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ABSTRACT

The major challenges faced by the gas turbine industry, for both the users and the

manufacturers, is the reduction in life cycle costs , as well as the safe and efficient

running of gas turbines. In view of the above, it would be advantageous to have a

diagnostics system capable of reliably detecting component faults (even though limited

to gas path components) in a quantitative marmer. V

This thesis presents the development an integrated fault diagnostics model for

identifying shifts in component performance and sensor faults using advanced concepts

in genetic algorithm. The diagnostics model operates in three distinct stages. The rst

stage uses response surfaces for computing objective functions to increase the

exploration potential of the search space while easing the computational burden. The

second stage uses the heuristics modification of genetics algorithm parameters through a

master-slave type configuration. The third stage uses the elitist model concept in genetic

algorithm to preserve the accuracy of the solution in the face of randomness.

The above fault diagnostics model has been integrated with a nested neural network to

form a hybrid diagnostics model. The nested neural network is employed as a pre-

processor or lter to reduce the number of fault classes to be explored by the genetic

algorithm based diagnostics model. The hybrid model improves the accuracy, reliability

and consistency of the results obtained. In addition signicant improvements in the total

run time have also been observed. The advanced cycle Intercooled Recuperated WR2l

engine has been used as the test engine for implementing the diagnostics model.
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NOTATIONS

Deviation

Component flow capacity
Noise standard deviation
Heat exchange effectiveness
Component Efciency
Nozzle discharge coefcient
Fitness
Function
Inuence coefcient matrix
Objective function
Pressure
Probability of crossover
Probability of mutation
Relative redundancy index
Temperature
Environment parameter vector with noise
Noise vector
Environment parameter vector
Engine fuel flow
Performance parameter vector
Measurement vector
LP spool rotational speed
HP spool rotational speed
Net thrust
Engine mass ow
Ambient pressure
Ambient temperature
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AANN
AGA
APNN
BBN
BP
CBPM
CD
COEHM
COMPASS
CR
DAM
DLE
DOA
ECM
EGT
EHM
EKF
ELM
EP
FADEC
FC
FCM
FDI
Fin
FL
FOD
FOLII
FPT
GA
GG
GPA
GRNN
GT
HDM
HE
HOT
HPC
HPT
ICL
ICM
ICR
IEKF
IFDM

ABBREVIATIONS

Auto-Associative Neural Networks
Adaptive Genetic Algorithm
Adaptive Probabilistic Neural Network
Bayesian Belief Network
Back Propagation
Condition Based Preventive Maintenance
Cumulative Deviation
Cognitive Ontogenetic Engine Health Monitoring
Condition Monitoring and Performance Analysis Software System
Condence Rating
Delivery Air Manifold
Dry Low Emissions
Dedicated Observer Approach
Engine Condition Monitoring
Exhaust Gas Temperature
Engine Health Monitoring
Extended Kalman Filter
Engine Life Management
Environment and power setting parameters
Full Authority Digital Engine Control
Fault Class
Fault Coefcient Matrix
Fault Detection and Isolation
Fan inner
Fuzzy logic
Foreign Object Damage
Fan outer
Free Power Turbine
Genetic Algorithm
Gas Generator
Gas Path Analysis
Generalised Regression Neural Network
Gas Turbine
Hybrid Diagnostics Model
Heat Exchanger
Higher Order Terms
High Pressure Compressor
High Pressure Turbine
lntercooler
Inuence Coefcient Matrix
Inter-Cooled Recuperated
lterated Extended Kalman Filter
Integrated Fault Diagnostics Model
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IPC
IPT
KF
LB
LPC
LPT
LSHSD
MISO
MLE
MOPA
NASA
NLGPA
N
NSGA
O&M
OEM
OOP
PDM
PI-IM
PMS
PPM
RAM
RBF
RCM
RCR
RMS
RR
RRAP
SFC
SOAPP
SOPA
SVM
TEMPER
TET
UB
UTC
VAN
WLS

Intermediate pressure compressor
Intermediate Pressure Turbine
Kalman Filter
Lower Bound
Low Pressure Compressor
Low Pressure Turbine
Low Sulphur High Speed Diesel
Multiple Input Single Output
Maximum Likelihood Estimation
Multiple operating point analysis
National Aeronautics and Space Administration
Non Linear Gas Path Analysis
Neural Network
Non-dominated sorting Genetic Algorithms
Operation & Maintenance
Original Equipment Manufacturer
Object Oriented Programming
Predictive Maintenance
Prognostic and health management
Platform Management System
Planned Preventive Maintenance
Return Air Manifold
Radial Basis Function
Reliability centred maintenance
Recuperator
Root Mean Squared
Rolls Royce
Rolls-Royce Aero-engine Performance
Specic Fuel Consumption
State Of Art Performance Programming
Single operating point analysis
State Variable engine Model
Turbine Engine Module Performance Estimation Routine
Turbine Entry Temperature
Upper Bound
University Technology Centre
Variable Area Nozzle
Weighted Least Squares
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Activation
Function

Analysis

Bias

Bottleneck

Condition
Monitoring

Correlation

Covariance

Covariance
Matrix

Crossover

Exponential
Smoothing

Fitness

Generation

Matching

MOPA

Moving
Average

Mutation

Noise

GLOSSARY

A function used to transform or squash a neuron°s local threshold
value to give outputs within dened ranges

The process of deducing the performance of the individual
components of a gas turbine from gas path measurements.

Deviation in sensor measurement from its normal value

The smallest region or layer in an AANN

The gathering of data from a gas turbine in service, in order to
understand its condition and optimise its operating costs

A measure of the relationship between two parameters, indicating
whether changes in one of them are accompanied by changes in
other.

A statistical measure of how two random variables vary together.
The covariance of two random variables a and b is dened as E[(a-
a°).(b-b)]

A symmetrical matrix showing the covariance of each possible pair
of elements in two random vectors.

A method of generating a new solution by using parts of earlier
solutions

A commonly used method of smoothing a time series, by adding a
weighted value of the current observation to a weighted value of the
previous estimate of the true value of the series.

A positive value defning the accuracy of solution and it determines
the progress of the solution to the next generation

A cycle of operation which involves selection, crossover and
mutation.

The movement of gas turbine component operating points due to
changes in component performance parameters

Analysis using two different operating points.

A commonly used method of smoothing a time series, by averaging
several points to reduce the effects of random noise in the
observations.

A method of generating new solutions by making random changes to
the existing solutions

A random measurement error which causes disagreement in
repeated measurement.
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Normal
Distribution

Objective-
Function

Observability

Outage

Pareto

Population

Power Setting
Parameter

Recursive

Repeatability

Search Space

Selection

Smearing

String

Synaptic
weights

Handle

Deterioration

Baseline

An important probability distribution used widely in the study of
variability in measurement, components, etc.

Summation of the percentages deviation of measurements from their
baseline values used for comparing measurements.

The ability of the instrument to perceive the change in performance.

Period for which an engine is removed from service

A method for choosing a particular string from a group of strings
A group of solutions to the problem

A gas path measurement that is used to dene the power setting of a
gas turbine.

An algorithm is said to be recursive ifthe calculations it carries out
are dependent on the current input(s) and the results from
immediately previous calculations only.

A random component of measurement error caused by numerous
small effects which cause disagreements between repeated
measurements of the same quantity.

A collection of all possible solutions to the problem from which the
best solution is chosen.

A method of separating the good solutions from a pool of solutions

Distribution of fault value to other components other than the one
under consideration.

A potential solution ofthe GA.

Weightings given to connections between neurons.

A set parameter that is held constant while all the other parameters
are measured relative to it.

Reduction in the components capacity to perform to its design value
A quantifiable physical condition of level of performance from
which changes are measured.
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CHAPTER-1

INTRODUCTION
rº

1. 1 Gas Turbines for Marine Applications

The 215' century has ushered in a variety of opportunities in terms of global economic

investments and thus brought resurgence of interest in marine propulsion. It is a well

known fact that the economic power and military might go side by side. this has led to

major navies world-wide to update their fleets to give them the crucial Sea Control and

rewrite their doctrines to the suit the concept of Blue Water Navy. In the commercial

world the key to success lies in faster and cost effective transportation of passengers and

cargo. More stringent emissions regulations and the likely increases in fuel prices have

led to industries participating aggressively, in the research and development, in

advanced marine propulsion systems and their performance and diagnostics techniques

for better exploitation and reduced down times.

The tremendous technological efforts concentrated on and necessary. to the growth

demanded of the aircraft gas turbine has created inevitable recognition of these highly

developed machines for all types of power utilisation. Aero-derivative gas turbines have

gained acceptance in the marine propulsion eld around the globe and majority are used

as main propulsion prime movers for warships. Due to the inherent characteristics

indicated below the gas turbines are being used for naval ships and off late in

commercial liners.

0 High specific power;

0 Fast starting and shut down capabilities;

0 Rapid acceleration from cold condition to maximum power;

0 Good thermal performance;

0 Automation, simplicity and reliability;

0 Low capital cost and installation man-hours;

0 Maintainability and reduction in manning;
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With the recognition came the assurance that all aspects of the hostile marine
environment and its effects would be given the same thorough study and effective
resolution. This study referred as the marinisation of aircraft gas turbines deals with
modification of the engine in order to be able to operate and survive in the hostile
marine environment.

To fulfil the wide scope ofmarine propulsion system requirements, few significant
areas which need to be addressed as part of marinisation process are -

0 Salt atmosphere compatibility ,material and coating development
0 Fuels and combustion

0 Damage tolerance and shock sustaining capability
ø Noise levels

0 Reliability

0 l\/Iaintainability

0 Auxiliary system integration

0 Operation and optimisation.

l\/Iarine gas turbines have been in service for more than two decades and have proved to
be reliable and offer significant advantages to the user. Despite well-proven reliable
features of these machines, their operation in hostile marine environment has been a

cause for concern, both to the manufacturer and the user. The degradation they undergo
result in significant performance deterioration and high operating costs. In addition, the
last few decades have seen growing economic pressures, which have put tremendous

pressure on the industries to cut down on cost to have a competitive edge over their

competitors. This has been a major motivation for the application of various traditional
and advanced fault analysis techniques for machinery diagnostics.

l\/larine gas turbines require a different kind of treatment by virtue of their applications
and the environment in which they operate, especially engines tted on combatant
vessels. In addition to the above, there are severe constraints on the maintenance of
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these naval engines due their roles. Unlike the civil freight or passengers cruise liners,
where the region of operation, availability of maintenance

facilities and schedules are know before hand, in the case of warships there is a lot of

uncertainty involved due the operational commitments, which makes it very difficult to

follow a pre-planned maintenance schedule, though efforts are always made to adhere to

the planned maintenance activities. Thus, there is a pressing need for an accurate

diagnostics model to assess the performance and predict the likelihood of a problem.
The research work undertaken specifically addresses the issues of maintainability and

reliability of gas turbine engines through advanced fault diagnostics techniques and

promotes new opportunities for gas path based diagnostics.

1.2 Engine Condition Monitoring (ECM)

Engine condition monitoring and engine diagnosis have been recognised, for some time,

as important assets in making more informed decisions on the usage. maintenance,

overhaul or replacement of the engine or one of its components. Deterioration can affect

relevant factors such as thrust (or power) and Specic Fuel Consumption (SFC). As a

consequence of progressive performance loss, operation of the engine can become cost

ineffective or even unsafe. Therefore maintenance techniques must be used to ensure

that the gas turbine operated cost effectively and safely. There are several types of
maintenance strategies adopted according the individual requirements. Broadly they

can be classied into following categories:

1.2.1 Breakdown Maintenance

This sort of maintenance is performed only after the parts have failed or the operational

performance limits are not achievable. It suffers from various drawbacks that include

conpromises on safety, performance and reliability.

1.2.2 Planned Preventive Maintenance (PPM)

This type of maintenance is performed according to a xed maintenance schedule,

which is time or running hours based. It is suitable for safe life designed components
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and usually involves routine replacement of parts etc. The useful remaining life is based
on the fleet statistical usage or manufacturers recommendations and not on an individual

engines operational exposure or experience. Its main drawbacks are the replacement of

parts that have a significant remaining life or a reduction in operational capability or

parts falling before a scheduled maintenance activity.

1.2.3 Condition Based Preventive Maintenance (CBPM)
The technique relies on determination of the condition of the engine for the purposes of
overhaul schedule. Also known as Reliability Centred Maintenance (RCM), or
Predictive Maintenance (PDM), this technique is now the most popular means of
maintenance. Condition based preventive maintenance can sometimes extend parts

usage beyond eet averages based on actual operational usage.

1.2.4 Proactive maintenance

Proactive maintenance is an offshoot of condition based maintenance that emphasizes
the routine detection and correction of root cause conditions that lead to performance

changes and/or component failure. Conditions are corrected or parts are redesigned
based on a root cause failure analysis. Root causes such as vibration and contamination

can be monitored automatically, but a deeper study is required for aero thermal

problems that require gas path analysis.

1.2.5 Prognostic Maintenance

Like proactive maintenance this is an application of condition based maintenance. The

use of prognostics within a health management system is known as prognostic and
health management (PHM). The ultimate objective is to integrate the PHM with the

logistic system.

Relatively recent advances in computing, data collection and general modelling

capability have made it feasible to develop maintenance strategies mainly based on

condition monitoring. The greatest effort to develop a comprehensive and cost effective

monitoring system has been made for aero engines maintenance. These techniques are
being adopted in shore based and marine gas turbines. A key point in any ECM system
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is the concurrent utilisation of a number of techniques to keep track of various

conponents and subsystems performance. Some of the comnon methods employed in

ECM are:

0 Lubricating oil analysis

ø Vibration monitoring

0 High pressure turbine exit temperature spread

0 Visual inspection / Boroscope inspection

0 Transient monitoring

o Life cycle counting

0 Exhaust Gas temperature monitoring

0 Gas path analysis

0 Gas path debris monitoring

0 Eddy current checks

0 Radiography

Considering the scenario of global civil air transportation market, increasing

competition among airlines is pushing towards the application of advanced fault

diagnosis techniques to review maintenance philosophies to reduce operating costs

(Singh et al, 1999). In this respect, the propulsion system calls for a signicant portion

of the overall maintenance effort. Figure 1.1 shows that the maintenance cost together

with the fuel bill represent 18% of the total costs. Similar is the case with marine and

industrial gas turbines. The prot may be seen as large in absolutely term, however,

when compared to the revenue and costs, it may be relatively small percentage. Thus,

any change in either of the two could have detrimental effect on the total prots.
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large number of forced outages. Figure 1.2 shows the forced outage rate of various

components and systems. It is clear that the forced outage due to turbines and

conipressors is only 1% and 2% respectively. Whereas, controls systems account for

24% of the forced outage. However, when the outage is due to a fault in these

components (turbines and comprcssors), the down time required to repair or replace is

usually long. Figure 1.3 shows that total downtime associated with the turbines and

comprcssors is 14% and 12% rcspcctivcly compared to just 6% for thc control systems.

|H

CTunßm Lues o. COMBU$TK)N
ornëks POWER ;\ssTRBuT N

n nvrrua

Figure 1.3: Percentage forced outage downtimes for various components

(Singh et al, 1999)

The low probability of fault occurrence and the high cost of holding engine component

spares entail that they are often not held as spares. However, in certain crucial

operations, holding a spare engine also makes economic sense. E. g. if in an oil ñeld, the

cost of amount of oil being pumped out is far too much when compared to the cost of an

engine such that the downtime would seriously affect the revenue then it would be

prudent to keep a spare engine. s

1.4 Motivation for the Present Work

'l`he major motivating factors for the taking up this work can be described under the

following subjects-

0 Techno-Economic issues

0 Marine Applications

o Manpower issues
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1.4.1 Techno-Economic Issues

The future marine industry will demand ever-increasing power from propulsion engine
with the order-winning criteria being economy and reliability°. In addition ferocious

negotiations by the Original Equipment Manufacturers (OEl\/Is) have intensifed the

competitive arena with all the participants looking to future business. This competitive
environment can only become more intensive as the gas turbine OEl\/ls, such as Rolls-

Royce and General Electric , increasingly focus on the servicing

of their products in order to secure their economic returns on engine sales and to capture
market share. This change in the dynamics of the industry has altered due to the
Consolidation of overhaul and maintenance services from independent suppliers to the
OEl\/Is. Thus the new challenges for the ensuring proftability will be achieved through
altering the dynamics of the sector to a service-oriented environment with

manufacturers selling not engine products but a blend of engines, maintenance and
nancing. The concepts like Power by the Hour TM, (trademark held by Rolls-Royce)
which are being introduced into the airline industry could very well be a reality for
marine propulsions in near future, especially when navies are moving towards lean

manning of ships and reduced manpower in ship yards.

1.4.2 Marine Applications

While most of the leading edge fault diagnostics technology have been used for aero-

engines, traditionally gas turbine engines on board were maintained according to hard-
life concept, whereby components were removed and refurbished after a pre-
determined time based on a deterioration rate. Although this did mininise operation

disruptions from engine shutdowns, engines were undergoing O&M regardless of
actual condition. As new technology was developed and introduced into the market such
a high temperature resistant materials and introduction of air-cooled turbine blades, the
on board times of the engines increased signicantly and the concept of on-condition
maintenance were adopted. Thus instead of removing the engine after a fixed time the

engine was constantly monitored using instrumentation sets to provide a trigger for
maintenance from the engine's performance deterioration and condition.
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The relationship between on-board time and maintenance cost must be monitored

carefully and analysed, since on board times could be extended too far resulting in

unacceptable economic impact. In essence, the solution is to develop knowledge-based
tools that will optimise engine life at most operationally cost effective position without
any negative impact on reliability .This concept will provide the opportunity to keep
the engine on-board as long as possible and to restore its performance at the lowest

possible costs during the O&M activities.

1.4.3 Manpower Issues

It is essential that advanced manpower planning be conducted prior to an outage. It
should be understood that a wide range of experience, productivity and working
conditions exist in shipyards. However, based upon maintenance inspection man-hour

assumptions, an average crew composition can we worked out. This planned approach
will outline the renewal of parts that may be needed and the projected work scope,
showing which tasks can be accomplished in parallel and which tasks must be

sequential. Planning techniques can be used to reduce maintenance cost by optimising

lifting equipment schedules to be taken up only when ship enters a major ret.
Estimates of the outage duration, resource requirements, critical-path scheduling,
recommended replacement parts and associated costs can be worked out. In Addition,

the development of concepts like Platform Management Systems (PMS) has taken place

against a background of diminishing manpower numbers and changing skill levels to
match the application of new technologies. These factors have been the principal drivers
in the application of increasing level of automation in each new class of vessel. To

optimise the manpower levels on future naval platforms and reduce the need for manual

logging and analysing will have to be replaced by technology and automation.

Traditionally the engine watch keeper during his rounds monitors the impending

problems by the senses of sight, touch, hearing and smell and takes action according to
his understanding of the problems, the routine manual monitoring of parameters and

analyses are tedious perhaps manpower intensive, especially in large ships. Factors
like the attentiveness and fatigue levels of the watch keeper need to be considered.
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From the above discussion it is evident that the advanced fault diagnostics tools applied
to engine health monitoring of machinery have a signicant role to play in the future
marine propulsion and maintenance management. Such systems may not only help in
monitoring the parameters, but also in analysing and simulating scenarios to understand
the implications of faults and training personnel.

Within the engine industry itself, the market drivers are economy and reliability'
namel_\f the demand for power at the lowest possible cost and the highest level of

reliability, with determinants like the specific fuel consumption, maintenance and life

cycle costs, power to weight ratio, engine noise, Emissions being under customer
considerations for their choice of engine. Even with the paradigm shifts in the market

place from the selling of a gas turbine engine to actual lifecycle management of the
units resulting form the service-oriented Power by the Hour' agreement, these drivers
still remain. However, their weightings have moved towards greater emphasis on

lifecycle service provision. In addition, continued escalation in engine purchase price,
costs of spare parts, maintenance operations and soaring fuel costs have made it
increasingly desirable for operators to employ engine diagnostics or engine health
monitoring which implies the ability to accurately assess the relative health and

performance of their engines in a reliable cost effective and technically sound way.

lt was recognised that the technology push and market pull creates an opportunity for

investigating and developing advanced fault diagnostic techniques which can be used
for engine health monitoring and reviewing maintenance strategies. These challenges
have necessitated the development of advanced fault diagnostics for marine gas
turbines, while keeping in mind that the operational requirements for warships usually

outweighs the need for a scheduled maintenance and also the various port may not have

adequate retting facilities. Overall the industry would be beneted by improved safety
associated with operating and maintaining gas turbines, reduced overall life cycle costs
of engines from installation to retirement, increased up/time availability of all engines
within a fleet and providing engineering justifcation for scheduling maintenance
actions with corresponding identiable economic benets.
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1.5 Objectives & Contributions from the Research Work

The research work is sponsored by Ms Rolls-Royce (Marine & Industrial) and the

Overseas Research Scheme award by the Committee of Vice-Chancellors and

Principals (United Kingdom). In order to put the Objectives of the research work in

context, it would be appropriate to briefly describe the background to the present

research work:

1.5.1 Background to current research:

0 The project based on optimization technique was conceived in 1996, whereby Zedda

(1999), funded by Rolls Royce plc, started a PhD to carry out a thorough review of
the current technology for performance analysis and diagnosis and then to develop

an advanced methodology to carry out such a task. He developed a technique based

on the use of Genetic Algorithm (GA) for a well-instrumented engine, the EJ 200,

which had an instrumentation suite for a development engine. The technique proved

to be a success and was received by the company with enthusiasm,

0 Since, the initial tests were with test bed instrumentation sets (which very large

compared to the in-service engine), Rolls-Royce decided to investigate this

technique for engines with in-service instrumentation. This led to the research work

by Gulati (2002) in which he investigated the use of multiple operating point

analysis to overcome the lack of information from reduced instrumentation. The

engine used for this task was the RBI99. This engine was chosen due to the

diffculty faced at Rolls Royce in diagnosing faults with this engine. On successful

testing with the RBI99 engine, the method was suitably modied and tested on a

few other engines, like aero Trent 500 and the Industrial RB 21 l by Carter (2001).

1.5.2 Choice of GA based diagnostics & Need for Enhancement:

When compared with various other diagnostics technique, the technique based on GA

was found to be most suitable of an advanced cycle engine due its inherent capability in

preserving the system non -linearity. The technique based on GA had been proved to be

robust and had the ability to overcome some of the problems associated with

measurement noise and instruments bias. I-Iowever, a major impediment to its
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implementation was the long run times of the algorithm. E.g. it would take 36 hours for
an engine like the RB2l l, assuming that a maximum of two components were faulty
simultaneously. Such long diagnostics time would not be suitable for any real time

application and could lead to non-recoverable damage to the engine if used. Thus the
need to enhance the basic model in terms of accuracy and reduced convergence time
was felt. Prior to this research work, the technique was tested only on simple cycle

engines. Present research deals with the development of a diagnostics model using
sone advanced concepts in GA and also looks at possibility of integration with other
fault diagnostics to forn a hybrid model for efcient fault diagnostics. The advanced

cycle ICR WR-21 engine model has been used for validating the results.

1.5.3 Research Objective

The objective of the research is to develop a performance assessment and fault

diagnostics model for an advanced cycle gas turbine. The salient features of the research

work is to-

(a) Identify shift in engine performance and deterioration in component

performance.

(b) Identify faulty components with the minimum set of instrumentation suite.

(c) Detect, identify and isolate faulty sensors

(d) Consider the measurement noises and sensor bias while carrying out diagnosis

(e) Investigate the possibility of combining several techniques to develop a hybrid

engine fault diagnostics technique with improved accuracy and reduced

convergence time.

1.5.4 Contributions from Current Research

lt is expected that this PhD will make the following novel contributions:

(a) The use of adaptive GAS and embedded expert system is a new concept in

engine fault diagnostics. The use of nested neural network as a pre-processor
in a hybrid diagnostics model is also a new concept as until now the fault

diagnostics techniques have mostly been used in isolation. This development
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has created new opportunities in the eld of gas path diagnostics with a

possibility of finding applications in advanced cycle engines and combined

cycle confgurations.

(b) A diagnostics model has been developed for the advanced cycle intercooled

recuperated WR2l engine with variable area nozzle. The development has led
to a substantial reduction in diagnostics time and improvement in diagnostic

accuracy. The methodology adopted here brings the diagnostics system closer
to application in online fault diagnostics system.

1.5.5 Benefits from Current Research

Most of the sophisticated fault diagnostics techniques have been applied to aero gas
turbines. However, these techniques being generic, are eventually finding their way to
industrial and marine applications. The availability of such techniques has made
industrial and marine users more sensitive to maintenance issues. Even though the

present works focuses on aero-thermal performance analysis and fault diagnosis, it
would be misleading to assume this technique to be better than the rest. It is pertinent to
mention that each the techniques mentioned in section 1.2 have their own importance
and contribute to the engine health monitoring. In the current research work, a fault

diagnostics system has been developed for the ICR WR2l. The technique is generic is
nature and can be easily adapted to any engine with minimal modifications to the

algorithm. Overall, it is expected that the following benefits will accrue from the

development ofthe diagnostics technique presented in this thesis:

v Improved safety in operating gas turbine engines;
0 Reduced overall life cycle cost;

0 Optimise maintenance interval and prioritise task to enhance operational

availability;

0 Engineeringjustication for scheduling maintenance while identifying

corresponding economic benets;

0 Serve as post ret benchmark;

0 Training personnel on importance of good maintenance practice (Simulating
fault conditions).

-]3-



Clapter- 1 : Introrluctim

1.6 Overview of the Thesis

The followings paragraphs give a brief description of the contents of each chapter which
forms part ofthis thesis:

Chapter-1: Introduction

This chapter provides a broad outline of the gas turbine application in the marine

application. It also presents the motivating factors which has led to the research work,
and has been discussed under various topics like the techno-economic issues,

application in marine field and the impact on manpower, Finally, it discusses the

objectives and contributions from the research work and gives an overview of the thesis.

Chapter-2: Engine Fault Diagnostics Techniques- An overview
This chapter gives an overview of the various performance based engine fault

techniques available. It also summarises the various engine fault diagnostics techniques
available, their advantages and limitations.

Chapter-3: Optimisation Techniques for Engine Fault Diagnosis
This chapter gives an overview of Genetic Algorithms (GA) and their applications to

engine fault diagnostics. A discussion on the development diagnostics model for the
well instrumented EJ2O0 and poorly instrumented RB199 is presented.

Chapter-4: Diagnosis of Advance cycle Engine
This chapter presents the concept of marinisation of an aero gas turbine and discusses
methods to improve part load efciency of a marine gas turbine. The chapter also

briey discussed the design of the advanced cycle intercooled recuperated WR21

engine and development of a TURBOMATCH (A Generic engine modelling software)
model of WR21.

Chapter-5: Development of Diagnostics for WR21

This chapter describes the development of an engine fault diagnostics tool using GAs
for the lCR WR21 engine, its limitations and the need for improvement to the basic
form to make it usable for real time applications.
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Chapter-6: Advanced Fault Diagnostics model

This chapter clescribes in detail the new diagnostics model developed using the concept
of response surface, elitist model and heuristic manipulation of GA parameters. This

chapter also describes a novel way of combining neural network and Genetic Algorithm
using the advantages of both the techniques to develop a hybrid technique for improved

performance.

Chapter-7: Discussion of results

This chapter presents a discussion on the development of a diagnostics tool for the

WR21, the important issues to be addressed and discusses the results from various of

test cases. A comparison of the various forms of GA based diagnostics model is also

presented.

Chapter-8: Conclusion and Recommendation _
This chapter gives the Conclusion of the research work carried out. It also gives a
summary of the contributions made, limitations of the present research and some

recommendations for future developments.
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CHAPTER-2

GAS TURBINE ENGINE FAULT DIAGNOSTICS

AN OVERVIEW

2.1 Introduction

There are many approaches for gas turbine condition monitoring and fault diagnostics.

such as performance analysis, oil analysis, visual inspection, boroscope inspection¬ X-

ray checks, eddy current checks, vibration monitoring, debris monitoring, noise

monitoring, turbine exit spread monitoring, etc. Performance analysis based diagnostics

is one of the most powerful tools among them, where the analysis of gas turbine gas

path parameters provides the information of degradation severity of gas path

components. Research in recent years shows that current research efforts on gas turbine

diagnostics have been focused on the improvement of reliability, accuracy,

computational efciency, online application and inclusion of more practical

considerations such as data pre-processing and validation, measurement noise reduction,

multiple component faults, sensor faults, data uncertainty, etc.

In this chapter, technologies relevant to gas turbine performance analysis based

diagnostics developed so far and published in the open literature are reviewed, from its

beginning of Urban's (Urban, 1967) work until the most recent state-of-the-art

technologies. Such technologies include earlier linear and non-linear model-based

methods to more advanced artifcial intelligence (neural networks, genetic algorithms

and expert systems) based methods, and fuzzy logic based approaches, for gas turbine

conponent fault diagnostics on both steady state and transient measurement data.

Additionally, data validation and different approaches for ltering noise from the

measurements for gas turbine fault diagnostics have also been discussed.
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2.2 Engine Performance Analysis

One of the main stinulants to the development of thermodynamic nodelling of the gas

turbine has been the steady ow nature of the cycle. The steady ow nature of the gas

turbine cycle makes it nuch more amenable to accurate mathematical calculations. The

analytical performance model of a gas turbine engine is based on component

characteristics and aero-thermo relationships such as the laws of conservation of energy

and mass and special conditions such as choked nozzle and bleed. The calculation then

proceeds to match all the components by satisfying the aero-thermal relationships.

Assuming that all component characteristics are accurately defined, the model can

provide the engine performance in terms of dependent (measurable) parameters such as

pressure, temperature, spool speed etc..

The ease of calculation of the gas turbine cycles has led to the development of many

performance modelling tools such as the Rolls Royces RRAP, Pratt and Whitneys

SOAPP and Cranfelds TURBOMATCH systems. If the ow, pressure ratio and

efficiency characteristics of the compressor and turbine are known, as well as the

pressure loss characteristics of the intake, combustion chamber and exhaust and the

temperature rise characteristics of the fuel used, then the performance of the whole

engine can calculated.

2.3 Performance Deterioration

In the course of its useful life the gas containment path of any engine is susceptible to

encountering a wide variety of physical problems. These include problems such as

erosion, corrosion, fouling, built up dirt, foreign object damage, worn seals, excessive

tip clearance, burned or warped turbine stator or rotor blades, partially or wholly

missing blades, plugged fuel nozzles, rotor disk or blade cracks induced by fatigue or

operation outside intended limits, etc. In order to develop an engine deterioration

model, the faults have to be classifed, quantied and identied (Diakunchak, 1992).

Typically, a quantitative representation of physical fault can be described as a change in

one or more of the independent parameters which describes individual gas path

components performances like the component isentropic efficiency, flow capacity,

turbine nozzle guide vane area, exhaust nozzle area etc. It is noteworthy that the
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independent parameters are determined by the gas turbines conguration and that they

cannot be measured at all.

The following sections describe some of the faults and their effect on the engine

performance. The quantification of faults allows simulation of faults in a computer

program.

2.3.1 Fouling

Fouling can be defined as the degradation of flow capacity and efciency caused by

adherence of particulate contaminants to the gas turbine airfoil and annulus surfaces`

(Diakunchak, 1992). Although fouling can occur in both compressor and turbine

components, it has been recognized that compressor fouling is one of the most common

cause of engine performance deterioration (Aker, 1989). Gas turbines are particularly

susceptible to fouling because of the large quantities of air they ingest. The incoming air

consists of hard and soft particles. Hard particles such as dust, dirt, sand, rust, ash and

carbon particles and soft particles such as oil, unburned hydrocarbons, soot, airborne

industrial chemicals, fertilizers, herbicides etc. can provide a source for fouling. In the

case of compressor fouling, the change in blade shape causes a reduction in compressor

ow capacity and a reduction in compressor isentropic efciency. The effect of fouling

on compressor ow capacity is more signicant than the effect on efficiency. Typically.

the ow capacity is reduced by 3 -8% and the efficiency by 1% depending on the

severity of fouling (Saravanamuttoo, 1985; Diakunchak, 1992). The reduction in mass

flow capacity varies with operating speed, ambient temperature and altitudes

(Saravanamuttoo, 1985). Furthermore, compressor fouling not only reduces the ow

capacity and efciency, but also reduces the compressor surge margin and this may

result in compressor surge (Diakunchak, 1992).

2.3.2 Erosion ii

Erosion can be defined as the abrasive removal of material from the ow path

components by hard particles in the air or gas stream (Diakunchak, 1992). A typical

size of the particles is 2Om or more in diameter. The particulates which cause erosion

are hard particulates such as dirt, dust, sand, carbon/soot (the carbon particles are

produced as a result of inefficient combustion), ash, salt and industrial pollutants. As a
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result of erosion, the airfoil surface roughness is increased, inlet metal angle is changed

(hence airfoil incidence). airfoil profile is changed, airfoil throat opening is changed,

blade tip and seal clearances are increased. In some cases the eroded airfoil trailing edge

thickness can be benecial to performance, though it is unacceptable from mechanical

integrity considerations (Diakunchak, 1992). The erosion of engine components results

in blunting of aerofoil leading edges, thinning of trailing edges and increased surface

roughness.

2.3.3 Corrosion

Corrosion can be dened as the loss of material from flow path components caused by

the chemical reaction between these components and contaminants that enter the gas

turbine with the inlet air, fuel, or injected water/steam. Salts, mineral acids, and reactive

gases such as chlorine and sulphur oxides, in combination with water, can cause wet

corrosion, especially of the compressor airfoils. Elements like sodium, Vanadium and

lead in metallic or compound form can also cause high temperature corrosion of the

turbine airfoils. Hot end surface oxidation is another form of corrosion (Diakunchak,

1992).

Similar to erosion, corrosion can result in the loss of material and increase in surface

roughness. ln addition, corrosion results in a loss of performance and service life ofthe

component affected. Typically, compressor corrosion results in a reduction in

compressor flow capacity and isentropic efciency, whilst turbine erosion results in an

increase in turbine effective area/ow capacity and a reduction in isentropic efficiency.

2.3.4 Foreign Object Damage (FOD)

Foreign object damage (FOD) can be dened as the cause by which large objects strike

the flow path components of the gas turbine engine. These objects enter the engine with

the inlet air or are the result of pieces of the engine itself breaking off and being carried

downstream. Foreign objects can be things like stones, birds, bolts, tools, etc. Excessive

ice formation on the compressor inlet, carbon deposits on fuel nozzles, and engine

subcomponents can break loose and result in damage to internal downstream

components. Foreign object damage can vary from non-recoverable (with washing)

engine performance deterioration to catastrophic engine failure (Diakunchak, 1992).
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The effect of FOD on performance degradation varies signicantly with the severity of

the damage. FOD results in a large reduction ofthe component isentropic efciency and

in some cases can change the ow capacity of the damaged component. Typically,

isentropic efficiency can decrease by 5% (Zhu, 1992). However the value is very much

dependent on the severity of the damage. The change in ow capacity depends on the

type of FOD damage. ln some cases the ow capacity may increase. in other cases it

may decrease. An increase of ow capacity can be the result of lost blades. A decrease

of ow capacity can be the result of foreign particles blocked in the gas path. A

blockage can be caused by desert sand that has been virtually glued to the turbine blades

because of the heat.

2.3.5 Thermal Distortion

Thermal distortion is a fault that normally occurs at combustor exit/turbine entry where

temperatures are highest. Distortion is caused by problems such as faulty fuel nozzle

spray patterns and warped combustor components which cause changes in the radial and

circumferential temperature traverse pattern at the combustor exit. This can result in

temporary or permanent deformation of downstream components such as cracked,

bowed, warped, burned, lost or damaged turbine nozzle guide vanes, area changes,

increased leakage, and relative thermal growth between the static and rotating members

(English, 1995). High temperature can cause rst stage turbine blades to untwist. These

blades untwist as a result of creep damage during sustained high temperature operation

(Macleod, 1992). Bowed, burned, warped, untwisted or damaged blades can cause a

reduction in turbine isentropic efciency due to increased air leakage and reduced

airfoil performance. The damage of the blades can also result in changes to the effective

ow area. However, the most signicant effect will usually be on turbine isentropic

efficiency (MacLeod, 1992).

2.4 Facets of Gas Turbine Fault Diagnosis

The objective of the mathematical modelling process is clear: use component

characteristics and thermodynamic relationships to build a mathematical model of a gas

turbine from its parts. Analysis, on the other hand can have different objectives

depending on what the results will used for. If for instance, the analysis is being done
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to determine if a gas turbine is acceptable to the customer, then the calculations to

determine its acceptability Or otherwise will almost certainly be laid down in a contract

specification.

Condition monitoring of a gas turbine in service requires an intermediate approach, in

which fairly detailed and up-to-date analysis methods need to be agreed between the

manufacturer and the end user in order to achieve cost effective maintenance. Using one

set of methods to achieve another set of objectives is usually a recipe for confusion and

misunderstanding.

lt should be noted that the gas turbine performance analyst is rarely asked to explain the

absolute levels of overall performance that are calculated. Usually, performance of gas

turbines and components is expressed relative to some appropriate datum. For instance,

the statement that the specic fuel consumptions the of gas turbine under analysis is lO

gm/KNs is not nearly as useful as the statement that the SFC is 3% worse than expected.

A stated compressor efficiency of 89% sounds quite good, until comparison with the

results ofthe rig test shows it to be lower than 2% of the design (Provost, 1994).

NOEPENOEN  PARAMETER DEPENDENT PARAMETER

PHYscA_ PROB.Eivs OEGRAOA ON OF CHANGE IN
Resuis an CQMPQNENTS Pf°dU°eS MEASURABLE

EROsON PERFORMANCE PARAMETERS
cORROsON - PUvPNG
FOULNG cAPAOTY SPOOL SPEEDS
Foo . EFFcENcEs TEMPERATURES
BUL -UP oR  . PRESSURE PREssUREs
vi/ORN sEALs OR LOSSES POWER OUTPUT
EXCESS CLEARANCE , TEMPERATURE
BURNED, BOWED OR |:>RO|=|LE
'VHSSWG BIADES FM - ExHAUsT NOzzLE We,P'-UGGED NOZZLES Isolation AREA Fault

OO

Figure 2.1: Gas Turbine fault diagnosis approach (Urban,1974)

Ultimately, the purpose of gas turbine performance analysis is to identify physical faults

by looking for the deviations in measurable parameters like the temperatures, pressures,

spool speeds etc. from expectations. Figure 2.1 shows the working relationships in the

analytical process (Urban, 1974).
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Supercially the analysis process as shown in g-2.l looks easy; calculate appropriate

component performance parameter deviations from the gas path measurement

deviations relative to a datum, then use the results to guide the search for hardware

faults. In practice the analysis process is corrupted by errors in the measurements taken

to determine how the gas turbine is behaving.

Errors can have serious effects on any analysis, because they result in incorrect

component performance calculations which lead to misleading hardware fault diagnosis.

As Provost (1994) had rightly said Every experienced analyst will recall instances of

measurement errors discovered when analysing gas turbines on-line that either

prevented the test being terminated prematurely (due to incorrect calculation of critical

gas-path parameters such as turbine entry temperature) or stopped a potentially

worthless or dangerous test from proceeding (fuel leaks in altitude test plants, in which

the gas turbines itselfis sealed inside a test chamber and not visible by the test crew)" _

Failure to detect measurement errors can have serious nancial consequences, as time

and effort are spent searching (on the basis of awed calculations) for non-existent

faults in one part of the gas turbine while genuine faults go undetected. Any analyst who

ignores the possibility of corruption of his calculations by erroneous measurements is

treading on dangerous ground (Provost, 1994). The experienced performance analyst

learns to look for characteristic signatures of typical single measurement errors : these

are usually recognised by calculation of better than expected performance of one or

more components , accompanied by worse than expected performance on other

components ( so-called reciprocal change ) . However, when more than one error is

present and/or genuine changes in components that make up error signatures° have

happened , the task of nding errors becomes very much more difcult . It is not

unusual for even the most experienced analyst to spend days or weeks trying to produce

a credible assessment of overall and component behaviour when multiple errors are

present: engineering judgement, trial and error calculations, patience and a certain

amount of luck are all required, if any sense is to be made of the results. The need to

speed up an ineffcient, time consuming and demoralising process is the main

motivation behind the research that had been undertaken.

_22_



Clapter-2: Gus Turbine Engine Fault Diagnostics- An Overview

2.5 Performance Analysis Based Diagnostics

ln the last three decades, researches have investigated several different techniques for

engine fault diagnostics. Performance analysis based technique for engine fault

diagnostics has emerged as a powerful tool and tremendous research efforts have been

directed towards it. There are several methods investigated and a lot of information is

available in the public domain on these and an extensive review of methods that exist

today has been provided by Li (2002). The comprehensive review by Li (2002) has been

extremely helpful in obtaining a wide range of information and organizing the literature

review in this thesis. The contribution of the author is duly acknowledged. The methods

available have been broadly classifed into three subgroups for ease of presentation. An

overview of some of the methods is given in the subsequent sections.

2.5.1 Linear Model-Based Diagnostics Methods

The aero-thermodynamic relationship between gas turbine dependent parameters and

independent parameters is complex and highly non linear. Linear diagnostics methods

are characterised as such, because they use a linearised representation of engine

performance. To simplify the description of such a relationship, a linear approximation

at certain operating point (such as maximum power or cruise) was introduced as follow:

2=H~f (2.1)

With this assumption, a first Gas Path Analysis (GPA) method was introduced by Urban

in 1967(Urban, 1967). Its application to gas turbine condition monitoring and engine

fault diagnosis was further described by Urban (Urban 1980 and 1981). A review of Gas

Path Analysis was given by Smetana (1975). This GPA method has been widely used in

applications, such as those of Passalacque (1974), Staples and Saravanamuttoo (1974),

Saravanamuttoo (1974), Danielsson (1977), Lazalier et al. (1978), Grewal (1988),

Escher (l995a, 1995b), Nieden and Fiedler (1999) and Simani et al. (2000). ln this

method, the relationship between various engine measurable parameter deltas and

imneasurable component parameter deltas at certain engine operating condition is

expressed with a linear Inuence Coefcient Matrix(ICM):
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A2=H~Aº2 (2.2)

The deviation of engine component parameters can be calculated with a Fault

Coeffcient l\/latrix(FCl\/I) which is the inverse ofthe ICM:

ar- = H" ~A..= (2.3)

The generation ofthe fault coeffcients relies on the implantation of known faults in the

components. The basic formulation is conceptually simple and provides quick solutions

to gas turbine diagnostics and has proven to be successful in many of the commercial

fault diagnostics system like TEMPER, COMPASS etc. A detailed description of the

method is given in the following section.

2.5.2 Gas Path Analysis (GPA)

The objective of gas path analysis is to determine faults associated with components

through the observation of judiciously chosen measurements (dependent parameters).

To be implicitly detectable (i.e. implied from their effects on the measurable

parameters), the problems or faults must be clearly of a nature and magnitude that will

produce an observable change in the measurements. Thus certain problems such as

fatigue cracks in rotor disks or blades, or corrosive attacks on the metallurgical structure

but not the geometry of turbine blades, are undetectable by analytical technique and

must sought by radiography, boroscope or other visual inspection means. A large

portion of the potential faults are however amenable to detection by gas path analysis.

Each of the faults whether caused by normal wear, degradation, F.O.D., or abnormal

abuse, may be viewed as affecting one or more components in one or more of their

basic performance parameters. For example compressor or fan faults will manifest

themselves as change in either the air pumping capacity or the adiabatic compression

efciency or both; turbine faults will manifest themselves as changes in either the

turbine effective nozzle area size or the adiabatic expansion efciency or both. These

primary independent parameters although fundamental in nature and leading directly to

the detection of engine faults are not readily or practically measurable. The parameters

which can be measured are typically the various temperatures, pressures, fuel flow and

rotor speeds throughout the engine. These parameters are dependent variables whose
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absolute values depend on the absolute levels of all primary independent variables.

Therefore. since changes in these dependent variables are brought about by changes in

the primary independent variables, differences in these parameters from their baseline

expected values can be used to implicitly determine which elements ofthe gas path have

undergone distress or departed from their initial or expected condition. lt should be

stressed that any parameter in itself is not necessarily indicative of fault in any particular

element. For example, at any given rotor speed, a change in compressor discharge

pressure does not mean there is a compressor fault. The change may also be due to a

change in compressor or turbine fault.

At any given operating condition, two bits of information is available, what the engine

manufacturer or user experience says the nominal measured parameter value should be,

and what the observed value actually is. The observed values should be used for

purposes of analysis. The data must rst be corrected for factors such as installation

losses associated with test cells, instrumentation calibration errors, effects of bleed and

effects of Reynolds number. Once corrected, a gross delta value for each parameter is

obtained as shown in gure 2.2.

A

Observíd Value

Gas Path P ame er
I l
¦ Meas Â¦, De a ,I II II II II II II II IIIIIII

ued

/5 Module Degradation_ _ _
/5 Instrument Non Repeatabilityôlnstallation & Calibration

af

/I5 Bleed & Services

/6 Nozzle

Nomnal Baseline
' P

85% MC MC T/O

Figure 2.2: Calculation of measurement of deltas

This is composed of two factors, the net delta due to deviant module, which is the

portion of the diagnostic interest, and the portion due to instrumentation non-
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repeatability and possibly the presence of other unsought problems such as model

errors. baseline errors etc. GPA could be linear or non-linear and both these methods are

described in the succeeding sections.

2.5.2.1 Mathematics of GPA

Theoretically there exists a relationship between the measured parameters and the

independent parameter. Let us consider an arbitrary condition where 2 is dependent on

2 independent variable x & y. Ifthe baseline value of 20 is known for a given values of

x = xo and y = y0, then the function z can be expanded using Taylor series

z=zO+š mx ><(x-x0)+å º<(y-y0)+........(I-IOT) (2.3)ôx f J.lÄ±

as magnitude of changes in independent parameters are likely to be small, Higher Order

Terms(l-IOT) can be neglected and equation (2.3) can be rewritten as

in20-Ü óx ' xo 2 - -' *

It is customary to dene performance shifts in terms of percentage deviation from

baseline therefore dening

z - zoA = > 100 (2.5)
zo

Substituting equation (2.5) in equation (2.4) we get

X åz 5

Az={ °><- |\_=\_}><Ax+{&><- l`__\_}><Ay (2.6)20 ôx "" zo Öy i¬"

all terms inside curly brackets are constants, in mathematical terms called coefcients

and equation (2.6) can be written as:
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Az=C, X/L\'+C3 ><Ay (2.7)

The above equation denes a relationship between change in dependent paraneter z to

change in independent parameter x & y. However in reality we are likely to measure a

set of dependent parameters to detect a set obtain the independent parameters, the

general form ofthe equation can be written as:

Z, = H, X, (2.8)

Z : Set ofengine parameter measurements

X : Set of engine module deviations

H 1 Set of inuence coefcients determining relationship between dependent and

independent parameters.

Where, He is called the Inuence Coefcient Matrix (ICM). In our study we would be

interested in obtaining X8 , therefore, mathematically-

X =H§' ><Z (2.9)

The matrix H' which is inverse of the ICM is the Fault Coefcient Matrix(FCl\/I).

Thus knowing the dependent parameters, calculating the ICM and hence the PCM, it is

possible to estimate magnitude, nature and location of the degradation. A schematic

diagram of GPA is given in Fig-2.3.

Where:

0 A2 is measurement deviation vector

A21

_ _ _ A2Â»
Az=z-z0= ' (2.10)

AZM '

0 A¡ is component parameter deviation vector
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_ _?

Av.
Aº2=f-f=í__,~l (2.11)

l l\

0 H is the Influence Coeffcient Matrix (ICM)

Öx,

H _ ä _ ôhz (X)
ax 0 ax'

ÖhM(f)

äx,

ôxz
Öh2(f)

_<.

ÖhM (X)

ôx2

ÖXN

<2/«ii if)

ôx_,.

(2.12)

0

By inverting the ICM we have made several assumptions regarding the relationship

between the dependent and independent parameters which carry with them certain

constraints. The following are assumed-

0 A set of accurate measurement deltas are available , i.e. there exists a method to

faithfully reduce raw observed engine data to a measurement delta level;

0 The faults coefcients are an accurate engine model descriptor; the faults

occurring in the engine are among those being sought;

0 The fault coefcients are invertible (i.e. the changes in the unknown are

adequately manifested in the observations);

0 The measurements are repeatable and free of noise;

The assumption that the relationship between the independent and the dependent

parameters is linear becomes a serious limitation when the degraded point shifts further

away from the original operating point (where the matrix was created). It was found that

when the deviation increases beyond 1% the linear GPA becomes unreliable (Gulati,

2002c). This led to the development of Non-Linear GPA. The solution to this problem
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is to run the linear GPA iteratively by creating new ICMs and FCMS with the

degradation values obtained in the previous step, until the algorithm converges to a pre-

dened error bound.

KNOWN DEGRADATION

Figure 2.3: Schematic diagram of GPA

2.5.2.2 Advantages and Limitations of GPA

N=_uENcE
coE==cENT
MA Rx (cMâº
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PARAMETER
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ENGNEMEASUREMENTSif 4 . :_._-:_=
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GPA shows powerful diagnostics potential due to the following capabilities:

0 Modular Approach: the technique isolates faults at component level by

identifying the Variation in the corresponding performance parameters of the

COmpOnCnt;

0 Multiple faults capability: the technique is able to allow for detection of faults in

more than one component 7
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0 Fault Quantication: The technique is able to express the fault severity in terms
of percentage deviation from respective baseline values;

0 Identification and use of appropriate measurement selections that are sensitive to

the desired faults;

0 Selection of independent variables that represent the fault with least RMS;

Despite great deal ofresearch on this subject, there exist certain fundamental limitations

to this method

0 Non-Linearity: The generation of fault matrix linearises the relation between the

state variables or the independent variable with the dependent leading to

inaccuracies for large magnitudes of faults.

0 The requirement of a large instrumentation suite for effective diagnosis is a

major hindrance in its application in real life situations. Additional sensors lead

to increased cost. Fewer sensor leads to the phenomenon ofsmearing.
0 The scheme does not cater for sensor bias, which is a phenomenon not so

uncommon in practical application.

0 Measurement noise: The diagnostic scheme does not have provision for taking
into account measurement noise. Gas turbines usually operate in harsh
environments leading to measurement non-repeatability, which in some cases

could be as large as the measurement deviation being sought.

To overcome the limitations of GPA, estimation techniques like Weighted Least

Square(WLS) analysis , Kalman Filters(KF) and its variants have been used. The

technique based on KF and WLS, which have been reported to be the predominant

technique adopted by major OEMs (Doel, 1994; Stamatis et al, 1992). With these

techniques remaining as the core of the diagnostics model, additional algorithms have
been incorporated _for improved diagnostics capability. E.g Rolls Royce uses the
Concentrator method and GE uses the Fault Logic.

