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ABSTRACT

The major challenges faced by the gas turbine industry, for both the users and the
manufacturers, is the reduction in life cycle costs , as well as the safe and efficient
running of gas turbines. In view of the above, it would be advantageous to have a
diagnostics system capable of reliably detecting component faults (even though limited

to gas path components) in a quantitative manner.

This thesis presents the development an integrated fault diagnostics model  for
identifying shifts in component performance and sensor faults using advanced concepts
in genetic algorithm. The diagnostics model operates in three distinct stages. The first
stage uses response surfaces for computing objective functions to  increase the
exploration potential of the search space while easing the computational burden. The
second stage uses the heuristics modification of genetics algorithm parameters through a
master-slave type configuration. The third stage uses the elitist model concept in genetic

algorithm to preserve the accuracy of the solution in the face of randomness.

The above fault diagnostics model has been integrated with a nested neural network to
form a hybrid diagnostics model. The nested neural network is employed as a pre-
processor or filter to reduce the number of fault classes to be explored by the genetic
algorithm based diagnostics model. The hybrid model improves the accuracy, reliability
and consistency of the results obtained. In addition significant improvements in the total
run time have also been observed. The advanced cycle Intercooled Recuperated WR21

engine has been used as the test engine for implementing the diagnostics model.
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Deviation

Component flow capacity
Noise standard deviation
Heat exchange effectiveness
Component Efficiency
Nozzle discharge coefficient
Fitness

Function

Influence coefficient matrix
Obyjective function

Pressure

Probability of crossover
Probability of mutation
Relative redundancy index
Temperature

Environment parameter vector with noise

Noise vector
Environment parameter vector
Engine fuel flow

Performance parameter vector
Measurement vector

LP spool rotational speed

HP spool rotational speed

Net thrust

Engine mass flow

Ambient pressure

Ambient temperature
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AANN
AGA
APNN
BBN
BP
CBPM
CD
COEHM
COMPASS
CR
DAM
DLE
DOA
ECM
EGT
EHM
EKF
ELM
EP
FADEC
FC
FCM
FDI
Fin

FL
FOD
Foul
FPT
GA
GG
GPA
GRNN
GT
HDM
HE
HOT
HPC
HPT
ICL
ICM
ICR
IEKF
[FDM

ABBREVIATIONS

Auto-Associative Neural Networks
Adaptive Genetic Algorithm

Adaptive Probabilistic Neural Network
Bayesian Belief Network

Back Propagation

Condition Based Preventive Maintenance
Cumulative Deviation

Cognitive Ontogenetic Engine Health Monitoring
Condition Monitoring and Performance Analysis Software System
Confidence Rating

Delivery Air Manifold

Dry Low Emissions

Dedicated Observer Approach

Engine Condition Monitoring

Exhaust Gas Temperature

Engine Health Monitoring

Extended Kalman Filter

Engine Life Management

Environment and power setting parameters
Full Authority Digital Engine Control
Fault Class

Fault Coefficient Matrix

Fault Detection and Isolation

Fan inner

Fuzzy logic

Foreign Object Damage

Fan outer

Free Power Turbine

Genetic Algorithm

Gas Generator

Gas Path Analysis

Generalised Regression Neural Network
Gas Turbine

Hybrid Diagnostics Model

Heat Exchanger

Higher Order Terms

High Pressure Compressor

High Pressure Turbine

Intercooler

Influence Coefficient Matrix
Inter-Cooled Recuperated

[terated Extended Kalman Filter
Integrated Fault Diagnostics Model
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[PC Intermediate pressure compressor

IPT Intermediate Pressure Turbine

KF Kalman Filter

LB Lower Bound

LPC Low Pressure Compressor

LPT Low Pressure Turbine

LSHSD Low Sulphur High Speed Diesel

MISO Multiple Input Single Output

MLE Maximum Likelihood Estimation
MOPA Multiple operating point analysis
NASA National Aeronautics and Space Administration
NLGPA Non Linear Gas Path Analysis

NN Neural Network

NSGA Non-dominated sorting Genetic Algorithms
0&M Operation & Maintenance

OEM Original Equipment Manufacturer

OOP Object Oriented Programming

PDM Predictive Maintenance

PHM Prognostic and health management
PMS Platform Management System

PPM Planned Preventive Maintenance

RAM Return Air Manifold

RBF Radial Basis Function

RCM Reliability centred maintenance

RCR Recuperator

RMS Root Mean Squared

RR Rolls Royce

RRAP Rolls-Royce Aero-engine Performance
SFC Specific Fuel Consumption

SOAPP State Of Art Performance Programming
SOPA Single operating point analysis

SVM State Variable engine Model

TEMPER Turbine Engine Module Performance Estimation Routine
TET Turbine Entry Temperature

UB Upper Bound

UTC University Technology Centre

VAN Variable Area Nozzle

WLS Weighted Least Squares




Activation
Function

Analysis

Bias
Bottleneck

Condition
Monitoring

Correlation

Covariance

Covariance
Matrix
Crossover

Exponential
Smoothing

Fitness
Generation
Matching
MOPA
Moving
Average

Mutation

Noise

GLOSSARY

A function used to transform or squash a neuron’s local threshold
value to give outputs within defined ranges

The process of deducing the performance of the individual
components of a gas turbine from gas path measurements.

Deviation in sensor measurement from its normal value
The smallest region or layer in an AANN

The gathering of data from a gas turbine in service, in order to
understand its condition and optimise its operating costs

A measure of the relationship between two parameters, indicating
whether changes in one of them are accompanied by changes in
other.

A statistical measure of how two random variables vary together.
The covariance of two random variables a and b is defined as E[(a-
a’).(b-b*)]

A symmetrical matrix showing the covariance of each possible pair

of elements in two random vectors.

A method of generating a new solution by using parts of earlier
solutions

A commonly used method of smoothing a time series, by adding a
weighted value of the current observation to a weighted value of the
previous estimate of the true value of the series.

A positive value defining the accuracy of solution and it determines
the progress of the solution to the next generation

A cycle of operation which involves selection, crossover and
mutation.

The movement of gas turbine component operating points due to
changes in component performance parameters

Analysis using two different operating points.

A commonly used method of smoothing a time series, by averaging
several points to reduce the effects of random noise in the
observations.

A method of generating new solutions by making random changes to
the existing solutions

A random measurement error which causes disagreement in
repeated measurement.




Normal
Distribution

Objective-
Function

Observability
Outage
Pareto
Population

Power Setting
Parameter

Recursive

Repeatability

Search Space

Selection

Smearing

String

Synaptic
weights

Handle

Deterioration

Baseline

An important probability distribution used widely in the study of
variability in measurement, components, etc.

Summation of the percentages deviation of measurements from their
baseline values used for comparing measurements.

The ability of the instrument to perceive the change in performance.
Period for which an engine is removed from service

A method for choosing a particular string from a group of strings

A group of solutions to the problem

A gas path measurement that is used to define the power setting of a
gas turbine.

An algorithm is said to be recursive if the calculations it carries out
are dependent on the current input(s) and the results from
immediately previous calculations only.

A random component of measurement error caused by numerous
small effects which cause disagreements between repeated
measurements of the same quantity.

A collection of all possible solutions to the problem from which the
best solution is chosen.

A method of separating the good solutions from a pool of solutions

Distribution of fault value to other components other than the one
under consideration.

A potential solution of the GA.

Weightings given to connections between neurons.

A set parameter that is held constant while all the other parameters
are measured relative to it.

Reduction in the component’s capacity to perform to its design value

A quantifiable physical condition of level of performance from
which changes are measured.
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CHAPTER-1

INTRODUCTION

1. 1 Gas Turbines for Marine Applications

The 21* century has ushered in a variety of opportunities in terms of global economic
investments and thus brought resurgence of interest in marine propulsion. It is a well
known fact that the economic power and military might go side by side. this has led to
major navies world-wide to update their fleets to give them the crucial Sea Control and
rewrite their doctrines to the suit the concept of Blue Water Navy. In the commercial
world the key to success lies in faster and cost effective transportation of passengers and
cargo. More stringent emissions regulations and the likely increases in fuel prices have
led to industries participating aggressively, in the research and development, in
advanced marine propulsion systems and their performance and diagnostics techniques

for better exploitation and reduced down times.

