect of reaction time on carbonation rate was similar for every case 

studied. Initially, the carbonation extent increased as the rate decreased, and levelled off 



afterwards. The length of this initial period was different in each study, ranging from 5 min44 

to 24 h45, and it was mainly dependent on the experimental process and the other parameters 

of the carbonation (temperature, CO2 pressure, etc.). The main reason for this effect is the 

pore blockage of the slag particles due to the precipitation of the newly formed CaCO3. The 

newly formed calcite creates a barrier that inhibits the diffusion of the Ca2+ ions from the 

solid slag particle to the solution.49 In some cases, mineralogy also limits the ultimate 

reaction extent.39
 

Particle size: one of the most significant parameters that determines the carbonation extent is 

the particle size. Huijgen et al.41 and Santos et al.48 investigated the influence of BOF slag 

particle size on the carbonation extent. It was observed that the reduction of the particle size 

resulted in the increase in the specific surface area of the slag, and a significant increase in 

the carbonation conversion. Huijgen et al.41 studied the slurry carbonation of BOF slag and 

observed that by reducing the particle size from <1 mm to <38 µm, the conversion extent 

increased from 24% to 74%. Similarly, Santos et al.48 studied the direct carbonation of BOF 

slag in a pressurized basket reactor and identified a critical dependence of the CO2 uptake on 

the particle size. By reducing the particle size from <1.6 mm to <0.08 mm, the free lime 

conversion extent significantly increased from 8% to 43%. 

CO2 pressure: the influence of CO2 pressure on the carbonation of BOF slags was tested by 

Huijgen et al.41, Santos et al.48, and Polettini et al.46. Huijgen et al.41 showed that the effect of 

CO2 pressure on the conversion extent and rate achieved by the slurry carbonation of BOF 

slag was negligible for temperatures below the optimal, CO2 pressure above 90 bar, and 

stirring speed more than 500 rpm. This further supports the previous findings that present the 

Ca2+ leaching as the limiting factor of carbonation at such temperatures. For CO2 pressures 

and stirring speeds below the aforementioned values, the conversion extent decreased, 



respectively, due to limited dissolution of CO2 into the solution and low quality of mixing 

between the different phases. 

Santos et al.48 observed a different influence of CO2 pressure on the CO2 uptake achieved by 

the direct carbonation of BOF slag. The authors found that the effect of increasing CO2 

pressure on the CO2 uptake was highly dependent on the reaction temperature. At lower 

temperatures (350 °C) the increase of the CO2 pressure resulted in a more significant uptake 

enhancement (+176% at 20 bar over 4 bar), whereas at higher temperatures (500 °C) this 

improvement in CO2 uptake was significantly lower (+7% at 20 bar over 4 bar), and no 

improvement was  detectable at 650 °C. 

Polettini et al.46 examined the influence of CO₂ pressure on the carbonation extent in 

correlation with the CO₂ concentration in the gas phase. They tested three different CO₂ 

concentrations (10%, 40% and 100%), and showed that for concentrations of 10% and 40% 

the effect of CO₂ partial pressure on the conversion was most relevant for pressures up to 6 

bar. After this particular value, the CO₂ uptake levelled off. Furthermore, it was found that for 

pure CO₂, the influence of the CO₂ pressure on the carbonation yield was remarkably lower.  

Although CO₂ pressure enhancement should lead to carbonation conversion escalation, this is 

not always the case. As with other process parameters, there is a threshold after which 

mechanisms of carbonation other than the CO₂ dissolution become the limiting ones. For 

instance, above the optimum pressure, pH conditions that are not favorable for further 

carbonation may be created. Also, by implementing higher CO₂ pressures, the precipitation of 

carbonates and silicates accelerates, up to a point, and the formation of the passivating layer 

around the particles accelerates, thus hindering further carbonation.  

Liquid-to-solid ratio: Chang et al.44, van Zomeren et al.45 and Baciocchi et al.47 investigated 

the influence of the L/S ratio on the carbonation extent. Chang et al.44 tested the influence of 

L/S ratio on the slurry carbonation of BOF slag. The authors found the optimal L/S ratio at 20 



L/kg. For both lower and higher values than the optimal, the conversion extent decreased. For 

ratios below the optimal, the slurry did not mix well in the reactor causing poor mass transfer, 

whereas for ratios above the optimal, the excess liquid in the slurry led to a lower ionic 

strength. 

van Zomeren et al.45 and Baciocchi et al.47 used two different regimes regarding the L/S ratio: 

one with lower L/S ratio (0.1 L/kg and 0.3 L/kg, respectively) and another with higher L/S 

ratio (2 L/kg and 5 L/kg, respectively). In both cases, it was found that increasing the L/S 

ratio led to higher CO₂ uptakes. The combination of saturation conditions with mechanical 

mixing aids in mass transfer between phases, and additional liquid allows more CO2 and Ca2+ 

to be in solution at a given time, accelerating the reaction. 

CO2 Concentration: Polettini et al.46 and Baciocchi et al.47 examined the effect of gaseous 

CO₂ concentration on the carbonation of BOF slag. Both groups used three different 

percentages of gaseous CO2 (10%, 40% and 100%) for the carbonation of the slag. Polettini 

et al.46 investigated the slurry carbonation of BOF slag. According to their findings, CO₂ 

concentration had a marginal effect on carbonation conversion compared to temperature and 

total pressure. That is, a diluted gas once pressurized (up to 10 bar tested) yielded results as 

good as pure CO2. Only at low total pressures (1 bar), higher CO₂ concentrations resulted in 

higher CO₂ uptakes. Baciocchi et al.47 examined both wet and slurry routes of BOF 

carbonation. It was found that, for both routes, higher CO₂ concentrations, at fixed total 

pressure, led to significantly greater CO₂ uptakes, especially when comparing 10% to higher 

concentrations. The authors did not address the particularly low conversions achieved at 10%, 

which are at odds with the results of Polettini et al.46
 

CO2 flow rate: Chang et al.42,43 investigated the effect of gas flow rate on the slurry 

carbonation of BOF slag in a bubbling column where the slag circulated in the fluidized 

regime. Excessive flow rate values were found to cause a channeling effect in the slurry 



reactor, compromising proper gas-liquid mass transfer and leading to a moderate decrease of 

carbonation conversion. The channeling effect at high flow rates was observed in both 

studies, and a trend of conversion extent decrease with increasing flow rate was noted in both 

works. Therefore, it was concluded that in such a reactor, the flow rate of CO2-containing gas 

should be limited to that which supports satisfactory fluidization, but no higher. In 

pressurized reactors, as used in other studies, flow rate is not an issue, as long as CO2 is 

continually supplied to maintain the required partial pressure. 

Slurry flow rate: Chang et al.44 studied the influence of slurry flow rate on the carbonation 

conversion rate of BOF slag using a rotating packed bed reactor. According to the authors, an 

increase in the slurry flow rate improved the radial velocity of the slurry particles. Therefore, 

the mass transfer between the slurry and the gas phase, and the micro-mixing within the 

slurry, were significantly enhanced. As a result, the conversion rate was initially increased. 

However, further increase of the slurry flow rate above an optimal value (1.2 L/min in this 

case) caused a decrease of the carbonation rate, mainly due to the limited residence time of 

the slurry in the packed zone of the reactor. 