2.5.3 Kalman Filter for Gas Turbine diagnostics

The Kalman Filter (KF) is an optimal observer in a linear system having white
uncorrelated measurement/process noise. The lter has been formulated for both

continuous and discrete time systems. For simplicity only the discrete time formulation
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is considered. Since any practical application of Kalman ltering techniques will be

implemented on a digital computer, the discrete time formulation is particularly well

suited. A Kalman filter typically incorporates discrete - time measurement samples and

finds application as shown in tgure 2.4

The main assumptions for a KF application, which are also applicable for gas turbine

diagnostics are: `

(a) These are normally applied as linear models. Though there are means of extending

the linear concept to some non-linear applications.

(b) Noise is independent from one sampling time to the next.

(c) Noise is assumed to be Gaussian in terms of amplitude and it is assumed that at any

given point of time, the probability density of Gaussian noise amplitude takes on the

shape of a normal bell-shaped curve.

SYSTEM ERROR
SOURCES

CONTROLS SYSTEM
OBSERVED

MEASUREMENT

MEASURING KALMAN FILTER
DEVICES

MEASUREMENT ERROR OPTIMAL ESTIMATE
SOURCES OF SYSTEM STATE

Figure 2.4: A typical Kalman Filter Application (Gulati, 2002c)

The estimation technique described here is applied to a discrete process dened by the

following sets of equations :
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zk = Hkxk + vk Measurement equation (2.13)

xk = CD,._, + WH k = 1,2 System equation (2.14)

Where,

1\/
0 2 e R 1 Measurement vector

0 xk e RN : State Vector

0 H e R^/""^' x : Model Matrix

0 v,.eR^4 :Measurement noise, assumed to be Gaussian, white (i.e.

uncorrelated), zero mean with covariance matrix RA.

0 CDA, e RN"N : Transition matrix

AI
ø wk e R :Process noise, assumed to be Gaussian_ white, zero mean, with

covariance matrix Q,_.

Matrices Hk and CD, , measurement and process noise statistics are assumed to be known.

The following initial conditions are assumed-

E[x(o)]= .to (2.15)

E[(º<(0) ~ >20) - (x(0) - º?0)"] = P (216)

Where the operator E[.] is the mean value.

Another assumption is that process and measurement noises are uncorrelated

E[w, .V11 = o for an f and 1: (2.17)

the Kalman lter produces a recursive estimation x ofthe state vector at time k based on

the current measurement vector z and the previous state vector estimation xi., This

feature can be exploited for real time application provided the above hypothesis are all

correct, the Kalman lter provides the minimum variance, unbiased and consistent

estimate of the state vector, given a set of measurement vectors.
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The estimate is minimum variance as it minimizes the following quantity:

Ji = Elfiii(+)'17i(+)] (2-13)

Where,
. . . . »` A0 xk s the estmaton eo _ Ak - xk xk .

0 (+) means that the quantity has been updated with the measurement vector zk .

0 (-) means that the quantity has been evaluated just before the measurement.

An unbiased estimation is one whose expected value is the same as the quantity to

be evaluated

Erik] = xk (2.19)

A consistent estimate is one which converges to the true value of x as the number of the

measurement increases.

The following equations make up the Kalman lter (Gelb,1974):

ik (~) = <Dk_k ~i'k_, (+) 1 State estimate extrapolation (2.20)

Pk(-) = CDk_,Pk_, (+)<DZf_, + Qk_, : Error covariance extrapolation (2.21)

í'k(+) = ik (-) + Kk(zk - Hk »Ek (-)) : State estimate update (2.22)

P (+) = (1 - Kk Hk )Pk (-) : Error covariance update (2.23)

/<k = P (-)Hkf'(Hk1>k(-)Hk?' + Rky' 1 Kaman gain matrix (2.24)

As shown by equation (2.18) the KF minimizes a quadratic cost function step by step

i.e. after each measurement. It can be shown that if the system is linear as given by

equations (2.13) and (2.14), then minimization over the time steps is the same as the

minimization of the complete cost function evaluated over the whole set of

measurements.

It can be shown (Bryson and Ho,l975) that for a linear system describe by equations

(2.13) & (2.14) and subject to the above assumptions the solution provided by the
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Kalman filter is optimal with respect to every common criterion(minimum variance,

maximum likelihood , minimum error). Moreover the technique is recursive.

Though when used with linear GPA, Kalman flters improve the diagnostics accuracy,
but the issues of non-linearity has still not been addressed. Drawbacks in the application
of KF techniques to the linear GPA are (Zedda, 1999c):

(a) Prior knowledge tuning: the choice of the process noise covariance matrix is

often arbitrary. There usually exists no statistically signicant population of faulty

engines to base the performance parameters standard deviations assigned on it.

Sensitivity studies can be helpful but the deviations of the state vector elements may be

strong.

(b) Smearing effect: often only a limited number of components and sensor are fault

affected, while the KF tends to smear the faults over a large number of engine°s

components and sensors.

(c) System model and divergence: the Kalman lter produces an optimal solution

provided the hypotheses about the system are correct. In the case of gas turbine

diagnostics, even though we might assume equation (2.13) to be sufciently precise,
almost nothing is known about equation (2.14), which describes the temporal evolution
ofthe fault. As the method should be able to detect deterioration due to various kinds of

fault, both slowly varying (erosion, corrosion, fouling) and abruptly varying (FOD),

equation (2.14) is not available. Therefore, it should be somehow estimated and this can

impair the final diagnostics accuracy. In fact the use of technique to completely

estimate equation (2.14) introduce errors and as measurements are collected and used by
the algorithm the system learns the wrong state too well. The consequence is

divergence, i.e. the estimated solution becomes and more distant from the actual

Solution. T

(d) Non linearity and optimality: the errors due to approximations of non linear

systems with a linear one may not be negligible even if no estimation technique is

employed (Escher,l995a; Singh and Escher,1995b). Therefore a non linear estimation

technique seems more suitable. The application ofa non-linear version of Kalman filter

though is no easy task. Many problems are associated with the use of the common
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Extended Kalman F ilter(EKF) and Iterated Extended Kalman Filter(IEKF), as pointed

out by Jazwinski(l970) and Haupt et al (1995). The nain drawbacks are that the

estimates are often biased and suboptimal (i.e. the cost function is not minimised).

2.5.4 Weighted Least Squares(WLS) Method

A GPA solution from WLS perspective is obtained from a linear function of the

differences between the measurements and their predicted values. The gain matrix used

in computing the solution may be obtained from the lCl\/I and assumed variance from

state variables and measurement errors. Urban (1980) and Volponi (1982) showed that

WLS techniques could be used to reduce the sensitivity to measurement error.

Following their lead, modern test cell and on-wing gas path programs use the WLS or

closely related algorithm. Based on the principle of WLS, General Electric uses a

program called TEMPER, a gas path analysis tool for commercial turbine engine

module performance estimation. An assessment of the technique is provided by Doel

(l994a, l994b).To evaluate engine component performance correctly, sensor error must

be considered in the analysis. WLS facilitates the determination of engine state in the

presence of sensor error. WLS is based on a model of the measurement process given

by-

z =h(x)+}/ (2.25)

where:

z is the measurement vector such as spool speed, pressures and temperatures etc.

x is the state vector of performance parameters such as component efciencies

and capacities etc.

h(x) is a p .\~ r matrix representing the non-linear effects of sate variable upon

measurements.

y is a vector of the noise and bias in measurements.

For the WLS analysis to succeed, it must be possible to determine the state vector x,

from the available measurements. This require the dimension of the measurement vector
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to be equal or exceed that of the state vector. Further, it must be possible to choose a
subset ofz that yields a unique solution for x, i.e. the engine must be observable from
the available measurements. To avoid difculties associated with nonlinear

optimization, the non-linear model, h(x), is replaced by a linear approximation, Hx. The
resulting approximation to equation 2.25 is-

z=H(x)+)/ (2.26)

the probability density function for the likelihood of 2 being obtained from an initial

state vector x, whose designation would be p(x/z) where p(x/z) is a decreasing

monotonic function of the quadratic form J, where:

J=1/2{x"M~'x+(Z-Hx)"R"(Z-Hx)} (2.27)

Solving by minimizing J with respect to x will give the state vector estimate with the

highest conditional probability. The optimal solution xo is:

x = (M-'H"'R"'H)" H"`R"'Z (2.28)

The true measurements zo for the engine state xo is:

z = H.x (2.29)

Using these true values the estimated measurement error can also be computed as
follows:

v :[1-H(M-' +H"`R"H)"H"'R-'iz (2.30)

And the corresponding solution residual, JO is obtained by using xo in equation 2.27.

The algorithm is linear in 2 and therefore the solution error is proportional to the
measurement deviation. In case the turbine efficiency is doubled, the solution error

would also be doubled, as the percent error remains fixed. Hence, the weighted least-

squares algorithm provides best results when measurement deviations are small. In

order to cater to this limitation of the WLS algorithm, GE has included something-

called fault logic in their program TEMPER. The fault-logic is used to search for large
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deviations in component performance, or for large measurement errors, when the

solution residual is large. The solution residual .Jo provides the mechanism for

recognizing that a specific case is far from nominal conditions. TEl\/[PER assumes that

./ follows the Chi-squared distribution and the fault logic in invoked whenever the

residual exceeds the 95 percent limit.

Thus the salient features ofthe GE approach according to Doel (l994a & l994b) can be

summarized as follows-

0 The technique is based on the weighted least squares algorithm for gas path analysis

as described earlier on in this section.

0 Weighted least square algorithm provide better result for small deviations, and in

order to address this problem a feature called fault logic is incorporated to

determine large deviations.

0 The technique cannot solve the problem of smearing which is common to

conventional GPA methods. Smearing is basically underestimation of the actual

fault and attribution of the remainder fault to other engine components and to

measurement error.

0 The algorithm is linear for the measurement vector, whereas the gas turbine

performance is highly non-linear.

0 The approach is able to reduce problems associated with measurement noise but

does not address problems such as measurement bias. lt is felt at GE that there are

no algorithmic ways to eliminate problem of measurement bias and this problem can

only be solved by introducing more sensors, which has its own penalties. The other

option is to improve sensor performance.

0 A problem is the input requirements for the algorithm. Comprehensive data analysis

and careful judgment is required for the statistical and baseline inputs as accurate

baselines are critical for augmentation strategies for implementation of the fault

logc.

0 There are a number of potential problems such as combustor performance, HP

turbine performance, turbine cooling etc. not observable by the technique.
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0 TEMPER does not provide any aid in interpreting the results and there have been a

number of cases where it has identied the same component repeatedly even though
it has been overhauled.

The reason why KF and WLS based estimation technique have been applied to linear
GPA is that they seem to show the following advantages (Zedda, l999c):

(a) Optimality- in both the techniques, a cost function is minimized;

(b) Recursivity: memory and computing requirements are limited;

(c) Prior knowledge - knowledge about the statistics of engine component deterioration
can be introduced through the initial values ofthe state vector and its covariance matrix;

(d) Measurement noise- the actual measurement noise can be assumed to be white and

Gaussian, as the Kalman lters require;

(e) Sensor errors: they can be estimated through augmentation of the state vector to

include the unknown sensor biases.

2.5.5 Non-Linear Model-Based Diagnostics Methods

This type of diagnostic methods is based on accurate modelling of non-linear steady
state gas turbine performance. Gas turbine modelling techniques have been reviewed by
many researchers, such as Bird and Shwartz (1994) and Sanghi et al. (2000). At steady
state conditions, the dependent and independent parameters of gas turbines can be

expressed with a non-linear relationship-

2=F(.\=)+a (2.31)

The idea of the non-linear model-based methods is shown in Figure 2.4. The real engine

component parameter vector 2 determines engine performance represented by the

measurement vector Z With an initial guessed parameter vector X, the engine

model provides a predicted performance measurement vectorå . An optimization

approach is applied to minimize an objective function as follows (Li, 2002):

objective Function = Z øqlz, _ â ) (2.32)
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Which is function of the difference ê between the real measurement vector Z and the

predicted measurement vector A minimisation of the objective function is carried

out iteratively until the best predicted engine component parameter vector for real ,"

is obtained.

.-:~-
___-.º º <.~,.±.. *POWER sET NG Z

~ '

X§6 ENGINE 2
MODEL

Ãª

MINIMISATION OF
OBJECTIVE

Figure 2.5: Non-Linear Engine Fault Diagnostic Model (Li, 2002)

An iterative non-linear GPA approach based on Urban`s method (Urban, 1967, 1972,

1974) for non-linear fault diagnostics was explored by House (1992) for a single shaft

gas turbine for helicopters, further development of the non-linear method was done by
Escher (l995a, l995b) with a Newton-Raphson technique and a computer code,

PYTHIA, was developed. The Non Linear GPA is described in the following section:

2.5.6 Non-Linear Gas Path Analysis (NLGPA)

Linear GPA models that are available have severe limitations and it has therefore been

recognized that there is a powerful case for improving the accuracy of the GPA systems

and hence the requirement of Non-linear GPA. The theoretical relationship between M

independent parameters x and N dependent parameters y can be expressed in

mathematical terms as follows:

Y= F(x) (2.33)

_39-



Chapter-2: Gas Turbine Engine Fault Diagnostics- An Overview

Where vector x contains elements x,- (í = vector y contains elements y, (/` =
/,../V), and vector function F contains element functions F, (x/,...,x,\,;). In the
neighbourhood of x, each of the functions F, can be expanded in a Taylor series. The
linear equations can be obtained by neglecting the 2"d and Higher Order Terms(HOT).
This linear GP/~\ is then used successively and an exact solution is obtained by the
Newton-Raphson technique. A schematic diagram of the non linear GPA process is
shown in figure 2.6.

MEASUREMENTS
FROM ENGINE

PERFORMANCE
PARAMETERS

INFLUENCE INVERSE FAULT Z XCOEFFICIENT COEFFICIENT OUTPUTMA Rx MA Rx ERROR
(rom) (FCM)

ENGWE No coNvERGENcE
PERFORMANCE

MODEL

Figure 2.6: A schematic diagram of non-linear GPA

Essentially, in this technique an ICM is generated taking into account a small
deterioration in the engine component performance. The ICM is then inverted to get the
FCM. The FCM is then multiplied with the vector of engine measurements (obtained
from a deteriorated engine). This gives a vector of change in engine component
performance parameters. From the results obtained, a new ICM is generated and this
process is continued till the solution converges to a predened limit. Figure 2.7 clearly
shows the advantage of using Non-linear GPA over linear, where one finds that the
exact solution is much higher than the solution obtained by Linear GPA.
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Figure 2.7: Comparison of Linear vs. Non Linear GPA (Escher, 1995)

2.5.7 Non Linear Kalman Filters

Some of the drawbacks of Kalman lters have been already discussed earlier in the

chapter. The issue of non linearity will have to be further analyzed. It is worth pointing
out that when the system is characterized by non-linearity, the performance of the

possible estimation techniques should be tested through simulation, as non linear
estimators behaviour is somewhat unpredictable and the same applies to linear
estimators used for non-linear systems. Nonetheless, some hints about the estimation of

performance can be extracted by the classic ltering theory. An analysis of this kind is

attempted here. For the moment complete knowledge of the fault dynamics, even in
terms of process noise is assumed The various possible situations are considered in the

following paragraphs (Zedda, l999c):

(a) If an actually linear system has to be processed, then the most sensible choice is a

common Kalman filter, as it is optimal with respect to any reasonable minimization
criterion (especially minimum variance and maximum likelihood). Moreover, the
solution is achieved through recursive technique, which can be very useful due to the
limited computing power required.
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(b) lf the system is actually non-linear, a linearization can be done and the common
linear KF can be applied in a straightforward way, in this case, though the difference
between the actual and the simulated behaviour of the system may be large and may
lead to divergence i.e. ever increasing distance between the state and the estimate. ln

practices, the onset of divergence manifests itself by inconsistency ofthe residuals with
their predicted statistics. Residuals become biased and larger as more measurements are
collected and processed. A similar behaviour of the estimator is observed when a
measurement becomes biased (Kerr et al, 1992). If divergence effects are added to the
smearing effect, typical of KF, the estimation accuracy may become unacceptable.
As far as gas turbine diagnostics is concerned, the linearization of a process
characterised by such large non-linearity as a gas turbine engine is probably responsible
for inaccuracies of the estimation, especially when time varying multiple faults are
present. ln some instances, divergence does occur (Urban and Volponi, l992).

(c) If the effect of the non linearity of the system of the estimation accuracy is
ascertained, a non linear version of the KF can be used to try to approximate the engine
behaviour better. The most commonly used ltering techniques are the Extended
Kalman Filter (EKF) and the lterated Extended Kalman Filter (IEKF). A brief

comparison between the linear and non-linear versions of the KF is given below.
lt can be shown (Bryson and Ho, 1975) that the KF minimizes the cost function given
by

A 1 A I
J

=-š(x(0)-20)' ~PO" ~(x(0)-x0)+åZw/Q,w,. +%Z(Z, ~H,x,)' -Rj' ~(Z, -Ha-,)'=l '=l

(2.34)

Moreover, minimization is achieved in a recursive fashion. For linear problem, the
minimum variance and the maximum variance and the maximum likelihood coincide
and therefore the KF can be considered as the best choice, provided the modelling ofthe
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process is sufciently accurate. If the process is non-linear then the cost function to be
ninimized is:

J =
å<x<0> ~ »PJ -<x<0º ~ X0) + ~ /«,<º;ºi'i - R7" - /«,<º~ºâº

(2.35)

A solution mininising the cost function (2.35) ensures maximum likelihood and

approaches minimum variance asymptotically as the number of measurements
increases. Therefore, the aim of a non linear lter would be minimize a cost function,

possibly in a recursive way. It can be shown that the EKF and IEKF produce biased and
sub optimal estimates due to linearization of the cost functions. From a practical point
of view, this means low accuracy in the estimation of the engine's health.

As a matter of fact, the most non-linear squares estimation algorithms require a choice
between an optimal solution and a recursive formulation. If recursitvity is a paramount

requirement, then optimality is compromised. As third possible solution has actually
been suggested by Haupt et al (1995), the proposed estimation technique splits the
problem of cost function minimization into a linear first step and non linear second step
by defning new first step states that are non linear combinations of the unknown states.

2.6 Artificial Intelligence Techniques for Diagnostics
Artificial Intelligence (AI) currently encompasses a huge variety of subfelds, from

general-purpose areas such as perception and logical reasoning, to specific tasks such as

playing chess, proving mathematical theorems, writing poetry, and diagnosing diseases.
Often, scientists in other elds move gradually into aticial intelligence, where they
nd the tools and vocabulary to systematize and automate the intellectual tasks on
which they have been working all their lives. Similarly, workers in Al can choose to

apply their methods to any area of human intellectual endeavour. In this sense, it is truly
a universal field. One ofthe applications of AI in recent times has been its application to

engine and sensor fault diagnostics. There are several techniques which have been
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investigated and a brief review of the some of the techniques is presented in the
following sections.

2.6.1 Artificial Neural Network Applied to Engine Fault Diagnosis

Artificial Neural Networks (ANN) can be defined as parallel distributed processors able
to store knowledge as experience and make it available for use. lt has found some
favour with few researchers and has been extensively investigated for use in fault

diagnosis.

Axon (Carries ~__ K
signals away) 1

.~L
m Transfer Function

\ weight2
summaon

ce ~'=(" _ 4Dendrtes (Carres 2
J Output

~ c wnals n) -

1° Synapse size changes nrespcrse to learning
Bias

Bias

Figure 2.8: Biological Neuron vs. Mathematical Neuron

ANN is a non-linear estimator, which can be trained to map inputs to outputs in a
framework that loosely mimics the learning process performed by the brain. Figure 2.8
shows a comparison between a biological neuron and mathematical neuron. The
mathematical network that we are interested in has the following features:

0 The network is made up of units called neurons, each performing a weighted
sum ofits own inputs. The sum is then passed through a function to the output.

ø The knowledge is stored in inter neuron connections called weights. This

knowledge for the weights is acquired through training (also called learning).
The purpose ofthe learning phase is to determine the N parameters, which will
enable the network to function properly in operating phase. The N can be
classifed according to the kind of training. If the training algorithm uses
different input and output patterns the learning is called supervised, if the
training algorithm has to extract information just from the input patterns the
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learning is named msupervised. If input and output patterns are the same, the

training is seifsupervísed and the net performs auto association.

The most popularly used articial neural network in gas turbine diagnostics is the

l\/lulti-Layer Perceptron (MLP) with back propagation training. lt is also called the
Feed-Forward Back-Propagation Neural Network (FFBPNN).The configuration of a

typical MLP is shown in Figure 2.9. FFBPNN is a supervised network. where sensed
information is propagated forward from input to output layers while calculated error are

propagated backward and used to adjust synaptic weights of neurons for better

performance. Typically, such a network is made of an input layer where input values are
received through input neurons, one or more hidden layers where functional relationship
are expressed with a set of weights connecting succeeding neurons, and an output layer
where output neurons receive output values. Training of the net is through a learning

algorithm named back-propagation where the weights are modified based on the input-

output patterns. As per the neural network developed by Pong-Jeu Lu et al (2000) in
training the back-propagation network, the synaptic weights are corrected using the

following algorithm,

Aw,/(rl) =
17{- |]+aAw,7(n-1) (2.38)

_
vi/ _

lnpi First Layer' S»:~.con«:i Layei' Ttritl

,º = i a Â
»

\/ \?_/ ki/ m;

Figure 2.9: A typical Multilayer Perceptron
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Where, E is the targeted error, 27 and a are the learning rate and momentum constant
respectively and both these are kept within [0,1] and the appropriated values are
determined by a trial and error method. Once trained the N operates in the second
phase i.e. the operating phase.

The main features of the neural networks are as follows:

0 They make use of information provided from data used for training the network.
This makes them particularly suited for finding solutions to problems for which
there are no exact algorithmic solution, but only a large number of examples. In
general ANN have been shown to significantly improve symptom interpretation in
mathematically difcult to describe systems and process (Barschdorff, 1991);

0 Solutions can be provided for cases, which have never been encountered before. i.e.
they generalize from examples;

0 They are inherently non-linear;

0 They are best suited for data fusion. Different kinds of data (vibration,
thermodynamic, electrostatic data for a gas turbine) could be used altogether to
produce an answer, even though no such comprehensive theoretical model exists;

Most of the features outlined above make neural networks very suitable to deal with a
number of diagnostic tasks and their application to gas turbine monitoring is on the rise.
ln addition to those outlined above the following make these specifically amenable to
gas turbine diagnostics:

(a) The large level of noise affecting measurements in gas turbines could be coped
with by ANN;

(b) Even though some parameters have to be chosen at design phase and at the
beginning of training, there is no such critical parameter as the one required in
KF based techniques to set the standard deviation of the performance
parameters;

(c) ANN could be trained on-line to monitor the engine health in real time;
(d) ANN is capable of dealing with the large non-linearity characterizing the

relation between measurements and performance parameters of engine;
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(e) ANN could be used to perform data fusion for gas turbine diagnostics:
vibrations, Aero-thermodynamic, gas path debris data represent a comprehensive
input to a ANN based system;

The advantages which the ANN provide led to different neural networks being used in

gas turbine engine fault detection, diagnosis and accommodation. Early applications of
ANN to aircraft engine diagnostics were carried out by Denny (1965) and Dietz et al.
(1989), and to the Space Main Engine by Whitehead et al. (l990a. 1990b). The
application of Feed-Forward Back-Propagation neural networks to gas turbine diagnosis
has been by far the most popular type of ANN. The application of ANN along with
linear GPA have been studied by Torella and Lombardo (1995) and specific component
analysis such as fuel system fault detection have been studied by llli et al (1994).
Torella and Lombardo (1996) also described the computation of a Learning Rate

Factor(LRF) for improving the learning rate FFBPNN .

Zedda and Singh (1998) introduced a modular neural network system (Figure-2.10) to
tackle large-scale diagnostic problem and applied it to Garrett TFE 1042 engine. The
module classifes the input measurement vectors according to the fault category (A or
B). This kind of classication overcomes the problem of low diagnostics accuracy
usually obtained when the two categories are mixed. Moreover, since the characteristics
of the fault categories are different, separate diagnostics can be developed. Such a
system has the unfortunate drawback ofa large number of nets and long training time.

DATA TRANNG sET REGREssoN PER PARAMETER°^TE°°RY'^ cLAssr=cA oN vALoA oN sE_Ec oN VECTOR
EASUREMENT PRELIMNARY

VECTOR CLASSIFICATION

cA eeoRY-B DATA TRANNG ser ReGREssoN PERF' '°^R^""E ER
vALoA oN sELEc oN VECTOR

Figure 2.10: Modular ANN system for fault diagnostics (Zedda & Singh, 1998)
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Kanelopoulos et al. (1997) presented a network architecture to perform sensor and
component fault diagnosis step by step using multiple neural networks. The authors

suggested the use of different networks to isolate the sensor faults and component faults
as this would provide a better result than using a single network for the combined task.
This has been further extended by Ogaji (2003) to generate a cascaded network to
isolate component and sensor faults.

Napolitano et al (1996) compared the approaches of ANN and KF for Sensor Fault

Diagnostics, Isolation and Accommodation (SFDIA). The authors applied ANNS in the
form of decentralised networks to perform SFDIA. The application of multiple nets
makes it possible to infer if the errors are to be minimised for this and others complex
applications, then more than one net need to employed with each, applied to a specic
problem.

Eustace and Merrigton (1995) applied Probabilistic Neural Network(PNN) to diagnose
faults in any engine within a eet of 130 GE low bypass F404 military engine. The
authors used a statistical correlation technique to select ve out of eight available
engine monitoring parameters as input to the network. The approach is interesting
considering the fact that even for healthy engine the parameters vary from engine to
engine. Results from the network show an accuracy of 87.6% which is acceptable
considering the variability in the baseline.

An Adaptive Probabilistic Neural Network (APNN) was presented by Sun et al. (2000)
where the l\/laximum Likelihood Estination Method was used to obtain the optimal
Bayesian estimation and was more adaptive and t better to quantitative diagnosis for

multiple faults.

Cifaldi and Chokani (1998) discussed the use of ANN with the FFBPNN delta learning
rule in predicting the performance of six components (diffuser, compressor. burner.
turbine, nozzle and shaft) of a turbojet engine while simultaneously giving an overview
of its possible application to Vibration related faults. The authors reported that the
burner, compressor and turbine efciency trends were well predicted while the

efficiency trends of diffuser and nozzle were poorly predicted which has been attributed
to the choice of instrumentation.
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Volponi et al. (2000) introduced a hybrid neural network where part of the network
model was replaced by inuence coefcients and reported that the accuracy of such a
network was favourable compared to back-propagation net and Kalman Filter approach
(results for the same is presented later). Sun et al. (2000) employed a hybrid training
rule to improve its convergence. Lu et al. (2000) compared two feed-forward back-

propagation neural networks with a similar conguration, one with four inputs and
another with eight inputs, and found that both achieved high success rates. Kobayashi
and Simon (2001) applied a feed forward network in their hybrid diagnostic technique.
where the neural networks were used to estimate engine health parameters, and a
Genetic Algorithm was used for sensor bias detection and estimation. Green and Allen

(1997) discussed the need to incorporated ANN with other AI techniques to obtain a

Cognitive Ontogenetic Engine Health Monitoring (COEHM) system with estimation of

ling, diagnostics and prognostics capabilities.

Applications of ANN for nuclear power plant diagnostics have been investigated by
Guo and Uhrig (1992), Parlos et al (1994) and Tsai and Chou (1996). It has also been
used for plant state identification by Barlett and Uhrig (1992) and Tsoukalas (1994) and
for optimisation by Fakuzaki et (1992). Its application to plant parameters prediction
has been given by Sofa et al (1990). ANNS have also been used for detection of
mechanical damage like gearbox and bearing house faults by Paya et al (1997),
propulsion system rotor unbalance by Huang et al, 2001) and GT blade fault diagnosis
by Angelakis et al (2001).

2.6.1.1 Advantages and Disadvantages of Neural Networks
ANNS are being looked at by various researchers an effective paradigm for engine fault

diagnostics. The advantages they offer are in terms of being able to deal with the non-
linear nature of gas turbine performance, the ability of the network to learn with time.
and their advantages in terms of being very good data fusion techniques are seen as the
one being for the future. But there are certain drawbacks that make their utility limited
for gas turbine diagnostics. These are:

A study carried out by Pong-Jeu Lu et al (2000) indicates the difculty ANNS have
when diagnosing faults with noisy data. They developed a back propagation neural
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network based diagnostic system and trained it using data supplied by Pratt &Whitney
for the PW 4000 engine. The results were very encouraging for noise free data where
the success rate was 100%, which is expected, but when noise was included in the data
the technique failed.

Another major drawback of neural networks as reported by Zedda & Singh (1999) is
the requirement of large amount of training data and the long time required to train the
networks. Trained networks with frozen network weights would require retraining the
networks if and engine undergoes overhaul.

As the number of operating points increases, the diagnostics error is bound to increase

except an alternative means of data correction to standard day condition is devised

(Ogaji, 2003).

2.6.1.2 Comparison of Neural Networks and Kalman Filter

A comparison carried out by Volponi et al. (2000) indicates that neural networks do not

perform as well as the KF based technique. The comparison was carried out using
simulated data for single component faults for a two-spool engine having two sets of
instrumentation suites. In one case 4 measurements and the other one 8 measurements
are considered. The results for the rst choice are presented in table 2.1:

8 Measurements 4 Measurements

Kalman Filter 96.9% 91.1%

Neural Network 90.7% 93.5%

Hybrid 97.8% 91.1%

Table 2.1: Comparison of results from ANN and KF

The results indicate the following:

0 Kalman lters perform better as the number of measurement increase;

0 The reduction in accuracy for neural networks is surprising and cannot be

explained;
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0 Hybrid techniques are the best amongst the three;

0 These results are for single component faults and there will defmitely be a
reduction in accuracy in the case of multiple component faults;

0 A maximum of 93.5% accuracy for the neural network for single component
faults is not acceptable;

2.6.2 Genetic Algorithm Applied to Engine Fault Diagnosis
Genetic Algorithm (GA) based diagnostics is a model based approach, which is
theoretically similar to those of non-linear model-based methods described in the

previous section. In other words, GA are applied as an effective optimization tool to
obtain a set of engine component parameter that produce a set of predicted engine
dependent component parameters through a non-linear gas turbine model that best
matches the measurement. The solution is obtained when an objective function (or cost
function), which is a measure of difference between predicted and measured engine
dependent parameters, achieves its minimum value. Compared with typical calculus-
based optimization methods, GA has several distinctive features (Zedda and Singh,
1999)

0 The diagnostic method using GA does not require calculation of complex
functions or complex derivatives and therefore any non-smooth function can be

optimized;

0 They use probabilistic rules rather than deterministic rule to create strings for the

subsequent generations, This makes it possible for the algorithm to proceed in
different paths every time it runs;

0 constraints can be dealt with in a very different way, such as by means of

penalty functions or design of specific operations;
0 the method uses a global search and therefore avoid getting stuck in local

minimum;

Three operations are typically used in Genetic Algorithm; they are selection operation
which chooses the strings for the next generation according to a survival ofthe fttestâ
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criteria. crossover operation which allows information exchange between strings in the
form of swapping of parts of the parameter vector in an attempt to get tter strings, and
mutation operation which introduces new or prematurely lost information in the form of
random changes applied to randomly chosen vector components.

A gas turbine engine and sensor fault diagnostic system in the presence of measurement
noise and biases was presented by Zedda and Singh (1999a, l999b). Estimation is
performed through optimization of an objective function by means of a real coded
Genetic Algorithm (GA) required by the technique concerns the measurement noise and
the maximum allowed number of faulty sensors and engine components. The method is
suitable for development engines where a relatively large number of measurements are
available. It was applied to a three spool military turbofan engine RB199 (Zedda and
Singh, 1999a) and two spool low bypass military turbofan engine EJ200 (Zedda and
Singh, 1999b) and showed high level of accuracy.

Gulati et al (2000, 2001 ) combined a multiple point diagnostic approach (Stamatis et
al., 1991) and Genetic Algorithm approach (Zedda and Singh, 1999a, 1999b) and
produced a GA based Multiple Operating Point Analysis (MOPA) method for gas
turbine fault diagnostics. This approach is suitable for diagnostic problems where
limited instrumentation is available. It was applied to RBI99 engine and showed good
results. Similar method was also applied to a PW100 engine by Gronstedt (2001), where
a gradient method was implemented to rene the estimate. The subject of application of
Genetic Algorithm to engine fault diagnosis is dealt in much greater detail in chapter-3.
The application of evolution strategy also has been investigated by Sampath & Singh
(2003) and Sampath et al (2003).

2.6.3 Expert Systems for Engine Fault Diagnosis
An Expert System (ES) is a computer program that represents and reasons with

knowledge of some specialist subject with a view to solving problems or giving advice.
lncidentally, one of the rst ES to be developed, called MYCIN was used for

diagnosing disease in human beings. It is usually built by assembling a knowledge base
which is then interpreted by an inference engine. The core of the expert system is called
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the shell and embeds the knowledge base within it. The end user of the application
interacts with the shell via the inference engine. which uses the knowledge available in
the knowledge base to answer questions, solve problems. or offer advice. Jackson

(1999). The conguration ofa typical expert system is shown in Figure 2,12.

KNOWLEDGE/DATAMINING

KNOWLEDGE REPRESENTATION

EXPERT SYSTEM SHELL

INFERENCE KNOWLEDGE
ENGINE BASE

USER INTERACTION

Figure 2.11: Configuration of an Expert System

Different ES have been developed so far, such as rule-based, model-based and case-
based systems. Initial attempts to integrate ES with GPA failed mainly due to
insuffcient instrumentation set to permit meaningful modular diagnosis and also from
insuffcient Computing capability (Doel and LaPierre, 1989; Doel ,1990). Doel (1990)
concluded that the expert systems technologies were not going to make jet engine
diagnostic and maintenance procedures smart but they could add a lot of new

capability that will make them more effective and more convenient. Earlier gas turbine
fault diagnostics were carried out by gas turbine users by comparing the measurement

parameter deviation pattems with fault signatures supplied by manufacturers. 1\/lost ES
are developed on shells which could be generic such as CLIPS (written in C language
and a open source software), PROLOG, LISP etc. or could be designed to meet specic
objectives like the GE`s GEN-X (GENeric eXpert system). Further development of ES
and application of pattern recognition/matching methods were presented by Winston et
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al. (1991 ) Dundas et al. (1992) and more recently by Lee and Singh (1996). The most
popular type of expert systems used in gas turbine fault diagnostics is knowledge and
rule based expert systems. Typical examples of such type of expert systems are
ENGDOC (Gibbs, 1984), TEXMAS (Collinge, 1988) for the Lycoming T53 engine,
HELIX (Simmon et al..1987; Hamilton, 1988) for a twin-engine gas turbine helicopter
engines. Xl\/IAN (Jellison et al., 1987) for TF-34 engine, IFDIS for the 'I`F3O engine
(Frith, 1989; Forsyth and Larkin, 1989), SHERLOCK for helicopter engines (Winston
et al., 1991), etc. More recently, it has been shown that these methods can be applied to
gas turbine EI-IM by Vivian and Singh (1995), Charchalis and Korczewski (1997),
DePold and Gass (1998), Diao and Passino (2000), Forsyth and Delaney (2000) and
Pettigrew (2001). Meher-Homji et al. (1993) described a hybrid expert system where
both expert systems and algorithm approaches were utilized for gas turbine condition
monitoring and diagnostics. The declaration of a fault by the inference engine is
normally done by comparing engine component deviations with predened datum
values. The application of ES to EHM can be summarized with the following points:

0 Understanding the problem domain i.e. types of faults sought;
0 Expectation fron the system i.e. qualitative or quantitative analysis;
0 Building a knowledge base or data mining. i.e. engine simulation data or field

data.

0 l\/Iethodology for representing the acquired knowledge- Building RULES
0 Interaction with the shell through the inference engine

2.6.4 Bayesian Belief Networks(BBN)ofor Fault Diagnostics

A belief network is a graphical representation of a probability distribution that

represents the cause and effect relationship among predisposing factors, faults and
symptoms. It is a form of graph, consisting of nodes representing variables and arcs
representing the probabilistic dependencies between these variables. Each node contains
a conditional probability distribution that describes the relationship between the node
and the parents of that node. In fact, the nodes can represent anything, an observation, a
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fault or some intermediate value. The list of possible states for each node must be
mutually exclusive and collectively exhaustive.

Most recent work on the BBN for engine fault diagnostics has been done by Kadamb

(2003) in which the independent parameters are designated as the parent node and

dependent parameter as child node. The relationship between the parent node and child
node has been defined through the links and each link has a probability associated with
it. The links between parent node and child node are established only if that particular
child node (measurement ) is affected by the fault. A typical layout of BBN is shown in

figure 2.10. 4
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Figure 2.12: Typical BBN layout (Kadamb, 2003)

A detailed analysis of Bayesian Belief Network (BBN) for turbofan engine diagnostics
was given by Romessis et al. (2001). A static pattern analysis approach was proposed by
Patel et al. (1996) and Arkov et al. (1997), where the observation of gas turbine status
was expressed by a probability density or histogram approach and any deviation of the

engine from its normal condition can be indicated by a low likelihood of the

observation.
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The qualities of a Bayesian belief network that make it work well with a problem for
diagnostic are given below:

0 Allow the introduction of many types of data. The data can be qualitativeâ
continuous numbers or discrete numbers.

0 Support multiple simultaneous faults.

0 Can nd specific hardware faults.

0 Engine model hardware changes can be easily entered into the network. For

techniques such as neural nets it takes a long time to retrain the system_

0 Generic faults can be included in the system to catch problems areas not
covered by any of the more specic faults whilst, systems such as neural nets
would need enough information and test cases for training.

But for the problem of gas turbine fault diagnosis, these suffer from various drawbacks,
which are:

0 lt requires a substantial time and effort to gather information for building a

knowledge base.

0 Belief network maintenance requires someone familiar with it to be able to

change it in a timely manner.

Use of such a technique can address the issue of an integrated diagnostic problem, but
the problem of solving the GPA still remains. The use of a system that integrates test
measurements and gas path analysis program results with information regarding
operational history, build-up work scope, and direct physical observation in a Bayesian
belief network can help in a cost effective diagnosis using value of information
calculations (Palmer, 1998). In this case the Bayesian belief network is combined with
the results of gas path analysis; hence some of the drawbacks of GPA would be

inherently present in such a system.

2.6.5 Fuzzy Logic for Engine Fault Diagnosis
A Fuzzy Logic (FL) system is a non-linear mapping of an input feature vector into a
scalar output (Kosko, 1997; Ganguli, 2001) or in other words it is a method to
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formalize the human capability ofimprecise reasoning. The exibility ofthe fuzzy logic
systems in handling uncertainties has played a key role in their wide usage for various

engineering applications. Such reasoning represents the human ability to reason

approximately and judge under uncertainty, Ross (1995). As per Ganguli (2001) a

typical l\/lulti-Input Single-Output (MISO) fuzzy logic system performs a mapping from
V e R' to W e R using four basic components: rules, fuzzier, inference engine and
de1"uzzif`er.

f:V G R' - W G R (2.39)

where:

0 V = II V2 ><....>< V e R"' is the input space and W e R is the output space.

A typical fuzzy logic system is shown in gure- 2.13. A fuzzier maps crisp input
numbers into fuzzy sets characterized by linguistic variables and membership functions.
An inference engine maps fuzzy sets to fuzzy sets and determine the way in which the
fuzzy sets are combined. A de-fuzzier is sometimes used when crisp numbers are
needed as an output of the fuzzy logic system. Combined with expert systems, neural
networks, genetic algorithm or other techniques, fuzzy logic can be used for gas turbine

diagnostics.

INPUT

FUZZY LOGIC PROCESSRULE LIBRARY
(IF/THEN)FUZZIFICATION DEFUZZIFICATION

INFERENCE
(AND/oR/No âº

OUTPUT
Figure 2.13: Configuration of a Rule Based Fuzzy Logic System (Marinai, 2003)

A fuzzy logic based expert system for gas turbine engine fault isolation was developed

Ganguli (2001a and 2001b).The results showed FL to have good success rates except
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for the IPC and HPC where fault isolation accuracies were given as 97% and 94%

respectively _ Ganguli (2001a) had mentioned that fuzzy detector based on noisy data

gives several false alarms. Similar approach was used to automate the reasoning process
of an experienced power plant engineer (Ganguli, 200lc). Tests with simulated data
show that prediction accuracy can reach over 90% with only four cockpit
measurements. lf additional pressure and temperature probes are considered, the fault

isolation accuracy rises to as high as 98%. Tang et al. (1999) presented a fuzzy logic
reasoning together with a neural network for a jet Engine condition l\/Ionitoring and
fault Diagnosis (EMD) system that classies all possible faults into three categories: gas

path components. instrument sensors, and rotor or oil subsystem. Three operations

(AND, OR and NOT) were used in its inference engine. A rule based fuzzy expert

system RSLExpert for gas turbine fault classification was provided by Applebaum

(2001), where the fuzzy lter was used for residual evaluation to transform the

quantitative knowledge of the residual vector of measurement deltas into the qualitative

knowledge of faulty characteristics and faults.

Recently, l\/Iarinai et al (2003) have discussed a way of implementing a FL system to
isolate and quantify the performance parameter changes due to components,

degradation taking into account the measurements noise through a non-linear approach.
Results from test carried out on the IPC showed good fault identification. Ogaji et al

(2003) carried out a comparison of the ANN based method and FL based method and

reported similar accuracy from both the systems. They also concluded the accuracy of

the FL can be improved with more rules.

Fuster et al. (1997) introduced a gas turbine diagnostics model where the uncertainty of

component parameters was expressed by fuzzy logic likelihood value and the fault

symptoms were described by True or False. An adaptive model for accurate simulation

of gas turbine performance with the possibility of adapting to engine particularities was

developed and described for the first time by Stamatis et al. (l990a). In this method,
modification factors (MF) which are the ratio of parameter values of reference

performance maps and the values of the actual maps were
introduced. The modication factors for every component was obtained through a Non-
linear Generalized Minimum Residual method (Stamatis et al., l990a). Observation of
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the changes ofmodifcation factors between nominal and deteriorated engine can lead to
detection of the location and the kind of fault of the engine. Stamatis et al. (l990b).
Proper selection of modification factors with optimization can also be used for fault
detection of gas turbine components and sensors.

From the above discussions it can been seen that FL offers solutions to problems where

concepts are subjective, quantities are known only imprecisely and system model are

descriptive rather that analytical (Isik, 1991).

2.6.6 Other Model based methods for Engine Fault Diagnostics
In the fundamental sense, performance monitoring and diagnosing faults involves

processing of engine measurements. In all cases, a comparison of some parameter
values of an engine under examination to the corresponding values of an engine which
is considered healthy is performed in order to derive the relevant conclusions. The

parameters used and the way of deriving them characterizes each different diagnostic
method. l\/Iost of the methods described above rely on generation of residuals, which
are the difference between the real measurements and the estimates (measurements)
generated using a performance model of the engine. There are various methods

developed by various researchers in order to generate the residuals. These have not been

applied successfully and are:

0 Chow et al (1984) have proposed a method that checks the parity of the
mathematical equations of the system by using the actual measurements and
once the predefned error bounds are exceeded then a fault is declared.

0 Brown et al (1997) have proposed a technique that reconstructs the output of the

system from the measurements with use of observers or Kalman Filters using the
estimation error as a residual for detection and isolation of the faults. This is
called the Dedicated Observer Approach (DAO).

0 The principle component analysis that, has been proposed by Dunia et al (1998)
tries to capture measurement correlation by searching for linear relationships
between measurements. This method has been applied for isolation of process
faults.
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0 Basseville (1998) and Gomez et al (1999) have proposed a parametric statistical

approach. In this method changes in the mean value of a residual are monitored.

The techniques using GPA require a performance model of the engine. The
accuracy of the performance model is paramount for accurate diagnostics. A good
match between actual and engine performance model can give accurate diagnostic
results. ln addition to the techniques presented till now that rely on GPA there are a

number of methods proposed by a few researchers at the University of German
Armed Forces that are model based monitoring and diagnostic systems. These are
now discussed in brief.

A model based technique proposed by Lunderstaedt et al (1988) makes use of linear

GPA where the characteristic maps are assumed to be known only at the fault free

condition. Lunderstaedt et al (1988) proposed to start of by re-writing the basic GPA
vector as:

x=f(z) (2.40)

where: x is the performance parameter vector and z the measurement vector and f is the

inverse ofthe vector II from equation--_

Expanding equation 2.40 in Taylor°s series around an operating point x and evaluated
in fault free condition xff and a faulty one x respectivelyz

2 Öf
x = x + â J/W (z - z) (2.41)

x 2 x + ä (Z - z) (2.42)az U_lIIL'l/.\'

When the Taylor°s expansion is evaluated in the fault free case the derivatives are

calculated as gradients of the characteristics, whereas in the faulty case they are
determined directly by the performance parameters denitions. Subtracting eq 2.42
from eq 2.41 and then normalizing it we get the following:

A = QAZ (2.43)

ln order to take into account the sensor errors and measurement noise the equation is
modified as under:
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ai-=Q.(AZ-am-y) (2.44)

where ÖAZ is the sensor error vector and y is the measurement noise vector. Estimation

is then carried out.

A number of other model based diagnostic techniques have been proposed by other
researchers, quite notable among them people from the same university and the one

developed by Roesnick (1986) that showed some promise is discussed below:

According to Roesnick (1986) the first step is to define a model that allows the failure

diagnostic of the components of the gas turbine and for the model development there is
a requirement for thermodynamic cyclic analysis. The cyclic process analysis uses three

parameter groups. The rst including ow parameters like pressures, temperatures and
mass flows at the individual stations of the engine. The second consisting of module
efciencies and pressure ratios are called the module parameters and the third parameter

group are the environment parameters like ambient conditions and power setting

parameters. Roesnick (1986) goes on to say that all these parameters are dependent on
the engine power balance and module characteristics and therefore are not directly

applicable for engine diagnosis. He denes a new parameter group that characterizes the

place and size of module deterioration. This is independent of the total engine state and
is required to define the failure diagnosis model. There is a requirement to have some
sort of module information such as compressor maps for the compressor. In case of a
module failure the difference between the maps and for nominal and failed case would

present the module change. The module change leads to an operating point change, as a
result of which the changes in parameters of the map do not lead to correct diagnosis.
Module changes are obtained by using information of the nominal map and the change
in parameter.

According to Da-Guang Chen et al (2001) a Model Identication-Based approach

applied to engine fault analysis can take into account non-linearity of engine

performance model and incorporates engine balance technique into the iteration process.
Their technique is similar to the ones proposed by researchers at Germany and the
conclusions that can be drawn from their work are:

0 The Model Identication-Based diagnostic method can be used to detect and isolate

gas turbine engine single and multiple faults quantitatively.
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0 This method takes the non-linearity of the model into account, therefore it is

expected that this method will be effective to highly non-linear system

0 The "engine balance technique" incorporated into the iteration process inherently
acts like a filter to noise, therefore, this method has certain ability to depress the
interference of noise.

2.6.7 Drawbacks of Model Based Methods

Though the proposed methods were shown to be more accurate than conventional GPA
based methods, the work done on model based systems indicates some major drawbacks
that make their implementation unlikely:

0 Some of the results presented by Da-Guang Chen et al (2001) indicate that though
the problem of non-linearity has been addressed but smearing still takes place

0 It has not been possible to deal with measurement bias in any of the work done so
far.

0 Though the technique proposed by Da-Guang Chen at al (2001) is capable of
dealing with a certain amount of noise, but the other methods are not able to do so.

0 Another important issue is the requirement of an accurate thermodynamic model of
the engine. This is not available and what is normally available is an average engine
model with the actual engine being anywhere between the maximum to minimum

engine. Since the actual engine differs from an average engine or the

thermodynamic model of the engine and there are no methods incorporated in the

developed methods to take this into account, the technique would fail in cases of
actual engine data.

2.7 Fault Diagnosis with Transient Data

Traditionally engine fault diagnosis has been performed at steady state conditions.
There are several problems which can only be detected by transient data analysis. E.g
bearing fault, some control problems etc. In addition, gas turbine performance deviation
due to component faults is likely to be magnied during transients compared with the
same parameter deviations at steady states.
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For example, some conbat aircraft can operate for up to 70% of the total mission time

with their engines in non-steady-state conditions, Merrington (1989). Therefore, gas

turbine fault diagnosücs rnay be achieved using transient nieasurenient data. /\

parameter estimator using a matrix method (Merrington. 1988) and a Least Square

Estimate (LSB) (1\/Ierrington, 1989) were described to simulate a gas turbine engine

transient process from consistent non-linear idle/max or max/idle transient data and

were used as an estimator for fault diagnosis, where two fault cases were discussed: one

was a biased exhaust gas temperature sensor error and the other was a changed nal

nozzle schedule. An overview of transient diagnostics for gas turbine engines was given

by Meher-Homji and Bhargava (1992). A survey of the methods and applications of gas

turbine steady and transient state modeling for fault diagnosis was provided by Bird and

Schwartz (1994).A piece-wise linear State Variable engine Model (SVM) for the

simulation of engine performance in real-time and a Kalman filter algorithm was used

to estimate both the cause and level of off-nominal engine performance was presented

by Luppold et al. (1989). The method was suitable for diagnosing engine faults caused

by hardware failure, FOD, battle damage, etc. Further development of this method

resulted in the second generation of Kalman Filter algorithm (an Observer Model) for

the real time operation of detection and estimation of gas turbine damages caused by

normal wear, mechanical failures, and ingestion of foreign objects, Kerr et al. (1992).

Lunderstaedt and Junk (1997) diagnosed engine high pressure turbine fault with non-

stationary measurement of RB199 engine by applying linear GPA to discrete points on

a non-stationary process for non-linear parameter estimation and neural networks for the

calculation of the non-stationary reference base lines. Henry (1988) analyzed the

transient performance shift of F404 engine due to different reasons, such as throttle

overshoot, effect of inlet screen, inlet temperature change and compressor damage.

Fault signatures observed from the transient measurements, which were different from

one to another due to different faults, were used to detect engine faults. Recently, the

development of a diagnostics model based on genetic algorithn using transient data of a

turbofan engine was shown my Sampath et al (2003). Figure 2.14 shows a comparison

of acceleration of HP spool (H) of a clean engine and a faulty engine.
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Figure 2.14: Typical measurement deviation during transients

The specic approach used in this method is to compare model-based information
with measured data obtained from the engine during slam acceleration. The measured
transient data is compared with a set of simulated data from the engine transient model,
under similar operating conditions and known faults, through a Cumulative Deviation

(CD). The CD is the deviation between the parameters obtained from the transients of
clean engine (Baseline) and the engine with a fault and is the difference between the
areas subtended by the curves in figure 2.14. The CDs obtained from the comparisons
are minimized for the best match using Genetic Algorithm (GA). A diagnostics model
based on ANN has been investigated by Ogaji et al (2003).