The tremendous technological efforts concentrated on and necessary. to the growth
demanded of the aircraft gas turbine has created inevitable recognition of these highly
developed machines for all types of power utilisation. Aero-derivative gas turbines have
gained acceptance in the marine propulsion field around the globe and majority are used
as main propulsion prime movers for warships. Due to the inherent characteristics
indicated below the gas turbines are being used for naval ships and off late in

commercial liners.

e High specific power;

e Fast starting and shut down capabilities;

e Rapid acceleration from cold condition to maximum power;
e (Good thermal performance;

e Automation, simplicity and reliability;

e Low capital cost and installation man-hours;

e Maintainability and reduction in manning;
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With the recognition came the assurance that all aspects of the hostile marine
environment and its effects would be given the same thorough study and effective
resolution. This study referred as the marinisation of aircraft gas turbines deals with
modification of the engine in order to be able to operate and survive in the hostile

marine environment.

To fulfil the wide scope of marine propulsion system requirements, few significant

areas which need to be addressed as part of marinisation process are -

Salt atmosphere compatibility ;material and coating development
e Fuels and combustion

* Damage tolerance and shock sustaining capability

e Noise levels

e Reliability

e Maintainability

e Auxiliary system integration

e Operation and optimisation.

Marine gas turbines have been in service for more than two decades and have proved to
be reliable and offer significant advantages to the user. Despite well-proven reliable
features of these machines, their operation in hostile marine environment has been a
cause for concern, both to the manufacturer and the user. The degradation they undergo
result in significant performance deterioration and high operating costs. In addition, the
last few decades have seen growing economic pressures, which have put tremendous
pressure on the industries to cut down on cost to have a competitive edge over their
competitors. This has been a major motivation for the application of various traditional

and advanced fault analysis techniques for machinery diagnostics.

Marine gas turbines require a different kind of treatment by virtue of their applications
and the environment in which they operate, especially engines fitted on combatant

vessels. In addition to the above, there are severe constraints on the maintenance of
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these naval engines due their roles. Unlike the civil freight or passengers cruise liners,

where the region of operation, availability of maintenance

facilities and schedules are know before hand, in the case of warships there is a lot of
uncertainty involved due the operational commitments, which makes it very difficult to
follow a pre-planned maintenance schedule, though efforts are always made to adhere to
the planned maintenance activities. Thus, there is a pressing need for an accurate
diagnostics model to assess the performance and predict the likelihood of a problem.
The research work undertaken specifically addresses the issues of maintainability and
reliability of gas turbine engines through advanced fault diagnostics techniques and

promotes new opportunities for gas path based diagnostics.

1.2 Engine Condition Monitoring (ECM)

Engine condition monitoring and engine diagnosis have been recognised, for some time,
as important assets in making more informed decisions on the usage, maintenance,
overhaul or replacement of the engine or one of its components. Deterioration can affect
relevant factors such as thrust (or power) and Specific Fuel Consumption (SFC). As a
consequence of progressive performance loss, operation of the engine can become cost
ineffective or even unsafe. Therefore maintenance techniques must be used to ensure
that the gas turbine operated cost effectively and safely. There are several types of
maintenance strategies adopted according the individual requirements. Broadly they

can be classified into following categories:

1.2.1 Breakdown Maintenance
This sort of maintenance is performed only after the parts have failed or the operational
performance limits are not achievable. It suffers from various drawbacks that include

compromises on safety, performance and reliability.

1.2.2 Planned Preventive Maintenance (PPM)
This type of maintenance is performed according to a fixed maintenance schedule,

which is time or running hours based. It is suitable for safe life designed components
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and usually involves routine replacement of parts etc. The useful remaining life is based
on the fleet statistical usage or manufacturers recommendations and not on an individual
engines operational exposure or experience. Its main drawbacks are the replacement of
parts that have a significant remaining life or a reduction in operational capability or

parts failing before a scheduled maintenance activity.

1.2.3 Condition Based Preventive Maintenance (CBPM)

The technique relies on determination of the condition of the engine for the purposes of
overhaul schedule. Also known as Reliability Centred Maintenance (RCM), or
Predictive Maintenance (PDM), this technique is now the most popular means of
maintenance. Condition based preventive maintenance can sometimes extend parts

usage beyond fleet averages based on actual operational usage.

1.2.4 Proactive maintenance

Proactive maintenance is an offshoot of condition based maintenance that emphasizes
the routine detection and correction of root cause conditions that lead to performance
changes and/or component failure. Conditions are corrected or parts are redesigned
based on a root cause failure analysis. Root causes such as vibration and contamination
can be monitored automatically, but a deeper study is required for aero thermal

problems that require gas path analysis.

1.2.5 Prognostic Maintenance

Like proactive maintenance this is an application of condition based maintenance. The
use of prognostics within a health management system is known as prognostic and
health management (PHM). The ultimate objective is to integrate the PHM with the

logistic system.

Relatively recent advances in computing, data collection and general modelling
capability have made it feasible to develop maintenance strategies mainly based on
condition monitoring. The greatest effort to develop a comprehensive and cost effective
monitoring system has been made for aero engines maintenance. These techniques are

being adopted in shore based and marine gas turbines. A key point in any ECM system
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1s the concurrent utilisation of a number of techniques to keep track of various
components and subsystem’s performance. Some of the common methods employed in

ECM are:

e Lubricating oil analysis

e Vibration monitoring

e High pressure turbine exit temperature spread
e Visual inspection / Boroscope inspection

e Transient monitoring

e Life cycle counting

e [Exhaust Gas temperature monitoring

e Qas path analysis

e (as path debris monitoring

e Eddy current checks

e Radiography

Considering the scenario of global civil air transportation market, increasing
competition among airlines is pushing towards the application of advanced fault
diagnosis techniques to review maintenance philosophies to reduce operating costs
(Singh et al, 1999). In this respect, the propulsion system calls for a significant portion
of the overall maintenance effort. Figure 1.1 shows that the maintenance cost together
with the fuel bill represent 18% of the total costs. Similar is the case with marine and
industrial gas turbines. The profit may be seen as large in absolutely term, however,
when compared to the revenue and costs, it may be relatively small percentage. Thus,

any change in either of the two could have detrimental effect on the total profits.
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Adrline-Businces Ereakdown:

Figure 1.1: Airline Business Breakdown (Singh et al, 1999)

1.3 Reliability of Gas Turbines

To assess the consequence of a certain fault or component deterioration, it is necessary
to relate it to availability and reliabitity issues. Asa matter of fact, modern engines have
very high Tevel of reliability is broadly accepted. The question that remains is whether
the rehability is achieved by using relatively large “safety margins”, as these imply

additional maintenance, shorter component lives and hence higher costs (Singh, 2003).
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Figure 1.2: Forced Outage Rate (Singh et al, 1999)
When a forced outage occurs, availability is affected depending on the down time

required to replace or repair the particular component or systemn. On one side, engine

support system (e.g. control system, fuel system etc..) are statistically responsible for a
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large number of forced outages. Figure 1.2 shows the forced outage rate of various
components and systems. It is clear that the forced outage due to turbines and
compressors is only 1% and 2% respectively. Whereas, controls systems account for
24% of the forced outage. However, when the outage is due to a fault in these
components (turbines and compressors), the down time required to repair or replace is
usually long. Figure 1.3 shows that total downtime associated with the turbines and

compressors is 14% and 12% respectively comparcd to just 6% for the control systcms.

TURBINE _ COMPRESSOR _ LUBE OLL
1% m o

_COMBUSTION

OTHERS = POWER DISTRIBUTION
3% g Yy

GENERATOR
&%

rurt on ATOMIZNG AR
1% 4%

Figure 1.3: Percentage forced outage downtimes for various components
(Singh et al, 1999)

The low probability of fault occurrence and the high cost of holding engine component
spares entail that they are often not held as spares. However, in ceriain crucial
operations, holding a spare engine also makes economic sense. E.g. if in an oil field, the
cost of amount of oil being pumped out is far too much when compared to the cost of an
engine such that the downtime would seriously affect the revenue then it would be

prudent to keep a spare engine.