Stirring/rotation speed: the speed of stirring and rotation of slurry reactors, and its influence 

on the conversion rate, were respectively tested by Huijgen et al.41 and Chang et al.44 The 

enhancement of the mixing/rotation speed initially improved both the mass transfer between 

the CO2 and the slurry, and the Ca2+ diffusion from the slag particles into the solution. In both 

studies there was an optimum speed (500 rpm for the reactor used by Huijgen et al.41 and 

1000 rpm for the reactor used by Chang et al.44) up to which, the conversion rate increased. A 

further increase of the speed over these optimal values caused a decrease in the conversion 

rate mainly due to the limited residence time of the slurry in the packing zone of the reactor,44 

or did not show any statistically appreciable improvement.41 Above a certain mixing rate, 

particle abrasion may aid in carbonation rate and conversion,49 but the increased energy 



expenditure and processing cost may not be worth the improvement from a CO2 sequestration 

point of view. 

Slurry volume and steam addition: in addition to the above parameters, slurry volume, in a 

bubbling fluidized column, was tested by Chang et al.43 and steam addition during the direct 

dry carbonation of BOF slag was tested by Santos et al.48 In the work of Chang et al.43, the 

conversion increased with increasing slurry volume, at constant L/S ratio and gas flow rate, 

up to a certain value (350 mL). Due to the higher slurry volume the retention time of the CO2 

gas in the reactor (which was continuously supplied and removed) increased, and the 

conversion extent increased accordingly. For greater volumes the conversion decreased. This 

was hypothesized to be the result of poor mixing between the liquid and the solid phase of the 

greater volume of slurry, under constant gas flow rate (i.e., fluidization was less effective). 

The addition of steam had a positive effect on the CO2 uptake for all particle sizes tested by 

Santos et al.48 However, its influence on the CO2 uptake was reduced for larger sizes. The 

exact mechanism that leads to this positive influence is not fully understood, and could be 

related to a catalytic or mass transfer effect. The most convincing theory is that the addition 

of steam into the reactor improves the solid state diffusion of the CO2 into the solid particles. 

However, further research is needed to confirm the exact mechanism that causes this 

improvement of the solid state diffusion. 

 

2.3. Electric arc furnace (EAF) and stainless steel (SS) slags 

Electric arc furnace slags are generated and extracted during the operation of electric arc 

furnaces as part of the steel-making process. On some occasions, stainless steel slag is 

denominated as a mixture of EAF slag and argon-oxygen decarburization (AOD) slag 

generated during the production of alloy steel. The wet carbonation of both the EAF and SS 

slags, as well as the slurry carbonation of the EAF slag have been studied by Baciocchi et 



al.38,49 The effects of temperature, reaction time, CO2 pressure, L/S ratio and particle size on 

the carbonation rate and conversion were tested, as discussed next.  

Temperature: increased reaction temperature enhances dissolution of the silicates. 

Consequently, the wet carbonation of both EAF and SS slags improves with temperature 

enhancement. However, the extent of the tested temperature was limited up to 50 °C, and the 

carbonation behavior towards higher temperatures was not reported.  

Particle size: milling of EAF and SS slag particles resulted in significant improvement of 

carbonation extent due to the increase of the specific surface area. These findings are 

consistent with those achieved in the previous studies related to the BF40 and BOF slags.33,41-

44,48
 

Reaction time: After an initial period during which the wet carbonation extent increased with 

decreasing rate, it leveled off. This finding agrees with those reported in previous studies 

related to BF and BOF slags.  The main reason for this effect is the precipitation of the newly 

formed CaCO3 that eventually blocks the pores of the slag particles and prevents the diffusion 

of the silicates from the solid slag particle to the solution. 

Liquid-to-solid ratio: the optimal L/S ratio was found to be 0.4 L/kg. For both lower and 

higher ratios than the optimal, the conversion decreased. The authors commented on the 

rather high L/S ratio value for a wet carbonation process. They suggested that differences 

between this and other studies could be attributed to the slag’s composition lacking hydrated 

lime, which would increase the water needed for hydration of the oxide and silicate phases, 

besides for dissolution of CO2 and Ca2+ ions. The study with which Baciocchi et al.38,49 made 

the comparison was that of Johnson et al.,50 who studied the influence of carbonation on the 

strength of EAF slag, and reported an optimal L/S ratio of 0.125 L/kg. It should be noted, 

however, that Johnson et al.50 were optimizing the compressive strength of carbonated 



compacts, so the L/S ratio was likely optimized not only in view of maximal carbonation 

conversion but also the physical characteristics of the post-carbonation compacts. 

CO2 pressure: the partial pressure of CO2 had insignificant influence on the extent of the wet 

carbonation of EAF or SS slag, as reported by Baciocchi et al.38,49 for values between 1 and 

10 bar CO2. Only in the case of the EAF slag was it found that, for reaction times less than 

one hour, the increase of pressure from 1 to 3 bar produced a 43% enhancement of the CO2 

uptake. 

 

2.4 Argon oxygen decarburization (AOD) and continuous casting (CC) slags 

Argon-oxygen decarburization and continuous casting slags are generated in the refining step 

of the steel-making process. Carbonation of AOD and CC slags has been studied by 

Baciocchi et al.38 using a pressurized stainless steel reactor, Vandevelde51 using a CO2 

incubator, Santos et al.39,52 using an ultrasound-assisted beaker, a CO2 incubator and an 

autoclave reactor, and Van Bouwel53 using an autoclave reactor. The effects of temperature, 

reaction time, CO2 pressure, L/S ratio, particle size and sonication on carbonation conversion 

and rate of AOD and CC slags was investigated in these studies, and are discussed next. 

Temperature: Vandevelde51 and Van Bouwel53 studied the effect of temperature on the 

carbonation conversion of AOD and CC slags, following the wet and slurry routes, 

respectively. Vandevelde51 reported that for 30 °C and 50 °C, the lower temperature favored 

carbonation, achieving higher CO₂ uptakes after the first hour of reaction; after 6 hours of 

reaction time, however, both temperatures showed similar carbonation conversion. 

Vandevelde51 attributed this behavior to the increased solubility of CO₂ in the liquid film at 

lower temperatures (and while at low CO2 partial pressures), which facilitated the transport of 

CO2 to the reaction zone within the paste in the first stages of carbonation, before a 

passivating layer formed in the later stages, restricting access to the reaction front. Van 



Bouwel53 tested a wider range of temperatures, ranging between 30 °C and 180 °C, under 

pressurized conditions. The carbonation of AOD and CC slags behaved similarly to that 

observed during carbonation of the BF, BOF and EAF slags under raising temperatures, 

except for different optimal temperature. The optimum temperature for both AOD and CC 

slags was 60 °C. After this point, the reaction rate leveled off and the conversion extent 

remained constant at ~60%. The more amenable mineralogy of AOD and CC slags, 

consisting mainly of calcium silicates,39 appears to make these slags more susceptible to 

carbonation at more moderate processing conditions. 

Reaction Time: its impact on the carbonation extent of AOD and CC slags is reported by 

Santos et al.39,52, Vandevelde51 and Van Bouwel.53 In all the studies, the reaction time had 

similar impact on the conversion of AOD and CC slags. Regardless of the carbonation route 

that was used, carbonation extent increased with time, while carbonation rate decreased after 

an initial rapid period; carbonation extent eventually leveled off before reaction completion 

(based on chemical composition). This behavior is in agreement with that reported in studies 

related to BF, BOF and EAF slags, discussed earlier. 