2.8 Instrumentation & Data Validation

In the preceding sections, a comprehensive study of the various fault diagnostics system
has been presented. Perhaps, one aspect which is common to all the methods is the

requirement of reliable instrumentation and validation of data before it can be used with
the diagnostics model. Data uncertainty, the measurement noise causing data scattering
around their true values are source of inaccurate fault diagnosis. Data averaging and
ltering using different technologies are effective ways of reducing the impact of
measurement noise and improving diagnostic accuracy.
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Both these requirements are discussed separately in the following sections-

2.8.1 Instrumentation

lt has been discussed earlier that number of sensors, type of sensors and position of the
sensors have a profound influence on the diagnostics. Also, the importance of
instrument accuracy needs no emphasis: A faulty instrument could lead to the diagnosis
of non existent fault or genuine faults to go undetected. The measurement uncertainty

issues have been tackled in following three ways:

0 improvement in sensor design;
0 use of more comprehensive instrumentation sets;
0 the development of a statistical model to take into account measurement errors;

Theoretically, Improvements in engine diagnostics can be achieved simply by
adding more and more reliable instrumentation to monitor the engine`s health.
I-lowever, the instrumentation itself has its own mean-time to failure. Additionally,

inappropriate or badly maintained instrumentation can lead to the detection of

spurious faults, leading to unnecessary expensive maintenance actions. The

instrumentation has substantial costs associated with its installation and use, which

rise as the amount of instrumentation included is increased. However, cost savings
are limited by the capability of the technique employed, the design and the maturity
of the engine in use, the fuel utilised, the operating environment and the operating

profile. Figure 2.15 illustrates how an excessive use of instrumentation results in a

loss rather than a gain in terms of Return On Investment (ROI). However, when cost
of monitoring is juxtaposed with cost of failure, Myrick (1982), Simmons and
Lifson (1985) agree that total plant losses associated with equipment failure far

outweighs the cost of an extensive multi-parameter monitoring system.
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Figure-2.15: Return on Investment (ROI) of Engine Monitoring System(EMS).

Foremost for any set of chosen instrumentation are accuracy and repeatability. It is very

important that the specications for performance are established beforehand and in case

the GPA based ECM system shares sensors with the engine control system, the

specications must be compatible. Items, which should be included in the specications
of an instrument, are as follows (Gulati, 2002c):

0 Operating temperature range

0 Operating pressure range

0 Acoustic environment

0 Vibration Levels

0 Accuracy

0 Lifetime (false alarms)

0 Response rates

0 Volume

0 Weight

0 Electrical interface
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0 Electromagnetic interference

0 Calibration requirements

0 Maintenance requirements

0 Repeatability

While dening the specifications it is important to consider the operating environment.
The most important point to consider while developing a diagnostic system for GPA is
the issue of observability, i.e. the capability to identify faults with a set of
measurements. This would dene the minimum number of instruments and the

measurements that are absolutely necessary.

2.8.2 Data Validation for fault Identification

The biggest problem in dealing with the data obtained form the engine is the presence of
noise in the measurement. lt is an unavoidable phenomenon and has to be dealt

separately in order to be able to obtain meaningful diagnosis from the engine data.
Fundamentally, gas turbine diagnostics is the based on the analysis of deviations of

component parameters from their baseline conditions. The accuracy of all diagnostic

systems is partially determined by the quality of the measurement. Unfortunately,
measured data are usually contaminated by sensor noise, disturbances, instrument

degradation and human errors. In order to improve the reliability of diagnostic results, it
is very important to clean or correct the measured data before they are fed into any

diagnostic systems. Usually, a measured parameter changes around its actual value and
nay be expressed statistically with a probability density function. The true value of a

parameter can be approximated by its averaged measurement which is normally
obtained with rolling average method, where an average value is obtained with

numerical average of certain preceding points. The disadvantage of rolling average is
that it wastes the initial data points and is slow in responding to trend changes, DePold
and Gass (1998). An exponential average equivalent of a ten point rolling average was
introduced by DePold and Guass (1998) to reduce the measurement noise, where with
each new data point 15% of the remembered average is replaced by new data. The

exponential equivalent of 10 point moving average is:
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EXP_ Average(l),0 = Exp_ Average(l - l),0 * 0.85 + New_ Data * 0.15 (2.46)

The advantage of this method is that since only the last average is retained, these can

respond instantaneously to step changes in trend. The exponential averaging method

allows statistical bands to be carried with little overhead. Unlike a moving average an

exponential average can be changed at the moment of the trend change detection, so the
statistical bands also show the discontinuity.

More recently, different data ltering methods were explored by Ganguli (200lb) for
removing noise from data while preserving sharp edges that may indicate a trend shift in

gas turbine measurements. Compared with linear ltering, a non-linear filter, FIR

median hybrid lter, was found to be far more superior in accurately reproducing the
root signal from noisy data. A health residual, a scalar norm of the gas path
measurement deltas, was used to partition the faulty engine from the health engine.

2.8.2.1 Neural Networks for Noise

Auto-Associative Neural Network (AANN) can also be used to filter measurement

noise to improve input data quality and was introduced by Roemer(l998) and Mattern et
al. (l997,1998). Neural networks for trend change detection and classification to

diagnose performance changes also have been studied. The instantaneous average value
and the standard deviation of each critical parameter is input to the AANN and the

network is then used to eliminate bad data much the same as analysts would with the

rules of thumb.
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In addition to the use of neural networks for removal of noise, there are numerous other

conventional methods that are discussed in the following section.

2.8.2.2 Linear filters

These have been used widely in the industry, and they take a weighted sum ofa number

of previous measurements and are represented as:

/-l
x, = Z/º,x, , (2.47)

=0

Where i is the lter length and bl is he sequence of weighting coefcients which dene

the characteristics of the lter. The weighting coefcients have to satisfy the following

condition:

zb, =1 (2.48)

Though easy to implement and computationally efficient, linear lters have a number of

disadvantages that make its use very limited. The main drawbacks are:

0 These are single scale in nature, therefore there is a trade-off between

accurate representation of temporarily localized changes and efcient

removal of noise.

0 Linear filters have limited use for gas turbine applications, as these require

removal of local trend shifts from globally noisy data.

0 These represent the measurements with basic functions with a broader

temporal localization and narrower frequency localization.

2.8.2.3 Non-Linear Filters

These are multi scale and have been developed to overcome the inability of the linear

filters. Ganguli (2001b) has used a FIR Median Hybrid lter (FMH), which is a non-

linear filter together with fuzzy logic to lter out noise. His results indicate that non-

linear FMH filter can accurately reproduce the root signal from noisy data, though the
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disadvantage is that these are batch lters and therefore suffer from a time lag. This
shortcoming can be removed by faster sanpling of the measurements.

A FMH is a median filter that uses pre-processed inputs from m linear fnite impulse

response (FIR) lters (Heinonen & Neuvo, 1987) and the filter output is the median of
the rn values which in turn are outputs of m FIR lters. According to Ganguli (200lb)
the Fl\/Il-l filter have the following features:

0 FMH ltering is batch ltering and is nost effective in capturing sharp

changes in piece wise constant signals.

0 These tend to return some noise, but repeated application of the FH filter can

remove noise much better.

0 The nal signal is a root signal that will not change with further ltering.

0 These are superior to linear lters because of the ability to preserve
linearized features while eliminating errors.

0 There is a price for the better quality of output data and this is in terms of a

time delay, which can be overcome by faster sampling.

All the current day techniques whether conventional or intelligent system based
methods, in the real sense, do not really have the ability to deal with bad quality data.
This has been presented by various researchers and has also been observed in this

chapter.

2.9 Summary & Conclusion

ln this chapter a wide range of advanced diagnostics techniques have been reviewed and
their suitability for engine fault diagnostics has been examined. No doubt, a lot of effort
has gone in area of engine fault diagnostics. However, most of the investigations carried
out have been to provide a qualitative assessment of the problem though the quantitative

aspects were considered by only a few researchers. From the discussions it has also

emerged that measurement noise hinders accurate diagnostics and various methods have

evolved for validating data. It can be concluded that each of the technique discussed
has its own advantages and limitations. There is no single technique which can address
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all the issues concerning fault diagnostics. At this point, it can be said that, a prudent

way would be to try and incorporate the strengths of one technique to Offset the
shortcomings ofthe other. This clearly calls for the development ofa technique which is
robust and can effectively deal with noise and sensor bias. The next chapter presents the

development ofa diagnostics model using genetic algorithm which attempts to deal with
some ofthe problems discussed.
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CHAPTER 3

OPTIMISATION TECNIQUE FOR ENGINE FAULT DIAGNOSTICS

3.1 Introduction

In chapter-2, a comprehensive review of various engine fault diagnostics techniques

available in the public domain has been carried out and the relative merits and demerits

have been evaluated with respect to the problem in hand. It was also coneluded that

among the various fault diagnostics technique available, no single technique stands out

as superior to others. Each technique has its own advantages and limitations and the

techniques complimentary to each other. One of the subjects which attracted the

author°s attention was the application of Genetic Algorithms (GAs) for engine fault

diagnostics. GAs have applicability in a wide range of elds and have given a new

direction to research in the field of engine diagnostics. It has been reported that the

initial results obtained using GAs were very promising (Zedda, l999c).

This chapter presents an overview of the background to the development of engine fault

diagnostic based on GA optimisation. An analysis of the technique developed for the

EJ200 using test bed instrumentation and its application to the RB199 (using in-service

instruments) along with the enhancement made to the technique using multiple

operating points analysis is presented.

3.2 An Overview of Genetic Algorithm

Genetic algorithms are a part of evolutionary computing, which is a rapidly growing

area of Artificial Intelligence (AI). Genetic algorithms are inspired by Darwin's theory

on evolution. The metaphor underlying the genetic algorithm is that of natural

evolution. In evolution the problem each species faces is the one of searching for

benefcial adaptations to a complicated and changing environment. The GAS follow step

by step the procedure followed by the natures principle of survival of the fttest. The
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algorithm is started with a set of randomly chosen population. Solutions from one

population are taken and used to form a new population. This is motivated by a hope,

that the new population will be better than the old one. Solutions which are selected to

form new solutions (offspring) are selected according to their fitness, the more suitable

they are, the more chances they have to reproduce. This is repeated until some

termination criterion (ie. naximum number of generations, maximum fitness etc. ) is

satisfied.

3.2.1 Basics of Genetic Algorithm

The concept of GA can be explained with the help ofa simple example. Let us consider

there exists a function y = f (x), where y is continuous between the interval [a, b]. If

we need to find out the maximum value of the function, one way is to nd all the

values between a and b and then find the maximum value, but the number of possible

values is infinite and therefore at this juncture we need to apply some optimization

technique which would do this for us. Instead, what we can do is to generate a fnite

number of random solutions between c and b and apply GA to optimize the result.

These new search algorithms have achieved increased popularity as the researchers have

recognised the shortcomings of the calculus based and enumerative schemes. The GAs

are different from traditional optimisation method in the following way (Goldberg,

1989)-

(a) GAs work with a coding of the parameter set, not the parameters
themselves.

(b) GAs search from a population of points and not a single point

(c) GAs use payoff (objective function) information, not derivatives or other

auxiliary knowledge.

(d) GAs use probabilistic transition rules, not deterministic rules

ln the context ofthis technique, a string refers to a possible solution and a collection of

possible solutions or .s'lr'ng.s' is called population. The lness ofthe string is a function

of an objective function and is inversely proportional to it. The best string would
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therefore have the highest _/'itness which means that the value of objective function

would be minimum.

3.2.2 Terminology used in Genetic Algorithm

The nomenclature essential with GAs is also borrowed fron the vocabulary of natural

genetics (Goldberg, 1989).

0 Allele: An allele is the value of the gene. lt is in the form of 0 and l for a binary

representation and between 0 and 9 for real coded GA°s.

0 Chronosome: a chromosome is a data structure that holds a string of task

parameters, or genes. The string may be stored as a binary bit string or as oating

point (real coded representation).

0 Fitness: The tness of an individual gives an idea of how well it performs the given

task. The given task may be minimizing a certain objective function. in which case a

high level of tness for an individual indicates that it has a low objective function

value. The higher the tness value more will be the chances of this individual

surviving to the next generation.

0 Gene: A gene is a subsection of a chronosome that usually encodes the value of a

single parameter.

0 Genotype: This represents a potential solution to a problem.

0 Genetic drift: This is the name given to changes in gene/allele frequencies in a

population over many generations. resulting from chance rather than from selection.

lt normally occurs in small populations and can lead to some alleles becoming

extinct, thus reducing the genetic viability in the population.

0 Niche: A niche is a group of individuals that have similar tness. Normally in

multimodal or multi-objective optimization, a technique called sharing is used to

reduce the tness of those individuals that are in the same niche. This prevents the

population from converging to a single solution, so that stable sub-populations can

be formed, each one corresponding to a different objective or peak.

0 Phenotype: This is a particular chromosome defined externally by the user.
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0 Schemata: is a similarity template describing a subset of strings with similarities at

certain positions.

3.2.3 Genetic Algorithm Operators

Genetic algorithms work from a randomly generated population and the transition rules
in GAs are stochastic. In the basic form of GA optimisation, the population is subjected
to three operations, namely, Selection, Crossover and Mutation. The three operators are
described in the following sections-

3.2.3.1 Selection

Selection is the process where the individual strings go into the next generation based
on their fitness values. The tness is calculated based on the objective function value

and is generally its inverse unless mapped differently. The higher the fitness the greater
is the probability ofthe individual being selected to the next generation.

There are various means of implenenting the selection operator in an algorithmic form.
Perhaps the easiest is to create a weighted roulette wheel, where each current string in a

population has a roulette wheel slot sized in proportion to its tness (Golberg, 1989).
This is not in use because of many of its disadvantages and the most commonly used

ones are:

0 Proportionate reproduction A simple measure of the probability of survival

can be given by the following formula:

PFL (3.1)

:M2
_^.

Where,

0 P, is the probability ofthe im string to be replicated

0 _/,T is the fitness value ofthe 1"" string

0 N is the number of strings
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There are several other methods for sampling this probability distribution, namely:

Monte Carlo or roulette wheel selection (Baker, 1987; Goldberg, 1989), stochastic

remainder selection (Baker, 1987; Goldberg, 1989), and stochastic universal selection

(Baker, 1987; Goldberg, 1989).

0 Ranking Selection: the population is first sorted from the best to the worst and then

each individual is copied as many times as it can. according to a non-increasing

assignment function, and then proportionate selection is performed according to

assignment (Baker, 1987; Goldberg, 1989)

0 Tournament Selection: in this method of selection, the population is first shuffled

and then it is divided into a fixed number of elements say k. The best individual

according to the fitness is then chosen for survival. This process is then repeated k

times.

Average
Fhness

Average _
Fitness

l

Increase in Average Fitness Generation-2

¦F ness Va ue

Generation-1

Figure 3.1: Selection Process

The process of selection is shown in gure 3.1. It can be seen that the average fitness

has improved in the subsequent generation due to multiple copies of stronger strings

and removal of weak strings.

3.2.3.2 Crossover

After selection, the newly formed individuals enter a mating pool for further genetic

operations. One such operation is the crossover, where each pair of individuals

represented by strings undergo crossover. The parents contribute some portions to form

off-springs. If the length of the string is 'k' then a random number between 1- (k-1) is
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chosen. If this number is called 'cut', then the parents swap the characters between 1 to

'cui' and therefore the offspring has information from both its parents.

y,=10o1 0111 =151

y_¬=11oo 1101 =20s

after crossing over

y'/= 1100 0111= 199

y'_º= 1001 1101= 157
New Fitness value for Crossover

Figure 3.2: A Schematic of Simple Crossover

3.2.3.3 Mutation

The nutation operator plays a secondary role in the simple GA. It works by randomly

changing the value of a string position and is needed because. even though the

reproduction and Crossover effectively search and recombine extant notions,

occasionally they might be overzealous and lose some potentially useful genetic

material.

Fitness value before Mutation

y_=

1otí11m1=1s7
y';= 1011 1011= 187

New Fitness value after Mutation

(Randomly ipping the digits at positions 3,6 and 7 )

Figure 3.3: A Schematic of Simple Mutation
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3.2.4 Coding Method in Genetic Algorithm

There are mainly two types of coding being used in genetic algorithm. They are-

a) Binary Coded GAs.

b) Real (Floating point) coded GAS.

3.2.4.1 Binary Coded GA

The binary coded GA is a system where the optimisation parameter (objective function)

is represented in a binary form e.g. 187 will be coded as 1 0 1 1 1 0 1 1 . Binary coded

GAs have been used traditionally and are quite popular. Some of the advantages and

limitations of binary coded GA are -

Advantages of binary coded GA:

0 Since the optimization parameter is represented in bit form, analysis of binary

vectors is rather simple.

0 Genetic operations like crossover and mutation on binary strings are simple.

0 A binary alphabet enables maximization of the number of schemata available for

genetic processing.

Limitations of binary coded GA:

0 Premature Convergence: This phenomenon occurs when early in the run, some

super individuals acquire more representatives because of their high fitness with

respect to the rest of the population. Early convergence to these strings can

happen if they relate to a local minimum, which may be far away from the

global minimum. Early loss of diversity in the population can be prevented by

attenuating the competition among strings through a number of techniques.

Dynamic mapping of objective function is one way to do it.

0 Poor local tuning: An outstanding advantage of GAs as opposed to typical

calculus method based hill climbing techniques is the global search they can

perform. However, a predictable pitfall is the inability to refne the solution once

the area of the global minimum has been reached. A straight forward approach
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would be to use the GA as a pre-processor to perform the initial search, before

turning the search process over to a system that can employ domain knowledge

and guide the local search. This is due to two main factors-

> In GAs a sort of hill climbing is realized through combination of

selection and mutation. When compared with techniques which are

specifically designed for hill climbing. Local search actually requires

utilization of higher order and longer defning lengths than those

suggested by fundamental theorem.

> Local tuning is also made difficult by the intrinsic resolution capability

of mapping of the real parameters onto binary strings. This problem is

particularly serious when the parameter domains are large, many

parameters have to be handled and high precision is required. In this case

the length of the binary solution vector is quite signicant. For such

problems, the performance of generic algorithns is quite poor.

As per .lanikow and Michalewicz (1991) these limitations come to light when using

the binary GA for multidimensional, high precision numerical problems as this

results in large search spaces and then the performance of the GA becomes poor.

3.2.4.2 Real Coded GA

In order to solve the problems associated with binary coded GAS, real coded GAS

needed to be developed by using special genetic operators. Experiments conducted by

Janikow and Michalewicz (1991) and Michalewicz (1996) clearly show that the

drawbacks of binary coding can not only be overcome by using real coded GAS but also

the latter are `faster, more consistent from run to run, and provide a higher precision

(especially with large domains where binary coding would require prohibitively long

representation). At the same time their performance is enhanced by special operators to

achieve high (even higher than binary representation) accuracy. In addition the

oating-point representation is easier to design for solving specific problems. Some

salient features of Real Coded GA
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0 Representation: each string consists of a real (oating point) vector. The

precision of such representation is dependent on the machine. The real coding

can represent a much wider domain when compared with its binary counter part.

0 Selection - is performed in the similar way to the binary coded GA where a

fitness function is calculated for each string and the ftter individuals move on to

the next generation.

0 Crossover: vectors are paired off and a random crossover point is chosen in

accordance with the given probability of crossover (PC).

0 Mutation on the basis of a given probability of Mutation (PM), vector elements

are randomly varied within predened limits.

The algorithm is analogous to its binary counter part in implementation where an initial

population is generated randomly and all strings are assigned their tness value

calculated from an objective function. The genetic operation is carried out using the

three fundamental operators namely, Selection, Crossover & Mutation.

It is worth noting, that for the same value ofthe probability of mutation (PM), the simple
random mutation described above is somewhat more random than the mutation used for

binary strings, where changing a random bit does not imply producing a totally random
value from the domain. Therefore, a new operator has been introduced, which performs

dynamic mutation.

If x(t) is vector with n elements. Then

xi

X2

x(t) (3.2)

x.â

is the parameter vector at generation l and its k'/' element is selected randomly for

mutation, after that the vector will be:
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xl

X2

,\~() = 2, (3.3)
xk

xl!

xk + A(, UB - xk) if a random digit is 0

Where,

I
xA,=

xk ~ A(l,xA, - LB) if a random digit is l

and

0 UB is the upper bound of the range allowed for the considered vector element

0 LB is the lower bound

0 A(l, y) being close to 0 and increases as t increases. The following function can

be used:

where,

0 r is a uniform distribution random number in the range [0,1]

0 T is the maximum number of generations

0 .J is a constant determining the degree of dependency on the iteration number

(e. g. b=5).

The function A(t,y) is shown in gure 3.4 for two values of t, while in beginning

large mutation changes are likely to happen, in the second part ofthe run the large

changes are unlikely. The dynamic mutation operator warrants much better

convergence and enables overcoming of the blocking problem. Figure 3.4(a) show
the mutation in the beginning of the process and gure 3.4(b) shows towards the end
ofthe process.
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Figure 3.4: Dynamic Mutation

A comparison with a binary coded GA (Janikow and Michalewicz, 1991) can be

summarized in the following advantages:

The main advantages of real coded GA°s are as follows:

0 The use of real coded GA is simpler to implement.

0 Real Coded GAs are more suited for hill-climbing problems that are difcult.

This is mainly due to the way mutation is carried out. Mutation for real coded

GAs perturbs the current solution a little by adding or subtracting a delta value,

whereas for binary representation there is usually a bitwise complement operator

for mutation. -

0 Accuracy is higher for real GAs as the probability of deception is reduced due to

dimensional reduction.

0 Convergence times for real GAs have been shown to be lower than binary GAs.

3.2.5 Mapping objective functions to fitness form

Fitness is the key to the selection procedure and is the most important part of the GA.

The GA tries to optimize the objective function by maximizing the tness and the

objective function is dealt with indirectly through the tness value. In many problems,

the objective is more naturally stated as the minimization of some cost function g(x).

Even if the problem is stated as in a maximisaion form, it does not guaranteed that the

utility function will be a non negative for all x as we require in tness function. As the

result it is often necessary to map the underlying natural objective function to a tness

function form through one or more mappings. One simple way to map the tness is
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simply multiply the cost function by minus one. However, this still does not guarantee a

non negative fitness value. The most commonly used cost to fitness transformation is

(Goldberg. 1989)-

Ccx Clncx )

= 0 otherwise

There are a variety of ways to choose the coefficient C,_\.. lt may be taken as an input

coefficient, as the largest g(x) value observed thus far, the largest value of the current

population etc..

When the natural objective function formulation is profit function then maximized

prot leads to the desired performance, but still does not guarantee a non negative

fitness function. In that case the following transformation can be applied

f(X) = WX) + C when 1ºl(X) + C >0 (36)

= 0 otherwise

Thus, mapping of the fitness has to be done carefully, as it can eventually lead to better

convergence of the GA. Mapping can either be linear or non-linear.

3.2.6 Fitness Scaling

When the population is chosen randomly and GA process starts, it is common to have a

few extraordinary individuals in a population of mediocre colleagues. If left to the

normal selection rule (pselect, = I ), they would take over a significant proportion

of the total population and this situation is undesirable and is a leading cause for

premature convergence. In the later generations, there might still be significant diversity

in the population. However, the average tness may be close to the population best

fitness. If this situation is left alone then average members and best members get the

sane number of copies into the next generation and the survival of the ttest becomes a

random walk among the mediocre. In view these conditions, a tness scaling procedure

has been adopted. A linear mapping mechanism developed by Goldberg (1989) is:

f'=a.f+zº (3.7)
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wheref' is the tness,fthe objective function and a, b are constants.

The values of c and b are important and these have to be chosen carefully as these could

prevent or cause premature convergence depending on how they are used. The main aim

is to have less competition in the beginning so that diversity is maintained and increase

competition towards the later stages for convergence to a correct solution.

Linear mapping can still cause premature convergence and a lot depends on the two

constant values of c and b. Research by Chen et al (l994) has shown (for a

minimization case) that non linear mapping in the form of equation 3.8 gives better

results.

,zi 3f
f (.8)

The fitness versus objective function relationship now becomes a hyperbolic one and a

high objective function leads to a lower value of fitness and vice versa.

3.2.7 Selection of population size

The population size is an important parameter to be decided in using GA for

optimisation. Low population could cause premature convergence, inability to deal with

noise, deception and nultimodal problems. Using a population that is very large also

has its own problems, which are the requirement of more computational resource and

long run times, which may notjustify the small gains achieved in accuracy. For a GA to

do well there has to be sufcient population diversity to cover a wider search space and

to create selective pressure for only the best to get selected. Under these conditions the

average tness of the population always goes up with generations. Several researchers

have investigated ways to determine the best population size for a problem using

genetic algorithms. Grefenstette (1984) applied a GA to control the population size of

the main GA, and Goldberg (1989) has provided a theoretical analysis of optimal

population sizes. l\/Iichalewicz (1996) has presented a method of GA with a varying

population size. While carrying out testing of the GA for gas turbine diagnostics a

number of population sizes were considered to arrive at an optimal one and these will be

presented in the later stages of the thesis when the results are presented.
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3.2.8 Start and stop criteria for GA:

One of the important criteria for running a GA is to decide on the starting and stopping
criteria. The. starting will be usually linked with the population size i.e. once the

prede"l`ned number of random individuals have been generated, the algorithm can apply
the operators on them. In addition, the probability of crossover (PC), probability of
mutation (PM) are required as inputs for starting a GA. I-Iowever, the stopping criteria is

dependent on the application of the problem and would normally to -

0 Stop after a xed number of generations.

0 Stop once the population has stabilized i.e. the individuals have a similar tness

level and further improvement is not significant.

0 Stop once the objective function value has reached a certain predened level.

3.3 Strategy for Engine Fault Diagnostic

Investigation of newer techniques with ability to take into account the measurement

noise and possible sensor bias while preserving the non-linearity ofthe system led to the

development of engine diagnostics based on optimization techniques.

Repeat Simulation for next Generation

simuaeu

Actual
Measurements

No

I

o4-

1

qÄ
±

Engine
Pe't`orance

Model

Fault Detected

Ps : Simulated parameter (measurement)
PA : Actual parameter (measurement) from engine

Figure 3.5: Schematic Diagram of Diagnostic Strategy
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Broadly, the strategy adopted here is to obtain a set of measurements from an engine

performance model by planting known sets of faults and comparing it with the

measurements from a actual engine. The simulated measurement set closest to the

actual measurement set is indicative of the faults. A schematic diagram of the strategy is

shown in gure 3.5.

The method appears to be simple and straight forward until we consider the number of

possible solutions from which the algorithm needs to select the best solution. Several

thousand combinations of faults could be generated depending on a number of factors

such a number of engine components, number of perfonnance parameters associated

with each component, size of steps chosen between lower and upper limits of

deterioration, level of accuracy of instruments selected etc.. Simulated measurements

can be obtained by simulating the engine perfonnance model at each of the above l`au1t

conditions while considering measurement noise. A search space developed by varying

the deterioration in mass ow from ~3.5% to +3.5% and deterioration in efciency

from 0 to 3,5% for HPC of a two spool engine (test model) and comparing it with data

generated by introducing 2.75% efciency deterioration in HPC is shown in gure 3.6.

Each point on the surface plot is a potential solution and the best solution is the point

having the lowest objective function. Figure 3.7 shows the search space obtained by

just varyíng the fuel ow and ambient pressure for the EJ200. It shows the complexity

involved in the optimisation process.

Search Space

1600
1400

Objecva Function

1000 Minimum

-1.75

1_07`g0 A Mass Flow
000 o aa 3 so' 1.75 253 3 50 '

A Elfciency

Figure 3.6: Search space for a HPC deterioration by 2.75%
(Sampath et al, 2002b)
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Objective Function for changes in fuel flow and
600 ambient pressure
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Figure 3.7 : Search space obtained by varying fuel flow and ambient pressure
(Zedda, 1999c)

A important point to be noted here is that, the measurements which are obtained from

the engine are of different types i.c. tcmperatures, prcssurcs, spool spceds etc.. each of

them come from different types of sensors which have different magnitudes and

different measuring principles. lt is indeed a challenging task to try and match them.

Figure 3.8 shows a set of measurement obtained from by implanting known faults into

the engine performance model. One set of measurement is obtained from an engine

under investigation. The measurements will be matehed and the best match will indicate

the fault in the engine and by working backwards the faulty components can be

identied.

It would be practically impossible to compare each parameter from the actual engine

with its counter part from the simulated data as it would make the optimisation a very

complieated process. A better way to compare the actual and simulated parameter

would be to combine all these values into a single objective function.
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Simulated Data from Model
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Figure 3.8: Matching measurements to identify faulty components

3.3.1 Implementing the Diagnostic Strategy

Having broadly established the diagnostic strategy, the next step is to address specic

issues involved in the implementation of the strategy. As described earlier, the process

would involve comparing a set of measurement from the actual engine with that of the

measurements from the performance model with implanted faults.

3.3.1.1 Objective function for GA Diagnostics

Since the GAs work with objective functions and also due to the nature of the input

data (measurements), there is a need for a system to compare the measurements. Figure

3.9 shows the general layout of the objective function which will be required. P denotes

a parameter (which could be temperature, pressure etc.). The superscript A' & SÂ
°

means the measurement is from an actual engine and from engine simulation model

respectively. The vector consisting of the measurement deviations is to be converted

into an objective function. In general the required objective function should have the

following characteristics:
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Represent the problem adequately - The objective function developed must be
such that a comparison of the measurements vectors could be made while

considering system noise.

Computationally not expensive: Since GA is an optimisation process which
starts with a set of randomly chosen solutions (strings) and converges to a
solution over a number of generations, it is a time consuming process. Each
string is obtained by running the engine performance model twice and therefore
the calculation of the objective function should be simple and should not involve

computationally expensive functions or derivatives.

1PA 1PS 1PA
2

2PA PS ZPA
3 3 3PA Ps PA oBJecTvE

FuNc oN44PA PS PA

PA "PS PA

Actual Parameters Simulated Parameters Delta Values

Figure 3.9: Layout for objective function

3 3 1 2 Search Techniques for GA Diagnostics

The next step is to use a suitable search technique to identify the best solution from a

population of potential solutions. This can be accomplished in three ways:

Sequential search technique: Perhaps, the most obvious method of nding
the solution is to run the engine model with all possible combination of

component faults and compare this with the actual engine data to get the
closest match. This idea sounds quite logical till we consider the number of

permutations possible (Sampath & Singh, 2002a). E.g. If an example of
WR21 engine is considered, which has 2 compressors, 3 turbines, combustor,
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intercooler and recuperator, which is a total of 8 components (C=8). lf each

component has 2 performance parameters (P=2). If the performance is
assumed to be linear y=mx+c there are 2 operations on the performance O=2.
If we estimate a changes to be +/- 5% from the base line, at an accuracy of +/-
0.l% then this would give 100 different options then E=100. If there are 2

instruments with each component and at the entrance and exit of the gas
turbine then l=l4. If we keep the instrumentation error to +/- 2% and with an

accuracy of+/- 0.1 % then A=40. Assuming that each model takes 1 second to

run then total time taken

=C*P*O*E*I*A*(l/3600)

=8*2*2*l00*14*40*(1/3600)

=569 Hrs or appx 23 days.

Though it can be argued that an increase in the processing power of the

processor can reduce the time required but the example considered is very

simple. In reality we would want to examine the data from a more complicated
instrumentation set or possibly transient data.

Having seen the complications involved and the kind of time frame required
for solving such a problem, it would be prudent to investigate some techniques
which would simplify the problem and perform an effective search within the

vast search space.

0 Random search technique

Another method of looking at the problem is to carry out a random search in
the search space of possible solutions. After an open ended number of guesses
the best solution is selected, but the reliability of such system would be
doubtful.

0 Random search technique by directing the search to a solution

Optimisation technique based on Genetic Algorithm (GA) can be used for this
kind of problem. GA has shown tremendous potential as optimisation techniques
and could be effectively employed for such problem. Instead of generating all
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the faults and comparing it with the actual data we generate at few solutions at
random to form the population of the rst generation. By using the principle of

genetic algorithm we move to the next generation. New strings are produced by
selection, crossover and mutation and the sane are checked for suitability. In
this way new solutions can be obtained till a point is reached where there is no
further signicant improvement in tness or a predened number of generations
have been completed.

3.3.2 Working of GA Diagnostics model

Typically the diagnostics algorithm based on GA starts off with a population that is
created at random and the objective function value for each of these strings from the

population is calculated. The objective function to be minimised is mapped onto a
fitness function. The larger the tness, the higher the probability of survival. The

mapping of the objective value onto the tness function could be linear or non-linear.

The aim of the algorithm is to reach the global minimum by successfully overcoming
the local minima. The GA then works over a number of iterations or generatíons during
which the population is subjected to selection, crossover and mutation. Figure 3.10
shows schematic diagram of a typical generation.

Addition/deletion Ewhmge ofonfonmion
Genetic íiformatioÄ±

Algorithm
Reproduction

CIIII CYC|e
|Ã­~ílII

Mutation Crossover

Figure 3.10: One generation in GA diagnostic model

(Sampath & Singh, 2002a)

Figure 3.11 shows the value of objective function plotted for a give population. It
shows the difculty involved in carrying out a search in the presence of several local

_9]-



Chapter-3: Optimisatio Teclmiqtefor Engine Fau lt Diagiwstícs

minima. Conventioral calculus based technique have the disadvantage of getting

trapped in local minima. The blue lines represent the randomly chosen population in

the beginning of the search process. The green lines represent the population after N

generations. It can be observed that the later generations have strings which are close to

the solution or it consists of tter individuals. The red line represents the solution or the

best string in the population. lt may not necessarily the best solution possible, but could

300 -

-i M

_ l

50 ~ l M
.

1 J
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be the best or close to the correct value.

aso i

Object ve U-'unct`on
- -- N NO U O UO O O O

oi " x 'M' 1' i

Strings

Figure 3.11: GA Diagnostics Working Principle

3.3.3 Mathematica! form of the Diagnostic Strategy

The mathematics of GA diagnostics has been fonnulated by Zedda ( l999c.f). A function

which denes a relationship between the dependent and independent parameters without

measurement noise or sensor bias is given as-

z - h(x) (3.9)

where,

0 z e RM is the measurement vector and M is the number ofmeasurements

G x e R is the performance parameter vector and N is the number of parameters

0 h(.) is the vector valued function.
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h() is provided by the simulation program and is non linear. If we consider the noise to

be present then the model has to appropriately modified as follows

2 = h(x)+v (3.10)
where. v is the measurement noise vector.

ln the presence of sensor biases, the equation (3.10) is further modified to

z =h(x)+b+v (3.11)

where b is the measurement bias vector,

equation(3.11) defnes the relationship for a certain operating point. If dependence on
the operating point is written explicitly:

z = h(x,w)+b+v (3.12)

where w e RP is the vector of the environment and power setting parameters(e. g. inlet

conditions and fuel ow) and P is the number of parameters. Usually v is assumed to
have Gaussian Probability Density Function (PDF) and moreover to have independent

components. Therefore, the joint PDF is the product of independent PDFs.

7.\/ . `\,
1 M 1 sššlzl ..

p(v)=|m[;]e (l)

where q- is the standard deviation of the j "' measurement. It should also be noted that

w is affected by noise as well as biases like the other measurements

u = w + b.+ v. (3.14)

where:

0 u is the vector of measured values

0 w is the vector of actual values

0 bi., is the vector of biases

o v. is the vector of noise
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Having defined the problem in equations (3.12) & (3.14), we need to fnd a solution to

it. The aim would be generate a certain number of random solutions and compare it with
the actual solution obtained. An objective function is to be decided which is a measure

of the consistency between the actual the predicted measurements. Various factors

concerning measurement noise and biases should be accounted for and the objective
function should not be computationally intensive.

A classic choice for the objective function at a given operating point would be-

\ >_ <`
_N

Q
~* /¬

\
*e

/DJ
,_
L±̀\/

-h x `
J(x)= _= zur Ã

zadj- is the value ofthej'/' measurement in the off-design un-deteriorated condition. The

minimization ofthe above objective function provides the maximum likelihood solution

for the non-linear problem at hand. Another suitable function is the absolute deviation.

:Ms

J(x) = (316)
= Zc//ou

l\/Ieasurement noise is accounted for using the standard deviation q~
The uncertainty affecting the environment and power setting parameter can be

considered by modifying the objective function to-

"lVlÅ
¡

'N
'/

Nlíql

/

./(x) = 3.17)
-/'l.(x,w)`

= zm w)0'

and equation (3.16) becomes

^"
lz/. - h/(x, w)l

(3.18)
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The technique has the following advantages:

(a) Inherently robust to measurement bias;

(b) Relies fully on non-linear models;

(c) Relatively unaffected by smearing°` whereas other methods like KF and WLS

based approaches are affected;

(d) lt is much easier to account for noise and bias in the measurements;

3.3.4 Optimisation through Fault Classes

lt order to reduce the smearing effect, which is so common to most of the

conventional methods, a constrained optimisation is carried out (Zedda, 1999c). It is
assumed that not more that two components (four performance parameters) are
simultaneously faulty. The engine components (whose faults are sought) are distributed
into fault classes and the algorithm searches for one fault class at any time. If there are
N components then the total number of fault classes is given by N+ NC2. Essentially the

algorithm looks for single component faults and then dual components faults by pairing
different components. More than two component faults also can be investigated but it
will increase the number of fault classes and hence will be computationally expensive.
This method was validated on the EJ200 and the RB199 and a brief description of its

implementation on these engines is presented in the following sections:

3.4 GA Based Diagnostic System For The EJ 200

A diagnostics system based using test bed instrumentation was developed by Zedda

(l999c) for the EJ200. The EJ200 (g 3.12) engine is low-bypass ratio, mixed flow
reheated two-spool military turbofan used on the European Fighter Aircraft (EFA) or

"Euro-Fighter".
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Figure 3.12: Schematic diagram of EJZOO engine
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The engine has the following characteristics:

Bypass Ratio 0.411

Pressure Ratio 25:1

Compressor Stages 3 LP. 5 HP

Combustion System Annular Vaporizing

Turbine Stages lHP 1 LP

Power Range 20,000 lbf (90kN)- with reheat

13,500 lbf (60kN) without reheat

Table 3.1: EJ200 Engine Data

The diagnostic parameters that correspond to the EJ200, shown in a schematic form in

gure 3.12 and that interrelate through their aero-thermodynamic relatonshps as

shown previously in figure 2.1 are:

1. 10 Independent Parameters (Performance Parameters):

0 Fan overall ow function (l¬pAN);

0 Fan outer efciency (11 pANOU );

0 Fan inner efficiency (11 FAN|N);

0 HP compressor flow function and efficiency (1`HpC,n HpC);

0 HP turbine ow function and efciency (I`Hp ,nHp );

0 LP turbine ow function and efciency (1`Lp ,nLp ); and,

0 Nozzle discharge coefcient (CD);

2. 13 Dependant Parameters (Measurements):

0 Engine inlet airow (W|A);

0 Fan outer exit total pressure and temperature (P|3,T|3);

0 Fan inner exit total pressure and temperature (P|2,T|2);

0 Core inlet airow (W,2);
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0 I-IP compressor exit total pressure and temperature (P3,T3);

0 LP turbine exit total pressure and temperature (P_;,T5);

0 Net thrust (FN);

0 HP spool rotational speed (NH); and,

0 LP spool rotational speed (NL);

3. 3 Parameters are used to set the Operating Point:

0 Fuel flow (Wyk-); and,

0 Ambient total pressure and temperature (P0,T0).

3.4.1 Performance Simulation model for the EJ200

The model used in Zeddas (1999c) work was provided by Rolls-Royce. It is a non

linear steady state performance simulation program called RRAP. Full thermodynamic

calculations using enthalpy and entropy, are performed. In general gas properties are

averaged one dimensional values at any cross section of the gas path. Sone two

dimensional values for pressure and/or temperature distortion through the compression

process are used. Combustion and expansion are strictly one dimensional. Each rotating

component is represented by a performance characteristics consisting of tabulation of

non-dimensional groups for ow, work, rotational speed and isentropic efficiency. The

air system is represented by series of bleeds removed from the gas stream between

compressors and inter-stage. Bleed ows are usually assumed to be fixed percentage of

a main gas stream flow. Internal calculations are performed in double precision.

3.4.2 Diagnostic Model Coding

The codes developed for the project have been written in standard FORTRAN 77

according to the sponsors requirement. Minimum use of built in functions have been

used. A large number of numerical subroutines have been obtained from Press et al

(1992). All codes developed for diagnostics are double precision and the numerical

subroutines from Press et al (1992) have been suitably modied accordingly. All

programs have been compiled with digital Visual FORTRAN 5.0.
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3.4.3 EJ200 Fault Classes

For the purpose of engine diagnostics of the twin spool engine the following six

components are considered: (a) Fan Outer (b) Fan Inner (c) HPC (d) HPT (e) LPT (Ã

Nozzle.

The total number of fault classes depend on the number of components. For the EJ 200,

which has 6 components, in the case of single component fault there will be 6 fault

classes. In the case of two faulty components the number of fault classes will be the

fault classes comprising of single component faults plus combinations of two each from

the various components (table 3.2). Thus, there will be 6+°C2 =2l fault classes.

Similarly for three faulty components the number of fault classes will be

6+°C2+°C_. = 41.

Fault class Component Fault Class Component

Fan (O) I2 Fan(1)+ HPC

2 Fan (I) 13 r=an(1)+ HPT

3 HPC 14 1=an()+ LPT

4 HPT 15 Fan(I) + Nozzle

5 LPT I6 HPC + HPT

6 Nozzle l7 HPC + LPT

7 Fan(O) + Fan (l) l8 HPC + Nozzle

8 Fan(O) + HPC 19 HPT + LPT

9 Fan(O) + HPT 20 HPT + Nozzle

10 Fan(O) + LPT 21 LPT + Nozzle

ll Fan(O) + Nozzle

Table 3.2: Fault Classes for the EJ 200

3.4.4 Salient features of EJ200 Diagnostic System:

The structure of the diagnostic system is shown in figure 3.13. Simulated or measured

data together with the operating point and the environment and power setting

parameters are input to the GA optimiser. The model uses measurements from a single
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operating point and the simulated measurements are obtained using the same operating

condition. lt is therefore called the Single Operating Point Analysis (SOPA) model.

This optimiser then interacts with the Non-linear performance simulation code of the

particular engine during each generation of the algorithm. The results are then obtained

after a fixed number of generations. Salient features of the diagnostics system by Zedda

(l999c) is as follows:

0 The objective function, which depends on the performance parameter vector

(efficiencies and ow capacities) and the environment and power setting

parameter vector (e.g. inlet pressure and temperature and fuel ow) has been

dened in equation 3.18.

0 The population is initialised randomly within constraints for the efciencies,

ow capacities and environment and power setting parameters. The constraints

can be varied by the user depending on the requirement.

0 Fault identification is done by dividing the engine into fault classes where each

fault class represents a particular fault (single or two components). Each fault

class refers to one possible outcome in terms of faulty components. Fault classes

are created in order to constrain the GA based optimization approach to prevent

smearing.

0 Fault classes are processed by the three principle operators in genetic

algorithms, i.e. the selection, crossover and mutation. As the GA progresses in

each generation, the population in the fault class that has the strings with higher

fitness values increase at the expense of low tness strings in other fault classes.

0 Selection is based on fitness value, i.e. those strings that have a high fitness will

get selected for the next generation and others will die out. The selection is

extended tothe entire population. As generations progress the strings from one

fault class produce more offsprings depending on the fitness. Concentration on

one or two engine components is then achieved.

0 The crossover operator is applied to strings which are members of the same fault

class depending on the probabillity of crossover (PC). Crossmating between

different fault classes is not allowed and is between pairs of strings.
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0 Mutation is applied to each string by adding or substracting a random value from

it while satisfying the constraints. ln simple terms, selection extended to the

whole population forces concentration on the faulty engine components, while

crossover and mutation help selection to rene the solution.

0 Real coded GA is used for representing the strings.

0 Real noise levels were superimposed to the clean measuements provided be the

simulation code.

In order to show the working of the technique, a comparison between typical results

provided by the diagnostics system and a straigtforward maximum likelihood-based

optmisation with allowance for noise and bias without constraints on the number of

fault affected parameters is presented in table 3.3.

Parameters Actual(%) Predicted(°/0) Maximum Liklihood
ArfANO -3.00 -2.99 -2.90
Al`l-`AN 0.00 0.00 -0.27
A1l1`ANLN 0.00 0.00 -0.33
AFHPC 3.00 2.99 2.91
A]HPC _ -1.00 -1.03 -0.41
AFHPT 0.00 0.00 -0.36
A]HPT 0.00 0.00 -0.ll
AFLPT 0.00 0.00 -0.72
A1LPT 0.00 0.00 -0.2
ACD 0.00 0.00 -0.27
Power Setting Parameters
Wl` 811.728 8ll.603 8ll.23|
Pl 83.688
Tl 3 I 2.020

83.773
312.094

83.574
311.890

Table 3.3: Comparison of GA Diagnostic model with Maximum likihood method

(Zedda, 1999c)

The first column lists the faults implanted. The second column displays the predicted

values by the GA based diagnostics system and the third column consists of the results

from the maximum likelihood based method. The GA based method has successfully

identied the faulty components. Smearing is considerably reduced and

concentration achieved. Several such fault conditions were examined and it was found

that the capability of GA based diagnostic model to identify the fault in the presence

measurement noise and sensor bias was very encouraging.
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START

GENERATE POPULATION FOR DIFFERENT FAULT
CLASSES BASED ON PERFORMANCE
PARAMENTERS AND EP.SETTlNGS WITHIN
PREDECIDED CONSTRAINTS AND DECIDE ON
NUMBER OF GENERATIONS (MAX.GEN.) AND ALSO
ASSIGN VALUES OF PROBABILITY FOR CROSSOVER
AND MUTATION.

CALCULATE OBJECTIVE FUNCTION VALUES FOR
EACH MEMBER OF POPULATION f'

BASED ON THE OBJECTIVE FUNCTION VALUE
DEFINE THE FITNESS VALUE. FITNESS IS THE
INVERSE OF OBJECTIVE FUNCTION

Selection

Genetic
Algorithm

Reproduction
II1 Cycle
íÜiii

Mutao Crossover

STOP NO
CRITERIA

YES

BEST SOLUTION

Figure 3.13: Flow chart of the diagnostics principle
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3.5 GA Based Diagnostic System for the RB199

After the successful application of gas for engine fault diagnostics by Zedda (1999c)

using test bed instrumentation set, Gulati (2002) undertook the task of investigating a

diagnostics system for the RB199 using the in-service instrumentation. The level of

instrumentation is much lower than the EJ 200 for which the technique was initially

developed. in addition to the lower level of instrumentation, the RB199 has an

additional spool (2 more components). The aim was to modify the software suitably for

the RB199 and conduct tests to establish the suitability of the technique for poorly

instrumented engine.

3.5.1 Description of the RB 199 Engine
The RB199 engine is a low-bypass, mixed ow, reheated three-spool military turbofan

engine used on the Panavia Tornado.

?\$___"___""7\ r"x2º-2º- /g L.______/š _; :

0
E°_"::=_f

0M
F -<ºr¬:r¬ºu1_____.__._____

t

¬1-~cºz/

Em "âr,2 ,3 BYPASS nucr .iššj
í"|3 FAN ala.IPClNNER r . _ _.

|ç3 1,BURN[R| 42 <3 44 es e

Figure 3.14: Schematic of the RB199 Engine

The engine characteristics are as follows-

Bypass Ratio 1.0211

Pressure Ratio 23:1

3 LP, 3 IP, 6 I-IP

Annular Vaporizing

Conpressor Stages

Combustion System

Turbine Stages 2 LP, 1 IP, 1 HP

Power Range 16,700 lbf (74.1 kN) with reheat

9,550 lbf(42.5) without reheat

Table 3.4: Engine data of the RB199 Engine
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The diagnostic parameters that correspond to the RB199, shown in schematic form in

figure 3.14 and that interrelate through their aero-thermodynamic relationships as

shown previously in gure 2.1 are:

14 Independent Parameters (Performance Parameters):

0 Fan overall ow function (I¬1±AN);

0 an outer efficiency (r| FAN0U );

0 Fan inner efficiency (m:,\N1N);

0 IP compressor ow function and efficiency (I`ºç.mp(-);

0 HP compressor ow function and efficiency (1¬Hpç,11HPc);

0 HP turbine ow function and efficiency (l¬Hp .nHº );

0 IP turbine ow function and efficiency (I`|p ,nº );

0 LP turbine ow function and efficiency (I`L|º-|~,nL|º ); and,

0 Nozzle discharge coefficient (CD);

9 Dependant Parameters (Measurements):

0 Engine inlet airflow (W\);

0 Fan outer exit total pressure and temperature (P13,T,3);

0 IP compressor exit total pressure (P25);

0 HP compressor exit total pressure and temperature (P3,T3);

0 Net thrust (FN);

0 HP spool rotational speed (NH); and,

0 LP spool rotational speed (NL);

3 Parameters are used to set the Operating Point:

0 Fuel ow (WpE); and,

0 Ambient total pressure and temperature (P0,T0).
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3.5.2 Performance Simulation model for RB199

The model used for Gulati°s (2002) work was provided by Rolls-Royce. It is a non

linear steady state performance simulation program named RRAP with similar features

like the E1200 described earlier.

3.5.3 Diagnostic Model Coding

Similar to Zedda°s (1999c) work the codes developed for the project have been written

in standard FORTRAN 77 according to the sponsors requirement. 1\/Iinimum use of

built in functions have been used . a large number of numerical subroutines have been

obtained from Press et al (1992). All codes developed for diagnostics are double

precision and the numerical subroutines from Press et al have been suitably modified

accordingly. A11 programs have been compiled with digital Visual FORTRAN 6.0.

3.5.4 RB199 Fault Classes

For diagnostics purpose of the twin spool engine the following six components are

considered: (a) Fan Outer (b) Fan Inner (c) IPC (d) HPC (e) HPT (f) IPT (g) LPT

(h)Nozzle.

The RB199 has 8 components compared to 6 for the EJ 200. Division of these

components into fault classes for diagnostics as defined in section 3.4.3 would result in

36 fault classes (table 3.5) compared to the 21 for EJ 200.

Fault class Component Fault class Component Fault class Component

Â±

Fon 13 Pam, IPT 25 IPC, LPT

l)

Fin 14 Four, LPT 26 IPC, Nozzle

U

IPC 15 Foul, Nozzle 27 HPC, HPT

-Å¡

HPC 16 Fin, IPC 28 HPC, IPT

k]

HPT 17 Finº29 HPC, LPT

O\

IPT 18 HPT

51
2

30 HPC, Nozzle

\

LPT 19 IPT

§1
2

31 HPT, IPT

O

Nozzle 20 LPT

3
5

32 HPT, LPT
9 FOUU Fin 21 Fin, Nozzle 33 HPT, Nozzle
10 Pour, IPC 22 IPC, HPC 34 IPT, LPT
11 Pour, HPC 23 IPC, HPT 35 IPT, Nozzle
12 Foul, HPT 24 IPC, IPT 36 LPT, Nozzle

Table 3.5: Fault classes for the RB199 Engine
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Consequent to the increased number of fault classes, ideally the RB 199 engine should

have more measurements. However, the engine has only 9 instruments available for

diagnostics and 14 performance parameters to be estimated.

