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Intensity and Compactness Enabled Saliency
Estimation for Leakage Detection in Diabetic and

Malarial Retinopathy
Yitian Zhao, Yalin Zheng, Yonghuai Liu, Jian Yang∗, Yifan Zhao, Duanduan Chen and Yongtian Wang

Abstract—Leakage in retinal angiography currently is a key
feature for confirming the activities of lesions in the management
of a wide range of retinal diseases, such as diabetic maculopathy
and paediatric malarial retinopathy. This paper proposes a new
saliency-based method for the detection of leakage in fluorescein
angiography. A superpixel approach is firstly employed to divide
the image into meaningful patches (or superpixels) at different
levels. Two saliency cues, intensity and compactness, are then
proposed for the estimation of the saliency map of each individual
superpixel at each level. The saliency maps at different levels over
the same cues are fused using an averaging operator. The two
saliency maps over different cues are fused using a pixel-wise
multiplication operator. Leaking regions are finally detected by
thresholding the saliency map followed by a graph-cut segmen-
tation. The proposed method has been validated using the only
two publicly available datasets: one for malarial retinopathy and
the other for diabetic retinopathy. The experimental results show
that it outperforms one of the latest competitors and performs
as well as a human expert for leakage detection and outperforms
several state-of-the-art methods for saliency detection.

Index Terms—leakage, diabetic, malarial, retinopathy, fluores-
cein angiogram, saliency, segmentation.

I. INTRODUCTION

Fundus fluorescein angiography (FA) is a valuable imaging
modality that provides a map of retinal vascular structure
and function by highlighting blockage of, and leakage from,
retinal vessels [1]. Although FA is invasive and expensive,
and exposes patients with rare but potentially serious side
effects, it is indispensable in differential diagnosis of retinal
diseases such as diabetic retinopathy (DR), age-related mac-
ular degeneration (AMD), malarial retinopathy (MR), and so
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Fig. 1: Illustration of focal leakages in two retinal diseases.
Left: malarial retinopathy. Right: diabetic retinopathy. There is
a large increase in brightness in leaking regions (white arrows)
compared to surrounding non-leaking regions.

on [2]–[4]. Incarnated as useful signal of high intensity, retinal
leakage in angiography is currently a key feature for clinicians
to determine the activities and development of lesions in the
retina. Fig. 1 shows the appearance of leakages in MR and DR
respectively. MR is believed to be important for the differential
diagnosis of cerebral malaria, while DR is a leading cause of
vision loss in the working age population. Identification of
sites and evaluation of the extent of leakage enable decision-
making for treatment and monitoring of disease activities.
More specifically, the detection of retinal lesions in general
is important for automated diagnosis of retinal disease while
the leakage detection is important for therapy planning and
treatment outcome monitoring.

Current practical approaches for quantitative analysis of FA
features require extensive manual delineation by experienced
graders. In eye and vision science research the requirement for
such intervention usually introduces human errors, and slows
down the process, which makes it impractical to process the
vast amount of data collected during routine clinics. There
is an increasing demand for the automated detection of the
leakage in FA.

In this paper we present a new, unsupervised technique to
detect and quantify leakage in FA images with the following
contributions.

First, we propose a novel efficient way to enhance leakage
regions by using the concept of saliency [5]. Saliency indicates
the relative importance of visual features, and is closely
related to the characteristics of human perception and pro-
cessing of visual stimuli [5]–[7]. Saliency emerges from such
characteristics in features of the image as visual uniqueness,
unpredictability, or rarity, and is often attributed to variations
in specific image attributes such as color, gradient, edges,
and boundaries [7]–[9]. Such attributes are also characteristics
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of retinal leakage in FA images. For example, leakage of
fluorescent dye causes a large increase in brightness in leaking
regions when compared to surrounding non-leaking regions.
For this application, leaking regions can be defined as those
of high salience. In consequence, we are motivated to firstly
identify the leaking regions in FA images through a saliency
detection method, and then estimate their areas from the
obtained saliency map.

Second, we have proposed a new way to generate multiscale
saliency maps with integration of the intensity and compact-
ness cues of superpixels for this specific application. More
specifically, traditional saliency extraction methods usually
compute the salience of an image in a pixel-by-pixel manner,
and ignore the neighborhood and edge information of the
objects of interest. Inspired by the fact that human vision
is usually more concerned with objects than with individual
pixels and the objects of interest may vary in size, in this
paper we firstly propose to use patches) at different levels to
represent the given images, and the powerful simple linear
iterative clustering (SLIC) method [10] is employed for this
task.

The reminder of this paper is structured as follows. Section
II briefly reviews the related work on leakage detection and
saliency detection. Section III details the proposed approach.
Section IV describes the datasets and metrics for the evaluation
of the proposed technique. In Section V we first described
our experiments on different datasets in comparison to those
previous proposed methods and report the experimental re-
sults. Section VI experimentally investigates the selection of
saliency cues and the setting of some hyperparameters used in
the proposed method. Section VII concludes the paper.

II. RELATED WORK

In this section, the most common leakage and saliency
detection methods with application to medical images will be
briefly reviewed.