CO2 Pressure: Baciocchi et al.,38 Santos et al.,39 and Van Bouwel53 reported the effects of 

CO2 partial pressure on the carbonation extent of AOD and CC slags. These studies pointed 

out a difference in behavior between AOD and CC slags towards increasing CO2 partial 

pressure. Van Bouwel53 showed CC slag starting with a high conversion extent at low partial 

pressure. With increasing partial pressure, the conversion extent dropped until 20 bar. After 

that point, further increase of the CO2 pressure (up to 30 bar) led to a steep increase of the 

carbonation extent. AOD slag, on the other hand, showed a different behavior. Up to 12 bar, 

the pressure did not have any significant impact on the conversion extent of the slag, whereas 

after that point any further increase of the CO2 pressure (up to 30 bar) led to a steep increase 

of the carbonation extent. Slightly different trends were reported by Santos et al.39 In that 



particular work, CC slag experienced an initial enhancement of conversion extent with 

increasing CO2 pressure up to 9 bar. With further increase of the partial pressure, the 

conversion extent dropped until 13 bar. After that point, further increase of the CO2 pressure 

(up to 30 bar) led to a steep increase of the conversion extent. The conversion extent of AOD 

slag appeared to be enhanced with increasing CO2 pressure, and peaked at 20 bar. Any further 

increase of the partial pressure (up to 30 bar) did not seem to significantly affect the 

conversion extent. 

Baciocchi et al.38 studied the wet carbonation of AOD slag. In this study, the effect of CO2 

partial pressure on the carbonation conversion of AOD slag was examined as a function of 

reaction time. It was evident that the effect of the increasing partial pressure became more 

significant after the initial period (2 h) of carbonation. This agrees with the findings for the 

other slags discussed earlier. The CO₂ pressure increase facilitates the diffusion of ions 

through the passivating layers (precipitated carbonate and residual silica) that are formed and 

thicken during carbonation.52
 

L/S ratio: in the case of AOD53 and CC39,51,53 slags, there was an optimal value for the L/S 

ratio. For both lower and higher values than the optimal, the carbonation conversion 

decreased. For solids loading values below the optimal (i.e., high L/S ratio), particle attrition 

is reduced in agitated slurry systems, while a mass transfer barrier (thick diffusion boundary 

layer) is created due to the excessive water in wet (thin-film) systems. For solid loading 

values above the optimal (i.e., low L/S ratio), the slurry did not mix well within the reactor, 

causing poor contact between the reacting particles and the carbonic acid solution, leading to 

slow carbonation rates and low carbonation conversions. This is consistent with the findings 

of the previously discussed studies related to the L/S ratios of the wet and slurry carbonation 

of BF, BOF and EAF slags.  



Sonication: Santos et al.52 conducted carbonation experiments with sonication in order to 

intensify the carbonation extent of AOD and CC slags. The results of this study indicated that 

ultrasound usage significantly enhanced the carbonation conversion of both slags. The 

implementation of sonication in the carbonation experiments resulted in enhanced solid-

liquid-gas mixing, and consequently better mass transfer as well as enhanced CO2 

dissolution, which are significant parameters for the carbonation process. Removal of the 

passivating layers that surrounds the unreacted inner part of the particle via sonication 

intensified the reaction rate and sustained the reaction until higher conversion levels were 

reached. Sonication also resulted in the breakage of slag particles themselves, leading to 

higher specific surface area of the particles, and thus improved reactivity. 

Mineralogy: for all reported studies, the conversions achieved by CC slag are notably higher 

than those of AOD slag, under similar conditions. This has been identified as being due to the 

more favorable mineralogy of CC slags,39 which contain considerably higher amounts of 

gamma-dicalcium-silicate (γ-C2S) than AOD slags, which in turn are richer in β-C2S. Chang 

et al.54 recently proposed, based on nuclear magnetic resonance studies, that the structural 

environment of silicon in γ-C2S leads to easier protonation of SiO4
4- groups (and thus easier 

decalcification), based on the predominant monomeric structure (Q0) of silica in the 

carbonated mineral. 

 

2.5 Waelz slag 

Waelz slag is a by-product of the Waelz process which recovers zinc, mainly from EAF slag, 

by using a rotary kiln. The material that is left after zinc recovery is called Waelz slag. Cappai 

et al.55 studied the influence of three parameters on the carbonation extent and rate of Waelz 

slags, under constant temperature (25 °C): reaction time, CO2 partial pressure, and L/S ratio. 



Reaction time: similar to the other types of slags, the conversion extent increased with 

decreasing rate as the reaction duration increased. The maximum carbonation extent was 

achieved after 240 hours of reaction.55  

CO₂ pressure: generally, conversion extent was enhanced with increasing CO2 pressure.55 The 

conversion extent enhancement was more evident after the first 24 hours of reaction. For 

shorter reaction times, CO2 pressure did not appreciably affect the conversion extent. This is 

because the impact of pressure on carbonation extent becomes more pronounced after the 

formation of the initial passivating layers around the reacting particles. Higher CO2 pressure 

facilitates the diffusion of ions through these layers. 

L/S ratio: the carbonation kinetics appeared to be strongly influenced by the L/S ratio.55 As 

expected, at L/S = 0, the kinetics were very slow, since hydration aids in the mobility, and 

thus reactivity, of ions within the solid minerals. By gradually increasing the L/S ratio up to 

1 L/kg, the reaction rate became significantly faster. Accordingly, the carbonation extent at 

lower L/S ratios was notably less than that at higher ratios. 

 

3. CARBONATION WEATHERING RATE (CWR): CONCEPTUALIZATION 

AND APPLICATION 

Although several studies on steel-making slag carbonation have been conducted, comparison 

of their reported reaction rate and conversion extent results has proven challenging. The main 

reason for this is that the slags used by the researchers have different particles sizes, and thus 

different specific surface areas. Mineral carbonation is a solid-state-diffusion-limited process 

under most conditions, so the different particle sizes affect the carbonation rate and maximal 

achievable conversion. In order to make direct comparisons among the results obtained from 

different studies, the CWR is conceptualized. The rate is expressed in units of µm·min–1, and 



represents the weathering rate of the particle radius from the original outer radius to the final 

radius of the unreacted core of the carbonated particle. 

The CWR assumes that all reactive minerals carbonate at similar rates, that all particles are 

spherical, and does not account for the changing size of particles due to the accumulation of 

precipitated carbonates on the particle;52 that is, it only tracks the location of the reacted | 

unreacted interface. The first assumption is supported by research: the study of Bodor et al.56, 

who synthesized different alkaline minerals and carbonated them, showed that carbonation 

kinetics and extent differ but not substantially for the most abundant minerals found in iron- 

and steel-making slag. The second assumption is in principle not as accurate, since the aspect 

ratio of iron- and steel-making slag particles is sometimes relatively high.52 However, laser 

diffraction is the typical technique used for determining average particle size, and this method 

does not distinguish particle shapes;57 therefore the values used in the calculation of the CWR 

are already assumed to represent spherical particles. The third assumption, not tracking the 

outer edge of the particle, simply implies that the length unit of the CWR relates to the radius 

of the original average particle. 

One limitation of the CWR is that it does not differentiate between weathering rate 

improvement due to particle size reduction and particle porosity enhancement. Thus, if a 

material is mechanically activated to improve carbonation, it will not be possible to 

distinguish between the two effects based on how the CWR responds. Another aspect to bear 

in mind is that the CWR can either represent the average weathering rate over the duration of 

a carbonation process, or it can be taken as an instantaneous snapshot at any point in time 

during carbonation. It would be expected that the CWR would be greater initially, and reduce 

as time passes, due to the nature of the shrinking core model. A carbonation process can, in 

principle, operate near peak-CWR if CO2 sequestration is the main goal, and mineral 

acquisition and handling costs are rather low. However, if mineral valorization or treatment is 



also a goal, the carbonation process would be designed to operate at lower overall CWR by 

increasing processing duration, to achieve required final material properties for 

commercialization or safe disposal. 

