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An Empirical Investigation of the  

Determinants of Asset Return Comovements 

 

ABSTRACT 

Understanding financial asset return correlation is a key facet in asset allocation and 

investor’s portfolio optimization strategy. For the last decades, several studies have 

investigated this relationship between stock and bond returns. But, fewer studies have 

dealt with multi-asset return dynamics. While initial literature attempted to understand 

the fundamental pattern of comovements, later studies model the economic state variables 

influencing such time-varying comovements of primarily stock and bond returns. 

Research widely acknowledges that return distributions of financial assets are non-

normal. When the joint distributions of the asset returns follow a non-elliptical structure, 

linear correlation fails to provide sufficient information of their dependence structure. In 

particular two issues arise from this existing empirical evidence. The first is to propose a 

more reliable alternative density specification for a higher-dimensional case. The second 

is to formulate a measure of the variables’ dependence structure which is more instructive 

than linear correlation.  

In this work I use a time-varying conditional multivariate elliptical and non-elliptical 

copula to examine the return comovements of three different asset classes: financial 

assets, commodities and real estate in the US market. I establish the following stylized 

facts about asset return comovements. First, the static measures of asset return 

comovements overestimate the asset return comovements in the economic expansion 

phase, while underestimating it in the periods of economic contraction. Second, Student 

t-copulas outperform both elliptical and non-elliptical copula models, thus confirming the 
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dominance of Student t-distribution. Third, findings show a significant increase in asset 

return comovements post August 2007 subprime crisis. 

Next, the thesis examines the determinants of time varying dependence structure of the 

return comovements of three different asset classes using Markov Switching Stochastic 

Volatility (MSSV) model. The dependence structures are estimated using conditional 

Student-t copula. This study provides a number of significant findings. First, I confirm 

that the dependence structures of asset return comovements of all asset pairs show 

significant regime-switching behaviour both in terms of statistical and economic 

significance. Second, I find that amongst the macro-economic factors, interest rate and 

inflation have significant effect on the return comovements during the economic 

contraction regime, whilst risk aversion plays a significant role in the economic expansion 

regime. On the other hand, the non-macro factors i.e., output uncertainty, bond illiquidity 

and depth of recession contribute significantly in explaining the return comovements in 

both economic contraction and expansion regimes. Third, the findings suggest that the 

return comovements of the real estate-oil pair are influenced by only macroeconomic 

factors. Finally, the model fit worsens considerably when the non-macro factors are 

dropped for the equity-bond and equity-oil pairs.  

Using multivariate time-varying conditional copula, I analyze the time variation of the 

joint dependence structure of the non-linear asset returns. This research is important 

because it presents the first empirical evidence examining the factors that drive the joint 

return distribution of different asset classes. I find that non-macro variables have 

significant influence on the return comovements. The findings show that among the non-

macroeconomic variables, uncertainty and illiquid variables play a dominant role in both 

contractionary and expansionary phases of the economy. Further, I observe that among 
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the macro-economic variables, inflation and risk aversion positively impact the return 

comovements. Finally, my examination of the factor contributions reveals that the model 

fit worsens considerably when the non-macro factors are dropped from the estimation 

model. 

This work also studies the economic sources of extreme stock return comovements of the 

emerging Indian equity market and the developed equity markets of US, UK, Germany, 

France, and Canada. The findings show that the probability of extreme comovements in 

the economic contraction regime is relatively higher than in the economic expansion 

regime. Further, I show that increase in stock market volatility in the developed markets 

during the economic contraction phase does not adversely impact the Indian stock market 

returns. Overall, I show that 3-month Treasury bill rate of developed economies, inflation 

uncertainty and dividend yields are the main drivers of the asymmetric return 

comovements. 

An additional contribution of this thesis relates to the practical applications of this 

research study. The findings show that MSSV framework enhances the flexibility in the 

model accommodating the persistence of volatility shocks. Moreover, the Markov 

switching model is able to capture the ‘pressure smoothening’ effects of those shocks that 

are not persistent and are followed by low volatility regimes. Overall, the findings indicate 

that the dynamic strategy employed by the developed regime switching framework 

outperforms the multivariate conditional covariance strategy. This, therefore, justifies that 

understanding the dynamics and the influence of macroeconomic and non-

macroeconomic factors on asset return comovements enhances asset allocation decisions. 

Keywords: Markov Switching stochastic volatility model, dependence structure, Student-

t copula, asset return comovements, emerging Indian equity market  
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  CHAPTER 1 : Introduction  

Introduction 

 

In the wake of the economic downturn during 2007-08, returns of different asset classes 

have shown evidence of strong linkages. Declining house prices in the US led to the 

collapse of various financial institutions, triggering a steep decline in equity markets, 

commodity prices and real estate values globally. The oil prices also witnessed high 

volatility with prices reaching US$147 per barrel in July 2008 and dropping below US$60 

per barrel within the next four months (Chan et al., 2011). In addition, the stimulated 

response by the Federal Reserve led to extremely low interest rates in many economies, 

driving up the demand for government bonds and causing a steep decline in yields. On 

the other hand, corporate bond spreads widened appreciably whilst the gold prices 

reached new highs.  

These developments provide anecdotal evidence of increased linkages between financial, 

commodities and real estate markets, triggering a renewed interest amongst academics 

and practitioners in examining asset allocation strategies for effective diversification of 

risk during turbulent economic conditions. However, asset allocation strategies can be 

properly executed only if the nature of return comovements of various asset returns is 

well understood. Guidolin and Timmermann (2007) show that since asset return 

comovements are time varying and dynamic in nature, investors require information 

about conditional distribution of the asset returns for implementing dynamic asset 

allocation strategies.  
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It is well known that asset return comovements are not time-invariant but tend to be rather 

dynamic in nature. Investors, therefore, require information about conditional distribution 

of the asset returns to implement dynamic asset allocation strategies. Information 

regarding whether the returns of two or more assets are positively related in certain 

circumstances but negatively related in others may have key implications in portfolio 

diversification and asset allocation strategies. Thus, understanding asset return 

correlation, i.e. dependence structure, is a key aspect of asset allocation and portfolio 

optimization strategy. For the last decade, several studies have examined the stock and 

bond return comovements (Wainscott, 1990; Shiller and Beltratti, 1992; Connolly et al., 

2007; Baele et al., 2010). But, fewer studies have dealt with multi-asset return dynamics. 

In this work I refer to multi-assets as a combination of three or more assets. It is fair to 

say that investors no longer invest in only conventional financial assets such as equities 

and bonds but in a wide range of alternative instruments including commodities and real 

estate. Thus, examining multi-asset asset dependence structures has important 

implications for asset management. Furthermore, extant literature primarily uses linear 

dependence structure to explore the return dynamics of the assets. While the linear 

dependence structure is widely used, this measure of association is too simple to 

accurately characterize the non-normal distribution of the financial returns. Also, under 

non-normal conditions, it becomes very difficult to characterize the joint distribution of 

multi-asset returns (Jondeau and Rockinger, 2006). Under these circumstances, the 

copula functions approach may be an effective alternative to overcome the limitations of 

a linear dependence structure measure such as the correlation coefficient. 

The copula method has significant advantages over other parametric methods in capturing 

the uncertainty associated with the dependence pattern of financial return series. First, the 
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copula functions approach can be efficiently employed to examine dependence structure 

beyond linear measure of association. The copula models also provide a higher degree of 

flexibility, which allows capturing of the dynamic non-linear characteristics of multi-

asset return dependence structure. Second, unlike the traditional parametric approach, 

copula method does not require any probabilistic normal distribution assumptions. Third, 

the copula approach preserves the dependence structure during the non-linear 

transformation of the random variables. In other words, the marginal and the joint 

distribution models can be estimated separately without loss of information. Fourth, 

copulas are best suited to examine the dynamic nature of multivariate random variables. 

Effectively, copula provides a more efficient method of modelling the joint distribution 

of financial assets under non-linear dynamic environment. 

Further, asset return comovements change due to changes in economic conditions and/or 

changes in non-macroeconomic factors. For example, Piplack and Straetmans (2010) 

show that asset return comovements change during periods of market stress. Thus, in 

constructing an optimal portfolio, it is critical to identify the economic circumstances and 

understand the impact of macroeconomic and non-macroeconomic factors on asset return 

comovements. A model identifying variations in the asset market linkages and 

decomposing the effects of macroeconomic and non-macro factors influencing the 

dependence structure of different asset return comovements is critical for accurately 

estimating the portfolio risk. Further, identifying the determinants of asset return 

comovements across different asset classes has significant implications for policymakers 

and financial regulators. If different assets show positive comovements especially during 

periods of economic contraction, then an understanding of key determinants of their 

dependence structures will aid in implementation of appropriate interventions by the 
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policy makers. There is plenty of literature on stock-bond return comovement; however, 

research on linkages amongst other asset classes is relatively scarce. Despite the 

significant importance of understanding the determinants of the linkages between various 

asset return comovements, relatively little work has been done in this area. 

Against this backdrop, the key objectives of my research are: i) to examine the bivariate 

comovement of the asset return dynamics in the US market, ii) to statistically test the 

performance of elliptical and non-elliptical copula models for both the constant and the 

dynamic dependence structures, iii) to analyse if the dependence structures exhibit 

evidence of regime switching behaviour, iv) to identify macro and non-macro factors and 

examine their impact on the dependence structure of the asset return comovements, v) to 

investigate whether the impact of these factors on dependence structures is the same in 

different regimes and finally vi) to extend the work in identifying various channels of 

equity market linkages between emerging Indian equity market and the developed 

economies. 

 

1.1 The distinct features of the work 

This empirical work has a number of distinct features. In this study I adopt an alternative 

approach to overcome the limitations of simple linear correlations to examine the 

dependence structure of the multi-asset return comovements. The proposed approach 

models the dependence structure of the returns across three different asset classes using 

dynamic conditional copula models. In this research, all the five asset returns follow a 

non-normal distribution. I analyze and identity the determinants of both the general and 

the tail dependence structures of the bivariate asset pairs and the joint comovement of the 
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multi-asset returns. My empirical findings contribute to the literature along several 

dimensions.  

1. The dataset not only includes conventional financial assets, i.e. equities and bonds, 

but also commodities and real estate. Further, the period of analysis is from 1987 to 

2012 (1st August 1987 to 1st September 2012), which allows me to capture the effects 

of economic downturns caused by several financial crises on the behaviour of 

different asset classes. 

2. I examine the dynamics of the general and the tail dependence structures for the ten 

bivariate combinations of asset pairs and extend the modeling of dependence structure 

to capture the time-varying evolutionary effect of the return comovements especially 

during the crisis period. Further, I examine the joint dependence structure by 

combining all the asset classes. With the ever rising uncertainty in the financial 

markets, investors do not solely invest in only one or two assets but in a portfolio of 

assets. Therefore, this examination of the joint dependence structure of the multi-asset 

return comovement yields important information for portfolio diversification and 

asset allocation. To the best of my knowledge this is the first study, which attempts 

to examine such an issue. 

3. This study compares and statistically tests the performance of various elliptical and 

non-elliptical copula models. This enables proper selection of a superior model to 

understand more complex return dynamics, especially during periods of financial 

turbulences. 
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4. I consider a wide range of macroeconomic factors and non-macroeconomic factors1 

to explore the determinants of the dynamics of the dependence structures for the 11 

combinations of asset pairs. The state variables include interest rates, output gap and 

inflation and also risk aversion measure based on Campbell and Cochrane’s (1995) 

model. I also consider macroeconomic uncertainty measures to accommodate for 

economic uncertainties as shown by David (2008) and Bekaert et al. (2009a). 

Additionally, the research includes other non-macroeconmic variables such as 

liquidity, variance premium and depth of recession. It is, to the best of my knowledge, 

the first study that comprehensively examines the macroeconomic and non-

macroeconomic determinants of the dependence structure for three different asset 

classes. 

5. In examining the dynamics of the state variables using Markov Switching Stochastic 

Volatility (MSSV) model, I impose structural restrictions inspired by New-Keynesian 

dynamics2. My regime-switching model accommodates for heteroskedastic shocks in 

the state variables. I, further, decompose the performance of the model to examine the 

impact of macroeconomic and the non-macroeconomic factors. This provides useful 

insights in identifying the key determinants of multi-asset return comovements. 

                                            

1 The variables that affect the whole economy of a nation rather than a few selected investors or individuals 

are considered as macroeconomic variables. The macroeconomic variables considered in this study feature 

in the standard macroeconomic models. The variables include, output gap, inflation and short rate. The 

factors other than the standard/pure macroeconomic variables are termed/considered as non-

macroeconomic variables in this study. These variables include economic risk premium proxies (such as 

economic uncertainty measures and non-liner component of risk aversion factor) and stock and bond market 

illiquidity variables. 

2 The New-Keynesian dynamics links the New Classical macroeconomics with Keynesian school of 

thoughts. The two key assumptions of the New Keynesian models are i) markets react to rational 

expectations, ii) there exists imperfect competition which means that prices and wages do not adjust 

instantaneously to changes in the economy. As a consequence, the New-Keynesian dynamics thrives on 

non-neutrality of monetary policy implying optimal behaviour of microeconomic agents. 
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6. This study also examines the forecasting performance and the economic value of 

understanding asset return comovements. Specifically, I present the forecasting 

analysis of the Markov switching stochastic volatility models that capture the 

dynamic behaviour of the asset return comovements. Further, I check whether regime 

switching forecast provides more accurate results than a single regime stochastic 

volatility model. This adds to the robustness of the application of the developed 

regime switching models. 

7. India’s well established trade links with the world is next only to China. Thus, there 

is little doubt that amongst the emerging economies, India is going to play an 

increasingly important role in shaping the world’s economy in coming years. An 

understanding of the causes of extreme comovements will therefore provide greater 

insights to both Indian policy makers and international investors. This study aims to 

achieve this by investigating the economic sources of stock return comovements of 

the emerging Indian equity market and the developed equity markets of US, UK, 

Germany, France, and Canada. 

 

1.2 The key findings of the work 

This work reports several key findings.  

1. The time-varying copula models provide superior dependence structure measures 

compared to the static copula models. This illustrates that asset allocation based on 

simple linear correlation of asset returns will result in underperforming portfolios.  

2. The findings show that lower tail dependence is much higher than upper tail 

dependence. This suggests that there is high probability of extreme comovements in 
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economic contractionary period. The higher dependence measure implies that some 

of the diversification benefits are lost during the contraction periods, which are 

characterized by increased risk.  

3. The bivariate dependence structures: The findings provide significant evidence of 

regime switching behavior. The dependence structures tend to rise faster than they 

fall, which corroborates the anecdotal evidence of contagion in financial markets 

across different asset classes. The results show that during the economic contraction 

regime, the non-macro factors play a significant role in defining the dependence 

structure, whereas during the economic expansion regime the macroeconomic factors 

seem to have a greater impact on the dependence structures. The significant impact 

of the liquidity factors provide evidence for “flight-to-liquidity” phenomenon as 

reported in the previous literature (Connolly et al., 2005). This indicates that when 

risk aversion is high during periods of economic contraction, interest rates may be 

low, increasing the bond prices, but stocks which are positively correlated with 

interest rate shocks during the times of economic contraction may witness fall in 

prices. Further, the significant influence of the economic uncertainty measures 

indicates that higher the uncertainty about future economic state variables, the more 

swiftly the investors are likely to react to news. This in turn affects both the variances 

and the covariance of the asset returns. This study therefore makes a significant 

contribution to the literature on the learning models as proposed by Veronesi (1999) 

and David and Veronesi (2008). 

4. Joint Dependence Structure (JDS): The findings show significant regime-switching 

behaviour both in terms of statistical and economic significance. The two regimes 

identified represent economic expansion and economic contraction phases. The 
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results show that among the macroeconomic variables, inflation plays a central role 

(positive influence) during both the phases of the economy. Also, risk aversion is 

positively significant during the economic contraction phase, whereas risk free rate 

negatively affects the JDS during the economic expansion period. Among the non-

macroeconomic variables, uncertainty variable and bond illiquid play a dominant role 

in both the phases of the economy. The findings show that output uncertainty and 

bond illiquidity have the highest coefficient values. The significant impact of the 

liquidity factor provides evidence for “flight-to-liquidity” phenomenon. While more 

research is accounted for in the field of “flight-to-liquidity” and its interaction with 

liquidity, some previous studies give credence to these findings. For instance, Li 

(2007) shows that systematic liquidity risk is priced in bond markets. However, they 

do not conduct study for other financial assets. Further, examining the factor 

contributions, the study finds that the model fit worsens considerably when the non-

macro factors are dropped. Thus, it is fair to say that the non-macroeconomic factors 

play a vital role in explaining the variations in the JDS. The results are also conclusive 

from the quartile regressions and other robust tests. 