A. Leakage detection

An extensive literature review shows that automated retinal
image analysis of FA images, especially for leakage detection,
is relatively unexplored. In contrast to the large number
of studies on detecting various retinal lesions (i.e. drusen,
exudates, hemorrhage, and so on) in colour fundus photograph,
relatively few methods have been proposed on automated
detection or quantification of leakage. Zhao et al. [11] recently
proposed a method to detect three types of leakage (large
focal, punctate focal, and vessel segment leakage) on images
from eyes with MR. This method can count the number of
leakage sites and measures their sizes and has a reasonable
performance over only 10 images of MR. However, it only
uses the intensity information to generate the saliency map
for the detection, which may suffer when some non-leakage
areas also have high intensities. Rabbani et al. [12] proposed
a method to detect leakage in FA images of subjects with
diabetic macular edema. They employed an active contour
segmentation model to detect the boundaries of leaking areas.
This method is designed to detect areas of leakage in a circular

region centered at the fovea with a radius of 1500µm, and has a
relatively low sensitivity of 0.69 on 24 images. Martinez-Costa
et al. [13] suggested that any pixels with statistically high
increments in gray level along the FA sequence close to the
foveal centre could be segmented as leakage, and applied this
criterion to detect the leakage in the macua due to retinal vein
occlusion. However, this method requires manual detection of
the foveal center. Phillips et al. [14] calculated the gradient of
fluorescence intensity, and then thresholded the gradient values
only to determine leakage regions in DR images. This method
was applied to only six cases. Saito et al. [15] proposed a
detection framework of choroidal neovascularization (CNV)
featured by leakage. However, detection of CNV involves
analysis of a small area of the retina only instead of the entire
image. Trucco et al. [16] and Tsai et al. [17] applied AdaBoost
methods to classify the leakage regions of FA images based
on multiple handcrafted features. However, these supervised
methods are limited by their dependence on training datasets
derived from manual annotation. The performance of the
classifier will be inherently dependent on the quality of this
annotation.

B. Saliency detection as applied to medical images

The application of saliency information for detecting ab-
normalities from different modalities of medical images is
relatively unexploited when compared to other applications.
Yuan et al. [18] proposed a saliency-based ulcer detection
method from the wireless capsule endoscopy (WCE) images.
It uses a multi-level superpixel representation as the pre-
processing step for saliency detection, and the saliency map
is generated from different levels by integrating all obtained
saliency maps according to the color and texture features.
This method is capable of accurately representing the con-
tours of the ulcerated regions, and these regions are located
through an image feature encoding and recognition method.
The limitation of this method is that neither its effectiveness
nor its potential is well demonstrated, because the dataset used
for validation is too small. Mahapatra and Sun [19] used the
saliency and gradient information in a Markov random field
for non-rigid registration of dynamic MRI cardiac perfusion
images. This approach attempts to address the problem that
most nonrigid registration algorithms fail to give satisfactory
results in the presence of intensity changes. Although the
saliency provides high quality contrast-enhanced images, the
gradient information can still be influenced by noise. This
method cannot accurately register the boundary of the left
ventricle. A visual saliency-based bright lesion detection and
classification method was introduced by Deepak et al [20].
The spectral residual saliency model [21] was first employed
to compute the saliency map of the color fundus retinal
images. The saliency computation leads to a sparse generalized
motion patterns representation of the images, and an image is
then classified as normal or abnormal (having bright lesions)
using the k-nearest neighbour classifier based on the texture.
Jampani et al. [22] analyzed the relevance of saliency models
in detecting abnormalities in two types of medical images.
The experimental results show that the Graph Based Visual



3

Algorithm 1 Pseudo Code of Saliency and Leakage Detection
Input: An FA image I with focal leakage.
Saliency Detection:

1: for each level do
2: Cluster the image to n superpixels;
3: for each superpixel do
4: Compute the intensity-based saliency using Eq. 6,

and compactness-based saliency using Eq. 9;
5: end for
6: end for
7: for each cue do
8: Fuse the saliency map based on the same cue at

different levels using an averaging operator;
9: end for

10: Fuse the saliency maps based on different cues using the
Hadamard product

Leakage Detection:
1: Normalize S to [0, 1], threshold (T = 0.65) it to obtain

ROIs.
2: for ROIs do
3: Graph cut segmentation;
4: end for
5: Mask the vessel region from S, and remove optic disc

regions and small/isolated objects.
Output: The detected focal leaking areas in the given image.

Saliency method [23] performs best on the chest X-ray images,
while the Spectral Residual method [21] performs best over the
retinal images. These two methods have been thus selected for
further extension for even better performance based on domain
knowledge and multiscale analysis respectively.

III. THE PROPOSED METHOD

The entire framework for detecting leakages in FA images
is summarized in Algorithm 1. It includes two main steps:
saliency detection and leakagle detection. In the following
subsections, each step will be detailed.

A. Saliency Detection

‘Salient’ regions are those regions of a medical image
that contain meaningful information for diagnostic purposes.
Typically, the intensities and/or shapes of these regions are
significantly different from their surroundings or neighbors [6],
[23]–[26]. As shown in Fig. 1, the leaking regions in an FA
image are conspicuous objects, and can easily be distinguished
visually by their intensity or shape. The intensity based ap-
proach seems to be a natural choice for computational leakage
area detection [11]. However, large vessels and the optic disc
might also be falsely detected as salient regions for similar
reasons in this application. Consequently, the vessel extraction
and optic disc detection are essential in this framework: simply
masking them will help to improve the accuracy of leakage
detection. In this paper, for convenience we define all the
aforementioned regions that might be assigned a high saliency
value as the regions of interest (ROIs). After the whole
process, the false ones such as large vessels and the optic

disc will be removed while only the leakage regions will be
retained. In the following subsections, the superpixel based
saliency detection method will be detailed.

1) Superpixel Segmentation: A region-based approach is
well established in saliency measurement: for example, Cheng
et al. [8] have used a histogram-based contrast method: the
saliency value of each pixel relative to the others in the entire
image is estimated and then smoothed in the color space, and
further improved through partitioning the given image into
regions and assigning saliency values to such regions through
considering both their global contrast score and local spatial
coherence. This is a two-step method and the first step may
assign different saliency values to similar colors due to color
quantization. In our method, superpixels are employed to avoid
discontinuities at the bin edges of the histogram.