The first step in calculating the CWR is to obtain the average radius of the unreacted core of 

mineral particles (R), using Eqn (4) for the average particle conversion degree (C%), where 

C%≤ 100%. The value of C% is typically experimentally obtained by researchers via 

thermogravimetric analysis or quantitative X-ray crystallography. 
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As illustrated in Figure 1, based on the aforementioned assumptions, rx is the original average 

particle radius, and R is the average radius of the unreacted core of the particle. It should be 

noted if the particle size distribution is known, it is possible to apply this equation to each 

particle size fraction and solve for a single value of R; the particle with rx = R would be the 

largest particle that carbonates fully (within the bounds of the assumptions made).58 

Based on Eqn (4) and knowing that R = (rx – tcarb), where tcarb is the thickness of the 

carbonated shell of the particle (Fig. 1), it is possible to calculate the value of tcarb by using 

the following solution (Eqn (5)): 

����� =	�� ∙ �1 −	 �1 − �% 100%⁄� �     (5) 

For example, if the conversion is complete (C% = 100%), then tcarb will be equal to rx, 

meaning the whole particle becomes a carbonate sphere. If the conversion is half (C% = 

50%), the thickness of the carbonated shell will be 20.6% of the original particle radius, since 

the radius of a sphere half the volume of a larger sphere is 79.4% of the larger sphere’s 

radius. By knowing both tcarb, for a given C%, and the reaction time (τreact) that is required to 



reach the C%, it is possible to calculate the CWR (Eqn (6)), which is essentially the tcarb 

normalized per unit time: 
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By applying Eqn (6) to the conversions achieved by the studies that have been reviewed in 

this paper, Table 3 is created. Some studies refer to the size of the slag particles as a range 

instead of a specific average mean diameter. In those cases, an arithmetic average of the 

range was taken as the mean diameter. Figures 2, 3, and 4 indicate the CWRs of the reported 

studies on BOF, AOD, and CC slags, respectively, in chronological order. Figure 5 indicates 

the CWRs of studies on SS, EAF, BF, and Waelz slags. 

As an overall observation, it is clearly shown that the highest carbonation conversions do not 

necessarily correspond to the highest CWRs. In fact, the CWR values present a totally 

different distribution among the different studies than in the case of conversions. The highest 

CWR (0.618 µm/min) originates from the carbonation of the BOF slag under mild conditions 

(T = 65 °C, PCO2 = 1 bar, L/S ratio of 20 L/kg, CO2 flow rate equal to 1.2 L/min, and an 

average particle diameter of 62 µm), as studied by Chang et al.44 The same study also 

presents the highest carbonation conversion (93.5%). However, this is not the case for the rest 

of the studies. The next most effective experimental studies are those of Huijgen et al.41, 

followed by Tai et al.33, who carbonated BOF and BF steelmaking slag, respectively. By 

using the CWR value, it is shown that the setups used resulted in CWR values equal to 0.229 

µm/min and 0.188 µm/min, respectively. However, in terms of conversion extents achieved, 

these studies present remarkably lower values in comparison with others. This is either 

because the particles used were too large to enable high levels of conversion, or because the 

reactions were not run for sufficient time to allow high conversions to be reached, or because 

different slags have different carbonation kinetics, due to differences in mineralogy (some 



minerals are more reactive than others) or morphology (some slags are more or less porous, 

or become more or less porous during reaction) differences.  

CWR values are most applicable for comparing results obtained for the same type of iron- or 

steel-making slag, as then the only barrier to the effective comparison among conversions 

resulting from different studies is the particles size. In the case of BOF slags, it is shown that 

the rate of carbonation weathering achieved by Chang et al.44 is clearly the highest, followed 

by Huijgen et al.41 (0.229 µm/min) and Santos et al.52 (0.184 µm/min). As far as the AOD and 

CC slags are concerned, Van Bouwel53 has the higher CWRs for both of these types of slag, 

with 0.108 and 0.124µm/min, respectively. Furthermore, similar to the carbonation 

conversions, the CWR value is higher for CC slag than AOD slag. Santos58 points out that in 

addition to mineralogy, the particle size difference between the two slags, which are naturally 

comminuted, can explain the differences in carbonation rate and conversion. With the CWR 

value, these differences are innately considered. 

It is worthwhile to point out the EAF slag study conducted by Baciocchi et al.36 It is one of 

the few cases in the literature where wet (thin-film) carbonation of a particular slag results in 

higher conversion extent than when using the slurry route. However, the CWR that results 

from the wet route is remarkably lower than that from the slurry route (0.010 µm/min for wet 

carbonation, versus 0.046 µm/min for slurry carbonation), indicating that the slurry route is 

the more time-efficient way for carbonation. In fact, the higher conversion that was achieved 

by the wet route could be attributed to the longer period of carbonation (6 days vs. 6 hours). 

This comparison confirms the usefulness of the CWR measure in delivering more accurate 

and insightful results as opposed to simple CO2 uptake or conversion extent, since the CWR 

takes the reaction period into consideration, in addition to the particle size. 

4. CONCLUSIONS 



Slags from the steel-making process are characterized by a remarkable ability for CO2 

fixation in a permanent manner by forming carbonate minerals that can permanently remain 

stable, from a thermodynamic aspect. Although their ability to store a significant fraction of 

anthropogenic CO2 emissions is limited (due to relatively limited availability of the material), 

steel-making slags are capable of storing meaningful quantities of CO2 emitted by the iron- 

and steel-making industries. The influence of several operational parameters on the 

carbonation rate and conversion extent of iron- and steel-making slags has been thoroughly 

examined in this review. General trends for the influence of each operational parameter were 

obtained, and seen to be largely in agreement among the various studies, despite the 

variations in the slag types, and consequently composition and morphology, and carbonation 

process used in the different studies.  

The influence of the four main experimental parameters on iron- and steel-making slag 

carbonation can be outlined as follows:  

Temperature: the carbonation process consists of three different mechanisms: Ca
2+ diffusion 

from the solid particle, CO2 dissolution into the aqueous solution, and carbonate nucleation. 

Each mechanism has a different response to temperature alterations. Temperature increase 

enhances Ca
2+ leaching from the solid matrix, but attenuates CO2 dissolution. Consequently, 

two main regimes are observed regarding the influence of temperature on carbonation 

conversion of iron- and steel-making slags. Increasing temperature up to an optimal value 

enhances the reaction rate and conversion extent, whereas further increase of the reaction 

temperature ultimately hinders the conversion.  

Particle size: decreasing the slag’s particle size enhances carbonation conversion as direct 

mineral carbonation is a surface-based reaction. The conceptualized CWR removes the effect 

of particle size from conversion data, allowing better comparison of different works based on 

the carbonation processes used. 



Reaction time: the increase of the reaction time improves the carbonation extent, but 

carbonation rate is attenuated as time passes, due to particle passivation. However, after a 

certain period, the carbonation conversion levels off as the passivation layer becomes 

impenetrable, or poorly reactive alkaline minerals do not respond to carbonation at the 

utilized process conditions. The conceptualized CWR normalizes carbonation conversion 

data based on time, thus allowing better comparison between the effectiveness of different 

carbonation processes on the rate of CO2 uptake. 

Liquid-to-solid ratio: too high or too low values of L/S ratio are detrimental to mineral 

carbonation; dry-out conditions hinder reactivity, while dilute conditions diminish particle-

particle abrasion in mixed systems, and enlarge diffusion boundary layers in stationary 

systems.  L/S ratio must be optimized for each case, based on the type of the material that is 

used and the type of carbonation process that is implemented. 