1.4 Motivation for the Present Work

The major motivating factors for the taking up this work can be described under the

following subjects-

e Techno-Economic issues
e Marine Applications

e Manpower issues
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1.4.1 Techno-Economic Issues

The future marine industry will demand ever-increasing power from propulsion engine
with the order-winning criteria being ‘economy and reliability’. In addition ferocious
negotiations by the Original Equipment Manufacturers (OEMs) have intensified the
competitive arena with all the participants looking to future business. This competitive
environment can only become more intensive as the gas turbine OEMs, such as Rolls-
Royce and General Electric , increasingly focus on the servicing

of their products in order to secure their economic returns on engine sales and to capture
market share. This change in the dynamics of the industry has altered due to the
consolidation of overhaul and maintenance services from independent suppliers to the
OEMs. Thus the new challenges for the ensuring profitability will be achieved through
altering the dynamics of the sector to a service-oriented environment with
manufacturers selling not engine products but a blend of engines, maintenance and
financing. The concepts like ‘Power by the Hour ™ (trademark held by Rolls-Royce)
which are being introduced into the airline industry could very well be a reality for
marine propulsions in near future, especially when navies are moving towards lean

manning of ships and reduced manpower in ship yards.

1.4.2 Marine Applications

While most of the leading edge fault diagnostics technology have been used for aero-
engines, traditionally gas turbine engines on board were maintained according to hard-
life concept, whereby components were removed and refurbished after a pre-
determined time based on a deterioration rate. Although this did minimise operation
disruptions from  engine shutdowns, engines were undergoing O&M regardless of
actual condition. As new technology was developed and introduced into the market such
a high temperature resistant materials and introduction of air-cooled turbine blades, the
on board times of the engines increased significantly and the concept of on-condition
maintenance were adopted. Thus instead of removing the engine after a fixed time the
engine was constantly monitored using instrumentation sets to provide a trigger for

maintenance from the engine’s performance deterioration and condition.
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The relationship between on-board time and maintenance cost must be monitored
carefully and analysed, since on board times could be extended too far resulting in
unacceptable economic impact. In essence, the solution is to develop knowledge-based
tools that will optimise engine life at most operationally cost effective position without
any negative impact on reliability . This concept will provide the opportunity to keep
the engine on-board as long as possible and to restore its performance at the lowest

possible costs during the O&M activities.

1.4.3 Manpower Issues

It is essential that advanced manpower planning be conducted prior to an outage. It
should be understood that a wide range of experience, productivity and working
conditions exist in shipyards. However, based upon maintenance inspection man-hour
assumptions, an average crew composition can we worked out. This planned approach
will outline the renewal of parts that may be needed and the projected work scope,
showing which tasks can be accomplished in parallel and which tasks must be
sequential. Planning techniques can be used to reduce maintenance cost by optimising
lifting equipment schedules to be taken up only when ship enters a major refit.
Estimates of the outage duration, resource requirements, critical-path scheduling,
recommended replacement parts and associated costs can be worked out. In Addition,
the development of concepts like Platform Management Systems (PMS) has taken place
against a background of diminishing manpower numbers and changing skill levels to
match the application of new technologies. These factors have been the principal drivers
in the application of increasing level of automation in each new class of vessel. To
optimise the manpower levels on future naval platforms and reduce the need for manual
logging and analysing will have to be replaced by technology and automation.
Traditionally the engine watch keeper during his rounds monitors the impending
problems by the senses of sight, touch, hearing and smell and takes action according to
his understanding of the problems, the routine manual monitoring of parameters and
analyses are tedious perhaps manpower intensive, especially in large ships. Factors

like the attentiveness and fatigue levels of the watch keeper need to be considered.
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From the above discussion it is evident that the advanced fault diagnostics tools applied
to engine health monitoring of machinery have a significant role to play in the future
marine propulsion and maintenance management. Such systems may not only help in
monitoring the parameters, but also in analysing and simulating scenarios to understand

the implications of faults and training personnel.

Within the engine industry itself, the market drivers are ‘economy and reliability’
namely the demand for power at the lowest possible cost and the highest level of
reliability, with determinants like the specific fuel consumption, maintenance and life
cycle costs, power to weight ratio, engine noise, Emissions being under customer
considerations for their choice of engine. Even with the paradigm shifts in the market
place from the selling of a gas turbine engine to actual lifecycle management of the
units resulting form the service-oriented ‘Power by the Hour’ agreement, these drivers
still remain. However, their weightings have moved towards greater emphasis on
lifecycle service provision. In addition, continued escalation in engine purchase price,
costs of spare parts, maintenance operations and soaring fuel costs have made it
increasingly desirable for operators to employ engine diagnostics or engine health
monitoring which implies the ability to accurately assess the relative health and

performance of their engines in a reliable cost effective and technically sound way.

It was recognised that the technology push and market pull creates an opportunity for
investigating and developing advanced fault diagnostic techniques which can be used
for engine health monitoring and reviewing maintenance strategies. These challenges
have necessitated the development of advanced fault diagnostics for marine gas
turbines, while keeping in mind that the operational requirements for warships usually
outweighs the need for a scheduled maintenance and also the various port may not have
adequate refitting facilities. Overall the industry would be benefited by improved safety
associated with operating and maintaining gas turbines, reduced overal] life cycle costs
of engines from installation to retirement, increased up/time availability of all engines
within a fleet and providing engineering justification for scheduling maintenance

actions with corresponding identifiable economic benefits.

-10-
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1.5 Objectives & Contributions from the Research Work

The research work is sponsored by Ms Rolls-Royce (Marine & Industrial) and the
‘Overseas Research Scheme’ award by the Committee of Vice-Chancellors and
Principals (United Kingdom). In order to put the objectives of the research work in
context, it would be appropriate to briefly describe the background to the present

research work:

1.5.1 Background to current research:

» The project based on optimization technique was conceived in 1996, whereby Zedda
(1999), funded by Rolls Royce plc, started a PhD to carry out a thorough review of
the current technology for performance analysis and diagnosis and then to develop
an advanced methodology to carry out such a task. He developed a technique based
on the use of Genetic Algorithm (GA) for a well-instrumented engine, the EJ 200,
which had an instrumentation suite for a development engine. The technique proved

to be a success and was received by the company with enthusiasm.

e Since, the initial tests were with test bed instrumentation sets (which very large
compared to the in-service engine), Rolls-Royce decided to investigate this
technique for engines with in-service instrumentation. This led to the research work
by Gulati (2002) in which he investigated the use of multiple operating point
analysis to overcome the lack of information from reduced instrumentation. The
engine used for this task was the RB199. This engine was chosen due to the
difficulty faced at Rolls Royce in diagnosing faults with this engine. On successful
testing with the RB199 engine, the method was suitably modified and tested on a
few other engines, like aero Trent 500 and the Industrial RB 211 by Carter (2001).

1.5.2 Choice of GA based diagnostics & Need for Enhancement:

When compared with various other diagnostics technique, the technique based on GA
was found to be most suitable of an advanced cycle engine due its inherent capability in
preserving the system non —linearity. The technique based on GA had been proved to be
robust and had the ability to overcome some of the problems associated with

measurement noise and instruments bias. However, a major impediment to its
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implementation was the long run times of the algorithm. E.g. it would take 36 hours for
an engine like the RB211, assuming that a maximum of two components were faulty
simultaneously. Such long diagnostics time would not be suitable for any real time
application and could lead to non-recoverable damage to the engine if used. Thus the
need to enhance the basic model in terms of accuracy and reduced convergence time
was felt. Prior to this research work, the technique was tested only on simple cycle
engines. Present research deals with the development of a diagnostics model using
some advanced concepts in GA and also looks at possibility of integration with other
fault diagnostics to form a hybrid model for efficient fault diagnostics. The advanced

cycle ICR WR-21 engine model has been used for validating the results.

1.56.3 Research Objective

The objective of the research is to develop a performance assessment and fault
diagnostics model for an advanced cycle gas turbine. The salient features of the research

work is to-

(a) Identify shift in engine performance and deterioration in component
performance.

(b) Identify faulty components with the minimum set of instrumentation suite.

(c) Detect, identify and isolate faulty sensors

(d) Consider the measurement noises and sensor bias while carrying out diagnosis

(e) Investigate the possibility of combining several techniques to develop a hybrid
engine fault diagnostics technique with improved accuracy and reduced

convergence time.

1.5.4 Contributions from Current Research
It is expected that this PhD will make the following novel contributions:

(a)  The use of adaptive GAs and embedded expert system is a new concept In
engine fault diagnostics. The use of nested neural network as a pre-processor
in a hybrid diagnostics model is also a new concept as until now the fault

diagnostics techniques have mostly been used in isolation. This development
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has created new opportunities in the field of gas path diagnostics with a
possibility of finding applications in advanced cycle engines and combined

cycle configurations.