A state-of-the-art superpixel algorithm, called Simple Linear
Iterative Clustering (SLIC) [10], is employed in this work to
generate a desired number n of regular, compact superpixels
to replace the rigid structure of the pixel grid, at a low compu-
tation cost, where the default value of 10 for the compactness
term is adopted. The SLIC is a k-means clustering method,
and is able to assign each pixel to a superpixel according to its
intensity and spatial location. The SLIC is capable of grouping
meaningful entities into a superpixel by assembling spatially
neighboring pixels with similar properties. It not only provides
fine segmentation results, but also generates a suitable number
of segments for leakage image analysis. Similar research using
different method has also been reviewed [27]

In this work, a multi-level superpixel method is proposed.
The input image is segmented into L (L = 3) levels of
superpixels independently, and the corresponding number n
of superpixels is set to be 333, 666, and 1000 at each levels,
respectively. Fine tuning of the values for these parameters: L
and n will be discussed later in Section VI.

2) Intensity-based Saliency Detection: Let Pi ∈ I be a
viable local representation as a superpixel i (i = 1, 2, · · · , n),
and let I indicate the input image. The superpixels may be seen
as samples of a multivariate probability density function (PDF)
of the imaged objects. A kernel density estimator (KDE) is
chosen, as, being non-parametric, it will permit the estimation
of any PDF. The probability of a patch Pi may now be defined
as:

p(Pi) =
1

nh

n∑
j=1

K

(
d(Pi,Pj)

h

)
, (1)

where d is a distance function that will be discussed later,
K is a kernel, and h is a smoothing parameter. The KDE
method has the capacity to average out the contribution of
each sample Pi by spreading it over a certain area [28], which
is defined by K. The multivariate distribution will have a
higher probability if a superpixel is in dense and similar areas.
From our experience, the most commonly used and appropriate
kernel is the Gaussian function with zero mean and standard
deviation σ. In this case, the probability of a superpixel p(Pi)
can be defined as:

p(Pi) =
1

nΓ

n∑
j=1

exp
(
− d2(Pi,Pj)

2σ2

)
. (2)
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The estimated probabilities p(Pi) can be normalized to be-
come an actual PDF H(Pi) by setting a proper constant Γ.
σ = 0.2 is chosen to substitute for h. The relative distance d is
used in case the distribution of the superpixels is not uniform,
and the distance metric mainly focuses on the relationships
between similar superpixels. The relative average difference
of a pair of superpixels Pi, Pj ∈W in intensity is defined as:

d(Pi,Pj) =
|a(Pi)− a(Pj)|

avePk∈W (|a(Pi)− a(Pk)|)
(3)

where W = {P1,P2, · · · ,Pn} and avePk∈W (|Pi − Pk|) is
the average difference between the average intensity a(Pi) of
pixels inside Pi and those a(Pk) of other superpixels Pk in W .
Compared to the absolute difference, the relative difference is
more consistent for two sets of pixels with similar neighboring
relationships but different resolutions and scales [29].

After determining the probabilities of the superpixels, the
dissimilarity measure disI(Pi,Pj) between Pi and Pj is
defined as:

disI(Pi,Pj) =
(H(Pi)−H(Pj))

2

H(Pi) +H(Pj)
. (4)

The larger the relative difference of a superpixel from another,
the less the similar they are, and the more dissimilar it is.

The distinctness value of each superpixel can be estimated
using the dissimilarity measurement above. Superpixel Pi

is considered salient when it is highly dissimilar to other
superpixels. The saliency value of Pi is defined as:

SI(Pi) = 1− exp
(
− 1

n− 1

n∑
j=1,j 6=i

disI(Pi,Pj)
)
. (5)

However, in order to reduce computational complexity, we
note that it is unnecessary to evaluate the uniqueness of a
superpixel by computing its dissimilarity to all the others. For
instance, if the most similar superpixels Pj are significantly
different from superpixel Pi, then it follows logically that all
the other superpixels are also highly different from superpixel
Pi. Therefore, for superpixel Pi, only the M most similar
superpixels {Qm}Mm=1 (M = 10 in this paper) need to be
found and processed. Hence, the saliency value of superpixel
Pi can be rewritten as:

SI(Pi) = 1− exp
(
− 1

M

M∑
m=1

disI(Pi, Qm)
)
. (6)

The final intensity-based saliency is obtained by fusing
the saliency maps SI(P l

i) of different superpixels Pi at
different levels l . More specifically, all the pixels u within
a superpixel will have the same value at each level (the
same for fusing the compactness based saliency maps over
all the levels). The fusion is performed pixel by pixel as:
SI(u) = 1

L

∑L
l=1 SI(P l

i |u ∈ P l
i).

3) Compactness-based saliency detection: Intuitively, the
leakage region in an FA image will present different intensity
information when compared with the others. However, it is
observed in practice that using the intensity feature alone to
detect salient regions is not always successful. For example,
the red rectangle region of the top row of Fig. 2 (c) shows
that non-vessel regions in the middle of the image with high

brightness due to uneven illumination have also been detected
as highly salient, whereas a human observer perceives only
the leakage regions and vessels as more salient. Therefore,
this section proposes another feature - compactness. Normally,
human observers pay more attention to a more compact object
than to a more diffuse object. The measure of compactness
of an object might therefore be of use as a complementary
feature to intensity for saliency measurement, with the aim of
reducing the number of falsely-detected salient regions.

For superpixel Pi, its compactness c(Pi) is defined as

c(Pi) = exp
(
− ασx,i + σy,i√

X2 + Y2

)
, (7)

where σx,i and σy,i are the standard deviations of the x and
y coordinates of the pixels inside the superpixel Pi, and α is
a constant factor that is empirically set to 15. X and Y are
the width and height of the input image. By incorporating the
compactness feature with the intensity feature of a given im-
age, the measure disC(Pi,Pj) of dissimilarity in compactness
between Pi and Pj is defined as:

disC(Pi,Pj) = |a(Pi)− a(Pj)| ×
(
1 +

c(Pi)− c(Pj)

2

)
×exp

(
− βd(Pi,Pj)√

X2 +Y2

)
,

(8)

where term |a(Pi) − a(Pj)| calculates the difference of the
average intensity (a) characteristic of superpixels Pi and Pj .
d(Pi,Pj) is the relative average difference between super-
pixels Pi and Pj , as proposed in Eq. (3). The constant
factor β is empirically set to 300. The larger the dissimilarity
disC(Pi,Pj), the higher the probability that human attention
will be paid from superpixel Pj to Pi. Hence, the following
rules in TABLE I can be used to assist in estimating the
saliency value SC(Pi) of superpixel Pi.

