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Abstract: This study is focused on fast low-fidelity battery modelling for online applications. Because 

the battery parameters change due to variations of battery’s states, the model may need to be updated dur-

ing operation. This can be achieved through the use of an online parameter identification technique, mak-

ing use of online current-voltage measurements. The parametrisation algorithm’s speed is a crucial issue 

in such applications. This paper describes a study exploring the trade-offs between speed and accuracy, 

considering equivalent circuit models with different levels of complexity and different parameter-fitting 

algorithms. A visual investigation of the battery parametrisation problem is also proposed by obtaining 

battery model identification surfaces which help us to avoid unnecessary complexities. Three standard 

fitting algorithms are used to parametrise battery models using current-voltage measurements. For each 

level of complexity, the algorithms performances are evaluated using experimental data from a small 

NiMH battery pack. An application-oriented view on this trade-offs is discussed which demonstrates that 

the final target of the battery parametrisation problem can significantly affect the choice of the fitting al-

gorithm and battery model structure.   
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

1. INTRODUCTION 

Hybrid electric vehicles (HEVs) are well-established in the 

market and electric vehicles (EVs) are growing in popularity. 

This trend is likely to sustain for the foreseeable future. De-

velopment of energy storage systems can be considered as the 

heart of vehicle electrification process. Battery modelling is a 

critical part of this technology development. They are a varie-

ty of battery model types in the literature which can be cate-

gorized into three groups: (i) mathematical models, (ii) elec-

trochemical models, and (iii) electrical equivalent circuit 

network models, Fotouhi et al. (2016). Electrochemical bat-

tery models are the most accurate but also the most complex 

among all battery models. However, it is important to strike a 

balance between model complexity and accuracy so that the 

models can be embedded in microprocessors and provide 

accurate results in real-time, Pattipati et al. (2011). In other 

words, it is important to have models that are accurate 

enough, and not unnecessarily complicated. These reasons 

led researchers to investigate other modelling approaches like 

electrical circuit modelling or equivalent circuit network 

(ECN) modelling. Combining less complexity with good ac-

curacy, ECN modelling is one of the most common battery 

modelling approaches especially for EV application.  

ECN battery models are often parametrised using experi-

mental data. Depending on the application, battery parametri-

sation is performed offline or online. In online applications, 

speed of the parametrisation process is crucial. An example 

of such applications is online battery state-of-charge (SOC) 

estimation as illustrated in Fig. 1. In this concept, parameters 

of battery model are estimated online in order to be used by 

an estimator to predict battery states, Fotouhi et al. (2015). 

System identification technique is used in this framework as 

one of the existing approaches for online model parametrisa-

tion of a time-varying system. ECN battery model parametri-

sation problem can be classified as an identification problem 

in which the model’s structure is fixed while unknown pa-

rameters are determined using measured data. The goal is to 

find a model that its output has the least deviation from the 

measured data. In this case, the battery identification problem 

is an “optimisation problem” in which the parameters are 

optimised to get the least error in comparison to the test data.  

There are relevant studies in the literature in which the sys-

tem identification techniques are applied for battery para-

metrisation. Genetic algorithm (GA) is used for battery model 

identification, Hu et al. (2011a), by considering a complex 

model containing the ECN model parameters, SOC and tem-

perature at the same time and an offline optimisation proce-

dure is used to fit the model to experimental data. In a study 

by Brand et al. (2014), 31 and 45 parameters are considered 

for two battery equivalent circuit models which are para-

metrised using a multi-objective genetic algorithm. The main 

reason that GA method had been used in those studies was 

said to be its greater benefits compared to other methods 

when an analytic solution does not exist and when the num-

ber of unknown parameters are large, Brand et al. (2014). 

Particle swarm optimisation (PSO) is employed as another 

optimisation algorithm to identify battery parameters from 

measured test data for 12 different ECN model structures, Hu 

et al. (2012).  

In almost all the previous studies, one or more battery models 

are parameterised and then the model’s accuracy is discussed 
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without focus on the parametrisation time. However, the 

speed of the battery model identification process can be cru-

cial as well, particularly in online applications. This topic has 

been touched by Hu et al. (2011b) where a control-oriented 

approach was used for battery model identification using sub-

space method. Based on the previous results in the literature, 

it is clear that the battery model parametrisation’s accuracy 

and speed depend on the model’s structure and fitting algo-

rithm both and a trade-off is needed between accuracy and 

simplicity. The main contribution of this study which distin-

guishes it from the previous works is an “application-

oriented” view on this trade-off. In this study, new discus-

sions are presented which prove that the final target (the final 

application) of the battery parametrisation problem can sig-

nificantly affect the choice of fitting algorithm or model 

structure. This application-oriented point of view helps to 

prevent any unnecessary complexity while achieving the 

specified targets as simply as possible. 