3.5.5 Salient Features of RB199 Diagnostic System :

The structure ofthe diagnostic system is similar to EJ20O as shown in figure 3.13. The

only difference being the number ofinstrumentations used for diagnostics.

Salient features of diagnostics system for RB199 by Gulati is as follows:

0 The objective function, which depends on the performance parameter vector

(efficiencies and flow capacities) and the environment and power setting

parameter vector (e.g. inlet pressure and temperature and fuel flow) has been

defined in equation 3.18.

0 The population is initialised randomly within constraints for the efficiencies,

capacities and environment and power setting parameters. the constraints can be

varied by the user depending on the requirement.

0 The technique aims to identify a maximum of two simultaneously faulty

components.

0 Three operators; selection, crossover and mutaion are used.

0 Selection is based on fitness value, i.e. those strings that have a high fitness will

get selected for the next generation and others will die out. The selection is

extended to the entire population. As generations progress the strings from one

fault class will form more offsprings depending on the tness. Concentration on

one or two engine components is then achieved.

0 The crossover operator is applied to strings which are members of the same fault

class depending on the probability of crossover (PC). Crossmating between

different fault classes is not allowed and is between pairs of strings.

0 Mutation is applied to each string by adding or substracting a certain value from

it and at the same time satisfying the constraints.

0 Real coded GA is used for representing the strings.
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0 Real noise levels were superimposed to the clean measuements provided be the

simulation code.

0 Single operating point analysis is used

Pa rameters Actual(°/0) Predicted(%)
-4/7/~'.4,\'rº<'/` 0 O
A /`,.-__, N 0 O
4 '7/~;4/v/N 0

O

-4/¬/1' 0

Â©

4117/~«' 0

Â©

Li/_/_//º('1.0
477/1/'r' '2-0 2.6
A/H/rf2.0
AI]/.//1*/~ -2.0 2.2
41/T//fr 0 0
Ä/7'v 0 0

O

41/T/./"/" 0

C

4 '7/./~'" 0

Parameters Actual(%) Predicted( /0)
41/7/-ºNu/1' 0 0
-1 /¬/=.4v 0 0
A '7º'/ N/N 0

O

Ä Ü/º< ' 0

O

4 '7/rr 0

O

4/_H/fr' 2.0

O

4 '7H~<* L0

Â©

A/Hº'' 2.0 1.5
4 '71-//f' 1.0 l.7
4/_//"/' () 0
-1 '71/fr

G

0
Ä/_/./'I'

C

0
4'?/."/'

C

0

G

G, C -0.4

(8) (b)

Table 3.6: Results from the RB199 engine diagnostics (Gulati, 2002c)

The system has been extensively tested with various types of imlplanted faults. For the

purpose of testing, both real as well as simulated data were used. Fault was implanted

in the HPC and the HPT. Randomly generated noise within ± 30 level was added and

one instrument was biased. Results for this are presented in table 3.4. The results for the

case where the level of deterioration is high (table 3.4(a)) are just about acceptable and

the technique is capable of identifying the faulty components but accuracy in terms of

quantifcation is not high. The same components were then tested by implanting a

slightly lower fault level as shown in table 3.4(b) and it can be observed that even the

components are not correctly identied. It can be concluded that for lower levels of

faults the accuracy of diagnosed fault by technique based on SOPA is poor.
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3.5.6 Analysis of the Diagnostics Systems developed using SOPA

In the preceding sections the developments of diagnostics system for two engines have

been discussed. The diagnostics nodel for EJ2O0 used the test bed instrumentation and

that of the RBl99 engine used in-service instrumentation. lt has been brought out that

though the methodology was same, the diagnostics capability was different in each case.

Conclusion can be drawn from this that the fault prediction of diagnostics model based

on SOPA is suitable for engines with test bed instrumentation or engines where a large

number of measurements are available. It was reported by Gulati (2002) that study

with increased measurements for the RBI99 clearly showed an increase in accuracy for

diagnosis and brought it in line with that experienced for the EJ 200. Since, it would not

be possible to increase the number of instruments for an in-service engine, a technique

based on measurements from multiple operating points was investigated by Gulati

(2002c).

3.6 Multiple Operating Point Analysis (MOPA)

If the number of measurements is more than the number of performance parameters and

power setting parameters to be determined, the technique based on GPA or GA

optimisation using single operating point would result in high degree of accuracy.

However, if the number of measurements is far less than the number of performance

parameters a more judicious choice of algorithm would be needed. One technique to

overcome this problem is to use information available from different operating points

and is known as Multiple Operating Point Analysis (MOPA), as shown by Stamatis and

Papailiou (1988). In MOPA, the choice and number of operating points is critical to

diagnostic accuracy. It has been claimed by Stamatis and Papailiou (1988) that better

accuracy is obtainable when operating conditions are far from each other. When

deteriorated engine performance is simulated, as no exact information about the actual

map°s modification is usually available, the faults effect is obtained by a simple shift of

the map itself. lf this simplication is accepted, utilisation of operating points located

far from one another on the map should enable maximum exploitation of the models

non-linearity. On the other hand Doel (1993) noted that a different working point means

different aerodynamic conditions and in this sense efciencies and ow capacities can

significantly change with the operating condition. In order to address the issue of

-107-



Clapter-3: Optimisarion Teclniquefor Engine Fault Diagostics

number of operating points, the concept of relative redundancy was introduced by

Zedda & Singh (l 999a) which is described in the following section.

3.6.1 Relative redundancy

The accuracy of MOPA would to a great deal depend on the augmented matrix k X m ( k

is the number of operating points and m being the measurement vector)being greater

than the number of performance parameters 'r '. In order to understand this, the concept

ofrelative redundancy index R' is introduced. ln the single operating point analysis, for

the diagnostic technique to work satisfactorily, the measurements not affected by bias

should be more than unknowns (Zedda, 1999c) i.e. the performance parameters being

determined and the environment and power setting parameters, and this can be

represented as under:

M - MM > NW, + EP (3.19)

where

M is the number of neasurements

M;~_. is the number of biased measurements and

/\/,_./is the number of fault affected performance parameters

In case of use of multiple operating point analysis (MOPA), this would become:

L ~ (M - M) > N,__, + L ~ EP (3.20)

where L is the number of operating points and EP the parameters used to define the

operating point of the engine (i.e. EP = 3; inlet pressure and temperature and fuel flow

(Wr))-

Thus MOPA should make the analysis of poorly instrumented engines possible due to

more extensive analytical redundancy. The relative redundancy index introduced by

Zedda (1999c) is-
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L~ M-M
R=;__@ (321)

NW/ + L ~ EP

The accuracy of the diagnostic technique should increase with increased relative

redundancy. Use of more operating points allows to increase the relative redundancy

and tlteeífíore should lead to better accuracy as shown in tgure 3.15.
lg..
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0 ° O Qo1.5 Ot

1 0
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0 I I I
0 2 4 _ 6 8Number of operatng ponts

Figure 3.15: Relative redundancy index versus no. of operating for EJ20O

(Zedda, l999c)

3.6.2 Analysis of Relative Redundancy Index

Analysis of the results plotted in gures 3.15 indicates that two operating points would

sufce for the cases (for O and l or at most 2 measurements being baised), though three

should do the job perfectly with a good amount of margin (Gulati, 2002). But due to the

approximate nature of R°, due to noise and non-linearity, the graph (figure 3.15)

obtained by plotting °R° with respect to the number of operating points needs to be

viewed in a statistical sense. A large increase in the number of operating points would

lead to:

0 Reduction in the rate of increase of the relative redundancy index with increasing

number of operating points, which is akin to the law of diminishing returns.
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0 Very high computational resources necessary to evaluate the objective function

with increase in the number of operating points. When L = 5 an evaluation may

require a time of at least 5 times longer than with a single operating point.

0 A very large number of operating points is likely to cover a rather wide area in the

component maps. Therefore. the assumption of constant performance parameter

Variations is less acceptable

0 The objective function becomes harder to optimize as the number of operating

_ points increases.

l\/IOPA makes the analysis of poorly instrumented engines possible due to more

analytical redundancy. However, gure-3.15 shows that the gains achievable up to three

operating points are significant and then the relative advantage in terms of accuracy and

computational effort are lost.

3.6.3 Multi-Objective Optimisation

l\/Iulti objective optimization requires an approach, which is different from the single

objective optimization. lt is clear that if there are two objectives to be optimized, it

might be possible to nd a solution which is best with respect to the first objective, and

another solution, which is best with respect to second objective. As the number of

operating points increases beyond one, the objective function could be obtained by

simply adding up single objective cases. This would then be as follows-

0/' NM z. -h/.,(x,w,)j Â¬J .._(x,w) = 'e (§22)

Zl/where:OP is the number of operating points

The aggregate approach to obtain a single objective function fron two or more

objective function as shown in Eq-3.22 is the simplest form of multi-objective

optimisation. There are several other classical methods of addressing the multiple

objective issue like the min-max formulation, method of distance functions etc..

However, these classical approaches result in a compromise solution and if some

objective functions are noisy or have discontinuous variable spaces, these methods may

not work (Gulati, 2000c).
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The technique used in this work is based on the Non dominated Sorting Genetic

Algorithm (NSGA) proposed by Srinivas and Deb (1994) based on several layers of

classifcations of individuals. In order to proceed with this technique it would be

convenient to classify potential solutions into dominatea' and non-dominaled. As

solution x is donincred, if there exists a feasible solution y not worse than x on all

coordinates (for minimization problems), i.e.

_f,(x)S_/,(y) for all /SiS/c (3.23)

If the solution is not dominated by any other feasible solution, it is called the non-

dominated or pareto-optimal solution. In this technique the population is ranked on the

basis of non-domination. All non-dominated strings are classied into one category or

/ifont and accorded a large dummy fitness value proportional to the population size. The

same fitness value is assigned to give an equal reproductive potential to all these non-

dominated individuals. In order to maintain diversity in the population, these classied

individuals are then shared with their dummy tness values. Sharing is achieved by

performing selection operation using degraded tness values, which are obtained by

dividing the original fitness value of an individual by a quantity proportional to the

number of individuals around it. This causes multiple optimal points to coexist in the

population. After sharing, this front of non-dominated individuals is ignored

tenporarily to process the rest ofpopulation in the same way to identify individuals for

the second non-dominctedfront. These new set of points are then assigned a new

dummy fitness value which is kept smaller than the minimum shared dummy fitness of

the previousont. This process is continued until the entire population is classied into

several fronts. Since, individuals in the first front have the maximum fitness value, they

always get more copies than the rest of population. This concept ofpareto optimality is

used to estimate the/itness values of the population for selection in genetic algorithm.

A schematic diagram of the technique is shown in gure 3.16. lt can observed that the

objective functions for strings from different operating points are calculated

independently. The objective functions are compared for pareto-optimality and then
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ranked. After the ranking and fitness assignment, the strings from different operating

points proceed separately for further genetic operation.

Objective Function from
Operating Point-1

Objective Function from
Operating Point-2

_/,(º<_w)= 2 _--
_/<=l ;0ay.(W)ºO'J.

MÅ¡

/2(x,w)=
1: ,-Zh, '_

1 J j(º. w)

jzlSelection
through
Pareto-

Optimality
Operating Point-1

Genetic Operations

Operating Point-2

Genetic Operations

Mutation
Selection, Crossover &

Mutation«U Selection, Crossover & Popuation Ranking Ã

Figure 3.16: Schematic diagram of MOPA

3.6.4 A Diagnostic System for RB199 Engine using MOPA _

An engine diagnostics technique based on GA optimisation has been developed for the

Rolls-Royce RB199 engine, but it can be applied to any engine with a similar

instrumentation set. Validation of the technique has been carried out with simulated and

real data.However, most of the testing was done on simulated data and only four

engines with actual test data were used due to the limited availability of such data.

Initially the simple aggregate of objective function was considered but the diagnostic

accuracy was poor. Table 3.7 shows the difference in diagnostic accuracy between three

schemes and shows that the pareo-optimal method for selection gave the best results.
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PARA1\'l ETER .~\C'l`UA L (%) PREDICTED (%)
SOPA MOPA M O PA

IÃF FAN 3.0 -2.92 º3.0 -3.0
Äll -'AN N 0.0 0.0 0.0 0.0
/_\1] =/\N0u1 0.0 -2.61 -1.77 0.0
N- 11°C 0.0 0.0 0.0 0.0
All PC 0.0 0.0 0.0 0.0
L F ºPC 3.0 0.0 -1.31 -2.98
A11 «rºc 1.0 0.0 -0.09 -1.18
L l_ HPT 0.0 0.0 0.0 0.0
/Ä11 HPT 0.0 0.0 0.0 0.0
AF IPT 0.0 0.0 0.0 0.0
Al] rfr 0.0 0.0 0.0 0.0
A F LPT 0.0 0.0 0.0 0.0
A11 LPT 0.0 0.0 0.0 0.0
CD 0.0 0.0 0.0 0.0
Environncnt and Power scting parenctcrs
Operating point I
W1`(g/S) 630.00 660.00 660.00
P ambient (KN/m2) 101.32 101.32 101.32
T ambient (K) 288.15 288.15 288.15
Operating point 2
Wf(g/S) 620.00 620.00
P ambient (KN/ml) 101.32 101.32T ambient (K) 288.15 288.15

RMS error - 1.10 0.70 0.05

Table 3.7 1 A comparison of different schemes (Sampath et al, 2002b)

3.7 Summary

ln this chapter, a diagnostics model based on GAS was presented. The initial

implementation of the model on the well instrumented EJ200 was encouraging and the

same was modied and applied to a relatively poorly instrumented engine, the RB199.

Analysis of the diagnostics technique developed for the engines indicate that the

technique was capable of dealing with only a few component faults and gave better

results for high levels of deteriorations. This problem has been effectively dealt with

by the MOPA. The results obtained from MOPA were more accurate and consistent.

The technique developed offers much promise in diagnosing faults in gas turbine

engines. Keeping in mind the objective of developing an engine fault diagnosis for the
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advanced cycle marine gas turbine, it was felt that the fault diagnosis technique based

on GA optimisation would be most appropriate considering the simplicity in

implementation and robustness of the technique in the face of measurement noise and

sensor bias.

The development of a diagnostics model for the advanced cycle ICR WR2l has been

presented in chapter-5. However, a description ofthe engine is provided in chapter-4.
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CHAPTER-4

ADVANCED CYCLE GAS TURBINE FOR MARINE APPLICATION

4.1 Introduction

In order to achieve the ultimate objective of developing an accurate and reliable

diagnostic model for the advanced cycle marine gas turbine, it is very important to

understand the engine design and its performance characteristics. This chapter looks at

the basics of marinisation of a aero gas turbine, typical operating prole of marine

engine and the change in design required for effective increase in part load efciency.

For the purpose of diagnostics, an engine performance model of the ICR-WR2l, which

is thermodynamically similar, has been developed using the in-house engine

performance modelling software called TURBOMATCH. The various modifications

carried out to make the TURBOMATCH engine model compatible with the diagnostics

model have also been presented.

4.2 Gas Turbines for Marine Propulsion

While gas turbines are used both for merchant and Naval applications, their primary

application has been in the navies of the world. Both aero-derivatives and industrial gas

turbine have been used for marine applications. Marine propulsion systems

requirements differ signicantly from the land based units. Owing to large vessel

inertia, engine acceleration time is generally not critical. The marine environment

certainly presents a more severe operating environment than the industrial type of

environment.

The most prudent way to develop a marine gas turbine is to derive the experience

gained from the development and operation of a proven aero gas turbine and incorporate

necessary changes to the aero gas turbine for marine application. This policy is widely

accepted and implemented by major marine gas turbine manufacturers. Some of the

salient features of the marinisation process is as follows-
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Change of Fuel: For the marine gas turbines, liquid fuels are most likely to be

considered and diesel is a natural choice due to safety consideration. Therefore

all problems associated with combustion of this fuel must be considered.

Marine gas turbines use Low Sulphur High Speed Diesel (LSHSD) or other

heavy fuels in commercial vessels. One of the primary requirements in

marinisation process is the modication of the combustors to sustain

combustion with the new fuel for a given operating envelope.

Energy Balance: when a modication to an existing aero-engine is carried out,

certain components will have to be modified or completely removed to suit the

new role. E.g. conversion of a turbo fan engine would necessitate the

replacement of the fan with a LPC. Such modications will require

recalculation of the work and energy requirements. It may need changes in

turbine design or change in engine mass flow.

Need for Power Turbine: A marine engine used for propulsion would

invariably need a power turbine for transmitting the power to the ships propeller

through the reduction gear box. The power turbine design will need to take into

account the propeller design and match the speed for efficient utilisation of

power. The power requirement for a ships propeller follows a classical cubic

law as shown in gure 4.1.
Power Vs Shaft RPM
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Figure 4.1: Cubic law for power turbine
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0 Shock & Vibration: Gas turbines used on board naval ships have a mandatory

requirement to qualify shock and vibration tests as prescribed under MIL

standards. To qualify such tests, the bearing of the gas turbine need to be

strengthened and the overall weight needs to be increased by using a base frame

and enclosure to enable the engine to withstand underwater shocks.

0 Sound Attenuation and IR Suppression: Provision for attenuation of structure

borne noise and air borne noise has to be made for marine application. The use

of DRES-BALL device or water injection for reducing the temperature of

exhaust is to be made.

0 Material Selection & Protective Coating: in general the internal effects of

operating in the marine environment are:

(a) Corrosion of compressor section parts resulting from the ingestion and

deposition of salts;

(b) Corrosion of turbine section from highly corrosive molten salt;

(c) Sulphidation of turbine section from burning sulphur bearing salts;

Sulphidation is a serious problem and requires a thorough understanding of the

mechanism of attack. The marinisation process necessitates the choice of appropriate

materials for the engine components and coatings to prevent degradation to exposed

parts.

4.3 Operating Profile of Marine Gas Turbine

A major disadvantage of the gas turbine in the naval use is its poor specic fuel

consumption at part load. If we consider a Naval vessel having a maximum speed of 36

knots, and a cruise speed of 18 knots with the power required proportional to the cube

of the speed, the cruise power will be only one eighth of the maximum power, indeed

much time will be spent at speeds less than 18 krots. To overcome this problem,

combined power plant containing gas turbines with conventional steam turbines or

Diesel have been used which are popularly called as-
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(a) COSAG- Combined Steam and Gas Turbine

(b) CODAG- Combined Diesel and Gas Turbine

(c) COGOG- Combined Gas or Gas

(d) COGAG- Combined Gas and Gas

(e) CODLAG- Combined Diesel, Electric and Gas Turbine

Most of these combinations were basic simple cycle gas turbines and the conguration

made the propulsion system quite complicated in terms of engine exploitation and

amount of space occupied (especially in the case of COSAG). A gas turbine used for

propulsion in a naval ship would typically operate at part load conditions most of the

time as shown in gure 4.2.The matter of efcient exploitation of the equipment has

also been a matter of dispute between the maintainer and the user.

Ship Operating Prole
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Figure 4.2: Typical operating profile of a naval gas turbine (Dupuey, 1982)

4.4 The lntercooled & Recuperated Gas Turbines

The nature of operation of a marine gas turbine dictates the need for a gas turbine which

is fuel efcient at lower powers. In the following sections, various methods that can be

used for improving the cycle efciency are presented in the following sections:
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4.4.1 Heat Exchange Cycle

The basic principle of a heat exchange cycle is to recover the heat from the exhaust gas.

This in turn reduces the heat input in the combustor, leading to reduced fuel supply to

the combustor.(Figure 4.3)
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Figure 4.3: Heat Exchange Cycle

The cycle efficiency is given by-

_cÄL-nywgg-2)`
c<T3 -T5) <4â

With ideal heat exchange, T5=T4, and substituting the isentropic p-T relations the

expression reduces to-

rw-I)/r

Thus the efciency of the heat-exchange cycle is not independent of the maximum

cycle temperature and it clearly increases with increase in t, the efficiency increases

with decrease in pressure ratio unlike the simple cycle whose efficiency increases with

the increase in pressure ratio(Figure 4.4). The curves fall with increasing pressure ratio
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until a value corresponding to r")" = \t is reached and at this stage the equation

(4.2) reduces to

1 (r-I)/r
1 =1- - (4.3)

I

This is the pressure ratio for which the specic work output reaches a maximum and for

which lt4=t2. For higher values of r the heat exchanger would cool the air leaving the

compressor and reduce the efciency. The specic work output is unchanged by the

addition of a heat-exchanger

100-

8O~

°/0

60 -  =s
__ =3  =4 .....................................â" 40 ` .........................................

20

-Effcency

0 ¬ ` 1 Ä±
O 2 4 6 8 10 12 14 16

Pressure ratio r

Figure 4.4: Efficiency-Simple cycle with heat exchanger

4.4.2 Inter-cooled Cycle

An improvement in the specic work can be obtained by splitting the compressor and

inter-cooling the gas between the LP and HP compressor. Assuming that the air is

cooled to T/ it can be shown that the specic output is maximum when the pressure

ratio of the LP and HP are equal (Figure-4.5).
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Figure-4.5 1 Inter-cooled Cycle

The reduction in efciency due to inter-cooling can be overcome by adding a heat

exchanger. The higher exhaust gas temperature can be utilised in the heat exchanger.

Figure 4.6 shows the improvement in Specific Fuel Consumption (SFC) for a complex

cycle engine.

4.5 Methods of Improving Part Load Performance

Earlier in the chapter, it was pointed out the part load performance of gas turbine

intended for naval use is of great importance, as considerable portion of the running

time is spent at low power. Early studies of these applications resulted in the

consideration of complex arrangement incorporating inter-cooling, reheat, heat-

exchanger. The sole justication for the marked increase was great improvement in

part-load specific fuel consumption.

lnitially such complex arrangements did not prove to be very successful despite their

undoubted thermodynamic merit, the main reason being their mechanical complexity.

Detailed off-design performance calculations of gas turbines with heat exchangers

would have to account for heat-exchanger effectiveness with engine operating

conditions. Heat-exchanger effectiveness depends on xed parameters of heat transfer

area and conguration of the HE(e.g. cross ow, counter ow etc..).
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200 (Both Engines have same Design SFC)
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Figure-4.6: lntercooled Cycle

The inclusion of HE will cause an increase in pressure loss between compressor

delivery and turbine inlet and also an increase in turbine outlet pressure, although the

additional pressure loss will result in reduction in power, they will have little effect on

the equilibrium running line and part load behaviour of engines with and without heat

exchanger will be similar. Fundamentally, the gas turbine thermal efciency is

dependent on turbine inlet temperature and the rapid drop in T03 with decreasing power

is the basic cause for poor part load performance of the gas turbine. The Variation for a

hypothetical engine with HE is shown in gure-4.7.

0.35
0,3 A : HE Effectiveness = 0

B B: HE Effectiveness =100
_ A

Therma Eff'c'ency
9 P- NU O

0.1
0.05

0 i Â¦0 20 40 50 80 100
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Figure-4.7: Comparison of thermal efficiency with HE
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The shape of the curve remains virtually unchanged. This is fundamentally due to the

fact that in each case there is a similar drop in TET as power is reduced. In the light of

the above, variable area power turbine stators are used for better part load performance.

4.5.1 Variable Area Nozzles (VAN)

The concept of using moving blades or geometry to alter the characteristics of turbo

machinery has been in existence for many years. One of the earliest devices mentioned

in the literature consisted of a movable wall in a rectangular nozzle passage of a steam

turbine (Rahnke, 1969). It varies the area to optimise the nozzle expansion ratio. Today

variable stator vane in the high pressure ratio, axial -ow compressor is a well known

example of variable geometry to optimise engine performance.

The variable area power turbine nozzle gives the following advantages.

0 An increase in engine braking

0 Improvement in part load fuel efciency

0 Improvement in engine starting characteristics

0 Improvement in engine acceleration characteristics

0 Over speed protection for Power turbine

0 Reduction in engine creep torque

In addition to the various advantages, it also has a few disadvantages like complicating

the engine and fuel control system, added manufacturing cost and introduction of

leakage introduced into the flow path.

To explain this concept, let us take the example of a turbojet as the turbojet and free

power turbine engine are thermodynamically same and they impose the same operating

restrictions on the gas generators, thus the variable power turbine stators will have the

same effect on the gas generators as the variable nozzle. Increasing the area of variable

nozzle in a turbojet moves the running line away from the surge line, while decreasing

the area moves the running line towards the surge line, the latter shows an increase in

turbine inlet temperature at low powers, it is also likely that the compressor efciency
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will be improved as the surge line is approached. Both these effects will improve the

part load SFC.

Ideally, the area of the Variation of the power turbine stators can be controlled so that

the turbine inlet temperature is maintained at its maximum value as power is reduced.

Operation at constant gas generator turbine inlet temperature will cause an increase in

temperature at the entry to the power turbine, because of the reduced compressor power

and the temperature of the gas entering the heat exchanger will be high.

Running line with variable
area power turbine stators

P02
Stator area increasing

pol to avoid surge Ã­

\

i\\\ \\\ \ \
\ \\\\\\\ \\\\\\\\\\\\,\\

"l"l28

1Â»

Normal Runninc Line

poi

Figure-4.8: Effect of VAN on engine steady state running line

lt should be noted that the operation at constant gas-generator turbine inlet temperature

with reducing power will cause an increase in temperature at entry to the power turbine,

because the reduced compressor power, the temperature of the hot gases entering the

heat exchangers will also be raised. Temperature limitations in either of these

components may restrict operation in this mode. The use of a variable geometry power

turbine is particularly advantageous when combined with heat exchanger, because the

increased turbine outlet temperature is utilised. The efficiency of the power turbine will

obviously be effected by the position of variable stators, but with careful design the

drop in turbine efciency can be made more than offset by maintaining a higher
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temperature at part load. Area Variations of +/- 20 percent can be obtained with

acceptable losses in the turbine. A facility for increasing the stator area is also

advantageous with respect to starting and aeeelerating the gas generator. lf stators are

rotated still further, the gas generator ow can be directed against the rotation so the

ow impinges on the back of the power turbine blade. This can result in a substantial

degree of engine braking which is extremely important in vehicular application and

more so in marine application in delicate manocuvrcs as the ships do not have brakes.

4.6 ICR- WR21 Marine Gas Turbine

Since the introduction of gas turbines for main propulsion of US navy warships in the

DD963 Spruanee class destroyers in the early l970s, the navy has investigated methods

ot` improving fuel etticiency, reliability and maintainability to reduce operating costs,

increase availability and improve the capability of US surface combatants. These efforts

begimiing with modieations to existing engine led to a series of studies in l980's to

investigate advanced cycle engines. The US Navy laid down certain stringent technical

specifications and placed a challenge to the industries to develop an engine fullling the

requirements. The development team included Westinghouse, Roll-Royce, Allied Signal

Aerospace systems and equipment and CAF.. A seetional view of the TCR WR21 engine

is shown in gure 4.9.
Recuperato'

Intercooler

Figure 4.9: Cross-section view of the WR-21 engine
(Courtesy Rolls Royce Marine)
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Li

Figure 4.10: WR-21 engine on test bed`
(Courtesy Rolls Royce Marine)

The TCR WR-21 engine system (gure 4,10) is an advanced cycle gas turbine engine

utilising an intercooler and recuperator resulting in 30% reduction in annual propulsion

fuel consumption for a typical surface combatant . The WR21 has an almost at s.f.c

curve from 100%- 30% power as shown in gure 4.11. The low SFC is intended to

translate into extended combatant operating range for a given fuel capacity, more un-

refuelled tine on station for a given time and fuel capacity. The new engine also offers

signicant performance exibility by enabling conventional diesel cruise/gas turbine

sprint machinery to be replaced by a single a WR21. This leads to major space savings

and stronger hull structures resulting from fewer deck penetrations.
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Figure 4.11: lCR WR21 Specific Fuel Consumption Prole
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The design consists of a two spool gas generator with an intercooler between the two

compressor and a recuperator between the HP compressor and combustor which

preheats the compressed air by recovering the heat from the exhaust gas. The basic

description of the WR21 follows:

4.6.1 ICR WR21 Design Overview:

The following paragraphs give a brief overview of the engine design

0 Gas Generator : The core of the WR21 gas generator is derived from the

Rolls-Royce RB2ll aero-engine family. The IPC and HPC are derived from

the RB2ll-535. The IPC is a compact 6 stage xed geometry, axial ow

compressor with a compression ratio of 3.49. The rst stage of the IPC has

been modied relative to the aero-engine to increase the ow capacity by 4%.

The HPC is a compact 6 stage fixed geometry axial ow compressor with a

pressure ratio of 4.9. All stages are common to the aero-engine. Between the

IPC and HPC is an intermediate case which supports the on engine intercooler

system, houses the internal gearbox and provides the air ow path from the

IPC intercooler heat exchangers and back into the HPC. The combustor

section of the WR21 consists of 9 radial can-armular combustors, the

Delivery Air Manifold(DAM) is required to deliver the air from the HPC to

the recuperator inlet and Return Air Manifold (RAM) to distribute the air

returning from the recuperator to the 9 combustor cans. The radial

conguration has kept the spacing for the HPT bearing and the Intermediate

Pressure Turbine (IPT) bearings the same as on that of the aero engine and is

compatible with Dry low emissions program to allow easy retrot of DLE

combustors. The HPT is a single stage axial ow turbine based on the aero

RB2l 1- 524. The blades and vanes are lm coated and have been modied to

decrease the turbine capacity. The IPT is based on the RB2l1-535 and is also a

single stage turbine. The blade profile have been modied to increase the ow

capacity. The vanes are un-cooled single crystal alloys.

-127-



Chapter-4: Advanced Cycle Gas Turbinefor Marine Application

Free Power Turbine: The power turbine is a new design , 5 stage power

turbine based on Rolls Royce Trent 700-800 designs. The FPT is designed for

3600 rpm at 100% power. A single stage Variable Area Nozzle(VAN) is used

to maintain the engine temperature at part power to maximise the effectiveness

of the recuperator. The VAN is actuated by hydraulic actuators and single

geared ring. The VAN is fully closed at 40% power and fully open at 100%

power.

Intercooler: The intercooler consists of two systems, the on-engine system

and the off-engine fresh water/sea water heat exchanger module. The on-

engine system consists of ve CuNi plate-n, counter ow heat exchangers.

The compressor air is cooled with 50-50 freshwater/glycol coolant ow of

900gpm. The off-engine cooler module consists of the plate-frame heat

exchanger, a 40 hp coolant pump/motor, de-aerator, reservoir tank and

associated valves and the heat exchanger is supplied with 1400 gpm sea water

ow by the ship sea water system

Recuperator: The recuperator system consists of heat exchanger cores made

up of four core sections each, two sets of inlet and outlet ducting including

bypass and isolation valve and pneumatic valve actuator. The recuperator heat

exchanger cores are n-plated and counter ow exchangers made of 14-4

CrMo stainless steel. The recuperator can be operated in normal operating

mode as well as bypass mode in which the compressor air is directed from the

inlet duct to the outlet duct without entering the recuperator and returned

directly to the combustor. In this mode the engine is capable of achieving full

power level, however with increased fuel consumption. The bypass mode is

also used during start-up and for short term cleaning of recuperator.
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4.6.2 Statistics of WR21 Performance

Typical engine performance data for WR21 is as follows

Output Power 33,800 Bhp 12,500 Bhp
SFC 0.329 lb/hp-h 0.336 lb/hp-h
PT inlet temp 852 °C 852 °C
Exhaust Temp 355 °C 272 °C
Pressure Ratio 16.2 8.1
Air l\/lass Flow 161 lb/sec 86 lb/sec

100 % POWER 30%

POWERTable4.1: WR21 Engine Performance Data

4.6.3 Modelling ICR WR21 with 'TURBOMATCH'

The performance model of the engine is an important component of the gas path

analysis and is in fact the backbone of the any gas path analysis based diagnostics

model. The accuracy and consistency of the performance code has a profound effect on

the nal outcome of the diagnosis model and therefore requires serious consideration

right from the beginning of the development of a diagnostics model.

A reliable engine performance code requires an accurate thermodynamic model of the

engine. The accuracy of the model will be greatly inuenced by the accuracy of the

individual component maps, method of calculations, tolerances and precision

considered etc.. Rolls-Royce uses the non-linear engine performance code called the

RRAP for their engine development programmes. Using RRAP would have been an

ideal choice for the work, however after consulting the sponsors it was decided that the

in-house engine model would be used for development of the diagnostic code.

The aforesaid model has been developed using the TURBOMATCH program (Palmer,

1967) which has been developed at Craneld University. This is a modular program

which allows the calculation of the performance of any open cycle gas turbine engine

under steady state conditions. The program consists of various pre-programmed routines

called BRICKS, which simulate the performance of different components/modules in a

gas turbine engine. An engine model is created by assembling the appropriate
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component BRICKS such as compressors, turbines, combustors etc. Each BRICK

requires inlet data and the component characteristics to generate outlet data for the

component being modelled. Inlet and outlet data are termed as station vector data

since they correspond to corrected total pressure, total temperature air mass ow and

fuel ow at the engine stations. Compressor and turbine components have user dened

or built-in component characteristics in order to calculate the engine performance.

Based on the aero-thermo relationships, the program will provide gas temperatures and

pressure to various stations of the engine individual component performance and the

overall engine performance. The program enables to simulate variable or fixed

geometry for compressors and/or turbines.

The following factors influenced the decision to use TURBOMATCI-I model for

diagnostics purpose-

0 The software is generic in nature and can be adapted easily to design any engine.

0 A diagnostics model for a advanced cycle engine was being investigated for the

rst time and would require modications to the performance code to deal with

the diagnostics problem. Using TURBOMATCI-I would give the exibility to

modify the engine at anytime.

0 Sufcient expertise exists within the department to make the necessary

modifications and debug the performance code.

The engine has been assembled by individual component blocks arranged in a series and

linked thermodynamically. Each component block or a BRICK is dened by its own

component characteristics map. Figure 4.2 shows the model developed for WR21.

fr -~ ~ P*

Â»

f "Y§iT@<~ 'ííww "" "_ šš*'i*Zš"L'f^~«~º«-.^1&ß2<«iº3""`"" W -

ºº;w.~lwf"íšØ"Figure4.12: Turbomatch model of WR21
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The front end (graphical form) of the model has been shown using software called

PYTHIA (Escher, l995a). A Schematic diagram of the assembled BRICKS is shown in

Appendix-A. The TURBOMATCH input le for WR21 is placed at Appendix-B.

Design point engine performance is shown in Appendix- C.

4.6.4 Modifications to TM-ICR WR21 Performance Model

The TURBOMATCH model of the WR21 engine had to be modied to make it

compatible with the diagnostics model. The following modications were carried out-

4.6.4.1 Tolerance adjustments

One of the problems encountered while using TM model of the WR-21 was the coarse

level of accuracy of the program. In the performance model, the error tolerance was set

to 0.001 and the maximum number of iterations was limited to 20. This proved

inadequate, especially in the simulation of fault conditions in intercooler and

recuperator. Additionally, it was observed that, for consecutive runs of the performance

model under similar operating conditions, the measurements obtained were not the

same. This necessitated the reduction of convergence criteria (error tolerance) to

0.00001 and an increase in the number of iterations to 70.

4.6.4.2 Modification to Power Law Index

The WR21 engine has been developed primarily for marine application and would

therefore be coupled to a propeller through a reduction gear. In marine applications, the

power turbine rotational speed and power output follow the classic cubic law. These

modications have been incorporated in the program code.

4.6.4.3 Development of lntercooler BRICK

One of the main features of the test engine (WR21), is the inclusion of intercooler,

recuperator and theVAN. The original TURBOMATCH code did not cater for an

intercooler explicitly and the DUCTER brick was being used as an intercooler. An

exclusive intercooler brick (INTCLR) was developed, which could be used in the

performance model like any other component.
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4.6.4.4 Fault Condition Simulation for Intercooler & Recuperator

The fault conditions for intercooler have been included in the form of leakage factor and

fouling factor on a scale of 1-10 (which means percentage change). However, the model

is not stable for leakage factors above 4% for intercooler. In reality the intercooler is

quite robust and leakages are extremely rare and therefore faults have been simulated

for values less than 4%. Though the recuperator BRICK already existed, but the faults

could not be simulated. l\/Iodications have made to the program code to take into

account fault conditions.

4.6.4.5 Turbomatch as Subroutine

During the process of diagnostics, the performance model is required to be called

several times to evaluate the objective functions of the strings. This necessitates the

performance model to be called as a subroutine interactively with new sets of fault

condition. The way Turbomatch existed, it could be only run independently as a

standalone program and off-design conditions could be simulated through a script le

manually. l\/Iodications have been carried out to make the program as a subroutine in

diagnostics model.

4.6.4.6 Error Trapping

Since the diagnostics is dependent V on the output of the performance code, any

premature termination of the performance code will either lead to erroneous results or

an early termination of the host program and therefore there is a need for it to exit

gracefully in case of non-convergence or indicate to the main program of any errors.

Several modications have been made to the performance code to meet these criteria.

4.6.5 Deterioration Simulation

Deteriorated components can be simulated by modifying the appropriate component

may characteristics. Since the maps, stored in TURBOMATCH, relate to a particular

size of a component, they need to be scaled for the clean and for the deteriorated

performance. In the clean condition or performance simulation a chosen design point

establishes the sealing factors for maps. These factors are stored in TURBOMATCH
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and they are applied to all subsequent off-design point calculations. However, in a

deteriorated performance simulation the stored scaling factors are adjusted by the

appropriate change of the independent parameters. Examples of fouled compressor map

and eroded turbine map are shown in Appendix-D.

4.6.6 Engine Performance Model Validation

The engine performance model developed using TURBOMATCH was tested under

various conditions to establish its correctness. At the request of the sponsor, explicit

comparison data has been omitted from this thesis, however all that needs to be said is

that the model is broadly in agreement with the performance test data of the actual

engine. It is pertinent to mention at this point that for diagnostics purposes relative

changes in performance parameters are more important than absolute values of

performance parameters, and so from that point of view, the current work using

TURBOMATCH meets its project objective. A comparison of the engine under two

modes: VAN enabled and VAN disabled, is shown in Appendix-E. The results show

the effect of VAN on engine parameters and the conformity of the developed model to

thermodynamic principles.

4.7 Summary

This chapter discussed the salient features of the marinisation of an aero gas turbine and

the methods to improve part load efciency of an engine. The development of an engine

performance model involved extensive modications to the existing TURBOMATCH

code and addition of new BRICKS to suit the diagnostics requirement. The engine

(TURBOMATCH model) simulation showed that performance of the developed model

is reasonably close to the performance of the actual engine.

As shown earlier in chapter 3, the engine performance model is a key component of the

diagnostics model and its consistency and robustness is important for accurate fault

diagnostics. Having, developed and evaluated the performance of the advanced cycle

WR2l engine, the next step is to develop an appropriate diagnostics model. The next

chapter discusses the development of a diagnostics model for the WRZI engine and the

advantages and limitations of the diagnostics model.
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CHAPTER-5

DIAGNOSTICS MODEL FOR AN ADVANCED CYCLE ENGINE

5.1 Introduction

The GA based diagnostics method discussed in chapter-3 shows several advantages, but
has limitations when the number of measurements is small. These limitations could be
attributed to the poor observability i.e. the inability of the given instrumentation to

perceive the changes in the engine performance and identify the faulty component. This
is particularly true for lower fault levels, faults in components that have a number of
minima and for cases where a high amount of noise and model inaccuracy exists. The
limitations due to fewer instruments have been overcome by using MOPA.

Having studied the fault diagnostics method based on GAS and the relative advantages it
provides, it was decided to develop a diagnostics method for the WR21 based on the
same principle. The objective is to, based on the contributions of predecessors, develop
a diagnostics model which should be:

0 Able to diagnose fault in an advanced cycle engine;

0 Reliable with high success rate;

0 Modular and easy to adapt to any other engine;

0 Applicable to multiple sensor and multiple component faults;

0 Able to identify an optimum instrumentation set for the engine (from diagnostics

point) to be tted on an in-service engine.

The technique for the WR2l is based on MOPA and uses the concept of pareto-

optimality. This chapter presents an overview of the development of a diagnostics
model and discusses some keys issues involved in the development process and nally
discusses the results obtained from diagnostic model.

-134-



Clapter-5: Diagnostics Modelfor an Advanced Cycle Engine

5.2 Engine Fault Diagnostics Model for ICR WR-21

The WR2l engine is a two spool intercooled and recuperated advanced cycle engine
with variable area nozzle in front of the FPT. A detailed description of the engine has
been given in chapter-4. A schematic diagram of the engine is shown in gure 5.1.

RECUPERATOR
EXHAUST

INTERCOOLER

,\I

LPC HPC HPT LPT FPT

Figure 5.1: Schematic Diagram ICR WR21

A description of the development of a Multiple Operating Point Analysis (l\/IOPA)
based diagnostics framework for the ICR WR2l engine and other aspects involved with
the setting up of the diagnostics procedure is presented in the following sections:

5.2.1 Performance Simulation model for WR-21

The performance model used for the diagnostic model has been developed using an in-
house engine performance simulation code called TURBOMATCH. The design,

development and enhancements made to the engine model have been presented in detail
in chapter-4.

5.2.2 Diagnostic Model Coding

The codes developed for the project have been written in standard FORTRAN 90/95

according to the sponsor°s requirement. The program is highly modular and heavily
uses °structures° is FORTRAN to emulate the benets of an Object Oriented

Programming (OOP) approach. The intention was to make it user friendly and generic
in nature to adapt it to any engine in future with minimal modications to the existing
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code. Minimum use of built-in functions have been made. All the modules of the

program have been compiled with Digital Visual FORTRAN (DVF) Version 6.0.

5.2.3 WR21 Fault Classes and Performance Parameters

For the purpose of engine diagnostics of the twin spool engine the following seven

components are considered:

0 LPC

0 HPC

0 INTERCOOLER

0 I-IPT

0 LPT

0 FPT

0 RECUPERATOR

lt is noteworthy that although a change in combustor outlet temperature profile is

usually caused by a fault in the combustor, the combustor deterioration is not considered

to directly affect the engine performance (Escher, l995a). Combustion efciency

normally remains constant with time (Diakunchak, 1992). Therefore the combustor

faults have not been considered in the diagnostic model.

The diagnostic framework for the WR-21, which has 7 components, in the case of single

component fault will have 7 fault classes. In case dual component faults are considered,
the total number of fault classes will comprise of fault classes with single components
and fault classes with combinations of any two components. Thus, there will be

7+7C2 = 28 fault classes. In order to reduce the smearing effect, a constrained

optimisation is used .It is assumed that not more that two components (four performance

parameters) are simultaneously faulty. The distribution of the fault classes is shown in

table 5.1. Two performance parameters are associated with each component i.e. the

efficiency and flow capacity. In the case of intercooler and recuperator the performance

parameter monitored are fouling factor and leakage factor.
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Fault Class Components in Fault Class Performance Parameters(PP) of Components
Component-I Component-2 PPC V,FC-l LPC 0m| PPC<m|º-l Comp-2 pPC 2EF FC - -

FC-2 HPC EF
FC-3 ICL EF
FC-4
FC-5

H PT
LPT

EF
EF

FC-6 FPT EF
FC-7 RCR FF
FC-S LPC HPC EF EF FC
FC-9 LPC ICL EF FF LF
FC-lO LPC HPT EF EF FC
FC-Il LPC LPT EF EF FC
FC-I2 L PC FPT EF EF FC
FC-I3 LPC RCR EF FF L F
FC-l4 H PC ICL EF FF LF
FC-15 H PC HPT EF EF FC
FC-I6 HPC LPT EF EF FC
FC-17
FC-13

HPC
HPC

FPT
RCR

EF
EF

EF
FF

FC
LF

FC-19 ICL HPT FF EF FC
FC-20 ICL LPT FF EF FC
FC-2| ICL FPT FF EF FC
FC-22 ICL RCR FF FF LF
FC-23 H PT L PT EF FC
FC-24 HPT FPT EF EF FC
FC-25 HPT RCR EF FF LF
FC-26 LPT FPT EF EF FC
FC-27
FC-28

LPT
FPT

RCR
RCR

EF
EF

FF
FF

LF
LF

EF 1 Efcieicy Fouli ng Factor LF : Leakage factor FC: Flow Capacity

Table 5.1: ICR WR21 Fault Class Distribution

5.2.4 Environment & Power Setting Parameters

The WR2l diagnostics model operates on the principle of multiple operating point

analysis and therefore two operating points were considered for diagnostics. The choice

of operating point is an important aspect of the diagnostics model. Operating points
which are very close may not provide any additional information while operating points
far away from each other means different aerodynamic conditions which means that the

change in efciencies and flow capacities with change in operating condition is

significant. A detailed analysis on the choice of operating points is presented in chapter-
7. The operation of performance model has been considered in two modes. (a) MODE-
1: TET as handle (b)MODE-2 : Power as handle. The operating points used in

diagnostics are shown in table 5.2.
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MODE-1 (TET As HANDLE)
Fuel Flow Ambient Temp Ambient Press Humidity VAN Angle
(WFE) lb/s (T0 ) deg K (P0) Atms (%) degrees

OP-1 2.20 308.15 1.0 N.A 5
OP-2 2.00 308.15 1.0 N.A 4

MODE-2 (Power as Handle)
Power Ambient Temp Ambient Press Humidity VAN Angle
(HP) (T0 ) deg K (P0) Atms (%) degrees

OP-1 26,400 308.15 1.0 N.A 5
OP-2 24,000 308.15 1.0 N.A 4

Table 5.2: Environment and Power Setting Parameter for WR21 Diagnostics

5.2.5 Selection of Instruments

The WR-21 engine will be primarily used for marine propulsion directly or as a source
of power in an all-electric ship configuration. Due to the nature of its application (where
there are no space or weight constraints like in aircraft engines) it was easier to choose
the instruments. The WR-21 is still undergoing trials and therefore uses the test bed

instrumentation and the number of instruments to be used on the production engine
when tted on board a ship has not been nalized.

The choice of sensors play an important role in the final outcome of the diagnostics

process as the only information available from any engine is the sensed parameters.
One of the aims of this work was to establish an optinum instrumentation set which

could be tted on the engines used on-board ships and which could cater to the

diagnostics requirements adequately.

One approach to obtaining an appropriate sensor set is by deliberately implanting faults
in the GT components and observing simultaneous effects on the measurement

performance parameter and hence seeking the optimal combination of dependent
variables that can describe such faults. This combination will facilitate the choice of

types and locations of the sensors required for the diagnosis of the faults also the gas

path.
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Ogaji and Singh (2002) and Ogaji et al (2002) have undertaken a study on the

optimisation of measurement sets for gas path fault diagnostics in GTS. The studies
involved the use of non-linear GPA techniques to obtain various measurements
combinations that demonstrated high degree of observability for the fault combinations

implanted on a thermodynamic engine model.

Experiments were conducted with various sets of instruments and the following

instrument suite has been chosen due to the following reasons:

(a) The chosen instrument is representative of the engine in the diagnostics sense.
As discussed earlier the observability of the chosen instrument is an important

parameter for selection.

(b) Consultations with the sponsor brought out the possibility of using these

instruments for collection of data from engines when tted on-board ships.

SL. NO DESCRIPTION NOMENCLATURE TYPE OF
SENSOR

Ä±

HP Compressor (Inlet) P2 Pressure

I)

HP Compressor (Exit) P3 Pressure

DJ

Intercooler Differential PICD Pressure

->

HP Compressor (Inlet) T2 Temperature

K±̀

HP Compressor (Outlet) T3 Temperature

O\

Combustor (Inlet) T31 Temperature

\

Power Turbine (inlet) T43 Temperature

O

Power Turbine (Exit) T5 Temperature

\

HP Shaft Speed NH Tachometer

Ä±
Â©

LP Shaft Speed NL Tachometer

,..

VAN Angle AVAN Position Sensor

Table 5.3: ICR WR21 Instrumentation Set

It can be seen that the rst measurement towards the hot end is the FPT inlet

temperature. The VAN position is an important parameter as the control system will try
to change the value of VAN angle in order to maintain a constant power turbine inlet

temperature. However, the sensor measuring VAN angle is not used by the diagnostics
model.
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5.2.6 Performance Parameters Monitored

The WR-21 engines health is modelled using seven components and for the purpose of

diagnostics, two performance parameters for each component are monitored. In all 14

independent parameters are monitored by lO sensors. It may not be adequate for a
traditional GPA diagnosis. l-lowever, from the point of GA based diagnosis using

MOPA, it seems to be a comfortable situation. Among the performance parameters
monitored are the Leakage Factor (LF) and Fouling Factor(FF) for the intercooler and

recuperator. The fouling factor reduces the heat exchange efficiency of the

intercooler/recuperator and therefore affects the engine performance. Table 5.4 shows
the various performance parameters monitored for the WR-21 engine.

SL COMPONENT PERFORMANCE PARAMETER MONITORED
NO

l LPC Efciency Change (An) Flow Capacity Change (AF)
2 HPC Efciency Change (An) Flow Capacity Change (AF)

Ld

ICL Fouling Factor (AFF) Leakage Factor (ALF)

-Å¡

HPT Efciency Change (An) Flow Capacity Change (AF)

L1

LPT Efciency Change (An) Flow Capacity Change (AF)

O\

FPT Efciency Change (An) Flow Capacity Change (AF)

\

RCR Fouling Factor (AFF) Leakage Factor (ALF)

Table 5.4: ICR WR21 Engine Performance Parameters

5.3 WR 21 GA Diagnostics Model

The structure of the diagnostic system for WR-21 engine is shown in gure 5.2. The

diagnostics model receives the engine measurements from two different operating

points (steady state) and the two power setting parameters as input. Different faults are

implanted into the performance model and measurements for the corresponding fault

conditions at different operating point are obtained. The measurements are optimized

using MOPA similar to the method discussed for the RBI99 in chapter-3.
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Figure 5.2: Schematic Diagram WR21 Diagnostics Strategy

5.3.1 Objective Function for optimisation

The objective function to be optimised is a function of the performance parameter
vector (effciencies and ow capacities) and the environment and power setting

parameter vector (e.g. ambient pressure and temperature and fuel ow). There are two

expressions which can used for optimisation as given by Zedda (1999)-

Jo) =
_:WºW)F (5.1)

V.

Z U WO'

If the noise values considered are pure gaussian, then equation 5.1 can be used

-h].(x,w)
./(x) = _l

otherwise the eqution 5.2 is more robust for optimisation

l
(5.2)

T
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3.2 Constraints on Performance Parameter

The diagnosis process is carried out by the optimization of a given function. The GA

optimization process starts with a set of randomly chosen population (collection of

strings). These strings are obtained by implanting faults (deviations in performance

parameters) into the performance model and getting a set of measurements in return.
The measurements are then compared with the actual measurements obtained from an

engine. However, a constraint is placed on the range, within which the algorithm will

generate the strings. The following constraints have been placed
0 Efciency Change (An) : 0 to -3.5 %

0 Flow Capacity Change (AF) : -5.0 % to +5.0 %

0 Leakage Factor (AFF) : 0-10%

0 Fouling Factor(AFF) : 0-10%

Leakage Factors and Fouling factors are applicable to the intercooler and recuperator.