TABLE I: Some useful rules for the determination of saliency
from compactness

Condition Expected dissimilarity Expected salience
Pi is distinct from Pj large disC(Pi,Pj) SC(Pi) > SC(Pj)
Pi is similar to Pj small disC(Pi,Pj) SC(Pi) ≈ SC(Pj)
c(Pi) > c(Pj) large disC(Pi,Pj) SC(Pi) > SC(Pj)
c(Pi) < c(Pj) small disC(Pi,Pj) SC(Pi) < SC(Pj)

Similar to Eq. (6), the compactness-based saliency value
SC(Pi) of Pi is defined as

SC(Pi) = 1− exp
(
− 1

M

M∑
m=1

disC(Pi, Rm)
)

(9)

where Rm(m = 1, 2, · · · ,M) is the M most similar superpix-
els to Pi in the sense of compactness.

Again, we calculate the final compactness-based
saliency based on the mean value of the saliency maps
SC(P l

i) of different superpixels Pi at different levels
l, and the fusion is performed pixel by pixel as well:
SC(u) = 1

L

∑L
l=1 SC(P l

i |u ∈ P l
i).
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Fig. 2: An example to illustrate a saliency map generated by the proposed method: (a) an example FA image; (b) saliency
maps estimated using intensity and compactness features with different numbers of superpixels; (c) fused saliency maps of
intensity and compactness across different levels of superpixels; (d) final saliency map.

4) Saliency map fusion: Two bottom-up approaches in our
proposed superpixel based saliency detection method have
been described so far. It is likely that each of them has its
own drawbacks if used alone in real applications. Therefore,
an overall saliency map by fusing the saliency maps based
on intensity and compactness is expected to provide better
performance. linear summation [5] or pixel-wise multiplication
(also known as the matrix Hadamard product) [30] are two
commonly used methods to fuse the saliency maps. In this
work, the intensity and compactness saliency maps are fused
by applying the pixel-wise multiplication method so as to
force only the regions with higher values in both intensity and
compactness channels to be assigned higher values in the final
saliency map S. By integrating the two saliency measures, the
property of human vision by which attention declines as the
edge of the area of interest is approached may be mimicked.
That is, the final saliency map highlights salient object regions
of interest and suppresses background regions, as illustrated
in Fig. 2 (d).

B. Graph cut for leakage detection

The proposed superpixel-based saliency detection ap-
proach has successfully enhanced the contrast between ves-
sels/leakages and background. Some example results are
shown in Fig. 3 (b). The appearances of these leakages are
highlighted, while the background regions are suppressed,
when compared to the original images. Once the saliency
map is computed and normalized to [0, 1], a threshold value
T = 0.65 is applied to the saliency map to obtain the
ROIs. The thresholding approach itself cannot guarantee the
boundaries of the segmented structures are smooth and often
generates isolated fragments. In light of this inadequacy, more
sophisticated segmentation methods [31]–[36] will be needed

for better results. On the other hand, the computational cost
is also an important factor for a segmentation tool to be taken
into account for potential real applications. For these two
reasons, we advocate here a graph cut based segmentation
method [33], [34] on the obtained ROIs to identify the leakage.
This method imposes the constraint that the neighboring pixels
tend to belong to the same class and thus penalizes the isolated
pixels in different classes.

Let N be a set of edges {(u, v)} where a pixel u is
connected to its 8 nearest neighbors v, and M denote the set
of pixels in the given image I , the discrete energy function is
defined as:

E(x) =
∑
u∈M

Eu(xu) +
∑

(u,v)∈N

Euv(xu, xv), (10)

where x = {x1, · · · , xN } is the binary labelling where the xu
is either 0 or 1 depending on whether the pixel u belongs to the
background or foreground. The first term here approximates
the region terms while the second term approximates the
regularization term. The unary term Eu is defined as:

E0
u(xu) = λ1(Iu − c1)2, E1

u(xu) = λ2(Iu − c2)2 (11)

where E0
u, E

1
u denote the weights between the node u and

the two terminals, λ1 and λ2 are the non-negative region
weighting parameters, Iu is the intensity of the pixel u, and
c1 and c2 indicate the average intensities of the background
and foreground respectively. The binary term Euv is defined
as:

Eu,v(xu, xv) =

{
µwuv, if xu 6= xv
0, otherwise, (12)
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where wuv denotes the weight between neighboring pixels u
and v, as suggested in [37]:

wuv =
δ2 ·∆φuv
2 · |euv|

, (13)

where δ is the cell-size of the grid, |euv| is the Euclidean
length of the edge euv , and ∆φuv is the difference between
the angular orientations φu and φv of the pixels u and v and
is restricted to the interval [0, π]. In this work, we set λ1 =
λ2 = λ = 0.5 (see Sec. VI for the parameter tuning), and µ
is empirically set as 0.2.

C. Final refinement

After the graph cut segmentation, some vessels, the optic
disc and some small objects may still remain as they may also
have been enhanced during the saliency detection steps. It is
important to remove them in order to improve the leakage
detection performance. To this end, the following steps are
applied: (i) The infinite perimeter active contour with hybrid
region (IPACHR) method [38] is used to segment retinal
vessels for its good performance. In brief, this method uses
an infinite perimeter active contour model for its effectiveness
in detecting objects (e.g. vessels) with irregular and oscillatory
boundaries. Moreover, this method considers hybrid region
information (local phase based vesselness map and intensity)
in an image in order to achieve further improved performance
compared to the standard infinite perimeter active contour
model [38]. For more details, we refer readers to the original
paper [38]. (ii) Any small and/or isolated objects are elimi-
nated by the use of a disk-shaped opening operation with a
radius of 2 pixels. (iii) In most cases, the optic disc remains
as leakage regions after the graph cut based segmentation
and should be removed. It has been well observed that the
number of vessels surrounding the optic disc is much larger
than that close to large focal leaking sites [11], [39]. Thus,
any region with a number of surrounding vessels greater than
a threshold of 5 will be assumed to be the optic disc, and will
be removed. In our experiments this method is found to be
efficient and effective. However, other sophisticated methods
may work equally well.