For this purpose, the battery model parametrisation problem 

is analysed using a different visual approach firstly by plot-

ting battery parametrisation surfaces. Although the surfaces 

seem simple, they contain quite useful information which is 

discussed and utilised in this study. Three standard fitting 

algorithms are used and analysed including gradient descent 

(GD), genetic algorithm (GA) and prediction error minimisa-

tion (PEM). There are many other algorithms in the literature 

and this paper does not aim at reviewing them. GA and PEM 

are selected just because they are two standard techniques in 

the literature. The GD algorithm is selected to demonstrate 

that simpler algorithms may also be applicable for battery 

parametrisation. For each level of complexity, the algorithms’ 

performance is investigated using experimental data from a 

small NiMH battery pack. The results of this study are not 

limited to NiMH battery chemistry and the proposed contri-

bution can be utilized in other applications as well. 

 

Fig. 1. Online battery state estimation based on parameter 

identification 

2. BATTERY MODEL IDENTIFICATION 

Generally, a system identification procedure consists of three 

main parts, Ljung (1987), (i) experiment design, (ii) model 

structure selection, and (iii) fitness criterion selection. The 

same parts are considered for battery model identification in 

this study. Different model structures and data fitting algo-

rithms are used. The algorithms’ computational effort and 

precision have been assessed using experimental data for 

different model structures.  

2.1 Battery experiments 

As a case study, a six-cell pack of NiMH batteries was tested 

using a low-cost test bench that was proposed by Propp et al. 

(2015). The NiMH battery pack was selected due to its sim-

ple and save handling as well as its convenient output volt-

age.  Specifications of the battery pack are listed in Table 1.  

The experiment was conducted at 25°C by applying consecu-

tive discharge current pulses to the battery and measuring the 

battery’s terminal voltage. Data is saved in time domain with 

a sampling rate of one second. Fig. 2 illustrates the battery 

measurements during an experiment. The test started from 

fully charged state (8.5 V) and continued until the terminal 

voltage dropped below the cut-off voltage (6 V) which means 

depleted charge state. The discharge rate is 1C that is 2.4A 

and length of each pulse is 40 seconds with a relaxation time 

of 60 second in between. 

Table 1.  NiMH battery pack specifications 

Parameter Value 

Rated capacity per cell 2400 mAh 

No. of cells 6 

Rated voltage 7.2 V 

Full-Charged voltage 8.5 V 

Cut-off voltage 6 V 

 

Fig. 2. Measurements during a discharge test by applying 

current (input) and measuring terminal voltage (output) 

2.2 Battery model structures 

Equivalent circuit network (ECN) battery model structures 

are used in this study. The ECN battery models are construct-

ed by putting resistors, capacitors and voltage sources in a 

circuit. The simplest form of an ECN battery model is inter-

nal resistance model (R model). The R model includes an 

ideal voltage source (
OCV ) and a resistance (

OR ) as depicted 

in Fig. 3(a) in which 
tV  is the battery terminal voltage and 

LI  

is the load current. Adding one RC network to the R model 

increases its accuracy by considering the battery polarisation 

characteristics as discussed by Salameh et al. (1992). This 

model, called Thevenin Model (1RC model), is illustrated in 

Fig. 3(b) in which 
tV  is cell’s terminal voltage, 

OCV  is open 

circuit voltage (OCV), 
OR  is internal resistance, 

PR  and 
PC  

are equivalent polarisation resistance and capacitance respec-



 

 

     

 

tively. Adding more RC networks to the battery model (such 

as 2RC in Fig. 3(c)) may improve its accuracy but it increases 

the complexity too. Other elements can be added to the model 

as well to consider the hysteresis effect for example. As men-

tioned before, this study is not focused on modelling accura-

cy discussion as it has been addressed in a number of previ-

ous studies. However, this study aims at running the system 

identification algorithms at different levels of complexity 

which depends on the number of unknown parameters. This 

is done here by adding more RC networks to battery model.  

