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1. Abstract 
Artificial Neural Networks are an established technique for constructing non-linear models of 

Multi-Input-Multi-Output systems based on sets of observations. In terms of aerospace vehicle 

modeling, however, these are currently restricted to either unmanned applications or 

simulations, despite the fact that large amounts of flight data are typically recorded and kept 

for reasons of safety and maintenance. In this paper, a methodology for constructing practical 

models of aerospace vehicles based on available flight data recordings from the vehicles’ 

operational use is proposed and applied on the Jetstream G-NFLA aircraft. This includes a data 

analysis procedure to assess the suitability of the available flight databases and a NN-based 

approach for modeling. In this context, a database of recorded landings of the Jetstream G-

NFLA, normally kept as part of a routine maintenance procedure, is used to form training 

datasets for two separate applications. A NN-based longitudinal dynamic model and gust 

identification system are constructed and tested against real flight data. Results indicate that in 

both cases, the resulting models’ predictions achieve a level of accuracy that allows them to be 

used as a basis for practical real-world applications. 

2. Nomenclature 

𝑎𝑥 Body Longitudinal Acceleration 

𝑎𝑦 Body Lateral Acceleration 
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𝑎𝑧 Body Vertical Acceleration 

𝑑𝑥 CG position x-coordinate about Body Axes 

𝑑𝑦 CG position y-coordinate about Body Axes 

𝑑𝑧 CG position z-coordinate about Body Axes 

𝐻 Pressure Altitude 

𝐻 GPS Altitude 

𝐿 Rolling Moment 

𝑀 Pitching Moment 

𝑚 Mass 

𝑁 Yawing Moment 

𝑃 Body Roll rate 

𝑃∞ Ambient Pressure 

𝑄 Body Pitch Rate 

𝑄𝐹 Fuel Quantity 

𝑅 Body Yaw Rate 

𝑇 Temperature 

𝑈 Body Forward Velocity 

𝑉 Body Lateral Velocity 

𝑉𝑇𝐴𝑆 True AirSpeed 

𝑊 Body Vertical Velocity 

𝑥𝐶𝐺 CG position about the longitudinal axis 

𝑋 Body Longitudinal Force 

𝑋𝑎&𝑝 Aero-propulsive Longitudinal Force 

𝑌 Body Lateral Force 

𝑌𝑎&𝑝 Aero-propulsive Lateral Force 

𝑍 Body Vertical Force 

𝑍𝑎&𝑝 Aero-propulsive Vertical Force 

𝛼 Angle of Attack 

𝛽 Sideslip Angle 

𝛾 Flight Path Angle 

𝜂 Elevator Deflection 
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𝜃 Pitch Angle 

𝜁 Rudder Deflection 

𝜉 Aileron Deflection 

𝜎𝑚 Model Uncertainty 

𝜎𝑝 Prediction Variance 

𝜎𝜀 Noise Variance 

𝜏 Throttle 

𝜑 Roll Angle 

𝜓 Yaw Angle 

3. List of abbreviations 

ANN Artificial Neural Network 

AUM All-Up Mass 

DoF Degrees of Freedom 

EM Empty Mass 

GPS Global Positioning System 

MIMO Multi-Input Multi-Output 

NN Neural Network 

PC Principal Component 

PCA Principal Component Analysis 

PI Prediction Intervals 

PICP Prediction Intervals’ Corrected Percentage 

RBF Radial-Basis Function 

RBFN Radial-Basis Function Network 

RLG Ring Laser Gyro 

RMS Root Mean Square 

SL Sea Level 

4. Introduction 
Traditionally, modelling of aerospace vehicles has been associated with the study of linearized 

versions of the physical laws that govern the vehicles’ dynamics. Although this approach has 
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proved to be widely effective, it also subject to a series of well-understood limitations, 

especially in applications where the knowledge of the underlying dynamic structure is limited. 

Typical examples are aircraft with extended flight envelopes, unconventional configurations or 

of a very small size. 

Artificial Neural Networks (ANNs) offer an alternative solution to this problem. These are 

computational models that mimic the structure and operation of the biological brain. These 

have been shown to be capable of non-linear real-time modelling of Multi-Input-Multi-Output 

(MIMO) systems without requiring any assumptions on their internal structure. Trained on a 

database of observations, a NN can effectively replicate a system’s response with an accuracy 

which is primarily defined by the quality and quantity of the training data. 

During the last decades, exploiting their inherent ability to model non-linear systems, NNs have 

been extensively used in control engineering for both system identification and controller 

design (1) (2). More recently, the increased demand for UAV platforms has revived interest in 

NN-based aerospace modelling and control (3) (4) (5) (6): as a result of their reduced size and 

extended flight envelopes, these types of aircraft show increased sensitivity to atmospheric 

variations and benefit from the adaptive characteristics of NNs. NASA have also evaluated NN 

modelling and control techniques to full-scale aircraft with the F-15 Intelligent Flight Control 

System (IFCS) project (7) (2). 

Recent research has attempted to expand NN applications to the study and alleviation of the 

effects of atmospheric turbulence on aircraft dynamic response. In this context, a number of 

NN-based wind gust load identification/alleviation system designs have been proposed (8) (9) 

(10). Their effectiveness, however, has currently only been demonstrated in a simulation 

environment. 