IV. DATASETS AND EVALUATION METRICS

Our method will be evaluated on two FA image datasets
with two different retinal diseases: DR and MR respectively.
To the best of our knowledge, these two datasets are the only
FA datasets available in the literature for the evaluation of
leakage detection algorithms.

A. DR dataset

The FA images of the DR set [12] were collected by the
Vision and Image Processing Laboratory, Duke University,
USA and are currently publicly accessible. All images were
acquired using a Heidelberg Spectralis 6-mode HRA/OCT unit
(Heidelberg Engineering, Heidelberg, Germany). Each image
has 768 × 768 pixels. The study was approved by the Duke
University Health System Institution Review Board (IRB).

The tenets of the Declaration of Helsinki were adhered to. It
contains images of 24 eyes taken from 24 subjects. All subjects
had signs of DR on admission. All the images were catego-
rized into three types according to their leakage conditions:
predominantly focal, predominantly diffuse, and mixed pattern
leakage. Focal leakage manifests as discrete foci of leakage on
early FA frames and corresponds to microaneurysms. Diffuse
leakage is characterized by generalized leakage prominent on
late FA frames without discretely identifiable source.

B. MR dataset

The MR dataset contains 25 FA images and all had signs of
MR on admission. These images were randomly chosen from
images systematically sorted and graded for quality by the Liv-
erpool Reading Center at St Paul’s Eye Unit, Royal Liverpool
University Hospital and the Department of Eye and Vision
Science, University of Liverpool. The FA images were taken
after pupil dilation with Tropicamide 1% and Phenylephrine
2.5%, using a Topcon 50-EX optical unit (Topcon, Japan) and
a Nikon E1-H digital camera. The tenets of the Declaration
of Helsinki were adhered to. Ethical approval for retinal ex-
amination and imaging was given by committees in Blantyre,
Malawi and at collaborating institutions. Consent was given
by the parents/guardians of children before examination and
imaging. 50-degree images were taken after pupil dilation,
using a Topcon 50-EX fundus camera (Topcon, Japan). All
macula-centered images have a resolution of 3008 × 1960
pixels and were re-sized to 752 × 490, similar to the size of
the DR images above, so that a single set of parameters can
be tuned over both datasets. This is important for the test of
the proposed technique whether it is generalisable to different
datasets.

C. Evaluation Metrics

In this paper sensitivity (Se), specificity (Sp), false negative
rate (Fnr), accuracy (Acc), area under the receiver operating
characteristic curve (AUC), and the Dice coefficient (DC) are
used to measure the performance of the proposed method.
Sensitivity (resp. specificity) is a measure of effectiveness
in identifying pixels or regions with positive (resp. negative)
classifications. Both accuracy, AUC and DC measure the
overall segmentation performance.

In essence, leakage detection may be seen as an imbalanced
data classification problem: there are typically much fewer
leakage pixels than others. In such a case AUC can better
reflect the trade-offs between sensitivity and specificity. In
particular, the AUC proposed by Hong et al. [40] is employed
here, as it was proposed to evaluate the segmentation (or
classification) performance at a specific operating point.

More specifically, the chosen metrics are defined as follows:
sensitivity (Se) = tp/(tp + fn); specificity (Sp) = tn/(tn +
fp); accuracy (Acc) = (tp + tn)/(tp + fp + tn + fn);
true positive rate (Tpr) = Se; false positive rate (Fpr) = 1 −
Sp; false negative rate (Fnr) = 1−Se; and AUC = (Se+Sp)/2
where tp, tn, fp and fn indicate the true positive (correctly
identified leakage pixels or regions), true negative (correctly
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identified background pixels or regions), false positive (incor-
rectly identified leakage pixels or regions), and false negative
(incorrectly identified background pixels or regions), respec-
tively, and all the pixels are equally treated towards their
counting without considering the severity of the symptoms
they depict. DC = 2(|A∩B|)/(|A|+ |B|), where A is the
ground truth region, B indicates the segmented region, and
|A∩B| denotes the number of pixels in the intersected region
between A and B.

We grouped all the experimental results together first and
then calculate reliably the final scores of performance mea-
surements. For each dataset, two graders (the inter-observers)
were invited to manually annotate the leakage regions, one
of them was asked to repeat the annotations after 4 weeks
(the intra-observer), and the ground truth was obtained from
the consensus between the two graders. Statistical analysis
is performed as appropriate in order to evaluate the relative
performance of different segmentation methods. Due to the
relatively small number of images, p < 0.01 is considered to
be statistically significant. All the experiments were carried
out in MATLAB2015a on a PC with an Intel Core i7-4790K
CPU, 4.00GHz, and 16GB RAM.

V. EXPERIMENTAL RESULTS

The proposed saliency-guided leakage detection method is
evaluated from two aspects: leakage detection over different
datasets, and the comparison with existing state-of-the-art
saliency detection methods. An experimental investigation will
also be carried out in the next section on the effectiveness of
different saliency cues and parameter setting - i.e., the level of
superpixel maps and the number of superpixels in each level,
the threshold value for the generation of the ROIs from the
final saliency map and the region weight λ.

A. Results on different datasets

In this section, we quantitatively evaluate the performance
of our algorithm in direct comparison with both the leakage
detection performance of human graders and that of an existing
alternative method. To this end, the method proposed by
Rabbani et al. [12] was re-implemented in our study, and
applied to the MR dataset. For the DR dataset, however, we
directly quoted the results reported in their paper in the hope
that their results are the best achievable.