(b) A diagnostics model has been developed for the advanced cycle intercooled
recuperated WR21 engine with variable area nozzle. The development has led
to a substantial reduction in diagnostics time and improvement in diagnostic
accuracy. The methodology adopted here brings the diagnostics system closer

to application in online fault diagnostics system.

1.5.5 Benefits from Current Research
Most of the sophisticated fault diagnostics techniques have been applied to aero gas
turbines. However, these techniques being generic, are eventually finding their way to
industrial and marine applications. The availability of such techniques has made
industrial and marine users more sensitive to maintenance issues. Even though the
present works focuses on aero-thermal performance analysis and fault diagnosis, it
would be misleading to assume this technique to be better than the rest. It is pertinent to
mention that each the techniques mentioned in section 1.2 have their own importance
and contribute to the engine health monitoring. In the current research work, a fault
diagnostics system has been developed for the ICR WR21. The technique is generic is
nature and can be easily adapted to any engine with minimal modifications to the
algorithm. Overall, it is expected that the following benefits will accrue from the
development of the diagnostics technique presented in this thesis:

e Improved safety in operating gas turbine engines;

e Reduced overall life cycle cost;

* Optimise maintenance interval and prioritise task to enhance operational

availability;
» Engineering justification for scheduling maintenance while identifying
corresponding economic benefits;
e Serve as post refit benchmark;
* Training personnel on importance of good maintenance practice (Simulating

fault conditions).
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1.6 Overview of the Thesis
The followings paragraphs give a brief description of the contents of each chapter which

forms part of this thesis:

Chapter-1: Introduction

This chapter provides a broad outline of the gas turbine application in the marine
application. It also presents the motivating factors which has led to the research work,
and has been discussed under various topics like the techno-economic 1ssues,
application in marine field and the impact on manpower. Finally, it discusses the

objectives and contributions from the research work and gives an overview of the thesis.

Chapter-2: Engine Fault Diagnostics Techniques- An overview
This chapter gives an overview of the various performance based engine fault
techniques available. It also summarises the various engine fault diagnostics techniques

available, their advantages and limitations.

Chapter-3: Optimisation Techniques for Engine Fault Diagnosis
This chapter gives an overview of Genetic Algorithms (GA) and their applications to
engine fault diagnostics. A discussion on the development diagnostics model for the

well instrumented EJ200 and poorly instrumented RB199 is presented.

Chapter-4: Diagnosis of Advance cycle Engine

This chapter presents the concept of marinisation of an aero gas turbine and discusses
methods to improve part load efficiency of a marine gas turbine. The chapter also
briefly discussed the design of the advanced cycle intercooled recuperated WR21
engine and development of a TURBOMATCH (A Generic engine modelling software)
model of WR21.

Chapter-5: Development of Diagnostics for WR21
This chapter describes the development of an engine fault diagnostics tool using GAs
for the ICR WR21 engine, its limitations and the need for improvement to the basic

form to make it usable for real time applications.
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Chapter-6: Advanced Fault Diagnhostics model

This chapter describes in detail the new diagnostics model developed using the concept
of response surface, elitist model and heuristic manipulation of GA parameters. This
chapter also describes a novel way of combining neural network and Genetic Algorithm
using the advantages of both the techniques to develop a hybrid technique for improved

performance.

Chapter-7: Discussion of results

This chapter presents a discussion on the development of a diagnostics tool for the
WR21, the important issues to be addressed and discusses the results from various of
test cases. A comparison of the various forms of GA based diagnostics model is also

presented.

Chapter-8: Conclusion and Recommendation
This chapter gives the conclusion of the research work carried out. It also gives a
summary of the contributions made, limitations of the present research and some

recommendations for future developments.
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CHAPTER-2

GAS TURBINE ENGINE FAULT DIAGNOSTICS
AN OVERVIEW

2.1 Introduction

There are many approaches for gas turbine condition monitoring and fault diagnostics,
such as performance analysis, oil analysis, visual inspection, boroscope inspection, X-
ray checks, eddy current checks, vibration monitoring, debris monitoring, noise
monitoring, turbine exit spread monitoring, etc. Performance analysis based diagnostics
is one of the most powerful tools among them, where the analysis of gas turbine gas
path parameters provides the information of degradation severity of gas path
components. Research in recent years shows that current research efforts on gas turbine
diagnostics have  been focused on the improvement of reliability, accuracy,
computational efficiency, online application and inclusion of more practical
considerations such as data pre-processing and validation, measurement noise reduction,

multiple component faults, sensor faults, data uncertainty, etc.

In this chapter, technologies relevant to gas turbine performance analysis based
diagnostics developed so far and published in the open literature are reviewed, from its
beginning of Urban's (Urban, 1967) work until the most recent state-of-the-art
technologies. Such technologies include earlier linear and non-linear model-based
methods to more advanced artificial intelligence (neural networks, genetic algorithms
and expert systems) based methods, and fuzzy logic based approaches, for gas turbine
component fault diagnostics on both steady state and transient measurement data.
Additionally, data validation and different approaches for filtering noise from the

measurements for gas turbine fault diagnostics have also been discussed.
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2.2 Engine Performance Analysis

One of the main stimulants to the development of thermodynamic modelling of the gas
turbine has been the steady flow nature of the cycle. The steady flow nature of the gas
turbine cycle makes it much more amenable to accurate mathematical calculations. The
analytical performance model of a gas turbine engine is based on component
characteristics and aero-thermo relationships such as the laws of conservation of energy
and mass and special conditions such as choked nozzle and bleed. The calculation then
proceeds to “match” all the components by satisfying the aero-thermal relationships.
Assuming that all component characteristics are accurately defined. the model can

provide the engine performance in terms of dependent (measurable) parameters such as

pressure, temperature, spool speed etc..

The ease of calculation of the gas turbine cycles has led to the development of many
performance modelling tools such as the Rolls Royce’s RRAP, Pratt and Whitney’s
SOAPP and Cranfield’s TURBOMATCH systems. If the flow, pressure ratio and
efficiency characteristics of the compressor and turbine are known, as well as the
pressure loss characteristics of the intake, combustion chamber and exhaust and the

temperature rise characteristics of the fuel used, then the performance of the whole

engine can calculated.

2.3 Performance Deterioration

In the course of its useful life the gas containment path of any engine is susceptible to

encountering a wide variety of physical problems. These include problems such as
erosion, corrosion, fouling, built up dirt, foreign object damage, worn seals, excessive
tip clearance, burned or warped turbine stator or rotor blades, partially or wholly
missing blades, plugged fuel nozzles, rotor disk or blade cracks induced by fatigue or
operation outside intended limits, etc. In order to develop an engine deterioration
model, the faults have to be classified, quantified and identified (Diakunchak, 1992).
Typically, a quantitative representation of physictal fault can be described as a change in
one or more of the independent parameters which describes individual gas path
components performances like the component isentropic efficiency, flow capacity,

turbine nozzle guide vane area, exhaust nozzle area etc. It is noteworthy that the
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independent parameters are determined by the gas turbine’s configuration and that they
cannot be measured at all.

The following sections describe some of the faults and their effect on the engine
performance. The quantification of faults allows simulation of faults in a computer

program.

2.3.1 Fouling

Fouling can be defined as the ‘degradation of flow capacity and efficiency caused by
adherence of particulate contaminants to the gas turbine airfoil and annulus surfaces’
(Diakunchak, 1992). Although fouling can occur in both compressor and turbine
components, it has been recognized that compressor fouling is one of the most common
cause of engine performance deterioration (Aker, 1989). Gas turbines are particularly
susceptible to fouling because of the large quantities of air they ingest. The incoming air
consists of hard and soft particles. Hard particles such as dust, dirt, sand, rust, ash and
carbon particles and soft particles such as oil, unburned hydrocarbons, soot, airborne
industrial chemicals, fertilizers, herbicides etc. can provide a source for fouling. In the
case of compressor fouling, the change in blade shape causes a reduction in compressor
flow capacity and a reduction in compressor isentropic efficiency. The effect of fouling
on compressor flow capacity is more significant than the effect on efficiency. Typically,
the flow capacity is reduced by 3 -8% and the efficiency by 1% depending on the
severity of fouling (Saravanamuttoo, 1985; Diakunchak, 1992). The reduction in mass
flow capacity varies with operating speed, ambient temperature and altitudes
(Saravanamuttoo, 1985). Furthermore, compressor fouling not only reduces the flow
capacity and efficiency, but also reduces the compressor surge margin and this may

result in compressor surge (Diakunchak, 1992).