Out of the 19 studies covered in this review, the average CWR was 0.08 µm/min. This means 

that a slag particle 10 µm in diameter fully carbonates, on average, in roughly one hour, 

whereas a slag particle 100 µm in diameter typically takes in the order of 10 hours to achieve 

full carbonation, disregarding mineralogical or morphological impediments and any 

intensification technique used (e.g., sonication52 or mechanical attrition44). This type of 

estimate is useful when considering industrialization of mineral carbonation as a means of 

CO2 sequestration. It provides process designers a reasonable idea of the sort of reactor scale 

needed and logistics involved in sequestering CO2 from flue gas emissions, depending on the 

rate of emissions and sequestration target, and the level of comminution needed to turn iron-

or steel-making slag into a suitable carbon sink. Process intensification techniques are an 

option to accelerate mineral carbonation,37 but the extra processing costs and energy demand 

introduced may not justify their application when the sole purpose of carbonation is CO2 

sequestration,58 which requires a low-carbon-intensity process. Process intensification 



strategies become useful if the CWR is augmented by one or more orders of magnitude. 

Chang et al.44 managed to nearly achieve this, in comparison with the aforementioned 

average, with a CWR of 0.62 µm/min for BOF slag carbonation in a high-gravity rotating 

packed bed. 
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Figure 1. Theoretical illustration of a partially carbonated mineral particle. 

 

Figure 2. Carbonation Weathering Rates as calculated for studies on BOF slag. 

 



 

 

Figure 3. Carbonation Weathering Rates as calculated for studies on AOD slag. 

 

Figure 4. Carbonation Weathering Rates as calculated for studies on CC slag. 



 

Figure 5. Carbonation Weathering Rates as calculated for studies on SS, EAF, BF, and Waelz slags. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

List of Tables: 

Table 1: Types of slags and reactors, and carbonation routes used in various carbonation studies. 

Reference Slag Type Reactor Type Carbonation Route 

Huijgen et al. (2009)41 BOF Autoclave Reactor Slurry Carbonation 
Chang et al. (2011a)42 BOF Column Slurry Reactor Slurry Carbonation 
Van Zomeren (2011)45 BOF Column Reactor Wet/Slurry Carbonation 

 
Santos et al. (2012)48 

 
BOF 

TGA Reaction: crucible 
Pressurized Basket Reactor 

Atmospheric Furnace 

 
Dry Carbonation 

Chang et al. (2012)44 BOF High-Gravity Rotating Packed Bed (RPB) Slurry Carbonation 
Chang et al. (2013)43 BOF Column Slurry Reactor Slurry Carbonation 

Polettini et al. (2015)46 BOF Pressurized Stainless Steel Reactor Slurry Carbonation 
Baciocchi et al. (2015)47 BOF Pressurized Stainless Steel Reactor Wet/Slurry Carbonation 
Johnson et al. (2003)50 SS Pressurized Sealed Chamber Mold Carbonation 

Tai et al. (2008)33 SS Stirred High-Pressure Batch Reactor Slurry Carbonation 
Baciocchi et al. (2009)49 SS Pressurized Stainless Steel Reactor Wet Carbonation 
Baciocchi et al. (2010)38 EAF, AOD Pressurized Stainless Steel Reactor Wet Carbonation 
Baciocchi et al. (2011)36 EAF Pressurized Stainless Steel Reactor Slurry Carbonation 

Vandevelde (2010)51 AOD,CC Pressurized Incubator Chamber Wet Carbonation 
Santos et al. (2011)37 AOD,CC Common Glass Beaker Slurry Carbonation 
Van Bouwel (2012)53 AOD,CC Autoclave Reactor Slurry Crabonation 

 
Santos et al. (2013)39 

 

 
AOD, CC 

Thin Film Reaction: Incubator 
Slurry Reaction: Autoclave Reactor 

Thin Film Reaction: Wet Carbonation 
Slurry Reaction: Slurry Carbonation 

Chang et al. (2011b)40 BF Autoclave Reactor Slurry Carbonation 
Cappai et al. (2015)55 Waelz Pressurized Batch Reactor Wet/Slurry Carbonation 

 

 



 

Table 2: Summary of process conditions and their general enhancement effects on carbonation conversion extent (indicated by the slope of 

arrows) of several slag carbonation studies. 

Reference 
Slag 

Type 
Temperature 

Reaction 

time 

CO₂₂₂₂ 
Pressure 

L/S ratio 
Slurry 

volume 

Particle 

size 

Steam 

addition 

Stirring 

rate 

CO₂₂₂₂ 
Flow 

Rate 

Highest 

CO₂₂₂₂ 
conversio

n (%) 

achieved 

 
 

Huijgen et 
al. (2009)41 

 
 
 

BOF  

 
(between 25 °C - 200 

°C) 

  
 
      (for T >200 °C) 

 

  
(0-9 bar) 

 

 
 

(>9 bar) 

No clear 
effect 

 Highest 
conversion 
presented: 

L/S=2kg/kg. 
For values 
lower or 

higher the 
conversion 
extent gets 

lower 

 
 
    

  
 
    

(0 - 500rpm) 

 

 
(500-

1500rpm) 

 

(1500-
2000rpm) 

 
 
 

74 % 
(after 30 min, 

particle 
size=38µm, 
T=100 °C, 

PCO₂=19 bar, 
500 rpm, and 
L/S= 10kg / 

kg) 

 
 

Chang et al. 
(2011a)42 

 
 
 

BOF  

 
(30 °C- 60 °C) 

 

 
(60 °C - 80 °C) 

 
(for the first 
60 minutes) 

 

 
(60min-
240min) 

 
 

Steady 
(1.013 bar) 

 
 

Steady 
(10 mL/g) 

 
 
 

 
 

Steady 
(< 44 µm) 

 
 
   

 
 
   

 
 

 

     68 % 
(after 60 min, 

T=70 °C, 
particle size 

<44µm, PCO₂= 
1.013 bar, 

L/S= 10 mL/g, 
flow rate=0.1 

L/min) 

 
 

 
 
 
van Zomeren 

(2011)45 

 
 

 
 

 

BOF 

 
 

 
(L/S: 2 L/kg) 
(up to 90 °C) 

 

(L/S: 0.1 L/kg) 

     
 
 
 
 

Steady 
(2-3.3 
mm) 

   
 
 
Steady 
(400mL

/min 

 

4.7% 
(after ~60 

hours, T=90 
°C, particle 

size: 2-3.3mm, 
PCO2=0.2 bar,  
L/S=2 L/kg, 
flow rate=0.4 

L/min) 



 

 
Reference 

Slag 

Type 

 

 

Temperature 
Reaction 

time 

CO₂₂₂₂ 
Pressure 

 

 

L/S ratio 
Slurry 

volume 

Particle 

size 

Steam 

addition 

Stirring 

rate 

CO₂₂₂₂ 
Flow 

Rate 

Highest 

CO₂₂₂₂ 
conversio

n (%) 

achieved 

 
 
 
 

Santos et al. 
(2012)48 

 
   
  BOF 
(Pressuriz
ed Basket 
Reactor 

Carbonati
on) 

 
 

(more important for 
lower pCO₂) 

 

 

 

(for 725 °C 
and 800 °C) 
Sharp CO₂ 

uptake 
improvement 
for the initial 

7.5 min. 
(for 575 °C 
and 600 °C) 

Gradual 
uptake 

improvement 
with time. 