TABLE II: The performances of different methods in detecting
focal leakages over the MR dataset at the site level. The
number in the brackets indicates the relative performance
measurement. 41 leaking sites were manually annotated as
ground truth.

Rabbani et al. [12] Proposed
#(detected focal leakages) 35 40

tp (Se) 32 (0.78) 40 (0.98)
fp (1-Sp) 3 (0.07) 0 (0)
fn (Fnr) 6 (0.14) 1 (0.02)

(a) (b) (c) (d) (e)

Fig. 3: Examples illustrating the main steps of our algorithm
for detecting leakages. The images in top three rows are from
MR dataset, and the images in bottom three rows are from
DR dataset. (a) Example FA images; (b) saliency maps of (a).
The bright regions indicate the more salient regions, and the
dark areas show the less salient regions; (c) binary images
of (b) obtained by applying the threshold value T ; (d) the
detected leakage regions after masking vessels and optic disc;
(e) expert’s annotations.

TABLE III: The performances (average ± one standard de-
viation) of different methods on detecting the focal leakages
over the MR dataset at the pixel level.

Intra obs. Inter obs. Rabbani et al. [12] Proposed
Se 0.96±0.02 0.91±0.04 0.81±0.08 0.93±0.03
Sp 0.97±0.03 0.94±0.05 0.87±0.08 0.96±0.02
Acc 0.96±0.03 0.89±0.04 0.83±0.10 0.91±0.03

AUC 0.96±0.02 0.92±0.04 0.84±0.08 0.94±0.02
DC 0.92±0.04 0.80±0.05 0.74±0.05 0.82±0.03

1) MR Dataset: The leakage detection results over the MR
dataset are illustrated in the top three rows of Fig. 3. It can be
seen that most of the leaking areas were correctly identified
by our automated method. TABLE II shows the performances
of different methods in detecting the focal leakage sites.
According to the human reference standard there were 41 sites
of large focal leakage in 25 images (one image per patient).
Our method failed to detect only one out of all these sites,
achieving a sensitivity of as high as 0.98, and the false negative
rate of as low as 0.02. It is interesting to note that our method
produces a false positive rate of 0, which means there were no
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(a) (b) (c) (d) (e) (f)

Fig. 4: Leakage segmentation results by experts (green labels), existing method [12] (red labels), and the proposed automated
method (blue labels). For fair comparison, only the regions (yellow circle) centered at the fovea with a diameter of 3000µm
were considered as regions of interest. Note: (a)-(e) were quoted from [12] for convenience. (a) Example FA images. (b)
Annotation of Expert 1. (c) Annotation of Expert 2. (d) Re-annotation of expert 2 after 4 weeks. (e) Leakage detected by
Rabbani et al.’s method. (f) Leakage detected by our proposed method.

regions falsely identified as large focal leakage sites. In sharp
contrast, the method proposed by Rabbani et al [12] produces
relatively poorer results. It has only successfully detected 32
focal leakage sites, which gives a sensitivity of only 0.78. In
addition, 3 non-leaking regions were falsely detected as focal
leakage sites. This is because it used only intensity information
for the task, which failed to distinguish leaking sites from
non-leaking ones with high intensity values. TABLE III shows
the performances of different methods in detecting the focal
leakage sites at the pixel level. It shows that the proposed
method achieves competitive results to human experts: the
mean accuracy of 0.96± 0.03 for the manual intra-observers;
0.92 ± 0.04 for the manual inter-observers; 0.83 ± 0.10 for
Rabbani’s method; and 0.91± 0.03 for the proposed method.
The statistical analysis shows that the performance of the
proposed method is significantly higher than that of the method
proposed by Rabbani et al [12] (2-tailed t-test, all p < 0.0001).

2) DR Dataset: The proposed method was also tested on
the DR dataset with the aim of detecting the leakage areas
caused by diabetic macular edema. As suggested in [12],

TABLE IV: The performances (average ± one standard de-
viation) of different methods on detecting the focal leakages
over the DR dataset at the pixel level.

Intra obs. Inter obs. Rabbani et al. [12] Proposed
Se 0.95±0.05 0.78±0.09 0.69±0.16 0.78±0.06
Sp 0.73±0.27 0.94±0.08 0.91±0.09 0.94±0.02
Acc 0.83±0.16 0.90±0.08 0.86±0.08 0.89±0.06

AUC 0.84±0.16 0.91±0.08 0.80±0.12 0.86±0.04
DC 0.80±0.08 0.82±0.03 0.75±0.05 0.81±0.02

quantitative analysis of a circular region centred at the fovea
with a radius of 1500 µm is of greatest significance for clinical
diagnosis and treatment. For a fair comparative study, we also
limited our method in detecting the leakages in this area. Fig. 4
shows the results of different methods in detecting the leaking
regions abound the fovea. It can be seen that most of the
leaking areas have been detected by both methods, and that
the segmentation results are very similar to those of manual
annotations.
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Fig. 5: Saliency detected on single images from the MR and DR datasets by different algorithms. (a) Original FA images.
(b)-(g) Saliency maps generated using different methods. (h) Ground truth. Note, the ground truth only indicates the leaking
regions. In the saliency detection step, the large vessels and optic disc are also assigned as salient regions but will be removed
later.

It is difficult to distinguish visually between the two meth-
ods. Quantitative results are thus provided in TABLE IV, in
terms of sensitivity, specificity, accuracy, area under curve,
and Dice coefficient. It can be clearly seen that our au-
tomated method outperforms Rabbani’s method again, and
has relatively better stability. To be more specific, the mean
accuracy was 0.89 ± 0.06 for our method; 0.86 ± 0.08 for
Rabbani’s method; 0.83±0.16 for the manual intra-observers;
and 0.90±0.08 for the manual inter-observers. It is interesting
to note that the accuracy for intra-observer annotations was
lower than that of our automated method, which is very close
to the accuracy of the inter-observer annotations. This implies
that the DR dataset suffers from noise and other distortions
common in real-world clinical imaging: a finding that was also
reported in [12]. These results show that humans are prone to
variability. The statistical analysis shows that the performance
of our proposed method is significantly better than the method
proposed by Rabbani et al. (2-tailed t-test, all p < 0.0001).