The fouling factor basically changes the heat exchange effectiveness (e) of the heat

exchangers and the leakage factor causes the working uid to escape to the atmosphere.

During the process of genetic operation, particularly mutation, care is taken that the

value of deviation is maintained within the predefned bounds.

5.3.3 Constraint on number of faulty components

While sensible assumptions can be made regarding the range of Variation of the

performance parameters x°, it is important to place constraint on the number of

components faulty simultaneously. The need for such a constraint arises due to

smearing effect. lt is assumed that not more than two components are simultaneously

faulty in the WR-21 diagnostics model.

5.3.4 Measurement Noise

The presence of noise in a real life situation cannot be ruled out. Whenever Gaussian

Probability Distribution Functions (PDF) can be considered a reasonable model of the

noise, the equation (5.1) can be used. However, in reality the measurement noise PDF

may not be perfectly Gaussian, for a number of reasons:
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0 In practice the occurrence of readings outside of the Gaussian Models three

standard deviation range is common (Zedda, 1999).

ø Modelling errors are inevitably present in the simulation models of gas turbine

performance.

In view of the above, the objective function using the absolute values (equation 5.2) and
not the squares of the values is more suitable for the given problem. Table 5.5 shows the

standard deviation values for senor non-repeatability as provided by the sponsor.

SL DESCRIPTION STANDARD TYPE OF
NO DEVIATION SENSOR

,.

HP Compressor (Inlet) 0.25/3 Pressure

l.

HP compressor (Exit) 0.25/3 Pressure

U)

lntercooler Differential 0.25/3 Pressure

4~

HP Compressor (lnlet) 200.0/(3*measured value) Temperature

K1

HP Compressor (Outlet) 200.0/(3*measured value) Temperature

O

Combustor (Inlet) 200.0/(3*measured value) Temperature

\

Power Turbine (inlet) 200.0/(3*measured value) Temperature

O

Power Turbine (Exit) 200.0/(3*measured value) Temperature
9 HP Shaft Speed 0.1/3 Tachometer

Tachometer10 LP Shaft Speed 0.1/3
11 PT Shaft Speed 0.1/3 Tachometer
12 VAN Position - Position Sensor

Table 5.5: Instrument Noise Standard Deviation

Standard deviation (0) values for environment and power setting parameters are:

0 o'.,;º =(250/(3.0*measured value) (Ambient temperature)

0
O-V" = 0.1/3. (Ambient pressure)

0 a,.. = 0.5/3. (Fuel ow)

5.3.5 Test Data Generation

As described earlier the WR-21 is a development engine and no statistics of its

performance in actual ship board applications is available yet. The process of engine
fault diagnostics requires that the measurements be collected from a degraded engine
and compared with parameters obtained from an engine model. However, it was not

possible to get data from actual operational engine and therefore simulated
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measurements have been used for fault diagnostics. The module GENERATE (Part of
the diagnostics program and is explained in chapter-6) has been specifically developed
to generate test data. The test data generation needs the following inputs from the user-

0 Mode of Operation (MODE1/MODE2)
0 Environment and Power setting parameters (two different operating point)
0 Fault condition (deviations in performance parameters)
0 Number of sensors biased

0 Levels of sensor bias

The test data generator module in turn feeds the above data into the engine performance
code and gets a set of measurements which can be used as input to the optimisation
module. A sample of a generated test data is shown in Appendix-F _

5.3.6 Sensor Fault Detection

Zedda (1999c) had developed a method for the identification of biased sensors. The

method explained here was developed for the EJ200 and subsequently used for the
RB199 by Gulati (2002c). The same method has been adapted for the WR-2l engine

diagnostics model.

Zedda (1999c) showed equation (5.2) can be modied to deal with measurement bias as

the presence of a bias will introduce inconsistency between the actual and predicted
measurements. The way the optimisation-based diagnostics handles the measurement

biases relies on the concept of the relative redundancy. If no bias affected the
measurement then the minimisation of the objective function (equation 5.2) would
estimate (x,w) so that the equations used in the terms of the summation would be

mutually consistent. The inconsistency due to biased measurement would manifest itself

with larger values of objective function, since no (x,w) can be found to correspond to

predicted measurements tting sufciently well the real one. The problem can be
overcome by elimination in the summation of function (5.2) the Mb,-S terms

corresponding to the biased measurements. Then the remaining terms are mutually
consistent and the optimised function will reach a low value . For the technique to work
it is necessary that
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M' Mbias >

NPerf+PThisredundancy relative to the number of fault affected performance parameters is

required because if M - Mb,-S = N f+ P then any choice as to the identity of the biased

measurements would produce a consistent solution.

In the case considered the relative redundancy is guaranteed by the assumption about

the maximum number of faulty engine components, which is acceptable for fault

diagnosis. In this respect it is worth noting that the sensor validation task can be feasible

even if the number of measurements is smaller that the number of performance

parameters (l\/l<N), provided the inequality (5.3) still holds. Due to the large level of

measurement noise, the larger the LHS with respect to the RHS the better it is, as the

redundancy is larger.

Typical SFDIA techniques proceed in three sequential steps: whenever a fault is the

instrumentation set is detected the faulty sensor is isolated then the measurement is

possibly accommodated. The approach described here is different and made of two

steps. M,~S is chosen at the onset of the analysis so that an M,º, number of

measurements are not used in the objective function. The first step is the optimisation

that produces an estimation of the performance parameters x and the environment and

power setting parameter w. As knowledge of possible measurement biases can be useful

for the future analysis, the second step consists of running the simulation code in the

synthesis mode to calculate, given the estimated (x,w), the values of the Mb,-S

measurements not used in the optimisation. If the difference between the actual and

predicted measurements is larger than a threshold based on the noise standard

deviations, then SFDIA is effected, otherwise the outcome of the analysis is that no

bias is present and estimation (x,w) has been done by using the subset of measurement

providing the best consistency.

Since the identity of the faulty sensors is unknown, a combinatorial search has to be

done for every (x, w) to nd the selection providing the lowest value. If for example, 4
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biases are assumed to be present, every time the objective function J(x,w) has to be

evaluated during the optimisation procedure, the following set of functions are

calculated be sequential elimination of 4 measurements;

M
lz.-h.(x,w)lJ (X, W) = "*_ (5.4)kl

vlº:l§ 11 ZW!/4 l O-_/_

the value assigned to the objective function will be :

J(x, w) = /nliin J,, (x,w) (5.5)

in general, the number Q of evaluations of J(x,w) to choose from is equal to the number

of possible combinations (Zedda, 1999).

M M!
Q = =i- (5.6)

Mhi.v Mba.v _

Mbia.rWhendealing with engines, the following points will have to me made-

(a) Noise is taken into account by weighting the terms to be added in the objective

function. The minimum value will not be zero but the minimisation is nished, a

simple check on the magnitude of the objective function can suggest if there is

anything wrong with the analysis.

(b) A large redundancy is usually available as the number of fault affected is

assumed to be significantly smaller than the number of sensors.

Environment and power setting parameters biases are dealt with in a different way, as

they basically affect most of the terms in the summation. A bias in any of these

parameters is likely to increase the value of most terms and therefore of the overall sum.

Whereas, a two step SFDIA is carried out for biased measurements, SFDIA is

automatically performed for the environment and power setting parameters, as they

have to be guessed by the optimiser.
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5.3.7 Setting GA Parameters

In order to get the GA diagnosis process started, an initial population of strings

(potential solution) needs to be generated. This is a supervised generation as all the

strings generated are within the constraints. The following GA parameters are to be set

initially for the process to progress:

(a) Population Size: The importance of the population has been discussed earlier in

chapter-3. In case of a very low population there are problems of premature

convergence, inability to deal with noise, deception and multimodal problems. Using a

population that is very large also has its own problems, like the requirement of more

computational resource that may not justify the small gains achieved in accuracy.

There is no xed rule about the size of the population and it is a matter of experience.

An initial population of 80-100 strings per fault class has been used in this work. The

aim is that the initial population reasonably covers the entire range of possible faults i.e.

there is sufcient diversity in the population.

(b) Probability of Crossover (PC): there is no strict rule to set this parameter and is

again a matter of experience. Various values between 0.1 to 1.0 were investigated and

the PC for the WR2l Diagnostics have been set to 0.6.

(c) Probability of Mutation (PW): l\/Iutation causes small changes in the performance

parameters at random. Mutation is an important parameter in the diagnostics as it

produces new strings and therefore increases the diversity. It is usually kept at 0.05 to

0.l in the case of binary coded GAs. However, engine diagnostics being a special case,

the probability of mutation (PM) case, after experimenting with various value it has been

set at 0.4.

5.4 Operation of GA Diagnostics Model

The process of GA diagnostics starts with the generation of specied number of strings

(initial population) randomly within the specied range. The objective function for each

string is calculated and mapped against as tness value such that a high tness indicates

a low value of objective function which in turn means a close match of actual and
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simulated parameters. After the evaluation of tness, the strings undergo three basic

genetic operations: selection, crossover and mutation.

0 Selection/Reproduction: Selection is the procedure where the individual strings go

into the next generation based on their tness values. The higher the tness the

greater is the probability of the individual being selected for the next generation.

The algorithm used for selection procedure is SUS - Stochastic Universal Sampling

algorithm (Baker, 1987).

C SUS: this algorithm has been developed by Baker (1987). According to

Baker, on a standard spirming wheel there is a single pointer that indicates

the wimier. The Stochastic universal sampling algorithm is analogous to a

wheel with N° equally spaced pointers, a result of which is that a single spin

results in N° winners. This algorithm has a zero bias, which means that the

absolute difference between an individuals actual sampling probability and

its expected value is zero. In terms of efficiency of computational time, this

algorithm requires the minimum resources to get a zero bias when compared

to other techniques available for such purposes.

t Pareto-Optimal Optimisation: in the case of MOPA, two sets of population

from different operating points are generated. Fitness values are assigned to

strings using the concept of pareto-optimality. The technique has been

explained in section 3.6.3.

0 Crossover: the operation produces a new offspring which constitutes parts from

parents. The change in composition of the performance parameter vector would

produce a new string.

0 Mutation: mutation is an important process as it produces entirely different strings

by making small changes to a randomly chosen element of a performance

parameter vector.

When a set of population has been subjected to the three operations mentioned above, it

is said to have completed one generation. The string with the highest tness value in a

generation is taken to be the closest match between the actual and simulated
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measurements. The process records the value of the lowest objective function, the

values of performance parameter deviation(s) and environment and power setting

parameters producing the lowest objective function. The sane procedure is repeated

again and the string with highest tness value is identied. If the tness of the current

string is higher than the string from the previous generation, the current string is

assumed to be the solution else the string from the previous generation remains to be the

solution. This process is repeated till a predened number of generations are completed.

On completion of one fault class, the same search process is repeated with the next fault

class for same number of generations. On completion of the search process with all the

fault classes, the fault class having the lowest objective function is indicative of the

faulty component(s). The performance parameters producing the lowest objective

function are indicative ofthe magnitude ofthe faults.

5.4.1 Population Compensation

One of the difculties in running the GA diagnostics is the problem of performance

model convergence. It is possible that the engine performance model may not converge

for certain values or may reach the maximum iterations limit. In such cases the

objective function will not be calculated and hence a string will be lost. lf repetition of

such condition is allowed then the population size will decrease. In order to compensate

for the lost string, the diagnostics systems regularly monitors the population size and

generates new strings to compensate for the lost ones.

5.4.2 Results from Engine Fault Diagnosis

Some of the results obtained from the engine diagnostics model are presented in this

section:

(A) FAULT CASE-1 ;

COMPONENTS COMPONENT-l COMPONENT-2 FAULTY SENSORS

LPT ° W _ _
Comp-l Comp-2 An AF Ar' AF Sen-l Sen-2

- -2Aº + 0 - -

Table 5.6: Fault case -1 (Single component fault)
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Fault case-1 is a simple case with a single component fault and no measurement noise &

sensor bias. Figure 5.3 shows the search space for LPT. Every point on the surface plot

is a potential solution but the best solution is the string having the lowest objective

function. It is evident from the figure that the search space is fairly smooth and global

minimum is clearly dened. Intuitively, one could say that the optimisation process

would be fairly simple and the algorithm would converge in a reasonably short time

with minimum resources.

ooy

7s_

_ Minimum
J so Objective` Function

25
J- / L/ -3.0

0
0 I `.` `»_-lg 1

.s3.03'"
An

Figure 5.3: Search Space for LPT Fault

The result from fault diagnostics is shown in table 5.7. The result shows the input

measurements which are simulated for a. given fault condition. From the table it can be

observed that the diagnostic model has not only identiñed the component correctly but

has also quantied the fault correctly. The diagnostics process starts with the

assurnption that environment and power setting parameters are biased. These parameters

are also subjected to the GA optimisation process and algorithm identies the correct

values.
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Performance Engineering Group, Cranfield University
Test Case: WR2l/DIAG/97 TIME/DATE: 13:14:29 [13-Jan-O2]

ENGINE

HP
HP
IC
HP
HP

M©\.O@\JO'\U`lJ>L.Jl\)I-'

HP
LP

ENGINE

HP
_ HP

IC
HP
HP

)'©LO(D`IG\U'|J>L,«.I\)º-'

HP
LP

Compressor(In)
Compressor(Exit
Differential
Compressor(In)
Compressor(Exit)

Combustor Entry
Power Turbine(In)
Power Turbine(Exit)

Shaft Speed(RPM)
Shaft Speed(RPM)

Compressor(In)
Compressor(Exit
Differential
Compressor(In)
Compressor(Bxit)

Combustor Entry
Power Turbine(In)
Power Turbine(Exit)

Shaft Speed(RPM)
Shaft 5peed(RPM)

Fault Detected

Component

MEASUREMENTS (operating Point:

2
ll

0
312
513
794

852
8249.
6271

MEASUREMENTS (Operating Point:

2
10

O
311
505
774

1082
828

8149
6111

(Change in Component Performance Parameters in %age)

1)

510387659072876
438918113708496

.051232337951660

.959960937500000

.784912109375000

.278564453125000
1119. 839599609375000

17lO20507812500
17871093750000O
975585937500000

2)

4490752220153B1
84l490745544434

.O4998l117248535

.83038330078125O

.241882324218750

.85546875000O000
6l0351562500000

.068298339843750
9345703125000OO

.7734375000OO000

(Pressure )
(Pressure )
(Pressure )
(Temperature)
(Temperature)
(Temperature)
(Temperature)
(Temperature)
(Tachometer )
(Tachometer )

(Pressure
(Pressure
(Pressure
(Temperature)
(Temperature)
(Temperature)
(Temperature)
(Temperature)
(Tachometer
(Tachometer

-1 I Component~2

Efficiency Mass Flow | Efficiency | Mass Flow

-1.9903 (LPT) 2.9653 (LPT) 0.0000 ( ) 0.0000 ( )

Estimated Environment & Power Setting Parameters

Operating Point-l I Operating Point-2 |

Power/Fuel | Temperature I Pressure | Power/Fuel | Temperature | Pressurel

264l2.1406 308 1270 1.0002 24023.8535 308.0819 0.9999

Faulty Sensors

Sensor-1 ) Sensor-2 1

Sensor-1 Position | Type I Sensor-2 Position | Type 1

| _ i - I ' |

Table 5.7: Diagnostics for single Component fault
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INTERCOOLED RECUPERATED-WR2l FAULT CLASS ANALYSIS

FC |Min.Obj.| Best l Efficiency
|Function|String|-----------------------
l I | Compl l Comp2

4.3721 -1.4653 (LPC) 0.0000
3.8228 -2.7862 (HPC) 0.0000
4.7777 -1.9497 (I/C) 0.0000
3.9468 -2.3099 (HPT) 0.0000

Flow Capacity |

Compl I Comp2
1192 (LPC) 0.0000
6649 (HPC) 0.0000
0606 (I/C) 0.0000
9929 (HPT) 0.0000

U

|

0.8446 -1.9903 (LPT) 0.0000

A

V

9653 (LPT) 0.0000

A

V

K2)`lG\

4.0959
5.8946
4.5922

9 4.6442
10 5.8592
11 3.8422
12 7.2369
13 4.8389
14 1.9531
15 5 9061
16 4.4693
17 6.7506
18 4.4511
19 6.1135
20 7.8588
21 7.1733
22 5.0425
23 8.5266
24 3.6035
25 4.3155
26 4.9665
27 5 5562
28 4.8543

l\ºº-=l\)º-=NNl\º|\ºl\ºº-'º-ºº~º-4l\º-=I\)º~I\ºº-'Ni-Ii-Ii-I

1.7613
1.0233

7779
0.8943
1.2734

6287
9262
7345
5377

0.3005
0.2230

5231
2569
7783

1.0646
0.0459

9787
3454
9043
4158
1771

2.8358
2.4600

(FPT)
(R/C)
(LPC)
(LPC)
(LPC)
(LPC)
(LPC)
(LPC)
(HPC)
(HPC)
(HPC)
(HPC)
(HPC)
(I/C)
(I/C)
(I/C)
(I/C)
(HPT)
(HPT)
(HPT)
(LPT)
(LPT)
(FPT)

0000
0000
4860

.7429
9227
4903
0881
7153
3527
6482
5101
3809
1942
6650
9048
3922
8087
0740
4419
0690

.O777
9183

.0191

( )
(HPC)
(I/C)
(HPT)
(LPT)
(FPT)
(R/C)
(I/C)
(HPT)
(LPT)
(FPT)
(R/C)
(HPT)
(LPT)
(FPT)
(R/C)
(LPT)
(FPT)
(R/C)
(FPT)
(R/C)
(R/C)

0706
1761
3764
9884
1726
6245
7205
6054
2024
3999
1568
3552
0561
4866
3889
3387
6842
1058
4328
4940
0823
5937
3962

(FPT)
(R/C)
(LPC)
(LPC)
(LPC)
(LPC)
(LPC)
(LPC)
(HPC)
(HPC)
(HPC)
(HPC)
(HPC)
(I/C)
(I/C)
(I/C)
(I/C)
(HPT)
(HPT)
(HPT)
(LPT)
(LPT)
(FPT)

0000
0000
1549
6526
4154

.7209
5665
3655
1471

.0483
6686
9873
2824
2518
8632
1106
1191
5466
0177
3890
5914
5894

.0987

(
(HPC
(I/C)
(HPT)
(LPT)
(FPT)
(R/C)
(I/C)
(HPT)
(LPT)
(FPTâº
(R/Ci
(1-(PT)
(LPT)
(FPT)
(R/C)
(LPT)
(FPT)
(R/C)
(FPT)
(R/C)
(R/C)

Table 5.8: Minimum objective functions for a single Component fault

The diagnostics model, at the end of its search of one fault class, retains the string

producing the minimum objective function. This procedure continues till all the fault

classes are searched. Then the minimum objective functions of all the fault classes are

compared and the fault class with the lowest objective function is indicative of the

faulty component(s). In this case, it is fault class-5. The minimum objective functions of

each class along with the strings producing it have been shown in table-5.8. A

comparison of the minimum objective functions is shown in gure 5.4. It is evident

that the objective function associated with fault class-5 is distinctly the lowest (or the

global minimum) and the second lowest objective function is signicantly large when

compared with it. This gives more condence in the result obtained.
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Figure 5.4: A Comparison of minimum objective functions (Fault case-1)

FAULT CASE-2

COMPONENTS COMPONENT-l COMPONENT-2 FAULTY
SENSORSComp-lComp-2 A1] AF An AF Sen-l Sen-2

LPC HPT -1% -3% -2% 3% HPC(in) (Temp)

Table-5.9: Fault Case-2 (Multiple component fault)

The second fault case considers a more complicated case. Two components are

simultaneously faulty and one sensor is biased. The diagnostics result for the given fault

condition is presented in table 5.10. The faulty components have been identied

correctly and the component performance deviations have been quantied reasonably

close to the implanted values. Table -5.11 shows the minimum objective functions of all

fault classes along with the strings associated with them. In the case of multiple

component faults, it is not possible to plot a search space for a preliminary assessment

of the diagnostics as there are four variables and therefore some kind an intelligent

inference will have to be made from the search spaces of single components. The

diagnostics module has identied the faulty sensor also accurately.
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Test Case: wR2/DIAG/ 164

ENGINE

W(3\.OCO`.)O\U`\ºI>(,JI\.))-'

HP
HP
IC
HP
HP
Combustor

HP
LP

ENGINE

I'©LO(I)\I(T\U¬~I>LºJl\))-1

HP
HP
IC
HP
HP
Combustor

Fault Detected

Power Turbine(In)
Power Turbine(Exit)

shaft speed(RPMâº
Shaft Speed(RPM)

Power Turbine(In)
Power Turbine(Exit)
HP shaft speed(RPMâº
LP shaft Speed(RPM)

MEASUREMENTS (Operating Point

Compressor(In) 2
Compressor(Exit
Differential O
Compressor(In)
Compressor(Exit)

11

313

Entry

MEASUREMENTS (Operating Pøint

Compressor(In) 2
Compressor(Exit
Differential 0
Compressor(In)
Compressor(Exit)

11

312
510
775

1082
827

8059
6238

Entry

Component

519.
799.

1125.
856.

8139.
6389.

TIME/DATE: 11:26:02 [26-Mar-02]

1)

483951568603516
707879066467285
050692796707153
2469482421875O0
84899902343750O
3447265625000O0
060424804687500
787475585937500
945800781250000
4033203125000OO

2)

424779653549194
112280845642090
O49485206604004

.0887451171875O0
319183349609375
48199462890625O
279663085937500

.828247070312500
117675781250000
931640625000OOO

(Pressure
(Pressure
(Pressure )
(Temperature)
(Temperature)
(Temperature)
(Temperature)
(Temperature)
(Tachometer )
(Tachometer)

(Pressure
(Pressure
(Pressure
(Temperature
(Temperature
(Temperature)
(Temperature)
(Temperature)
(Tachometer)
(Tachometer )

-1 I Component-2

(Change in Component Performance Parameters in %age)

Efficiency l Mass Flow I Efficiency I Mass Flow

-1.1100 (LPC) -2.9231 (LPC) -2.1469 (HPT) 2.8522 (HPT)

Power/Fuel I

26399.7930

Estimated Environment & Power Setting Parameters

Operating Point-1 ( Operating Point-

Temperature ( Pressure | Power/Fuel | Temperature
308.1270 1.0002 24006.4980 308.l879

Faulty Sensors

Sensor-1 I Sensor-2

2 |

] Pressurel

1.0001

Sensor-1 Position | Type | Sensor-2 Position | Type I

HPC (IN) ( Temperature

*+*++ **   ++**+ ±+*+**+±**++*+ ~+ «++ *++«±++++*+++++++++***~++++~4«~»+++++##+

Table 5.10: Diagnostics Results for Fault case -2
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INTERCOOLED RECUPERATED-WR2l DIAGNOSIS REPORT

Min.Obj.( Best | Efficiency | Flow Capacity
|Function|String|

6.7505
9.0606
5.9135
6.7319
7.3923
5.5666
6.7886
5.8615
5.8142

º-=º-º-=l\ºº-'I\ºI\ºI\)º-'

Compl
1
2
1
1
2
2
0
1
1

.2016

.7494

.6652

.7452

.9343

.6675

.4854

.7671

.5328

(LPC
(HPC
(I/C
(HPT)
(LPT)
(FPT)
(R/C)
(LPC)
(LPC)

1 Comp2 l Compl | Comp2
0000

0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.2904

-1.6411

0.

( )
(HPC)
(I/C)

2.3396
1.0003
1.
2.9760
0.4016
0.
1.
2.8467
2

9898

3746
9903

.3188

(HPT) 0
(LPT) 0.
(FPT) 0.
(R/C) 0.
(LPC) -0.
(LPC) 0.

10 2.3451

l'

1 .l100 (LPC) -2.8522 (HPT) 2.9231

(LPC) 0.
(HPC) 0.
(I/C) 0.

.0000

0000
0000
0000

0000
0000
0000
4542
0686

ZLPcí( )

(HPC)
(I/C)
Tái±šâº

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

7.2606
4.2362
6.5680
5.3516
5.8133
6.6194
6.6270
6.2473
4.4438
6.1016
4.4159
6.4770
5.7875
4.6026
2.3878
3.8488
5.8154
4.1963

l\)º-'l\Jº-~l\ºº-'l\.ºº-=º-l\ºl\ºI\>º-º-=º-1º-=l\ºN

1
0
1
0
0
0
0
1
1
0
0
1
2
0
2
2
1
1

.4000

.3372

.9860

.5432

.9397

.5964

.3266

.4848

.210O

.5086

.1685

.9322

.7214

.9806

.1301

.9521

.6447

.3633

(LPC)
(LPC)
(LPC)
(HPC)
(HPC)
(HPC)
(HPC)
(HPC)
(I/C)
(I/C)
(I/C)
(I/C)
(HPT)
(HPT)
(HPT)
(LPT)
(LPT)
(FPT)

-1.2723
-1.3253
-0.6222
-1.5986
~2.7255
-2.5524
-2.6149
-1.6298
-1.4469
-1.7781
-2.1258
-1.3166
-1.4607
-0.5152
-1.4615
-2.7340
-1.6304
-1.0570

(LPT)
(FPT)
(R/C)
(I/C)
(HPT)
(LPT)
(FPT)
(R/C)
(HPT)
(LPT)
(FPT)
(R/C)
(LPT)
(FPT)
(R/C)
(FPT)
(R/C)
(R/C)

1.8538
2.0860
2.7450
0.8651
1.
0.2493
1.0158
0.
1.
1.
1.
1.
2.
2.7922
2.
1.
0.
0.

5678

6226
5231
5722
8673
2007
8805

9062
5314
6370
8979

(LPC) 1.
(LPC) -0.
(LPC) 0.
(HPC) 1.
(HPC) 2.
(HPC) -0.
(HPC) -O.
(HPC) 1.
(I/C) 2.
(I/C) 1.
(I/C) -0.
(1/C) 1.
(HPT) -0.
(HPT) 1.
(HPT) 1.
(LPT) -2.
(LPT) 1.
(FPT) 1.

2552
0651
4100
3629
8094
1929
7725
8201
8522
1325
9842
9777
3911
5112
9774
5981
6370
7962

(LPT)
(FPT)
(R/C)
(I/C)
(HPT)
(LPT
(FPT
(R/C
(HPT)
(LPT)
(FPT)
(R/C)
(LPT)
(FPT)
(R/C)
(FPT)
(R/C)
(R/C)

nve Funct oOmemM'n

10

9

8

7

6

5

4

3

2

1

0

Table 5.11: Diagnostics Results for Fault case -2
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A comparison of minimum objective funtions of various fault classes is shown in

figure 5.5. It can be seen that there are two fault classes with very close values of

objective funtions. (FC-10 & FC-25). This is an important observation from the

diagnostics point of view. Such fault classes are called competing fault classes. Since

the whole process of GA diagnostics is based on random application of the genetic

operators, it is possible that the string producing the best objective function crosses-over

with another stirng to produce an offspring which may not produce the minimum

objective fucntion. Such a situation can arise through mutation of the best string also.

Another, important observation from the above results is that the competing fault

classes have one component common among themselves i.e. HPT. lt can be inferred

that that the common component is defntely faulty and other component has to be

ascertained.

FAULT CASE-3

COMPONENTS COMPONENT-l COMPONENT-2 SENSORS
Comp-l Comp-2 An AF An AF Sen- 1 Sen-2

HPC LPT -2% -4% -1% 3% l-lPC(in) HPC (Exit)
(Temp) (Press.)

Table 5.12: Fault case - 3 (Multiple component fault)

The third fault case considers two simultaneously faulty components and two biased

sensors. The diagnostics result for the given fault condition is presented in table 5.13. It

can be seen that the components have not been identied correctly, while the faulty

sensors have been identied correctly Table 5.14 shows the minimum objective

functions for all fault classes and a comparison of the minimum objective functions is

shown in gure 5.7. This is a special case and has been shown to explain the difculty

in identifying a faulty component in the face of competing fault classes. The result

shows that there are six competing fault classes. A close look at the fault classes shows

that FC- 16 produced the second lowest objective function. The faults quantied are

also very close to the implanted fault. lt shows that, had there been better local tuning

in FC-16, the objective function could have been further reduced and the faulty

components could have been identied correctly.
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Test Case:WR21/DIAG/ 172 TIME/DATE: 22:05:43 [03-Jul-02]

ENGINE MEASUREMENTS (Operating Point

1»O m m 4 ® w b w N H

ENGINE

HP
HP
IC
HP

Commpressor(In)
Compressor(Exit
Differential
Compressor(In)

HP Compressor(Exit)
Combustor Entry
Power Turbine(In)
Power Turbine(Exit)
HP Shaft Speed(RPM)
LP Shaft Speed(RPM)

HP
HP
IC
HP

Commpressor(In)
Compressor(Exit
Differential
Compressor(In)

HP Compressor(Exit)
Combustor Entry
Power Turbine(In)
Power Turbine(Exit)
HP Shaft Speed(RPM)
LP Shaft Speed(RPM)

Fault Detected

MEASURBMBNTS (operating

(Change

2
11

O
313
509
793

1119
852

8165.
6275.

Point

2
lO

O
312
500.
774

1082
828

8072
6118

1)

576585054397583
489476203918457
052583456039429
35699462890625O

.261535644531250
626953125000000
988l59l79687500
30963134765625O
344726562500000
96l9l406250000O

2)

51147437095642l
889840126037598
0512545108795l7
222808837890625
878997802734375
10675048828125O
562255859375000

.033264160156250

.222656250000OO0
035644531250000

(Pressure )
(Pressure )
(Pressure )
(Temperature)
(Temperature)
(Temperature)
(Temperature)
(Temperature)
(Tachometer )
(Tachometer )

(Pressure )
(Pressure )
(Pressure )
(Temperature)
(Temperature)
(Temperature)
(Temperature)
(Temperature)
(Tachometer )
(Tachometer )

in Component Performance Parameters)

Component -1 | Component-2

Efficiency | Mass Flow l Efficiency I Mass Flow 1

-0.2814 (LPT) 2.9899 (LPT) -1.6860 (FPT) 1.2107 (FPT)

Power/Fuel |

26405.5234

Estimated Environment & Power Setting Parameters

Operating Point-1 l Operating Point-2 |

Temperature | Pressure l Power/Fuel | Temperature | Pressurel
308 2270 1.0002 24007.5352 308.2270 1.0002

Faulty Sensors

Sensor-l l Sensor-2 |

Sensor-1 Position I Type | Sensor-2 Position | Type |

HPC(IN) | Temperature | HPC(EXIT) | Pressure l

Table 5.13: Results for fault case-3
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1Q

INTERCOOLED RECUPERATED-WR2l DIAGNOSIS REPORT

FC lMin.Obj.| Best I Efficiency 1 Flow
|Function|String1 -----------------------------------------'-

G>\lO`\U'1ºl=ºbJl\)I-'

9
10
11
12
13
14
15

.8775

.2645
5931

.0777
0514

.5998
9678
4048
6694
5873
2847

.0015

.O626
6765

.2776

º-ii-~i\º-=I\)r\ºl\.>i-Jr-Ii-'l\.ºº-1º-º-=|\âº

-2.
-1.
-1.
-1.
-3.
-o.
-0.
-0.
-0.
-0.
-o.
-1.
-1.
-1.
-0.

Compl I Comp2 l Compl
0383
8139
8660
8858
0000
7960
1873
4963
8576
7409
6468
1645
5904
9424
2502

(LPC)
(HPC)
(I/C)
(HPT)
(LPT)
(FPT)
(R/C)
(LPC)
(LPC)
(LPC)
(LPC)
(LPC)
(LPC)
(HPC)
(HPC)

0
o
0
0
o
o
o

-1
-o
-1
-1
-1
-o
-o
-2

.0O00

.0000

.0000

.0000
0000

.O000

.O000
6096
1765
4221
7247
1408
9274

.2566

.2059

(HPC)
(I/C)
(HPT)
(LPT)
(FPT)
(R/C)
(I/C)
(HPT)

0.
0.
0.
0.
2.
0.
0.
1.
O.
1.
2.
1.
0.
1.
2.

2947
8644
8317
3651
9997
5784
1175
4937
5438
2420
9799
7067
5414
1710
6534

(LPC)
(HPC)
(I/C)
(HPT)
(LPT)
(FPT)
(R/C)
(LPC)
(LPC)
(LPC)
(LPC)
(LPC)
(LPC)
(HPC)
(HPC)

Capacity

l

0
0
0
O
0

0
0

O

Comp2
.0000
.0O00
.0000
.000O
.0000
.0000
.OOOO
.O30O
.4735
.3291
.9983
.7798
.4481
.2608
.3449

16 6654

N

-1. 7866 (HPC) -1 1377 (LPT) -3. ešo i iiíéÃ­ 2 .859l

(
(HPC)
(I/C)
(HPT)
<i.L>T;
(FPT)
(R/C)
(I/C)
ii-iP'ri
(LPT)

17
18
19
20
21
22
23
24
25

7519
3848
3517
9364

.7193
7311
8573
7452
6808

-2.
-2.
-o.
-1.
-1.
-1.
-1.
-2.
-1.

9300
2935
4850
0037
0138
0533
2213
4464
4978

(HPC)
(HPC)
(I/C)
(I/C)
(I/C)
(I/C)
(HPT)
(HPT)
(HPT)

-o
-o
-o
-2
-o
-o
-2
-2
-o

1963
2896

.8773
6140
6894
2838
3589
0171
6545

(FPT)
(R/C)
(HPT)
(LPT)
(FPT)
(R/C)
(LPT)
(FPT)
(R/C)

0.
1.
0.
0.
O.
1.
1.
2.
0.

4566
3420
4440
8465
4183
4782
2028
0260
1761

(HPC)
(HPC)
(I/C)
(I/C)
(I/C)
(I/C)
(HPT)
(HPT)
(HPT)

0

0
0

.3994

.0503

.8781

.8918

.1765

.2433

.9911

.3086

.2778

(FPT)
(R/C)
(i~iPTi
(LPT)
(FPT)
(R/Ci
(LPT)
(FPT)
(R/C)

26 6130

1*

~o. 2814 (LPT) -1 6860 (FPT) 2. 9899 (LPT) .2lO7 (FPT)
27
28

9594
4390

Ni-I

-2.
-1.

9240
9518

(LPT)
(FPT)

-0
-1

8492
7690

(R/C)
(R/C)

2.
O.

4560
3404

(LPT)
(FPT)

0
O

.73l3

.0303
(R/C)
(R/C)
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The occurrence of competing fault classes is not uncommon in this type of optimisation,

especially for multiple component faults. As mentioned earlier, due to the random

nature of GA optimisation it is possible that the good solutions are lost in the earlier

generations. It is a matter of chance that which fault class produces the minimum

objective function among the competing fault class to be declared as the fault. lt can

also be seen that out of the six competing fault classes, ve fault classes contain LPT as

the common component and the input test data has LPT as one of the faulty

components.

5.5 Limitations and need for Enhancement

The above-mentioned process has several advantages it has several limitations due to its

dependence on the engine performance model which is the slowest process in the chain

of events. Some of limitations are summarised below-

5.5.1 Long convergence time

A major limitation of the diagnostics system is its long convergence times. It has been

seen that, for an engine like the WR2l which has 28 fault classes for dual components

fault, the algorithm takes approximately 19-22 hours to converge. In the case of 3

components fault it would take much longer. The tness evaluation needs objective

function, which in turn needs the engine performance model to be run twice i.e. once at

clean off-design condition and once using the implanted fault. The engine performance

model is an iterative process and takes long time to converge when compared with the

other process within the diagnostics framework.

5.5.2 Competing Fault Classes

On many occasions, multiple component faults often lead to competing fault classes,

which need further analysis for a defnite solution. The model will choose the fault class

with the lowest objective function while another objective function which is close in

magnitude could be indicative of the fault and has not been able to reach a much lower

value due to improper local tuning.
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5.5.3 Retention of good solutions

It is possible that a good solution was generated in an earlier generation and was lost

due to crossover or mutation. In the present form, the diagnostics model lacks a

mechanism to retain the good solutions produced in the earlier generations.

5.6 Summary

This chapter presented the development of a diagnostics model based on GA

optimisation technique for the ICR WR2l The method is simple to implement and is

robust in the face of measurement noise and sensor bias. From the above discussions it

is also evident that despite its accuracy and robustness the technique has certain

limitations and needs further enhancement. The choice of instruments is clearly an

important issue and needs careful consideration. There is also a need for better tuning of

the GA operators (the probability of cross over & mutation. etc.) to converge to the

correct values. Another major issue which needs attention is a method to reduce the

total run time. The total runtime could be reduced if the number of calls to performance

model is reduced.

The next chapter discusses the various enhancements made to the basic technique to

improve its performance and overcome some of the problems associated with the basic

technique and also explores new opportunities to build a more robust diagnostic model.
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CHAPTER-6

ADVANCED FAULT DIAGNOSTICS MODEL

6.1 Introduction

Improvements in the field of advanced numerical methods for scientic computation,

articial intelligence, mathematical tool (Software) etc. have had tremendous impact on

applied science such as engine performance and fault diagnostics. Despite great deal of

research in the field of advanced diagnostics involving various techniques. no single

magic formula has emerged which can effectively address all aspects of engine fault

diagnostics. While some techniques are good at classifying the faults, others are good at

quantifying the faults. A prudent approach would be to utilise the strong points of each

technique to offset the limitations of the other.

This chapter presents the development of an advanced diagnostics model by modifying

the basic GA based technique while addressing some of the issues concerning accuracy

and convergence speed by using knowledge augmented operators. The estimation

architecture also combines ANN and GAs for engine fault diagnostics at steady state

conditions. The hybrid approach takes advantage of the ability of the ANN to classify,

while the quantifcation of faults is done by the GA optimiser.

6.2 Strategy for Advanced Fault Diagnostics Model

The diagnostics system developed for the advanced cycle ICR WR2l was able to detect

the component faults and instrumentation faults to reasonable accuracy. However, the

model has its own limitations, particularly the long run times and therefore has

necessitated further enhancement. lt has been clearly brought out that the centre of

gravity of the algorithm lies in the calculation of the objective function, which in turn is

mapped to the tness function. The tness function is the parameter which dominates

the search process.
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The calculation of the objective function (equation 5.2) requires the performance model

to be run twice (clean condition and faulty condition). Therefore, any reduction in the

number of calls to the performance model can signicantly reduce the overall run time

of the algorithm.

After carrying out a detailed study of the problem, several techniques have been worked

out to overcome the limitations, while enhancing the accuracy, consistency and

reliability of the diagnostics system. The new approach has been taken up under three

categories: (a) Search Accuracy (b) Convergence Speed (c) Hybrid model.

6.2.1 Search Accuracy

One of the limitations in the basic GA based diagnostics model is the lack of a

mechanism to retain good solutions in the earlier generations. A genetic algorithm is a

random process and it is possible that good solutions or probably the best solution is

generated in an earlier generation. Since the genetic operators, particularly crossover

and mutation, are applied randomly, it is possible that a string with high tness value

gets mutated to form a weak string. Such conditions are possible in the earlier

generations, when the magnitude of changes (mutations) is large. The mutation value

diminishes during the later generations and therefore the danger of a string changing

completely is reduced. The accuracy of the system could be enhanced by using the

concept of elitist model in GAs. The process preserves the good solution from the

earlier generations and keeps historical evidence to ensure that the best solution is never

lost.

Another limitation with the basic diagnostics model is that the GA parameters

(population size, PC, PM, No. of generations) are introduced at the beginning and

remain constant throughout the process. These parameters, when varied appropriately,

can influence the accuracy and the progress of the optimisation process. The accuracy

and reliability of the search process can be enhanced by the use of an embedded expert

system (Inference Engine) which can assess the process continuously through a

reasoning logic and direct the search process accordingly. A termination condition can
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be enforced depending on the progress of the search process.

6.2.2 Convergence Speed

The speed of convergence of the performance model is beyond the control of a

diagnostics engineer, but one way to overcome this problem is to make fewer calls to

the performance code. Perhaps, the use of a function or a response surface which is a

suitable representation of engine performance model for the initial generations to

eliminate the weaker individual can reduce the total run time.

It is believed that the processing power of the computer will continue to increase and

therefore it is not likely to be a limitation. I-Iowever, in order to get quick results with

the possibility of online fault diagnostics in the future, the concept of parallel computing

could be implemented, where the analysis of fault classes can be off-loaded to different

processors.

6.2.3 Hybrid Model

The diagnosis of multiple component faults lead to a large number of fault classes to be

explored, which in turn leads to large run times. The number of fault classes that need to

be searched could be further reduced by developing a hybrid system in which a pre-

processor algorithm can be used to classify the fault classes into appropriate groups and

suggest a single/group of fault classes to be explored by the GA optimiser.

6.3 Implementing the Strategy

Using the above-mentioned points as broad guidelines, a diagnostics model with

advanced capability and reduced convergence time has been developed The various

techniques used in the model are described in detail in the following sections-

6.3.1 Adaptive Genetic Algorithm

Adaptive Genetic Algorithm (AGA) is a new concept in engine fault diagnostics. The

engine performance model is an iterative process and could converge in 2 iterations or

in 20 iterations and in certain cases it may not converge even after the maximum

number of iterations. As described earlier, the problem of long run-time for the fault
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diagnostics model is due to the large number of times the engine performance model is

run. This in turn, is directly dependent on GA parameters like the number of strings, the

number generations and the number of fault classes to be searched. A reduction in the

number of any of these parameters can have a signicant impact on the total run-time of

the algorithm. However, it must be ensured that the reduction in run-time does not

comprise the accuracy of the result.

The AGA is a process where the GA parameters are dynamically varied depending on

the progress of the search. The process starts in a similar way to the basic GA

diagnostics model, but after a few generations, based of certain statistical parameters,

the GA parameters are controlled. The Adaptive GA has been implemented using the

following steps:

6.3.1.1 Master- Slave Configuration

This method consists of a master GA controller which monitors the functioning of a

slave GA model, which is same as the basic diagnostic model. The master evaluates the

performance of the slave GA after every generation. lt obtains various statistical

parameters to assess the population as described in gure 6. l.

Population Population
Diversity Selection SIBÜSÜCS
Factor

'
Lr.,.F?l,iill±r

Slave
EIIZZ MOdU|e

zziÜ ___:

Mugao n Crossove r

GA Operator
Parameters

Figure 6.1: Adaptive GA model Organisation
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6.3.1.2 Population Diversity Factor

The population diversity factor (GDF) is a measure of diversity in the population within

the search space. A large diversity factor indicates the possibility of the search

algorithm covering a wider search area and a higher probability of reaching the global

minimum. lt is desired that the diversity factor be high during the initial generations to

eliminate the possibility of local minima. However, in the later generations a lower

diversity factor is desired for better local tuning. The diversity factor is given by:

1 N _ _
a,_. = /-ZU, -J)~ (6.1)N =l

N is the population size

where,

J is the objective function

6.3.1.3 Population Size

The population size is a critical parameter in the GA process. A low population level

implies problems of poor convergence, deception, multimodality etc. A large population

requires large computational resources, which will eventually translate into long run

times, sometimes without any relative gain. The tness functions are calculated by

obtaining parameters from a fully converged performance model. It is also possible that

for certain conditions the performance model may not converge and an objective

function obtained from such measurement will not indicate the true tness of the string.

The algorithm has a built-in mechanism to withdraw such strings from the population.

Such condition will lead to gradual reduction in the population size. In the case of the

Master-Slave conguration the Population Compensation feature described in section

5.4.1 is disabled. Therefore, the population size is under the control of the Master

algorithm.

In the case of certain fault classes involving the intercooler and the recuperator, the rate

of convergence of the engine performance model is poor, and therefore the strings are

withdrawn at regular intervals, causing a reduction in the population, thereby limiting
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the search space. It is also possible that the embedded expert system (part of AGA

discussed later in the chapter) directs an increase in the population size under certain

circumstances and if this situation is not controlled, it can lead to an increase in the

population size. Such increased population will lead to further increase in convergence

time. The master monitors the slave for a drop or rise in the population and takes

appropriate actions.

6.3.1.4 Population Mean Fitness

Population tness is obtained by summing the individual tness of the strings and

dividing by the total population size and is expressed as:

¬Ä±

l[Vl=2 .¬Ä±

"
= -= 6.2

where,

F is the tness of a given string

In the beginning of the search process the population tness is expected to be low due to

the high diversity in the population. Eventually after a few generations, the population

tness increases indicating convergence of algorithm.

6.3.1.5 Fitness Improvement

The population tness improvement is a measure of the performance of the GA and

indicates convergence of search process. The master monitors the tness at the end of

each generation and compares with the previous generation. The tness improvement

from k'/7 to (k+1)'h generation is given as-

AF(%)=Ä__;F±º<1oo (6.3)
Fk

In general, the average tness of the population is expected to increase as the

generations progress as the population will consists of more tter individuals. However,
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the magnitude of fitness improvement starts to diminish. Figure 6.2 shows the tness

improvement plotted against the number of generations for an optimisation process for

fty generations. It can be observed that the tness improvement is large in the initial

generations and diminishes towards later generations, indicating that the model is

teaching convergence.

35

_..............................................................................................................................................................................................................................................................................so '

nl 0/o

âºl
i

F`tness mproveme

.5

l

|)O

-15-

_O

5 No significant Improvement in fitness

1 6 11 16 21 26 31 36 41 46
Generations

Figure 6.2: Fitness improvement over generations

6.3.2 Embedded Expert System (lnference Engine)

One way to speed up the algorithm is to use non-payoff information to guide genetic

operators more directly towards better strings. In a sense, we can augment the random

choice in operators like mutation and crossover by using knowledge specic to a

particular problem. The earliest work in this area was performed using knowledge-

augmented mutation operators. Bosworth et al (1972) encoded multidimensional

parameter optiinisation problems using real operators. They used crossover and

developed several mutation operators incorporating non-payoff information. They used

Fletcher-Reeves (a conjugate gradient method) and golden search together as a mutation

operator. However, the use of knowledge augmented need not be restricted to mutation

and can be extended to other GA parameters like the crossover, the population size, the

number of generations etc.
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Essentially, there are two primary factors in genetic search: population diversity and

selective pressure. Many other methods/parameters used to 'tune' the genetic search are

really indirect means of affecting selective pressure and population diversity. Increasing

the selective pressure focuses on the top individuals in the population but the

'exploitation° of genetic diversity is lost. Reducing the selective pressure increases

'exploration' because more genotypes and thus more schemata are involved in the

search. The diagnostic accuracy is improved due to the ability of a GA-based technique

to retain full non-linearity and deal with measurement noise. Although genetic

algorithms are randomised in a certain way, they effciently exploit historical

information to obtain new search points with expected improved performance.

MASTER - - -
Ä±

INFERENCE
ENGINE

GA Statistics
Population Size

Mean Fitness Monitored
Fitness Improvement

Diversity Factor
etc.

Controlled
GA Parameters

SLAVE pROCESS Population SizeM t t' S`
GA oP MsAroN a',2§ 'Ze

PM
etc.

Figure 6.3: Schematic diagram of an embedded expert system

The basic function of the inference engine is to accumulate evidence for/against the

value of a particular GA parameter and primarily use a backward chain reasoning

process to reach conclusions. lnput data from a pre-processing algorithm (described

later) and a knowledge database are used by the inference engine to deduce facts or

conclusions. When conclusions matching a specified pattern are made, a special set of

high priority goals can be activated, thereby enabling the inference engines forward
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chaining reasoning capability. E.g when the master feels that the diversity factor is low

it will direct the population manager (program module) to increase the population by a

predefned percentage.

The master algorithm could also vary the GA parameters like the probability of

crossover and mutation in order to increase the exploration potential of the population.

In cases where the population tness does not show significant improvement, the master

will be directed to selectively withdraw under performing individuals and monitor the

fitness for further generations. If even after that this, the tness does not improve, the

master will assume that the algorithm has converged to a solution and stop the search

for that fault class and move on to the next fault class.

A schematic diagram of the system is shown in gure 6.3. The master monitors certain

parameters like the population size (N), diversity factor, mean fitness etc. and forwards

it to the expert system. A rule-based system (IF-THEN) has been built into the model,

which assess the situation and directs the alteration of the GA parameters like the

population size, PC, PM etc.A simple example of the working of the system is shown in

figure 6.4, where the population size is controlled by the master. One of the monitored

parameters (tness improvement), is shown to be influencing the population size.

The population starts with lOO strings. The master controls the population size based on

the tness improvement. When there is no further tness improvement on only small

improvement, the master directs an increase in population to increase the diversity

factor. There is only a slight improvement in the fitness and therefore the master

withdraws the strings selectively to reduce the population size and finally terminates the

search process. This technique is an important development in reducing the total run

time of the algorithm.
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Figure 6.4: Variation in population size with fitness improvement

6.3.3 Elitist Model Concept

While the master-slave concept and the embedded expert system concepts have the

advantage of reclucing the total run time, but it is possible that the accuracy has been

compromised during the process of manipulating the population. ln order to prevent

this, the elitist model concept is implemented as shown in figure 6.5. Since the process

of population generation is a random process and the GA operators are applied to

randomly chosen strings or pairs of strings, it is possible that some of the strings

produced in the earlier generations are close to the global minimum (therefore

indicative of the fault). I-lowever, such strings could be lost during subsequent

generations due to crossover or mutation. In the elitist process, a certain percentage of

promising individuals are placed in an elite pool on completion of a generation. During

the subsequent generations, the good individuals from that generations are compared

with the strings in the elite pool and swapped with comparatively weak ones. In this

manner the best individuals are preserved over many generations and introduced in the

main population towards the later generation for effective local search.
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Figure 6.5: Elitist Model Strategy

6.3.4 Response Surface Method

In many problems we have specic knowledge that allows us to construct approximate

models of our problem. In turn, modelling capability allows us to create more or less

accurate approximations to our objective function. With genetic algorithms, this

knowledge can be put to good use by reducing the number of full-cost functions

evaluations. In many optimisation and search problems, a single function evaluation is

fairly costly process, involving many layers of subroutines, numerical or symbolic

computation, iterations and various coding and decoding functions. As a result, if

savings in computation time are possible through approximate, perhaps rough

estimation, of the objective function , they are worth pursuing so that more evaluations

can be performed in the same time. This observation is particularly relevant to genetic

algorithms, as we expect GAS to behave robustly under error and noise because of their

population -sampling approach.
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As described earlier, the engine performance model forms the heart of the diagnostics

model and is also responsible for the slow performance of the GA diagnostics model.

The engine performance model is an iterative process and the relations between various

parameters are highly non-linear. One way to inprove the speed is to use a response

surface to approximate the objective functions instead of using the performance model.

A response surface is a complex non-linear function representing the engine

performance model. The aim of the response surface method is to obtain an objective

function of a given string without having to run the performance code. This method,

which completely avoids the performance model, is very useful in the earlier

generations of the GA diagnostics model. A suitable representation of the performance

code is essential in order to implement this technique, which can be benecial in

speeding up the overall process. The rationale behind this concept is to avoid spending

time on evaluating strings which are to be anyway discarded in the initial generations.