2.3.2 Erosion

Erosion can be defined as ‘the abrasive removal of material from the flow path
components by hard particles in the air or gas stream’ (Diakunchak, 1992). A typical
size of the particles 1s 20pum or more in diameter. The particulates which cause erosion
are hard particulates such as dirt, dust, sand, carbon/soot (the carbon particles are

produced as a result of inefficient combustion), ash, salt and industrial pollutants. As a
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result of erosion, the airfoil surface roughness is increased, inlet metal angle is changed
(hence airfoil incidence). airfoil profile is changed, airfoil throat opening is changed,
blade tip and seal clearances are increased. In some cases the eroded airfoil trailing edge
thickness can be beneficial to performance, though it is unacceptable from mechanical
integrity considerations (Diakunchak, 1992). The erosion of engine components results
in blunting of aerofoil leading edges, thinning of trailing edges and increased surface

roughness.

2.3.3 Corrosion

Corrosion can be defined as the loss of material from flow path components caused by
the chemical reaction between these components and contaminants that enter the gas
turbine with the inlet air, fuel, or injected water/steam. Salts, mineral acids, and reactive
gases such as chlorine and sulphur oxides, in combination with water, can cause wet
corrosion, especially of the compressor airfoils. Elements like sodium, vanadium and
lead in metallic or compound form can also cause high temperature corrosion of the
turbine airfoils. Hot end surface oxidation is another form of corrosion (Diakunchak,
1992).

Similar to erosion, corrosion can result in the loss of material and increase in surface
roughness. In addition, corrosion results in a loss of performance and service life of the
component affected.  Typically, compressor corrosion results in a reduction in
compressor flow capacity and isentropic efficiency, whilst turbine erosion results in an

increase in turbine effective area/flow capacity and a reduction in isentropic efficiency.

2.3.4 Foreign Object Damage (FOD)

Foreign object damage (FOD) can be defined as the cause by which large objects strike
the flow path components of the gas turbine engine. These objects enter the engine with
the inlet air or are the result of pieces of the engine itself breaking off and being carried
downstream. Foreign objects can be things like stones, birds, bolts, tools, etc. Excessive
ice formation on the compressor inlet, carbon deposits on fuel nozzles, and engine
subcomponents can break loose and result in damage to internal downstream
components. Foreign object damage can vary from non-recoverable (with washing)

engine performance deterioration to catastrophic engine failure (Diakunchak, 1992).
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The effect of FOD on performance degradation varies significantly with the severity of
the damage. FOD results in a large reduction of the component isentropic efficiency and
in some cases can change the flow capacity of the damaged component. Typically,
isentropic efficiency can decrease by 5% (Zhu, 1992). However the value is very much
dependent on the severity of the damage. The change in flow capacity depends on the
type of FOD damage. In some cases the flow capacity may increase, in other cases it
may decrease. An increase of flow capacity can be the result of lost blades. A decrease
of flow capacity can be the result of foreign particles blocked in the gas path. A
blockage can be caused by desert sand that has been virtually glued to the turbine blades

because of the heat.

2.3.5 Thermal Distortion

Thermal distortion is a fault that normally occurs at combustor exit/turbine entry where
temperatures are highest. Distortion is caused by problems such as faulty fuel nozzle
spray patterns and warped combustor components which cause changes in the radial and
circumferential temperature traverse pattern at the combustor exit. This can result in
temporary or permanent deformation of downstream components such as cracked,
bowed, warped, burned, lost or damaged turbine nozzle guide vanes, area changes,
increased leakage, and relative thermal growth between the static and rotating members
(English, 1995). High temperature can cause first stage turbine blades to untwist. These
blades untwist as a result of creep damage during sustained high temperature operation
(Macleod, 1992). Bowed, burned, warped, untwisted or damaged blades can cause a
reduction in turbine isentropic efficiency due to increased air leakage and reduced
airfoil performance. The damage of the blades can also result in changes to the effective
flow area. However, the most significant effect will usually be on turbine isentropic

efficiency (MacLeod, 1992).

2.4 Facets of Gas Turbine Fault Diagnhosis

The objective of the mathematical modelling process is clear: use component
characteristics and thermodynamic relationships to build a mathematical model of a gas
turbine from its parts. Analysis, on the other hand can have different objectives

depending on what the results will used for. If for instance, the analysis is being done
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to determine if a gas turbine is acceptable to the customer, then the calculations to
determine its acceptability or otherwise will almost certainly be laid down in a contract

specification.

Condition monitoring of a gas turbine in service requires an intermediate approach, in
which fairly detailed and up-to-date analysis methods need to be agreed between the
manufacturer and the end user in order to achieve cost effective maintenance. Using one
set of methods to achieve another set of objectives is usually a recipe for confusion and

misunderstanding.

It should be noted that the gas turbine performance analyst is rarely asked to explain the
absolute levels of overall performance that are calculated. Usually, performance of gas
turbines and components is expressed relative to some appropriate datum. For instance,
the statement that the specific fuel consumptions the of gas turbine under analysis is 10
gm/KNs is not nearly as useful as the statement that the SFC is 3% worse than expected.
A stated compressor efficiency of 89% sounds quite good, until comparison with the

results of the rig test shows it to be lower than 2% of the design (Provost, 1994).

INDEPENDENT PARAMETER DEPENDENT PARAMETER

PHYSICAL PROBLEMS DEGRADATION OF CHANGE IN

Results in COMPONENTS Produces MEASURABLE
EROSION PERFORMANCE PARAMETERS
CORROSION . PUMPING
FOULING CAPACITY . SPOOL SPEEDS
F.O.D . EFFICIENCIES . TEMPERATURES
BUILT-UP DIRT o PRESSURE o PRESSURES
WORN SEALS OR LOSSES . POWER OUTPUT
EXCESS CLEARANCE e TEMPERATURE
BURNED, BOWED OR PROFILE
MISSING BLADES Fault +  EXHAUST NOZZLE Infer
PLUGGED NOZZLES Isolation AREA Fault

Figure 2.1: Gas Turbine fault diagnosis approach (Urban,1974)

Ultimately, the purpose of gas turbine performance analysis is to identify physical faults
by looking for the deviations in measurable parameters like the temperatures, pressures,
spool speeds etc. from expectations. Figure 2.1 shows the working relationships in the

analytical process (Urban, 1974).
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Superficially the analysis process as shown in fig-2.1 looks easy; calculate appropriate
component performance parameter deviations from the gas path measurement
deviations relative to a datum, then use the results to guide the search for hardware
faults. In practice the analysis process is corrupted by errors in the measurements taken

to determine how the gas turbine is behaving.

Errors can have serious effects on any analysis, because they result in incorrect
component performance calculations which lead to misleading hardware fault diagnosis.
As Provost (1994) had rightly said “Every experienced analyst will recall instances of
measurement errors discovered when analysing gas turbines on-line that either
prevented the test being terminated prematurely (due to incorrect calculation of critical
gas-path parameters such as turbine entry temperature) or stopped a potentially
worthless or dangerous test from proceeding (fuel leaks in altitude test plants, in which

the gas turbines itself is sealed inside a test chamber and not visible by the test crew)™ .

Failure to detect measurement errors can have serious financial consequences, as time
and effort are spent searching (on the basis of flawed calculations) for non-existent
faults in one part of the gas turbine while genuine faults go undetected. Any analyst who
ignores the possibility of corruption of his calculations by erroneous measurements is
treading on dangerous ground (Provost, 1994). The experienced performance analyst
learns to look for characteristic ‘signatures’ of typical single measurement errors : these
are usually recognised by calculation of better than expected performance of one or
more components , accompanied by worse than expected performance on other
components ( so-called ‘reciprocal change’ ) . However, when more than one error is
present and/or genuine changes in components that make up error ‘signatures’ have
happened , the task of finding errors becomes very much more difficult . It is not
unusual for even the most experienced analyst to spend days or weeks trying to produce
a credible assessment of overall and component behaviour when multiple errors are
present: engineering judgement, trial and error calculations, patience and a certain
amount of luck are all required, if any sense is to be made of the results. The need to
speed up an inefficient, time consuming and demoralising process is the main

motivation behind the research that had been undertaken.
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2.5 Performance Analysis' Based Diagnostics

In the last three decades, researches have investigated several different techniques for
engine fault diagnostics. Performance analysis based technique for engine fault
diagnostics has emerged as a powerful tool and tremendous research efforts have been
directed towards it. There are several methods investigated and a lot of information is
available in the public domain on these and an extensive review of methods that exist
today has been provided by Li (2002). The comprehensive review by Li (2002) has been
extremely helpful in obtaining a wide range of information and organizing the literature
review in this thesis. The contribution of the author is duly acknowledged. The methods
available have been broadly classified into three subgroups for ease of presentation. An

overview of some of the methods is given in the subsequent sections.