2.3 Battery identification algorithms 

Three identification algorithms are investigated here which 

are gradient descent (GD), Snyman (2005), genetic algorithm 

(GA), Goldberg (1989), and prediction error minimisation 

(PEM), Ljung (1987). Explaining these standard algorithms 

is out of the framework of this study and the readers can refer 

to the above mentioned references. It should be noted that 

there are other algorithms for battery parametrisation in the 

literature as well. GA and PEM algorithms are selected as 

two standard techniques in the literature which most of the 

readers are familiar with them. GD algorithm is selected 

based on the results of this study which demonstrate that 

simpler algorithms (like GD in comparison with GA and 

PEM) may also be applicable for battery parametrisation re-

garding its application. This topic will be discussed in more 

details in the following sections. 

In order to investigate both the convergence speed and the 

accuracy of the battery parametrisation algorithms, different 

versions of one algorithm are also considered. For example, 

GD’s speed increases by making step size bigger however 

this leads to less accuracy. On the other hand, GA accuracy 

can be improved by increasing the population size (PS) 

and/or number of generations (NoG); however this leads to 

less convergence speed. In this study, two versions of GD 

algorithm are used; one is more precise (GD1) whereas the 

other is faster (GD2). Similarly for GA, two versions are test-

ed; in the more precise version (GA1), PS and NoG are 30 

and 35 respectively for the R model whereas in the faster 

version (GA2), the parameters are 10 and 15 respectively. For 

the 1RC model, more PS is considered; 50 in GA1 and 20 in 

GA2. For PEM algorithm, just one version is used.  

Generally, a system identification problem can be considered 

as an optimisation problem where we are trying to find the 

optimum values of a model’s parameters to minimise an error 

function. It should be noted that here we are talking about 

predefined model structures with unknown parameters. So, 

the parameter vector ( ) is determined so that the prediction 

error ( ) is minimised, defined as follows:  

1
ˆ( , ) ( ) ( ; )k k k kt y t y t t                           (1) 

where ( )ky t  is the measurement data at time k and 

1
ˆ( ; )k ky t t 

 is the model’s prediction at time k using the 

parameters  . In this case, the battery model’s parameters 

are optimised so that the least difference between the meas-

ured terminal voltage and the model’s output is achieved. For 

this purpose, a fitness function, i.e. the root mean square error 

(RMSE) function, is used as follows: 
1
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The battery parameters are not fixed and the optimisation 

solution depends on SOC, temperature, etc. Because the bat-

tery identification problem has a time-varying solution, the 

identification process should be repeated many times using a 

short history of measurements. The current and voltage 

measurements are used as the inputs of the optimisation prob-

lem. The identification horizon can be a “time window” or 

“SOC window” where the latter is used in this study.  

 

Fig. 3. Equivalent circuit battery models 

3. IDENTIFICATION RESULTS 

At first, a visual analysis is proposed in this section in order 

to get a better understanding about the battery model identifi-

cation problem. RMSE values are obtained as a function of 

the unknown battery parameters. Such surfaces are plotted for 

R model as depicted in Fig. 4. The model has two unknown 

parameters, 
OCV and 

OR , which should be obtained during 

the optimisation process. The surfaces, shown in Fig. 4, are 

obtained by using the measurement history in the past 2% 

SOC. For example, for the plot which is obtained at 50% 

SOC, the measurements from 48% to 50% SOC are used. 

There is a point on each surface at which RMSE has the least 

value which is the optimal solution. It should be noted that 

the optimum point of the identification surface moves with 

regard to SOC however, it keeps its general shape as a 

smooth V-shape surface. Looking simple, the battery identifi-

cation surfaces contain significant information about this 

particular optimisation problem which has not been discussed 

in the literature. These results demonstrate that even a simple 

optimisation algorithm like GD might be applicable for bat-

tery parametrisation. Another outcome of these surface plots 

is the idea of developing an analytical solution for the battery 

parametrisation problem when R model is enough for a speci-

fied application.  



 

 

     

 

 

Fig. 4. Battery model identification surface (R model) at (a) 

10%, (b) 50% and (c) 90% SOC 

The minimum points of the above mentioned surfaces are 

obtained at different SOC levels using GD, GA and PEM 

algorithms. Each optimisation solution point contains two 

values corresponding to OCV and ohmic resistance. The two 

parameters are obtained every 2% SOC using the three identi-

fication algorithms as illustrated in Fig. 5. The parameters are 

obtained by applying the algorithms to fit the R model to ex-

perimental data. The fitting quality is measured by RMSE 

criterion, introduced in equation (2). The RMSE values and 

identification time are compared for different algorithms in 

Fig. 6 and Table 2. Based on the results, all the algorithms are 

able to get the minimum RMSE for R model however, the 

identification time changes using different algorithms.  

The results that are presented in Fig. 6 are not valid for other 

model structures. This is a part of the main discussion of this 

study called “application-oriented” trade-offs between accu-

racy and simplicity. Regarding the application, the simplest 

model structure should be selected first and then a suitable 

algorithm should be selected after doing the trade-offs. In 

order to investigate the effect of the battery model structure, 

different structures are assessed in this study too. Fig. 7 de-

picts RMSE and identification time for 1RC model. It is clear 

that the trade-offs are different in this case comparing to the 

case of R model. The fitting error has decreased by adding 

one RC network to the R model. On the other hand, the iden-

tification time has increased by adding more complexity to 

the model. So, it is important to see if it is beneficial to use 

the more accurate model or keeping the faster one. To inves-

tigate the effect of model structure separately, the identifica-

tion results are obtained using a fixed algorithm (i.e. PEM) 

and different model structures (i.e. R, 1RC and 2RC models) 

as stated in Table 3. RMSE values are quite similar for 1RC 

and 2RC and this result is also demonstrated for a short part 

of the test in Fig. 8 where the predicted terminal voltage val-

ues are compared vs. experimental data. In other words, there 

is no remarkable improvement in voltage prediction by add-

ing the second RC network in this case. Further discussions 

about the results are presented in the next section. 

 

Fig. 5. Identified values of battery OCV and resistance vs. 

SOC using GA, PEM and GD algorithms 

 

Fig. 6. RMSE and identification time using different algo-

rithms to parametrise R model 



 

 

     

 

 

Fig. 7. RMSE and identification time using different algo-

rithms to parametrise 1RC model 

 

Fig. 8. Battery terminal voltage prediction vs. experimental 

data for 1RC and 2RC models using PEM algorithm 

Table 2. Identification error and time using different algo-

rithms and model structures 

Method 

Average RMSE (mV) 
Average identification 

time (s) 

R Model 
1RC 

Model 
R Model 

1RC 

Model 

GD1 31.49 28.55 2.19 9.38 

GD2 31.52 31.20 0.86 1.81 

GA1 31.49 26.85 8.48 15.17 

GA2 35.35 29.94 1.30 3.50 

PEM 31.49 25.70 0.34 1.27 

Table 3. Effect of adding RC networks on battery model 

identification error and time 

Model Method 

Mean  

RMSE 

(mV) 

average 

Id time 

(s) 

Max. 

RMSE 

(mV) 

Max. Id 

time (s) 

R PEM 31.49 0.34 63.11 0.45 

1RC PEM 25.70 1.27 44.63 2.22 

2RC PEM 25.23 3.01 40.80 3.93 

4. RESULTS ANALYSIS AND DISCUSSION 

The results of this study can be classified into three main 

parts which are discussed in the followings. 

4.1 Study of the battery model parametrisation problem using 

a new visual approach 

At the first stage of this study, the battery model parametrisa-

tion problem was handled using a new visual approach to get 

a better understanding of the problem. Battery model identifi-

cation surfaces (Fig. 4) are obtained which contain useful 

insight to the problem. The simplest model structure (R mod-

el) was used to visualize the optimisation problem in two 

dimensions. This new presentation of the battery model par-

ametrisation problem, which is done here for the first time, 

led us to select simpler algorithms like GD due to the 

smoothness of the surfaces. GD algorithm is not applicable 

for problems that have lots of local minima however; our 

results demonstrate that it can be used for the battery para-

metrisation problem. In addition to the use of GD algorithm, 

the idea of developing an analytical solution is also originated 

from this visual analysis which can be established in future 

studies. As discussed before, the outcomes of such an analyt-

ical solution would be battery OCV and ohmic resistance. It 

depends on the application that these two parameters are suf-

ficient or more complexity is needed. This is part of the con-

tribution of this study called application-oriented trade-off 

between accuracy and simplicity.  

The identification surfaces are obtained at different SOC lev-

els (Fig. 4(a) to (c)). It is demonstrated how the optimum 

point of the surface moves with regard to the battery SOC. It 

is also demonstrated that the V-shape and smoothness of the 

surface remains consistent. Although, other factors like tem-

perature and state-of-health (SOH) are not investigated in this 

study but does not affect our general results and conclusions. 