Data for response surface is generated using the engine performance model. lt is very

similar to generating the search space by varying the engine performance parameters

(component ow capacities and effciencies) in small steps from its baseline values and

implanting it into the engine performance model. A set of measurements are obtained

for these conditions and compared with corresponding engine baseline parameters. The

sum of the deviations is the objective function. This data is used to generate a response

surface. The various methods to generate response surface will be discussed later in this

chapter

In order to implement the response surface method, the traditional objective function

needs to be modied by splitting it into two objective functions. Since the response

surface is created by implanting faults and comparing it with baseline values, the

objective function obtained from the response surface will be with respect to the

baseline and needs to be compared with the objective function obtained from the actual

data and baseline. The modied objective function is given by :

NM zf - h/(x,w)` NM 'zf' -2;"AJ: '___ _ ._ (64)
2m_,/(if/').O'j §3/(\f,').0',
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The parameters are the same except for the superscripts 'b° and ls", which mean

baseline and simulated respectively. A schematic diagram of the modied objective

function is shown in gure 6.6. A set of measurements is obtained from the engine and

is compared with the corresponding baseline (clean parameters) measurements. An

objective function is calculated which is designated as J/_ This is required to be

calculated only once. The other objective function, J; is directly obtained from the

response surface. The optimisation of A (difference between J/ & Jg) tends to achieve

the best solution or more appropriately, eliminates the bad solutions.

Actual Parameters Baseline Parameters Simulated Parameters

1 1 1
PA Calculated PB Ffm Ps

2"" Once 2 Response :_
PA PB Surface PS

4 _ . 4 . _
PA Objectve PB Objectve 4PS_? Function-1 ._ Function-1 _.

- (J1) - (J) _

NPA NPB NP3

AJ: J1-J2
A - Actual
B - Baseline
C - Simulated Minimisation of AJ produces the best match

Figure 6.6: Modified objective function

At this point it is pertinent to mention that the optimisation of A shown in equation

(6.4) may not produce the exact match for the reason that faults with different signatures

could also have similar values of objective function. The fault signatures producing J,

and Jg could be different and it is not same as calculating J between the faulty data and

the simulated parameter using the equation (5.2). However, what is important at this

stage is to identify the strong individuals and create a condition for the weak

individuals to be eliminated early in the search process. The calculation of J1 gives the

sum of deviations from the baseline. This value indicates that, deviations producing J_º.

which are close to J; in magnitude are likely candidates for further examination. At this
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15°

1511lIl_

G

point, the signs of deviations are not considered as they will be eliminated when

objective function is calculated with measurements obtained from performance model

using equation (6.1). Some of the ways to develop a response surface which have been

investigated are enumerated below-

6.3.4.1 Surface Fit -General Regression (Gaussian Functions)

This method involvcs the dcvclopmcnt of a gcncral rcgrcssion function using Gaussian

functions as shown in equation 6.5 to represent a complex function like the search

space. The aim is to evolve an equation which can readily retum an objective function

when given a set of deviation is engine perfomance parameter. Once the regression

coeicicnts have been obtained, the reanalysis and sensitivity analysis represented by

equations 6.5 & 6.6 require trivial computatioral etfot. The constants and coefcients

have been obtained using the MATLAB statistical toolbox.

f(x, y) = /4e(`b'"'1y) + Be(`b3H'y) +.........._ (6.5)

in the case of engine fault analysis the equation can be re-written as-

JRS _ Aei-bA l~l*ß1`) + Be(-iäß-1'.±Al`) +______ (66)
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A comparison of the search space obtained from the above equation with the actual

search space is shown in figure 6.7. It is evident that the surface obtained from this

technique is very general and smoothed out concealing the surface details. Such

techniques are fast and easy to compute but the results are suitable for smooth functions

and not for highly non linear engine performance model.

6.3.4.2 Radial Basis Functions (RBF)

RBFS have attracted a great deal of interest due to their rapid training, generality and

simplicity. They have been widely used for Generalized Regression Neural Networks

(GRNN). They are several orders of magnitude faster in training when compared to the

standard back propagation but have a major disadvantage: after training, they are

generally slower to use, requiring more computation to perform a classification or

function approximation. It can approximate any arbitrary function between input and

output vectors, drawing the function estimate directly from the training data.

Furthermore, it is consistent, that is, as the training set size becomes large, the

estimation error approaches zero.

GRNN is, in essence a method for estimatingf(x,y), given only a training set and is

based on the following formula from statistics

íyf(X,y)dy
E[ylXl=%--- (6-7)

If(Xy)dy

where

y = output of the estimator

x =the estimator input vector

E(ylx) = the expected value of out , given the input vector x

F(x,y) = the joint probability density function (pdf) of x,y
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Figure 6.8: Function Approximation using Radial Basis Function

The accuracy of the estimated function is very high (as shown in gure 6.8), as long as

the input vector is close to the training vector. The RBFs are highly localized and

therefore need large amounts of training data. The large amount ot` training data creates

a large number of nodes. Though the training is very quick, the function approximation

is a computationally intensive process.

6.3.4.3 Feed Forward Back Propagation Network (FFBPN)

Having investigated the possibility of representing the search space in the form of a

response surface using the rst two options and carefully considering the advantages

and disadvantages of the process, it was decided to investigate the possibility of using a

FFBPN for the generation of a response surface. The FFBPN is a standard neural

network widely used for classication.

The FFBPN are known to represent complex functions vey accurately when trained

with appropriate and adequate samples. A typical training data is shown in table 6.1.

Fault class-2 has been trained using a network (8-20-20-l stmcture). Training data was

generated by implanting faults in the engine performance model and the objective

function calculated with mcasurcmcnts obtained.

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ __
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Network Input Data _
(Engine Performance -
Parameters) -

9, _
10, -
, -
12, -
13, -

33,
34,

UU

36,
37,
38,
39,
40,

l>ßI>I>I>UJI\)I-1

45,
46,
47,

I>I>KDG)

END

FAULT CLASS: 2
Sl. Flow-Cap Bffy
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.O000
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.O000
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.000O,
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.0000
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.5000
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.0OO0,
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.O000
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.oooo,
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.oooo,

.sooo,

.00O0

.0000

.5000,

.0000,

.5000,

.0000,

.5000,

.0000

J

.0427

.1228

.2269

.3498

.4931

.66l8

.8373

.B688

.0942

.2336

.3933

.5735

.7781

.8833

.5933

.3e,

.0767

.7091

.3507

.0042

.6793

.3so9,

.0971

.8526

.4494

.0568

.6868

.480l

.3060

.1517

III
I-- ----I IIIIIIIIIIIIIIIIIIIII
IIIIIIIIII1II

Sim-J

0.
0.
0.
0.
0.
0.
0.

0.

0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.

0000
0000
0000
0000
0000
0000
0000
0000

0000
0000
0000

0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000

Table 6.1: A typical training data (for fault class-2)

Network Target Data0.

|(0bjective Function)0.0000
0
O

The faults implanted and corresponding objective function form the network input data.

Training data is generated separately for each fault class and the network is trained to

return an objective function for a particular fault class only.

A comparison of the estimation is shown in gure 6.9. The approximation is quite

accurate for the same set of data points. This method is a good compromise between

speed and accuracy when compared with the other methods described earlier. The

networks are trained for specific fault classes for specic operating points.
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Figure 6.9: Function Approximation using FFBPN

'l`he response of the network to radomly generated test data is shown in table 6.2. The

Variation in performance parameters for a single component fault is shown is shown

column 2 and 3 (ow capacity & efciency respectively). These Variations are

generated randomly and the objective function (with respect to baseline) obtained using

an engine perfonnance model is shown in column 4. The objective functions obtained

from response surface is shown in column 5 and it can be observed that the output of the

network is close to the objective functions in column 4. For the purpose of eliminating

weaker strings in the initial generation, this accuracy is deemed reasonable. The

attractiveness of the response surface approach is that the accuracy of the nal results

almost exclusively depends on the accuracy of the response sufaces, data and on the

amount of data points available. MATLAB was used for training the networks and the

trained network was imported into the diagnostics model.
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condmon --------------------------

I'

--I IIIIIIIIIII"I
lolIIIII

(Perf<ºr nee 1.5244, -2.7578, 10.0772, .9003 0bleCtiveFU°fI<>ï¬
parameters -1.9710, -0.1636, 1.3295, 1.4410/ff°mReSp°Se

btk)

I*O

-2.6872, -0.9055, 3.6072 3.6416 S"°°Â°
1.2230, -2.0466, 10.9594, .969e
2.4071, -2.0263, 9.0940, 9.1126
1.7920, -1 4337, 6.6255, 6.6211

-1.3097, -2.2181 6.0237, 6.0104
1.4740, -1.7439, 7.4165, 7.4095

9, -2.6970, -2 2039, 6.6744, 6.7042
10, 2.6517, -2.6591, .5232, .5002
11, 1.1369, -0 3446 .4197, 2.4402
12, -1.9300, -2.2502, 6.1236, 6.0697
13, -1 6667, -2.1401, 5.6646, 5.6580
14, -1.0761, -0.3544, 1.0565, .0953

(D401

I*NII-'

I^I1

19, 1.5718, -0.3822, 2.9536, .9857 IVIOÖGI
20, -0.3134, -2.5194, 8.4010, .4027

Table 6.2: Response to a random input for single component fault

6.4 Development of a 3-Stage GA Diagnostics Model

Various techniques to improve the performance of the diagnostics model in terms of

accuracy and speed of convergence have been examined individually and their merits

discussed. A 3-stage Integrated Fault Diagnostic Model (IFDM), as shown in figure

6.10, has been developed which incorporates the different methods discussed. The

objective of the 3-stage model is to extract the benefit of each technique at appropriate

stages of the diagnostics process. The IFDM model is described as follows:

Stage-1: The process starts with random generation of the population similar to the

basic GA-based model. The difference here is the use of a response surface to obtain

the objective functions instead of using the performance model (to calculate). The

optimisation progresses one fault class at a time. The response surfaces for all the fault

classes are developed by training the Feed forward back propagation networks. Once

trained, the network weights are frozen so that the network can be re-generated during

1
15, 0.1008, -0.9225, 3.2802, 2713
16, 0.8164, -0.9779, 4.2298, 4.1
17 , -2 . 6019, -2 . 7594 , 7.9088 , 7. 9234 bjective Functon
18, 0.3322, -1.9357, 7.0318, 6.9924 from Performance

2
8
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the diagnostics process. The objective function obtained from the response surface is

used to calculate the tness of the strings in the initial stages of the diagnostics process.

The diversity factor will be high in the beginning and there may be many strings which

are weak and need to be eliminated. The response surface approach helps in eliminating

the weak individuals without having to run the performance model. The use of the

response surface increases the exploration potential of the search space as more

strings can be generated at the start of the diagnostics process .This technique increases

the speed during the initial phase to a magnitude of several order quicker than the

conventional search.

Measurements from Engine

Response Surface

Response Surface
iApproachí mi =

«%

5 \\ _-__»_ - -Q \ __,

Master-Slave

Concept '§:[:;;11':_* 1;|

1ä Engine Performance Model
Elitist GA Model

I
Fault Diagnosis

Figure 6.10: Schematic diagram of 3 stage diagnostic model

Stage-2: By the time the process reaches stage-2, most of the weak individuals are

eliminated from the population over a number of generations. The concept of adaptive

GA is applied in stage~2 to improve the quality of the population. This process is carried

out with the master-slave conguration which monitors the slave module based on
Â«
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certain predened parameters. The master interrogates an embedded expert system

(consisting of IF-THEN rules) and seeks direction. All the tness calculations during

stage-2 use parameters from the engine performance model. The master also monitors

the fitness improvement history to establish a termination condition. Early termination

of the search process for fault classes not likely to give a solution can reduce the overall

run time of the diagnostics process.

Stage-3: in reality, this works in close coordination with stage -2. In stage-3, certain

percentage of the good strings are identified and preserved in an elite pool which is not

subjected to the genetic operations. This ensures that the potential solutions are

preserved over generations. On completion of a generation, the best strings are

compared with the elite pool and the better strings from the main population are

swapped with the weaker individuals from the elite pool. ln this way the elite pool

always contains the best solution from all the generations at any given time. Towards

the later generations, on instructions from the master GA, the individuals from the elite

pool are introduced into the main pool and more individuals are created in the vicinity

of the individual from the elite pool. This concept ensures more localized search

towards the end.

6.5 Hybrid Model- Combining GA and ANN

When problem specific knowledge exists, it may be advantageous to consider a GA

hybrid. Genetic algorithms can be crossed with various problem specific search

techniques to form a hybrid that exploits the global perspective of the GA and the

convergence of the problem specific technique. A number of authors have suggested

such hybridization (Bethke, 1981; Bosworth et al, 1972; Goldberg, 1983). However,

there is not much published work describing the results of GA-hybrid studies.

Nonetheless, the idea is simple, has merit and may be used to improve ultimate genetic

search performance.

There are several fault diagnostics techniques and optimization techniques which can be

combined with GAs to form a hybrid system for efficient fault diagnostics. Researchers
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like Gulati (2002) have suggested the use of GA for a broader search and the use of

calculus-based methods for local search. The approach adopted here is to identify a

method which could be used to reduce the number of fault classes so that the GA

module can be used to search the fault classes for faulty components and quantify the

fault. The rationale behind this is to avoid searching fault classes which are not likely

to have faulty components.

For the problem in hand, an analogy can be drawn with the diagnostic engineers of

yesteryears, when modern-day engine fault diagnosis techniques were in their infancy

and when an analyst would make an intelligent assessment based on certain thumb

rules. The method used was similar to the fault tree method in which the branches of the

fault tree are traversed by eliminating certain criteria to arrive at the fault. The fault tree

technique has the limitation that only single component faults can be identied.

However, in the case of the proposed hybrid system, a Fault Class Classier (FCC) is

expected to identify the likely fault class(es) and the GA optimizer could subsequently

explore the fault classes and quantify the faults associated with the components.

Extensive literature study showed that feed forward back propagation network remains

an effective paradigm and is by far the most commonly applied neural network for

classication problems. Ogaji and Singh (2002) have used the concept of cascaded

neural networks for component and sensor fault identification. An informal count

indicates that more than 85% of published applications have used FFBPN. In difcult

applications where the input/output relationships are nonlinear and/or involve high order

correlations among the input variables, back propagation has produced accurate results.

The disadvantage of its slow training is partially offset by its rapid computation in the

forward direction.

lt was felt that the ability ofthe ANN to classify the given data with a relatively small

network can be used to act as a preprocessor for the GA diagnostics. Even if the neural

network is able to classify the given data as single or multiple component fault the

search time is reduced to 25% of the original time in the case of single component faults

(the GA module has to search only rst 7 fault classes) or to 75% of the original time in
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case of multiple components fault (the GA module has to search 21 fault classes). A

schematic diagram of the concept of the hybrid model is shown in g-6.1 1. The hybrid

model consists ofa Nested Neural Network (NNN) in which each network has a limited

task of classifying the data into subgroups. One way to classify is to train a network for

all possible combinations of faults. But the training set required to fully represent all

possible combinations of health parameters and sensor biases will be prohibitively large.

lt would take excessive time to train such a neural network and their performance might

not reach satisfactory levels. ln the light of the above, the problem domain has been

partitioned into smaller and specific tasks. A node in the NN is trained to classify the

given input into any one of the subcategories, usually two or more subcategories or

BRANCH nodes (described later) .

Engine Measurements

Get deviations with respect to baseline

AP, AP; AP, APS Ah. AP, 4 Deltas of Parameters

l Component Fault/ Instrument Fault I

I ' I

l Single/ Multiple Component I l Detect Faulty Sensor I

LPC
I l HPC 1 IC 1 HPT LPT] FPT l RCR I ` Group -1 i Group-2 II

GA Diagnostic Module

Figure 6.11: Concept of Hybrid model

This approach has been found to be more accurate when compared to training a single

large network to identify the faulty components. The dark line shows the ow of the

algorithm to arrive at the nal stage, for an arbitrary set of measurements. The nodes are
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classified into BRANCI-I nodes and TERMINAL nodes. The bottom most level of

each branch/path consists of terminal nodes. The TERMINAL° nodes have an

important task of extracting and submitting the fault class(es) for optimisation by GA

Module.

Input data from an engine is fed into the NN pre-processor. The first step is to identify

whether the input data was generated due to a faulty component or a faulty sensor. Once

the classification has been made, the data is forwarded to the next level. If the input data

is associated with a component fault, then it is forwarded to a node classifying the input

data into Single or Multiple component faults. In the same way, the input data traverses

through the BRANCH nodes and arrives at the TERMINAL node. A terminal node will

classify the input data to a single fault class or a group of fault classes to be explored by

the GA optimizer.

6.5.1 Type of Training and Network Size

Whether in classification or regression , it is necessary to employ appropriate training

algorithms. For feed forward back propagation network, various training algorithms

such as resilient backpropagation, delta-bar-delta, conjugate gradient algorithms.

Levenberg Marquardt, Bayesian regularisation etc. are available. The choice of

algorithm is usually a trade-off between many factors such as minimum RMS error

obtainable, length of training time or speed of convergence, memory requirements,

nature of the problem. The choice of algorithm is left to the user and the type of

problem being solved.

In the present work, several algorithms were tested and the conjugate gradient method

was found to be most suitable from the point of speed of convergence and memory

requirement. The algorithm gave good results by improving the generalisation

especially with respect to classification, which is the main requirement in the model.

The radial basis functions were also experimented but they need a large amount of

nodes and the gives particularly good result if the input data is close to the training data.

The number of layers and number of processing elements per layer are important

clecisions to be made during the design of an ANN. The number of processing elements

in the input and output layers are fixed by the number of input measurements and
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required output vectors respectively and therefore only the number of hidden layers and

number of processing elements in the hidden layers are to be determined. There are no

best solutions to this problem and is again dependent of the nature ofthe problem being

addressed. In general, as the complexity in the relationship between the input data and

the desired output increases, then the number of processing elements in the hidden layer

should also increase. The number of processing element may also depend on the amount

and the quality of training data. In is noteworthy that less number of processing

elements would mean there are insufcient network parameters (weights and biases) to

undertake the required tasks which leads to under learning of the problem domain while

more that necessary processing elements in the hidden layers would lead to poor

generalisation as the features of the training patterns are memorised making the network

less capable to apply knowledge learned to patterns that were not included in the

training process though within the problem domain in other words the network becomes

useless on new data sets.

_ Simulated BaselinePower Setting M Measurements easurements Training Data

Engine
Perfo rnace

Model

~

Qlb

1

o«-

I

legal

Ä±

Ä±

P5 1 Simulated parameter (measurement)
PB 1 Actual parameter (measurement) from engine
P 1 Measurement Deviation

Figure 6.12: Schematic Diagram of Data Generation
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6.5.2 Data Generation for Training

A non-linear thermodynamic model of the behavior of the engine was used to generate

data for training the neural networks (A detailed description of the engine model has

been given in chapter-4). A schematic diagram of the data generation process is shown

in gure 6.12. Patterns of measurement deltas for training are generated using a

computer simulation code. A series of know faults are implanted into the engine model

and corresponding sets of measurements are obtained from the engine model. The

measurement deviations from their corresponding baseline values are presented to the

network for training.

Some ofthe salient features ofthe data generation process is:

0 A marine gas turbine operates at sea level and therefore it is assumed that it

operates in a constant pressure environment.

0 Ambient temperature may vary depending on the place but the data has been

generated for a deviation of 20 deg from ISA SLS condition.

0 The operation of the gas turbine is dependent on the specific mission profile ot

the ship and, in general, it implies operating most of the time at part load

condition. However, for the purpose of training the networks, the data has been

generated for the same operating point for which GA based diagnostics is to be

carried out (as shown in Table 5.2).

0 Training data is generated separately for different operating points.

0 Training data is generated separately for different nodes (network).

0 Training patterns are generated in two groups

(i) Faults with no noise or bias

(ii) Faults with noise and no bias

(iii) Measurements with noise and bias (for sensor fault detection)

The process of test data generation has been accomplished using a program developed

in MATLAB ver 6.0 which can directly interact with the performance code to obtain the

required measurement set.
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6.5.1.1 Addition of noise to Data generated

In order make the simulated data resemble real data, noise is added to the measurement

set. White noise with zero mean and having a Gaussian distribution is added to the

measurements generated. The standard deviations for individual sensor has been given

in chapter-5(as provided by the sponsor). The sigma values basically indicate the spread

of the individuals in a given population set. E.g the lo given value given indicates that

68% (34% on either side of mean) of population fall within the range between the

population mean and sigma value. 20 indicates that 95% population falls between mean

and 20'. And a value of 30 indicates 99.7% of population between the range mean and

36.

Given the value of sigma, random noise with zero mean can be generated. Figure shows

the noise levels generated with o=0.25.

o.s 1

.c

déi

%

Ã¤

%

ll
ll l.o.e 1

.Q8 l
Noise

Figure 6.13: Sample of noise used in training data

As discussed earlier, the magnitude of 68% of the noise values generated, will be

between -0.25 and 0.25 as the mean in this case is taken as zero. Figure 6.14 shows the

distribution for 100000 samples of noise generated. lt can be observed that the data has

a mean of zero and has a perfect bell shape. The noise values are generated depending

on the c of that particular sensor and added to the measurements.
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11000 .

3500 - -

3000 - -

2500 - -

2000 < -

1500 - -

1000 - -

500 - -

Figure 6.14: Distribution of Noise generated

6.5.2 Training the Networks

As mentioned earlier, the networks are classied as °TERl\/IINAL' and BRANCHâ

networks. The BRANCH networks classify the input data into subgroups and forward it

to the appropriate network for further classification. The TERIVIINAL networks are

expected to identify the fault class(es) to be optimized. The TERMINAL networks form

the last layer of the NNN. Table 6.3 shows a typical instruction set for generating

training data for a TERMINAL network.

NEURAL NETWORK TRAINING INSTRUCTION SET

NODE '11 Note:- Enter 'OO' for Auto-Associate Network
Network Type
Network Status
Network input

: FFBP
: TERM
: Measurements

Network Configuration :[ 8][20][ 3] Note:- Mirrored For AAN
Input Vector Size 110
Fault Classes involved : 7
Target Vector Size 1 3
Target Category : 7
No of Training Sets :2500
Target Set :-

Category | Target / Component
Fault Class-1 0 LPC
Fault Class-2 1 HPC
Fault Class-3 ICL
Fault Class-4 HPT
Fault Class-5 LPT

Target Vector

\oºu1J>wr\º~Ã¶

-\-º-º-ºocºcâº

_.º°°...Ä±

_°_ºQ_Q_Ä±

Target Vectors
represent faulty
components

Fault Class-6 FPT
Fault Class-7 RCR

Table 6.3: A typical instruction set for training
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The instruction set gives the type of network and the conguration of the network. lt

also gives the composition and size of the target set. It can be observed that this

particular network is trained to identify the fault class suspected of having a single

component fault.

Measurements deviations from Base line (Un-deteriorated Condition)
1

I l
§1. _Sensor-1 Sensor-2 Sensor-3 Sensor-4 Sensor-5 Sensor-6 Sensor-7 Sensor-8 Sensor-9 Sensor-10

:'>}^'N..-

0.557820. 0.073299, 0.557562, -0.060568, -0.307398, -0.461859, -0.396502, -0.457145, -0.234463, -1.945982.
0.738743. 0.140595. 0.738419. -0.072176, -0.381592, -0.720013, -0.628681, -0.724288, -0.252132, -1.814817.
0.920470. 0.208183. 0.920212, -0.083863. -0.456441, -0.980420, -0.862765. -0.993653. -0.269940, -1.683033.
1.102894, 0.275936, 1.102943, -0.095647, -0.532016, -1.243101, -1.098828, -1.265379, -0.287909, -1.550729,

_. 1.288273, 0.344671, 1.288016, -0.107324, -0.608926, -1.511606, -1.339865, -1.543019, -0.306177, -1.416666,
1.472218, 0.413755, 1.472152, -0.119196, -0.685477, -1.780002, -1.580847, -1.820392, -0.323643, -1.282518,
1.656239, 0.482764, 1.656289, ~0. 131253, -0.762649, -2.049671, -1.822864. -2.099097. -0.341499. -1.148331.
0.332061, 0.034031, 0.331726, º0.037916. -0.188307. -0.253411, -0.215246. -0.248529, -0.151812. -1.305576.
0.515527. 0.102416. 0.515394. 0049066. -0.262310. -0.512070. ~0.44815|. -0.516287. -0.169607. -1.174868.
0.696221. 0.169405. 0.696250. -0.060538. -0.336099, -0.769565. -0.679693. -0.782728. 0187427. -1.045531.

š>°.P°\'.°5 J

N ------------------------------------------------------------------------------
\ Number of training Patterns

Table 6.4: ANN input data for training

TRAINING DATA FOR NODE: 1
N0de-|0 111 Target vector
Network ; FFBPN
Node Type 3  ERM Performance Parameters
 arge( Size ; 3 causing the fault
Target Categories '

_/_
(LPC) -3.00 0.00 0.00 0.00
(LPC) -3.00 0.50 0.00 0.00
(LPC) -3.00 1.00 0.00 0.00 Component 1D
(LPC) -3.00 1.50 0.00 0.00
(LPC) -3.00 2.00 0.00 0.00

U'IJ>00I\)-\
OOOOO
OOOOO
__º_º_º_âº

_.\_º._º..º_\

61 (HPC -2.00 2.50 0.00 0.00
62 (HPC -2.00 3.00 0.00 0.00
63 (HPC -1.00 0.00 0.00 0.00
64 (HPC -1.00 0.50 0.00 0.00
65 (HPC) -1.00 1.00 0.00 0.00
66 (HPC) -1.00 1.50 0.00 0.00
67 (HPC) -1.00 2.00 0.00 0.00

333 (RCR) 2.00 1.00 0.00 0.00

_º_º__Ä±
_.\_\__Ä±
_º_º_ºA

\|\|\;`|

334 (RCR) 2.00 1.33 0.00 0.00
335 (RCR) 2.00 1.67 0.00 0.00
336 (RCR) 2.00 2.00 0.00 0.00-_ T.. ...__END

Table 6.5: Typical network target data
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The training data consists of the deltas in measurements as input to the network and

component identity (in binary form) as the target vector. The network is trained to

classify the data into fault classes.

A typical input data for the network is given in table 6.4 and target data is given in table

6.5. The network tries to match each input data with the corresponding target data by

adjusting the weights.

Node Type 1 L3N1
Node Status: BRAN
Node-1D 1 31
lnputs Size: 10
No. o1`Layers: 3
Layer 1 1 8 TF

Layer3 : 3 TF
lnputlvlin-Max :

-3 2778 -3.0949
3.8384 2.6102

0.1412
1.7858

-1.0118
0.9728
-1.1038
-1.9571
0.6462

0.6962
0.8852
0.6764

-3.0819
-0.6555
-0.4661
-0.6982

-1.5284 -0.1597
Layer Weightszl-2

1.6097 2.3945
0.3491 1.8403
2.2486 1.0589
1.6791 -0.8257

-2.0890 0.1597
-0.9172 2.9922
0.3343 -2.1800
-0.8394 2.7201
0.5674 1.7146
-1.7165 0.2774
0.3785 -1.2760
1.3647 2.3661

Layer \Veights:2-3
0.7296 0.401 1
0.0200 2.4656
0.1092 -1.7166

Bias Vector- I
-1.8030 -0.7222

Bias Vector- 2
-3.7340 -2.3694

Bias Vector- 3
-0.2177 -1.2517

: tansig
Layer2 :12 TF: logsig

1 purelin

~3.2779
3.8383

Input Weight Matrix:
0.5095
0.7414
-0.6226
0.1064
-0.2613
-1.3288
-0.2416
-0.4188

0.0926
1.3604

-0.3199
2.2021
-1.9705
-0.8665
-1.0700
1.9904

-0.6695
2.7412
-2.7412
-0.7781

-0.1444
-0.3603
-0.2513

0.4460

-2.4319

-0.3464

-0.7465
0.2831

-0.2806
0.0555
-2.4641
1.361 1
0.0676
2.2057
0.2801
0.2824

0.0426
-1.5790
0.3020
0.7613
-1.2230
2.5043
1.6237
0.5734
2.3599
0.9654
-2.0399
-2.0468

-1.6255
-1.9109
-0.4887

-0.2565

-1.5779

-1.4483 -4.4087 -3.9388 -4.7260 -2.0384 -2.3543
2.0300 2.1170

-0.2422 0.5848
0.4123 2.3768 -
0.0826 0.6083
1.5367 0.9719
-1.4358 0.9396
-0. 1407 -0.8392
0.9775 0.8792 -
2.8078 0.2972

0.5989 -1.8735
1.3631 2.8392

-1.9945 2.0349 -
-2.5772 0.6792
-0.7445 -1.5200
-0.4696 1.7466
-0.0111 1.0031

2.2263

0.2301
1.1516
0.6673
0.2018
-0.7740
0.6645
1.2021
0.1402

1.6019
2.0031
0.2212
2.3032
-1.4687
3.0047
1.3211

1.6904 0.5993 -0.3475
0.9328 -2.5902
-0.5913 -0.8501
~0.2691 -0.8809
0.4919 -2.0952 -

-0. 1908 2.6894 -

0.5953
2.5726
1.1386
1.3352

0.6491
0.0206 0.2327 -0.0723
-1.7669 -1.1712

0.3664 -0.9374

1.3981 0.6242

0.7584

0.6636

0.1805

2.2027 3.5640

0.3493
-0.7987 0.0663
0.1028 -0.1180

-0.3257 -0.1454
0.3161 0.2187
0.2438 -0. 1621

-1.1465 0.2210
0.2535 0.2920

0.3822

-0.8334
-2.391 1
-0.0336
-0.2815
-1.2276
0.3634
-2.0506
-0.5135
1.2340

-0.7844
1.0870

-0.9779

-0.6074 0.7493
1.1458 -1.5766
0.1741 1.8094

-0.6435

-1.2716 1.8610

2.7342

0.9508
0.4631

-2.4802
-0.4820

1.6512
0.4566

-2.0256
1 .2121

0.6367 -0.7079 -0.1676
1.0717 -0.5187 1.0787
1.0257 1.0840 0.8719

-2.8418 3.1633 3.5725

Table

Since the input data is generated by implanting know faults into the engine performance

model, working backwards we can know the fault. However, at this stage we are only

interested in classifying, and not quantifying, the fault

6.6: Representation of a Trained Neural Network
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The Neural-Network Toolbox in MATLAB has been used for training all the networks.

The weights obtained as the result of training the network are frozen and used in the

diagnostics model to regenerate the same networks. A typical set of frozen network

weights for a trained network (8-12-3 structure) is shown in table 6.6.

6.5.3 Confidence Rating of Networks

Once the individual networks have been trained to classify data into specic subgroups,

they can be integrated to form a nested neural network for different levels of

classication. Before entrusting the networks with the classication job, a Confidence

Factor (CF) of each network has to be established to have confidence in the final

output from the NNN. The CF of each network is obtained by simulating the network

output with a large amount of randomly generated data set for that particular node. This

is an important aspect of the HDM as the GA module depends on the classification

ability of NNN. As it was described earlier that the nodes, particularly the TERMINAL

nodes, are not constrained to give one fault class, but can suggest a set of fault classes to

the GA module. This facility has been provided to reduce the probability of a wrong

fault class being given to the GA module. While classifying the fault classes the CF of

that nodes plays an important role in the number of fault classes being suggested. The

higher the CF the lesser will be the number of fault classes suggested and also more

confidence in the fault classes suggested. An explanation for this method has been

provided in chapter-7 when the results are discussed.

High CF is particularly necessary in the BRANCH nodes as the decision made at the

branch level is crucial for the progress of the solution in the correct direction. It is also

possible that under some extreme conditions the network makes a wrong classification

in the beginning, which can lead to input data being passed through the incorrect

branches. To avoid such situation, different networks topologies can be used for

classication. Different topologies would mean longer training time. l-lowever, once the

networks are trained for a particular operating point, the classication is instantaneous.

Examples of two topologies are shown in figure 7.23 & 7.24 to illustrate this principle.

The difference in the configuration is the arrangement of nodes. The first two levels are
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Component or
Sensor

Component

Figure 6.15: Nested Neural Network (Type-A)
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Figure 6.16: Nested Neural Network (Type-B)

common in the example shown, though need not necessarly be same In the rst

cheme node-1 classies the data into component fault or sensor fault
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If it is a component fault then it passes the data to node-2 which classies between

single or multiple component faults. If identified as multiple component faults, the data

is passed to the next network where it is further classied into group-l, group-2 or

group-3 and subsequently into fault classes to be optimized.

The second network starts in a similar way like the rst one and is identical up to the

second level. Node-4 then classies the data into one of the four subgroups; group-1,

group-2,group-3 or group components fault classes with single components.

The input test pattern introduced to the networks is same. If the same fault classes are

identied by both the networks, one could have more condence in the fault classes

identified. If the configuration suggests different fault classes then all the all the faults

classes identied by the NNNS could be investigated or only the commons fault classes

could be used. This is entirely dependent of the accuracy of the networks. The choice of

training algorithm, the amount of data and the quality of data used for training play an

important role in the nal accuracy of the NNNS. The two networks described above

only suggests that such a methodology can be adopted if required. Additionally, the

same network configuration can be trained for two different operating points. I-Iowever,

in the present work only one type of network has been investigated. The classification

accuracy was found to be adequate for the problem in hand.

6.5.4 Working of the Hybrid Model

The NN preprocessor in the HDM comprises of fteen nodes, each with different

function to perform. The nomenclature adopted here is: L- Level and N- Node.

Therefore, LlNl means a node-l in level -l. The functions of individual nodes are

shown in Table 6.7. The networks represented by the nodes are Multi Layer Perceptrons

(MLP) except LZN2 which is an Auto-Associative Neural Network, used specically

for sensor fault detection. The congurations of the networks and the fault classes used

to train them are shown in table 6.8.
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NODE DESIG FUNCTION
LlNl SFCF Classies Sensor fault and Component Fault
L2N l CMPF Classies between Single or Multiple Component Faults
L2N2 SFD ldenties Sensor Fault
L3Nl SCMPF ldenties fault classes in case of single component fault
L3N2 MCMF Classies multiple fault component faults into subgroups
L4N l GROUP-l Classifes the faults with compressors into LP and HP groups
L4N2 GROUP-2 Classifes the faults with turbines into subgroups
L4N3 GROU P-3 Classies the faults with ICL and RCR into subgroups
L5Nl LPC-GP ldenties fault classes with LPC as a common component
LSN2 HPC-GP ldenties fault classes with HPC as a common component
LSN3 HPT-GP ldenties fault classes with I-IPT as a common component
LSN4 LPT-GP ldenties fault classes with LPT as a common component
LSNS FPT-GP ldenties fault classes with FPT as a common component
L5N6 lCL-GP ldenties fault classes with lCL as a common component
LSN7 RCR-GP ldenties fault classes with RCR as a common component

Table 6.7: NNN nodes and their functions

NETWORK TYPE CONFIGURATION FCS-INVOLVED lN TRAINING
LlNl MLP I0-30-30-2 FC-l : FC-28
L2N l MLP l 0-3 O-30-2 FC-l : FC-28
L2N2 AANN 10-30-4-30-10 MEASUREMENTS
L3Nl MLP l0-25-25-3 FC-1: FC-7
L3N2 MLP l 0-3 0-3 0-2 FC-8: FC-28
L4N l MLP 10-25-25-2 FC-8:FC-l8
L4N 2 MLP 10-25-25-2 FC-23:FC28
L4N3 MLP lO-25-25-2 FC-l 9:FC22
L5Nl MLP lO-25-25-3 FC-8:FC-13
L5N2 MLP 10-25-25-3 FC-l4:FC-l 8,FC-8
LSN3 MLP 10-25-25-3 FC-23 :FC-25,FC-l 9,FC- l 5,FC-l 0
LSN4 MLP 10-25-25-3 FC-26,FC-27,FC-23,FC-20,FC-16,FC-l l
LSNS MLP 10-25-25-3 FC-28,FC-26,FC-24,FC-2 l ,FC- l 7,FC- l 2
LSN6 MLP 10-25-25-3 FC-1 9,FC-2O,FC-2 l ,FC-22,FC-l 4,FC-9
LFN7 MLP 10-25-25-3 FC-28,FC-27,FC-25,FC-22,FC-l 8,FC- l 3

Table 6.8: NNN nodes configuration and fault classes used for training

A schematic diagram of the network developed has been shown in figure-6.13. The

input data, which is in the form of a measurement deviation is introduced to the node at

the top level (L1N1). This node determines if the faulty pattern is due to sensor bias or

component fault. If the fault identified is a sensor bias, then an AANN is called to
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determine the magnitude of fault. If the fault is classifed as a component fault, it is

passed on to the next node to classify it into a single component or multiple component

faults. If the input pattern is associated with the single component fault, the network will

try to identify fault class containing the faulty component. At this point it is pertinent to

mention that the node can identify more than one fault class.

lf the input pattern is identified to have multiple component faults, then it is further

subdivided into 3 groups as shown in the figure-6.13. Each node further classifes the

input data and forwards it to the node at the next level. Similar to the single component

faults the last level of nodes can suggest a single fault class or a set of fault classes.

6.6 Fault Diagnostics Tool for ICR WR21 Engine

An engine fault diagnostics model for the ICR WR21 engine has been developed

incorporating IFDM with the NN to form a hybrid diagnostics model. The program is

highly modular and user friendly and can be adapted to any other engine with minimum

modifications. A schematic diagram of the diagnostics tool has been shown in figure

6.16.

The program essentially comprises of a GA diagnostics model and the NN classier.

A set of measurement is given as input to the program. The signal processing block

lters the noise from the measurement and passes it on to the fault class analyser. The

fault class analyzer analyses the fault classes by generating objective functions for each

fault class by incrementing the performance deviations in predened steps within the

constraints. The minimum objective function of each fault class is compared and a set of

fault classes most likely to contain the faulty components are forwarded to the

summation block. The NNN receives a set of measurement and classifies it into a small

group of fault classes to be optimized. The fault classes obtained from the FCA and

NN are compared in the summation block and an AND operation is carried out to

include all the fault classes. The FCA also passes information of the fault class to the

inference engine which updates its database and has a prior knowledge of the problem.

The GA optimizer is the 3-stage integrated fault diagnostics model and optimizes the

fault classes provided by the previous stage.
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Figure 6.18: Schematic diagram of the diagnostics tools for the ICR WR21

6.6.1 ICR WR21 Diagnostics Program Structure

The program has been developed in FORTRAN 90/95 and Compiled using Digital

Visual Fortran Ver 6.0. It uses the Neural Network tool box of the MATLAB 6.0 for

training the neural network. The structure of the program is shown in gure- 6.17.
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I WR21 MAIN I

I PERFORMANCE I I FAULT SIMULATION I I SEARCH SPACE I

NETWORK SIMULATION
I I ANN TRAINING I I RESPONSE SURFACE I

Figure 6.19: Schematic diagram ICR WR21 diagnostics program

The WR21 MAIN module is the central module which controls the other model. The

PERFORMANCE module is associated with the performance analysis of the engine and

contains the engine performance code. The FAULT SIMULATION module is used to

generate faulty simulated data for diagnostics. This module has the options for adding

sensor noise and sensor bias to the measurement data. The SEARCH SPACE module

generates the search space for the required components. It also has a subroutine to

perform the fault class analysis. The ANN TRAINING module is used for generation of

data for the NN and stores the trained network. The NETWORK SIMULATION

generates data for simulating the neural network and obtains the condence rating for

individual networks. The RESPONSE SURFACE module is associated with the

generation of data for development of response surface for each fault class. A

Graphical User Interface (GUI) has also been developed for easy handling of the

diagnostics model and has been shown in Appendix- G.

6.7 Summary

In this chapter a description of an integrated diagnostics system based on GA

optimisation combined with ANN to form a hybrid diagnostics system has been

presented. The IFDM uses a knowledge augmented optimisation to direct the progress
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of the GA search. The IFDM also speeds up the algorithm by the use of a response

surface for each fault class. Additionally, the method also uses the elitist concept to

preserve the accuracy. The combination of IFDM with ANN makes the overall fault

diagnostics more efficient, quicker and reliable. With the development of these

techniques, it is envisaged that there will a significant impact on the engine fault

diagnostics. The integrated system will help in reducing the total run time and therefore

could be run several times so that the nal result can be viewed in a statistical sense.

This could eventually also lead to the possibility of GA based fault diagnostics system

to be employed for online engine fault monitoring. A discussion of results based on the

fault diagnostics using the above method is presented in the next chapter.
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CHAPTER-7

DISCUSSION OF RESULTS

7.1 Introduction

The development of a diagnostics model based on MOPA for the ICR WR2l engine

has been presented in chapter-5 and some results discussed. The limitation of the

technique led to the development of the advanced diagnostic method which

encompasses the IFDM and the HDM and has been described in chapter-6. This

chapter will discuss the results obtained from the tests carried out with the diagnostics

framework developed.

The discussion of results has been organised in four parts the rst part presents an

analysis of the MOPA based diagnostics model for the WR21. Issues like, the choice of

operating point. the number of operating points etc. are discussed. The second part

discusses the results obtained from the MOPA based diagnostics and its limitations. The

third part discusses the NN classification features and its usefulness. The fourth part

discusses the results from HDM and finally a summary of the chapter is provided.

7.2 Discussion on the Objective Function

The development of an objective function is fundamentally derived from the principles

of GPA, where a set of measurement is obtained from the engine model by implanting

know faults. The highlight of the objective function is, the preservation of non-

linearity of the engine model. The other advantage of the objective function is the

ability to deal with sensor noise and bias of instruments tted on the engine as well as

the instruments used to measure the environment and power setting parameters. The

objective function developed by Zedda (l999c) which has been used in this research

work is-

M 2].-/'j(x,w)`J(x,w)= Z (7.1)
]~=1 z0ay.(w)-0].
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This objective function has been found to be most appropriate for work. A detailed

derivation of the objective function has been provided in the chapter~3. The objective

function would be minimized when the numerator is least. Such condition would occur

when the correct value of the performance parameters (x) and the environment and

power setting parameter (w) is reached. The value of the function will not be zero in

such case but will consist of a term that is a function of the measurement noise, model

inaccuracy and measurement bias. Since the standard deviations of all the sensors

(measurements) are known and noise is assumed to be Gaussian, it would be easy to

detect measurement bias, as these would fall way outside the 30' limit. Even if noise is

not Gaussian the chosen objective function would be most suitable as explained in

chapter 3.

7.3 Analysis of WR-21 Diagnostics Model Based on MOPA

The development of a MOPA based diagnostics model for the WR-21 required certain

critical issues to be addressed. These issues are applicable in general to all engines.

Some results from the initial investigations with the diagnostics model for the RBI99

has also been shown to support the case.

7.3.1 Complexity in optimisation

The aim of the optimization technique is to be able to achieve a particular goal by

minimizing an objective function. In the case of gas turbine diagnostics, we have to be

able to reach the global minimum for cases that have all the possible difculties such as:

multimodality, deception, isolated optimum and collateral noise that make optimization

difficult. The use of classical techniques for multi-objective optimization such as

summation of the different objective functions could not give accurate results, as each

of the objective function could give an optimal solution that is a local minimum and the

optimized result for the sum would also tend to be in one of the local minimums. The

optimization technique chosen in this case relies on the use of the concept of pareto-

optimality. The concept of pareto-optimality has been used after specically tailoring it

for the purpose of gas turbine diagnostics. The method has been described in chapter-3.
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Tests were conducted using three different schemes for the WR-21 and the results are

shown in table 7.1. It is evident from the results shown, that the accuracy shown by the

MOPA using pareto-optimality is superior to the MOPA by sum method.

ACTUAL FAULT (%) PREDICTED F/º\ULT(%)
SOPA MOPA MOPA

(Sum) (Pareto)
A11 .rºc -0.5 -0.82 -0.42 -0.49
Ar u=c 2.0 -1.26 -1.75 -1.98
N1 Hiºc 0 0 0 0
Ar HPC 0 0 0 0
A11 ici. 0 O 0 O
AF c. O 0 0 0
All Hm' -0.8 - 0.92 -0.72 -0.81
AF HPT 1.5 2.13 1.39 1.52
A11 LPT 0 0 0 0
ÃF LPT 0 0 0 0
A11 Fri'

O

O

O

O

Al- FFT

O

O

O

O

A11 RciÄ±

O

O

O

O

/311 RciÄ±

O

0

O

O

Environment and Power seting paremClC l'S
Operating point I
Power (hp) 26400.00 26400.00 26400.00
P ambient (Atms) 1.00 1.00
'I' ambient (K) 308.15

1 00
308.15 308.15

Operating point 2
Power (hp) - 2400000 2400000
P ambient (KN/m2) 1.00 1.00T ambient (K) - 308.15 308.15

RMS error - 0.28 0.07 0008

Table 7.1: Comparison of different diagnostic schemes

Even though the multiple operating point analysis technique based on summation gave

better results than single operating point analysis, the accuracy is not very high. One of

the reasons for this can be explained by analyzing the search space. The chances of the

various objectives functions of a string having the lowest sum and getting stuck in local

minima is always present. This would lead to higher tness and hence higher chance of

survival for this string. At the same time some other string having one of the objectives

in a local minima and the other(s) in a position from where they can nd the global

minima, but having a higher sum would get lower tness and hence less chance of

survival into the next generation. From the above results it can be concluded that the

MOPA based on pareto-optimality is a better option for fault prediction and therefore

used for the WR-21 diagnostics model.
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7.3.2 Number of operating points

The choice of the number of operating points is very important, as the objective

function becomes more complex with an increase in the number of operating points.

The factors making it more complex are, the increased number of environment and

power setting parameters, which are all assumed to be affected by noise and bias. It has

been brought out earlier in chapter-3 that the gains achievable up to three operating

points are signicant, beyond which the relative advantage in terms of accuracy is not

worth the computational effort.

The choice should therefore be such that the approximate nature of Relative

Redundancy Factor (R) is taken into account by aiming for a value that is around 1.5,

which gives a margin of error of 50%. This should be done keeping in mind that, as the

number of operating points increases the requirement of computational resources also

increases proportionately.

PARAMETER ACTUAL (%)
1-OP

PREDICTED (%)
2-OPs 3-OPs

Ai] Lpc 0 0 0 0
A1' Lpc 0 0 0 0
Ai] HPC -1.0 -0.826 -1.102 -1.068
AF Hvc -3.0 -2.439 -2.983 -3.011
A1] [CL 0 0 0 0
L\|` [CL 0 0 0 0
Ã1] HPT 0 0 0 0
A1" pr 0 0 0 0
An T -2.0 -1.462 -1.374 -1.918
Ar T 4.0 2.893 3.922 4.103
A1] FPT 0 0 0
AF FPT 0 0 0 0
A1] RQR 0 0

O

O

A1] RQR 0 0

O

O

Environment and Power seting parem 0tCl'S

Power (hp) 2640000 2640000 2640000
P ambient (Atms) 1.00 1.00 1.00

Operating pointl

Tambient (K) I 308.15 308.15 308.15
Operating point 2

2400000 24000.00
P z\mbien1(A1ms) - 1.00 1.00T ambient (K) - 308.15 308.15
Operating point 3

22000.00
101.32

Power (hp)

I -

308.15

RUN TMEs (Hours) |
RMS error - 0.37 0.04 0.039

12 | 2| | 29

Table 7.2: Fault predictions with different operating points
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Testing for the WR-21 model was carried out using one, two and three operating points.

A comparison of the fault prediction using different numbers of operating points is

shown in table 7.2. It can be observed that the accuracy of fault prediction achieved

using three operating points is marginally higher than the fault predictions using 2

operating points. However, the time taken was 8 hours more than that taken by 2

operating points. Therefore there is no relative advantage in using more operating

points. The diagnostics model for the WR2l uses two operating point for l\/IOPA.

7.3.3 Choice of operating points

Another important issue while dealing with MOPA is the choice of operating points, i.e.

how far apart should the operating points be and at what power range the observability

for fault detection is good. If the operating points are far apart, then there is the

possibility of the performance parameters (like efciencies of components) changing

due to the changed power setting. For a very low difference, there is the risk of

interdependency. It was observed that, for lower power settings the observability was

poor. Additionally, for very high power levels there were a number of cases where the

mutation operator caused the strings to exceed some of the key control parameters such

as TET etc. lt has been found that for all engines, there is certain range of power

settings for which the observability of the faults is very good (Gulati, 2002c). This

varies from engine to engine and needs to be identified prior to the diagnosis. This range

also limits the maximum number of operating points that can be used, the other limit

being the computational resources needed for more operating points. The tests were

conducted in three bands in terms of distance between operating points (changing power

while keeping the other environment parameters constant). Case-l : l-5 %, Case-2: 6-

10% and Case-3: 16-20%. Table 7.3 shows the best results obtained in each band . It

can be observed that case-2 gave the best results. In case-1 the operating points are so

close that the algorithm was unable to obtain much information from 2 points and in the

case-3 the points are far and the aerodynamic conditions are different, which means that

the efciencies and mass ows are different and therefore it gave results with poor

accuracy. After a thorough investigation it was concluded that the optimum choice of
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operating points would be to choose 2 points within the band shown by case-2 ie a

difference of 6-10 % in power setting.

ACTUAL FAULT (%) PREDICTED FAULT (%)
Case 1 Case 2 Case 3

A11 C

O

0 0 0
AF wc

O

0 0 0
A1] HPC

»-
O

- 0.26 -0.92 -0.89
N- HPC

1o

-1.76 -3.16 -2.65
A1] ici.

O

0 0 0
AF ict

O

0 0

O

A11 i-im'

O

0

O

O

Ar HPT

O

0

O

O

A11 LPT

O

-0.13

O

O

/-\ 14 .P'r

O

1.24 O 0
/Ä1] FV1'

.°U

0 ~0.46 -0.42
Ar Fi>'r

!'Q

0 1.98 1 .88
A1] icrÄ± 0 0 0 0
A11 tciÄ± 0 O 0 0
Environment and Power seting pare IIICICFS
Operating point 1
Power (hp) 20500 22000 24000
P ambient (KN/ml) 1.00 1.00 1.00T ambient (K) 308.15 308.15 308.15
Operating point 2
Power (hp) 20000 20000 20000
P ambient (KN/m2) 1.00 1.00 1.00
T ambient (K) 308.15 308.15

RMS error -
308.15

0.75 0.06 0.1 1

Table 7.3: Comparison of results for different numbers of operating points

7.3.4 Instrumentation

The choice and number of instruments available greatly inuence the direction in which

diagnostics proceeds. A large number of instruments makes the search space easier to

traverse and diagnostics based on single objective optimisation could be performed. A

reduced number of sensors make the search space more complicated and require more

computational resource to be utilized. A search space is the objective functions plotted

against the changes in flow capacity and efciency. Essentially every point on the

search space is a potential solution and it decides the quality of the population for the

GA search. Figure 7.1 shows the search space plot for the LP compressor of WR21 with

9 sensors ftted on the engine, if we observe the bottom portion of the plot, it appears

that there are many minimum points close to each other that the GA may not notice a

significant fitness improvement over many generations and be content with any close
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value. This however does not mean that the engine is insensitive to Variation in engine

perfønnance parameter.