2.5.1 Linear Model-Based Diagnostics Methods

The aero-thermodynamic relationship between gas turbine dependent parameters and
independent parameters is complex and highly non linear. Linear diagnostics methods
are characterised as such, because they use a linearised representation of engine
performance. To simplify the description of such a relationship, a linear approximation

at certain operating point (such as maximum power or cruise) was introduced as follow:
Zz=H-X (2.1)

With this assumption, a first Gas Path Analysis (GPA) method was introduced by Urban
in 1967(Urban, 1967). Its application to gas turbine condition monitoring and engine
fault diagnosis was further described by Urban (Urban 1980 and 1981). A review of Gas
Path Analysis was given by Smetana (1975). This GPA method has been widely used in
applications, such as those of Passalacque (1974), Staples and Saravanamuttoo (1974),
Saravanamuttoo (1974), Danielsson (1977), Lazalier et al. (1978), Grewal (1988),
Escher (1995a, 1995b), Nieden and Fiedler (1999) and Simani et al. (2000). In this
method, the relationship between various engine measurable parameter deltas and
immeasurable component parameter deltas at certain engine operating condition is

expressed with a linear Influence Coefficient Matrix(ICM):




...

’ Chapter-2: Gas Turbine Engine Fault Diagnostics- An Overview

AF = H - A% (2.2)

The deviation of engine component parameters can be calculated with a Fault
Coefficient Matrix(FCM) which is the inverse of the [CM:
Ax=H™" Az (2.3)

The generation of the fault coefficients relies on the implantation of known faults in the
components. The basic formulation is conceptually simple and provides quick solutions
to gas turbine diagnostics and has proven to be successful in many of the commercial

fault diagnostics system like TEMPER, COMPASS etc. A detailed description of the

method is given in the following section.

2.5.2 Gas Path Analysis (GPA)

The objective of gas path analysis 1s to determine faults associated with components
through the observation of judiciously chosen measurements (dependent parameters).
To be implicitly detectable (i.e. implied from their effects on the measurable
parameters), the problems or faults must be clearly of a nature and magnitude that will
produce an observable change in the measurements. Thus certain problems such as
fatigue cracks in rotor disks or blades, or corrosive attacks on the metallurgical structure
but not the geometry of turbine blades, are undetectable by analytical technique and
must sought by radiography, boroscope or other visual inspection means. A large

portion of the potential faults are however amenable to detection by gas path analysis.

Each of the faults whether caused by normal wear, degradation, F.O.D., or abnormal
abuse, may be viewed as affecting one or more components in one or more of their
basic performance parameters. For example compressor or fan faults will manifest
themselves as change in either the air pumping capacity or the adiabatic compression
efficiency or both; turbine faults will manifest themselves as changes in either the
turbine effective nozzle area size or the adiabatic expansion efficiency or both. These
primary independent parameters although fundamental in nature and leading directly to
the detection of engine faults are not readily or practically measurable. The parameters
which can be measured are typically the vartous temperatures, pressures, fuel flow and

rotor speeds throughout the engine. These parameters are dependent variables whose
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absolute values depend on the absolute levels of all primary independent variables.
Therefore. since changes in these dependent variables are brought about by changes in
the primary independent variables, differences in these parameters from their baseline
expected values can be used to implicitly determine which elements of the gas path have
undergone distress or departed from their initial or expected condition. It should be
stressed that any parameter in itself 1s not necessarily indicative of fault in any particular
element. For example, at any given rotor speed, a change in compressor discharge
pressure does not mean there is a compressor fault. The change may also be due to a

change in compressor or turbine fault.

At any given operating condition, two bits of information is available, what the engine
manufacturer or user experience says the nominal measured parameter value should be,
and what the observed value actually is. The observed values should be used for
purposes of analysis. The data must first be corrected for factors such as installation
losses associated with test cells, instrumentation calibration errors, effects of bleed and
effects of Reynold’s number. Once corrected, a gross delta value for each parameter is

obtained as shown in figure 2.2.
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1
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//? Sinstaliation & Calibration
_________________ .

. & Bleed & Services
/ 5 Nozzle
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Gas Path Parameter

»
»
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Figure 2.2: Calculation of measurement of deltas

This is composed of two factors, the net delta due to deviant module, which is the

portion of the diagnostic interest, and the portion due to instrumentation non-
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repeatability and possibly the presence of other unsought problems such as model
errors, baseline errors etc. GPA could be linear or non-linear and both these methods are

described in the succeeding sections.

2.5.2.1 Mathematics of GPA

Theoretically there exists a relationship between the measured parameters and the
independent parameter. Let us consider an arbitrary condition where z is dependent on
2 independent variable x & y. If the baseline value of zj; is known for a given values of

x =xpand y =y then the function z can be expanded using Taylor series

&
o X(mx) | )y =)t (HOT)  (23)
- 0 5y Rat)

oz
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as magnitude of changes in independent parameters are likely to be small, Higher Order

Terms(HOT) can be neglected and equation (2.3) can be rewritten as

e T ) T L S
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“0 =0

[t is customary to define performance shifts in terms of percentage deviation from

baseline therefore defining

2 %100 (2.5)

Substituting equation (2.5) in equation (2.4) we get

Azz{xoxisi }xAer{ﬁx? | }xAy (2.6)
X=X, y =4y

z, Ox zZ,

all terms inside curly brackets are constants, in mathematical terms called coefficients

and equation (2.6) can be written as:




Chapter-2: Gas Turbine Engine Fault Diagnostics- An Overview

Az =C, xAx +(C, x Ay 2.7

The above equation defines a relationship between change in dependent parameter z to
change in independent parameter x & ). However in reality we are likely to measure a
set of dependent parameters to detect a set obtain the independent parameters, the

general form of the equation can be written as:

Z, =H, xX, (2.8)

Z. : Set of engine parameter measurements

X, : Set of engine module deviations

H, : Set of influence coefficients determining relationship between dependent and

independent parameters.

Where, H, is called the Influence Coefficient Matrix (ICM). In our study we would be

interested in obtaining X, , therefore, mathematically-

X, =H'xZ, (2.9)
The matrix H' which is inverse of the ICM is the Fault Coefficient Matrix(FCM).
Thus knowing the dependent parameters, calculating the ICM and hence the FCM, it is
possible to estimate magnitude, nature and location of the degradation. A schematic
diagram of GPA is given in Fig-2.3.
Where:

e Az is measurement deviation vector

e AX is component parameter deviation vector
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AF=%-%, = Q.11

e His the “Influence Coefficient Matrix” (ICM)

Coh(X®)  Oom(X) Oh(X)
ox, Ox, ox
5 oh(¥) oh(X)  oh(X)
B B T e
oh,(x) 0oh,(x)  0h,(X)
| Ox, Ox, x|,

By inverting the ICM we have made several assumptions regarding the relationship
between the dependent and independent parameters which carry with them certain

constraints. The following are assumed-

o A set of accurate measurement deltas are available , i.e. there exists a method to
faithfully reduce raw observed engine data to a measurement delta level;

e The faults coefficients are an accurate engine model descriptor; the faults
occurring in the engine are among those being sought;

e The fault coefficients are invertible (i.e. the changes in the unknown are
adequately manifested in the observations);

e The measurements are repeatable and free of noise;

The assumption that the relationship between the independent and the dependent
parameters is linear becomes a serious limitation when the degraded point shifts further
away from the original operating point (where the matrix was created). It was found that
when the deviation increases beyond 1% the linear GPA becomes unreliable (Gulati,

2002c). This led to the development of Non-Linear GPA. The solution to this problem
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is to run the linear GPA  iteratively by creating new ICMs and FCMs with the

degradation values obtained in the previous step, until the algorithm converges to a pre-

defined error bound.
KNOWN DEGRADATION

ENGINE
MODEL

A4

INFLUENCE
COEFFICIENT
MATRIX (ICM)

¢ INVERSE

ENGINE
MEASUREMENTS
FAULT
COEFFICIENT <
MATRIX (FCM)

l ENGINE

CHANGE IN
PERFORMANCE
PARAMETER

l

FAULTY
COMPONENT(s)
ISOLATION

Figure 2.3. Schematic diagram of GPA

2.5.2.2 Advantages and Limitations of GPA
GPA shows powerful diagnostics potential due to the following capabilities:
¢ Modular Approach: the technique isolates faults at component level by

identifying the variation in the corresponding performance parameters of the

component;

e Multiple faults capability: the technique is able to allow for detection of faults in

more than one component;
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» Fault Quantification: The technique is able to express the fault severity in terms
of percentage deviation from respective baseline values;

e Identification and use of appropriate measurement selections that are sensitive to
the desired faults;

» Selection of independent variables that represent the fault with least RMS:

Despite great deal of research on this subject, there exist certain fundamental limitations

to this method

e Non-Linearity: The generation of fault matrix linearises the relation between the
state variables or the independent variable with the dependent leading to
inaccuracies for large magnitudes of faults.