 
    (at 350 °C) 

 

 
(at 500 °C) 

Very slight 
improveme

nt 
 

(at 650 °C) 

 

    
 
 
 
 

    

    
 
 
 
 

 

 
 
 
 

 
 

 
 

(more 
significant in 
percentage 
for BOF₁) 

 

 
(greater 
uptakes 

achieved by 
BOF₂) 

    
 
 
 
 

    

 
 
 
 
 

 
 

~36 % 
(for BOF₂, 

after 30 min, 
T=650 °C, 

particle size 
<0.08 mm, at 

total 
pressure=20 

bar) 

 
 
 

Chang et al. 
(2012)44 

 
 
 
 

BOF 

 
 
 
 

(from 25 °C – 65 °C) 

 

 

 
 
 

(For the first 
6 to 7 min) 

 

 
 

(10min-
30min)  

 

 
 
 

Steady 
(1 bar) 

 
 
 

Steady 
(20 mL/g) 

 
 
 

Steady 
(1.575 L) 

 
 
 

Steady 
(< 88 µm) 

 
 
 
 

(500-
1000rpm) 

 

 

 
(1000-

1250rpm) 

(for the 
first 15 
min and 

flow 
rate<1.2m

L/min) 
 
 
 
 

(after 15 
min) 

 

93.5 % 
(after 30 min, 
at T=65°C, 

particle 
size=62µm, 
PCO₂=1 bar, 

L/S=20mL/g, 
flow rate=1.2 

L/min)  
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Reference 

Slag 

Type 
Temperature 

Reaction 

time 

CO₂₂₂₂ 
Pressure 

L/S ratio 
Slurry 

volume 

Particle 

size 

Steam 

addition 

Stirring 

rate 

CO₂₂₂₂ 
Flow 

Rate 

Highest 

CO₂₂₂₂ 
conversio

n (%) 

achieved 

 
 
 
 
 

Chang et al. 
(2013)43 

 
 
 
 
 

BOF  

 
 
 
 
 
 

 

 
 
 

 (for the first 
10 min) 

 

 
 
 

(after 10 min) 
 

 

 
 
 
 

Steady 
(1.013 bar) 

 
Highest 

conversion 
presented: 

L/S=20mL/

g. For values 
lower or 

higher than 
that the 

conversion 
extent gets 

lower. 

 
 

 
(300mL- 350 

mL) 

 

 
 

(>350 mL-
450 mL)  

 

 
 
 
 

Steady 
(<44 µm) 

 
 
 
 

   

 
 
 
 
    
 

Highest 
conversion 
presented: 

flow 

rate=1 

L/min. 
For values 

less or 
more than 

that the 
conversion 
extent gets 

lower. 
 

 

89.4 % 
(for CRW/BOF 

slag system 
after 2h, at 
T=25 °C, 
particle 

size<44 µm, 
PCO₂= 1.013 

bar, flow 
rate=1L/min, 
L/S=20mL/g) 

 
 
 

Polettini et 
al. 

(2015)46 

 
 

 

 
 
 
 

BOF 

  
 
 

 

(for CO2 conc. 
of 10% and 

40% and 
especially for 
total pressures 

<6 bar) 
 
 

 
(for CO2 

conc.=100% the 
effect is less 
significant) 

 
 
 

 
Steady 

(5 L/kg) 

  
 

 
Steady 

(63-
100µm) 

    

53.6% 
(after 4h,at 
T=100 °C, 

particle 
size=63-100 
µm ,PCO₂=5 
bar, L/S= 5 
L/kg, CO₂ 

Concentration=
40%) 
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Reference 
Slag 

Type 
Temperature 

Reaction 

time 

CO₂₂₂₂ 
Pressure 

L/S ratio 
Slurry 

volume 

Particle 

size 

Steam 

addition 

Stirring 

rate 

CO₂₂₂₂ 
Flow 

Rate 

Highest 

CO₂₂₂₂ 
conversio

n (%) 

achieved 

 
 
 
 
 

Baciocchi et 
al. 

(2015)47 

 
 
 
 

 
BOF 

(wet) 

 
 

 

Steady 
(50 °C) 

  
 (1-10 bar) 

 

 

 
 

Steady 
(0.3L/kg) 

 

 

 

Steady 
(<125µm) 

    

~20% 
(L/S:0.3-
0.4L/kg, 
T=50 °C, 

PCO2=10bar, 
CO2 

conc.=100%) 

 
BOF 

(slurry) 

 
 

Steady 
(100 °C) 

 

 
 

(2.8-9 bar) 
 

Steady 
(5L/kg) 

 

 

 

Steady 
(<150µm) 

 

   
~40% 

(L/S:5 L/kg, 
T=100°C, 

PCO2=9bar, 
CO₂ conc.= 

100%) 

 
 

Tai et al. 
(2008)33 

 
 

SS  

 
(100 °C – 150 °C ) 

 

 
 

(150 °C  - 200 °C ) 

 

(from 0 -1 
hour) 

 

 
(from 1 – 3 

hours) 

 

 
 

Steady 
(80 bar) 

 
 

Steady 
(9 L/kg) 

 
 

Steady 
(20 mL) 

 
 
Ranging 
between 
63 – 90 
µm 

 
 
    

 
 

Steady 
(500 rpm) 

 
 

 

65 % 
(after 1h, 

T=150 °C , 
particle size 
between 63 
and 90µm 

PCO₂=80 bar, 
rotating speed 
of 500 rpm) 



 

 
Reference 

Slag 

Type 
Temperature 

Reaction 

time 

CO₂₂₂₂ 
Pressure 

L/S ratio 
Slurry 

volume 

Particle 

size 

Steam 

addition 

Stirring 

rate 

CO₂₂₂₂ 
Flow 

Rate 

Highest 

CO₂₂₂₂ 
conversio

n (%) 

achieved 

 
 

Baciocchi et 
al. (2009)49 

 
 

 
 

SS  

   
 

No clear 
Effect 

(< 0.4 L/kg) 

 

 
 

(>0.4 L/kg) 

 

 
   

  
   

 
    

 
 

     27.15 % 
(after 8 h, for 
40 °C, particle 

size 
<0.105mm, 
PCO₂=3 bar, 

L/S=0.4 L/kg) 

 
Baciocchi et 
al. (2010)38 

 
EAF 

 
Steady 
(50 °C) 

 

 

(reaction time <  
1 hour) 

 
At 1 bar, 30% 

less CO2 uptake 
than at higher 

pressures (3 and 
10 bar) 

 
(reaction time > 

1hour) 
 

 
Steady 

(0.4 L/kg) 

 
 
 
 
 

 

 

 
 
 
 
 

 

 
 
 
 
 

 

 
 
 
 
 

 

49.1 % 
(after 

24h,T=50 °C, 
part. size<150 
µm, PCO₂=0.3 
bar, L/S=0.4 

L/kg,) 

 
 
 
 
 

AOD 
 
 
 
 

 
Steady 
(50 °C) 

  

 
Steady 

(0.4 L/kg) 

 

69.9 % 
(after 24h 
T=50 °C, 

PCO₂=10 bar, 
L/S=0.4 L/kg) 
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Reference 
Slag 

Type 
Temperature 

Reaction 

time 

CO₂₂₂₂ 
Pressure 

L/S ratio 
Slurry 

volume 

Particle 

size 

Steam 

addition 

Stirring 

rate 

CO₂₂₂₂ 
Flow 

Rate 

Highest 

CO₂₂₂₂ 
conversio

n (%) 

achieved 

 
 
 
 

Baciocchi et 
al. (2011)36 

 
 
 

 
EAF 
(wet) 

 
Steady 
(50 °C ) 

 

(reaction time <  
1 hour) 

 
At 1 bar, 30% 

less CO2 uptake 
than at higher 

pressures (3 and 
10 bar) 

 
(reaction time > 

1hour) 
 
 

 
Steady 
(0.4 L/kg) 

 
 