In this paper, a NN-based dynamic modelling methodology for the Cranfield University’s 

Jetstream G-NFLA aircraft is presented as a fast and cost-effective means of building an 

accurate model for an aircraft using available flight data from its operational use. The flight 

database used was selected as representative of the datasets that are typically available to 

aircraft operators. As a result, all training data in this project were sourced from a set of 60 

landings of the aircraft, recorded as part of routine maintenance procedures-no dedicated flight 

testing was conducted. To further demonstrate the method’s potential, a NN-based gust 

identification system is also proposed and assessed. 

5. The aircraft 
The BAE Systems Jetstream 31 is an 18-seat, twin-engine turboprop aircraft first flown on 28 

March 1980. The University’s Jetstream G-NFLA aircraft is operated as a Flying Laboratory and 
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as a result, has been modified to accommodate additional measuring equipment. This has 

imposed slight changes to the aircraft’s empty weight and mass distribution. Recordings are 

routinely made of the landing using data attained from a Ring Laser Gyro (RLG), nose-mounted 

AoA and sideslip vanes and a GPS. In addition, powerplant thrust is estimated using torque and 

engine speed with propeller curves from Dowty Rotol. (11) 

A summary of the aircraft’s dimensions and specifications is presented in Figure 4-1. 

 

6. NN structure 
A Radial-Basis Function Network structure was selected for this study. These are a sub-class of 

NNs, that use Radial Basis Functions (RBFs) as activation functions. The term RBF refers to a 

type of real-valued functions whose value depends exclusively on the distance from a fixed 

point, called the centre. 

The first examples of work on RBFNs date back to the 1980s with contributions from Powel (12) 

and Broomhead & Lowe (13). A basic distinction between RBF Networks (RBFNs) and, 

traditional, multi-layer feed-forward networks lies in the adoption of a multi-dimensional curve-

fitting approach for training, rather than the stochastic approximation methodology (14) (15) 

used in the latter. This has the advantage of inducing an explicit relationship between the 

network’s parameters and the targeted output. So, network training is reduced to a linear 

problem with a guaranteed solution (16). This was the main reason for their selection in this 

study, since for other network types training is performed using iterative procedures 

(‘backpropagation’) whose convergence strongly depends on the initialization of the NN 

parameters. Furthermore, RBFN structures are generally simpler than other NN structures of 

 

Jetstream G-NFLA 

 𝑊𝑖𝑛𝑔 𝐴𝑟𝑒𝑎 :  25.085 m2 

 𝑅𝑜𝑜𝑡 𝑐ℎ𝑜𝑟𝑑 :  2.195 m 

 𝑇𝑖𝑝 𝑐ℎ𝑜𝑟𝑑 :  0.792 m 

 𝐴𝑠𝑝𝑒𝑐𝑡 𝑅𝑎𝑡𝑖𝑜 :  10.0 

 𝑆𝑤𝑒𝑒𝑝 𝑜𝑓 30% 𝑐ℎ𝑜𝑟𝑑𝑙𝑖𝑛𝑒 :  0. 0o 

 𝐸𝑚𝑝𝑡𝑦 𝑊𝑒𝑖𝑔ℎ𝑡 :  4,815 kg 

 𝑀𝑎𝑥 𝑇𝑎𝑘𝑒 − 𝑜𝑓𝑓 𝑊𝑒𝑖𝑔ℎ𝑡 :  7,059 𝑘𝑔 

 𝑃𝑜𝑤𝑒𝑟𝑝𝑙𝑎𝑛𝑡 : 

turboprop 

2 × 940 shp 
Garrett TPE331 

 

Figure 5-1: (28) , Jetstream G-NFLA: general dimensions and specifications 
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the same performance. In their standard form, RBFNs consist of three layers of neurons (input, 

hidden and output) and have shown performance standards equivalent to higher-order multi-

layer structures, though typically requiring a hidden-layer structure of increased dimensionality. 

RBFNs used in this study utilize Gaussian functions for network activation, using the 

Mahalanobis distance (17) as the distance norm to account for the unknown distribution of 

training samples in the data domain. In contrast with the Euclidean distance, the Mahalanobis 

distance is unitless and scale invariant. Distance is measured in terms of the population’s 

standard deviation along the direction of interest. Assuming 𝑃 = {𝑥1, 𝑥2, … , 𝑥𝑛} a population of 

𝑛 scalars 𝑥𝑖  with mean 𝜇 and standard deviation 𝜎, the Mahalanobis distance of point 𝑥𝑖  from 

the dataset’s mean is: 

𝑟𝑝𝑖
= √

(𝑥𝑖 − 𝜇)2

𝜎2
 (6-1) 

Expanding to multi-dimensional datasets where 𝑥𝑖  are vectors: 

𝑟𝑥𝑖
= √(𝑥𝑖 − 𝜇)𝛵𝑅−1(𝑥𝑖 − 𝜇) (6-2) 

where 𝑅 is the dataset’s covariance matrix. For a dataset with 𝑚 variables: 

𝑅 = [
𝜎11

2 ⋯ 𝜎1𝑚
2

⋮ ⋱ ⋮
𝜎𝑚1

2 … 𝜎𝑚𝑚
2

] (6-3) 

𝜎𝑖𝑗
2 =

1

𝑛
∑(𝑥𝑘𝑖

− 𝜇𝑖)(𝑥𝑘𝑗
− 𝜇𝑗)

𝑛

𝑘=1

 (6-4) 

To complete the RBFN configuration, tried-and-tested schemes were employed. The average 

distance between RBF centers was used to scale kernel widths and a bias signal was included in 

the network’s output layer. With respect to network training, a two-phase training scheme was 

selected using k-means clustering (18) for the dispersion of RBF centers. Without loss of 

generality, NN output was restricted to a single scalar. Vector outputs were produced by a 

parallel combination of multiple RBFNs. The resulting structure is shown in Figure 5-1. 
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7. Error Estimation 
To obtain a complete picture of a developed model’s predictive power, a measure of the 

accuracy of the estimations must be produced by constructing the associated prediction 

intervals. A comparison of different strategies for constructing such intervals for NNs found in 

the literature (19) (20) (21) (22) suggests that a combination of maximum-likelihood and 

ensemble techniques performs better than equivalent analytical approaches. This involves the 

use of bootstrapping (an ensemble technique), to estimate model uncertainty variance 𝜎𝑚
2  and 

a second NN, trained on squared residuals, to identify measurement noise 𝜎𝜀
2. Prediction 

variance 𝜎𝑝
2 is then defined as: 

𝜎𝑝
2 = 𝜎𝑚

2 + 𝜎𝜀
2 (7-1) 

Now, assuming a Gaussian error probability distribution, prediction intervals can be 

constructed: 

𝑦 = 𝑦̅ ± 𝑧𝑎/2 ∙ 𝜎𝑝 (7-2) 

where 𝑧𝑎/2 can be found from the normal distribution cumulative probability function, to 

specify a level of confidence equal to (1 − 𝑎) ∙ 100% 

For the applications considered in this study, it was assumed that, because of the rather simple 

geometry of the underlying functions, given an adequately large training dataset, model 

uncertainty variance 𝜎𝑚
2  is small enough to be neglected. Consequently, to reduce training time, 

bootstrapping was not used. Instead, a second NN was trained to directly identify noise 

variance 𝜎𝜀
2, assumed to be the only cause of prediction error. For the applications examined, 

𝜎𝜀
2 includes both atmospheric turbulence and sensor noise, which are the main factors affecting 

 

Figure 6-1: Block diagram of the selected RBFN structure 
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the accuracy of in-flight measurements. 95% prediction intervals were constructed using the 

formula: 

𝑦 = 𝑦̂ ± 1.96𝜎𝜀̂ (7-3) 

Where 𝑦̂ and 𝜎𝜀̂ are NN predictions. 

8. Principal Component Analysis 
Principal Component Analysis (PCA), introduced by Pearson in 1901 (23), is the oldest and most 

commonly used multivariate analysis technique, particularly useful in statistical function 

approximation applications, including NNs. PCA is used to reduce the dimensionality of the 

search domain (commonly caused by the inclusion of a large number of interrelated variables) 

while retaining the largest possible amount of variation present in the initial dataset. This is 

achieved through an orthogonal transformation to a new set of uncorrelated variables, called 

principal components (PCs), which are ordered so that the first few retain most of the variation 

present in all of the initial variables (24). It can be shown (14) that the principal components of 

a dataset coincide with the eigenvectors of its covariance matrix and the respective eigenvalues 

are equal to the variance along each component. 

As far as regression analysis is concerned, expressing a dataset in terms of its principal 

components is beneficial in two ways: 

1. Co-linearities among variables, typically a cause of misleading or unstable predictions of 

the regression equation, can be identified; PCs associated with very small variances 

(typically, ~1% of the maximum variance) are indicators of such interconnections 

between the dataset’s original variables. Replacing the initial set of variables with PCs, 

omitting those with very small variances can generally eliminate the problem. 

2. The dimensionality of the dataset can be reduced. Typically, a number of components 

may be excluded without compromising the accuracy of the regression. 

It is suggested (24) (25) that reducing the input layer’s dimensionality by applying PCA to the 

training dataset and removing components with very small variances helps remove co-linearity 

problems. Joliffe (24), however, states and proves that this strategy does not apply to all cases 

and results strongly depend on the specific application. In the same context, Kyriacou et al (26) 

showed that for certain applications, omitting the PCs with the largest variances leads to 

improved modelling. 
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For the application considered in this paper, data comprised of a set of recorded landings that 

generally started at an altitude of 1,000 𝑓𝑡 and ending at ground level. Flight paths were 

smooth and control inputs were rather small in amplitude. Figure 7-1 shows time histories of a 

typical landing which indicate that the maximum variance in the training dataset (comprising 

exclusively of recorded landings) is related to altitude variation, leading to the conclusion that 

important information are ‘hidden’ in components of smaller and unknown variance. For this 

reason, no PCA-driven dimensionality reduction was performed: PCA was only employed as a 

tool for assessing the sample distribution in the training datasets. In fact, the use of 

Mahalanobis distance as the RBF input is equivalent to switching to PCs for the RBFNs’ input 

layer. 

9. Dynamic Modelling 
A state-space approach was adopted for the dynamic modelling. In a state/space 

representation, a dynamic system is described by a vector of states 𝑥, a vector of control inputs 

𝑢 and a real function 𝑓, such that: 

𝑥̇ = 𝑓(𝑥, 𝑢) (9-1) 

 

Figure 8-1: Time histories of Pitch Attitude (θ), Elevator (η) and GPS Altitude (H) for a typical landing 
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Although a feed-forward NN can be used to directly approximate function 𝑓, based on the 

approach found in (27) an alternative strategy was employed to reduce the dimensionality of 

the input space and, consequently, obtain better results for a given training dataset. Under this 

scope, any ‘structured’ knowledge on the aircraft was injected to the model. Aircraft dynamics 

were decoupled along the longitudinal and lateral/directional axes, while in the same context, 

the effects of known quantities such as gravity, mass and inertia were removed1. RBFN 

modelling was thus focused on unknown quantities, in this case the aircraft’s aerodynamic and 

propulsive forces and moments. A more detailed description of the selected model structure is 

given below. 

In a typical 6-state representation of a symmetric airframe, the equations describing the 

aircraft’s dynamics are: 

 

[
 
 
 
 
 
𝑈̇
𝑉̇
𝑊̇
𝑃̇
𝑄̇

𝑅̇ ]
 
 
 
 
 

= 𝑀−1

[
 
 
 
 
 
 
 
 

 

[
 
 
 
 
 
𝑋
𝑌
𝑍
𝐿
𝑀
𝑁]

 
 
 
 
 

+

[
 
 
 
 
 
 
 

𝑚𝑅𝑉 − 𝑚𝑄𝑊 + 𝑚𝑑𝑥(𝑄
2 + 𝑅2) − 𝑚𝑑𝑦𝑃𝑄 − 𝑚𝑑𝑧𝑃𝑅

−𝑚𝑅𝑈 + 𝑚𝑃𝑊 − 𝑚𝑑𝑥𝑃𝑄 + 𝑚𝑑𝑦(𝑃2 + 𝑅2) − 𝑚𝑑𝑧𝑄𝑅

𝑚𝑄𝑈 − 𝑚𝑃𝑉 − 𝑚𝑑𝑥𝑃𝑅 − 𝑚𝑑𝑦𝑄𝑅 + 𝑚𝑑𝑧(𝑃
2 + 𝑄2)

−𝑄𝑅 ([𝐼𝑧𝑧]𝑏 − [𝐼𝑦𝑦]
𝑏
) + 𝑃𝑄[𝐼𝑥𝑧]𝑏 − (𝑃𝑉 − 𝑄𝑈)𝑚𝑑𝑦 + (𝑅𝑈 − 𝑃𝑊)𝑚𝑑𝑧

−𝑃𝑅([𝐼𝑥𝑥]𝑏 − [𝐼𝑧𝑧]𝑏) − (𝑃2 − 𝑅2)[𝐼𝑥𝑧]𝑏 − (𝑄𝑈 − 𝑃𝑉)𝑚𝑑𝑥 − (𝑄𝑊 − 𝑅𝑉)𝑚𝑑𝑧

−𝑃𝑄 ([𝐼𝑦𝑦]
𝑏
− [𝐼𝑥𝑥]𝑏) − 𝑄𝑅[𝐼𝑥𝑧]𝑏 − (𝑅𝑈 − 𝑃𝑊)𝑚𝑑𝑥 + (𝑄𝑊 − 𝑅𝑉)𝑚𝑑𝑦 ]

 
 
 
 
 
 
 

]
 
 
 
 
 
 
 
 

 (9-2) 

Where: 

𝑀 =

[
 
 
 
 
 
 

𝑚 0 0
0 𝑚 0
0
0
𝑚𝑑𝑧

−𝑚𝑑𝑦

0
−𝑚𝑑𝑧

0
𝑚𝑑𝑥

𝑚
𝑚𝑑𝑦

−𝑚𝑑𝑥

0

    

0 𝑚𝑑𝑧 −𝑚𝑑𝑦

−𝑚𝑑𝑧 0 𝑚𝑑𝑥

𝑚𝑑𝑦

[𝐼𝑥𝑥]𝑏
0

−[𝐼𝑥𝑧]𝑏

−𝑚𝑑𝑥

0
[𝐼𝑦𝑦]𝑏

0

0
−[𝐼𝑥𝑧]𝑏

0
[𝐼𝑧𝑧]𝑏 ]

 
 
 
 
 
 

 (9-3) 

Consequently, if mass and inertia and CG position are known, the problem of dynamic 

modelling can be reduced to that of identifying the forces and moments acting on the airframe 

as a function of the flight condition.  

Forces and moments acting on an aircraft in flight are of either aerodynamic/propulsive or 

gravitational origin. The latter are of known direction and magnitude. 

                                                      
1
 Deterministic models were employed to add gravitational components and convert the outputs to 

accelerations. 
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[
 
 
 
 
 
𝑋
𝑌
𝑍
𝐿
𝑀
𝑁]

 
 
 
 
 

=

[
 
 
 
 
 
 
𝑋𝑎&𝑝 + 𝑋𝑔

𝑌𝑎&𝑝 + 𝑌𝑔

𝑍𝑎&𝑝 + 𝑍𝑔

𝐿𝑎&𝑝 + 𝐿𝑔

𝑀𝑎&𝑝 + 𝑀𝑔

𝑁𝑎&𝑝 + 𝑁𝑔 ]
 
 
 
 
 
 

=

[
 
 
 
 
 
 
𝑋𝑎&𝑝

𝑌𝑎&𝑝

𝑍𝑎&𝑝

𝐿𝑎&𝑝

𝑀𝑎&𝑝

𝑁𝑎&𝑝 ]
 
 
 
 
 
 

+

[
 
 
 
 
 

1
0
0
0
𝑑𝑥

−𝑑𝑦

  

0
1
0

−𝑑𝑧
0
𝑑𝑥

  

0
0
1
𝑑𝑦
−𝑑𝑧
0

 

]
 
 
 
 
 

[

–𝑚𝑔 𝑠𝑖𝑛𝛩
𝑚𝑔 𝑠𝑖𝑛𝛷 𝑐𝑜𝑠𝛩
𝑚𝑔 𝑐𝑜𝑠𝛷 𝑐𝑜𝑠𝛩

] (9-4) 

A 6-DoF dynamic model can thus be built around the feed-forward NN structure shown in 

Figure 8-1. Assuming that the aircraft’s longitudinal and lateral/directional dynamics are 

independent, the input variables can be classified so as to reduce the corresponding 

dimensionality of the NNs’ input layers. 

 

The complete model structure is depicted in Figure 8-2. 

 

Figure 9-1: The NN structure for modelling of Aerodynamic & Propulsive forces and moments. Dotted arrows 
correspond to training signal. 
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10. Construction of the training database 
For reasons of maintenance, the approach and landing phases of all Jetstream flights are 

recorded. Recording is automatically initiated at an altitude of 1,000 𝑓𝑡 and manually 

 

Figure 9-2:  Block structure of the aircraft's dynamic model. The dashed line encloses the part to be modelled by the 
RBFNs 
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terminated on the ground. In total, 39 parameters are recorded, at a sample rate of 25 𝐻𝑧2. 

Among these and based on the input variables for the model of reference (27), 14 parameters 

were selected for use in the formation of the training database. These are listed in Table 9-1. All 

speeds and angles are sourced from the aircraft’s inertial system. 

 

Due to the lack of sideslip angle (𝛽) as a recorded parameter, modelling was restricted to the 

aircraft’s longitudinal dynamics. The following post-processing steps were undertaken to 

construct the training database: 

1. 𝐻𝐺𝑃𝑆 was used to determine, the touch-down point. All data following that were 

rejected. 

2. Loading data and fuel quantity 𝑄𝐹 were used to determine all up mass, moments of 

inertia and CG position 

3. Angular accelerations were obtained by differentiating the signals of the respective 

angular rates. A central-difference scheme was employed. 

4. Angle of Attack (Α) was calculated as follows: 

                                                      
2
 It should be noted that this sampling rate is over three times that in typical civil aircraft flight data 

recorders 

 Parameter Symbol Units Source 

1. 𝑝𝑖𝑡𝑐ℎ 𝑎𝑡𝑡𝑖𝑡𝑢𝑑𝑒 𝜃 [𝑑𝑒𝑔] 𝐿𝑅𝐺 

2. 𝑟𝑜𝑙𝑙 𝑎𝑡𝑡𝑖𝑡𝑢𝑑𝑒 𝜑 [𝑑𝑒𝑔] 𝐿𝑅𝐺 

3. 𝐵𝑜𝑑𝑦 𝑝𝑖𝑡𝑐ℎ 𝑟𝑎𝑡𝑒 𝑄 [𝑑𝑒𝑔. 𝑠−1] 𝐿𝑅𝐺 

4. 𝐵𝑜𝑑𝑦 𝑛𝑜𝑟𝑚𝑎𝑙 𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑎𝑧 [𝑔] 𝐿𝑅𝐺 

5. 𝐵𝑜𝑑𝑦 𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑖𝑛𝑎𝑙 𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑎𝑥 [𝑔] 𝐿𝑅𝐺 

6. 𝐹𝑙𝑖𝑔ℎ𝑡 𝑃𝑎𝑡ℎ 𝐴𝑛𝑔𝑙𝑒 𝛾 [𝑑𝑒𝑔] 𝐿𝑅𝐺 

7. 𝑇𝑟𝑢𝑒 𝐴𝑖𝑟𝑠𝑝𝑒𝑒𝑑 𝑉𝑇𝐴𝑆 [𝑘𝑡𝑠] 𝐿𝑅𝐺 

8. 𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒 𝐴𝑙𝑡𝑖𝑡𝑢𝑑𝑒 ℎ [𝑓𝑡] 𝐴𝑖𝑟 𝐷𝑎𝑡𝑎 

9. 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 𝑇 [𝐶] 𝐴𝑖𝑟 𝐷𝑎𝑡𝑎 

10. 𝐸𝑙𝑒𝑣𝑎𝑡𝑜𝑟 𝜂 [𝑑𝑒𝑔] 𝑃𝑜𝑡𝑒𝑛𝑡𝑖𝑜𝑚𝑒𝑡𝑒𝑟 

11. 𝐺𝑃𝑆 𝐴𝑙𝑡𝑖𝑡𝑢𝑑𝑒 ℎ𝐺𝑃𝑆 [𝑓𝑡] 𝐺𝑃𝑆 

12. 𝑃𝑜𝑟𝑡 𝑇ℎ𝑟𝑢𝑠𝑡 𝜏𝑝 [𝑁] 𝑇ℎ𝑟𝑢𝑠𝑡 𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑖𝑜𝑛 

13. 𝑆𝑡𝑎𝑟𝑏𝑜𝑎𝑟𝑑 𝑇ℎ𝑟𝑢𝑠𝑡 𝜏𝑠 [𝑁] 𝑇ℎ𝑟𝑢𝑠𝑡 𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑖𝑜𝑛 

14. 𝐹𝑢𝑒𝑙 𝑄𝑢𝑎𝑛𝑡𝑖𝑡𝑦 𝑄𝐹 [𝑘𝑔] 𝐴𝑖𝑟𝑐𝑟𝑎𝑓𝑡 

Table 10-1: Selection of data recorder parameters for the formation of the training database 
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𝛼 = 𝜃 − 𝛾 (10-1) 

5. Assuming 𝑉 ≈ 0, vertical speed rate 𝑊̇ was calculated as: 

𝑊̇ = 𝑎𝑧 + 𝑄𝑈 (10-2) 

6. All accelerations were converted to forces and moments, subtracting gravitational 

effects. A study of the positions of the CG over the whole set of flights showed that, in 

all cases, this was positioned within a maximum distance of 0.15 𝑚 from the aircraft’s 

Body Axis Centre. This distance was deemed sufficiently small to simplify calculations 

and account for any non-measured quantities. So, for all calculations the Body Axes 

were assumed to coincide with CG Axes. To further simplify calculations and avoid 

inserting additional noise to the data, a ‘small perturbation’ approach was adopted. 

Quantities involving products, squared or approximated terms were removed. 

𝑋𝑎&𝑝 = 𝑚(𝑎𝑥 − 𝑔0𝑠𝑖𝑛𝜃) (10-3) 

𝑍𝑎&𝑝 = 𝑚(𝑎𝑧 − 𝑔0𝑐𝑜𝑠𝜃𝑐𝑜𝑠𝜑) (10-4) 

𝑀𝑎&𝑝 = 𝐼𝑦𝑦𝑄̇ (10-5) 

The final set of input variables for the training database is presented in Table 9-2. Pressure 

altitude was used as a measure of the external Pressure and Thrust3 was selected to represent 

Throttle Position. 

                                                      
3
 The sum of the port and starboard engine thrust components, sourced from the aircraft’s on-board 

Thrust Estimation System 
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11. Modelling of longitudinal forces and moments 
Flight data from 55 landings were used to form a training database for the modelling of the 

longitudinal forces and moments, totaling 62,164 samples. An additional dataset of 5,873 

samples was formed using data from 5 flights that were excluded from training to be used for 

validation. These were picked out of a set of the most recent flights, confirmed to have been 

realized under mild turbulence conditions (determined via pilot feedback) so as to avoid, to the 

maximum possible extent, the presence of extreme turbulence in the validation samples. In 

order to assess the accuracy of the NN predictions as a function of the ‘dissimilarity’ between 

training and validation flight data, a second validation dataset of 1,939 samples was assembled 

by 6 flight extracts taken from the 55 ‘training’ landings4. This will be referred to as ‘validation 

dataset B’, as opposed to the term ‘validation dataset A’ which will be used for the first dataset. 

A common set of input variables were selected for the prediction of all longitudinal quantities 

(𝑋𝑎&𝑝,𝑍𝑎&𝑝,𝑀𝑎&𝑝). To extract information on the distribution of training samples, PCA was 

applied to the training database. Results, shown in Figure 10-1, indicated that, although a 

uniform distribution of points could not be reached (for the normalized dataset used, this 

would occur if the calculated standard deviation ~0.3 for all PCs), the distribution of variance 

among the PCs was balanced. Consequently, no ‘strict’ co-relations between the selected input 

variables were included. Two additional observations were made on the distribution of training 

samples: 

                                                      
4
 These were also not included in the training database 

 Variable Symbol Units 

1. 𝐴𝑛𝑔𝑙𝑒 𝑜𝑓 𝐴𝑡𝑡𝑎𝑐𝑘 𝛼 [𝑑𝑒𝑔] 

2. 𝐵𝑜𝑑𝑦 𝑃𝑖𝑡𝑐ℎ 𝑅𝑎𝑡𝑒 𝑄 [𝑑𝑒𝑔. 𝑠−1] 

3. 𝑇𝑟𝑢𝑒 𝐴𝑖𝑟𝑠𝑝𝑒𝑒𝑑 𝑉𝑇𝐴𝑆 [𝑘𝑡𝑠] 

4. 𝑉𝑒𝑟𝑡. 𝑆𝑝𝑒𝑒𝑑 𝑅𝑎𝑡𝑒 𝑊̇ [𝑚. 𝑠−2] 

5. 𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒 𝐴𝑙𝑡𝑖𝑡𝑢𝑑𝑒 ℎ [𝑓𝑡] 

6. 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 𝑇 [𝐶] 

7. 𝐸𝑙𝑒𝑣𝑎𝑡𝑜𝑟 𝜂 [𝑑𝑒𝑔] 

8. 𝑇ℎ𝑟𝑢𝑠𝑡 𝜏 [𝑁] 

9 𝐶𝐺 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑥𝐶𝐺  [𝑚] 

Table 10-2: Input variables for the training database 
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1. A curve of data points extending out of the main ‘core’ of the dataset, shown in Figure 

10-2, was found to correspond to a ‘go-around’ maneuver that had been performed in 

one of the ‘training’ landings. This gave an indication of the-expected-lack of data points 

in the high-thrust region. 

2. The data plotted against its PCs was found to consist of two clusters (Figure 10-3). The 

cause of the existence of a second cluster was traced at one of the ‘training’ landings 

which appeared to have been conducted at an extreme-aft CG position. Although this 

should not affect results, all CG positions for the validation flights were checked and 

found to lie within the main cluster. 

 

 

Figure 11-1: Standard deviation for each of the Principal Components of the training dataset 
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Following the results of a parametric study that was conducted in a simulation environment 

with an existing aircraft model (27), RBFNs with 𝑚 = 150 neurons were specified for both 

modelling and error estimation. Validation results for both datasets A and B are summarized in 

Table 10-1 , Figure 10-4 and Figure 10-5. 

Overall, the NN predictions followed closely all variations of forces and moments, while the 

accuracy achieved was similar in all cases evaluated. Knowing that NN performance is closely 

linked to the quality of the training data, this signified that the level of noise present in both 

training and validation databases was low enough to allow for good modelling results. 

 

Figure 11-2: Training dataset plotted against normalized Altitude and Thrust. Variables have been normalized in [𝟎 , 𝟏] 
with respect to their maximum and minimum values found in the training database. Dashed rectangle encloses a 'go-
around' manoeuvre 

 

Figure 11-3: Training dataset plotted against Principal Components 6 and 8 (left) and normalized Altitude and CG 
position (right). Variables have been normalized in [𝟎 , 𝟏] with respect to their maximum and minimum values found in 
the training database. 
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Combining the above with the fact that INS estimates for 𝐴𝑜𝐴 and 𝑉𝑇𝐴𝑆 were used, meaning 

that the main source of noise in the recordings should be attributed to atmospheric turbulence, 

it may be concluded that the selected model configuration can provide accurate modelling even 

if the effects of typical turbulence are present in the training data. As expected, RMS error 

values were lower for Dataset B, since this was, by definition, positioned closer to the training 

data, however, the degradation in performance between the two datasets was not 

pronounced. Prediction Intervals Correct Percentages (PICPs) in most cases were lower than the 

specified value of 95%, averaging 79.4% for Dataset A and 85.9% for Dataset B. The cause of 

this is most probably linked to the distribution of the training samples in the data domain. 

Although sufficient for modelling, it does not allow for good generalization of results, especially 

for the more complex function geometries that are associated with noise prediction. 

Nevertheless, in most cases it was observed that prediction intervals were under-estimated 

mostly in areas were the discrepancy between flight data and NN predictions was small or 

negligible. 

 

 

  Dataset A  Dataset B 

Quantity  RMS Error PICP [%]  RMS Error PICP [%] 

𝑋𝑎&𝑝 [𝑁]  1313.3 84.7  1232.4 80.9 

𝑍𝑎&𝑝 [𝑁]  2268.9 72.4  1390.2 87.3 

𝑀𝑎&𝑝 [𝑁𝑚]  1063.1 81.0  713.1 89.42 

Table 11-1: Validation results for datasets A and B 
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      Validation Dataset A       Validation Dataset B 

  

  

  
Figure 11-4: Consolidated results for the validation of forces’ and moments’ estimations. NN predictions have been 
sorted in ascending order. 
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Figure 11-5: Time histories for landing A1. NN predictions (red) and 95% prediction intervals (grey) for X, Z, M are 
compared to flight data (black) 
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12. Gust Identification 
Gust identification involves using the aircraft’s on-board sensors as a means to measure the 

direction and amplitude of the wind components it is subjected to. If air data measurements 

are available, these can be measured in a direct manner by subtracting the INS estimates for 

body-axes referenced velocities from the respective values measured by the air data probes. If 

this is not the case, an alternative strategy can be adopted, which relies on converting aircraft 

accelerometer readings to wind components. This method, however, pre-supposes that the 

relationship between the aircraft’s response and the relative wind is known. A modelling 

technique must thus be employed to construct a model of the aircraft’s ‘inverse dynamics’. 

Based on the approach described above, in this study, a set of NNs were used to identify wind 

gust patterns about the aircraft’s longitudinal body axes centre. These were trained to output 

estimates of 𝐴𝑜𝐴, 𝑇𝐴𝑆 and 𝑄 as a function of the flight condition and the accelerometer 

readings, converted to Aero-Propulsive Forces and Moments about the aircraft’s Body axes. The 

same training database as for the dynamic modelling case was employed, modified by switching 

between inputs and outputs. As previously stated Angle of attack (𝐴𝑜𝐴), True Airspeed (𝑉𝑇𝐴𝑆) 

and Pitch Rate (𝑄) were set as the NN outputs, while Forces 𝑋𝑎&𝑝, 𝑍𝑎&𝑝 and Pitching Moment 

𝑀𝑎&𝑝 were included to the input variable set. Having established a NN model for the aircraft’s 

inverse dynamics, wind gust components were calculated by post-processing the results, using 

the formulas: 

𝑊𝑉𝑤 = (𝛼 − 𝛼𝑁𝑁)𝑉𝑇𝐴𝑆 (12-1) 

𝑈𝑤 = 𝑉𝑇𝐴𝑆 − 𝑉𝑇𝐴𝑆𝑁𝑁
 (12-2) 

𝑄𝑤 = 𝑄 − 𝑄𝑁𝑁 (12-3) 

Subscript NN denotes NN predictions. All variables in Equations (12-1) are in SI Units. Error 

variances were also post-processed; using error-propagation: 

𝜎𝑉𝑤
= 𝑉𝑇𝐴𝑆 ∙ 𝜎𝛼 (12-4) 

𝜎𝑈𝑤
= 𝜎𝑉𝑇𝐴𝑆

 (12-5) 
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𝜎𝑄𝑤
= 𝜎𝑄 (12-6) 

In the absence of a direct reference signal, a time-domain comparison of the produced 

predictions with a Von Karman turbulence model, configured for ‘light’ turbulence was 

performed and is shown in Figure 11-1 and Figure 11-2. In terms of 𝑈𝑤 and 𝑊𝑤, the maximum 

observed amplitude was the same for both models at 8 𝑘𝑡𝑠 and 4 𝑚. 𝑠−1 respectively. A 

spectral analysis of the signals produced by the two models indicated that the frequency 

content of both predictions was similar. A comparison between the two models is shown in 

Figure 11-3 to 11-5. The slightly higher high-frequency content of NN predictions should be 

attributed to sensor noise, as, in contrast with the turbulence model, NN output relies on inputs 

from the aircraft’s on-board instruments. NN predictions for 𝑄𝑤 were of significantly smaller 

amplitude than the respective output of the turbulence model- this should be clearly a matter 

of the ‘shape’ of the local atmospheric turbulence. In terms of the examined landings A1-5, the 

‘mild’ turbulence characteristics that had originally been specified were also confirmed by the 

NN predictions: with only a few exceptions, the amplitude of the estimated wind gust 

components was low. Gusts could be identified as simultaneous local maxima or minima of the 

𝑈𝑤,𝑊𝑤, 𝑄𝑤predictions: it was observed that, probably because of their ‘random’ direction, 

gusts tended to affect more than one wind component at a time. An example is given in Figure 

11-7. Constant wind components could also be identified (Figure 11-6). 
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Figure 12-1: Comparison between NN gust predictions (black) and 95% prediction intervals (grey) for 𝑼𝒘,𝑾𝒘 with a 
Von Karman turbulence model (blue) 
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Figure 12-2: Comparison between NN gust predictions (black) and 95% prediction intervals (grey) for 𝑸𝒘 with a Von 
Karman turbulence model (blue) 
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Figure 12-3: Comparison of Single-sided Amplitude Spectrum of 𝑼𝒘 for NN and von Karman predictions 

 

Figure 12-4: Comparison of Single-sided Amplitude Spectrum of 𝑾𝒘 for NN and von Karman predictions 
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Figure 12-5: Comparison of Single-sided Amplitude Spectrum of 𝑸𝒘 for NN and von Karman predictions 

 

Figure 12-6: 𝑼𝒘 prediction for landing A5; the signal is shifted towards positive values indicating the presence of a 
steady tailwind component 
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13. Conclusions 
In this paper a NN-based methodology for dynamic modelling and wind gust identification for a 

typical aircraft using on flight data recordings was demonstrated. Results indicated that, as 

intended, the developed NN models produced predictions with an accuracy that would allow 

 

 

 

          
Figure 12-7: Predicted wind components for landing A1. Dashed circles enclose an identified 'gust' 



28 
 

for their use in practical aerospace applications. NNs were verified to be an effective modelling 

tool which can be successfully applied to aerospace modelling. Provided that adequate testing 

is conducted to ensure that the accuracy of the produced predictions can be generalized, the 

inherent non-linearity of NN models offers them an advantage over more traditional modelling 

techniques, as they require less time and effort to be realized. Models for different applications 

have been built on the same training database, by simply switching between inputs and 

outputs, with no other assumptions or conversions. 

An analysis of the training database showed that, although expected limitations in terms of the 

distribution of the observations did exist, overall, maintenance flight data can be effectively 

exploited to produce accurate NN-based dynamic models of an aircraft. 

The efficiency of NN-training can be maximized by effectively combining NN output with that of 

deterministic models for known quantities. Such a ‘hybrid’ approach leads to the reduction of 

the dimensionality of the data domain and, consequently, better results can be obtained from 

smaller training datasets. 

Overall, the developed models were fully practical and usable, although the accuracy achieved 

is just indicative. Being a function of the quality and quantity of the training data, better results 

can be achieved if additional effort is dedicated to the proper selection of training samples.  
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