In summary, based on both the quantitative and qualitative
comparisons on two different datasets, it can be seen that
our automated method is effective, and is superior to the
existing automated method in detecting the focal leakages.
When compared with the annotations of human observers, it
can be seen that on one hand, our method can perform as well
as a human expert. On the other hand, human observers are
prone to variability (relatively lower Sp, Acc, and AUC scores
than the proposed method).

B. Saliency detection

In this section, we carry out a comparative study between
the proposed method and the state-of-the-art ones for the
detection of salient objects, including vessels, focal leakage,
and optic disc, over the MR and DR datasets. Since the
detection of salient objects is an immediate step of our
method, such comparative study will help further explain its
superior performance reported in the last section. To this
end, five saliency detection methods were selected: the classic
method [5], spectral residual saliency [21], frequency-tuned
saliency [6], graph-based visual saliency [25] and context-
aware saliency [41]. These competitors and the proposed
method are referred to as IT, SR, FT, GB, CA, and IC,
respectively. The source codes with default parameter settings
provided by the authors for these methods were used, and all
generated saliency maps were normalized into the same range
of [0,1] with a full resolution of the original images.

The saliency maps estimated by the six different methods
are presented in Fig. 5. It can be clearly seen that the proposed
method has successfully detected all main objects, including
the focal leakages and vessels, which are largely consistent
with the results of visual inspection. The SR method has the
poorest performance, since the spatial information is lost in the
Fourier representation. This means that the spectral energies
derived from frequency bands in Fourier domain alone may
not be sufficient. Compared with other models, the proposed
method preserves salient object boundaries more accurately
and highlights the complete salient objects more effectively.
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(a) MR (b) DR (c) AUC values

Fig. 6: (The reader is referred to the color version of this figure) ROC curves and AUC values of different methods over two
different datasets. (a) ROC curves over the MR dataset. (b) ROC curves over the DR dataset. (c) AUC values.

(a) MR (b) DR (c) AUC values

Fig. 7: ROC curves and AUC values achieved by the proposed method with different saliency cues over two different datasets.
(a) ROC curves over the MR dataset. (b) ROC curves over the DR dataset. (c) AUC values.

It is not only capable of suppressing background, but also
highlights all salient regions (e.g. leakage area, vessels, and
optic disc) with well-defined boundaries. By utilizing the
intensity and compactness information, the proposed method
can better handle heterogeneous objects (row 2 in Fig. 5), low
contrast between objects and background (row 4 in Fig. 5),
large-scale salient regions (row 3 in Fig. 5) and small-scale
salient objects (row 4 in Fig. 5) more effectively compared
with other saliency detection methods.

In order to objectively measure the performance, the false
positive rate and true positive rate of the saliency maps derived
by different methods were then calculated, by sweeping a
threshold from 0 to 1 over the final saliency map. The averaged
results over different images of our method and its competitors
are plotted as ROC curves in Fig. 6 (a) and (b). It can be seen
that our method achieves the best performance over both MR
and DR datasets. The AUC values were also calculated from
the ROC curves of all these methods and are illustrated in
Fig. 6 (c). It can be seen that the proposed method consistently
outperforms its competitors. It can also be seen that the AUC
value achieved by each method is higher over the MR dataset
than over the DR dataset. This suggests that the leakage
detection on the DR dataset is relatively more challenging than
over the MR dataset.

VI. DISCUSSIONS

Our proposed method includes a number of free features and
parameters: the effectiveness of each saliency cue, the numbers
of superpixels and levels of superpixel partition; the threshold
value for the generation of ROIs from the final saliency map;

and the weighting parameter λ for the graph-cut segmentation.
In this section, we experimentally investigate their effect on
the segmentation.

A. The effectiveness of each saliency cue

In our method, two cues were employed to measure salience
in each FA image: intensity and compactness. To validate the
effectiveness of each cue, we generated three ROC curves and
calculated corresponding AUC values over the MR and DR
datasets separately: intensity cue only, compactness cue only,
and combined intensity and compactness cues.

Fig. 7 shows the experimental results. It can be seen that the
ROC curve using the saliency map based on both cues is higher
than that using either the intensity cue or the compactness
cue alone. Essentially, the proposed method utilizes both the
global intensity and compactness information to constrain the
saliency detection problem: the leakage regions in FA images
have particular color (intensity cue) and shape (compactness)
characteristics. The intensity cue is able to reveal important
regions at different scales in the image. The compactness cue is
effective for distinguishing salient regions against background.
Our results indicate that intensity and compactness cues have
a complementary effect for the definition of saliency.

B. The numbers of the superpixel maps and superpixels in
each map

Choosing a suitable number of superpixels is usually em-
piric and case-specific for most of segmentation methods.
On one hand, too large a number of superpixels leads to
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(a) (b)

Fig. 8: The ROC curves of the proposed method with (a)
different numbers of superpixels: 250, 500, 1000, 2000, and
4000; (b) different numbers of levels, after setting the optimal
number of the superpixels to 1000.

over-segmentation and over-intensive computation. On the
other hand, too few superpixels result in a loss of the edge
information of the objects of interest. In this section, we
experimentally tune this parameter. To this end, it was set
to be successively 250, 500, 1000, 2000 and 4000. Fig. 8 (a)
shows the performances of the proposed method under these
test numbers, and reveals that the proposed method achieves
the best performance when the superpixel number is 1000.