<150 µm 
 

  

49.1% 
(after 

24h,T=50 °C , 
part. size<150 
µm, PCO₂=3 
bar, L/S=0.4 

L/kg,) 

 
EAF 

(slurry) 
 
 
 
 
 
 

(Until 2 hours and up 
to 150 °C) 

(PCO₂= 10 bar 
and T = 100 

°C ) 
 

No clear 
effect 

 
Steady 

(10 L/kg) 

 
 

<150 µm 

 
    
 

 
Steady 

(500 rpm) 

 
   

38 % 
(after 4h, 

T=100 °C , 
particle 

size<150µm, 
PCO₂=10 bar) 
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Reference 
Slag 

Type 
Temperature 

Reaction 

time 

CO₂₂₂₂ 
Pressure 

L/S ratio 
Slurry 

volume 

Particle 

size 

Steam 

addition 

Stirring 

rate 

CO₂₂₂₂ 
Flow 

Rate 

Highest 

CO₂₂₂₂ 
conversio

n (%) 

achieved 

 
 
 
 
 
 
 
 
 
 

Vandevelde 
(2010)51 

 
 
 
 
 
 
 

 
 

 
 

 
 
 
 
 

AOD 
 
 
 

 

 
 
 

(carbonation at 30 °C  
was higher than that 

at 50 °C ) 

 

 
 
 

(steeper 
during the 

first 6 hours) 

 

 

(total duration 
7 days) 

 
 
 
 
 
 
 

Steady 
(1 bar) 

(6 hours) 
(<0.2 L/kg) 

 

 
(>0.2 L/kg) 

      

     32% 
(after 6 days, 

T=30 °C, 
L/S=0.2 L/kg, 

CO2=20%) 

(24 hours) 
 

(< 0.5 L/kg) 

 

      

 
 
 
 
 
 

CC 

 
 
 
 
 
 
 
 

Steady 
(30 °C) 

 
 
 
 

 

 

 

(total duration 
24 hours) 

    
 
 

(>25.3 µm) 
 

 

 
 

(<25.3 µm) 

 

    

 

 

 

45% 
(after 6 days, 

T=30 °C , 
L/S=0.25 L/kg, 

CO2=20%) 
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Reference 

Slag 

Type 
Temperature 

Reaction 

time 

CO₂₂₂₂ 
Pressure 

L/S ratio 
Slurry 

volume 

Particle 

size 

Steam 

addition 

Stirring 

rate 

CO₂₂₂₂ 
Flow 

Rate 

Highest 

CO₂₂₂₂ 
conversio

n (%) 

achieved 

 
 

 

 

 
Santos et al. 

(2011)37 

 

 

 

 

 
 

AOD 

 

 
 

Steady 
(50 °C) 

(Steeper 
during the 

first 30 
minutes) 

 

(Maximal 
uptake after 
240 minutes) 

  
 

 
 

Steady 
(1 L/10g) 

 
 

 

 
Ranging 

between 

63 and 

200 µm 

  
 
 
 

Steady 
(340 rpm) 

 
 

Steady 
(0.24 

L/min) 

30.5% 
(after 4 hours, 

T=50 °C, 
particle size= 
60-200µm, 

L/S=100 , no 
sonication) 

48.5% 
(under the 

same 
conditions, 

with 
sonication) 

 
 
 

CC 
 
 
 

 

 

 

Steady 
(50 °C) 

(Steeper 
during the 

first 30 
minutes) 

 

(Maximal 

uptake after 
240 minutes) 

 

 
Steady 

(1 L/10g) 

 
 

 

 
Ranging 

between 

63 and 

200 µm 

 
 

 
 
 

Steady 
(340 rpm) 

 

Steady 
(0.24 

L/min) 

61.6% 
(after 4 hours, 

T=50 °C, 
particle size= 
60-200µm, 

L/S=100, no 
sonication 

73.2% 
(under the 

same 
conditions, 

with 
sonication) 



 

                                                                                                                                                                                                        (Table 2 Continued) 

 

 

 

 

 
Reference 

Slag 

Type 
Temperature 

Reaction 

time 

CO₂₂₂₂ 
Pressure 

L/S ratio 
Slurry 

volume 

Particle 

size 

Steam 

addition 

Stirring 

rate 

CO₂₂₂₂ 
Flow 

Rate 

Highest 

CO₂₂₂₂ 
conversio

n (%) 

achieved 

 
 
 

 
  

 
 
 

 
Van Bouwel 

(2012)53 

 

 
 
 
 

AOD 

 
 
 
 
 

(<60 °C ) 

 

        

        (60 ᵒC-90 °C ) 

       

      (90 °C  – 180 °C) 

 
 
 
 

(Steeper 
during the 

first minutes) 

 
 

(the initial 
conversion is 

low and 
becomes higher 

after 12 bar)  

 
 
 

(L/S<8L/kg) 
  

 

(L/S>8L/kg) 

 

 

 

 

 
 
 
 

Steady 
(46.1 µm) 

  
 
 
 

Steady 
(1000rpm) 

  

 

63% 
(after 1 hour, 

T=90 °C, 
particle 

size=46.1 µm, 
PCO2=30bar 
and L/S=16) 

 
 

 
 

CC 

 
 

 

 
(<60 °C) 

 

 

(>60 °C) 

 

 
 
 

(Steeper 
during the 

first minutes) 

(2bar-12 bar) 

 

 
 

(12 bar–20 bar) 

 

 

      (>20 bar)  

(L/S<8L/kg) 

  

 
 

 
 

(L/S>8L/kg) 

  
 
 

Steady 
(39.3 µm) 

  
 
 

Steady 
(1000rpm) 

  

 

76% 
(after 1 hour, 

T=90 °C, 
particle 

size=39.3µm, 
PCO2=30bar, 

L/S ratio=16) 
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Reference 

Slag 

Type 
Temperature 

Reaction 

time 

CO₂₂₂₂ 
Pressure 

L/S ratio 
Slurry 

volume 

Particle 

size 

Steam 

addition 

Stirring 

rate 

CO₂₂₂₂ 
Flow 

Rate 

Highest 

CO₂₂₂₂ 
conversio

n (%) 

achieved 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Santos et al. 
(2013)39 

 
 
 
 
 
 
 
 

AOD 
 

 
 
 

(from 30 °C – 60 °C) 

 

 
(from 60 °C -90 °C) 

 

 
 

(from 90 °C -120°C) 

 

 
 

(>120 °C )  
 
 

(Higher conversion 
achieved at 120 °C) 

 

 

 
 
 
 
 

 
 
 

(Very sharp 
increase for 

the first 
minute of 
reaction) 

 

 
 
 
 

(until 15 bar) 
 

 

 
 

(>15 bar) 

 

 
 

(slight decrease) 

 
 
 
 

(L/S<8L/kg) 

 
 
 

(slight 
increase) 

 
 
 

(L/S>8L/kg) 
 
 
 
 
 

 

 
 
 
 
 
 
 
 

(for the thin 
film 

carbonation 
experiments) 

Steady 
(133.3 
mL) 

 
 
 
 
 
 
 
 
 
 
 

(for the slurry 
set of 

experiments) 

Ranging 
between 
820 mL 
and 1L 

 
 
 
 
 
 
 

46.1 µm 
 
 
 
 
 
 
 

 

 

 

 

39.3 µm 

 

 

 

 
 
 
    
 

 

 

 
 
 
 
 
 

 
 

Steady 
(1000rpm) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Steady 
(1000rpm) 

 
 
 
 
 
 
 

 

 
 
 
 
 
 