5. The study shows that JDS fails to show any significant extreme comovements during 

either phases of the economy. This reinstates the diversification benefits of investing 

in assets other than conventional stocks and bonds.  However, the results also show 

an increase in JDS since the August 2007 subprime crisis. An important implication 

of high dependence measure is that otherwise-diversified portfolios, which combine 

safe assets such as bonds and gold, witness loss in diversification benefits during 

periods of economic decline.  
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6. Emerging Indian equity market and developed economies: Consistent with existing 

literature (Yilmaz, 2010; Kenourgios et al., 2011) the findings show that probability 

of extreme comovements in the economic contraction regime is relatively higher. The 

study finds that both Indian and international inflation uncertainty are likely to 

adversely affect international portfolio’s risk diversification potential since they 

positively impact the return comovements. The results show that an increase in the 

international interest rates has a positive impact on the return comovements. This 

suggests that both international and Indian equity markets are adversely affected by 

the hike in international interest rates. However, while an increase in the Indian 

interest rates negatively affects its stock market, it has no impact on the international 

equity markets. The results also indicate that rise in stock market volatility in the 

developed markets during the economic contraction phase does not adversely impact 

the Indian stock market returns. The results indicate that Indian dividend yield (DY) 

and price-to-earnings (PE) ratios seem to have a greater positive impact on return 

comovements during the economic expansion phase as compared to the economic 

contraction phase. However an increase in international dividend yield during the 

economic contraction phase increases the return comovements suggesting that it fails 

to uplift the investors’ sentiments in both international and Indian equity markets. 

7. Contributions to practice: The findings show that developed Markov switching 

framework enhances the flexibility in the model accommodating the persistence of 

volatility shocks. For instance, if shocks are more persistent in periods of economic 

contraction than in periods of economic recovery, this can be captured by the specific 

regime parameters. Moreover, the Markov switching model is also able to capture the 

‘pressure smoothening’ effects of those shocks that are not persistent and are followed 
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by low volatility regimes. The results also indicate that the dynamic strategy which 

considers the factors that drive the return comovements outperforms the portfolio 

returns constructed based on multivariate conditional covariance strategy. 

The rest of the thesis is organized as follows: Chapter 2 reviews the literature on asset 

market linkages. Chapter 3 provides the research question examined in this work. Chapter 

4 discusses the proposed approach to model the joint dependence structure of the multi-

asset returns and develops the dependence structure models. Chapter 5 provides a 

description of the data used and discusses the empirical findings of the bivariate and joint 

dependence structure. Chapter 6 discusses the methodology used to model the dynamics 

of the dependence structure models and provides a description of the macro and non-

macroeconomic variables used in the study. Chapter 7 discusses the empirical findings of 

the determinants of the bivariate dependence structures. Chapter 8 discusses the empirical 

findings of the determinants of the joint dependence structure and examines the practical 

applications of the empirical models developed. Chapter 9 examine the equity market 

linkages between emerging Indian and developed economies and finally Chapter 10 

concludes the thesis work. 

. 
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   CHAPTER 2 : Literature Review 

Literature Review 

2.1 Introduction 

Following the financial crisis of 2007, academics as well as practitioners have been keen 

to understand the behaviour of financial assets in turbulent economic conditions. Asset 

allocation has attracted the attention of investors and researchers in the domain of 

portfolio return prediction and forecasting. The key requirements for understanding the 

approach to asset allocation are return, risk and the correlation of the asset classes. Ever 

since the seminal work of Markowitz (1952) asset correlation has been the prime focus 

of portfolio management.  

Efficient pricing suggests that any news about future cash flows and the required rate of 

returns is reflected on security prices at once. This adds to the challenges faced by 

portfolio risk management professionals and long-term investment holders. Engle (2004) 

shows that information arrives in huddles, which leads to clusters in pricing volatility 

affecting different financial assets differently. For instance, negative news about the 

economic cycle may impact equity prices adversely but will have an insignificant effect 

on the returns of real estate investment companies. This is because the cash flows of real 

estate investments come from leases with long term maturity and have fixed terms. Thus, 

differential news impacts drive the return correlation of different asset classes not to be 

time-invariant. Consequently, correlation of assets is decisive for risk management and 

control. 

As such, one key follow up question that arises is whether investors should include all 

possible financial assets in their portfolio to gain maximum diversification benefits. 
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Given that these multi-asset portfolios act in different ways to hedge against various risks 

associated with the economic conditions, the primary issue is to realize the return co-

movements of these various financial instruments.  

Against this backdrop, the aim of this chapter is threefold. First, it provides a sound 

literature review that is central to the research issue. It forms the foundation for 

developing an informed conceptual model that will enable to build on and contribute to 

existing knowledge in the relevant fields. Second, the review of the existing theoretical 

and empirical knowledge reveals potential research gaps for further investigation. This 

leads to the advancement of the research questions. Third, it informs the theoretical 

foundation and methodological approaches which will be subsequently used in the 

following chapters.  

In addition to providing a sound literature review, my approach in examining the extant 

literature has two key distinctive features. First, I carry out an empirical analysis on the 

conventional financial assets, i.e. stocks and bonds, to illustrate the distinctive aspects of 

the time-varying phenomena. Second, the review provides four boundaries that inform 

the empirical work necessary for further enquiry in the relevant field of multi-asset return 

co-movements. 

 

2.2 Asset Return Comovements 

The extant literature examines the relationship of various financial in small subsets. Some 

authors examine the stock and bond return relationship, while others investigate the 

relationship between equity markets and certain commodities or real estate. None of the 
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existing studies examine the determinants of the comovements of a range of financial, 

commodity and real estate assets that we study in this paper. 

The literature on the determinants of the asset market linkages focuses on different pairs 

of financial assets. For example, in one of the earlier studies Hamilton (1983) show that 

an increase in oil prices negatively affects corporate expenses causing future stock returns 

to increase.   In other words, the study reports that increase in oil prices has a negative 

impact on the expected stock returns, i.e. on the equity market. In more recent studies, 

Driesprong et al. (2008) and Jones and Kaul (2012) examine the relationship between oil 

price and stock return co-movements. Jones and Kaul (2012) explore this relationship for 

U.S., U.K., Canada, and Japan. They conclude that only for U.S. and Canada, the global 

oil shocks significantly influence the equity prices. On the other hand, Driesprong et al. 

(2008) show that oil price movements significantly predict equity returns in both 

developed and emerging economies. Their findings also demonstrate that time-varying 

risk premia fail to explain the predictive phenomenon because oil price movements 

significantly affect excess negative returns. While these studies try to establish the link 

between oil shocks and stock returns, they do not provide insights on the determinants of 

the return comovements of oil and stock returns. In other words, the impacts of macro 

and non-macroeconomic variables remain unexplained and unexamined. 

Interestingly, despite the importance of gold as a hedge and/or a safe haven, studies 

investigating the dependence structure of gold returns and other assets are rare. Amongst 

them, the prominent studies by Tully and Lucey (2007) and Batten and Lucey (2009) 

model the volatility of gold futures market, while Baur (2012) examine the asymmetric 

nature of gold volatility. These studies analyze some specific the volatility characteristics 

of gold, but do not focus on examining the dependence structure, i.e. return comovements, 
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of gold returns with other assets. Far fewer studies examine the relationship between gold 

and other financial assets. Exceptions include Baur and Lucey (2010) and Baur and 

McDermott (2010). They demonstrate that gold acts as a safe-haven investment in volatile 

market conditions. Yet, in extreme market conditions Treasury bond returns and not gold 

are negatively correlated to stock returns (Piplack and Straetmans, 2010). Fewer studies 

examine the correlation between gold and other asset returns. Cashin et al. (2002) show 

that there exists significant correlation between oil and gold for the period 1960 to 1985. 

Pindyck and Rotemberg (1990) confirm similar findings for oil and gold price levels. 

Šimáková (2011) show that there exists a long term relationship between gold and oil 

prices. However, research examining the relationship between gold and other asset 

returns through the common factors is far less common. Most of these studies exhibit the 

link between gold and oil prices through inflation channel. The studies empirically show 

that when inflation rises, the price of gold as a good also rises (Hooker, 2002; Hunt, 2006). 

Furlong et al. (1996) find that rise in oil prices increases price of other assets. Most 

interestingly, none of these existing studies analyse the extreme comovements of gold 

asset returns. Therefore, a model identifying the variations in the asset market linkages 

between gold and other financial assets and the effects of macroeconomic and non-macro 

factors influencing the dependence structures of the return comovements is critical for 

examining the benefits and portfolio diversification. For instance, if market linkages 

between gold and other financial assets increases in times of economic crisis, then the 

effectiveness of gold as safe haven may be compromised. Alternatively, if the dependence 

decreases in periods of economic contraction, the effectiveness of investing in gold is 

enhanced. It is thus essential to examine the dependence structure of gold returns and 
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examine the economic sources that significantly influence the market linkages during 

extremes. 

Concerning real-estate, the relationship between real estate and stock market is mixed. 

On one hand studies show that the in US the real estate market is segmented from the 

stock market due to eternal barriers such as information quality and cost of real estate. 

This leads to the findings that real estate and stock market returns are not statistically 

significant (Liu et al., 1990; Quan and Titman, 1999). In contrary, Peterson and Hsieh 

(1997) show that equity and real estate risk premiums are significantly related to the three 

factor Fama-French model, while mortgaged real estate risk premiums are associated with 

bond factors. Further, Ling and Naranjo (1999) use a multi-factor asset pricing model and 

confirm that the real estate securities market is integrated with U.S. stock markets and 

their linkage significantly increase during 1990s. But in a more recent work, Downs and 

Patterson (2005) show that real estate returns cannot be fully explained by stock and bond 

returns. However, it is worth noting that none of these studies try to examine the 

determinants of the return comovements of real estate and other assets. Primarily, the 

existing studies examine whether asset returns of either stocks or bonds have an influence 

over the real estate returns. To emphasize, previous studies do not investigate what we 

achieve in this work.  

Alternatively, authors have used the concept of cointegration to examine long-run 

relationship between real estate and capital market prices. Glascock et al. (2000) show 

evidence of bivariate cointegration between real estate security and S&P 500 index for 

the period 1992 to 1996. But, the relationship fails to be statistically significant for later 

years 1972 to 1996. During the period 1992-1996, the findings also show significant 

cointegration between real estate security and bond market. The study reveals decreasing 
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diversification benefits of real estate securities and equity investors after 1992. In 

contrast, Chaudhry et al. (1999) show multivariate cointegration between the real estate 

market, the equity market, the bond market and the Treasury bills. Allowing structural 

breaks in cointegration tests, Wilson et al. (1998) show that U.S., U.K. and Australian 

real estate and stock markets are not cointegrated. Employing fractional cointegration 

tests, Okunev and Wilson (1997) show that there exists non-linear relationship between 

real estate and stock markets. Still, the results provide no significant evidence for a long-

term relationship using conventional tests. In a similar vein, Liow and Yang (2005) 

provide evidence for Japan, Hong Kong, Singapore and Malaysia. They show the 

existence of short-term dynamics and long-term co-movement between the equity market 

and real estate securities. 

Authors have used other time-series techniques to examine the time-varying relationship 

between real estate and general financial markets. Conducting structural break tests, 

Kallberg et al. (2002) report return and volatility regime shifts in real estate and equity 

market for eight Asian countries. Cotter and Stevenson (2006) employ a bivariate 

GARCH model to conclude that real estate and stock return correlation increased during 

the period 1999-2005. Huang and Zhong (2011) employ a multivariate GARCH 

technique to examine the daily conditional correlation between real estate security and 

the U.S. stock market. They claim that the correlation follows a positive trend for the 

period 1999 to 2005. Using a similar approach, Case et al. (2012) examine the monthly 

conditional relationship between real estate security and the U.S. equity market for the 

period 1972 to 2008. They explore the implications for portfolio diversification.  Yet, 

none of the studies aim to model the joint distribution of multi-asset returns, allowing the 

distribution to be dynamic over states or regimes. The only studies which explores in 
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similar lines as this work does are by Chan et al. (2011) and Clayton and Mackinnon 

(2003). The former use a Markov regime switching model and report contagion effects 

across stock, oil and real estate returns during economic recession. However, these studies 

fail to examine the determinants of contagion across various assets returns. Such an 

analysis may provide novel insights for researchers, investors and policy makers. The 

closest paper to answering these questions is the latter one.  It reports that those economic 

factors which drive large market capitalization U.S. stocks also influence real estate 

prices. Similar to the previous discussed literature, these studies do not examine the 

impact of non-macroeconomic variables. Further, they do not examine the impact of the 

determinants during periods of economic expansion and contraction3. 

It is interesting to note that the existing studies examine these relationships either based 

on asset pricing model or time series analysis. For example, Huang and Zhong (2011) 

examine the time variation in diversification benefits of commodities and real estate. 

Using data from 1970 to 2010, the study reports that investments in commodities and real 

estate cannot be substituted and hence they provide diversification benefits. As expected, 

they show that the diversification benefits are time varying and are dependent on the time-

varying correlation. The authors show that dynamic conditional correlation model 

outperforms other correlation structures, namely constant correlation and historical 

rolling correlation. While this finding is not surprising as the commodities and real estate 

show evidence of time-varying asymmetric returns, the authors fail to address limitations 

                                            

3 Economic expansion refers to the phase of the business cycle which witness an increase in the level of 

economic activities. Economic expansion is a period of economic growth which is often measured by a rise 

in gross domestic product. In contrast, economic contraction refers to the phase of the business cycles that 

witnesses a decline in the level of economic activity. During economic contraction the economic slows 

down leading to a fall in gross domestic product and rise in unemployment. 
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of using Multivariate Generalized Auto-Regressive Conditional Heteroskedasticity 

(MGARCH) framework, which are presented in the following sub section. Further, 

similar to majority of the existing literature, the study does not consider the economic 

cycles and the determinants of return comovements in examining the correlation 

structure. In a seemingly related study Yang et al. (2009) use a multivariate GARCH 

model to examine the dynamic conditional correlation between S&P 500, US corporate 

bonds and real estate returns.  They provide evidence for asymmetric volatility in real 

estate returns.   In contrast to the previous study they show reduced hedging benefits of 

real estate against bearish equity market returns. This can be related to the evidence of 

strong asymmetric conditional covariance between real estate and stock returns. The 

study also shows that investment in bonds provide diversification benefits for stocks and 

real estates. In examining what drives the asymmetric return correlation, they report that 

default spread and stock market volatility play a significant role. In light of examining 

the determinants of return comovements, this research remains inconclusive because of 

several reasons. First, they do not consider the impact of macroeconomic and non-

macroeconomic variables. Second, the study does not consider the differential impact of 

the explanatory variables during the economic contraction and economic expansion 

phases. Since the factors can have a more dominant role in either of the phases of the 

economy, there is likelihood that the results will be biased and inconsistent if the whole 

sample is taken into consideration while examining the drivers of return comovements. 

The third imitation relates to the use of multivariate GARCH models in examining retune 

comovements. I discuss the limitation of these models in the next sub-section. 

In contrast to the above discussed body of literature on return comovements of different 

financial assets, considerable body of empirical research examines the stock and bond 
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return comovements. Most studies confirm that stock and bond return correlation varies 

inversely with stock market volatility. Some authors relate this to the ‘flight – to-safety’ 

phenomenon (Connolly et al., 2005; 2007). Unlike the literature on other financial assets, 

authors have examined the variables that have an impact on the stock and bond return 

comovements. In majority of the studies the authors claim that real interest rate and 

inflation volatilty influence the stock-bond return correlation (e.g. d’Addona and Kind, 

2006, Boyd et al., 2005 and Andersen et al., 2007). 

However, whether the stock-bond return correlation is significatly higher in the bull phase 

and in the bear periods is ambiguous. For instance, Ilmanen (2003) finds that returns are 

positively correlated during economic expansion whereas the correlation declines during 

economic contraction. In contrast, Jensen and Mercer (2003) show that stock and bond 

return correlations are higher during recession and lower during the expansion phase. The 

existing studies show two major limitations. First, they do not consider other variables 

such as output and inflation uncertainty, illiquidity factors, depth of recession along with 

risk aversion and other macroeconomic variables and second, these studies are mostly 

based on linear measure of association, which does not accommodate for the asymmetric 

characteristics of the return distributions. Baele et al.’s (2010) model considers macro-

economic variables and non-macro factors, e.g. liquidity to account for stock-bond return 

correlation. Though their model addresses the former limitation, it does rely on the 

unrealistic normality assumption of the asset returns. Other studies that aim to overcome 

the second limitation, such as Chan et al. (2011), do not consider the determinants of the 

return comovements. This study, unlike the existing studies, addresses both these 

limitations. The work, therefore, contributes to the filling of the on-going research and 

existing literature gap’s on the determinants of asset return linkages. In particular, my 
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approach analyses the differential impacts of macro and non-macroeconomic variables 

on asset return comovements of three different asset classes during economic contraction 

and economic expansion regimes. 

The extant literature primarily uses linear dependence structure to explore the asset return 

dynamics. In the following sub-section I present the modelling techniques primarily used 

in examining asset return comovements.  

 

2.3 Modelling the asset return co-movement 

Majority of the studies in asset return comovements examines conventional financial 

assets, i.e. stocks and bonds. For instance Baele et al. (2010) report that post-1968 to 2009 

U.S. stock and bond markets show 19 percent correlation between stock and bond returns. 

However, previous researches have provided inconsistent findings. For example, Shiller 

and Beltratti (1992) underestimate the empirical stock-bond correlation by imposing 

constant discount rates in their present value model. In contrast, Bekaert et al. (2009) 

overestimate the co-movements employing a consumption based asset pricing model. 