* The requirement of a large instrumentation suite for effective diagnosis is a
major hindrance in its application in real life situations. Additional sensors lead
to increased cost. Fewer sensor leads to the phenomenon of “smearing”.

* The scheme does not cater for sensor bias, which is a phenomenon not so

uncommon in practical application.

* Measurement noise: The diagnostic scheme does not have provision for taking
into account measurement noise. Gas turbines usually operate in harsh
environments leading to measurement non-repeatability, which in some cases

could be as large as the measurement deviation being sought.

To overcome the limitations of GPA, estimation techniques like Weighted Least
Square(WLS) analysis , Kalman Filters(KF) and its variants have been used. The
technique based on KF and WLS, which have been reported to be the predominant
technique adopted by major OEMs (Doel, 1994; Stamatis et al, 1992). With these
techniques remaining as the core of the diagnostics model, additional algorithms have
been incorporated for improved diagnostics capability. E.g Rolls Royce uses the

“Concentrator” method and GE uses the “Fault Logic”.

2.5.3 Kalman Filter for Gas Turbine diagnostics
The Kalman Filter (KF) is an optimal observer in a linear system having white
uncorrelated measurement/process noise. The filter has been formulated for both

continuous and discrete time systems. For simplicity only the discrete time formulation

-30-



Chapter-2: Gas Turbine Engine Fault Diagnostics- An Overview

1s considered. Since any practical application of Kalman filtering techniques will be
implemented on a digital computer, the discrete time formulation is particularly well
suited. A Kalman filter typically incorporates discrete — time measurement samples and

finds application as shown in figure 2.4

The main assumptions for a KF application, which are also applicable for gas turbine
diagnostics are:

(a) These are normally applied as linear models. Though there are means of extending
the linear concept to some non-linear applications.

(b) Noise is independent from one sampling time to the next.

(c) Noise is assumed to be Gaussian in terms of amplitude and it is assumed that at any
given point of time, the probability density of Gaussian noise amplitude takes on the

shape of a normal bell-shaped curve.

SYSTEM ERROR
SOURCES
CONTROLS > SYSTEM
OBSERVED
MEASUREMENT
MEASURING | KALMAN FILTER
DEVICES 1
MEASUREMENT ERROR OPTIMAL ESTIMATE
SOURCES OF SYSTEM STATE

Figure 2.4: A typical Kalman Filter Application (Gulati, 2002c)

The estimation technique described here is applied to a discrete process defined by the

following sets of equations :
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z, =H,x, +v, Measurement equation  (2.13)
x, =®,  +w,_, k=12 System equation (2.14)
Where,
A
e z, R : Measurement vector
e x eR" - State Vector

e H,eR"™x :Model Matrix
e v, eRY :Measurement noise, assumed to be Gaussian, white (i.e.

uncorrelated), zero mean with covariance matrix Ry

e @, eR™  :Transition matrix

N
e w, eR :Process noise, assumed to be Gaussian. white, zero mean, with

covariance matrix QO

Matrices H; and @, , measurement and process noise statistics are assumed to be known.

The following initial conditions are assumed-

E[x(0)]=z%, (2.15)

E[(x(0) = %) (x(0) = %)" ] = A, (2.16)

Where the operator E[.] is the mean value.

Another assumption is that process and measurement noises are uncorrelated

Elw,-v,1=0 foralliand; (2.17)

the Kalman filter produces a recursive estimation x of the state vector at time k based on
the current measurement vector z and the previous state vector estimation x;, This
feature can be exploited for real time application provided the above hypothesis are all
correct, the Kalman filter provides the minimum variance, unbiased and consistent

estimate of the state vector, given a set of measurement vectors.
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The estimate is minimum variance as it minimizes the following quantity:

Jp = E[% ()X, (+)] (2.18)

Where,
e X, isthe estimationerror: X, = x, —x, .
e (+) means that the quantity has been updated with the measurement vector z, .

* (-) means that the quantity has been evaluated just before the measurement.
An unbiased estimation is one whose expected value is the same as the quantity to

be evaluated

E[x,]1=x, (2.19)

A consistent estimate is one which converges to the true value of x as the number of the

measurement increases.

The following equations make up the Kalman filter (Gelb,1974):

X (=)=, X, (+) . State estimate extrapolation (2.20)
P(=)=®, B (+)D;_, +0O,_, : Error covariance extrapolation  (2.21)
() =x)+K(z, -H, - x,(-)) : State estimate update (2.22)
P(+)=(U-K,H)P(-) : Error covariance update (2.23)
K,=P(=)H!(H,P(-)H] +R)" : Kalman gain matrix (2.24)

As shown by equation (2.18) the KF minimizes a quadratic cost function step by step
i.e. after each measurement. It can be shown that if the system is linear as given by
equations (2.13) and (2.14), then minimization over the time steps is the same as the
minimization of the complete cost function evaluated over the whole set of
measurements.

It can be shown (Bryson and Ho,1975) that for a linear system describe by equations

(2.13) & (2.14) and subject to the above assumptions the solution provided by the
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Kalman filter is optimal with respect to every common criterion(minimum variance,

maximum likelihood , minimum error). Moreover the technique is recursive.

Though when used with linear GPA, Kalman filters improve the diagnostics accuracy,
but the issues of non-linearity has still not been addressed. Drawbacks in the application

of KF techniques to the linear GPA are (Zedda, 1999c¢):

(a) Prior knowledge tuning: the choice of the process noise covariance matrix is
often arbitrary. There usually exists no statistically significant population of faulty
engines to base the performance parameter’s standard deviations assigned on it.
Sensitivity studies can be helpful but the deviations of the state vector elements may be

strong.

(b) Smearing effect: often only a limited number of components and sensor are fault
affected, while the KF tends to smear the faults over a large number of engine’s

components and sensors.

(c) System model and divergence: the Kalman filter produces an optimal solution
provided the hypotheses about the system are correct. In the case of gas turbine
diagnostics, even though we might assume equation (2.13) to be sufficiently precise,
almost nothing is known about equation (2.14), which describes the temporal evolution
of the fault. As the method should be able to detect deterioration due to various kinds of
fault, both slowly varying (erosion, corrosion, fouling) and abruptly varying (FOD),
equation (2.14) is not available. Therefore, it should be somehow estimated and this can
impair the final diagnostics accuracy. In fact the use of technique to completely
estimate equation (2.14) introduce errors and as measurements are collected and used by
the algorithm the system learns the wrong state too well. The consequence is
divergence, i.e. the estimated solution becomes and more distant from the actual

solution.

(d) Non linearity and optimality: the errors due to approximations of non linear
systems with a linear one may not be negligible even if no estimation technique is
employed (Escher,1995a; Singh and Escher,1995b). Therefore a non linear estimation
technique seems more suitable. The application of a non-linear version of Kalman filter

though is no easy task. Many problems are associated with the use of the common
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Extended Kalman Filter(EKF) and Iterated Extended Kalman Filter(IEKF), as pointed
out by Jazwinski(1970) and Haupt et al (1995). The main drawbacks are that the

estimates are often biased and suboptimal (i.e. the cost function is not minimised).

2.5.4 Weighted Least Squares(WLS) Method

A GPA solution from WLS perspective is obtained from a linear function of the

differences between the measurements and their predicted values. The gain matrix used

in computing the solution may be obtained from the ICM and assumed variance from

state variables and measurement errors. Urban (1980) and Volponi (1982) showed that

WLS techniques could be used to reduce the sensitivity to measurement error.