Search Space
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Figure-7.1: Search Space for LPC with 9 Instruments
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Figure-7.2: Search Space with 16 Instruments
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For the same engine, under similar conditions a search space generated with 16

instruments, shown in gure 7.2, is completely different. Here the search space shows a

distinct convergence to a minimum value of objective function. Another important

observation which was made during the analysis is that the search spaces for the

compressors are more complex than turbines. Which means that the faults associated

with compressors are more difcult to identify. A discussion on this with suitable

gurcs is presented below-

7.3.5 Analysis of Compressor Search Spaces

Experiments were conducted to study the behaviour of search spaces of various engine

components. It was found that the search space for a compressor is more complex

despite the fact that most of the measurements are towards the compressor side. I order

to explain the behaviour, few results from the initial study of the RB199 engine have

also been included. The search space for HPC of WR21 is shown in gure 7.3.
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Figure 7.3: Search space for HPC of ICR WR21
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The bottom of the search space appears at and seems to indicate that for a given value

of efciency change (or very close values) there are many values of flow capacity

deviations which could give close values of objective function. This condition poses

great difculty for the optimizer to select the best individual from a population of

strings producing similar values of objective function, while the performance

parameters producing them are very different. Despite the fact that the WR-21 has two

scnsors each (one temperature and one pressure) on the inlct and exit of the H

eompressor, the fault identication in the HPC appears dífcult.

Similar search space analysis was for conducted for the RBI99 engine prior to the

WR21 and the results were identieal. The search space for IPC of the R 199 engine is

shown is ligure 7.4. It can be seen that it has a llat bottom similar to the WR2l HPC

which makes it dillicult for the optimizer t detect the actual fault.

It has been observed that during the search process the problems are mainly eneountered

at the bottom of the search space, particularly for compressor, which is nearly at with a

global minimum value being not very different from many other local minima present.

Under these circumstances it would not be possible to reach the absolute global

minimum by using hill climbing techniques or other conventional techniques such as

the ealculus based methods.

t]j.Fn.

flëflöÃ«

1.89

Capacity
43' dem

3.50 05% 1.156 1.715
2.275E-02

Ecincydlt (-)

Figure 7.4: Search Space for a IPC of RB199 (Sampath et al, 2002b)
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The use ofa GA based technique even with local tuning methods such a evolutionary

technique was not able to increase the accuracy for most cases. This is because once

trapped in a local minimum, the string will keep getting a higher level of fitness and

hence nore chances of its survival. Tuning with the help of varying the rate of mutation

helped to some degree, but then with a high probability of mutation, consistency

reduced and therefore probability of mutation was kept at 0.4.

7.3.6 Analysis of Turbine Search Spaces

Search space analysis of turbine show that they are relatively smoother and have

distinctly dened global minimum when compared with compressor search spaces. A

search space for the HPT ofWR2l is shown in gure 7.5. The search space of HPT of

WR21, indicates that there is probably one value of deviation in component efficiency

(or vey close) and one value of the deviation in ow capacity which will produce the

minimum objective function and the performance parameter producing it will be

indicative of the component fault.
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Figure 7.5: Search Space for a HPT of WR21
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Figure 7.6: Search Space for a FPT of WR21

A search space for the FPT of WR21 shown in gure 7.6 which also has a distinct

global minimmn. Investigation with search space for the RBI99 engine also gave

similar results. A search space for the LPT ofRBl99 is shown in gure 7.7.

aso am nssosnosznøsznrs apayaun
B (-)

Bciro/d(-)

Figure 7.7: Search Space for a Turbine (Sampath et al, 2002b)

-210-



Chapter- 7: Discussion ofResults

The following broad conclusions can be drawn from the search space analysis of the

turbines are:

0 The search space is relatively smooth when considered as a function of the

performance parameter only.

0 The chances of reaching a global minimum quickly and accurately are high.

0 From the GA optimisation point of view, a small population going through less

number of generations (when compared to compressors) will be able to detect

the fault reasonably accurately.

7.3.7 Engine Performance Model:

Some of the problems experienced during the diagnostics process could also be

attributed to the thermodynamic model used (convergence criteria, tolerances, types of

variables that are used). The variables could be single precision instead of double

precision which could also cause numerical errors. Mostly, the models are precompiled,

the accuracy and speed depends on the kind of compilation that has been used: fully

optimized or partly optimized.

Max Engine
Avg. Engine

Power Setting

Measurement 'X'

Figure 7.8: Representation maximum, average & minimum engine (Gulati, 2002c)

Model accuracy assumes great importance for techniques using the engine model to

generate data and identify faults. A typical performance model represents an average
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engine while in reality the engine being diagnosed could be between a maximum engine

and a minimum engine. This concept is illustrated in gure 7.8.

The figure shows a typical variation of a measurement with respect to the change in

power level. If the actual engine was minimum engine then the model based on average

engine would identify a non existent fault. One to way to overcome this is to generate

data by uniformly deteriorating all the components or few components by a small value

in addition to the faults implanted as suggested by Gulati (2002c).

7.3.8 Quality of Information (Observability)

While the number of the sensors used is important, it is also important to see that how

well these sensors can observe the changes taking place to the engine due to a fault. A

small instrumentation set which can perceive the changes effectively is more desirable

than a large number of instrumentation set with repeating parameters or low

observability. The importance of search space analysis has been shown earlier. Search

spaces for variation in performances parameters of two components and environment

and power setting parameters cannot be plotted at the same time. However search

spaces plotted for single component faults are sufcient to give an idea of the model

and suitability of the instruments from the observability point of view. Different

combinations of instruments were investigated for the WR-21 and also discussed with

the sponsor about the possibility of placing these sensors before settling for the present

Set of instruments.

7.3.9 GA Parameters

ln addition to the various issues associated with instrument selection the optimization of

GA parameters (no. of strings, no. of generations, probability of cross over, type of

cross over, mutation rate etc..) are critical to the success of this technique. The results

shown earlier were obtained using 100 strings per fault class and running these for 100

generations. The rationale behind choosing these values is explained below:
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50 Strings and 40 generations
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Figure 7.9: Convergence of Objective function (Case-1)

(Sampath et al, 2002c)

Ideally, the GA parameters critical to the progress of the search process should be

optimized. This necessitates another optimizer and would make the process more

complicated by introducing a number of unknowns in the system. Perhaps, an easy way

to go about it, is to use the trial and error method to identify an appropriate numbers of

strings and generations for the optimisation. Figure-7.9 shows the results of

optimisation using 50 strings and 40 generations. When compared with a case with 100

strings as shown on figure 7.10, the case involving 50 strings stabilizes much earlier

than the one having l00 strings. The minimum objective function achieved in case-l is

9.6 and there is no improvement in objective function after 20 generations. This is

because the not much information is available within the population and possibly the

algorithm has been trapped in a local minimum.

100 Strings and 40 generations

28

23] Min obj = s.s

._ 18

138 I l t I
o io 20 so 40 so

Generation No

Ob Fn

Figure 7.10: Convergence of Objective function (Case-2)
(Sampath et al, 2002c)
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ln case-2, the minimum objective function achieved after 40 generations is 8.8 and it

can be seen that the model has not settled at any particular value of the objective

function and could probably settle to a value if allowed to go through few more number

of generations. The population has sufcient diversity and the chance of extracting the

correct string from the population is much higher.

Analysis of the 2 cases reveals that the use of fewer strings will lead to an inaccurate

result in terms of either the wrong component being identified or the predicted result

being very different from the actual in terms of deviation efciency, capacity and power

setting parameters.

100 Strings and 100 generations

28
23

_ 18 Min Obj =8.75
13

8 I I I I i
0 20 40 60 80 100

Generation No

Ob' Fn

Figure 7.11: Convergence of Objective function (Case-3)
(Sampath et al, 2002c)

An experiment with a third case consisting of 100 strings going through 100

generations was conducted. Figure-7.1 l shows results obtained with 100 strings and 100

generations. The lowest value of objective function obtained was 8.75 which is

marginally better than case-2. It can be observed that the optimization has settled down

to a steady value of the objective function at around the 50m generation and thereafter

there is no significant improvement in the value of the objective function. From the

above study, it is evident that the initial population should have sufficient number of

strings and have a high diversity factor such that the whole search space is covered. In

order to achieve the required consistency in terms of accuracy, the use of l00 strings

and 100 generations was found to give acceptable results for different types of faults

and the same has been used in the diagnostics model for the WR2l.
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The other parameters which are of importance in a GA based engine diagnostic model

are the probabilities of crossover (PC) and mutation (PM). The values of which were also

arrived at after extensive testing. These are 0.6 for crossover and 0.4 for mutation. The

PC is kept constant for all generations. The level of mutation (i.e. the magnitude by

which a parameter is altered) is held constant up to 70% of generations after which it is

non-uniform and reduces as generations progress.

7.4 Results from Initial Diagnostics Model For WR-21

The development of a diagnostics model based on the concept of MOPA has been

diseussed and the various important aspects of the diagnostics model have been

presented. Several test cases were run to validate the diagnostic model and a few are

presented in this chapter. The fault data for input to the diagnostics model has been

generated using the same performance model, which is used by the diagnostics model.

The simulated faulty data is generated by implanting known set of faults into the

performance code and a set of measurements is obtained. Simulated faulty data for case-

l is shown in table 7.5. The diagnostics process is started by setting GA parameters like

the population size, number of generations, probabilities of crossover (PC) and

probability of mutation (PM).etc..

As diseussed earlier, the process of engine diagnostics involves a constrained

optimisation in which the upper and lower limits of potential faults are predened. This

has been implemented to avoid the search for faults which are in zones , that could lead

to catastrophic faults. The objective of the diagnostics model is to be able to predict

faults before they occur. A summary of various constraints on the performance

parameters is shown in table 7.4. The values shown are percentage deviations of

performance parameter from their baseline value.
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Fault Component-1 PP Limits Component-2 PP Limits
Class Efciency(%) Flow Capacity(%) Efciency(%) Flow Capacity(°/º)

Min I Max Min Max Min Max Min Max
FC-I 0.00 -3.50 - 5.00 5.00
FC -2 0.00 -3.50 - 5.00 5.00
FC-3 0.00 -10.00 0 .00 10.00
FC-4 0.00 -3.50 - 5 .00 5.00
FC-5 0.00 -3.50 -5 .00 5.00
FC -6 0.00 -3.50 - 5 .00 5.00
FC-7 0.00 -10.00 0 .O0 10.00
FC-8 0.00 -3.50 - 5 .00 5.00 0.00 3. 50 5.00 00
FC-9 0.00 -3.50 - 5 0.00 I0. 00 0.00 I 00
FC-I0 0.00 -3.50 - 5

.00 5.00

.00 5.00 0.00 50 5.00

5
0
5 00

FC~ll 0.00 -3.50 - 5 .00 5.00 0.00 -3. 50 5.00 5 00
FC-|2 0.00 -3.50 - 5 .00 5.00 0.00 50 5 5. 00
FC-I3 0.00 -3.50 - 5 .00 5.00 0.00 I0. 00 0.00 l O O0
FC-I4 0.00 -3.50 - 5 .00 5.00 0.00 -10. 00 0.00 l 0 00
FC-15 0.00 -3.50 - 5 .00 5.00 0.00 3. 50 5.00 5 00
FC-16 0.00 -3.50 - 5 .00 5.00 0.00 -3. 50 5.00 5 00
FC-17 0.00 -3.50 -5 .00 5.00 0.00 3. 50 5.00 5 00
FC-I8 0.00 -3.50 - 5 .00 5.00 0.00 3. 50 5.00 5 00
FC-19 0.00 -10.00 0 .00 10.00 0.00 -3. 50 5.00 5 00
FC-20

~ - l
0.00 -l0.00 0 .00 10.00 0.00 ~3. 50 5.00 5. 00

FC 2 0.00 -l0.00 0 .00 10.00 0.00 3 . 50 5.00 5. 00
FC-22 0.00 -l0.00 0 .00 l0.00 0.00 -l0.00 0.00 0. 00
FC-23 0.00 -3.50 - 5 .00 5.00 0.00 50 5 5. 00
FC-24 0.00 -3.50 - 5 .00 5.00 0.00 50 5.00 5 00
FC-25 0.00 -5.50 - 5 .00 5.00 0.00 -lO. 00 0.00 l 0 .00
FC-26 0.00 -3.50 -5 .00 5.00 0.00 50 5.00 5 00
FC-27 0.00 -3.50 -5 .00 5.00 0.00 -l 00 0.00 l 0. 00
FC~28 0.00 -3.50 -5 .00 5.00 0.00 -lO.00 0.00 0. 00

Table 7.4: Constraints on performance parameters

The population is produced with the 0-3.5% Variation in efciency (reduction from its

base line value) for all components (except ICL & RCR). The deviation in ow capacity

for a component is varied between -5% to +5% from its baseline value. For the ICL &

RCR, leakage factor and fouling factor are varied on a scale from 1 to 10. ln the

practical sense, fouling factor indicates some percentage reduction in the heat

effectiveness (a) of the heat exchangers and leakage factor indicates the loss of working

uid to atmosphere. The aim is to dene a quantity that can be used to generate a fault

condition and which can be identied by the diagnostic model.
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7.4.1 Fault Case-1 : Single Component Fault with 1 sensor biased

FAULT CASE-1 : Fault lmplantedz HPC - (A11 :-3.00 % AF: -4.00%) , HPC Exit (Temp) sensor faulty
Sl No Station Operating Point-1 Operating Point-2 Sensor Type Units

l
2

©0O\IG\LI\~|>LºJ~âº

10

HP Compressor(1n)
HP Compressor(Exit
IC Differential
HP Compressor(1n)
HP Compressor(Exit)
Combustor Entry
Power Turbine(ln)
Power Turbine(Exit)
HP Shaft Speed(RPM)
LP Shaft Speed(RPM)

2.4686
1 1.7087
0.0504

3132969
521 .S140
792.6706

1115.91 17
848.8079

8208.49l2
62805479

2.4076
1 1.1 1 17
0.0491

3121558
5120514
7696127

10742185
8207999

81298457
61322026

Pressure
Pressure
Pressure
Temperature
Temperature
Temperature
Temperature
Temperature
Tachometer
Tachometer

Atmosphere
Atmosphere
Atmosphere
Degree Kelvin
Degree Kelvin
Degree Kelvin
Degree Kelvin
Degree Kelvin
RPM
RPM

* ludicates biased Instrument

Table 7.5: Simulated measurements with fault implanted (Fault Case-1)

Fault case-1 considers a single component fault. The efciency and ow capacity of

HPC has reduced by 3% and 4% respectively. Noise values are added to the

measurements obtained from the performance model. Depending on the sensor chosen

to be biased, a value of approximately 10-126 is added to that particular measurement

to simulate a sensor fault condition. Sensor faults are added only to sensors 1 to 8, as the

tachometers are generally very accurate and consistent in measuring the rotational

speeds of the shafts.

The diagnostics process has been described earlier, the objective functions are

calculated and the lowest objective function for each class is retained. Once all the fault

classes have been searched, the minimum objective functions from all the fault classes

are compared and the fault class associated with the lowest objective function is

indicative of the faulty component(s). Result from the diagnostics model for fault case -

1 is shown in table 7.6. The GA optimisation started with 100 strings and went through

100 generation to arrive at the solution. The diagnostics process took 19 hrs and 44 mins

to converge.
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INTERCOOLED RECUPERATED-WR2l DIAGNOSIS REPORT

Performance Engineering Group, Craneld University
Test Case: WR21/D1AG/ 217 TIME/DATE: 19:32:23 [15-Feb-O3]
Fault Class Analysis

FC MOF Time I Efciency Change (An) - Percentage I Flow Capacity (AI`)- Percentagc
Component-1 Component-2 I Component-1 Component-2

Comp-1D An Comp-1D I AF Comp-1D A1' Comp-1D
FC-1 66.985

I A1]
41 -2.9936 LPC 0.3106 LPC

| FC-2 6.535 44 -2.9977 HPC 4.1201 HPC
FC-3
1=C-4
1=C-5
1=C-6
PC-7
FC-s
FC-9

FC-1o
1=C-1 1
FC-12
1=C-13
1'-TC-14
FC-15
FC-16
FC-11
PC-12
FC-19
PC-20
FC-21
FC-22
PC-23
1=C-24
PC-25
FC-zo
FC-27
FC-23

88.609
16.439
44,159
55.543
92.864
41.664
68.476
34.239
28.611
55.043
71.217
19.765
15.409
1 1.903
30.878
10.309
25.444
28.582
73.985
89.592
23.033
34.347
37.199
30.895
38.738
62.933

44 -1.9450 1CL
42 -2.8840 HPT
43 -2.9883 LPT
43 -1.4346 FPT
43 -0.0826 RCP
43 ~1.6500 LPC
41 -2.5038 LPC
43 -0.2152 LPC
43 -2.4577 LPC
44 -1.2233 LPC
45 -2.5607 LPC
41 -2.1282 ICL.
43 -1.4288 ICL
42 -2.7331 ICL
41 -1.9966 ICL
42 -2.8562 ICL
44 -1.3465 HPC
40 -0.6280 HPC
44 -0.9473 HPC
40 -1.9875 HPC
42 ~2.5228 HPT
42 -2.0559 HPT
43 -2.5076 HPT
40 -1 . 1297 LPT
45 -2.9025 LPT
41 -1.5273 FPT

-1.5961
-0.2788
-2.7097
-2.8652
-1.5429
-1.1 172
-0.7708
-1.4506
-0.9499
-0.0262
-1.5714
-2.4667
-2.8753
-2.1 197
-0.1 152
-0.6410
-0. 1751
-0. 1318
-1.0873
-0.4206
-0.4543

1CL
HPC
HPT
LPT
FPT
RCP
H PC
H PT
LPT
FPT
RCP
HPT
LPT
FPT
RCP
LPT
'=PT
RCP
FPT
RCP
RCP

1.9726
0.0569
1.4837
0.8447
1.9635
2.0236
0.2253
1.8751
0.4357
1.1373
0.4058
1.2203
0.4339
0.3368
1.3467
0.3263
0.1676
1.5576
0.5447
1.9896
0.6047
0.9242
1.6660
2.4597
2.2393
0.5137

1CL
HPT
LPT
FPT
RCP
LPC
LPC
LPC
LPC
LPC
LPC
HPC
HPC
HPC
HPC
HPC
1CL
1CL
ICL
IC L
HPT
1-1 PT
HPT
LPT
LPT
FPT

1,5245
0.1 135
0.3236
2.2961
0.0701
0.4099
0.3053
0.4445
0.4918
0.7564
0.1307
0.7332
2.2542
0.1576
1.9858
0.3293
0.6380
0.3243
1.9218
1.9979
0.0061

HPC
1C1-
HPT
LPT
FPT
RCP
HPC
HPT
LPT
FPT
RCP
HPT
LPT
FPT
RCP
LPT
1fP*
RCP
FPT
RCP
RCP

1184
Estimated Environment & Power Setting Parameters

O erating Point-1 Operating Point-2
Power/Fuel I Tenperatre P1'essure I Power/Fuel I 'I`emperat1re I Pressure
264045488 3081469 1.0002 240140488 308.2270 1.0002

Fanlt Detecled (Change in Component Performance Paramctcrs
I --tn111  _ Com onet-2

1 Comp-11) | Ar I
COR- B>I Aq | Comp-1D I) Ar | Comp-in_ -2.9977 HPC -4.1201 HPC - - _

\ /
Sensor fault Detection

Faulty Sensor-1 I Fau1tySensor-2
Sensor ID I Sensor Type I Sensor ID I Sensor Type

HPC (Exit) Temperature - -

Table 7.6: Results of a single component fault
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..Figure7.12: Minimum objective functions for fault case-1

The fault considered in case-l is a very simple case of single component fault and one

faulty instrument. The diagnostic method has been able to detect the faulty component

and quantify the fault accurately. It has also been able to identify the faulty sensor

correctly. The minimum objective function from each fault class is plotted in figure

7.12. lt can be seen that the minimum objective function for fault class-2 is clearly the

lowest when compared with the others and therefore the component associated with the

fault has been detected as the faulty component. After conducting several tests with

different components and analyzing the results, it can be said that single components

faults are relatively easier to detect. The results from the diagnostics model for varying

magnitudes of efficiency and flow capacity for HPT is shown in figure 7.13 and figure

7.14 respectively. The RMS error between the implanted fault and predicted fault is

shown is gure 7.15. It can be observed that the RMS error for fault with large

magnitude is less, which means that large faults are easily detected by the fault

diagnostics model. This is because, signatures created by large faults are more

distinguishable when compared with signatures from small fault levels, particularly

when the noise levels are high. On few occasions the presence of measurement noise

can give an impression of a fault.
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Figure 7.14: Fault predicted for different level of deviation in flow capacity

RMS Error for Different Fault Conditions
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Figure 7.15: RMS error in predicted fault
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7.4.2 Fault Case-2: Multiple Component Faults with 2 sensors Biased

F.^\Ul'l` CASE-2 : Fault Implanted : LPC- ( An : -1.00 % AP: -3.00% ) , HPT- (An 2 -2.00 % A1`:4.00% )
Sl No Station Operating Point-1 Operating Point-2 Sensor Type Units

I* HP Compressor(ln)
2 HP Conpressor(Exit
3 IC Differential

HP Compressor(ln)
HP Compressor(Exit)
Combustor Entry
Power Turbine(ln)
Power 'l`urbi1e(Exit)
HP Shzft Speed(RPM)

10 LP Shall Speed(RPM)

\O§\lO\U-I>~

2.5200
1 1.4203
0.0514

312.8828
5|4.5628
7992399

1 126. 1593
8577009

82584756
62541577

2.4570
10.8221
0.0501

3117689
5060643
779.9763

10891025
83347476

81609365
60937715

Pressure
Pressure
Pressure
Temperature
Temperature
Temperature
Temperature
Temperature
Tachomeler
Tachometer

Atmosphere
Atmosphere
Atmosphere
Degree Kelvin
Degree Kelvin
Degree Kelvin
Degree Kelvin
Degree Kelvin
RPM
RPM

* lndicates biased instrument

Table 7.7: Simulated measurements with fault implanted (Fault Case~2)

Fault case-2 considers two faulty components and two faulty sensors. The diagnostics

started with 100 strings and went through 100 generations similar to case-1. The

algorithm took 22 hrs 19 minutes to converge. The results obtained from the diagnostics

model is shown in table-7.8
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INTERCOOLED RECUPERATED-WR21 DIAGNOSIS REPORT

Performance Engineering Group, Craneld University
Test Case: WR21/D1AG/ 227 TIME/DATE: 15:57:50 [1 1-Mar-03

Fault Class Analysis

1

FC MOF Time Efciency Change (A11) - Percentage Flow Capacity (AF)- Percentage
Component-I Component-2 Component-1 Component-2

A11 Comp-ID A11 Comp-ID AF Comp-1D AF Comp-ID
FC-Ä±
FC-2
FC-3
FC-4
FC-5
FC-6
FC-7
FC-8

56.162
71.221
59.756
50.642
51.640
67.371
59.766
53.516
57.943

48
51
55
50
54
45
54
43
52

-1.5835 LPC
-1.3223 ICL
-0.0238 HPC
-1.9347 1-1 PT
-0.6681 LPT
-1 . 1462 FPT
-0.3779 RCP
-1.4478 LPC
-0.6344 LPC

0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0949
0.2002

ICL
HPC

-0.6190
-1.7490

1.1043
2.7854

-1.2274
0.0836
1.5128

-0.3594
1.1 108

L PC
IC L
H PC
1-1 PT
L PT
FPT
RC P
LPC
LPC

0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000

-0.4055
1.3959

ICL
HPC

FC-10 17.991 54 -0.9267 LPC -2.1364 HPT -3.2561 LPC 3.8972 H PT
FC-1 1
FC-12
FC- 1 3
FC-14
FC~15
FC-16
FC-17
FC-18
FC-19
FC-20
FC-21
FC-22
FC-23
FC-24
FC-25
FC-26
FC-27
FC-28

58.215
58.559
56.094
59.769
41.596
55.767
71.052
65.024
24.680
44.266
62.337
60.749
33.136
45.188
25.736
42.603
47.964
69.976

52
49
53
48
47
53
52
54
47
48
51
46
52
42
48
49
50
46

-1.0233 LPC
-1.6576 LPC
-1.6242 LPC
-0. 1651 1CL
-1.01 18 ICL
-0.1164 ICL
-0.0151 ICL
-0.0367 ICL
-0.5828 HPC
-0.2204 HPC
-0.7979 HPC
-0.3737 HPC
-0.7309 HPT
- 1 . 1254 HPT
-0.051 1 HPT
-0.4698 LPT
-0.2409 LPT
-1.3979 FPT

-0.6898
-0.6859
-1.3621
~0.1150
~0.9209
-0.8855
-0.9369
-1.2796
-0.0066
-0.3722
-0. 1020
-0.2710
-0.3307
-0.1769
-0.2323
-0.7449
-0.4529
-1.5013

LPT
FPT
RCP
HPC
HPT
LPT
FPT
RCP
H PT
LPT
FPT
RCP
LPT
FPT
RCP
FPT
RCP
RCP

-0.8533
0.3125
0.5493

-0.7267
-1.2461
-1.6915
-1.6136
0.1925
1.2301
0.2142
1.2713
1.8550
2.3726
2.3160
2.5878

-0.9764
-0.6033
-0.8216

LPC
LPC
LPC
ICL
ICL
ICL
1CL
ICL
HPC
HPC
HPC
HPC
HPT
HPT
HPT
LPT
LPT
FPT

-0.3488
-0.8368
0.9185
0.9320
2.6492

-0.5838
0.0706
1.5979
2.4198

-0.8493
-0.3686
1.3030

-1.0441
0.2388
1.5541

-0.3886
0.4725
1.5710

.P'*
FPT
RCP
HPC
1- PT
LPT
FPT
RCP
H PT
LPT
FPT
RCP
LPT
FPT
RCP
FPT
RCP
RCP

1399

Estimated Environment & Power Setting Parameters
O erating Point-l Operating Point-2

Power/Fuel 1_PTemperaturc Pressure l Power/Fuel | Temperature I Pressure
264263906 308.2079 1.0003 23992.2910 3082154 1.0012

Fault Detectcd (Change in Component Performance Parameters)
Com onent-I Com onent-2

Comp-ID Comp-ID Comp-ID Comp-IDA11 | L AT 1 1 A11 I 1 Ar |
-0.9267 LPC -3.2561 LPC -21364 HPT 3.8972 HPT

Sensor fault Detection
Faulty Sensor -l Faulty Sensor-2

Sensor ID I Sensor Type ' Sensor ID I Sensor Type
HPC (ln) Pressure FPT(Exit) Temperature

Table 7.8: Results for Fault Case-2
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Figure 7.16: Minimum objective functions for Case-2

The accuracy of fault prediction and sensor fault detection has been high. A comparison

of minimum objective function from each fault class has been shown in gure 7.16. It

can be observed that fault classes 10, 15 and 19 have very close values of objective

function. These are termed as competing fault classes. During the search process, the

probability that any one of the fault classes could be declared faulty is always high.

Since the genetic operators are random in nature it is possible that the string producing

the best objective function could be randomly modified by the crossover or mutation

operators. This is one of the limitations of this method. It can be observed that, among

the competing fault classes, there is one component which is common to all the PCs i.e.

HPT.

It noteworthy that the same fault class with similar magnitudes of deviation was

considered in chaper-5 and the competing fault classes in that case were different. The

algorithm identified fault classes 10 and 25 as competing fault classes. This proves that

the genetic algorithms follow stochastic transition rules. This characteristics of the GAS
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makes it possible to obtain a global minimum even the face of randomness , noise and

model inaccuracies. This ability is the basic strength of GA.

7.5 Advantages and Limitations Of MOPA

The use of a GA based optimization technique for engine fault diagnostics (using

MOPA) has been examined for the RB199 engine by Gulati (2002c) and for the ICR

WR21 engine in the present work. The method has been shown to be accurate even in

the presence of a large amount of noise, sensor bias and model inaccuracies. The

advantages from the diagnostics model are as follows:

0 The lack of information from fewer number of measurements for poorly

instrumented engines can be overcome by the use of the technique based on

multiple operating point analysis and the concept of pareto-optimality. Multiple

operating points provide high relative redundancy for accurate component and

sensor fault diagnosis.

0 The problem of smearing experienced with many other methods has been

effectively dealt by dividing the engine into a number of fault classes. Each fault

class is examined separately and the minimum objective function from that fault

class is retained. All the fault classes are searched sequentially and the fault class

having the lowest value of objective function is assumed to be containing the

faulty component(s). In this method, only components of the fault class with

minimum objective function are identified as having deviations in efciency and

ow capacity whereas the others are designated a value of zero.

0 The issue concerning non-linearity of the gas turbine operation has been

addressed by the development of an objective function which can also deal with

measurement noise and sensor bias adequately.

Though the results obtained from GA based diagnostics technique have been very

encouraging but there are still a number of drawbacks with this method that need to be
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addressed before it can truly become a widely accepted technique. The main drawbacks

are as follows:

A major limitation of the based optimization technique is the long run times

involved in detecting a fault. A GA requires an initial population and the

members of this population produce offspring and as generations progress these

members get better and fitter. The larger the number of generations the better for

convergence. Even under best circumstances the GA based optimizer requires a

minimum of l00 strings per fault class which then have to go through 100

generations. For an engine of the type of WR2l which has 28 fault classes (for

a maximum of 2 components being faulty), this would require the performance

model to be run at least 28>< l00>< l00>< 2 = 560000 times. This requires at least

22 hours for convergence. In case the performance model is slower than this,

then the time increases. This is especially true for the Trent 500, for which

there are 45 fault classes and the model runs for 900000 times (Sampath et al,

2002c) , but the model being slower, it takes at least 36 hours for convergence,

which can be reduced significantly if the model is speeded up.

Dividing the engine into a number of fault classes and then trying to identify one

of these as faulty solves the problem of smearing. However, this has an effect

on the maximum number of components that can be identied. For the purpose

of this research it has been assumed that a maximum of two components are

faulty. It is possible to look at more components, but this would lead to more

fault classes and hence more time for convergence.

As discussed earlier, during the search process it is also possible that the

algorithm identies more than one fault class i.e. the competing fault classes.

While it can be said with some amount of condence that the common

component in the competing fault classes could be faulty, but to ascertain the

magnitude of fault is a difficult task. Such situations need a careful assessment

of the final results. Under such circumstances, a prior knowledge of the system

would be highly benecial.
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7.6 Steps Towards Effective GA Diagnostics

The importance of search space analysis has been discussed earlier in the chapter. lt

would be benecial to develop the search spaces for the particular engine using the

available measurements. An initial assessment of the problem could aid in the decision

to choose SOPA or MOPA for diagnostics. Though the search spaces can be plotted for

only for one component at a time (with some Variations in the power setting

parameters), this is still reasonable enough to take a decision. The search spaces are

likely to become less complex as the number of measurements increases, though the

observability is an important issue for consideration.

In cases where the search space is very complicated, as in the case of R 211

(industrial) (Carter, 2001), which has only three measurements. the use of three

operating points could be considered. Anything beyond three operating points is likely

to introduce complications as shown by Zedda (19990). Fault diagnostics for engines

with poor instrumentation suite should aim at identifying the faulty components

correctly rather than look for very high degree of accuracy in quantifying the faults. ln

practical applications, small difference in the quantication of fault identified would not

necessitate any change in the type of remedial action taken, however, it is important to

identify the correct component(s).

The next step is to be able to identify the range of power setting points that are likely to

give accurate results. This could be dened as observability with respect to the power

setting. Very low power setting is not suitable due to the observability issue whereas

high power is not suitable due to the fact that mutation can sometimes lead to points that

fall outside the operational envelope, as a result of which the performance model may

not converge. Having decided on the teclmique to be employed and the range of

operating points to be used, the algorithm can be tailored for a particular engine.
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7.7 Results from Advanced Diagnostics Model
The advantages and limitations of the diagnostic model based on MOPA have been

presented in the previous section. In order to overcome some of the limitations like the

long run times and competing fault class, an advanced diagnostics model has been

developed. The advanced model is further categorized into two parts: The 3-stage

Integrated Fault Diagnostics Model (IFDM) and a Hybrid Diagnostics Model (HDM).

The developments of the models have been discussed in detail in chapter-6. An analysis

of the method supported by results is presented in the following sections.

7.7.1 3- Stage Integrated Fault Diagnostics Model (IFDM)

The three stage Integrated Fault Diagnostics Model consists of 3 constituent models:

Adaptive GA model, Response surface model and elitist model. The adaptive GA

works in a Master-slave conguration which is closely linked to an embedded expert

system. The master monitors the slave process for critical parameters. The master

interrogates the expert system which has a built-in logic in the form of rules (IF-THEN).

The various GA parameters like population size, no of generations. PC, PM etc.. are

varied appropriately to arrive at a solution.

The method using response surface during the earlier generations to obtain an objective

function can reduce the total run time signicantly. The aim is to reduce the

computational effort and time spent on evaluating strings which are to be anyway

discarded during the selection process. Evaluating 100 strings involves 200 calls to the

performance code and going through 100 generations would require 20000 calls to the

engine performance model for one fault class. The algorithm takes approximately 35-

40 minutes to search one fault class and needs to search 28 fault classes to identify a

multiple component fault. Figure 7.17 shows the results from an IFDM with only the

response surface model enabled. The gure shows the time taken for each generation

for fault class-4.

During the rst 25 generations, the objective functions are calculated using the response

surface. Engine performance model is used to calculate the objective functions from the

26"' generations onwards. It can been seen that the time taken for 100 strings in the

initial generations is less than a second, whereas, the same number of strings processed
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with the performance code, the time taken on an average is about 26 seconds per

generation. Using this method, the total time for one fault class has been reduced by

approximately 10 minutes and for 28 fault classes, the time saved is approximately 5

hours. The overall gain in speed is signicant. As mentioned earlier in chapter-6, the

response surface helps in eliminating weaker individuals in the beginning of the search

process. Its use should be restricted only to the initial generations.

Objective Function from Performance Model 2
sou

l - i - , -ir- - -' ' 'F
22« fi- - - -' '

I

¬_i

T me Seconds
|JO_U

10Response Surface V
Methodi
5i
r__¬ 1

0 _ _ _ , _____. I _ i
.125 49 73 97

Ge ne ra tions

Figure 7.17: Summary of time taken for fault classes in IFDM

The choice of the number of generations for which the response surface method should

be used is up to the user and depends on the accuracy of the response surfaces

generated. Response surfaces with high accuracies can be used for larger number of

generations. Response surfaces are trained using ANN and therefore require large

amount of training data. However, the advantage is that they can be trained

independently and the trained network can be used for diagnostics at a later stage. The

main disadvantage is that, with change in power setting the networks have to be

retrained. After several trials, it has been established that, its application should

normally be restricted to about 25% of the total number of generations to get the

benets.
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7.7.1.1 Fault Class Analysis (FCA)

Fault class analysis is an important preliminary assessment technique, to take certain

informed decisions on the setting up of the diagnostics process. A discussion on the

search space analysis has been presented earlier in this chapter. lt was also brought out

through the search space analysis, that the faults associated with compressors are more

difcult to detect when compared with turbine faults. A limitation of the search space

analysis technique is, that it can be plotted only for single component faults. However,

the search space for single component faults can provide a reasonably good idea of the

observability ofthe sensors used.

The fault class analysis method is similar to the search space analysis method, in which

objective functions are obtained by varying the efciency and flow capacity of a

component in small steps of desired size. The objective functions are obtained for all the

fault classes sequentially and the fault class producing the lowest objective function is

considered to be indicative of the fault. The approach is very similar to the actual GA

diagnostics model but here the aim is to generate strings which cover the entire range of

the performance parameter deviations dened for the diagnostics. The number of strings

generated is up to the user. A large population will give an effective coverage of the

whole range but will take more time. The aim of such an exercise is to identify the fault

class(s) which are likely to give a solution to the diagnostics problem. The fault class

analysis approach is restricted only to giving prior information to the IFDM and not

to influence or bias the search process by the diagnostic model. The IFDM retains the

information as part of its internal logic and may use it to allocate resources

appropriately during the search process.

The results from fault class analysis are shown in table- 7.9. It can be seen that the FCA

has detected FC-10 to be faulty. However, it has also recommended that fault classes 4,

15, 19 & 23 should also be investigated as the minimum objective functions from these

fault classes are also comparable. From the case studies taken up earlier, it can be seen

the fault classes identied are again competing classes. This information is useful to the

IFDM.
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INTERCOOLED RECUPERATED WR21- FAULT CLASS ANALYSIS

Performance Engineering Group, Craneld University
Test Case: WR2l/DlAG/ FC/144 TIME/DATE:

Fault Class Analysis

12;1o;21 [11-Aug-02]

FC

1

1

Comp-I
FC Components 1 Deviation in Performance Parameter I Objectivc FuÄ±

Comp-2| Component-l | Component-2 ` OBJ-l OBJ-2An | Ar | A11 1 Ar

ction Calculated

1 OBJ-SUM
Fault

FC-l
FC-2
FC -3

LPC
HPC
1/C

2.20
0.20
0.00

-0.00
-1.00
-2.00

56
46
52

0105
4889
.2449

53
46.
48.

9703
71 14
5493

1099808
93.2003

100.7943
FC-4 H PT -1.80 3.00 17 1808 16.3264 33.5072 \
FC-5
FC-6
FC -7
FC-8
FC-9

L PT
FPT
R/C
LPC
L PC

HPC
I/C

-1.40 0.60
-2.00 -0.20
-0.00 0.00
-0.00 -1.00
-0.00 1.00

-1.00
-2.00

1.00
0.00

49
37
58
49
50

7431
.34l6
5995

.0687

.94l6

48.4312
38.
54
46.
48.2140

8100
6535
2879

98.1742
76.1516
113.253
95.3566
99.1556

FC-10 LPC HPT -0.00 -1.00 -2.00 3.00 14 7833 13. 1088 27.8920 \
FC-ll
FC-12
FC-13
FC-14

L PC
LPC
L PC
H PC

LPT
FPT
R/C
1/C

-2.00 1.00
-3.00 -3.00
-0.00 3.00
-1.00 1.00

-0.00
-2.00
-0.00
-0.00

1.00
-3.00
0.00
0.00

49
29
55
46

0768
3808
8923
7782

49.4699
23.
54.
47.

1000
4678
7968

98.5467
52.4808

1 10.3601
94.5750

| FC-15 H PC 1-1 PT -1.00 -1.00 -1.00 3.00 14 .9094 13. 1645 28.0739 /
FC-16
FC-17
FC-18

HPC
HPC
HPC

LPT
1-'PT
R/C

-0.00 -1.00
-0.00 -1.00
-1.00 1.00

-3.00
-2.00
-0.00

1.00
-1.00
0.00

53
40
46

.4924
3781
7782

54
44.
47.

7816
2582
7968

l08.2740
84.6363
94.5750

| FC-19 1/C HPT -0.00 0.00 -2.00 3.00 I4 8092 15. 0571 29.8663
FC-20
 C_z 1
FC-22

1/C
1/C
1/C

_1>â 
=1>"1*
R/C

-0.00 1.33
-0.00 2.00
-2.00 2.00

-0.00
-3.00
-0.00

1.00
-3.00
0.00

48
28
52

6583
9364
.2449

50
34.
48.

5105
5901
5493

991778
63.5265

1007943
FC-23 H PT LPT -0.00 3.00 -2.00 1.00 17 .4032 15 4847 32.8879 \
FC-24
FC-25
FC-26
FC-27
FC-28

1-1>'1Â¬
11 PT
1- 1='1'
LPT
FPT

FPT
R/C
FPT
R/C
R/C

-0.00 3.00
-2.00 3.00
-3.00 -1.00
-0.00 1.00
-3.00 -3.00

-0.00
-0.00
-3.00
-0.00
-2.00

-1.00
0.00

-3.00
1.33
2.00

25
24
22
48
26.

9708
8092
2214
6583
6699

23.
15.
24.
50.
33.

4875
0571
5871
5195
6049

48.4583
39.8663
46.8085
99.1778
60.2749

The Fault Class Analysis lndicates that Fault is in - Fault Class: 10

Additionally
Fault Cla
Fault Class:
Fault Class:
Fault Class:

SS. 4
15
19
23

Table 7.9: A typical Fault Class analysis

the following Fault Classes should be investigated:
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7.7.1.2 Results from Integrated Fault Diagnostics Model

The effect of using the response surface model as part of the IFDM has been shown

earlier. It has the advantage of reducing the time taken in earlier generations. The results

obtained from the IFDM with all the three constituent modules enabled in shown in

table 7.10.

The fault case chosen for study is a multiple component fault and is the same which was

examined in fault case-2 in the simple MOPA based diagnostics in section 7.4.2. The

same fault case has been deliberately considered for easy comparison of the results

obtained by different methods.

It can be observed from the results that, the faulty components have been identied

correctly and faults quantied accurately. The diagnostics starts with a randomly

generated population and evaluates the population to obtain the tness values. The rst

25 generations obtain the objective functions directly from the response surface thereby

avoiding calls to engine performance code. This process eliminates the weak individuals

in the beginning of the search process. ln the second stage, the master takes over the

optimisation process and monitors the various critical parameters like the diversity

factor, tness improvement etc. and passes it on to the built-in logic which is in the

form of a rule based expert system. The master receives instructions from the expert

system and accordingly controls the slave by controlling the population size, mutation

size etc. A comparison of minimum objective functions for fault classes is shown in

gure 7.18. It can be noticed that the minimum objective function indicating the fault

(FC-10) is distinctly the lowest when compared with others. If we compare the results

for the same fault condition with the simple MOPA based diagnosis model, it can be

seen that the competing fault classes condition shown in gure 7.18 has been eliminated

to a large extent. The elitist model used in the IFDM retains the best solutions from a

given population in an elite pool over a number of generations. When there is no

signicant tness improvement in the population the strings from the elite pool are

transferred to the main population, and more strings in the vicinity of the elite strings

are generated for better local tuning. This improves the accuracy and prevents

competing fault classes to a large extent.
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INTERCOOLED RECUPERATED-WR21 DIAGNOSIS REPORT

Performance Engineering Group, Craneld University
Test Case: WR21/D1AG/ 242 TIME/DATE: 15:57:50 [20-Apr-0

Fault Class Analysis

3]

FC MOF Time Efciency Change (An) - Percentage Flow Capacity (AF)- Percentage
(Min) Component-1 Component-2 Component-1 Compoet-2

An Comp-ID An Comp-1D AF Comp-ID AF Comp- 1D
FC-1
FC-2
FC-3
FC-4
FC-5
FC-6
FC -7
FC-8
FC-9

52.7738
63.0423
50.0108
26.0000
54.3175
47.6799
53.7400
47.0787
49.9649

17 -0.0752 LPC
23 -0.0038 ICL
10 -1.9932 HPC
34 -0. 1252 HPT
16 -2.7564 LPT
12 -1.4799 FPT
17 -0.3458 RCP
13 -1.0674 LPC
10 -0.6971 LPC

-1.5024
-1.8458

1CL
HPC

1.7356
1.2786
1.0823
2.9741
0.2546
0.7612
0.6016
2.6404
1.1007

LPC
1CL
HPC
HPT
LPT
FPT
RCP
LPC
LPC

-1.1501
0.2326

ICI.
HPC

| Fc-o 12.3000 38 -1.0581 LPC -2. 1608 1-1 PT 2.9999 LPC 3.7949 H PT
FC-1 I
FC-12
FC-13
FC-14
FC-15
FC-16
FC-17
FC- 18
FC-19
FC-20
FC-21
FC-22
FC-23
FC-24
FC-25
FC-26
FC-27
FC-28

51.5208
29.7490
53.2599
48.8336
26.4160
51.6143
47.9465
48.9250
19.7000
50.7463
35.7157
51.0805
28.0414
20.9000
17.1000
20.7000
53.6178
32.3382

18 -1.1 198 LPC
30 -2.9304 LPC
17 -0.0018 LPC
15 -0.3104 1CL
24 -0.0612 1CL
18 -1.8131 1CL
22 -0. 1277 ICL
20 -1.0156 1CL
36 -0.8843 HPC
18 -1.6553 HPC
24 -0.6231 HPC
17 -1.7831 HPC
32 -1.8774 HPT
39 -0.8066 HPT
43 -1.9646 HPT
39 -0.0535 LPT
15 -2.6627 LPT
23 -2.7457 FPT

-2.0922
-2.7364
-0.0272
-1.9324
-0.4017
-0.4787
-2.3249
-0.2994
-1.7081
-1. 1424
-2.0140
-0. 1613
-2.8195
-2. 1006
-1 . 1486
-2.6623
-1.3727
-1.9999

LPT
FPT
RCP
HPC
HPT
LPT
FPT
RCP
HPT
LPT
FPT
RCP
LPT
FPT
RCP
FPT
RCP
RCP

2.0841
2.9386
1.1449
2,7241
3.0000
0.6932
2.2380
0.2181
1.6484
1.8760
1.9992
1.9862
2.8966
2.8803
2.9948
2.1645
1.0588
0.6532

LPC
LPC
LPC
1CL
1CL
1CL
1CL
1CL
HPC
HPC
HPC
HPC
HPT
HPT
HPT
LPT
LPT
FPT

0.8320
-2.5350
0.2150
1.4415
3.0000

-0.8197
0.3417
1.2257
2.9686
0.6753

-0.7355
0.9934

-0.2002
0.7303
1.6857

-2.9856
1.7646
1.9561

LPT
FPT
RCP
HPC
HPT
LPT
FPT
RCP
HPT
LPT
FPT
RCP
LPT
FPT
RCP
FPT
RCP
RCP

640

Estimated Environment & Power Setting Parameters
0 erating Point-1 Operating Point-2

Power/Fuel F Temperature Pressure 1 Power/Fuel | Temperature 1 Pressure
26426.3906 308.2079 1.0003 239922910 3082154 1.0012

Fau1tDeteeted (Change in Component Performance Parameters)
Com onent-1 1 Com onent-2

Comp ID Comp ID Comp-ID Comp-IDAn I - L Ar | - | An | F Ar I
-0.9267 LPC -3.2561 LPC -2.1364 HPT 3.3972 ºPT

Sensor fault Detection
Faulty Sensor -1 I Faulty Sensor-2

Sensor ID | Sensor Type I Sensor ID I Sensor Type
HPC (Exit) Temperature - -

Table 7.10: Results from the Integrated Diagnostics Model (IFDM)
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Figure 7.20: Variation in GA parameters in the IDM

Unlike the MOPA based the diagnostics technique, in which the number of strings and

generations are xed before the commencement of the diagnostics process, in the IFDM

the critical GA parameters are varied during the search process depending on the

prevailing situation. The search is stopped based on the termination condition issued by

the master and therefore the time taken for each fault class is different. Figure 7.19

shows the time taken by each fault class during the search process. It can be observed

that the time taken for fault classes with lower magnitudes of minimum objective

function is more compared to the others. In the example considered, the fault classes

with higher magnitudes of minimum objective functions have been terminated early. In

the IFDM the input from the fault class analysis model has been used for managing the

search more effectively. It can be seen that the time taken for the fault classes suggested

by the FCA are high compared to the others which means that those fault classes have

been searched more thoroughly. Figure 7.20 shows an example of the variation of PC

and PM with the change in population tness value.
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7.7.2 Results from Hybrid Diagnostics Model

The development of a hybrid model for engine fault diagnostics has been described in

detail in chapter-6. Essentially this concept involves a Nested Neural Network (NNN)

being used as a pre-processor to reduce the number of fault classes to be searched by the

GA diagnostics model. Neural networks are very good at classifying data and widely

used for pattern recognition problems. In the context of engine fault diagnostics,

training a single neural network to detect a fault and accurately quantify the fault is a

difcult task and requires enormous amount of training patterns. Also, the confdence

in the output from the network may not be very high. Instead a network is assigned the

task of classifying the data into one or more logical subgroups and this process

continues till the classication leads to a small group (of fault classes) which can be

analyzed by the GA diagnostics model. The HDM is distinctly partitioned into two

parts: IFDM and NN classier. Results from the IFDM have already been discussed

in the previous section. A brief discussion of results from NNN is presented in the

following section:

7.7.2.1 Discussion of Results from NNN

The process starts with a node classifying the input data into having a component fault

or a sensor fault. If it is identied as a sensor fault, the data is forwarded to an Auto-

Associative Neural Network (AANN) for isolation of faulty sensor(s) as well as

assessment of the fault magnitudes. On the other hand, if a pattern is identied as a

component fault by the node, it is then passed to the next node which classies it as a

single component or multiple components fault. If it is identied as a single component

fault then the input data is passed onto to a node which further classifes into

appropriate category (fault class). If it is classied as a multiple components fault, then

it forwarded to nodes for classication to appropriate subgroups and finally classied

into fault classes. A brief description of the constituent nodes is presented:

NODE LINI - the test measurements are introduced to this node which is trained to

accomplish an important task of classifying the data into: component fault or sensor.

The node was subjected to series of rigorous tests with randomly simulated test patterns

as follows-
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0 data with only sensor faults

ø data with only component faults

0 data with component and sensor faults (not occurring simultaneously)

The break down of the classication by LlNl is shown in fgure- 7.21. Data set-l has

patterns only from component faults and Data set-2 has patterns only form sensor faults
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Figure-7.21: Classification Accuracy for L1 N1 Node

The accuracy achieved by the network was over 99%. Investigation of the misclassifed

data revealed that some input data with low levels of sensor faults were classied as

having component faults or input data with low levels of component faults were

classied as having sensor faults. The levels of faults involved were very small and

therefore the patterns were indistinguishable. It practical sense, such faults would not

significantly impact on the performance of the engine or endanger the safe operation of

the engine. lt should be noted that the data from 28 fault classes are involved and

therefore the network is subjected to a large amount of data and needs good

generalisation capability.

NODE-L2N1 - this node is required to classify the input data as having a single

component fault or multiple component fault (restricted to a maximum of two

components simultaneously faulty). The node was subjected to a series of test with
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randomly generated fault data. The classication accuracy or the overall confdence

factor achieved was 94%. The individual break down of classication is shown in gure

7.22. Data set-1 consists of only single component faults and data set-2 consists of only

multiple component faults.
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Figure-7.22: Classification Accuracy for L2N1 Node

The network achieved low accuracy due to the large variety of data involved in the

training. The training data involved patterns from 28 fault classes, which implies

various combinations of components and different fault levels. Therefore the network

generalisation capability was poor. Many cases of overlaps in classification among the

two categories were found. Further investigation revealed that single component fault

with high fault levels were classied as multiple component faults and multiple

component faults with very low fault levels were classied as single component faults.

however, the misclassication does not seriously affect the diagnostics process, as

closer examination showed that a single component fault misclassied as a multiple

component fault normally detects the fault class which has one component same the

actual faulty component (single component fault) and smears as small amount of the

fault to the other component. When multiple component faults are classied as single

component faults, it is normally observed that one of the component has a low level

fault and the other which has higher level fault can be identified by the nest level.
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NODE-L3Nl- is a TERMINAL node and is required to provide the fault classes for

further examination by the GA module. This node exhibits high level of classication

accuracy as the patterns produced by the faults in the components are distinguishable by

the network. The task of classication can be carried out by a network smaller than the

ones used for the above two networks i.e. LlNl and L2Nl. In general, if the confdence

rating of the network is very high, it would identify only one fault class to be examined

by the GA module. However, in order to make the NN robust, a simple logic is

incorporated, which considers the individual fault class classication levels before

deciding the fault class(es) to be examined.