Multiscale analysis is useful to reveal the saliency at dif-
ferent scales. Too few scales may miss the saliency at small
scales. Too many scales may detect unimportant objects at the
cost of intense computation. Thus, in this section, the optimal
number of superpixel levels is evaluated, and results are shown
in Fig. 8 (b), where the number of superpixels was set to
1000 at the finest level. It can be clearly seen that our method
achieves the best performance when the number of levels is 3.
This means that with the optimal number of superpixels being
1000, those at the other two levels were set to 1000× 1

3 = 333
and 1000× 2

3 = 666 respectively. It is worth mentioning that
the specified combination of the number of superpixels and the
number of levels may not be the best choice for our proposed
method.

C. Threshold value for the generation of ROIs

The binary segmentation of ROIs from the final saliency
map can be obtained by using a simple threshold-based
method. In this case, there is a concern that the segmentation
results may be affected by the chosen threshold. In this section,
we experimentally investigate how to set up such threshold.
To this end, we varied the threshold T from 0 to 1 with steps
of 0.05. Fig. 9 shows the AUC values of our method with the
threshold T taking different values over two different datasets.
It can be seen that it achieves the highest AUC value when
T = 0.65, for all cases. These results thus justify our choice
of T = 0.65 throughout this paper.

D. The effect of the region weight λ

In order to demonstrate the robustness of the graph-cut
based leakage segmentation, the effect of the region weighting
factor λ in the energy minimization function (Eq. 11) are eval-
uated in this section. λ balances the smoothness of the detected

TABLE V: The average ± standard deviation of various pa-
rameters and computational time t in seconds of the proposed
method with the region weight λ taking different values over
different datasets.

dataset λ Se Sp Acc AUC t (sec)

MR

0.1 0.93±0.02 0.96±0.02 0.91±0.02 0.94±0.02 13.1±3.1
0.5 0.93±0.03 0.96±0.02 0.91±0.03 0.94±0.02 9.6±2.8
1 0.91±0.04 0.95±0.02 0.90±0.04 0.93±0.03 7.1±2.2
1.5 0.91±0.03 0.95±0.01 0.90±0.03 0.93±0.02 6.5±1.8
2 0.90±0.04 0.94±0.03 0.90±0.04 0.92±0.02 5.3±1.1

DR

0.1 0.78±0.02 0.94±0.02 0.89±0.04 0.86±0.03 15.2±3.2
0.5 0.78±0.06 0.94±0.02 0.89±0.06 0.86±0.04 10.9±3.0
1 0.77±0.04 0.94±0.01 0.88±0.05 0.85±0.04 8.4±2.8
1.5 0.77±0.04 0.94±0.02 0.88±0.06 0.85±0.04 7.9±2.2
2 0.76±0.05 0.93±0.03 0.88±0.06 0.85±0.04 6.5±1.2

boundary and the uniformity of the detected regions. Usually,
the smaller the value of λ, the smoother the boundaries and the
larger the regions the segmentation will produce, while a larger
λ obtains more complex boundaries and larger regions. To
reliably compare how significantly various values of λ affect
the detected leakages, a range of values were tested to show
the sensitivity of our method.

TABLE V shows the experimental results on the perfor-
mance of the proposed method in terms of pixel-wise sensi-
tivity, specificity, accuracy, and area under curve. In addition,
the elapsed time of each trial was also measured. From this
table, it can be seen that λ = 0.5 made the best trade-off
between the accurate detection of the leaking regions and the
computational time. These results justify our choice of λ = 0.5
in our method.

VII. CONCLUSIONS

It is important to distinguish between leakage in FA and
retinal lesions (e.g. drusen, exudate, microaneurysm, pigment
abnormalities) commonly seen in colour fundus photograph.
Leakage shows activities of retinal diseases while lesions
reveals existence or absence of certain types of disease. An
extensive literature review shows that automated retinal image
analysis of FA images, especially for leakage detection, is
relatively unexplored. To the best of our knowledge, this is
the first report on the automated detection of the leakage over
both DR and MR datasets with the largest number of cases.

In this paper, we have proposed a multiscale saliency
detection method for the detection of focal leakages in FA
images. The proposed method is based on two saliency cues:
intensity and compactness features under multi-level super-
pixels. Then the saliency values of the superpixels at different
levels are estimated in the intensity and compactness channels
respectively. While the intensity cue characterizes the intensity
contrast among different superpixels, the compactness cue
characterizes how densely (or sparsely) the salient pixels dis-
tribute inside a superpixel. The superpixel representation helps
capture large objects of interest but at a low computational
cost, and multiscale analysis helps capture the objects of
interest with different sizes.

The saliency maps over the same cues at different levels are
fused using a pixel-wise multiplication operator, so that only
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(a) MR (b) DR (c) Overall

Fig. 9: The AUC values of the proposed method with the threshold T taking different values over two different datasets. (a)
MR. (b) DR. (c) Averages of AUC values over MR and DR.

such regions that are salient in both channels are detected
as salient. The saliency detection step can generate accurate
saliency maps with well-highlighted leakage sites and areas.
Thus, it can provide both the qualitative and quantitative
information for the analysis of the FA images. The regions of
interest (ROIs) in the given image are detected through thresh-
olding the saliency map. However, such simple thresholding
method usually renders the detected ROIs rugged and isolated.
To avoid such shortcoming, the powerful graph-cut method
[33], [34] is employed to segment the thresholded image so
that the neighbouring pixels tend to belong to the same class
of either foreground (ROIs) or background.

The experimental results based on two publicly accessible
MR and DR datasets show our method outperforms one of
the latest competitors and performs as well as a human expert
for leakage detection and outperforms several state-of-the-
art methods for saliency detection: it is not only capable of
identifying the location of leaking regions, but also has the
ability to measure the size of such regions.

To further demonstrate the merits of our proposed method
and justify its remarkable performance, we carried out an
extensive comparative study with other methods for saliency
detection. The experimental results based on the MR and DR
datasets show that our method is superior for the detection
of salient objects and structures in the FA images. We plan to
apply this new tool to assist the management of retinal diseases
such as DR and MR. We also plan to automate the parameter
tuning process. We also plan to apply the proposed saliency
detection method to other types of images, and evaluate its
performance on other benchmark datasets [42].
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