Following their lead, modern test cell and on-wing gas path programs use the WLS or

closely related algorithm. Based on the principle of WLS, General Electric uses a

program called TEMPER, a gas path analysis tool for commercial turbine engine

module performance estimation. An assessment of the technique is provided by Doel

(1994a, 1994b).To evaluate engine component performance correctly, sensor error must

be considered in the analysis. WLS facilitates the determination of engine state in the

presence of sensor error. WLS is based on a model of the measurement process given

by-

where:

z 1s the measurement vector such as spool speed, pressures and temperatures etc.

x 1s the state vector of performance parameters such as component efficiencies

and capacities etc.

h(x) 1s a p x n matrix representing the non-linear effects of sate variable upon

measurements.

y is a vector of the noise and bias in measurements.

For the WLS analysis to succeed, it must be possible to determine the state vector x,

from the available measurements. This require the dimension of the measurement vector
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to be equal or exceed that of the state vector. Further, it must be possible to choose a
subset of z that yields a unique solution for x, i.e. the engine must be observable from
the available measurements. To avoid difficulties associated with nonlinear
optimization, the non-linear model, /(x), is replaced by a linear approximation, Hx. The

resulting approximation to equation 2.25 is-

z=H(x)+y (2.26)

the probability density function for the likelihood of z being obtained from an initial
state vector x, whose designation would be p(x/z)where p(x/z) is a decreasing

monotonic function of the quadratic form J, where:
J =12 M x4+ (2 - Hx) R (2 - H)} 2.27)

Solving by minimizing J with respect to x will give the state vector estimate with the

highest conditional probability. The optimal solution x, is:

x, =(M " H'RH) H'Rz (2.28)
The true measurements z, for the engine state x, is:
z, = Hux, (2.29)

Using these true values the estimated measurement error can also be computed as

follows:
v, =[1_H(M-' cH R H) H R (2.30)
And the corresponding solution residual, J, is obtained by using x, in equation 2.27.

The algorithm is linear in z and therefore the solution error is proportional to the
measurement deviation. In case the turbine efficiency is doubled, the solution error
would also be doubled, as the percent error remains fixed. Hence, the weighted least-
squares algorithm provides best results when measurement deviations are small. In
order to cater to this limitation of the WLS algorithm, GE has included something-

called fault logic in their program TEMPER. The fault-logic is used to search for large
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deviations in component performance, or for large measurement errors, when the

solution residual is large. The solution residual .J, provides the mechanism for

recognizing that a specific case is far from nominal conditions. TEMPER assumes that

J, follows the Chi-squared distribution and the fault logic in invoked whenever the

residual exceeds the 95 percent limit.

Thus the salient features of the GE approach according to Doel (1994a & 1994b) can be

summarized as follows-

The technique is based on the weighted least squares algorithm for gas path analysis

as described earlier on in this section.

Weighted least square algorithm provide better result for small deviations, and in
order to address this problem a feature called “fault logic” is incorporated to

determine large deviations.

The technique cannot solve the problem of smearing which is common to
conventiona] GPA methods. Smearing is basically underestimation of the actual
fault and attribution of the remainder fault to other engine components and to

measurement error.

The algorithm is linear for the measurement vector, whereas the gas turbine

performance is highly non-linear.

The approach 1s able to reduce problems associated with measurement noise but
does not address problems such as measurement bias. It is felt at GE that there are
no algorithmic ways to eliminate problem of measurement bias and this problem can
only be solved by introducing more sensors, which has its own penalties. The other

option is to improve sensor performance.

A problem is the input requirements for the algorithm. Comprehensive data analysis
and careful judgment is required for the statistical and baseline inputs as accurate
baselines are critical for augmentation strategies for implementation of the fault

logic.

There are a number of potential problems such as combustor performance, HP

turbine performance, turbine cooling etc. not observable by the technique.
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e TEMPER does not provide any aid in interpreting the results and there have been a
number of cases where it has identified the same component repeatedly even though

1t has been overhauled.

The reason why KF and WLS based estimation technique have been applied to linear

GPA is that they seem to show the following advantages (Zedda, 1999¢):
(a) Optimality- in both the techniques, a cost function is minimized;
(b) Recursivity: memory and computing requirements are limited;

(¢) Prior knowledge — knowledge about the statistics of engine component deterioration

can be introduced through the initial values of the state vector and its covariance matrix;

(d) Measurement noise- the actual measurement noise can be assumed to be white and

Gaussian, as the Kalman filters require;

(e) Sensor errors: they can be estimated through augmentation of the state vector to

include the unknown sensor biases.

2.5.5 Non-Linear Model-Based Diagnostics Methods

This type of diagnostic methods is based on accurate modelling of non-linear steady
state gas turbine performance. Gas turbine modelling techniques have been reviewed by
many researchers, such as Bird and Shwartz (1994) and Sanghi et al. (2000). At steady
state conditions, the dependent and independent parameters of gas turbines can be

expressed with a non-linear relationship-

Z=F(X)+7 (2.31)
The idea of the non-linear model-based methods is shown in Figure 2.4. The real engine
component parameter vector x  determines engine performance represented by the

measurement vector Z With an initial guessed parameter vector X, the engine

model provides a predicted performance measurement vectorz. An optimization

approach is applied to minimize an objective function as follows (Li, 2002):

Objective Function = Z¢(”E, - ,9,

) (2.32)
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Which is function of the difference ¢ between the real measurement vector z and the
predicted measurement vector z. A minimisation of the objective function is carried

out iteratively until the best predicted engine component parameter vector ¥ for real ¥

1s obtained.

N

N>
L\
L/

MINIMISATION OF
OBJECTIVE

Figure 2.5: Non-Linear Engine Fault Diagnostic Model (Li, 2002)

An iterative non-linear GPA approach based on Urban’s method (Urban, 1967, 1972,
1974) for non-linear fault diagnostics was explored by House (1992) for a single shaft
gas turbine for helicopters, further development of the non-linear method was done by
Escher (1995a, 1995b) with a Newton-Raphson technique and a computer code,
PYTHIA, was developed. The Non Linear GPA is described in the following section:

2.5.6 Non-Linear Gas Path Analysis (NLGPA)

Linear GPA models that are available have severe limitations and it has therefore been
recognized that there is a powerful case for improving the accuracy of the GPA systems
and hence the requirement of Non-linear GPA. The theoretical relationship between M
independent pararﬁeters x and N dependent parameters y can be expressed in

mathematical terms as follows:
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Where vector x contains elements x; (i = 1...M), vector y contains elements Y=
/,..N), and vector function F contains element functions Fi (x),...xm). In the
neighbourhood of x, each of the functions F, can be expanded in a Taylor series. The
linear equations can be obtained by neglecting the 2" and Higher Order Terms(HOT).
This linear GPA is then used successively and an exact solution is obtained by the
Newton-Raphson technique. A schematic diagram of the non linear GPA process is

shown in figure 2.6.

MEASUREMENTS
FROM ENGINE

1 PERFORMANCE

PARAMETERS
INFLUENCE | INVERSE |  FAULT Z X
»| COEFFICIENT »| COEFFICIENT R R OUTPUT

MATRIX MATRIX ERROR
(IcM) (FCM)

ENGINE ___NO CONVERGENCE

PERFORMANCE [¢*
MODEL

Figure 2.6: A schematic diagram of non-linear GPA

Essentially, in this technique an ICM is generated taking into account a small
deterioration in the engine component performance. The ICM is then inverted to get the
FCM. The FCM is then multiplied with the vector of engine measurements (obtained
from a deteriorated engine). This gives a vector of change in engine component
performance parameters. From the results obtained, a new ICM is generated and this
process is continued till the solution converges to a predefined limit. Figure 2.7 clearly
shows the advantage of using Non-linear GPA over linear, where one finds that the

exact solution is much higher than the solution obtained by Linear GPA.
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Figure 2.7: Comparison of Linear vs. Non Linear GPA (Escher, 1995)

2.5.7 Non Linear Kalman Filters

Some of the drawbacks of Kalman filters have been already discussed earlier in the
chapter. The issue of non linearity will have to be further analyzed. It is worth pointing
out that when the system is characterized by non-linearity, the performance of the
possible estimation techniques should be tested through simulation, as non linear
est