 
______ 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

     24.2% 
(after 144 

hours, thin film 
carbonation, 
T= 30 °C, 

particle 
size=46.1 µm, 
PCO2=0.2 atm, 

and 
L/S=25wt%) 

     44% 
(after 

60mins,slurry 
carbonation, 

T=90 °C, 
particle 

size=46.1µm 
PCO₂=15 bar, 

and 
S/L=62.5g/L 

 
 
 
 
 
 
 

 
CC 

 
 
 
 
 

(from 30 ᵒC-90 ᵒC) 

 

 
 
 

(from 90 ᵒC-120ᵒC) 

 

 
 

(>120 ᵒC) 

 

 
(Higher conversion 
achieved at 90 ᵒC) 

 
 

 

 
 

 
 
 
 
 

(Very sharp 
increase for 

the first 
minute of 
reaction) 

 
 
 
 
 
 

(until 9 bar) 
 
 
 

(9 bar-12 bar) 

 

 
 

(>12 bar) 

   
 
 
 
 
 
(L/S<16L/kg) 

 

 

(L/S>16L/kg) 

 
 
 
 

     37% 
(after 144 

hours, T=30 
°C. particle 

size=39.3µm, 
PCO2=0.2atm, 

and L/S= 
25wt%) 

     57% 

(after 60 mins, 
slurry 

carbonation at 
T=90 °C, 
particle 

size=39.3 µm 
PCO₂=30 bar, 

and 
S/L=60g/L) 



      (Table 2 Continued) 

Legend: BF is the Blast Furnace slag, BOF is the Basic Oxygen Furnace slag, EAF is the Electric Arc Furnace slag, AOD is the Argon Oxygen 

Decarburization slag, CC is the Continuous Casting slag, and SS is the Stainless Steel slag, which most of the times is a mixture of EAF and AOD slag 

provided by stainless steel manufacturing industries. The arrows indicate increase (              ) or decrease (              ) of the carbonation extent in relation to 

the increase (unless otherwise stated) of the examined parameter. This symbol (               ) is used when no alteration of the carbonation extent is observed 

with increasing of the examined parameter’s value. Whenever no clear effect of the alterations of the parameters is observed in the carbonation extent, it is 

clearly mentioned “No clear effect”. When the effect of a parameter is not tested in an experiment or there is no information about this parameter, this 

symbol (           ) is used.    

 

 
Reference 

Slag 

Type 
Temperature 

Reaction 

time 

CO₂₂₂₂ 
Pressure 

L/S ratio 
Slurry 

volume 
Particle 

size 
Steam 

addition 
Stirring 

rate 

CO₂₂₂₂ 
Flow 

Rate 

Highest 

CO₂₂₂₂ 
conversio

n (%) 

achieved 
 
 
 
 

 
 
 

Chang et al. 
(2011b)40 

 
 
 
 
 
 

      
BF 

 
(for PCO₂=48.3 bar, 
from 40 °C –100°C)  

 

 

 

(for PCO₂=48.3bar, 
from  100 °C – 160 

°C) 
 

 
(for PCO₂=89.6bar, 
from  40 °C – 160 

°C)  
 

 

 

 
 
 
 
 
 

(until 60 min) 

 

 

(after 60 
min) 

 

 

 
 
 
 
 
 
 

Conversion 
under 89.6 bar 

was slightly 
lower than the 

conversion 
under 48.3 bar 

 
 
 
 
 

(Until 10 
mL/g) 

 

 

 
(10-20 mL/g) 

 
(>20 mL/g) 

 

 
 
 
 
   
 
 
 

 
 
 

 
 
 
 

Steady 
(<44 µm) 

 
 
 
 
   
 
 
 

 
 
 
 
 
 
        
 
 
 

 

 
 
 
  
 
 
 
 
 
 

 

 
 

 

 

68.3 % 
(after 12 h, at 
T=160 °C , 

particle 
size<44µm, 
PCO₂=48 bar 

L/S 
ratio=10mL/g) 

 
 
 
 
 
Cappai et al. 

(2015)55 

 

 
 

 

Waelz 

slag 

 
 

 

 
Steady 
(25 °C) 

 

 

 

 

 

(after 24 h of 

reaction) 

 

 

 

 

 

 

  
 

 
 

Steady 
(<4 mm) 

 
 

 

 

   

 18.3 % 

(after 240h, at 

T=25 °C, 

particle size < 

4 mm, PCO₂=20 

bar, L/S 

ratio=1mL/g) 



Table 3: Summary of slag and process parameters from different carbonation studies and the resulting calculated Carbonation Weathering Rate 

(CWR). 

 
Type of Slag 

Particle 

diameter (µm) 
rx(µm) 

Conversion, C% 

(%) 
tcarb (µm) 

Reaction time, 

τreact (min) 

CWR 

(µm/min) 

Huijgen et al. 
(2009)41 

BOF 
 

38 19 74 6.87 30 0.229 

Chang et al. 
(2011a.)42 

 
BOF 

 
44 22 68 6.95 60 0.116 

Van Zomeren 
(2012)45 BOF 2000-3300 1000-1650 4.67 16.95 – 27.97 3600 0.004 – 0.007 

Santos et al. 
(2012)48 BOF 80 40 36 5.53 30 0.184 

Chang et al. 
(2012)44 BOF 62 31 93.5 18.54 30 0.618 

Chang et al. 
(2013)43 BOF 44 22 89.4 11.59 120 0.097 

Polettini et al. 
(2015)46 BOF 63-100 31.5-50 53.6 7.11 – 11.29 240 0.030 – 0.047 

Baciocchi et al. 
(2015)47 

BOF(wet) 125 62.5 20 4.48 1440 0.003 
BOF(slurry) 150 75 40 11.74 1440 0.008 

Tai et al. 
(2008)33 SS 63-90 31.5-45 65 

9.30 – 13.29 60 0.155 – 0.221 

Baciocchi et al. 
(2009)49 SS 105 52.5 27.2 

5.26 480 0.011 

Baciocchi et al. 
(2011)36 

EAF(wet) 150 75 34.3 
9.80 1440 0.007 

EAF(slurry) 150 75 25.4 
7.00 240 0.029 

Baciocchi et al. 
(2010)38 AOD 150 75 69.9 50.73 1440 0.017 

Vandevelde 
(2010)51 

AOD 38.7 19.35 32 2.33 8640 0.00027 
CC 40.7 20.35 45 3.67 8640 0.00043 



 
Santos et al. 

(2011)37 

AOD(mechanical) 60-230 30-115 30.5 3.43 – 13.14 240 0.0143 – 0.0547 
CC(mechanical) 60-230 30-115 61.6 8.20 – 31.41 240 0.0341 – 0.1309 
AOD(sonication) 60-230 30-115 48.5 5.95 – 22.82 240 0.025 – 0.095 
CC(sonication) 60-230 30-115 73.2 10.66 – 40.86 240 0.044 – 0.170 

Van Bouwel 
(2012)53 

AOD 46,1 23.05 63 6.50 60 0.108 

CC 39.3 19.65 76 7.44 60 0.124 

Santos et al. 
(2013)39 

AOD(wet) 46.1 23.05 24.2 2.03 8640 0.000235 
CC(wet) 39.3 19.65 37 2.81 8640 0.000325 

Santos et al. 
(2013)39 

AOD(slurry) 46.1 23.05 44 4.05 60 0.068 
CC(slurry) 39.3 19.65 57 4.82 60 0.080 

Chang et al. 
(2011b.)40 BF 44 22 68.3 7.00 720 0.010 

Cappai et al. 
(2015)55 Waelz 4000 2000 18.3 130.46 14400 0.009 

                        (Table 3 Continued) 

 

 

 