Yet, these methods provide substantial evidence of significant correlation. Previous 

findings show (cf. Figure 2-1) that stock-bond (New York Stock Exchange index returns 

and 10 years government benchmark bond index returns) correlation is as high as 60 

percent in the late nineties to as low as negative 60 percent in 2005. An increasing number 

of authors have documented this time-varying phenomenon using sophisticated statistical 

models (Guidolin and Timmermann, 2005), but much less research has been done to 

unravel the underpinning economic sources. 
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Figure 2-1: Stock-Bond Return Correlation  

 

Source: adopted from Baele et al. (2010) 

In the extant literature researchers have used different techniques to capture the asset 

return comovements. The studies show that despite the limitations of linear correlation, it 

has been most frequently used to examine the asset market linkages. Alternatively, 

researchers have also proposed autoregressive and multivariate GARCH frameworks to 

capture the dynamic return comovements. For example, Schwert (1990) uses 12th order 

autoregressive predictive models4 to examine why volatilities of stock and bond returns 

change over time. While this paper does not examine the return comovements, it is one 

of the seminal studies to examine the time varying return volatilities of asset returns. In a 

similar vein, Downing et al. (2009) adopt a bivariate vector autoregressive (VAR) model5 
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to examine the relationship between stock and bond returns. However, such examinations 

have major limitations i) the use of VAR models lead to identification problem. In 

specific, the combination of past values of the endogenous and exogenous variables leads 

to predetermined values of the reduced form model. In other words, the number of 

reduced form coefficients and the number of structural parameters will not be equal. This 

leads to either over or under identification of the model, ii) the VAR models fail to 

differentiate between correlation and causation (with the exception of structural VARs). 

Thus, they, i.e. the reduced form VARs and recursive VARs, are not suitable for structural 

inference or policy analysis, iv) the standard VARs (reduced form VARs and Recursive 

VARs) are nonlinear and suffer from conditional heteroskedastic issues, leading to the 

estimation of inefficient parameters. Therefore, they are unstable and hence are poor 

predictors, v) the timing conventions in the VARS may be misleading and do not 

necessarily reflect the real-time data availability. As an example, assumption regarding 

inflation is non-responsive (sticky) to monetary shocks over a given period of time is 

valid for a single day/ short time period, but becomes less plausible over a month/longer 

period. Such assumptions are generally made for structural VARs, vi) if some of the 

variables are highly persistent in the VAR model, then the standard errors of the impulse 

response functions leads to misinterpretation or results, vii) there is a high likelihood that 

the appropriateness of the lag length (either by information criteria or cross-equation 

restriction) leads to inconsistency of the results, viii) the number of parameters to be 

estimated is large (proportional to the square of the number of variables). Therefore, even 

for small sample size the degrees of freedom are rapidly reduced/ used up. This leads to 

increased standard errors and wide confidence intervals. 
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In contrast, Wainscott (1990) calculates the correlations based on rolling averages for the 

periods of one, three, five and ten years. He examines these correlations to test the 

predictive power of the future relations based on the historical relations. The study shows 

that extrapolating the past correlations to predict future return comovement leads to 

unsatisfactory results. Ilmanen (2003) uses the dividend discount model6 to find the 

correlation of the factors with the pricing of the asset classes. To examine the stock-bond 

return comovement, the study uses 26-week rolling correlation to explain and predict the 

future return dynamics. In line with the previous studies, this paper clearly fails to 

accommodate the limitations of using simple measures of association.  

An alternative to the use of linear correlation is the use of multivariate GARCH models 

in examining the covariance structure of return series. In recent years several authors have 

increasingly relied on such approaches to analyse asset return comovements. For 

example, Scruggs and Glabadanidis (2003) use multivariate GARCH model to examine 

the dynamic covariance between stocks and bonds. Their approach is nested within 

Kroner and Ng’s (1998) asymmetric dynamic covariance (ADC) proposed model. In 

particular the ADC is an extension of the generalized dynamic covariance model that 

allows the impact of lagged returns shocks to be defined by the sign and the magnitude 

of the shocks. The key advantage of using multivariate GARCH models is that it to 

accommodate for the volatility clustering and the time-varying correlation characteristics 

of the asset return comovements. A key contribution of the paper is that the authors reject 
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the constant correlation constraint in examining the dynamic covariance structure of the 

return comovements. Other significant studies using multivariate GARCH approaches 

include Brenner et al. (2009) and Berben and Jansen (2009). Brenner et al. (2009) use 

Engle’s (2002) dynamic conditional correlation multivariate model GARCH model to 

analyse the asset return comovements. Berben and Jansen (2009) employ Berben and 

Jansen’s  (2005) Smooth-Transition Correlation (STC) GARCH model to estimate the 

patterns and capture the structural shift where the rate of change of the transitional 

variable can be abrupt. One of the key limitations of this work is in sampling the 

correlation to strictly follow two states, which examines only dominant long term trends. 

Overcoming this limitation allows us to examine the non-monotonic comovements, 

which are prevalent especially during periods of economic recession.   

Next, I discuss the general factor model, which is predominantly used to link SB returns 

to structural factors. 

 

2.3.1 Dynamic Factor Model 

The dynamic factor model is the most common method used to link asset return co-

movements. For example, Baele et al. (2010) examine the stock-bond return comovement 

using dynamic factor model. To illustrate the dynamic factor model, let us consider an 

example of examine the factors that influence stock-bond return comovements. The 

model is represented as: 

ttttt FrEr    ][ 1  (2-1) 
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where tr  denotes excess equity and bond return matrix ),( ,, tbtst rrr  , ][ 1trE
 
is the stock-

bond vector of expected stock-bond returns, t  
represents the sensitivity to structural 

factor, tF  and t  is the vector of sock-bond return shocks.  

In order to capture the time varying sensitivity of the structural factor, ‘beta’, i.e. 

),( ,, tbtst   , can be modelled as a function of an information set, tI
 
and tV , which 

are discrete variables that follows the Markov process. These variables can thus be used 

to capture unexpected regime changes. ‘Beta’ can be characterised as: 

),( 1 ttt VI    (2-2) 

The dynamic factor model assumes that the structural factors matrix ( tF ) are normally 

distributed across a zero mean and its conditional variance ( tC ), which represents a 

diagonal matrix. 

),0(~ tt CNF  (2-3) 

In particular, the conditional matrix is also influenced by tV
 
in the Equation (2-2). The 

off-diagonal elements of tC  is zero, imposing the diagonal matrix to be orthogonal. The 

null hypothesis of the Equation (2-1) considers the residual stock-bond returns covariance 

matrix to be homoskedastic. The major drawback of using dynamic factor model is that 

it fails to capture the volatility clustering and asymmetric nature of asset return, which 

are the realistic features of asset returns. 
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The Equation (2-1) implies that common economic factors affect stock-bond return co-

movements. If, tv  denotes the realised instances of tV , then the conditional variance of 

tr  can be represented as: 

 
 ][),()(),()(cov 1111 ttttbttttstt IvPvIIvCvIr   (2-4) 

If the stock-bond return covariance is independent of regime shifts, then (2-4) simplifies 

to 

tbttstt Cr ,,)(cov    (2-5) 

In equations (2-4) and (2-5) the orthogonal variances matrix C  is conditioned on the 

information set 1tI . To estimate the conditional correlation between stock-bond return 

co-movements, Baele et al. (2010) divides the covariance of the returns influenced by the 

state factors by the stock and bond return volatilities, i.e. ststts eC 
,,  and 

btbttb eC 
,,  respectively, where se

 
and be  signifies residual stock-bond returns of 

the model (2-1). The resulting stock-bond conditional correlation equation is: 
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(2-6) 

Equation (2-6) reveals three stylized facts of the dynamic factor modelling of estimating 

asset return comovement. First, variances of state factors have a significant effect on asset 

return comovement. Second, the impact of factor variance can be arbitrarily large on the 

correlation estimate, especially in case of an unexpected abnormal increase of variances. 

Third, the betas determine the direction of the asset return comovement. For example, if 
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the betas for stock-bond have the same sign, then increase in factor variances will generate 

substantial comovement variation. Likewise, for reverse co-movement, one of the betas 

must be negative and it should have a high relative covariance with the state factors. These 

characteristics of the dynamic factor model also highlight the major limitations of using 

such models. It is observed that significant dependence of the factors can lead to 

unreliable correlation estimates. Further, large deviations in the variance structure of the 

factors especially during periods of economic decline can make the model unstable 

leading to inefficient analysis of asset return comovements. Finally, these models heavily 

depend on the modelling of the structural factors. Presence of structural breaks in the 

factors observed during financial crisis can lead to undesirable and spurious results.  

Over the years researchers have used various other methods to account for asset return 

correlation. One of such methods that has received wide acceptance relates to affine asset 

pricing models (d’Addona and Kind, 2006), which I discuss next.  

 

2.3.2 Affine Asset Pricing Models 

The fair price of a financial asset is calculated as the product of expected future pay-offs 

and the pricing kernel, which is the stochastic discount factor. This ensures that there are 

no arbitrage opportunities in the economy. Below I provide an example of modelling 

stock-bond return correlation underpinning affine asset pricing framework. In discrete 

form it can be written as: 

],[ *

1

*

1 

  tttt KCEP  (2-7) 
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where C represents the future expected cash flows and D represents the stochastic 

discount factor. The asterisk sign represents that the variables in the equation are 

considered as nominal rather than real. Drawing on Harrison and Kreps (1979), Campbell 

et al. (1997) derived the conditional logarithmic form of kernel. The general form is 

represented as: 

*

1

**

1

m

ttt rk     (2-8) 

where ),0(~ 2

*

*

1 k

m

t N    stands for i.i.d. nominal pricing shocks, 2

2

1
k   and 

*

tr  

represents the nominal risk-free interest rate. Vasicek’s (1977) model captures the mean-

reverting nature of real short rate in discrete time. Considering r  and 
r  are the 

conditional mean and volatility respectively, the equation can be represented as: 

r

trtrt rrrr 11 )(     (2-9) 

where ),0(~ 2

*1 k

r

t N    is an i.i.d. Similarly, an analogous process for inflation rate is: 

i

titit iiii 11 )(     (2-10) 

 Based on (2-9) and (2-10), the interaction between real interest rate and inflation is 

derived as: 



 11,1   t

r

trri

i

ti  (2-11) 

where ri, captures the co-movement between real interest rate and inflation and 

...),1,0(~1 diiNt

  represents the inflation uncertainty orthogonal to tr . 
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Campbell et al. (1997) extend the standard affine model by introducing ri, . Further 

d’Addona and Kind (2006) allows inflation to be correlated with stochastic interest rate 

to price inflation risk. Under this new correlation structure the pricing kernel is 

represented as: 



 11,1,

*

1   t

i

tiim

r

trrm

m

t  (2-12) 

where   estimates the shocks between the discount rate, interest and inflation. The error 

term  𝜀𝑡+1
𝜑

∼ 𝑁(0,1), 𝑖. 𝑖. 𝑑.  represents the orthogonal fluctuations of the pricing kernel 

and the exogenous variables. Since, the error term only affects the mean rather than the 

slope of term structure, d’Addona and Kind (2006) derive the logarithmic pricing kernel 

as: 

i

tiim

r

trrmtt rm 1,1,

**

1     (2-13) 

For a bond with maturity n, the fair value is determined by the variables interest rate and 

inflation, which affects the nominal discount rate. The affine price model for a bond at 

time t can be represented as: 

tntnn

n

t iZrYXB  *
 (2-14) 

Based on the roots of (2-14), which follow a recursive form (d’Addona and Kind, 2006), 

the unit period logarithmic bond return is: 

 tntnntntnn

n

t iZrYXiZrYXBR  



 11111

*1

1  (2-15) 

In contrast to bonds, stocks do not have a pre-determined cash-flow stream. It can be 

derived as a present value of infinite stream of expected dividend pay-offs. 
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]),exp([ 111  ttttt KdSES  (2-16) 

Considering tD  as the real dividend at time t, the dividend yield is 












t

t

t
S

D
d 1ln  . 

Based on Campbell and Shiller (1998) and Lewellen (2004), td  is modelled as a mean-

reverting stochastic process.  

  d

tdtdt dddd 11     (2-17) 

d’Addona and Kind (2006) account for the interaction of interest rate and dividend yield, 

i.e. 



 111   t

r

trd

d

td  (2-18) 

where d   represents the interaction term between interest rate and dividend yield and

 1t  is the orthogonal error term. 

The affine-pricing model for stocks determined by the state variable interest rate can be 

formulated as: 

 tntnn
n

t dZrYXS 


lim  (2-19) 

Unlike fixed income securities which have a finite maturity period, the roots of the affine-

model for stocks follow an infinite recursive process. Including realised inflation, the 

logarithmic stock return for a unit period can be defined as: 

    11111

*

1   ttttttnnt idddZrrYXXSR  (2-20) 
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Equation (2-20) models stock returns as a function of the dividend-yield process. In 

similar studies Bekaert et al. (2000) model the equity returns based on dividend growth. 

Their equation accommodates the price-dividend ratio. The studies show that modelling 

in terms of dividend yield allows capturing the influence of uncertainty in interest rate 

and dividend-yield risk on stock premium.  

 

2.3.3 SB Return Correlation in Affine Pricing Model 

The theoretical expression for SB return correlation is obtained by employing the 

expectation properties of linear functions to equations (2-15) and (2-20). The correlation 

equation obtained is: 
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(2-21) 

where r

b

nYF 1  , i

b

nZG 1  and   21 rd

sZH  . 

Equation (2-21) reveals that the means of the three state variables, r , i  and d , do not 

have any impact on the stock-bond return correlation, sb . However, in reality it is less 

likely that the economic state variable will have no impact on the asset return correlation. 

Therefore, it is important to have a deeper insight of the factors influencing the asset 

return co-movements. While the linear dependence structure is simple to use, it fails to 

accurately characterize the non-normal distributions of the asset returns (Jondeau and 

Rockinger, 2006).  
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2.4 Alternative Approaches to Modelling Co-variances 

In the recent years multivariate GARCH models have been widely employed by authors 

to model time-varying co-movements. Among them the most commonly used ones are 

Bollerslev et al.’s (1988) VECH (Vectorised Heteroskedastic) model, Bollerslev’s (1990) 

Constant Correlation Model (CCM), Engle et al.’s (1990) Factor Auto-Regressive 

Conditional Heteroskedastic (FARCH) model and Engle and Kroner’s (1995) BEKK 

(Baba, Engle, Kraft and Kroner) model. To review these models, I adopt the following 

notations: itR is the rate of return of an asset i at time t, it  is the expected rate of return 

of the asset under the information set at time (t-1), ite is the unexpected return of the asset 

at time t, itv  is the conditional variance of itR  under the information set at time (t-1), ijtv

is the conditional covariance of asset return i and j under the information set at time (t-1) 

and tV  is the conditional covariance matrix ])[( ijtt vV   

 

2.4.1 The VECH Model 

The VECH model is represented as: 

111   jtitijijtijijijt eevv   (2-22) 

where ijijij  ,, are parameters for all Nji ,...,1,  . The VECH model is an auto-

regressive moving average (ARMA) model for the unexpected asset returns. Thus, the 

key advantage of this model lies in its simplicity to estimate the conditional asset 

covariance. Considering the coefficient of the conditional lag variance to lie between zero 

and one, i.e. )1,0(ij  for all assets, Equation (2-22) can be estimated as 
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11

1

,1 



 jtittt ijijtijt eev


  (2-23) 

where
 ijttij

t

t v 1,00   . This adjustment term ensures that the expectations of jvi  

is the conditional asset covariance. Therefore, the model estimates the asset return co-

movements as the geometrically weighted average of the past co-variances of expected 

returns. It gives lower weights to older observations. 

The VECH model undermines two practical limitations. First, the number of parameters 

it generates is exceptionally large. For example, for a 10 (N)-asset model it generates

)1(
2

3
NN , i.e. 165 parameters. Second, the model only gives a definite covariance 

matrix if restrictions are imposed to the weights of the older observations (Engle and 

Kroner, 1995). Without these nonlinear restrictions, the off-diagonal terms take values 

that are too large relative to the diagonal variances which force the VECH model to yield 

non-positive definite covariance estimates. This issue is overcome by the BEKK model, 

which I illustrate next. 

 

2.4.2 The BEKK Model 

The BEKK model is characterised as 

AeeABVBV tttt 111 
  (2-24) 

where BA,, are NN  matrix. The matrix   represents the positive-definite 

symmetric covariance estimate. In terms of asset covariance BEKK can be written as 



 

35 

),(),(cov 111   qtptstrttijijt eeeev   (2-25) 

where srqp eeee ,,, are the unexpected returns of the portfolios srqp ,,,  and ij  is the ijth 

element of the positive-definite matrix. The portfolios p and q derive their weights from 

the ijth columns of matrix A and the weights of r and s comes from the matrix B. If 

Equation (2-25) is restricted to kAB  , where k is a scalar constant, then the model 

estimates conditional covariance for N-portfolios or assets. 