The reason is that here we just need to show that the model is 

time-varying regardless of the cause of the change.  

4.2 Study of different algorithms for battery parametrisation 

The second part of the results was obtained by comparing the 

identification algorithms. Five identification codes are pre-

pared based on three standard algorithms to assess the trade-

off between accuracy and convergence speed. It is obtained 

from Fig. 5 and Table 2 that the R model’s parameters can be 

identified using all the three algorithms (GD1, GA1 and 

PEM) and there is no difference between their accuracy be-

cause of the simplicity of the model’s structure. On the other 

hand, the identification time varies where PEM is the fastest 

and then GD and GA. It was also concluded that GA and GD 

algorithms are easily adjustable (by changing their internal 

parameters like step size or population size) which makes the 

compromise easier by trying different versions of them (e.g. 

GD1 and GD2).  

Based on the results, PEM method is proofed as a suitable 

algorithm for battery model identification which has both 

speed and accuracy at the same time. However, another im-

portant criterion that should be considered for battery identi-



 

 

     

 

fication algorithm selection is the simplicity of programming 

and being easily embeddable. Regarding this aspect, GD al-

gorithm is the simplest one that can be easily programmed 

and embedded comparing to PEM and GA. This advantage is 

more important for real-time application of the algorithm on 

less powerful electronic boards. This also confirms im-

portance of the contribution of this study, which is applica-

tion-oriented trade-off between accuracy and simplicity. 

4.3 Study of the trade-off between accuracy and simplicity of 

the battery model structures 

In addition to the identification algorithm selection, the bat-

tery model structure can also be selected using an applica-

tion-oriented approach. In order to address this, we have fo-

cused on this question that how the identification algorithms 

can handle an additional complexity to the model? Here, the 

battery model’s complexity is added gradually by putting 

more RC networks in the model which increases the number 

of unknown parameters from the identification point of view. 

Considering the results presented in Fig. 6 and Fig. 7, it is 

concluded that GD algorithm’s speed decreases significantly 

by adding model’s complexity while keeping the accuracy in 

a comparative level. In GD algorithm, the identification time 

that is needed for a battery model with  k  unknown parame-

ters is proportional to 2k
. For example, the time needed to 

identify 1RC model (which has 4 parameters) is 4 times more 

than R model (which has 2 parameters), and the time needed 

to identify 2RC model (which has 6 parameters) is 16 times 

more than R model and so on. Therefore, GD method is not 

suggested for very complex models however it is a good 

choice when a simple and easily embeddable identification 

algorithm is needed for online applications. 

On the other hand, GA algorithm may not be successful in a 

short period of time however the complexity can be handled 

if there is no time limitation such as in offline applications. In 

this case, GA algorithm outperforms GD because of its addi-

tional capabilities like jumping out of local minima. So, GA 

method is suggested to be used for very complex models 

when time is not an important factor. In addition, GA algo-

rithm is difficult to be embedded because of its programming 

complexity. Referring to PEM method’s results in Table 3 

and Fig. 8, there is an improvement in RMSE by adding the 

first RC network. However, this achievement is obtained by 

increasing the identification time to four times more. Adding 

the second RC network causes a small improvement of error 

while the identification time approximately doubles. So, it is 

concluded that 2RC battery model structure is not suggested 

in this case. All in all, PEM method is suggested when bat-

tery model’s complexity is needed in online applications 

however; its embeddable program is not as simple as GDs. 

5. CONCLUSION 

In this study, a new approach to the battery parametrisation 

problem was presented which is called application-oriented 

trade-off between accuracy and simplicity. The main ad-

vantage of this approach is avoiding unnecessary complexi-

ties by using the most efficient model structure and para-

metrisation algorithm in each case. The results of this study 

are mainly usable in predictive models rather than descriptive 

models. A good example of the predictive modelling applica-

tion is real-time estimation of battery SOC and/or SOH. The 

choice of the parametrisation algorithm and the model struc-

ture depends on the required accuracy, required speed, com-

putational effort and hardware limitations, etc. For the pre-

sented case, a NiMH battery, SOC estimation is possible just 

by using OCV which is available using the simplest model 

structure that is R model. Both PEM and GD algorithms are 

suggested in this case depending on the computational effort 

and hardware limitations. Considering another battery type, 

Lithium-Sulfur for example, OCV is not enough for SOC 

estimation and other parameters are required as well. Same 

discussions can be presented for battery SOH estimation 

which is another application for battery model parametrisa-

tion. 
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