Table 7.1 l shows the classication of L3Nl node for a scenario where the classication

accuracy is not very high. The network was trained with 6720 patterns for identifying a

single component fault. The result is obtained from simulation of the node with 3360

random test patterns. The overall network CF is 98.06% and the classication accuracy

of the individual fault class is shown in the table 7.11. The ability of the node to classify

a fault as FC-l is 97.50% and the remaining 2.5% of the data was classied as the fault

in other fault classes. Under these circumstances the node will identify more than one

fault class to reduce the probability of misclassication.

CAT. CODE TP INCORRECT CLASSIFICATION TOTAL
Cat-1 Cat-2 Cat-3 Cat-4 Cat-5 Cat-6 Cat-7 UKN Total

CC CF

1%)
Cat-1 FC-1 480 x x 4 x 1 x 3 x 8 468 97.50
Cat-2 FC-2 480 3 x 1 2 x 3 1 x 10 476 99.17
Cat-3 FC-3 480 1 x 3 x x x 2 x 6 465 96.88
Cat-4 FC-4 480 2 3 x x 6 x x x 11 473 98.54
Cab5 FC-5 480 6 x x 4 2 4 x x 16 470 97.92
Cat-6 FC-6 480 x x x 1 1 3 x x 5 469 97.71
Cat-7 FC-7 480 x 1 7 x x 1 x x 9 474 98.75
Total 3360 12 4 15 7 10 11 6 65 3295 98.06

Overall Network CF (%)- 98.06
Categories to be investigated: Cat-1, Cat-3, Cat-7

Table 7.11: Typical Classification status for a single component fault
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It can be noted, that some faults in FC-3, FC5 and FC-7 are also categorised as fault in

FC-1. therefore , in the event that the network classication accuracy is not very high, a

fault identified in FC-1 could actually be a fault in any one of the other fault classes. To

take into account the network has identied three fault classes to be optimised by the

GA module. It has omitted FC-5 as the percentage of FC-5s classied as FC-1 is much

less compared to the others.

NODE CLASSIFICATION OF CATEGORIES (%) CF(%)
LIN1 SF CF

99.45 99.27
L2N 1 SCMPF MCMPF

96.23 92.86

99.36

94.54

L3N 1 FC-1 FC-2 .
<;1fc-6 FC-7

99.90 1 99.97
FC-3 FC-4
99.88 99.54 99.92 99.71 99.25

99.74

L3N2 GROUP- 1 GROUP-2 Â»
99.83 99.52 97.12

L4N I LPC-GP HPC-GP
100.00 99.60

L4N2 HPT-GP LPT-GP FPT-GP
98.44 98.87 99.26

L4N 3 ICL-GP RC R-GP
99.79 98.92

L5N 1 FC-8 FC-9 FC-10 FC-11 FC.)-. lél 1
.«âº

'FC-13
98.50 99.17 97.88 98.54 98.92 98.71

L5N2 FC-14 FC-15 'FC-16 FC-17 FC-.1 .3 , EC-8
97.62 99.23 98.38 97.94 99.12 98.54

LSN3 FC-23 FC-24 FC-25 FC-I9 FC-105 FC-10
98.49 99.56 98.67 98.89 97.84 98.59

LSN4 FC-26 FC-27 FC-23 FC-20 FC- 16 FC-11
97.68 98.64 99.33 98.21 9872 97.48

L5N5 FC-28 FC-26 FC-24 FC-21 'NFC-12
97.29 99.09 97.78 98.67 97.37 97.88

LSN6 FC-19 FC-2,0 <3 § :9-. . ..
97.56 99.27 98.59 98.74 97.92 98.51

L5N7 FC-28 FC-27 FC-25 FC-22 FC-11.18.. . FC-13
97.34 99.21 96.73 98.67 97.45 98.78

98.87

99.80

99.80

98.95

98.62

98.47

98.67

98.34

98.01

98.43

98.03

Table-7.12: Confidence Rating of Nodes in a NNN

The classication accuracy of the all the nodes in ve layers of NN is shown in table

7.12.It can seen observed, that the classication accuracy of nodes are quite high and

the network is capable of identifying the correct fault classes, but the possibility of

occasional misclassication cannot be ruled out. Therefore, the provision for identifying

more than one class is made and this exibility is provided only in the TERMINAL
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nodes. The arrangement of the nodes in the NNN and the fault classes used for training

has been done is such a way that, if a particular fault is misclassied by a BRANCH

node, there is still chance that the fault may be captured at by another node.

FAULT CASE FAULT IMPLANTED FCS IDENTIFIED
CASE-l FC-l (SCMF) FC-l
CASE-2 Fc-2 (scivir) FC-2
CASE-3 FC-4 (SCMF) FC-4
CASE-4 FC-6 (SCMF) FC-6
CASE-5 FC-8 (MCMF) FC-8,FC-10
CASE-6 FC-l O (MCMF) FC- l 0,FC-l 9,FC-23,FC-25
CASE-7 FC-l 6 (MCMF) FC-l6
CASE-8 FC-18 (MCMF) FC-l8, FC-l3
CASE-9 FC-25 (MCMF) FC-25,FC-19
CASE-lO FC-28 (MCMF) FC-28

Table-7.13: Classification of component faults

The network was subjected to tests with simulated faulty data and results of ten sample

test cases are presented in table 7.13. The faults have been shown only up to fault class

levels. lt can be observed that, in the case of single component faults the NN has

identified the correct fault classes and also suggested only one fault class to the GA

module. In the case of multiple component faults, the NNN has been able to identify a

single fault class in case-7 and 10. In some the cases the NN has identied more than

one fault class. This depends on the accuracy of the node and also the fault levels and

noise levels in the input data play an important role. It should be noted that the fault

classes in the TERMINAL nodes, especially at level-5 are potential competing fault

classes and they have been grouped together for ease of classication.

Test case-6 presents an interesting scenario. The implanted fault is in FC-10, which

comprises of LPC and HPT. In an ideal situation, the input data should have been

expected to be pass through the node L4Nl (GROUP-1), which is trained with data

from FC-8 to FC-18. Then it would have branched to L5N1 (LPC-GP), which contains

all fault classes with LPC as one of the components. But it was misclassied by

L3N2(l\/ICl\/IPF) and passed to L4N2 (GROUP-2), which has been trained using data
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from FC-23 to FC-28 and nally ends up at LSN3 (HPT-GP) which comprises of all

fault classes having HPT as common component. However, it should be noted that FC-

10 is part of the HPT group also and it appears in the list of fault classes suggested by

the NNN. This shows the flexibility and high factor of safety available in the NNN.

NODE L2N2 (Sensor Fault Diagnosis): Once the L1Nl node identies the data as

having sensor fault, the input data is forwarded to the node identifying the sensor faults.

The Auto-Associative Neural Network (AANN) is found to be most appropriate for the

sensor fault diagnostics. AANN basically consists of several layers of nodes which form

symmetrical structure with a bottleneck. The number and configuration of nodes on

either side of the bottleneck layer are identical. The key point is to understand the

number of bottleneck neurons required and their meaning. In general, it can be said that

the number of neurons in the bottle neck is inversely proportional to the number of

faulty sensor being sought. A large number of faulty sensors being sought would require

a more constricted bottleneck. Additionally large number of neurons in the hidden

layers do not actually produce improvements in the performance (Zedda, l999c). The

activation functions are the identity function for input and output layers and the

hyperbolic tangent function for hidden layers. Input and output are expressed by relative

values with respect to the un-deteriorated off-design condition as defined by the noisy

environment and power setting parameters.

Fault classes are created for generating data and the number of fault classes depends on

the number of faulty sensors being considered. For every fault class, a database is

created by using the performance simulation code in synthesis mode: give performance

parameters the measurements are calculated and then noised. White noise with Gaussian

distribution was added to all the data used for training and testing. The noise values

used are up to 36.

Several test were carried out to validate the performance of the node in isolating the

faulty sensors. Bias ranging from 40 to 150 for respective instruments were used to

generate faulty sensor data. A sample of a bias implanted in the I-IPC (Exit) pressure

sensor is shown in gure 7.24. The bias levels have been correctly identied by the
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network in all the cases. The small deviations in the identied values are mainly due to

the measurement noise. It was observed that, small levels of bias which are close to

noise levels are more difficult to isolate.
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Figure 7.23: Sensor fault detection for HPC (Exit) pressure sensor

7.7.2.2 Discussion of Results from HDM

First, a single component fault is considered in which FC-2 (HPC) is considered faulty

(An = -2.0% and AF= -4.0%). The data was introduced to the NN and was classied

has having a component fault. the data traversed through the NN and was suggested to

be associated with FC-2. The results from the hybrid diagnostics system for a single

component fault is shown in table- 7.12. The task of identifying a single faulty

component is fairly simple for a NNN. The GA optimiser has searched for fault in FC-2

only. The overall time taken is only 27 minutes. The time could go up if the fault classes

to be examined are more depending on the classication ability of the NN pre-

processor. The time taken has also reduced as the master terminated the process after 72

generations. The other parameters like PQPM and population size are variable and

depend on the directions from the master. The elite pool consists of best 10% strings of

the total population and preserves the best solution.
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INTERCOOLED RECUPERATED-WR21 DIAGNOSIS REPORT

Performance Engineering Group, Craneld University
Test Case: WR2l/DlAG/ 289 TIME/DATE: 09:28:l6 [27-Oct-02]
Neural Pre-processor Output

Fault Class-2
Fault Class Analysis

FC MOF Gen
Mins Component-I

An Comp-ID
Com

An

Time Effciency Change (A11) - Percentage Flow Capacity (AF)~ Percentage
ponent-2 Component-I Compoent-2

Comp-ID Al" Comp-ID /_\l` Comp-ID
FC-Z 5.7256 72 27 -1.9634 HPC - -4.0l0l HPC - -

27

Estimated Environment & Power Setting Parameters
O erating Point~I Operating Point-2

Power/Fuel I) Temperature Pressure
l
I Power/Fuel I Temperature | Pressure

2642444 l 4 3082270 l.0002 239976289 308.l990 l.000l

Com onent-I Con oet-2
Fault Detected (Change in Component Performance Parameters)

an I Comp-Dp`l Ar l Comp-ID
-l.9634 HPC -4.0101 HPC

An I Comp-roll Ar | Comp-in

Sensor fault Detection
Falty Sensor -1 Faulty Sensor-2

Sensor ID | Sensor Type Sensor ID I Sensor Type

Table 7.14: Results from Hybrid system for single component fault

The hybrid system developed has reduced the total run time of the fault diagnostics

model signicantly. The reduction in the run time gives the opportunity for the

diagnostics model to be run several times to ascertain the fault identied. The GA based

IFDl\/l was run 100 times and the distribution of the component faults obtained

(quantication of efciency & ow capacity changes) where plotted as shown in gures

7.24 & 7.25. It can be observed that on most occasions the faults quantied was very

close to the implanted fault. It can be seen that the average of the distribution is very

close to the implanted faults and the values falling on the extremes are also within

normally acceptable limits. The spread of the results obtained is very less. This gives

more condence in the results particularly with GAS which follows stochastic transition

rules and the results are a true representation of a global minimum.
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Frequency of Occurrence
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Figure 7.24: Quantification of Fault (efficiency-case-1)
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Figure 7.25: Quantification of Fault (flow capacity-case-1)
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ln the second test case, a multiple component fault has been considered. The same case

which was considered for the simple MOPA based and IFDM based model has been

considered for ease of drawing a comparison. The result from the Hybrid diagnostics

model is shown in table 7.15. In the case of multiple components fault, the neural pre-

processor (NNN) has identied four fault classes which are mostly likely to contain the

fault. the GA optimizer has identied the correct fault class and identified the deviations

correctly. The total time taken was 1 hour and 59 minutes which is a signicant

improvement over the traditional GA optimisation method.

Several test cases were run and it was found the diagnostics accuracy achieved was high

and results were consistent. In addition, there is a signicant improvement in the overall

diagnostics time. The saving in time gives the opportunity to run the model several

times to have more condence in the results obtained. The test case was run many times

to ascertain the faulty components and quantication of the deviation in performance

parameters. A distribution of component performance deviations calculated are shown

in figure 7.26 and 7.27 for LPC and HPT. It can been seen that the average of the

deviations are close to the implanted values and also the extreme values are within

acceptable limits. It can also be seen that the spread for LPC efficiency values is more.

This is because the magnitude of fault implanted was small. However, the average is

close to the implanted value.

The GA diagnostics model uses probabilistic transition rules and therefore it is also

possible that occasionally the model detects the faults in other fault classes erroneously,

especially the competing fault classes, this is attributable mainly to randomness in the

application of GA operators coupled with measurement noise and model inaccuracies.

Figure 7.28 shows the results from ruming the diagnostics model 56 times. The

algorithm has detected FC-10 on 53 occasions .The advantage of HDM is that, the

system can be run many times to build a statistical base. The more number of times a

fault is detected in a trial set, the more consistent the method is and the more

condence the user can have in the fault diagnostics capability.
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INTERCOOLED RECUPERATED-WR2l DIAGNOSIS REPORT

Performance Engineering Group, Craneld University
Test Case: WR21/D1AG/ 269 TIME/DATE: 11:30:43 [29-Jun-0

Neural Pre-processor Output

FauItC1ass-10
Fault Class-19
Fault Class-23
Fau1tClass-25

Fault Class Analysis

31

FC MOF Gen Tim Efciency Change (An) - Percentage Flow Capacity (AF)- Percetage
Component-l Com ponent-2 Component-I Component-2

A1] Comp-1D An Comp-ID A1` Comp-1D AF Comp-1 D
FC- 1 0
FC-19
FC-23
FC-25

11.342
14.881
18.386
16.032

O\\lO\\lJ>oo\~|>

JuÄ±

-1,1012 LPC
1.8629 HPC
2.9356 HPT
2.5467 HPT

DJIJl\JLºJ00-lÃ¤

-1.9763
1.8714
1,0407
1.1781

HPT
HPT
LPT
RCR

-3. 1421
0.0603
2.1277
0.2712

LPC
HPC
HPT
1-1 PT _

3.9874
0.6850
0.1555
0.0702

H PT
H PT
LPT
RC R

G

Estimated Environnent & Power Setting Parameters
O erating Point-1 Operating Point-2

Power/Fuel I) Temperature Pressure Power/Fuel | Temperature | Pressure

Fault Detected (Change i Component Performance Parameters)
Con onet-1 Com Onet-2

A11 1 Conp-lD1)¬ AF I Comp-ID Comp- D Comp-lD
-1.1012 LPC -3.1421 LPC

An | L Ar I
-1.9763 HPT 3.9874 HPT

Sensor fault Detection
Faulty Sensor -l Faulty Sensor-2

Sensor ID | Sensor Type Sensor lD | Sensor Type

Table - 7.15: Test Result for multiple component faults
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A comparison of the different scheme of GA diagnostics process is shown in gure

7.29. Case-1 shows the diagnostics using the MOPA method and takes the longest time.

Case-2 shows the IFDM-1 with only the response surface model enabled. Case-3 shows

the time taken by IFDM-2 method and Case-4 shows the hybrid method. It is evident

from the result that the hybrid method is the fastest method. The speed of the Hybrid

model depends on the number of fault classes to be examined. The fewer fault classes,

the faster the method is. However, there is limitation in the application of the HDM.

Since the NN are capable of distinguishing between faults which are exclusively

component or sensor faults, a case of simultaneous component and sensor faults cannot

be handled by the I-IDM though the IFDM is capable of doing it independently.

Attempts to train nodes for distinguishing faults in component, sensors or both poses

complex scenarios, requires prohibitively large amount of data and the accuracy

achieved was not encouraging and therefore the present study is limited to faults

associated with components are sensors only.

7.7.2.3 Discussions on No-Fault Conditions

In practice, all the engine parameters (measurable) are monitored and logged at regular

intervals and assessed for trend shifts. A gradual trend shift indicates normal

degradation attributable to various factors. Abrupt shifts in trend is a cause for concern

and requires the attention of a fault diagnostics engineer. Keeping this in mind, the

NN has not been trained for distinguishing between fault and no-fault condition. This

reduces the number of nodes and also the training time for such a network which will

require a large amount of training data.

A set of clean data with noise was introduced to the NN and it was found that it

identified fault classes arbitrarily depending on the noise levels. These fault classes

were subjected to GA optmisation and the results showed that the diagnostics system

identified faults which were of insignicant magnitude. Such small deviations do not

warrant any action and normally can be considered as no fault. In fact, some researchers

(Ogaji, 2003c) consider fault levels below 0.7% as clean condition or affected by noise.

Table 7.16 shows the results from a few test cases where clean data with noise was

subjected to fault diagnostics.
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CASE | FC BY NNN FAULT IDENTIFIED
Component -l Conponent-2

An AF Conp-1D A1] A1 Conp-1D
Case-1 FC-3 -0.0012 0.1921 ICL - -
Case-2 FC-2 -0.0026 -0.0019 HPC - -
Case-3 FC-8 -0.0148 0.2028 LPC -0.0128 -0.1142 1-IPC
Case-4 FC-6 -0.0467 0.0540 FPT - -
Case-5 I FC-21 -0.0575 -0.2169 HPC -0.0076 0.1836 FPT

Table 7.16: Results for no-fault conditions

7.7.2.4 Results with Different Sets of Operating Points

The importance of choice of operating points has been discussed earlier in the chapter.

It was shown that the power setting values falling within 6-10% gave the best results.

While all results presented were at the operating points mentioned in chapter-5, other

sets of operating points were also examined. This exercise required the NN to be

trained with data from different operating points (separate NN for each set). The

results showed similar diagnostics capability and it is difficult to make a choice of the

best set. In the practical application the choice of operating points would be dictated by

the operational requirements of the ship. Results from a few test cases for different sets

of operating point is placed at appendix-H.

7.8 Summary

A detailed discussion of the results obtained from the enhanced diagnostics model has

been presented with supporting results from the diagnostics model. The various aspects

which need to be addressed in the development of the model have been described in the

earlier part of the chapter . The development of the IFDM demonstrated the utilisation

advanced concepts in genetic algorithm for fault diagnostics of gas turbine engines. The

combination of NN with IFDM to form a HDM demonstrated the effective utilization

of the strengths two different fault diagnostics technique to overcome the limitations of

each other.

Since the NN are classifying only at fault class level, the network are small in size and

can be set up and trained quickly. Their generalisation capability is good as they are
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expected to make only a broad classification without having to quantify. The reduced

diagnostics time can be utilised to run the system more number of times to ascertain the

nal results. An improvement in any of the technique can result in the improved output

of the combined system, on the other hand the limitation of one technique becomes the

limitation of the whole system.

The next chapter concludes the work and suggests some recommendation for future

work.
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CHAPTER-8

CONCLUSIONS AND RECOMMENDATIONS

8.1 Literature Review

The rst part of the present work aimed at analysing the various performance analysis

based diagnostics techniques available in the public domain. From the extensive

literature survey conducted, it emerged that the there is an array of conventional and

articial intelligence techniques available for the purpose of engine fault diagnostics.

Conventional Kalman lter based techniques have long been the back bone of most gas

turbine fault diagnostics method. Poor knowledge of the probability of fault occurrence

and evolution, need for tuning, smearing effect, divergence due to modelling errors

and linearization are common problems associated with Kalman lter based methods.

Analysis of the pertinent literature also indicates that a wide range of applications based

on ANN have been investigated. The large variety of ANN architectures makes it

difficult to select the best for diagnostics purposes. The results from the use of genetic

algorithm in engine fault diagnostics has been encouraging: The method has the

advantage of taking into account the measurement noise and sensor bias but, this

method has the disadvantage of long run-times.

8.2 Development of IFDM and HDM

The present work aimed at developing a GA based diagnostics model and validating it

against the advanced cycle WR21 engine. The research work commenced with

development of a performance model for the WR21 engine. Extensive modications

have been incorporated into the model to make it compatible with the fault diagnostics

model. The Integrated Fault Diagnostics Model (IFDM), which has been developed for

gas turbine engines has a much wider applicability in fault detection. lt is essentially a

mathematical-model based technique in which various permutations of faults are
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inplanted in the model to obtain simulated measurements and these are compared with

those obtained with a nominally-simulated real engine (clean engine).

This relation between the component property and the measured parameters are the

essence of this diagnostics model. The fundamental requirement for the successful use

of such a technique is the ability to measure the desired parameters, which indicate the

present condition of an equipment/system at that operating condition. The second

important requirement is to dene the relationship between the measurements and the

constituent component characteristics/properties, such that any deviation in the

component property is appropriately reected as changes in measurement linearly or

non-linearly. However, if the fault does not directly or indirectly relate to the

measurements then it would not be possible to detect or a different model would be

required.

The response surface approach in IFDM is essentially a type of ANN mapping of the

performance model to and therefore uses the same performance model for data

generation. The other concepts like the "master-slave" model and "elitist" model are

associated with string manipulation techniques to improve the accuracy of the

diagnostics model. The NN pre-processor used in the HDM largely depend on the

quality of the training data and type of training employed. The training data is obtained

from the model by implanting suitable faults in the model.

The results from the HDM have been shown to be more accurate, reliable and

consistent. Additionally, they have been obtained in a much shorter period than the

basic model. The signicant reduction in the total run time makes it possible for the

model to be run several times to build a statistical base of the faults diagnosed to have

more condence in the results obtained.

Several publications in refereed journals and conferences have arisen from the current

research work, few of which are with collaborating researchers and are included

amongst the references. ln addition, the sponsor has also applied for a patent for the

research conducted (Patent ref: GB 030l707.6. dated 24 Jan 2003).
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8.2.1 Wider Applicability of Diagnostics Model

Application of IFDS is not necessarily limited to gas turbine fault diagnostics but the

applicability of the method can be extended to many other systems. A prerequisite in

the use of such methodology is that a mathematical model for simulation of the system

under consideration is available and is able to represent a clean and degraded state of

the system with the desired accuracy. Some of the areas where the IFDl\/I has potential

applications are:

0 Reciprocating engines (Petrol/Diesel etc.).

0 Combined cycle plants.

0 Auxiliary machineries like compressors, pumps, electric motors etc.

0 Engine control systems.

0 Chemical processes and plants.

The list mentioned above is indicative rather than exhaustive.

8.3 Summary of Contributions

The development of a fault diagnostics model using advanced feature in genetic

algorithm has been discussed in chapter-6. A thorough analysis of the method with

supporting results has been presented in this chapter-7. The method has its advantages,

particularly in dealing with noisy and biased measurements. It also preserves the non

linearity of the engine performance model. The research work presented in this thesis

has given an insight into the working of the GAs and the application ANN. The

technique developed opens new avenues for the use of intelligent systems and hybrid

systems in the application of the engine fault diagnostics. The methodology developed

also effectively addresses some of the shortcomings of the MOPA based research work.

The contributions made by this research work is summarised as follows:

0 The development of a diagnostics model using advanced concepts like a

heuristics modications of genetic parameters in the master-slave configuration,

and elitist model for more reliable and consistent diagnostics underpins the

novelty of the work.

0 The development of a hybrid model using the NNN and IFDM has improved

the convergence time of the algorithm signicantly. This makes it possible for

the user to run the model several times to have more confdence in the output.
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The integration of the ANN and GA for improved performance of the

diagnostics and the manner in which they have been used is a novel feature.

0 The fault diagnostics model has been validated against an advanced cycle

engine like the WR2l, whose conguration and behaviour are unique. This

implies that such fault diagnostics systems can be explored for more complex

conguration and with a possibility of applying these techniques on combined

cycle plants. The method is generic and can be used for any engine with

minimal modication.

8.4 Potential Applications of the Diagnostics Model Developed

The aftermarket for gas turbines has undergone signicant changes and is set to see

nore profound changes in the future. Advanced engine fault diagnostics systems will

play an important role in defning the various aspects of the engine operation,

maintenance, repairs & manpower planning. The techniques which has been developed

will have the following potential areas of application in industry-

0 Improved safety in operating gas turbine engines due to accurate prediction of

the potential faults. This will facilitate timely withdrawal of the engine from

service before any catastrophe occurs.

0 Life extension, based on individual engine/component condition and usage

prole leading to reduced overall life cycle cost. This is an important activity to

reduce the overall maintenance costs. A method for managing the maintenance

of gas turbine propelled naval ships by estimating the creep life for a gas turbine

ftted on board naval ship has been studied by Sampath & Singh (2003). Such

techniques can provide engineering justication for scheduling maintenance and

optimise maintenance interval. .

0 Training persomiel on importance of good maintenance practice by simulating

fault conditions.
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8.5 Limitations of the Research work

The research work has explored the possibility of applying sophisticated intelligent

systems and hybrid methodologies for engine gas path fault diagnostics. The results

obtained have been very encouraging and opened new avenue for engine fault

diagnostics. However, the technique developed has certain limitations which are as

follows:

0 Engine simulation code - the diagnostics model heavily relies on the engine

performance model, which is one of the contributors to the occasional

discrepancies, and are attributable to the inconsistencies at some points in the

component maps. However, this rectiable by the use of more sophisticated

simulation models.

0 The NN used in the pre-processor and response surface need adequate training

which necessitate the generation of a large amount of training data and long

training times. The networks are trained for a particular operating point and

require the engine measurements to be taken at same operating point.

Measurements taken at different operating points will require the networks to

retrained, which is time consuming process.

0 While the hybrid model tries to overcome the limitation of one technique with

strength of the other, the limitation of one of the them becomes the limitation

of the whole system. e.g. the GA module relies on the NNN to suggest the fault

classes for optimisation. The NN is limited in its ability in identifying correctly

faults, where component and sensor faults occur simultaneously. Though

independently, the GA module is capable of identifying such faults but the

limitation of the NN places the restriction of the whole diagnostics system.

8.6 Recommendations for Future Work

An advanced fault diagnostics system has been developed, which has effectively

overcome some of the limitations of the previous methods. However, efforts must
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continue to overcome the limitations in the present model and the increase its

applcability. Some of the recommendations of future work are as follows:

Preprocessor ;:
Input ~'

Parallel processing

The use of HDM has signicantly reduced the total diagnostics time. However,

the total time still depends on the number of fault classes to be optimized.

Fortunately, the optimisation of one fault class does not affect the other and

therefore it is an ideal candidate for parallel processing. Each fault class could be

optimized by a different node and then the nal results could be compared by

one master node. In this way the total time close to the time taken for one fault

class.

DISTRIBUTED FAULT DIAGNOSTICS ALGORITHM

Training NNN nodes and Response Surface (Stage-1)
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Figure 8.1: Concept of Parallel Processing

The concept is shown is gure 8.1. the same architecture can be used to train

the ANN for response surface and NNN. The concept was taken up as a pilot
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project during the course of this research and has been successfully tested with

two computers.

Expert system with Diagnostics Model

The use of an expert system to infer the results from the diagnostics model is

another interesting application and needs to be explored. This is particularly

important for user level interaction with the diagnostics model. The output of the

diagnostics model indicating a reduction in compressor efficiency is hardly of

any importance to a user, unless the consequence of a particular fault on the

operation of engine is explained.

Transient diagnostics

The use of information from the engine transients have been used for fault

diagnostics by several researcher like Sampath et al (2003), Ogaji et al (2003)

and have reported success. These works were limited to noise free measurements

and single component faults. The use of measurements during transients has

shown much promise in diagnostics and need to be explored for more complex

scenarios like multiple component faults, sensors faults etc. However, one

should bear in mind that the transients are very complex conditions due to

accompanying phenomenon like heat soakage, tip clearance , blade growth etc.

and are different for different situations. e.g the transients of a cold engine is

different from a transient of a hot engine or there could slow transients and fast

transients etc. These conditions have to be given due consideration in a

diagnostics model.
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Figure- G-1: Block diagram of ICR WR21 (TURBOMATCH Model BRICK arrangement)
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Appendix-B

Turbomatch Input File for WR21 (MODE-1) APPENDIX-B
OD IM KE VA FP
4
4
N AkE
COMPRE
N cLR
PREMAS
DUCTER
COMPRE
PREMAS
DUCTER
PREMAS
PREMAS
DUCTER
HETCOL
BURNER
Mmees
TuRmN
DUCTER
MMEES
TuRmN
MMEES
DUCTER
 uRmN
DUCTER
HETHOT
Mmees
DUCTER
NozcoN
ARWHY
PERFOR
CODEND

S1 ,2 D1,2,3,4 R300
32,3 D10,11_12,13,14,15,16 R301 V10 V11
S3,4 D24,25,26,27,28 R303
S4,25,5 D30,31,32,33
S5,6 D34,35,36,37 R304
S6,7 D40,41,42,43,44,45,46 R305 V40 V41
S7,26,8 D50,51,52,53
S26,27 D54,55,56,57 R306
S27,29,28 D60,61,62,63
S29,31,30 D70,71,72,73
38,9 D80,81,82,83 R308
89,10 D84,85,86,87,88
310,11 D89,90,91 R309 _ .
31128, Shaft Power s Varable
S12,13 D92,93,94,95,96,97,98,99,305,100 V93
S13,14 D101,102,103,104 R310
S14,30,15
S15,16 D110,111,112,113,114,115,116,117,301,118V111
S16,31,17
S17,18 D120,121,122,123 R311
318,19 D130,131,132,133,134,135,136,137,138,139V131
S19,20 D140,141,142,143 R312
S9,20,21 D144,145,146,147
S21,25,22
S22,23 D148,149,150,151 R313
S23,24,1 D152 R314
D170,171,172,173,174,0,0,0,0
S1 ,0,0 D330,153,154,155,0,0,309,0,0,0,0,0,0

Turbomatch simulationllll
Brick N0 Brick data Brick No Brick data Brick No Brick data Brick No Brick data

1 0.0000 46 0.0000 -1.0000 135 0.0000
2 20.0000 50 0.1600 -1.0000 136 4.0000
3 0.0000 51 0.0000 0.8900 137 1.0000
4 0.9900 52 1.0000 -1.0000 138 -1.0000

10 -1.0000 53 0.0000 1.0000 139 0.0000
11 -1.0000 54 0.0000 4.0000 140 0.0000
12 0.4000 55 0.0100 1.0000 141 0.0100
13 0.8850 56 0.0000 0.0000 142 0.0000
14 0.0000 57 100000.0000 0.0000 143 100000000
15 4.0000 60 0.1000 0.0000 144 0.0100
16 0.0000 61 0.0000 0.0000 145 0.8450
24 0.8500 62 1 .0000 100000.00 146 0.0010
25 0.0200 63 0.0000 5.0000 147 0.0000
26 200000 70 0.0000 -1.0000 148 0.0000
27 0.0000 71 0.0000 -1.0000 149 0.0150
28 0.0000 72 1 .0000 0.8800 150 0.0000
30 0.0200 73 0.0000 -1.0000 151 100000.00
31 0.0000 80 0.0000 1 .0000 152 -1.0000
32 1.0000 81 0.0050 4.0000 170 5.0000
33 0.0000 82 0.0000 1.0000 171 -1.0000
34 0.0000 83 100000.0000 0.0000 172 3300000
35 0.0100 84 0.0250 0.0000 173 -1.0000
36 0.0000 85 08450 0.0050 174 130.0000
37 1000000000 86 0.0050 0.0000 153 1.0000
40 -1.0000 87 0.0000 10000000 154 0.0000
41 -1.0000 88 0.0000 2000000 155 0.0000
42 4.3000 89 0.0400 1 .0000
43 0.8850 90 0.9510 -1.0000
44 1 .0000 91 1 .0000 0.8900
45 5.0000 92 0.0000 1.0000

Station Vector Data
Station No Item Data

1 2
11 6

126.00
1360.00
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Appendix-B

Turbomatch Input File for WR21 (MODE-2)
vA FPo0MkE

4
4
NTAKE
COMPRE
NTcLR
PREMAS
DUCTER
COMPRE
PREMAS
DUCTER
PREMAS
PREMAS
DUCTER
HETCOL
BURNER
MMEES
TuRmN
DUCTER
MMEES
TuRmN
MMEES
DUCTER
TuRmN
DUCTER
HETHOT
Mmees
DUCTER
NozcoN
ARWHY
PERFOR
CODEND

s1,2 01.2.34 R300
sz3m0nnzß4wneRw1wovH
s3,4 D24,2s,2e,27,2s R303
s4_2s_s D30,31,32,33
ss,e D34,3s,3s,37 R304
ss] o40,41,42_43_44,4s,4e R305 v4o v41
sz%ßDw5Lü53
s2e_27 Ds4,ss,se,s7 R306
s2z202aDe0ß1ß2ß3
s2a3L3oD7077z73
ss,9 De0,s1,s2 a3 R300 TET

s10,11 Ds9,90,e1 R309
s1L2312
s12,13 o92,93,04,0s,9e,97,9a,99,30s,100 ve3
S13,14 D101,102,103,104 R310
S14,30,15
S15,16 D110,111,112,113,114,115,116,117,301,118V111
S16,31,17
S17,18 D120,121,122,123 R311
S18,19 D130,131,132,133,134,135,136,137,138,139 V131
S19,20 D140,141,142,143 R312
S9,20,21 D144,145,146,147
S21,25,22
S22,23 D148,149,150,151 R313
S23,24,1 D152 R314
D170,171,172,173,174,0,0,0,0
S1,0,0 D330,153,154,155,0,0,309,0,0,0,0,0,0

Turbomatch simulationllll

is Variable

Brick No Brick data Brick No Brick data Brick No Brick data Brick No Brick data
1 0.0000 46 0.0000 93 -1.0000 135 0.0000
2 20.0000 50 0.1600 94 -1.0000 136 4.0000
3 0.0000 51 0.0000 95 0.8900 137 1.0000
4 0.9900 52 1.0000 96 -1.0000 138 -1.0000

10 -1.0000 53 0.0000 97 1.0000 139 0.0000
11 -1.0000 54 0.0000 98 4.0000 140 0.0000
12 0.4000 55 0.0100 99 1.0000 141 0.0100
13 0.8850 56 0.0000 100 0.0000 142 0.0000
14 0.0000 57 100000.0000 101 0.0000 143 100000.000
15 4.0000 60 0.1000 102 0.0000 144 0.0100
16 0.0000 61 0.0000 103 0.0000 145 0.8450
24 0.8500 62 1 0000 104 100000.00 146 0.0010
25 0.0200 63 0.0000 110 5.0000 147 0.0000
26 20.0000 70 0.0000 111 -1.0000 148 0.0000
27 0.0000 71 0.0000 112 -1.0000 149 0.0150
28
30

0.0000
0.0200

72
73

1.0000 113
0.0000 114

0.8800
-1.0000

150
151

0.0000
100000.00

31 00000 80 0.0000 115 1.0000 152 -1.0000
32 1.0000 81 0.0050 116 4.0000 170 5.0000
33 0.0000 82 0.0000 117 1 0000 171 -1.0000
34 0.0000 83 100000.0000 118 0.0000 172 330.0000
35 0.0100 84 0.0250 120 0.0000 173 -1.0000
36 0.0000 85 0.8450 121 0.0050 174 1300000
37 100000.0000 86 0.0050 122 0.0000 153 1 .0000
40 -1.0000 87 0.0000 123 10000000 154 0.0000
41 -1.0000 B8 0.0000 130 20000.00 155 0.0000
42 4.3000 B9 0.0400 131 1.0000
43 0.8850 90 0.9510 132 -1.0000
44
45

1.0000
5.0000

91
92

-1.0000 133
0.0000 134

0.8900
1.0000

Station Vector Data

Station No Item Data
1 2
11 6

126.00
1363.00
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Appendix-C

INTERCOOLED RECUPERATED-WR21 DATA SHEET APPEN DIX-C
(DESIGN POINT PERFORMANCE)

Complete Set of Available Instrumentation from Engine Model

Sl No Station- Description Total Temperature
(deg Kelvin)

Total Pressure
(Atm)

lntake(1n) 308.14999 1 .00000

I

LP Compressor(ln) 308.l4999 0.99000

b

LP Compressor(Exit) 406.691 1 2.37600

--

1ntercoo1er(Exit) 310.05365 2.32848

U

HP Compressor(ln) 3l0.05365 2.32848

O

HP Compressor(Exit) 489.33997 9.91234

\

Heat Exchanger(Co1d)(1n) 489.33997 9.86278

O

Heat Exchanger(Cold)(Exit) 730.48419 9.66552
9 Burner(Exit) 136300000 9.27890

10 HP Turbine(1n) 124786853 9.27890
HP Tu'bine(Exil) 1096.86487 5.02774

12 LP Turbine(ln) l088.05542 5.02774
13 LP 'l`urbine(Exit) 100345563 5.02774
14 Power Turbine(1n) 100345563 3.41962
15 Power Turbine(Exit) 774.92010 1.05090
16 Heat Exchanger(Hot)(1n) 774.92010 1.04039
17 Heat Exchanger(Hot)(bxit) 582.95325 1.02999
18 Exhaust 577.81250 1.01454

WR21 Design Point Performance Data

Sl No Parameter description Value Units
Shaft Power 20000.00 HP

l)

lnlet Mass Flow 126.00 lb/s

š.J

Fuel Flow 1.99 lb/sec

->

S.F.C 0.3582 lb/hp-hr

LI

E.S.F.C 0.3582 lb/hp-hr

O

Sp. Shaft Power 158.7302 hp/lb/sec

\

Thermal Efciency 0.3831 Percent

O

l-l P Shañ Speed 7905 RP M

O

LP Shall Speed 5872 RPM

5

PT Shaft Speed 3281 RPM

Instrumentation Set Fitted on Test Enginei

Sl No Parameter description Value Unit Type of sensor
HP Compressor(ln) 2.328 Atm. (Pressure )

N

l-1P Compressor(lšxit 9.912 Atm. (Pressure )

LI

1C Differential 0.048 Atm. (Pressure )

-Ã¤

HP Conpressor(ln) 310.101 Deg Kelvin (Temperature)

U

HP Compressor(Exit) 489.323 Deg Kelvin (Temperature)

O

Combustor Entry 730.5 Deg Kelvin (Temperature)

\

Power Turbine(1n) 1003.00 Deg Kelvin (Temperature)

0

Power Turbine(Exit) 774.90 Deg Kelvin (Temperature)
9 HP Shaft Speed(RPM) 7905 RPM ("l`achometer )

10 LP Shaft Speed(RPM) 5872 RPM (Tachometer )
11 PT Shaft Speed(RPM) 3281 RPM (Tachometer )
12 VAN Position 0 Degree (Position )
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Figure D-1 : Compressor Fouling
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APPEN DIX-E

Performance of the ICR WR21 (TURBOMATCH Model)

A detailed description of the development of the TURBOMATCH model has been

presented in chapter-4. The engine bears thermodynamically semblance to the actual

engine. A comparison of the engine with actual has not been provided in this thesis.

However, the performance of the model is in close agreement with the actual engine.

The performance of the engine model used in the diagnostics model has been briey

described. The performance of the engine is discussed in two modes: VAN enabled and

VAN disabled. The aim is to show that, the model developed is in conformity with the

theory (for improving part efficiency) discussed in chapter-4. Figure F.l shows the FPT

inlet temperature plotted against the shaft power. It can be seen that, for the engine with

the VAN disabled, the FPT inlet temperature increases with increase in power whereas,

the temperature can be kept almost constant by manipulating the VAN. This is a special

feature of the ICR WR21.

POWBQ Vs FPT INLET TEVI P.

1200 Ww

1150 1

1i ICR-VAN
100 V X

050l

et Temp K

2Â»J

PTn

Ã­
i1000 1 1 .

70 75 80 85 90 95 100 105 110

Percentage Power

Figure F.1: Comparison of FPT inlet temperature

The VAN scheduling is an important feature of the WR21 engine and is linked to the

fuel control system. The VAN is in fully closed position at 40% power and fully open at

full power. Due to high FPT inlet temperatures at low powers, the heat is recovered
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through the recuperator and hence a reduction in SFC when compared to an engine

without the VAN. Due to condentiality reason the actual scheduling cannot be

discussed here. However, gure F.2 shows the VAN schedule for the WR21 engine

using TURBOMATCH. The VAN angles are plotted against percentage power. The

engine model of WR2l (TURBOMATCH) has certain limitations and therefore VAN

scheduling below 72% power does not give stable results.

POWER Vs VAN SCHEDULE

6.0000 M« A -¬
i

5.0000

~ndegrees
P

0000

VAN Ang e
N .

0000

.0000

A1.0000- 1 1 - . . %
70 75 80 85 90 95 100 105 110

Perce ntage Power

Figure F.2: VAN Scheduling with Variation in Power

PowER vs NLEr vAss FLow
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` / 1

Fow bss
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Figure F.3: Variation in Engine Mass Flow with Change In Power
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Figure F3 shows the inlet mass flow plotted against the percentage power. The van

operation has effect on the mass flow upstream. The mass ow for the engine with

VAN is less at all power levels (except max. power). Figure F .4 shows the TET of both

modes plotted against the power. It is clear that the engine with the VAN in operation

runs hotter. This is benecial in obtaining better s.f.c at lower powers. However, from

engine life point of view, it is detrimental as it consumes more creep life of hot section

components.
POWER Vs TET

1550 º -

i
1500 ' 1í;

2 l _ cR-VAN l
E 1450 i 1 |CR|

14oo âº

Ã­3
1350 -._________._._________________________._______-_-._..__________________________________ .2

70 80 90 100 110
Pe rce nta ge Power

Figure F.4: Variation in TET with Power

POWER Vs RCR EXIT
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Figure F.5: Variation in RCR exit temperature with power
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Figure F.5 shows the recuperator exit temperature plotted against the power. It is clear

that the recuperator exit temperature is more in the case of engine with VAN enabled.

The FPT inlet temperature is kept by the increasing the TET at lower powers and since

the work output of the FPT has reduced for the same inlet temperature; the temperature

at recuperator inlet is high. This is the reason for the recuperator outlet to be high.

POWER Vs S.F.C

0.3600 A ~

._ 3550
_3500   X
.3450

_iàilCR-VANl.34OOA 5 i 1_ »_ *-_--ICR 1

Spec`f e Consumpt on

.ssso -1

-3 3300. -
szso V Ã¥

cFu

0.3200 f
70 80 90 100 110

Percentage Power

Figure F.6: Difference in Specific fuel consumption

Figure F.6 show the s.f.c of the engine plotted against power for two modes. The s.f.c of

the engine either VAN enables is almost at for lower powers when compared with the

engine without VAN. This shows the importance of the role played by the VAN but the

improvement in s.f.c with a price i.e. the engine hot always running hot.

As mentioned earlier, the engine parameters are broadly in agreement with the actual

engine data. Figure F.7 shows a comparison between the s.f.c from the actual WR2l

engine and performance model developed using TURBOMATCH. It can be seen that

the performance is reasonably close. It is pertinent to mention that the diagnostics model

will use the deviation between the measurements. The consistency of the model is more

important and therefore the model proved adequate for the purpose of research.
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Figure F.7: Comparison of s.f.c between actual and TM-Model for WR21
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lNTERCOOLED RECUPERATED WR-21 TEST DATA REPORT

Values of Siqmas of Measured Parameters

ä,<ooo\oºu4>oº\º-âº

,¬,¬,Â¬

0.0667
0.1000
0.1333
0.1333
0.1000
0.3333
1.0000
0.6667
1.0000
1.0000

(HP Compressor(ln))
(HP Compressor(Exit ))
IC Differential )
HP Compressor(ln) )
HP Compressor(Exit))

(Combustor Entry)
(Power Turbine(ln))
(Power Turbine(Exit) )
(HP Shaft Speed(RPM))
(LP Shaft Speed(RPM))

Instrumentation Bias Detail:

No of Instruments Biased: 1
Instrument Bias Type : Multiple of Sigma
Biased Instrument- 1 : Sl-1 1.3333 HP Compressor(ln)

Environment & Power Setting Parameters Bias Details

No of Instruments Biased: 3

Actual Biased Sigma

2040000 5010.00 0.1
Amb. Press 1.00 0.99 0.1
Amb. Temp. 308.15 308.57 0.1

Flow/Power

24000.00 23987.06 0.1
Amb. Press 1.00 0.99 0.1
Amb. Temp. 308.15 307.93 0.1

Flow/Power

Component Fault Details

Deterioration for Fault Class: 10

SlNo. Cmp/ID Component Effy(%) Flow Cap.(%)

1 1 Compressor(LP) -2.00 -3.00
2 4 Turbine(HP) -1.00 4.00

ENGINE MEASUREMENTS

Sl No Engine Measurement Operating Point-1

_(DLO<D\IO7U1«|>(»)|\.)-\

HP Compressor(|n)
HP Compressor(Eº<it
IC Differential
HP Compressor(In)
HP Compressor(Exit)
Combustor Entry
Power Turblne(ln)
Power Turbine(Exit)
HP Shaft Speed(RPM)
LP Shaft Speed(RPM)

2.461395
11.783918
0.050233

313519165
524768066
800755066

1125.822021
857458740

8197.160156
6395008789

Operating Point-2
2.402424

11.181908
0.049029

312.218109
514605957
775.583923

1081 .373291
827117981

8116459473
6236.973633

APPENDIX-F

Units
Atm.
Atm.
Atm
Deg K
Deg K
Deg K
Deg K
Deg K
RPM
RPM
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APPENDIX-G

GRAPHICAL USER INTERFACE FOR WR21 DIADNSTICS MODEL

ra
(W

I

1"

{~.

{..,

F

Kw.

{¬_

(_.

ICR WR21 DIAGNOSTICS

ICR WR-21 Diagnostics Selection

1. Engine Performance Data
2. Generate Trial data

3. Perform Engine Fauit DiagnosticsUsing GA

4. Generate Search Space

5. Generate Response Surface

6. Generate Training Data tor Neural Network

7. Train Response Surface
8_ Train Neural Network

9. Simulate Neural Network

1Ü.Pertormance Engine Fault Diagnostics Using Hybrid System

í,.,._...mi.._............šE......................¬....% R Esel J E _M ai' 0 pion Ã
Transmit

} Receive Y E xi! }

Figure G-1: GUI for ICR WR21 Diagnostics Model

A user friendly GUI has been developed for the ICR WR21. the front end of the

software is shown in gure G-1. The program has various options from generating

search spaces to performing diagnostics in the HDM mode.
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RESULTS FROM DIFFERENT SETS OF OPERATING POINTS

APPENDIX-H

CASE
(FC

COIVIPONENTS FAULT IMPLANTED(%) FC BY NNN PREDICTED FAULT (%)

COMP- 1 COMP-2 COMP-1 COMP-2

An AF An AF

FC COMP-1 COMP-2

An AF An A

CASE-I FC-1 LPC -0.5 -2.0 FC-1 FC-1 -0.48 -2.09

CASE-2 FC-2 HPC -1.0 -4.0 FC-2 FC-2 -1.11 -3.83

CASE-3 FC-9 LPC ICL -0.8 -2.5 4 2 FC-9,FC-14 FC-9 -0.76 -2.81 2.98 1

CASE-4 FC-23 HPT LPT -2.0 4.0 -1.0 3.0 FC23, FC-24 FC-23 -1.87 4.21 -1.13 2

CASE-5 FC-26 LPT FPT -3.0 6.0 -2.0 5.0 FCs 1 21,24,26 FC-26 -2.9] 5.76 -2.09 4

ENVIRONMENT AND POWER SETTING PARAMETERS

Operating Point -1

Power (hp) 22000.00

Ambient Temperature (T0) (Deg. Kelvin) 308.15

Ambient Pressure (P0) (atm)

Operating Point -2

Power (hp) 2000000

Ambient Temperature (T0) (Deg. Kelvin) 308.15

Ambient Pressure (P0) (atm)

Table H-1: Results from different sets of operating points -(Case-1)
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CASE FC COMPONENTS FAULT IMPLANTED(%) FC BY NNN PREDICTED FAULT (°/0)

CO1V[P- 1 COMP-2 COMP-1 COMP-2

A11 AF An AF

FC COMP-1 COIVIP-2

An AF A11 A

CASE-1 FC-4 HPT -1.5 4.5 FC-4 FC-4 -1.38 4.22

CASE-2 FC-6 FPT 0.2 1.0 FC-6 FC-6 -0.21 1.09

CASE-3 FC-12 LPC FPT -2.5 -5.0 3.0 6 FC-12 FC-12 -2.28 -4.53 2.61 4.89

CASE-4 FC-19 ICL HPT 6.0 2.0 -1.0 3 FC-19,FC-23 FC-19 6.23 2.40 -0.87 2.97

CASE-5 FC-25 HPT RCR -0.5 2.5 8.0 3 FCs: 21 ,25,28 FC-25 -0.37 2.74 6.65 2.43

ENVIRONMENT AND POWER SETTING PARAMETERS

Operating Point -1

Power (hp) 24000.00

Ambient Temperature (T0) (Deg. Kelvin) 308.15

Ambient Pressure (P0) (atm) 1.0

Operating Point -2

Power (hp) 22000.00

Ambient Temperature (T0) (Deg. Kelvin) 308.15

Ambient Pressure (P0) (atm) 1.0

Table H-2: Results from different sets of operating points - (Case-2)
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CASE FC COMPONENTS FAULT I1VIPLANTED(%) FC BY NNN PREDICTED FAULT (%)

COMP- 1 COMP-2 COMP-1 COMP-2

An AF An A

FC COIVIP-1 COMP-2

An A` An A

CASE-1 FC-3 ICL 5.0 1.0 FC-3 FC-3 3.8 0.56

CASE-2 FC-5 LPT -1.0 4.0 FC-5 FC-5 -1.06 3.96

CASE-3 FC-8 LPC HPC -0.7 -3.0 0 .5 -2.0 FC-8,FC-10 FC-8 -0.52 -2.69 -0.23 -1.87

CASE-4 FC-14 HPC [CL -3.0 -6.0 6 1 FC-14 FC-4 -3.14 -5.39 4.99 0.64

CASE-5 FC-28 FPT RCR -2.0 4.0 3 .0 1.0 FC-21,FC-28 FC-28 -1.83 4.24 3.17 0.67

ENVIRONMENT AND POWER SETTING PARAMETERS

Operating Point -1

Power (hp) 26400.00

Ambient Temperature (T0) (Deg. Kelvin) 308.15

Ambient Pressure (P0) (atm) 1.0

Operating Point -2

Power (hp) 24000.00

Ambient Temperature (T0) (Deg. Kelvin) 308.15

Ambient Pressure (P0) (atm) 1.0

Table H-3: Results from different sets of operating points - (Case-3)
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