While this model overcomes the positive-definite covariance limitation of the VECH 

model, it still estimates )
22

5
( 2 N

N  parameters that restrict its practical usability. The 

FARCH model overcomes this issue of large scale estimation, which is presented next. 

 

2.4.3 The FARCH Model 

The model is represented as 

  ][
2

11 
 ttt eVV   (2-26) 

where  ,  are scalars, ,  are )1( N vectors and   represents the positive-definite 

symmetric covariance NN  matrix. The FARCH model is a special case of the BEKK 

model. In particular the latter becomes FARCH when  A  and  B . The 

number of parameters estimated by this model 







 2

2

5

2

1 2 NN  is considerably less than 

the VECH and BEKK models.  



 

36 

Using conditional covariance and unexpected return of the assets/portfolios, the FARCH 

model can be characterised as 

ptjiijijt vv    (2-27) 

2

11   ptptppt eVv 
 

(2-28) 

where 11,, 
 tpttpttpt eeVvRR  and pjiijijp   ,  

The FARCH model assumes that the assets’ variances and co-variances contribute to the 

variance of a single portfolio, which follows a GARCH process. In case on a single factor 

model, the market return is considered to be ptR . Thus, for a single factor model the 

variance-covariance asset return matrix is driven by the market portfolio. 

The number of factors (N) that drive the conditional matrix   differentiates the use of 

the FARCH and the BEKK model. If there are multiple factors the BEKK model is used, 

whereas for a unit factor the single factor FARCH model is employed. 

 

2.4.4 The Constant Correlation Model 

In this model the conditional correlation of the asset returns are assumed as time-

invariant. The restriction on the conditional variance is weighted proportional to the asset 

risk. The constant correlation model is represented as 

2

11   itiiiitiiiiiit evv   (2-29) 

 jjtiitijijt vvv 
 

(2-30) 
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Equation (2-29) is for all Ni ,..., and Equation (2-30) is for all ji  . Yet, CCM yield 

positive definite estimate only if the correlation matrix ][ ij  is non-negative and definite. 

 

2.4.5 Properties of the GARCH Models 

The four models discussed above belong to the family of multivariate GARCH models. 

Each of them imposes a different set of restrictions to estimate the variance-covariance 

processes of the asset/portfolio returns. To analyse the properties of each of the four 

models, I rely on Kroner and Ng ‘s (1998) estimations of portfolio returns on small and 

big firms (corporate bonds are considered only in this sub-section of the thesis to present 

the limitations of GARCH models, rest of the study considers government bonds). The 

data consists of 1371 weekly observations from July 1962 to December 1988 for US 

market. The mean return is modelled using a 10-lag VAR process, which is characterised 

as 

  itj jtjtjtjiit eRdRR     2,1 10,10 0,max(
   (2-31) 

where i takes the value ‘1’ and ‘2’ for small firms and large firms-portfolio respectively. 

The q0-lag threshold terms ensure that the variance-covariance asymmetric effects do not 

impose misspecification in the estimation of the mean.  

Table 2-1 shows the summary statistics of the different variance and covariance estimates 

of the four different MGARCH models. 
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Table 2-1: Estimated Variance and Covariance Series 

 

The table reports the summary statistics of the four GARCH models. The results are computed 

on the same data set. ‘e’ denotes the unexpected return shocks and ‘h’ denotes the estimated 

variance-covariance of the portfolios. 
a Source: Adopted from Kroner and Ng (1998) 

 

It is evident that the co-variance estimates of FARCH and BEKK models are higher and 

more volatile than the VECH and constant correlation (CCORR) model. In particular, the 

BEKK models produce a greater range of estimates as compared to the remainder.  

Focusing on variance estimates, the volatility of FARCH and BEKK model estimates are 

higher for large-firms in contrast to the high volatility estimates of VECH and CCOR 

models for small firms. 

In order to further justify my claims that the different models generate a different and 

varied range of estimates, I report the correlation of these covariance and variance 

estimate in Table 2-2. 
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Table 2-2: Correlation of MGARCH Model Estimates  

 

The small firm correlation of variance estimates are presented in panel-1, the large firm 

correlation of variance estimates are presented in panel-2 and anel-3 reports the correlation of the 

covariance estimates. 
a Source: Adopted from Kroner and Ng (1998) 

 

The correlations of the variance of large-firm estimates in panel-2 exceed 0.999. This 

suggests that all models yield similar results; hence model selection is relatively 

unimportant. Yet, similar conclusions do not hold well for panel two and three. Judging 

from these findings, it is pertinent that model selection plays a vital role in estimating 

covariance of asset/portfolio returns. Consequently, the selection of models will 

invariantly affect asset pricing, estimation of assert return correlation and portfolio 

management applications. Drawing on this conclusion, it is fair to say that the multivariate 

GARCH models provide inconclusive outputs. Based on this analysis, in the next chapter 

I report the copula approach that is used in this study as an effective alternative 

methodology that overcomes the limitations of the linear approaches in examining asset 

return comovements. 
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In the next section I highlight the distinctive aspects of the asset return comovements 

corroborating the gaps in the extant literature. In particular, I investigate the stock and 

government bond return association for the U.S. capital market for the period 1991 to 

2011. In this study the US government bond index is used instead of corporate bonds. 

Government bonds have a lower level of risk. Thus, they provide more diversification 

benefits during periods of economic distress. Drawing on this analysis and on the overall 

review of the existing literature, I will next provide an account for future research avenues 

and research gaps that I have explored in this work. The primary purpose of this 

examination is to make robust claims related to the extant literature. Further, the empirical 

findings considerably aid in i) analysing potential research gaps and in ii) proposing future 

areas of research, as elaborated in the following sections. 

 

2.5 Empirical Analysis of US Stock-Bond Return Comovement 

2.5.1 Data and Methodology 

The empirical analysis examines quarterly data of U.S. SB returns. The U.S. market is 

considered for the analysis because i) it represents the largest financial market in the word 

and ii) it is generally viewed as the most important economy. The sample period spans 

from January 1991 to December 2011. Table 2-3 reports the description of the exogenous 

variables and data used for the empirical analysis. 
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Table 2-3: Description of Variables 

Variable Category Variable Data 

Source 

Endogenous Variable  

(quarterly correlation 

estimates are constructed 

from daily data)  

i) Daily  MSCI Stock Market Returns 

ii) Government Bond Indices (10 years) 

DataStream 

Exogenous Variables: 

 

Economic output gap (Eog) 

 

 

Real Interest (Ri) 

 

Expected Inflation (Ei) 

Economic output gap (Eog), Real interest (Ri) and 

Expected inflation (Ei) 

Gross Domestic Product (GDP) is the measure of output. 

The gap is the percentage difference between the output 

and its quadratic trend.  

Difference between annualized 3-month Treasury Bill 

middle rate annualized returns converted to quarterly 

returns ((ln(1+R))/4) and short-term expected inflation 

One month forecast of monthly inflation, consumer price 

index, employing a Bayesian Vector Auto-regression 

model. 

DataStream 

Note: the exogenous and the endogenous variables for the empirical investigation are reported in 

this table. The table reports the various variables used and data source are reported. 

 

To examine the impact of macroeconomic state variables on stock-bond return 

correlation, I formulate Equation (2-32). A potential challenge in regressing is that the 

correlation coefficient varies from positive one to negative one, i.e. [+1 to -1]. In contrast, 

the right hand side of the equation is unrestricted, thus to make the endogenous variable 

unrestricted, I employ Fisher’s transformation using Equation (2-32). This transforms the 

correlation coefficient values from [-1, 1] to ),(  . 









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(2-32) 

𝐶𝑜𝑟𝑟𝑡 = 𝛼 + 𝛽0𝑅𝑖𝑡 + 𝛽1𝐸𝑜𝑔𝑡 + 𝛽0𝐸𝑖𝑡 + 𝛽0𝐶𝑜𝑟𝑟𝑡−1
 

(2-33) 
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where  is stock-bond return correlation, Eog is the economic output gap, Ri is the real 

interest rate, Ei is the expected inflation.  

 

2.5.2 Results and Analysis 

The descriptive statistics of the SB return correlation are reported in Table 2-4. The SB 

return correlation estimate for the period observes a negative mean of 0.032. The overall 

range of the estimate varies from negative 1.045 to 1.038. 

Table 2-4: Descriptive Statistics of SB Return Correlation 

 

Note: The table reports the summary statistics of the return correlation of stock-bond returns. 

 

The quarterly rolling correlation is plotted in Figure 2-2. Although the correlation is 

negative on average, it is apparent that the time-varying relationship of SB returns is 

unstable and has observed sustained variations over time. Moreover, the figures reveal 

that the co-movement can vary substantially over a short-period of time. For example, in 

the year 1997 the correlation changed from 0.48 to negative 0.16 for the period October 

– November. These unexpected changes in the correlation impose challenges for risk 

management measures and asset allocation. Thus, commonly employed risk monitoring 

techniques that assume time-invariant stock-bond return correlation will yield spurious 

results and may adversely affect investment strategies. For U.S. the co-movement 

remained positive until November 1997. After that it dipped below the neutral mark and 

hovered in the negative region until 2011. Yet, for a short period, i.e. March 1999 to June 

Mean Median Std. Dev. Kurtosis Skewness Minimum Maximum

Corr. -0.032 -0.006 0.490 -0.779 -0.059 -1.045 1.038
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2000, the correlation yielded a positive return. This can be attributed to the excessive 

economic growth during this period. 

Figure 2-2: Quarterly Stock-Bond Return Correlation 

 

Note: The figure shows the quarterly rolling correlation for the period 199-2011. The average 

stock-bond correlation is negative over the sample period. 

 

The regression results of the dynamic model are reported in Table 2-5. The estimation 

results reveal that expected inflation is positively related to the SB return correlation. 

Arguing that bond prices are negatively related to expected inflation, my findings confirm 

that higher inflation expectations have a greater impact on discount rates than on expected 

equity dividends. This causes inflation to vary negatively with stock prices and thereby 

poses a positive relation with SB return co-movements. The positive significant impact 

of real interest rate is not surprising as increase in real interest rate has detrimental effect 

on both stock and bond returns. The result also shows a trend in the time-varying 

phenomenon with a positive coefficient of a single period SB return correlation lag. 

Finally, it can be noted that the estimated coefficients of expected economic output is 

statistically not significant. 
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Table 2-5: Impact of Macroeconomic Variables on SB Return Correlation  

Estimation Results 

 

Explanatory Variables 

𝛼 𝑅𝑖𝑡 𝐸𝑜𝑔𝑡 𝐸𝑖𝑡 𝐶𝑜𝑟𝑟𝑡−1 

Coefficient -0.023 0.119** 0.004 0.165** 0.423** 

Standard Error (0.032) (0.045) (0.035) (0.045) (0.116) 

R-squared 0.672     

Durbin-Watson statistic 1.821     

BG Serial Correlation 1.022     

LM-test statistic (0.365)     

Breusch-Pagan-Godfrey 1.239     

Heteroscedasticity test (0.302)     

Note: The table reports the coefficient estimates of the model that identifies the impact of 

macroeconomic variables on stock-bond return correlation. The macroeconomic variables 

considered are real interest rate, economic output and inflation. The model is characterized 

as 𝐶𝑜𝑟𝑟𝑡 = 𝛼 + 𝛽0𝑅𝑖𝑡 + 𝛽1𝐸𝑜𝑔𝑡 + 𝛽0𝐸𝑖𝑡 + 𝛽0𝐶𝑜𝑟𝑟𝑡−1, where 𝐶𝑜𝑟𝑟𝑡 represents the 

contemporaneous stock-bond return correlation, Ri is the real interest rate, Eog is the economic 

output gap and Ei is the expected inflation. Stock-bond correlations are computed using daily 

returns over quarterly period. The results indicate that real interest rate and inflation have 

significant impact on the return correlation. The standard errors of the coefficients are reported in 

parenthesis and are corrected for serial correlation and heteroscedasticity. The serial correlation 

and the heteroscedasticity test suggest that the model does not suffer from residual serial 

correlation and heteroskedastic issues. The p-value of these test statistics are provided in the 

parenthesis. ** denotes significance at 0.01 percent level 

 

The findings, therefore state that expected inflation and real interest rate play a dominant 

role in defining stock-bond return comovements. However, the impact of other economic 

state variables such as changes in output gap is insignificant in determining the return 

comovement. These results confirms several studies, including Baele et al. (2010), 

Bekaert and Engstrom (2010), Downing et al. (2009) amongst many other as discussed 

in the previous section. It, further, brings to concern the necessity to examine this 

phenomenon by considering factors other than generic economic state variables, which I 

carry out in this work. Further, it should be noted that such an examinations fails to 

capture the true dynamics of the return comovements as linear correlation fails to 

accommodate the asymmetric nature of the non-normal return distributions. 
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2.5.3 Research Gaps  

Corroborating with the extant literature, the findings in the previous section reveal a wide 

range of promising directions for future research, which address the research gaps in the 

current literature. First, researchers fail to acknowledge that non-macroeconomic state 

variables such as illiquidity factors influence the asset return covariances more than the 

macroeconomic variables. Hence, much more scope lies in analysing the dynamic 

illiquidity effects. Specifically, the impact of liquidity on stock-bond return co-movement 

depends on how liquidity shocks vary across markets. Second, there is an interesting 

debate concerning the volatility dynamics of stocks and bonds. While the bond volatility 

depends on economic state variables, the non-economic variables such as liquidity factors 

and variance premiums drive the stock and commodity volatilities more significantly. 

These differences create complications in building an equilibrium model, which can 

jointly account for multi-asset pricing. Studies in this area have failed to account for a 

significant equilibrium model (Bekaert et al., 2009). Third, even though researchers in 

the past have exclusively focused on standard economic variables, more intricate models 

would likely yield superior results. These models may probably incorporate variables that 

have been neglected in the present literature. For example, ‘depth of recession’7 that 

serves as leading indicator of economic activity might provide more insight on asset 

pricing mechanism, even of developed economics like the U.S. 

                                            

7 This measure allows the estimate to have values for both recession and expansion of the economy’s 

business cycle. A negative value indicates an economic expansion period. The higher the value, the 

greater is the economy’s recovery in process. In contrast, a positive value of this measure relates to a 

recessionary period. 
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Importantly, it is evident that stock-bond return co-movement has been an area of interest 

for a long time, whereas multi-asset return co-relationship has mostly been neglected. 

Few studies have tried to examine the return relationship of equity markets and 

commodities, the results remain inconclusive (cf. Section 2.2.1). Without a proper 

assessment of the characteristics of the time-varying phenomena generated by the models, 

judgments remain inconclusive and premature. For instance, the literature has made many 

claims about the negative stock-bond return correlation for the years. Yet, in recent times 

the real economy and inflation processes in developed and emerging economies have 

witnessed substantial changes. In particular, the volatility of the output growth, i.e. 

change in gross domestic product, and inflation has decreased significantly in the U.S. 

and other developed economies since 1985. This triggered large negative spikes in 

realized correlation in asset returns and a steep decrease in equity payoffs. Further, with 

the global economic crisis scare of 2003, investors started looking into the potential 

diversification benefits of multi-asset portfolios, containing non-conventional financial 

assets such as commodities and real estate securities. Yet, the diversification benefits 

were questioned after the financial crisis of 2007. Consequently, if different financial 

assets have similar exposure to these economic state variables, their return correlation 

should also decrease. It is equally pertinent that changes in these fundamental variables 

have affected the risk aversion, which influences various financial instruments in 

dissimilar ways. While extant literature shows that it is difficult to figure out specific 

economic state variables that influence multi-asset return correlation, it remains worthy 

to quantify the magnitude of the influence of these economic variables on the time-

varying dynamics of multi-asset return comovements that constitute an investor’s 

portfolio. This is what I aim to establish in my doctoral thesis, i.e. the dynamics of asset 
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return comovements, employing an alternative approach, which is illustrated in the next 

section. 

 

2.6 Summary 

My review of the existing literature has illustrated the importance of multi-asset return 

correlation which has not been fully demystified and far less fully operationalised. The 

extant literature is still unsettled regarding the effect of certain macroeconomic factors 

like inflation volatility on multi-asset co-movements. Thus, the debate on how asset return 

comovements vary to changing macroeconomic conditions is open to further research and 

analysis. 

This work incorporates both sufficient level of empirical analysis and economic rigor to 

reconcile time-varying multi-asset return comovement. To this end, I specify four 

boundaries, informed by the current literature that has characterized this study. 

i. Theoretical Boundary: the analysis of multi-asset return correlation from an asset 

allocation perspective focuses on examining the interactions of various economic and 

non-economic state variables.   

ii. Disciplinary Boundary: considering the inter-disciplinary nature of the topic, studies 

have been drawn from social sciences (financial economics) and applied sciences (applied 

mathematics). 

iii. Application Boundary: to all intents and purposes, applications are social 

constructions. To draw this more clearly, the findings of this study have profound 

implications for investors and policy makers. 
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iv. Contextual Boundary: to explore the dynamics of multi-asset return co-movements in 

the US financial market, this hosts the world’s leading economy by incremental gross 

domestic product measure (cf. IMF, 2012). 

In sum, the non-linear relationship between real estate markets, commodities and 

conventional financial markets may reveal important insights pertaining to extreme 

market conditions, which may have significant implications for portfolio allocation. 

Surprisingly, the literature fails to provide a clear understanding of the dynamic nature of 

multi-asset return comovements.  

In the next chapter I define my research questions that address the gaps in the literature 

described in this chapter. 
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   CHAPTER 3 : Research  Objectives 

Research Objectives 

3.1 Introduction 

In this chapter I present the research questions that are addressed in this study.  The 

research objectives are derived from the existing literature gaps as highlighted in the 

previous chapter. The examination of the extant literature yielded three main areas 

warranting further research: i) the distributional characteristics of the asset return, ii) the 

determinants of the bivariate asset return comovements and iii) the determinants of joint 

asset return comovements. 

In the following sub-sections I document each of these areas and state the research 

objectives of this study. 

 

3.2 Research Objectives 

3.2.1 Distributional characteristics of the asset returns 

 The first area relates to the distributional characteristics of the asset returns. Research 

widely acknowledges that return distributions of financial assets are non-normal. When 

the joint distributions of the asset returns follow a non-elliptical structure, linear 

correlation fails to provide sufficient information of their dependence structure. In 

particular two issues arise from this existing empirical evidence. The first is to propose a 

more reliable alternative density specification for a higher-dimensional case. The second 

is to formulate a measure of the variables’ dependence structure which is more instructive 

than linear correlation. Against this backdrop, in this work I aim to overcome the issues 

related to the modeling of the non-normal asset return in examine the return comovements 



 

50 

between three different asset classes: financial assets, commodities and real estate in the 

US market.  

 

3.2.2 Determinants of the bivariate asset return comovements 

It is well known that asset return comovements are not time-invariant but tend to be rather 

dynamic in nature. Investors, therefore, require information about conditional distribution 

of the asset returns to implement dynamic asset allocation strategies. Information whether 

the returns of two or more assets are positively related in certain circumstances but 

negatively related in others may have key implications in portfolio diversification and 

asset allocation strategies. Thus, understanding asset return correlation, i.e. dependence 

structure, is a key aspect of asset allocation and portfolio optimization strategy. For the 

last decade, several studies have examined the stock and bond return comovements 

(Wainscott, 1990; Shiller and Beltratti, 1992; Connolly et al., 2007; Baele et al., 2010). 

But, far fewer studies have tried to examine the factors that drive the bivariate asset return 

comovements, i.e. combination of two different asset returns, especially for different asset 

classes. This research gap in the extant literature is addressed in this work. In particular, 

I examine the macroeconmic and non-macroeconomic factors that influence the asset 

return comovement of three different asset classes during periods of economic expansion 

and economic contraction regime. However, in this study I do not explicitly constrain the 

the expectations of the macroeconomic and the non-macroeconomic variables. This 

allows me to have an unbiased examination of the impact of the the various factors that 

drive the asset return comovements, especially during the various phases of the economy.    
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3.2.3 The determinants of joint asset return comovements 

In the wake of the economic downturn during 2007-08, returns of different asset classes 

have shown evidence of strong linkages. This has led to a renewed interest amongst 

academics and practitioners in examining asset allocation strategies for effective 

diversification of risk during turbulent economic conditions. However, asset allocation 

strategies can be properly executed only if the nature of return comovements of various 

asset returns is well understood. Guidolin and Timmermann (2007) show that since asset 

return comovements are time varying and dynamic in nature, investors require 

information about conditional distribution of the asset returns for implementing dynamic 

asset allocation strategies. Further, asset return comovements change due to changes in 

economic conditions and/or changes in non-macroeconomic factors. For example, 

Piplack and Straetmans (2010) show that asset return comovements change during 

periods of market stress. Thus, in constructing an optimal portfolio, it is critical to identify 

the economic circumstances and understand the impact of macro and non-macro factors 

on asset return comovements. 

It is fair to say that investors no longer invest in only conventional financial assets such 

as equities and bonds, but in a wide range of alternative financial assets including 

commodities and real estate. Fewer studies have dealt with a combination of bivariate 

asset return dynamics; however, research on the joint dependence structure of a portfolio 

of different asset classes, which I refer as multi-assets, is non-existent. This research is 

important because this study presents the first empirical evidence, examining the factors 

that drive the joint return distribution of different asset classes. Moreover, as stated 

earlier, in this study I do not explicitly constrain the the expectations of the 

macroeconomic and the non-macroeconomic variables. This allows me to conduct an 
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unbiased examination of the impact of the the various factors that drive the asset return 

comovements during the various phases of the economy 

 

3.3 Summary  

This chapter presents the objectives of the study that aim to fill the gaps in the existing 

literature on asset return comovements. This work focuses on the research gap in three 

key areas relating to the distributional characteristics of the asset returns, the 

macroeconomic and the non-macro factors that influence the bivariate asset return 

comovements and the sources that impact the joint return comovements during periods 

of economic expansion and economic contraction. 

In specific this study examines the determinants of the dependence structure of the 

comovements of two conventional financial assets, i.e. Standard & Poor’s (S&P) 500 

index (E) and US 10 year Government bond return index (B), two commodities, i.e. S&P 

GSCI Gold index (G) and West Texas Intermediate – WTI Cushing crude oil spot prices 

per barrel (O) and S&P Case-Shiller Composite-10 home price index (RE) for real estate 

for the period fourth quarter 1987 to the fourth quarter 2012 (1st August 1987 to 1st 

September 2012).  

In sum, the key objectives of this work are as follows: 

 To model the bivariate and the joint dependence structures accommodating the non-

normal distributional characteristics of the asset returns.   

 To examine the bivariate dependence structure of the asset return comovements. 

o Examine the regime switching behaviour of the 10 dependence structures 

corresponding to various asset return pairs. 
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o Examine the differential impact of the macroeconomic and non-

macroeconomic factors during periods of economic expansion and economic 

contraction regimes on the bivariate dependence structures. 

 To examine the Joint Dependence Structure (JDS) of the multi-asset return 

comovements. 

o Examine the regime switching behaviour of the joint dependence structure. 

o Examine the differential impact of the macroeconomic and non-

macroeconomic factors during periods of economic expansion and economic 

contraction regimes on the JDS. 

In addition to the above research objectives, this study extends the work in examining 

international equity market linkages. It is widely acknowledged that India is playing an 

ever increasing role in driving the world economic growth. India with its large and 

educated human capital, access to natural resources and growing markets for goods and 

services offers an attractive destination for the international investors.  Aloui et al.  (2011) 

report that among the BRIC (Brazil, Russia, India and China) nations, India’s well 

established trade links with the world is next only to China. Thus, there is little doubt that 

amongst the emerging economies, India is going to play an increasingly important role in 

shaping the world’s economy in coming years. An understanding of the causes of 

comovements during the periods of economic expansion and contraction will therefore 

provide greater insights to both Indian policy makers and international investors. This 

study aims to achieve this by investigating the economic sources of stock return 

comovements of the emerging Indian equity market and the developed equity markets of 

US, UK, Germany, France, and Canada for the period April 1997 to March 2013.    
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         CHAPTER 4: Modelling D ependence Structures 

Modelling the Dependence Structures 

4.1 Introduction 

In the recent years, copulas have received considerable acceptance in modelling time-

varying dependence (Patton, 2006). Yet, majority of the studies in the extant literature 

examine the comovement of different financial assets over time using linear correlation 

even though past research shows significant asymmetric dependence between the various 

financial assets. 

Overall, the literature on the relationship of various financial asset returns explores small 

subsets of financial instruments. Some authors examine the stock and bond return 

comovements, while others investigate the relationship between equity markets and 

certain commodities or real estate assets. In particular, previous research fails to explore 

the asset linkages during the extreme market conditions that correspond to the upper and 

the lower tails of the return distribution. Some authors provide evidence of stock market 

contagion during periods of financial crisis among various nations (see King and 

Wadhwani, 1990; Sander and Kleimeier, 2003; Rodriguez, 2007). Yet, asset return 

linkages across various asset classes during periods of financial crisis remain 

unexplained. Thus, apart from examining the general dependence structure, I also focus 

on the tail asymmetries using our proposed dynamic conditional copula models. 

Against this backdrop, the purpose of this chapter is three fold: First, I propose an 

alternative approach to model the dependence structures of the bivariate comovement of 

the asset return dynamics in the US market. Second, I model the joint dependence 
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structure combining all the asset classes. Third, I provide the estimation process of the 

proposed models.  

The rest of the chapter unfolds as follows:  Section 4.2 discusses our proposed approach 

to model the joint dependence structure of the multi-asset returns. Section 4.3 provides 

the model specifications and Section 4.4 concludes the chapter. 

 

4.2 Proposed Approach 

The method, I implement in this study, is based on the theory of copula. The application 

of this theory in the field of finance has seen rapid growth over the years. Since the 

seminal work of Embrechts et al.’s (2002), authors have explored the use of copulas in 

financial economics. Nelsen (1998) provides a detailed note on copulas that includes 

statistical and mathematical foundations, while Cherubini et al. (2004) focuses on usage 

of copula functions approach in the field of mathematical finance. 

In this work, I specifically focus on copula applications related to financial time series 

data, which relates to our work. Patton (2006) specifies the dependence parameter of the 

time-varying conditional copula that follows an autoregressive moving average type 

model. Rodriguez (2007) and Okimoto (2008)  use regime switching copulas to account 

for asymmetric correlation structure in equity markets and financial contagion 

respectively, while Chen and Fan (2006) build on Panchenko (2005) to construct a 

conditional copula with a correlation matrix, which follows Engle’s (2002) dynamic 

conditional correlation specifications. In a similar vein Lee and Long (2009) employ 

copula to capture the dynamic dependence of the uncorrelated standardized residuals to 
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construct a copula based multivariate GARCH model. Based on previous studies, I next 

provide a concise description of the theory of copula, which elaborates its key advantages. 

 

4.2.1 Theory of Copula 

Nelsen (2006) describes copula, C, as a function that couples multiple distribution 

functions of random variables (RV) to their unit-dimensional distribution function. 

Application of the this cumulative distribution function (CDF) is derived from Sklar 

Theorem (Sklar, 1959). The theorem states that for a joint distribution function 

),(, yxH YX  for all yx, , a function, copula ),( vuC , can be characterized in ),( R  

such that ))(),((),( yFxFCyxH YXXY  , where )(xFX  and )(yFY  are the marginal 

distribution functions.  

Alternatively, the concept of copula can be viewed as a function, which is expressed as a 

joint CDF, ),(, yxH YX  
in [0, 1], which corresponds to a point, ))(),(( yFxF YX

 in a unit 

square ]1,0[]1,0[  , where )(xFX  and )(yFY  are the marginal distribution functions 

(Nelsen, 2006). Here, it is of interest to note that the joint CDF, ),(, yxH YX , is 

independent of the marginal distributions of the RV. This contributes to the growing 

popularity of copula functions in many research fields related to distribution fitting. 

I use copula in this study because of its property in examining the scale-free dependence 

structure while preserving the dependence during simulation. I use Kendall’s tau )(  in 

this paper as an estimate of the scale-free measure of association. It is difference between 

the probability of concordance and discordance as detailed in the following section. 

Previous studies frequently use the Pearson’s product moment correlation estimate )(  
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to study the co-movement between various asset returns. Yet, it is important to note that 

this estimate, )( , is a measure of linear association which is time-variant and changes 

under nonlinear transformation of RV. Thus, a scale-free estimate produces a more 

reliable picture of the time-varying asset return correlation. 

The Kendall’s tau )( is characterized in terms of copula, C, as (Nelsen, 2006) 

  1),(),(4 vudCvuC  (4-1) 

The above expression can be reduced to a much simpler computable expressions for 

Archimedean copula as compared to other classes of copula, namely Elliptical and Farlie 

– Gumbel - Morgenstern. The former, i.e. Archimedean copula, is most frequently used 

in research because of its unique mathematical properties, which I discuss next. 

An Archimedean copula is characterized as 

))()((),( ]1[ vuvuC   
 

(4-2) 

where )(  is the generator of the copula function and )(]1[ 
 is the pseudo inverse, 

which takes the value )(1 t
 for )0(0  t  and 0 for  t)0( . The popular copulas 

belonging to Archimedean class are Frank (1979), Clayton (1978), Gumbel (1960) and 

Hougaard (1986). While Clayton and Gumble - Hougaard (GH) are asymmetric 

Archimedean copulas, Frank copula is a symmetric Archimedean copula. With X  and 

Y  as two RV, Kendall’s tau )(  for an Archimedean copula, C, can be represented in 

the form of its generator )(  as (Nelsen, 2006) 
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Equation (4-3) is the reduced form of equation (4-1), where   is the dependence 

parameter. It is estimated from the sample estimate of Kendall’s tau )ˆ( . Considering 
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(4-4) 

In case of Clayton copula we achieve a closed form estimate as shown in equation (4-4). 

Nelsen (2006) provides the details for all the copulas of the Archimedean class. A 

summary of the relationships are provided in Panel A of the table below. Panel B provides 

a summary of all the copulas. 

Table 4-1: Summary of Different Copulas 

Panel A: Relationship between the Archimedean Copulas 

Copula ),( vuC  )(t  
    

Clayton  /1)]0,1[max(   vu  )1)(/1(  t  )2/(   0],,1[ not  

Frank avu kkk ))1/()1)(1(1ln()/1(  

 

)]1/()1ln[(  kk t

 

bD ]1)([/41 1  

 

0),,( not

 

Gumble-

Hougaard 

)])ln()ln[(1exp( /1  vu   )ln( t   /)1(   ),1[   

Panel A: Summary of the types of Copulas and tail dependence 

Copula Type of Copula Upper Tail Lower Tail  

Clayton Archimedean (non-elliptical) non-existent existent  
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Frank Archimedean (non-elliptical) non-existent non-existent  

Gumble-

Hougaard 

Archimedean (non-elliptical) Existent 

(Gumble) 

Existent 

(Hougaard) 

 

Student - t Elliptical  existent existent  

Panel A reports the relationship between the various Archimedean copulas. Panel B of the table shows the 

summary of the various copulas discussed highlights their type and tail dependence. 

a  ek ; b )2/()()(;0)]1/([)/1()( 111 


  DDdtetxD
o

t , where 
1D  is first-

order Debye function (Zhang and Singh, 2006; Maity and Kumar, 2008).  

 

4.2.2 Conditional Copula 

Here I provide an account of conditional copula modelling. Like the unconditional case I 

consider two random variables (RV), i.e. X and Y, and introduce a conditioning vector 

K. Let the conditional CDF of the RV be )|,(| KyxH KXY  
and the marginal distributions 

be )|(| KxF KX and )|(| KyF KY given K. Then there exists a copula C, such that 

),())|(),|((()|,( ||| vuCkyFkxFCkyxH KYKXKXY   (4-5) 

where, kKyx )|,(  and   is the support of k  for all k  and RRyx ),( . In 

equation (4-5), u and v are the realizations of )|(| kxFU KX
 
and )|(| kyFV KY

 
given

kK  . U and V are the conditional probability integrals of the RV, X and Y (Sklar, 1959). 

The properties of the conditional copulas are same as the unconditional copulas (Patton, 

2006). Next, I discuss the model specifications for the analysis of the copula models. 

4.3 Model Specifications 

Before I present the estimation models, it is worthwhile to report the estimation strategy. 

It is well established that financial returns in general fail to follow a normal distribution 
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and rather adhere to Student’s t-distribution (Hu, 2010). Building on this, I model each 

marginal distribution of the asset returns employing an AR (p)-EGARCH (1, 1)-t model. 

Next, I estimate the scale-free measure of dependence, which preserves the dependence 

structure during the simulation of the RV. 

The flowchart below summarizes the key steps that enable a sequential understanding of 

my proposed methodology. As reported below, there are three major steps: i) data 

analysis, ii) copula estimation and iii) estimation of joint dependence structure, which I 

next focus on. 

Figure 4-1: Flowchart Summarizing the Proposed Method 
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4.3.1 Data Analysis and Estimation Procedure 

4.3.1.1 Marginal Models 

The model I employ for marginal distributions is presented below. I assume that the 

distributions of the asset returns follow an Autoregressive Moving Average ARMA (p,q)-

EGARCH (1, 1)-t process (Nelson, 1991). The model is characterized as: 

 tikt

q

ik

k

p

j

jtijiti XX ,

1

,,   



   
(4-6) 

 
  

























q

i

q

j jt

jt

j

it

it

jjt

p

j

it aaaa
1 1

32

2

1

10

2 )(log)log(







  

(4-7) 

ditti

ti

tdiiI
d

d
...~|

)2(
1,2

,







 

(4-8) 

where tiX ,  
is the asset return series, i  and 1, ti  

are the conditional mean and error term, 

which is the news relating to the volatility from one lag period. j  is the autoregressive 

component and k
 
is the moving average parameter. The noise process t  represented 

in Equation (4-8) follows a skewed Student-t distribution with )(d  degrees of freedom 

and 
2

t  conditional variance. 
2

jt  is the GARCH component and the leverage effect is 

captured by 3a . The information contained about the volatility of the lagged period is 

captured by 1t  which represents the ARCH component. The information set is 

considered as the condition vector ‘k’ in the equation (4-5). The order of the ARMA term 

‘p’ is determined using Akaike Information Criteria (AIC).  
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It is of prime importance to have precise marginal models since the joint CDF using 

copula is a function of the marginal distributions. Thus, mis-specification of the marginal 

models can lead to mis-specified copulas. Consequently, in order to check the empirical 

validly of the marginal models, I carry out mis-specification tests following Diebold et 

al. (1998), which are discussed in the next chapter. 

 

4.3.1.2 Estimation of Scale-Free Measure of Association 

For the scale-free measure I consider paired samples of the RV, ),( ii yx
 
for ni ,...1 . The 

pairs ),( ii yx
 
and ),( jj yx

 
are concordant, provided the product of the difference of the 

consecutive RV is greater than zero, i.e. 0))((  jiji yyxx , else it is discordant. 

Kendall’s tau )(  of the sample as a measure of scale-free association is calculated as 

the probability of concordance less the probability of discordance.  
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where 








2

n

 

are the different combinations of selecting pairs from n variables, con

represents the number of concordant pairs and dis  presents the number of discordant 

pairs. 

The tail dependence measure is another property of the copula that is very useful in 

analysing the joint tail dependence of bivariate distributions. Tail dependence estimates 
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the probability of the RV in lower or upper joint tails. Intuitively, this measures the 

tendency of the asset returns to co-move up and down together. 
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 where  ]1,0[, LU 
 and 

1

XF
 and 

1

YF  are the marginal density functions of the RV 

series. If the tail dependence measures are positive then upper or lower tail dependence 

exists, i.e. )( LU   measures the probability of the RV-X is above (below) a high (low) 

quantile, given that the RV-Y is above (below) a high (low) quantile.  

Next, I allow for the tail dependence estimate to follow an evolution process that captures 

the level changes. We define the evolution process as 
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To restrict )1.1(/ LU

t , I conduct a logistic transformation on equation, i.e.
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1

1
)( . The dependence parameter is assumed to follow an ARMA (p, q) 

determined by AIC values, characterized by 
1 , the autoregressive term, and 

2 , the 

forcing variable. While the former term accounts for the persistence effect, the latter term 

captures the variation effect of the dependence parameter. I, further, add a dummy 

variable term 𝛽3𝐷
 
to allow for level variation in the dependence. The dummy variable 

takes the value ‘0’ prior to the subprime crisis, July 2007, and thereafter takes the value 

‘1’. 
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4.3.2 Copula Estimation 

4.3.2.1 Estimation of Dependence Parameter 

I obtain the dependence parameter of the Archimedean copulas )(  using the sample 

estimate of Kendall’s tau )ˆ(  in equation (4-3). For Gaussian, Student’s-t and modified 

Joe-Clayton (MJC), I estimate the dependence parameter using maximum likelihood 

(ML) method.  

Referring to equation (4-5) I have ));;|(),;|((();,( 2|1|  kyFkxFCvuC KYKX , 

where 
1  and 

2  are the coefficients of the conditioning vector k . Therefore, the joint 

density of an instance ),( tt yx is 
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From the above equation, I write the log-likelihood of the sample ),( ,1,1 tt yx
 
as 
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(4-14) 

As noted by Jondeau and Rockinger (2006), the ML estimation may be difficult to 

compute if the number of unknown parameters is large, in which case only numerical 

gradients can be computed instead of having an analytical expression of the likelihood 

gradients.  This leads to considerable slowing down of the numerical estimation. I, 
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therefore, compute the ML estimation using Inverse Function of Margins (Joe and Xu, 

1996).  This is a two-step estimation process. First, the marginal distribution parameters 

are estimated employing an AR (p)-EGARCH (1, 1)-t process as discussed above. I also 

capture the time variation of the dependence structure which further increases the number 

of unknown parameters to be estimated. The following estimation equation is used to 

compute the values of 1̂  and 2̂ . 

𝜃𝐾 = 𝑎𝑟𝑔 max
𝜃

𝐿𝑋𝑌(𝑥𝑖, 𝑦𝑖; 𝜃1, 𝜃2); 𝑓𝑜𝑟 𝑘 = 1,2  (4-15) 

Next, I estimate the copula parameter )ˆ(  using the following equation. 

 21
ˆ,ˆ,;,argˆ 


ttC yxLMax  (4-16) 

In this second step the marginal densities do not influence the copula estimation parameter 

as the marginal parameters are computed using equation (4-15). Therefore, the second 

equation remains unchanged and computes asymptotically efficient and normal estimates 

of the copula parameter (Joe, 1997; Cherubini et al., 2004). 

 

4.3.2.2 Simulation of the Random Variates using Copula Models 

In this study I employ several copula functions which capture the tail dependence 

patterns. The copulas are estimated using the inversion method by substituting the 

marginal densities of the RV in equation (4-5). 

 )(),(),( 11 vFuFHvuC YXXY

  
(4-17) 
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where 
1

XF and 
1

YF  are the marginal density functions and u and v are the probabilities, 

i.e. realizations of )|(| kxFU KX
 
and )|(| kyFV KY

 
given kK  , where U and V are 

the conditional probability integrals of the RV.  

The Gaussian copula (G) for bivariate RV is characterized as

 )(),();,( 11 vuvuCG

  , where   is the standard normal CDF with   as the 

dependence parameter and 
1
 the corresponding quantile function. Under normality 

conditions we have 


 arcsin
2

 . The copula density (c) is given as 
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Considering oLU  , i.e. zero tail dependence, for Gausian copula, equation (4-18) 

is reduced to  
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(4-19) 

where R  and I  are the correlation matrix and identity matrix respectively. In a similar 

vein, Student’s –t copula is characterized as  )(),(),;,( 11 vtutTdvuCt

 , where d

denotes degrees of freedom and t  and 1t  represents Student-t CDF and their 

corresponding quantile functions. Unlike the Gaussian copula Student’s-t copula allows 

symmetric non-zero tail dependence, i.e. oLU  . Thus, both the positive and 

negative realizations bear the same probability. 
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To accommodate likely asymmetric tail dependence, I compute Frank, Clayton, Gumbel 

- Hougaard copulas. Now I present the algorithm that I have employed to simulate these 

Archimedean copulas: i) for a specific Archimedean copula I obtain the values of 

)(),(),( 1]1[     using equation (4-2), where )(  
is the copula generator function 

with dependence parameter  . )(  is the derivative of )(  with respect to )( . ii) Next, 

I generate two uniformly distributed random variables u  and l  such that )1,0(~),( Ulu . 

iii) I obtain two new variables, 
l

u
m

)(


 
and )(1 mn  . iv)  Next I estimate 

 )()(]1[ unv   
. The variables u  and v  are in the range  1,0 . v) These simulated 

variables, u  and v , which preserve the dependence structure are then back transformed, 

replacing their values by the corresponding cumulative density to obtain the simulated 

RV in the original scale. I repeat these steps for each of the Archimedean copulas. 

Finally, I consider a MJC (Modified Joe – Clayton) copula that allows upper and lower 

tail dependence (Patton, 2006). Under symmetric dependence I have LU    . The 

copula is characterized as 
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(4-20) 

where the JCC  , the Joe-Clayton copula, is formulated as (Joe, 1997) 
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where 
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L
   and )1,0(, LU  . Alternatively, the JC copula 

is the Laplace transformation of the Clayton copula. 

The copulas defined above allow the dependent structure to vary in different ways, yet it 

is assumed to be time-invariant. To accommodate for potential time-varying dependence 

structure corresponding to conditional copulas, I allow the dependence parameter to vary 

according to an evolution process. I specify the dependence parameter )( t  of the 

Gaussian and Student’s-t copulas to follow an auto-regressive moving-average ARMA 

),1( q  process. 
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To restrict )1.1(t , we conduct a logistic transformation on equation (4-22), i.e.
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)( . The ARMA specification of the dependence structure is obtained 

based on AIC values. In the above equation 
1  is the autoregressive term, and 

2  is the 

average of the sum-product of the transformed variables u  and v . The term 11 t   

accounts for the persistence effect while the term 
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captures the 

variation effect of the dependence parameter. To allow for level variation in the 

dependence structure, I add a dummy variable term 𝛽3𝐷. This enables me to examine 

how the co-movement of the multi-assets returns has evolved over an extended time 

period from 1987 to 2012 in the US markets. The dummy variable takes the value ‘0’ 

prior to the subprime crisis, July 2007, and thereafter takes the value ‘1’.  
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I examine the performance of the various copula models based on Akaike information 

criterion (AIC), Bayesian information criterion (BIC) and log-likelihood test. The former 

is adjusted for small sample bias (Rodriguez, 2007) and the latter is a goodness-of-fit test 

for the copula models to compare the different dependence structures. 

 

4.3.3 Estimation of Multivariate Copulas Models 

4.3.3.1 Non-elliptical Copula 

To estimate multivariate dependence structure, I focus on both non-elliptical and elliptical 

copula models. Considering the former first, I formulate a hierarchical Archimedean 

copula model. Based on Savu and Trede (2010) I consider K  hierarchy levels, which are 

indexed by k , i.e. Kk ,...,1 . At each k  there are km different objects, i.e. kmn ,...,1 . 

Therefore, at 1k , I have 
1m  grouped puu ,....,1  

multivariate Archimedean copulas nC ,1  

taking the form: 
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where nu ,1  represents the set of elements of nC ,1  
with copula generator n,1 . The copulas 

at the first level are grouped to construct the copulas nC ,2  at 2k . Thus, hierarchical 

construction of Archimedean copula allows partial-exchangeable dependence structure at 

every successive level, consisting copulas from previous stage. It is characterized as 
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where n,2  
is the generator of nC ,2 and 

1

,2 n
C denotes the set of copulas at the first level 

that enters the second stage. I continue this process until I attain 1,KC . In order to achieve 

reliable 1,KC  I ensure that  nk , . 

 This states that 
1
 is completely monotonic on R  with

 KktR kk

K ,...1,0)()1(,0)(,1)0(]1,0[:  
 

and iknk CC ,1,  . The 

hierarchical Archimedean copula density is given as. 
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where the outer sums all the integers 1,1 ,..., Kmbb  such that nKnn pb ,1max 
 
and

1

1

,...,0,
1




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

K

m

n

n mpiipb
K

. These terms represent the outer derivative of 
1Km

copulas at 1K  level. The second part of the equation (4-25) represents the inner 

derivatives at 1K  level with respect to their corresponding arguments nKu ,1 . 

Next, I discuss the construction of multivariate elliptical copulas. 

 

4.3.3.2 Multivariate Elliptical Copulas 

Apart from the non-elliptical copulas, I examine the dependence structure using two 

elliptical copulas, multivariate Gaussian copula and Student t-copula. I use the results of 

these elliptical copulas as a benchmark for comparing the estimates from non-elliptical 
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copula as discussed above. A p-variate Gaussian copula of   ),0(~,...,1 RNXXX pp

is characterized as: 

   )(),...,(,..., 1

1

1

1 pRpG uuuuC    (4-26) 

where 
R  represents the p-variate standard normal CDF,   denotes the marginal normal 

CDF, R  is the correlation matrix and )( iii xFu  . The log likelihood function of the 

corresponding p-variate Gaussian copula is defined as 
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where  tptt uu ,,1

1 ,...,(   and I is an identity matrix. 
1
 is the inverse univariate 

standard distribution and R is the correlation matrix.  

In a similar vein a p-dimensional t-copula is characterized as: 

   )(),...,(,..., 1
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1 pRpt ututtuuC   (4-28) 

where 
Rt  represents the joint distribution of the vector  RtX ,0~  , t  denotes the CDF 

of a standard t-distribution and R is the correlation matrix. The corresponding log 

likelihood function is: 
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For t-copula I have  tpttt uut ,,1

1 ,...,( , which is the vector of transformed standardized 

residuals, where 1t represents inverse of Student’s t-distribution, d  is the degrees of 

freedom and R  is the correlation matrix. 

 

4.4 Summary 

Dependence measure has prime importance in analysing asset market linkages and 

financial contagion. Studies in the past have dealt this issue considering linear correlation 

as an estimate of the comovement between two random variables. Though this measure 

of association is easy and convenient to calibrate, it might yield highly biased results in 

case of non-normal distribution of the sample data. In particular, the linear correlation 

measure fails to provide an appropriate estimate of the dependence structure when dealing 

with multivariate distributions exhibiting complex dynamic characteristics. In addition, 

literature confirms the presence of asymmetric dependence among various asset returns 

(Barsky, 1989; Baele et al., 2010; Chan et al., 2011; Reboredo, 2011).  

Further, when the joint distributions of the asset returns follow a non-elliptical structure, 

linear correlation fails to provide sufficient information of their dependence structure. In 

particular two issues arise from this existing empirical evidence. The first is to propose a 

more reliable alternative density specification for a higher-dimensional case. The second 

is to formulate a measure of the variables’ dependence structure which is more instructive 

than linear correlation. In this chapter I employ an alternative method to estimate the 

dependence structure of the asset return comovements based on the theory of copula. The 
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prime motivation to employ copula is that it enables to examine scale-free dependence 

structure, which is preserved during simulation. Further, there is no restriction on the 

distribution of the data set, unlike other parametric methods. 

 Using these time-varying conditional multivariate elliptical and non-elliptical copulas, in 

the next chapter I examine the return comovements between three different asset classes: 

financial assets, commodities and real estate in the US market. Also, the proposed 

approach enables me to examine the asset return comovements during the extremes, i.e. 

tail dependencies. Analysing the tail dependence structures provide novel insights which 

have significant implications for the portfolio diversification and asset return 

comovement literature. 
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             CHAPTER 5: Examination  of Bi-variate and Joint Dep endence Structures 

Examination of Bi-variate and Joint Dependence Structures 

5.1 Introduction 

In this chapter I use time-varying conditional multivariate elliptical and non-elliptical 

copulas to examine the return comovements between three different asset classes: 

financial assets, commodities and real estate in the US market. In this regard, I report 

several key sights on asset return comovements. 

The purpose of this chapter is three fold: First, I examine the bivariate comovement of 

the asset return dynamics in the US market. Second, I statistically test the performance of 

elliptical and non-elliptical copula models for both the constant and the dynamic 

dependence structures. Third, I present and analysis of the joint dependence structure 

combining all the three asset classes, i.e. conventional assets, commodities and real estate.  

As stated in the previous chapter I adopt an alternative approach to overcome the 

limitations of simple linear correlations to examine the dependence structure of the multi-

asset return comovements. My proposed approach models the dependence structure of 

the returns across three different asset classes using dynamic conditional copula models. 

In my sample, all the five asset returns follow a non-normal distribution. I analyse both 

the general and the tail dependence structures of the bivariate asset pairs and the joint 

comovement of the multi-asset returns. The empirical findings contribute to the literature 

along several dimensions. First, the dataset contains a wider range of assets rather than 

the conventional financial assets. I analyse the multi-asset return comovements for 

common financial assets, (equities and bonds), commodities (oil and gold) and real estate. 

The period of analysis is from 1987 to 2012 (1st August 1987 to 1st September 2012), 
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which allows me to capture the changing dependence during the periods of financial 

turmoil. 

Second, I examine the dynamics of the general and the tail dependence structures for the 

ten bivariate combinations of asset pairs. It is, to my knowledge, the first study that 

comprehensively examines the combinations of the dependence structure of the multi-

asset return comovements. Further, I extend the modelling of dependence structure to 

capture the time-varying evolutionary effect of the return comovements especially during 

the crisis period. 

Third, I compare and statistically test the performance of various elliptical and non-

elliptical copula models. This enables proper selection of a superior model to understand 

more complex return dynamics, especially during periods of financial turbulences. 

Fourth, I examine the joint dependence structure by combining all the asset classes. With 

the ever rising uncertainty in the financial markets, investors do not solely invest in only 

one or two assets but in a portfolio of assets. To the best of my knowledge this is the first 

study, which attempts to examine the joint return distribution of a multi-asset portfolio. 

Therefore, this examination of the joint dependence structure of the multi-asset return 

comovement yields important information for portfolio diversification and asset 

allocation.      

This chapter has five key empirical findings: First, the time-varying copula models 

provide superior dependence structure measures compared to the static copula models. 

This illustrates that asset allocation based on simple static covariance of asset returns will 

result in underperforming portfolios. Second, findings show that lower tail dependence is 

much higher than upper tail dependence. This suggests that there is high probability of 
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extreme comovements in economic contractionary period. The higher dependence 

measure implies that some of the diversification benefits are lost during the contraction 

periods, which are characterized by increased risk. The only exception is the comovement 

between real estate and bond. Third, the empirical findings reveal an increase in the 

dependence measure of multi-asset return comovements post the August 2007 U.S. 

subprime crisis. An important implication of high dependence measure is that otherwise-

diversified portfolios, which combine safe assets such as bond and gold, show a decline 

in diversification benefits during periods of economic contraction. Fourth, results show 

that despite the volatility in financial markets caused by credit crisis, the Student t-

distribution still plays a dominant role in defining the distribution fitting.  

The rest of the chapter unfolds as follows:  Section 5.2 provides the data description. 

Section 5.3 discusses the empirical findings on dynamics of the bivariate asset return 

comovements. Section 5.4 reports the empirical findings on dynamics of the multivariate 

(combination of all the asset classes) asset return comovements and Section 5.4 concludes 

the chapter. 

 

5.2 Data Description 

I examine the joint dependence structure of five financial assets including conventional 

financial securities, commodities and real estate security for the US market. My sample 

includes i) Standard & Poor’s (S&P) 500 index (E), ii) US 10 year Government bond 

return index (B), iii) S&P Case-Shiller Composite-10 home price index (RE), iv) S&P 

GSCI Gold index (G) and v) West Texas Intermediate -WTI Cushing crude oil spot prices 

per barrel (O). The monthly returns are obtained from DataStream. The sample period is 
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from the fourth quarter 1987 to the fourth quarter 2012 (1st August 1987 to 1st September 

2012). Table 5-2 provides the summary statistics of all the financial asset returns. The 

returns are compute on a continuous compounding basis, calculated as 100 times the 

logarithmic difference of the index/price values.  

Previous studies show that changing business conditions reflect on asset returns, which 

are largely common across various asset classes (Fama and French, 1989; Balvers et al., 

1990). Consequently, we examine the monthly returns in relation to the phases of the 

business cycle. Every month is classified as either a business expansion or a business 

contraction month. This is based on the turning point, i.e. trough to peak dates, as 

specified by the NBER’s Business cycle Dating Committee8. Thus, we create two sub-

samples, the business expansion (E) phase and the business contraction (C) phase. 

Table 5-1: Turning Points in the Business Cycle 

Turning Point Date Expansion (E)/Contraction (C) Months in Phase 

0 8/1987 E1 35 

1 7/1990 C1 8 

2 3/1991 E2 120 

3 3/2001 C2 8 

4 11/2001 E3 73 

5 12/2007 C3 18 

6 6/2009 E4 40 

Notes: The turning points of the business cycle are based on the NBER-official dates of troughs 

and peaks (NBER, 2012). The sample period is from the fourth quarter of 1987 to the fourth 

quarter of 2012, yielding 302 monthly observations. Each month in the sample is divided into 

                                            

8 The NBER considers recession, i.e. contraction phase, as a significant decline in economic activities 

spread over several months. The various economic activities include real GDP, real income, whole-retail 

sales and industrial production. An expansionary phase marks the end of a contraction phase and 

beginning of the recovery phase in the business cycle (NBER, 2012).   
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either an expansionary phase or a contractionary phase based on the turning point. The 

expansionary period has 268 months and the contractionary period has 34 months. 

 

Table 5-1 shows the turning points in the business cycle. Over the sample period there 

are four expansionary and three contractionary periods. Of the 302 months in the full 

sample, 268 months, i.e. 89 percent, are in expansionary phase and 34 months, i.e. 11 

percent, are in contractionary phase. The average duration of the expansionary phases is 

66.5 months and the average duration of the contractionary phases is 11.3 months.    

Table 5-2 presents the summary statistics of the asset returns. In Panel (A) of Table 5-2 

the annualized mean return of oil (6.33 percent) is higher than any other assets followed 

by equity and bond returns of 6.27 and 5.52 percent, respectively. The standard deviation 

is highest for oil returns (33 percent) followed by equity returns (16.42 percent). Except 

for gold returns, the asset returns are negatively skewed. All the asset returns show excess 

kurtosis, indicating that the distributions have a fatter tail and the probability of extreme 

variance is more likely as compared to a normal distribution. The Jarque-Bera test 

statistics in Panel (B) of Table 5-2 confirm that the unconditional distributions of the asset 

returns are not normal. Thus, it is less likely that multivariate Gaussian distribution will 

provide the best-fit for the dependence structure. The Lagrangian Multiplier (LM) test 

examines the presence of serial correlation of the squared return up to lag 10. The 

significant LM statistics confirm the presence of autoregressive conditional 

heteroskedastic (ARCH) effects. The Ljung-Box test also reports that most of the asset 

returns are serially correlated for at least one of the lag orders. The autocorrelation test is 

performed with correction for heteroskedasticity at lag orders 1, 5 and 10.  
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Panel C of Table 5-2 provides the linear correlation matrix for the expansion and the 

contraction periods. The correlation coefficients provide insights of the asset return 

comovements. Overall, results indicate that the asset return correlation during the 

contraction phase is substantially higher than the correlation during the expansion phase 

except for the Bond-Oil pair. This potentially indicates that bond provides good hedge 

for oil during economic contraction phase. In line with Jensen and Mercer (2003), a 

marked decrease is observed in the correlation of the equity-paired assets in the expansion 

phase. For example, the equity-bond correlation in the contraction phase is 0.044, whereas 

in the expansion phase it is negative 0.133. The higher dependence measure implies that 

some of the diversification benefits are lost during the contraction periods, which are 

characterized by increased risk. Brocato and Steed (2005) show that asset allocation 

changes keyed to business cycle turning points yield improved results over a long-term 

buy and hold strategy. This exemplifies the importance of a more informative and 

dependable estimate of the dependence structure, which would lead to enhanced portfolio 

performance. Understanding the dynamics of asset return comovements in extreme 

economic conditions, particularly in the contraction phase, will provide critical 

information for better asset allocation and optimized risk diversification.   
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Table 5-2: Summary Statistics 

 Equity (E) Bond (B) Real Estate 

(RE) 

Gold (G) Oil (O) 

Panel A: Descriptive Statistics a 

Mean (%) 6.274 5.524 3.394 5.438 6.331 

Standard 

Deviation (%) 

16.428 1.293 2.730 15.449 33.000 

Kurtosis 3.854 0.138 0.611 1.986 1.687 

Skewness -1.114 -0.165 -0.726 0.064 -0.357 

Panel B: Diagnostics (1987-2012) b 

Jarque-Bera 

statistics 

208.3** 

(0.000) 

7.7**  

(0.020) 

31.5**  

(0.000) 

45.7** 

(0.000) 

48.4** 

(0.000) 

ARCH LM 

statistic (1) 

31.586** 

(0.000) 

17.737**  

(0.000) 

1741.764** 

(0.000) 

4.586** 

(0.033) 

13.676** 

(0.000) 

ARCH LM 

statistic (5) 

17.489** 

(0.000) 

8.571**  

(0.000) 

371.920** 

(0.000) 

3.003** 

(0.016) 

4.563** 

(0.000) 

ARCH LM 

statistic (10) 

12.804** 

(0.000) 

4.903**  

(0.000) 

190.231** 

(0.000) 

1.927** 

(0.041) 

2.913** 

(0.001) 

Ljung-Box 

statistic (1) 

3.293 

 (0.0705) 

9649.404** 

(0.000) 

4232.160** 

(0.000) 

4.433** 

(0.036) 

5.757** 

(0.017) 

Ljung-Box 

statistic (5) 

1.254  

(0.282) 

1932.252** 

(0.000) 

914.690** 

(0.000) 

3.005** 

(0.011) 

3.223**  

(0.007) 

Ljung-Box 

statistic (10) 

0.869  

(0.562) 

971.691** 

(0.000) 

452.606** 

(0.000) 

1.619 

(0.100) 

2.156**  

(0.022) 
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Panel C: Linear Correlations c 

Expansion Phase 

Equity (E) 1.000     

Bond (B) -0.133** 

(0.030) 

1.000    

Real Estate (RE) -0.098  

(0.108) 

-0.074 

(0.227) 

1.000   

Gold (G) -0.058  

(0.345) 

0.022  

(0.716) 

-0.057 

(0.353) 

1.000  

Oil (0) 0.071 

(0.246) 

-0.144**  

(0.018) 

0.027  

(0.660) 

0.206*** 

(0.001) 

1.000 

Contraction Phase 

Equity (E) 1.000     

Bond (B) 

 

0.044*** 

(0.006) 

1.000    

Real Estate (RE) 0.029 

(0.872) 

-0.074 

(0.676) 

1.000   

Gold (G) 0.010 

(0.956) 

0.229 

(0.193) 

-0.016 

(0.929) 

1.000  

Oil (O) 0.349** 

(0.043) 

-0.293* 

(0.093) 

0.085 

(0.632) 

0.335** 

(0.035) 

1.000 

Note: Panel A represents the descriptive statistics of the asset returns. The sample period is from 

the fourth quarter of 1987 to the fourth quarter of 2012, yielding 302 observations. The return 

figures are annualized from the monthly observations. Annualized return = [(1+monthly mean 

return)12 - 1], Annualized standard deviation = [monthly standard deviation
2/112 ]. Panel B 

provides the diagnostic test results. Under the normality null hypothesis, Jarque-Bera test statistic 

follows a Chi-square distribution with fixed (2) degrees of freedom. The null hypothesis of the 

ARCH-LM test is: there is no evidence of ARCH effect. We conduct the test at lags 1, 5 and 10 

with corresponding 1, 5, 10 degrees of freedom. Tests using other lags yield the same results. We 

conduct the Ljung-Box test for serial correlation, corrected for heteroskedasticity at lags 1, 5 and 

10. The p-values are reported in the parentheses.  

** signifies rejection of the null hypothesis at 5 percent level.  
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The commonly used measure of covariance structure, i.e. the linear correlation is one 

among the many ways to measure the degree of dependence. For the most appropriate use 

of this measure, two assumptions must be satisfied. First, the data in both the pairs must 

be generated from a Gaussian distribution. Second, the data should be in the same 

frequency. But, in this study the first assumption is clearly violated (see Panel B of Table 

5-2). Thus, I confirm that the use of serial correlation will most likely not lead to an 

appropriate estimate of the asset return dependence structure. I, therefore, focus in the use 

of the Kendall’s   measure as an alternative method to predict a more reliable dependence 

structure of the asset returns. The use of copula as discussed in the previous chapter 

computes the dependence parameter based on this alternative measure of association. 

Thus far, the evidence reported clearly show that correlation, i.e. the dependence structure 

of the asset returns, is influenced by expansion and contraction phases. Therefore, it is of 

key interest to examine the asset returns covariance during the business cycle phases. 

Such an analysis in performed in the following section.     

 

5.3 Estimation of Marginal Models 

To estimate the bivariate distributions, I first need to generate the univariate marginal 

distribution of each asset returns. In this study, I estimate ARMA (p, q) – EGARCH (1, 

1) model for each of the financial return time-series. The appropriate lag orders for each 

of the return series are selected based on the Akaike information criteria (AIC), observing 

the conditional variance equation as EGARCH (1, 1)-t process. The estimates of the 

marginal models are reported in Table 5-3. The mean equations of equity, bond, real 

estate, gold and oils follow ARMA (2, 2), ARMA (5, 5), ARMA (7, 7), ARMA (6, 6) and 
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ARMA (7, 6), respectively. Table 5-3 also shows that the marginal models are free from 

autocorrelation and heteroskedastic effects. 

Table 5-3: Parameter Estimates of the Marginal Models 

 Equity (E) Bond (B) Real Estate (RE) Gold (G) Oil (O) 

Mean Equation 

1  0.006*** 

(0.002) 

0.005*** 

(0.000) 

0.002 

(0.420) 

0.002 

(0.493) 

0.006 

(0.102) 

1  0.69*** 

(0.000) 

1.003*** 

(0.000) 

-0.140 

(0.414) 

-0.035 

(0.769) 

0.143 

(0.581) 

2  
-0.736*** 

(0.000) 

-0.310** 

(0.0422) 

0.812*** 

(0.000) 

0.520*** 

(0.000) 

1.382*** 

(0.000) 

3  

- 0.182 

(0.1832) 

-0.126 

(0.507) 

-0.477*** 

(0.000) 

-0.420 

(0.119) 

4  
- -0.692*** 

(0.000) 

-0.326* 

(0.067) 

0.510*** 

(0.000) 

-1.010*** 

(0.002) 

5  

- 0.561*** 

(0.001) 

-0.047 

(0.736) 

0.664*** 

(0.000) 

0.123 

(0.525) 

6  

- - 0.331*** 

(0.002) 

-0.353*** 

(0.005) 

0.346** 

(0.044) 

7  

- - 0.363*** 

(0.001) 

- 0.117 

(0.199) 

1  
-0.739*** 

(0.000) 

-0.942*** 

(0.000) 

1.157*** 

(0.000) 

-0.199* 

(0.061) 

-0.060 

(0.820) 

2
 

0.811*** 

(0.000) 

0.114 

(0.373) 

0.545** 

(0.021) 

-0.616*** 

(0.000) 

-1.627*** 

(0.000) 

3
 

- -0.015 

(0.894) 

0.608*** 

(0.002) 

0.573*** 

(0.000) 

0.397 

(0.212) 

4
 

- 0.671*** 

(0.000) 

0.600*** 

(0.007) 

-0.645*** 

(0.000) 

1.333*** 

(0.000) 

5
 

- -0.729*** 

(0.000) 

0.694*** 

(0.000) 

-0.623*** 

(0.000) 

-0.282 

(0.260) 
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6
 

- - 0.420*** 

(0.005) 

0.671*** 

(0.000) 

-0.515*** 

(0.001) 

7
 

- - -0.015 

(0.835) 

- - 

Variance Equation 

0a  
-1.106*** 

(0.001) 

-1.137* 

(0.063) 

-0.285 

(0.127) 

-1.454** 

(0.027) 

-0.825** 

(0.022) 

1a  0.350*** 

(0.007) 

-0.161** 

(0.040) 

0.120** 

(0.044) 

0.301** 

(0.029) 

0.353*** 

(0.002) 

2a  -0.207** 

(0.006) 

0.167** 

(0.021) 

-0.026 

(0.518) 

0.175* 

(0.062) 

0.044 

(0.358) 

3a  
0.874*** 

(0.000) 

0.839*** 

(0.000) 

0.983*** 

(0.000) 

0.810*** 

(0.000) 

0.888*** 

(0.000) 

Log likelihood 536.521 742.140 742.830 533.587 302.396 

AIC -1057.042 -1462.279 -1465.6593 -1053.173 -580.791 

ARCH LM (1) -0.050 

(0.399) 

0.041 

(0.496) 

0.014 

(0.164) 

-0.033 

(0.584) 

0.017 

(0.776) 

ARCH LM (5) -0.051 

(0.415) 

0.013 

(0.825) 

-0.022 

(0.719) 

-0.022 

(0.713) 

-0.013 

(0.827) 

ARCH LM (10) 0.025 

(0.676) 

0.013 

(0.829) 

0.005 

(0.954) 

-0.001 

(0.978) 

-0.097 

(0.129) 

Ljung-Box Statistic (20) 1.101 

(0.438) 

1.476 

(0.088) 

1.386 

(0.127) 

1.29 

(0.179) 

1.525 

(0.071) 

Notes: The table reports the parameter estimates and the corresponding p-values in the 

parentheses. All the assets are estimated using ARMA (p, q)-EGARCH (1, 1)-t model. The lags 

of the corresponding models are determined using AIC values. The mean equations of equity, 

bond, real estate, gold and oils follow ARMA (2, 2), ARMA (5, 5), ARMA (7, 7), ARMA (6, 6) 

and ARMA (7, 6), respectively. The ARCH LM test at lags 1, 5 and 10 tests for the presence of 

the ARCH effect in the residuals. Ljung-Box test statistic test for the presence of serial correlation, 

computed at lag 20. The p-values are reported in the parentheses. 

 ***, ** and * signifies rejection of the null hypothesis at 1, 5 and 10 percent levels, respectively. 
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To evaluate the adequacy of the marginal estimations, misspecification tests are 

conducted following Diebold et al.  (1998). I examine the correlograms of 
l

t uu )ˆ(  and 

l

t vv )ˆ(   for ‘l’ ranging from one to four. The values u and v are the probability integral 

transformations of the estimates of the marginal models. Table 5-4 reports the tests for 

each of the models. The correlograms show no presence of serial correlation in the first 

four moments. This indicates that the marginal distribution models for the different asset 

returns are correctly specified. This ensures that the copula models can correctly estimate 

the dependence structure of the asset return comovements. 

Table 5-4: Test of Marginal Distribution Models 

 Equity (E) Bond (B) Real Estate (RE) Gold (G) Oil (O) 

First moment 0.327 0.991 0.417 0.854 0.160 

Second moment 0.586 0.934 0.352 0.522 0.892 

Third moment 0.236 0.623 0.357 0.295 0.889 

Fourth moment 0.104 0.603 0.124 0.488 0.482 

Notes: This table reports the p-values for the LM statistics for the null of no serial correlation. 

The results are reported for the first four moments of the variables tu and tv from the marginal 

distribution models, ARMA (p, q)-EGARCH (1, 1)-t process. The test statistic follows a Chi-

squared distribution under the null. Reported p-values below 0.05 indicated rejection of the null 

hypothesis which states that the model is well specified. 

 

5.4 The Dynamics of the Bivariate Asset Return 

Comovements 

5.4.1 Parameter Estimates of the Bivariate Dependence Structures 

In this study I use MATLAB (Matrix Laboratory) software in estimating the copula 

parameters. MATLAB is a high-level language that provides an enhanced interactive 
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environment to test algorithms immediately without recompilations. The key reasons for 

using MATLAB in estimating the copula parameters are i) it allows for immediate 

execution of a command without compiling the whole programme/set of instructions, ii) 

allows for working independently with the data, keeping a track of the variables generated 

and the files produced, and iii) the ability to call external libraries with associated codes 

(aids in enhancing computing performance). These features of MATLAB greatly 

facilitate in developing algorithms that meet the desired requirements.  

Table 5-5 reports the equity-related copula parameter estimates for static and time-

varying Clayton, MJC and Student t-copula models. Panel A of Table 5-5 summarizes 

the time-invariant copula models. The constant dependence parameters of all the copulas 

are significantly different from the linear correlations (c.f. Table 5-2). To evaluate the 

goodness-of-fit for the different time-invariant copulas I calibrate the AIC, BIC measures. 

The findings suggest that Student t-copula is a more appropriate fit for the dependence 

measure.  

Panel A of Table 5-5 reports the static dependence measure of the different equity based 

asset return pairs. Based on the AIC and BIC measures I find that the Student-t copula 

outperforms the rest. Also, the lower and the upper tail probability parameter estimates 

 LU  ,  of MJC copula are significant. It is important to note that the lower tail 

dependence probability of E/B, i.e. 0.0433, is higher than the upper tail dependence 

measure (0.0139). This indicates that the likelihood of extreme equity-bond return 

comovement (degree of association between equity and bond returns) is higher in the 

contraction phase than in the expansion phase. An important implication of this finding 

is that some of the diversification benefits of investing in fixed income assets are lost 
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during periods of economic decline. Likewise the probability of the lower tail measure of 

E/O (0.0804) signifies that during the periods of economic contraction the equity and oil 

prices are more closely associated than in the expansion period. Thus, investments in 

these two assets classes might lead in considerable losses in the recessionary phases of 

the economy. 

In Panel B of Table 5-5 I capture the persistence and variation effects in the dependence 

structure of the asset return comovements. The degrees of freedom for the Student t-

copula  d , ranges from 6.64 to 19.9, which indicate that there is evidence of 

considerable comovements and tail dependence of the various asset returns. Observing 

the estimates of the MJC copula, which allows us to examine the asymmetric upper and 

lower tail dependence measures; I find evidence for asymmetric tail dependence of asset 

return comovements, which is less likely to be captured by the linear correlation measure 

of return comovements. Results show that the lower tail dependence measure  L  of E/B 

and E/O is higher than the upper tail dependence measure  U . Thus, there is evidence of 

higher probability of comovement among equity and bond returns and equity and oil 

returns in the economic contraction regime than in the economic expansion regime.  

Of course, similar results are obtained in static dependence measure (see Panel A of Table 

5-5). Yet, it is interesting to note that the probability of static tail dependence measures 

are overestimated in case of upper tail (by 44.44 percent) and underestimated in case of 

lower tail (by 15.68 percent for E/B pair and 13.54 percent for E/O pair). This bears 

considerable implications for dynamic asset management strategies.       

Since, the static case is a restricted approximation of the time-varying evolution of 

dependence parameters; Likelihood Ratio (LR) test is conducted to claim my acceptance 
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of the most appropriate copula models that defines the dependence structure. The null 

hypothesis of the test is that there is no significant difference when one moves from the 

restricted to the unrestricted time-varying model. The LR test statistics reported in the 

Panel B of Table 5-5 rejects the null for all the copula pairs. This suggests that the 

dynamics of the dependence structure is well captured by the evolutionary process 

parameters of the time-varying copula models. 

 

Table 5-5: Estimates of Equity-Paired Copula Models 

 E/B E/RE E/G E/O 

Panel A: Time-invariant having constant dependence parameter   

Student t-copula 

  0.11 (0.004)** 0.07 (0.004)** -0.04(0.006)** 0.10 (0.004)** 

AIC -12.0 -3.23 -3.25 -32.29 

BIC -12.0 -3.19 -3.22 -32.25 

Log Likelihood -6.03 -1.62 -1.64 -16.16 

 

Clayton copula 

  0.013 (0.045)** 0.0395(0.30)** 0.011(0.04)** 0.081 (0.03)** 

AIC -5.86 -0.65 -0.06 -9.04 

BIC -5.84 -0.64 -0.05 -9.03 

Log Likelihood -2.93 -0.32 -0.03 -4.52 

 

Modified Joe-Clayton Copula 

U  
0.013 (0.095)** 0.000 (0.000)** 0.000 (0.000)** 0.000 

(0.000)** 

L  0.0433 

(0.076)** 

0.000 (0.000)** 0.000 (0.000)** 0.080 (0.9)** 

AIC -11.3 -0.27 0.55 -11.67 

BIC -11.3 -0.24 0.57 -11.64 

Log Likelihood -5.68 -0.14 0.27 -5.841 
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Panel B: Time-varying with time dummy 

Student t-copula 

d  9.158 (6.323) 19.9 (6.78) 6.644 (4.702) 13.81 (2.48) 

1  0.186 (0.086)** 0.057 (0.12)** 0.021 (0.019)** 0.098 (0.02)** 

2  0.000 

(0.072)*** 

0.000 (2.12) 0.97 (0.016)** 0.899 (0.031) 

3  
0.134 (0.169) 0.013 (1.2) 0.489 (0.72) 0.004 (1.34) 

AIC -31.5 -0.51 -31.5 -37.6 

BIC -31.3 -0.49 -31.4 -37.6 

Log Likelihood 5.7 5.26 5.7 8.8 

LR (3) statistics (p-value) 11.984*** 

(0.000) 

11.45*** 

(0.000) 

10.2*** 

(0.000) 

7.871*** 

(0.000) 

 

Clayton Copula 

L

o  
-0.775 (.098)** -3.48 (1.09)** -4.03 (2.19) -3.70 (0.75)** 

L

1  
-3.913 (4.01)) -4.8441 (1.96) -4.771 (3.12) 0.137 (0.469) 

L

2  
0.088 (.295)** -0.678 (0.143) -0.65 (0.12)** -0.891 (0.048) 

L

3  
-0.002 (1.000) -0.001 (2.12) 0.000 (.018) -0.001 (0.19) 

AIC -17.0 -1.79 -7.22 -25.19 

BIC -16.8 -1.75 -7.18 -25.15 

Log Likelihood 8.52 6.90 5.61 8.60 

LR (3) statistics (p-value) 15.784*** 

(0.000) 

13.754*** 

(0.000) 

10.762*** 

(0.000) 

10.181*** 

(0.000) 

 

Modified Joe-Clayton 

Copula 

    

L

o  
-1.688 (1.000)** -9.572 (2.81)** -9.99 (7.53)** -5.71 (0.46)** 

L

1  
-4.620 (4.13) 7.913 (0.17) 9.91 (2.13) 9.99 (7.172) 

L

2  
-0.918 (0.048) 9.600 (2.786) 8.67 (5.55) 5.27 (0.610)** 
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L

3  
0.001 (2.32) -0.001 (.012) 0.000 (2.12) 0.000 (2.17) 

U

0  
0.0271 

(1.408)** 

-9.583 (3.46)** -9.8 (2.12)** -1.09 (1.43)** 

U

1  
-9.999 (5.127) 5.598 (7.49) -3.573 (3.80) -9.995 (2.78) 

U

2  
-0.056 (3.15) 9.817 (1.47) 0.420 (3.45) -0.921 (1.42) 

U

3  
-0.002 (2.68) -0.001 (1.45) 0.001 (1.13) 0.001 (1.13) 

AIC -13.8 0.65 2.04 -23.15 

BIC -13.7 0.72 2.11 -23.08 

Log Likelihood 7.94 6.31 7.00 11.59 

LR (6) statistics (p-value) 12.734***  

(0.000) 

11.464*** 

(0.000) 

14.891*** 

(0.000) 

21.911***  

(0.000) 

U  
0.009 (0.931)** 0.000 (0.902)** 0.000 (0.952)** 0.000 

(1.782)** 

L  0.051 (1.311)** 0.000 (0.872)** 0.000 (1.276)** 0.093 

(0.972)** 

Notes: The table reports the copula estimates of different equity-paired copula models. Panel A 

reports the time-invariant copula estimates, while Panel B presents the time-varying copula 

estimates. Goodness of fit AIC, BIC and log-likelihood statistics is presented for each of the 

copula models. The LR (d) test statistics test the null hypothesis that the time-invariant copula 

model is not rejected as one move from time-invariant to time-varying copula models, where (d) 

is the degrees of freedom of the LR test. The standard errors of the copula estimates and p-values 

of the LR tests are reported in the parentheses. The MA processes of E/B, E/Re, E/G, and E/O are 

1, 2, 2 and 2, respectively. 

*** and ** signifies rejection of the null hypothesis at 1 and 5 percent levels, respectively. 

 

Likewise, we estimate the dependence parameters for all the possible ten copula pairs 

from the three different asset classes. The results are provided in the chapter Appendix. 

The findings of the goodness of fit test of each of the copula pairs are provided in Table 

5-6. Panel A provides the performance statistics of the time-invariant copulas, including 

Student-t, Clayton, Frank, Gumble - Hougaard and MJC copula. The test statistics show 

that static Student t-copula provides the best fit for the dependence measure of the asset 



 

91 

return comovements based on AIC measures. Panel B reports the test statistics of the 

time-varying copula estimates, which includes Student t-copula, Clayton and MJC 

copulas. Since, the Clayton and MJC perform next best to Student t-copula they are 

included in my time-varying model. The results show that on the basis of information 

criteria the time-varying Student t-copula best fits the data for the asset return 

comovements. 

Further, the Likelihood Ratio (LR) test statistics reported in Panel B of Table 5-6 rejects 

the null for all the copula pairs. Thus, the dynamics of the dependence structure are well 

captured by the evolutionary process parameters of the time-varying copula models. 

Table 5-6: Performance Analysis of All Copula Models 

 B/RE B/G B/O RE/G RE/O G/O E/B E/RE E/G E/O 

Panel A: Time-invariant having constant dependence parameter 

Student t-copula 

AIC -4.91 -5.95 -0.12 -2.29 -0.98 -20.5 -12.0 -3.23 -3.25 -32.3 

BIC -4.87 -5.92 -0.08 -2.26 -0.94 -20.4 -12.0 -3.19 -3.22 -32.2 

Log 

Likelihoo

d 

-2.46 -2.98 -0.07 -1.15 0.45 -10.3 -6.03 -1.62 -1.64 -16.1 

 

Clayton copula 

AIC -0.84 -3.11 -3.20 0.01 0.01 -17.6 -5.86 -0.65 -0.06 -9.04 

BIC -0.83 -3.10 -3.19 0.02 0.02 -17.6 -5.84 -0.64 -0.05 -9.03 

Log 

Likelihoo
d 

-0.42 -1.56 -1.60 0.00 0.00 -8.80 -2.93 -0.32 -0.03 -4.52 

 

Frank Copula 

AIC -2.06 -0.06 0.00 0.00 0.01 -10.1 -6.21 -0.96 0.01 -2.40 

BIC -2.05 -0.04 0.01 0.01 0.01 -10.1 -6.20 -0.95 0.02 -2.39 

Log 
Likelihoo

d 

-1.03 -0.03 0.00 0.00 0.00 -5.07 -3.11 -0.48 0.00 -1.25 

 



 

92 

Gumble - Hougaard (GH) copula 

AIC -0.02 2.39 5.32 15.7 6.63 -6.36 -7.29 4.32 11.2 -3.88 

BIC -0.03 2.40 5.33 15.7 6.64 -6.35 -7.28 4.34 11.3 -3.86 

Log 

Likelihoo
d 

-0.02 1.19 2.65 7.85 3.31 -3.18 -3.65 2.16 5.61 -1.94 

 

Modified Joe – Clayton copula 

AIC -3.37 -5.26 -5.25 3.10 0.91 -18.8 -11.3 -0.27 0.55 -11.6 

BIC -3.34 -5.24 -5.23 3.12 0.94 -18.8 -11.3 -0.24 0.57 -11.4 

Log 
Likelihoo

d 

-1.69 -2.64 -2.63 1.54 0.45 -9.45 -5.68 -0.14 0.27 -5.84 

 

Panel B: Time varying with time dummy  

Time-varying Student t-copula 

AIC -13.46 -29.7 -31.3 -23.3 -22.4 -44.1 -31.5 -0.51 -31.5 -37.6 

BIC -13.44 -29.7 -31.2 -23.2 -22.4 -44.0 -31.3 -0.49 -31.4 -37.6 

Log 
Likelihoo

d 

5.74 14.9 15.6 11.6 11.2 22.2 15.7 7.26 15.7 18.8 

LR (3) 
statistics 

(p-value) 

14.2**
* 

(0.000) 

31.4**
* 

(0.000) 

30.2**
* 

(0.000) 

24.8**
* 

(0.000) 

23.2**
* 

(0.00) 

41.3*** 

(0.000) 

41.9**
* (0.00) 

16.72**
* (0.000) 

31.2**
* 

(0.000) 

47.8*** 
(0.000) 

 

Time-varying Clayton copula 

AIC -3.82 -12.0 -16.8 -0.76 -0.05 -23.0 -17.0 -1.79 -7.22 -25.1 

BIC -3.78 -12.0 -16.8 -0.72 -0.02 -22.8 -16.8 -1.75 -7.18 -25.1 

Log 

Likelihoo

d 

5.92 6.03 6.43 5.39 5.04 6.4 8.52 7.90 5.61 6.6 

LR (3) 

statistics 

(p-value) 

13*** 

(0.000) 

11.7**

*  

(0.000) 

10.7**

* 

(0.000) 

10.1**

* 

(0.000) 

9.7** 

(0.045) 

11.82**

* 

(0.000) 

15.7**

*  

(0.000) 

13.7***  

(0.000) 

10.7**

*  

(0.000) 

10.18**

* 

(0.000) 

 

Time-varying Modified Joe – Clayton copula 

AIC -3.54 -8.85 -6.46 6.64 2.72 -21.1 -13.8 0.65 2.04 -23.1 

BIC -3.47 -8.77 -6.39 6.71 2.79 -21.0 -13.7 0.72 2.11 -23.0 

Log 

Likelihoo
d 

5.79 8.44 4.25 4.30 3.34 5.6 6.94 6.31 4.00 4.5 



 

93 

LR (6) 

statistics 
(p-value) 

10.7**

* 

(0.000) 

19.4**

* 

(0.000) 

8.3** 

(0.048) 

9.7** 

(0.045) 

7.9** 

(0.045) 

11.8*** 

(0.000) 

12.7**

* 

(0.000) 

11.4*** 

(0.000) 

7.8** 

(0.049) 

8.9** 

(0.048) 

Notes: The table reports the goodness of fit AIC, BIC and log-likelihood statistics for each of the 

paired- copula models. Panel A reports the time-invariant copula estimates, while Panel B 

presents the time-varying copula estimates. The LR (d) test statistics test the null hypothesis that 

the time-invariant copula model is not rejected as one move from time-invariant to time-varying 

copula models, where (d) is the degrees of freedom of the LR test.  The standard errors of the 

copula estimates and p-values of the LR tests are reported in the parentheses.  

*, ** and *** signifies rejection of the null hypothesis at 10, 5 and 1 percent levels, respectively. 

 

5.4.2 Time-path of the Dependence Structures 

Figure 5-1 presents the time path of the dependence structure of the ten combinations of 

the bivariate copula pairs. It shows the probability of lower and the upper tail dependence 

structures along with the time path of the time-varying Student-t copula models for each 

of the pairs. In all the cases it can be seen that the dependence structure significantly 

differs from white noise and reveals useful information. It is observed that the probability 

of extreme comovement of the lower tail is higher than the upper tail for the entire set of 

asset pairs (see note of Figure 5-1). For example, the probability of extreme comovement 

of E/B pair in the expansion phase is 0.103 as compared to 0.192 in the contraction phase. 

Therefore, findings show that the covariance structure of the asset returns in the business 

expansion phase is substantially lower than in the business contraction phase. This 

indicates that there is a higher probability of extreme comovements in bear market as 

compared to bull market. An important implication of the high measure of dependence 

structure is that the diversified portfolios lose some diversification benefits during 

economic recession. Importantly, it is observed that for all the real estate-paired copulas 

and for the E/G pair the probability of joint extreme comovements in either of the phases 

is less likely.  
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Part A: For equity-paired copulas the dependence measure is highest for the E/B pair 

(0.113). This is no surprise as we expect the equities and bonds to show more return 

correlation than for the rest of the pairs. All the pairs show positive average dependence 

measure except for the E/G pair. This indicates that investment in gold can serve as a 

good hedging option as the pair also shows an average negative dependence measure of 

0.046 and 0.047 in both the lower and upper tails, respectively (for values see note Figure 

5-1). Further, there is no likelihood of extreme comovements in either of the economic 

phases. The variability of the dependence structure is highest for the E/O pair, ranging 

from negative 0.78 to positive 0.70 (for values see note Figure 5-1). The lower tail 

dependence also shows high volatility, indicating the high probability of extreme 

movements in the contraction phase. Part B: The constant dependence measure for the 

bond-paired copulas is lower than rest of the asset pairs. A key implication of the low 

covariance structure implies that investment in bonds leads to reduction in portfolio risk, 

especially during a crisis period. