Acoustic Doppler Current Profiler measurements near a weir with fish pass: assessing solutions to compass errors, spatial data referencing and spatial flow heterogeneity

Thomas Kriechbaumer1, Kim Blackburn2, Nick Everard3, Monica Rivas Casado1*

1 Cranfield University, School of Energy, Environmental Technology and Agrifood, UK
2 Cranfield University, School of Aerospace, Transport Systems and Manufacturing, UK
3 Environment Agency, Evidence Directorate, UK

* Corresponding Author: Cranfield University, College Road, Cranfield, Bedfordshire, MK43 0AL, United Kingdom, T: +44 (0) 1234 750111 x2706, E: m.rivas-casado@cranfield.ac.uk

Abstract

There has been an increasing interest in the use of Acoustic Doppler Current Profilers (ADCPs) to characterise the hydraulic conditions near river engineering structures such as dams, fish passes and groins, as part of ecological and hydromorphological assessments. However, such ADCP applications can be limited by compass errors, obstructed view to navigation satellites, frequent loss of bottom tracking and spatially heterogeneous flow leading to erroneous water velocity measurements. This study addresses these limitations by (i) developing a heading sensor integration algorithm that corrects compass errors from magnetic interference, (ii) testing a Total Station based technique for spatial ADCP data referencing and (iii) evaluating a recently proposed data processing technique that reduces bias from spatial flow heterogeneity. The integration of these techniques on a radio control ADCP platform is illustrated downstream of a weir with fish pass on the River Severn, UK. The results show that each of the techniques can have a statistically significant effect on the estimated total water velocities and can strongly affect measures of vorticity. The obtained 3-dimensional flow maps are suitable to describe the magnitude and orientation of the fish pass attraction flow in relation to competing flows and to highlight areas of increased vorticity.
Keywords: attraction flow, compass, flow measurement, inertial measurement unit, radio control boat, Total Station
INTRODUCTION

Acoustic Doppler Current Profilers (ADCPs) have evolved as a useful tool to characterise the flow distribution of river reaches (e.g. Dinehart and Burau, 2005; Rennie and Church, 2010). A number of studies (Gaeuman and Jacobson, 2005; Jamieson et al., 2011, 2013; Johnson et al., 2009) have illustrated the potential of ADCPs to quantify the flow field near river engineering structures as part of ecological and hydromorphological assessments. These studies have highlighted a range of ADCP data quality issues, including: (i) errors in the ADCP-internal compass data caused by changes in the local magnetic field (e.g. from steel reinforcements), (ii) limited line of sight to navigation satellites when using ADCPs in conjunction with Global Navigation Satellite Systems (GNSS), (iii) discontinuous water velocity measurements caused by the loss of the ADCP Bottom Tracking (BT) signal and (iv) lack of accurate 3-dimensional (3D) water velocity measurements in spatially heterogeneous flows. These limitations reduce the applicability of ADCPs to characterise the hydrodynamics near engineered flow obstacles. For example, Jamieson et al. (2013) found spatial ADCP data referencing based on the Global Positioning System (GPS) to be insufficiently reliable when monitoring the hydraulics induced by stream barbs on a river in a heavily wooded and deep valley. Jamieson et al. (2011) experienced BT loss near a wing dike and attributed this problem to high water turbidity and turbulence and Johnson et al. (2009) found the ADCP data collected near surface flow outlets at dams to be biased because of large spatial flow heterogeneity.

This study introduces novel techniques of ADCP data collection and assesses a recently developed method of data post-processing to address these data quality issues. The proposed methods are integrated on a radio control ADCP platform and illustrated by quantifying the 3D distribution of water velocities immediately downstream of a weir with fish pass. The installation of fish passes at engineering structures designed to regulate discharge has been a
wide-spread approach to restore the longitudinal connectivity of freshwater ecosystems (Katopodis and Williams, 2012). Policy efforts towards restoring the ecological integrity of rivers (EC, 2007, 2000) and the increasing evidence on the low efficiencies of existing fish passes (Bunt et al., 2012; Noonan et al., 2012) have led to a strong need for more post-construction assessment to gain a better understanding of the various factors determining the biological effectiveness of fish passes. The hydrodynamic conditions near fish pass entrances have been recognised as a key factor influencing the ability of fish to locate and enter these facilities (Lindberg et al., 2013; Piper et al., 2012; Williams et al., 2012). Yet, there is a lack of methods for the spatially continuous in-field quantification of near-pass hydrodynamics. To the authors’ knowledge, this paper presents the first in-field solution to rapidly quantify the spatially continuous distribution of water velocities near fish pass entrances using an ADCP.

ADCPs are mono-static sensors that measure water velocities and depths by transmitting and receiving acoustic pulses with three to four transducers along beams spread at an angle of usually 20 to 30 degrees relative to the vertical direction. The arrangement allows for the use of a single acoustic signal to obtain measurements in multiple depths along the vertical water column (termed ‘ensemble’; Mueller and Wagner, 2009). The water velocities measured in the directions parallel to each acoustic beam are processed to resolve a 3D vector describing the flow in the x, y and z directions of a coordinate system aligned with the instrument (Mueller and Wagner, 2009). ADCPs have an internal fluxgate compass to determine the transformation angle (β) required to reference these velocities to the local ambient magnetic field (magnetic north) and, after correcting for the site-specific magnetic declination, to true north. When the boat velocity is determined from ADCP-external sensors (e.g. because of BT loss), the effect of moderate errors in β on the velocity components referenced to north can be large as it depends on the magnitude and direction of the actual water velocity (V) and the ADCP boat velocity (B). For a ratio B/V of 1, an error in β of 10° can lead to a 17% error in
the measured water velocity magnitude and an error of up to 20° in the water velocity
direction (computed based on Gaeuman and Jacobson, 2005). A potential practical and low-
cost solution to this limitation is the correction of ADCP compass errors with an inertial
measurement unit (IMU) consisting of micro-electromechanical gyroscopes and
accelerometers. Some IMUs fuse the inertial sensor data to provide orientation measurements
relative to the direction of gravity, which are constrained neither in motion nor to any specific
environment or location (Madgwick et al., 2011).

ADCP-measured water velocities have to be corrected for boat velocities, which are typically
determined from BT (Gordon, 1996). Common ADCP software flags ensembles without a
valid BT signal as bad, indicating that the obtained measurements are unusable. These
measurements can be recovered through the integration of external positioning systems such
as GPS, based on which the boat velocity is estimated. However, fish passes and other
generated river structures are frequently installed close to river banks and these areas are
particularly affected by degradation in GPS accuracy (Rennie and Rainville, 2006). The
problem may increase in small rivers, where the sky view can be obstructed over a large
proportion of the water surface. This limitation can be addressed through the integration of
ADCPs with alternative, local positioning systems such as tracking Total Stations (TS), which
achieve 3D positioning precision of sub-cm level without relying on navigation satellites
(Kirschner and Stempfhuber, 2008).

Repeated ADCP measurements are necessary to capture the temporally averaged flow field in
rivers (Muste et al., 2004). The conventional method of repeated ADCP measurements
involves the averaging of multiple 3D water velocity vectors, each of which is resolved
independently from the three to four along-beam velocities measured at the same time. This
method assumes that the water velocities in the areas insonified by the beams are spatially
homogeneous. The diameter of a circle enclosing the four beam footprints increases at a ratio of 0.76m per 1m increase in depth (calculated based on Rennie et al., 2002, for a 1200kHz WorkHorse RioGrande ADCP). Nystrom et al. (2002) argued that the distance between the beam footprints is comparable to the size of large-scale turbulence, so that the assumption of homogeneous flow can easily be violated in spatially complex hydraulic conditions. The data post-processing method suggested by Vermeulen et al. (2014) can avoid this bias by reducing the velocity sampling volume assumed to be homogeneous. The method uses a least squares procedure to estimate the 3D velocity vector that fits best to a set of along-beam velocities measured in similar locations during repeated cross-sectional measurements. However, the approach has not been tested in ADCP applications near flow obstacles.

The aim of this study was to integrate ADCPs with external sensors and novel data processing techniques for the accurate, in-field and rapid quantification of the spatially continuous 3D water velocity distribution near fish pass entrances. This was achieved through three core objectives:

(1) develop an IMU-based heading sensor integration algorithm that corrects ADCP compass data biased by magnetic interference,

(2) test a TS-based technique that provides spatially referenced ADCP data in areas of limited sky view and determines boat velocities in areas of BT loss, and

(3) evaluate the derivation of 3D water velocities as suggested in Vermeulen et al. (2014) to address the ADCP data bias caused by spatial flow heterogeneity.

METHODS

Case study site

The study site was a 55m reach immediately downstream of Shrewsbury Weir on the River Severn (Figure 1). The River Severn is the longest river in the United Kingdom (UK) and one
of its main salmon rivers (NASCO, 2009). It flows from Plynlimon, Ceredigion, in the Welsh
mountains to Gloucestershire, where it discharges into the British Channel. A total of 41
obstructions, with nine of them being considered significant barriers to upstream fish
migration, can be identified along the course of the river. Shrewsbury Weir is the last major
migration barrier to Atlantic Salmon (*Salmo salar*) before spawning grounds in the upper
catchments. This study focused on the fish pass installed on the right river bank, constructed
in 1976 as a pool and weir pass and then refurbished in 2006 as a deep vertical slot pass.
Throughout the study, the streamwise direction was defined to be orthogonal to the weir crest
(Figure 1).

Data collection

Velocity and depth data were collected using a 1200 kHz WorkHorse RioGrande ADCP
(Teledyne RDI, 2007) deployed from an ARC-Boat radio control platform (HR Wallingford,
2014). The data were collected along 13 cross-sectional and 8 longitudinal profiles spaced
approximately four meters apart (Figure 2). Each profile was repeatedly sampled to capture
the mean 3D velocity patterns. Hereafter, each cross-sectional repetition is referred to as
transect. Cross sections within 28m from the weir foot as well as longitudinal profiles were
sampled six times to account for larger turbulence. Cross sections further than 28m were
sampled four times. The ADCP recorded velocity and depth data at an average frequency of
1.5Hz and with a mean boat speed of 0.42ms\(^{-1}\). The vertical measurement resolution was set
to 0.12m. The discharge was assumed to be constant and equal to 7.1m\(^3\)s\(^{-1}\) based on records
from the nearest gauging station (Figure 1).

A Leica Nova MS50 (Leica Geosystems, 2015) with TS capability was used to automatically
track a 360° prism installed directly above the centre of the ADCP (Figure 2). To support the
accurate implementation of the sampling strategy a software application was developed in
Matlab to display the real-time boat positions against the planned cross-sectional path. This ensured that the spatial variation of the individual transects of a measurement section and the resulting loss in spatially dependent flow features (Jamieson et al., 2011) were minimised. On average, 81.0% of all ensembles were at distances below 1m to a straight line fitted through the ensemble locations of the respective measurement section.

All data were recorded on a laptop mounted on the ARC-Boat and controlled on shore from another laptop via Windows Remote Desktop Connection (Figure 2). The TS data were transmitted wirelessly to the on-board laptop using a MOXA NPort W2150 wireless device server. Bespoke software was developed in C++ to record the data from the MS50 and an x-IMU inertial measurement unit (x-io Technologies, 2012). The ADCP data were recorded using the ADCP software WinRiver II by Teledyne RD Instruments Inc. To enable temporal synchronisation of the sensors, their data were time stamped with the Windows PC time of the logging computer (for TS and IMU) and the ADCP-internal real-time clock (for the ADCP). To keep the accumulated drift of the real-time clock below 0.05s, the absolute time of the clock was set by the Windows PC time of the logging computer at least every 30 minutes in WinRiver II. The error of the time synchronisation depends on the recording frequencies of the sensors, which were 1.5, 5.4 and 64Hz on average for the ADCP, TS and IMU, respectively. In total, 0.56% of all ensembles had a temporal offset to the nearest TS sample above 0.15s. These were excluded from the analysis to limit the error in spatial data referencing.

Compass correction

Temporary compass errors were corrected by integrating the absolute heading data from the ADCP-internal fluxgate compass with relative heading data from the ADCP-external IMU. The ADCP-IMU integration algorithm detects biased ADCP compass data through cross-
correlation analysis of the time synchronised compass and IMU data within a shifting window of length w and for lags of -1, 0 and 1 (Figure 3). The data within a window were considered biased if none of the three cross-correlation coefficients was positive and significant ($\alpha=0.05$). The window was shifted by $w/2$ until the end of the data series was reached. Data detected as biased were then replaced by corrected heading values H_{CORR}, which were computed as shown in Eq. (1).

$$H_{\text{CORR}}(i) = H_{\text{COMP}}(i-d) + H_{\text{IMU}}(i) - H_{\text{IMU}}(i-d) \quad (1)$$

where H_{COMP} are the ADCP compass heading data, H_{IMU} are the IMU heading data, i is the ADCP ensemble index and d is the distance in the data series from i to the centre position of the closest previous window with unbiased ADCP compass data. If the beginning of the compass data series was biased, H_{CORR} was computed as follows:

$$H_{\text{CORR}}(i) = H_{\text{COMP}}(i+d) + H_{\text{IMU}}(i) - H_{\text{IMU}}(i+d) \quad (2)$$

with d becoming the distance from i to the centre position of the closest subsequent window with unbiased compass data. Figure 3 illustrates the implementation of the algorithm using data collected at a river cross section with a steel hulled narrowboat moored on one of the river banks and affecting the local magnetic field.

The error in the compass heading ϵ_H was defined as shown in Eq. (3).

$$\epsilon_H = H_{\text{COMP}} - H_{\text{CORR}} \quad (3)$$

The effects of the circular nature of degrees were accounted for (e.g. if $H_{\text{COMP}}=3$ and $H_{\text{CORR}}=359$, $|\epsilon_H|=4$).

Spatial data referencing

The ADCP data were spatially referenced using the tracking TS. The ADCP positions were transformed to global positions in the UTM coordinate system based on reference.
measurements with a differentially corrected GPS (Trimble GeoExplorer 6000 GeoXH). The
positioning error (ε_p) caused by the temporal offset (Δt) between ADCP and TS data was
estimated as follows:

$$\varepsilon_p = \Delta t \times B_{T,BT}$$

(4)

where $B_{T,BT}$ is the total BT-based boat velocity for ensembles with a valid BT signal. The TS
positions were used to estimate the boat velocity for ensembles (i) affected by BT signal loss
or (ii) with unrealistically high BT-based total boat velocity magnitudes (> 1.4 ms$^{-1}$). The
error (ε_B) in the total TS-based boat velocity ($B_{T, TS}$) was estimated as shown in Eq. (5).

$$\varepsilon_B = B_{T, TS} - B_{T, BT}$$

(5)

To assess whether $B_{T,BT}$ was directionally biased by a non-stationary channel bed, moving bed
tests were performed in three locations of the study area (Figure 2) for durations of at least
400s each.

3D water velocity estimation

3D water velocities were estimated from the along-beam velocities using the Matlab
ADCPtools implementing the method by Vermeulen et al. (2014). The method combines the
along-beam velocity samples located within the same 3D cell of a fitted mesh. For the study
at hand, the longitudinal (Δl), lateral (Δn) and vertical (Δz) mesh cell dimensions were chosen
to be 2.00m, 0.40m, and 0.15m, respectively (Figure 4a). The cell size selection determines
the volume for which spatially homogeneous flow is assumed, which is in contrast to
conventional repeated transect ADCP data processing, where the minimum size of this
volume is fixed and determined by the ADCP beam spread and measurement depth (Figure
4b). The sensitivity of the 3D velocity estimates to the mesh cell size was quantified by
comparing the average number of along-beam velocity samples per cell (\bar{x}) and the average of
the total water velocity magnitudes of the mesh cells of a cross section ($\bar{V}_{T,Vermeulen}$) for 36
different mesh cell sizes. The effect of the number of transects taken along a cross section on $V_{T,\text{Vermeulen}}$ was quantified by calculating the mean change in $V_{T,\text{Vermeulen}}$ caused by including another transect.

Depths and water velocities in unmeasured locations of the study area were estimated through ordinary kriging as suggested by Jamieson et al. (2013, 2011) and Rennie and Church (2010), using a 0.25x0.25m grid for depths and a 0.50x0.50x0.15m grid for velocities. The error (ε_V) in the water velocities introduced by the spatial interpolation was quantified through cross-validation (Webster and Oliver, 2007) and defined as follows:

$$\varepsilon_{V,m} = V_{m,\text{measured}} - V_{m,\text{predicted}}$$

where $V_{m,\text{measured}}$ and $V_{m,\text{predicted}}$ are the water velocities obtained through the method by Vermeulen et al. (2014) and predicted through kriging in the same location, and $m=\{\text{str, crs, up}\}$, which are the velocity directions in the stream coordinate system. The cross-validation was carried out for a sample of 1000 points randomly selected out of the 10371 measurements.

Effect of data correction techniques

To assess the effects of the suggested techniques, namely (i) IMU-based compass correction, (ii) TS-based recovery of ensembles with BT loss and (iii) the water velocity estimation by Vermeulen et al. (2014), the 3D distribution of water velocities in the case study reach was quantified with and without the application of each of these techniques. As counterpart to the 3D water velocity estimation by Vermeulen et al. (2014), the 3D velocities were resolved using the conventional repeated transect processing method as implemented in the Matlab application VMT (Parsons et al., 2012). For each processing variant, the total water velocity magnitudes V_T and the absolute area-weighted vorticity measure $\frac{\Gamma_{ABS}}{A_{TOT}}$ (Crowder and Diplas, 2011) were calculated.
were computed from the 3D flow distribution obtained after kriging interpolation and compared through descriptive statistics. Wilcoxon signed-rank tests were used to test whether the differences in V_T caused by each of the techniques were statistically significant. The vorticity measure was computed as suggested by Shields and Rigby (2005):

$$\Gamma_{ABS} = \frac{\sum \Delta V_{up} \Delta V_{crs}}{\sum \Delta crs + \Delta up}$$ for cross sections

$$\Gamma_{ABS} = \frac{\sum \Delta V_{str} \Delta V_{crs}}{\sum \Delta str + \Delta crs}$$ for horizontal planes

where ΔV_{str}, ΔV_{crs} and ΔV_{up} are the changes in the streamwise, cross-stream and vertical water velocities in the streamwise, cross-stream and vertical directions Δstr, Δcrs and Δup.

These hydrodynamic measures were chosen because they reflect the absolute water velocity magnitudes (V_T) and the strength and abundance of spatial velocity gradients ($\frac{\Gamma_{ABS}}{A_{TOT}}$), both of which are known to affect fish swimming behaviour near fish passes (e.g. Enders et al., 2009; Larinier, 2002). To explore spatial variations in the effects of the techniques, the analysis was carried out for the cross sections b, d and f shown in Figure 1 and for the horizontal planes at depths of 0.35m and 1.10m.

RESULTS

Compass correction

The ADCP-IMU integration algorithm corrected 836 ensembles (4.8% of the total number of ensembles) potentially affected by compass errors. Table 1 and Figure 5 show the statistical and spatial distribution of the detected errors. The differences in V_T obtained with and without compass correction (all other processing steps held constant) were significant in statistical terms ($\alpha=0.05$), but subtle in physical terms for all cross sections and horizontal planes analysed (Table 2).
Spatial data referencing

The temporal offset between the ADCP and the TS data translated to an average positioning error of 0.021 m and the TS-based and BT-based boat velocities showed a mean difference of 0.047 m s\(^{-1}\) (Table 1 and Figure 6). None of the three moving bed tests suggested a non-stationary channel bed based on the criterion provided in Mueller and Wagner (2009) for stationary moving bed tests with external boat position reference. In total, 22.3\% of the ensembles (3880) had invalid BT signals. Ensembles collected in very shallow areas near the edges of the study area as well as those located closer to the weir were more prone to loss of BT (Figure 7). The TS-based recovery of ensembles with BT loss led to statistically significant (\(\alpha=0.05\)) changes in \(V_T\) only for three of the five studied sections (Table 2). For cross section d, the uncorrected loss of BT led to an increase in the area-weighted vorticity by more than 30\%.

3D water velocity estimation

Figure 8 shows the results of the sensitivity analyses for the water velocity estimation method by Vermeulen et al. (2014). The total number of cells for which 3D velocities could be estimated and the average number of along-beam velocity samples per cell were highly sensitive to changes in the mesh cell size dimensions (Figure 8a and 8b). \(\overline{V_{T,Vermeulen}}\) showed little sensitivity to the lateral and vertical cell dimensions, but strongly decreased with an increase in the longitudinal dimension up to around 1.5 m (Figure 8c). The change in \(\overline{V_{T,Vermeulen}}\) caused by including more transects approached zero as the total number of transects increased (Figure 8d). For the tested section (section b in Figure 1) the effect of including the 6th and 7th transect were below 0.03 m s\(^{-1}\), respectively. Similar sensitivities were found for the other measurement sections.
The results of the cross-validation for the spatial water velocity interpolation are shown in Table 1 and Figure 9. The use of the 3D velocity estimation by Vermeulen et al. (2014) instead of the conventional repeated transect processing method led to statistically significant ($\alpha=0.05$) changes in V_T for three of the five sections analysed (Table 2). Moreover, using the method by Vermeulen et al. (2014) highlighted a decrease in the area-weighted absolute vorticity from cross sections b to d by 15%, whereas the conventional procedure resulted in the same vorticity estimates for both cross sections.

DISCUSSION

Performance of heading sensor integration

At the case study site, only few ensembles were affected by compass errors. The largest errors (up to 35°) occurred close to the left river bank and near the right bank immediately downstream of the fish pass (Figure 5). It is not straightforward to attribute the detected compass errors to distinct error sources. The presence of steel sheet pilings along the entire left bank suggests that the errors there were caused by magnetic interference. Compass errors detected further away from the banks were considerably smaller in magnitude and errors $>$3° typically persisted over only a few ensembles. These errors might have been caused by instrument dynamics as observed by Gaeuman and Jacobson (2005), who reported compass errors up to 9° caused by manually rattling the ADCP mount. To the authors’ knowledge, this is the first study that quantifies the magnitude of ADCP compass errors in the field. Further use of the suggested ADCP-IMU integration will provide additional evidence on the significance of this error in ADCP-based flow mapping applications. The only prerequisite for using the suggested algorithm is that the compass errors are temporary rather than persistent throughout the survey. Unless the ADCP vessel itself causes permanent magnetic interference (e.g. steel hulled vessels), this assumption will hold for many sites, where significant magnetic interference is likely to occur only in the immediate vicinity of modified river banks.
or engineering structures. The sensor integration approach can be superior to the replacement of all ADCP compass data with those of another absolute heading source such as a GPS compass (Zhao et al., 2014), because (i) it does not involve problems of heading misalignment between the ADCP and the external heading source and (ii) does not depend on environmental factors such as clear sky view to GPS satellites.

Performance of Total Station based ADCP positioning

This study illustrated that tracking TS can be integrated with ADCPs using WIFI and bespoke data logging software to achieve cm-level 3D positioning accuracy independent from navigation satellites. The major limitation of tracking TS in ADCP applications is the requirement of line of sight to the tracked reflector. Permanent loss of line of sight requires the operator to regain lock to the prism. In this study, this was complicated by permanent boat motion and increased the overall time for data collection. Given the high precision of tracking TS and the relatively low measurement distances to the prism (maximum of 95.37m), it can be assumed that errors in time synchronisation contributed by far the most to the total error in spatial ADCP data referencing. ADCPs commonly used in river research are limited in their capabilities of low-latency external triggering, so that the integration of the TS relies on temporal alignment of ADCP and TS data during post-processing, which is not an optimal solution. Time synchronisation errors may also largely explain the discrepancy between TS and BT in measuring boat velocities. The mean difference was larger than the 0.031ms\(^{-1}\) reported by Rennie and Rainville (2006) for Real Time Kinematic (RTK) GPS with 10Hz recording frequency.

Performance of 3D velocity estimation by Vermeulen et al. (2014)

The method by Vermeulen et al. (2014) allows the user to determine the spatial resolution of the estimated 3D velocities by setting the mesh cell dimensions. In the complex flow...
conditions near flow obstacles and in the context of fish ecology, small cell sizes are desirable because: (i) they increase the reliability of ADCP measurements by decreasing the volume for which spatially homogeneous flow is assumed and (ii) they provide velocities at resolutions closer to ecologically meaningful spatial scales (Shields and Rigby, 2005). The sensitivity analysis in this study showed that the estimated velocity magnitudes can be highly sensitive to the selected mesh cell dimensions, so that a further decrease in the cell size relies on a sufficiently large number of along-beam velocity samples per cell. This might be achieved by further decreasing the boat track variability, which, in this study, could have potentially led to an increase in the number of along-beam samples per mesh cell of approximately one third (Figure 8b). However, the distinct surface flow patterns near the weir made it difficult to follow straight transect lines with the radio control boat, but relatively easy to follow previous (curved) boat tracks. The current implementation of the 3D velocity derivation by Vermeulen et al. (2014) supports the estimation of a straight mesh. Future research should look into the estimation of a non-linear mesh to enable a further increase in the spatial resolution of the estimated 3D velocities and raise the usefulness of ADCPs in fish-ecological studies.

A larger number of along-beam velocity samples per cell could also be achieved by increasing the number of repeated transects per section or the measurement duration per transect. There is little guidance to a priori determine the number of repeated ADCP transects required to capture the cross-sectional distribution of temporally averaged water velocities. Petrie et al. (2013) found four transects to be suitable to identify general trends in the streamwise velocity component but insufficient to describe the temporally averaged cross-stream velocities in bends of the lower Roanoke River (United States). However, the findings by Vermeulen et al. (2014) indicate that their data processing approach requires considerably less repeated transects to obtain a robust estimate of the mean velocity vector than the conventional processing approach. Although this finding remains yet to be confirmed by comparison to
reference measurements, e.g. from a fixed vessel, it would make the technique by Vermeulen et al. (2014) particularly suitable for studies mapping the spatial flow distribution of river reaches. In practice, such studies are often carried out under time constraint so that an increase in the number of transects per section comes at the cost of a decrease in the spatial density of the sampled sections. The latter can increase the error introduced by spatial velocity interpolation, particularly in spatially complex flow conditions (e.g. Jamieson et al., 2011).

In this study, the 3D velocity components in unmeasured locations were predicted by applying kriging separately to the streamwise, cross-stream and vertical velocity components, the direction of which was defined based on channel geometry (the weir orientation). The definition of the stream coordinate system has been shown to significantly affect the interpretation of velocity components, particularly the cross stream component (Lane et al., 2000; Petrie et al., 2013). While not investigated here, it may also impact the spatial correlation of the respective velocity components identified in kriging and the resulting interpolation.

3D flow and bathymetry at the study site

Figure 10 to 12 show the bathymetry and 3D flow downstream of Shrewsbury Weir obtained using all of the ADCP data correction techniques suggested. The bathymetric map shows a large scour hole (≈4m deep) near the weir foot towards the left river bank, coinciding with the area of the fastest water flow from the weir (\(V_T\) up to 0.9ms\(^{-1}\)). This jet may act as a competing flow that guides fish away from the pass entrance potentially leading to severe delays in upstream migration, a phenomenon observed previously in tailraces of hydroelectric plants (e.g. Scruton et al., 2007). On the measurement day, the discharge was sufficiently low for this main jet to be diverted towards the centre of the channel as it approached an area of increased material accumulation and bed elevation approximately 20m downstream of the
scour hole centre. Figure 11 shows the magnitude and orientation of the fish pass attraction flow on the right river bank. Figure 12d reveals a large vortex close to the fish pass, presumably induced by the plunging flow issued from the fish pass entrance. The jet from the pass entrance developed to a more uniformly directed attraction flow further downstream (Figure 12f) where it joined the water jet from the left bank to form a 15m wide field of water velocity with similar magnitudes and directions.

Overall, the integration of the suggested ADCP data correction techniques had a statistically significant effect on the estimated velocity magnitudes and, for some cross sections, strongly affected the estimated area-weighted vorticity (Table 2). At the particular case study site in Shrewsbury, the correction of errors in the ADCP-internal compass was the only measure with a statistically significant effect on the total velocity estimates of all tested cross sections and horizontal depth planes. The TS-based recovery of ensembles affected by BT loss and the methodologies implemented to reduce bias from spatial flow heterogeneity, on the other hand, resulted in larger changes in the estimated area-weighted vorticity. Further studies are required to (i) determine the effects of the suggested technical solutions at other river sites and (ii) assess the eco-hydrological implications of the statistically significant differences they cause in near-pass hydrodynamic quantifications.

CONCLUSIONS

The integration of external sensors and sophisticated data post-processing were shown to overcome known limitations to ADCP-based 3D flow quantifications in the complex flow environments encountered near river engineering structures forming flow obstacles. The ADCP-IMU integration introduced in this paper can be useful in any ADCP application at sites potentially affected by magnetic interference and improves the current understanding of the relevance of compass errors in ADCP measurements. The suggested approach to flow
quantification near fish pass entrances can be used complementary to fish tagging and
tracking studies and thereby improve the current understanding of fish passage and fish
response to near-pass hydrodynamics.

ACKNOWLEDGEMENTS

The authors gratefully acknowledge the financial support of the Environment Agency,
particularly Ros Wright, and the Engineering and Physical Sciences Research Council
(EPSRC) through which this work was undertaken. They are also grateful to Rob Davies,
Gary Bywater and Chris Bainger from the Environment Agency and Simon Stranks from
Cranfield University for their support during data collection as well as Shane O’Regan from
Leica Geosystems for his technical support with the MS50 MultiStation.
The authors thank two anonymous reviewers for their constructive comments that helped
improving the manuscript.
REFERENCES

Webster, R. & Oliver, M.A. 2007 Geostatistics for Environmental Scientists. 2nd ed. Wiley, Chichester, UK.

Tables

Table 1. Errors in ADCP compass heading (ε_H), Total Station based positioning (ε_p), boat velocity estimation (ε_B) and water velocity error introduced by kriging (ε_V).

<table>
<thead>
<tr>
<th></th>
<th>Mean</th>
<th>Median</th>
<th>Standard deviation</th>
<th>Sample size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compass correction</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$</td>
<td>\varepsilon_H</td>
<td>$ (deg)</td>
<td>2.59</td>
<td>1.68</td>
</tr>
<tr>
<td>Spatial data referencing</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ε_p (m)</td>
<td>0.021</td>
<td>0.016</td>
<td>0.018</td>
<td></td>
</tr>
<tr>
<td>ε_B (ms$^{-1}$)</td>
<td>-0.001</td>
<td>-0.001</td>
<td>0.075</td>
<td>13543</td>
</tr>
<tr>
<td>$</td>
<td>\varepsilon_B</td>
<td>$ (ms$^{-1}$)</td>
<td>0.047</td>
<td>0.028</td>
</tr>
<tr>
<td>Kriging cross validation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\varepsilon_{V,str}$ (ms$^{-1}$)</td>
<td>-0.001</td>
<td>-0.001</td>
<td>0.075</td>
<td></td>
</tr>
<tr>
<td>$</td>
<td>\varepsilon_{V,str}</td>
<td>$ (ms$^{-1}$)</td>
<td>0.057</td>
<td>0.045</td>
</tr>
<tr>
<td>$\varepsilon_{V,crs}$ (ms$^{-1}$)</td>
<td>-0.002</td>
<td>0.002</td>
<td>0.080</td>
<td>1000</td>
</tr>
<tr>
<td>$</td>
<td>\varepsilon_{V,crs}</td>
<td>$ (ms$^{-1}$)</td>
<td>0.058</td>
<td>0.044</td>
</tr>
<tr>
<td>$\varepsilon_{V,up}$ (ms$^{-1}$)</td>
<td>0.000</td>
<td>0.000</td>
<td>0.022</td>
<td></td>
</tr>
<tr>
<td>$</td>
<td>\varepsilon_{V,up}</td>
<td>$ (ms$^{-1}$)</td>
<td>0.016</td>
<td>0.013</td>
</tr>
</tbody>
</table>
Table 2. Effects of the suggested ADCP data correction techniques on the water velocity magnitude V_T and the area-weighted vorticity Γ_{ABS}/A_{TOT}; p-values < 0.05 show statistically significant effects of the respective techniques on V_T.

<table>
<thead>
<tr>
<th>Section / Plane</th>
<th>V_T (ms$^{-1}$)</th>
<th>Γ_{ABS} (s$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Min</td>
<td>Max</td>
</tr>
<tr>
<td>All corrections applied</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cross</td>
<td>0.012</td>
<td>0.917</td>
</tr>
<tr>
<td>Horizontal</td>
<td>0.019</td>
<td>0.487</td>
</tr>
<tr>
<td>at depth (m)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>b</td>
<td>0.006</td>
<td>0.543</td>
</tr>
<tr>
<td>No compass correction (all other corrections applied)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cross</td>
<td>0.020</td>
<td>0.488</td>
</tr>
<tr>
<td>Horizontal</td>
<td>0.006</td>
<td>0.543</td>
</tr>
<tr>
<td>at depth (m)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>b</td>
<td>0.018</td>
<td>0.523</td>
</tr>
<tr>
<td>No bottom tracking replacement (all other corrections applied)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cross</td>
<td>0.004</td>
<td>0.499</td>
</tr>
<tr>
<td>Horizontal</td>
<td>0.002</td>
<td>0.904</td>
</tr>
<tr>
<td>at depth (m)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>b</td>
<td>0.013</td>
<td>0.799</td>
</tr>
<tr>
<td>No corrections applied</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cross</td>
<td>0.009</td>
<td>0.716</td>
</tr>
<tr>
<td>Horizontal</td>
<td>0.003</td>
<td>0.825</td>
</tr>
<tr>
<td>at depth (m)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Figure 1. Study location; the white dash-point line depicts the extent of the study area and the white dashed lines show cross sections referred to throughout the main text; the arrow pointing to the location of the fish pass entrance is orientated perpendicular to the front wall of the fish pass; *str* and *crs* stand for the streamwise and cross-stream directions; the images on the bottom right show the study site on the day of the data collection looking in the upstream direction (20 August 2014).
Figure 2. Sampling strategy and technical survey setup (not to scale).
Figure 3. ADCP-IMU integration illustrated using data collected on a cross section of the River Thames at Eynsham, Oxfordshire (UK), with a moored steel hulled vessel acting as source of magnetic interference; (a) Time synchronised data of ADCP compass and x-IMU; (b) Detection of biased ADCP compass data; the two inlay plots show the results of the cross-correlation analysis for unbiased (left plot) and biased (right plot) compass data, where CF stands for cross-correlation function; (c) Results of the compass error detection; (d) Results of the compass error correction.
Figure 4. (a) Plane view of the 3D velocity projection mesh on the ADCP track (shown for section b in Figure 1); Δl and Δn stand for the longitudinal and the lateral mesh cell dimensions; (b) Volume (W) for which spatially homogeneous flow is assumed in the processing method by Vermeulen et al. (2014) with the cell dimensions used in this study and the minimum W in conventional processing of data from a 1200 kHz WorkHorse RioGrande ADCP with a vertical measurement resolution of 0.12m; an instrument draft of 0.11m was assumed for both methods.
Figure 5. (a) Spatial distribution and magnitude of the detected absolute ADCP compass error ($|\varepsilon_H|$); the dash-point line denotes the extent of the study area; (b) Statistical distribution of $|\varepsilon_H|$ (n=836).
Figure 6. (a) Error (ε_P) in spatial data referencing caused by the temporal offset between ADCP and Total Station data ($n=13543$); (b) Absolute error ($|\varepsilon_B|$) in the Total Station based boat velocity estimates ($n=13543$).
Figure 7. Spatial distribution of ensembles with invalid Bottom Tracking (BT) signals – the dash-point line denotes the extent of the study area.
Figure 8. Sensitivity analysis for the 3D velocity estimation by Vermeulen et al. (2014); (a, b) Sensitivity of the total number of cells with 3D velocity estimates (N) and the average number of along-beam velocity samples per cell (\bar{x}) to the mesh cell dimensions (shown for the data of all sections processed); (c) Sensitivity of the estimated average water velocity magnitude in the mesh cells of a section ($\bar{V}_{T,\text{Vermeulen}}$) to the mesh cell dimensions (shown for the data of section b in Figure 1); (d) Change in the estimated average water velocity magnitude ($\Delta\bar{V}_{T,\text{Vermeulen}}$) caused by including another transect, calculated for mesh cell dimensions of $\Delta l=2.00m$, $\Delta n=0.40m$ and $\Delta z=0.15m$ (shown for the data of section b in Figure 1).
Figure 9. Cross-validation of spatial water velocity interpolation through ordinary kriging; \(str \), \(crs \), \(up \) and \(r \) stand for streamwise, cross-stream and vertical and for linear correlation coefficient, respectively. The diagonal line in each subplot denotes the slope of 1.
Figure 10. Bed elevation downstream of Shrewsbury weir; the elevation is referenced to the mean sea level as obtained from GPS; the grey arrow points to the location of the fish pass entrance and is orientated perpendicular to the front wall of the fish pass.
Figure 11. Spatial water velocity distribution downstream of Shrewsbury Weir; (a) Magnitude of depth-averaged velocities (V_T); (b) Streamwise and cross-stream velocities (depicted as arrows) and vertical velocities (V_{up}) at an elevation of 44.21m above the sea level, corresponding to a distance of 0.35m below the mean water surface elevation of the study area; the grey arrow in both plots (a) and (b) points to the location of the fish pass entrance and is orientated perpendicular to the front wall of the fish pass.
Figure 12. Spatial water velocity distribution at selected cross sections downstream of Shrewsbury Weir; the top right plot shows the location of the cross sections on a 3D bathymetric display (see also Figure 1) and plots (a) to (f) show the streamwise velocities (V_{str}) as well as the cross-stream and vertical velocities (depicted as arrows) of these sections in detail.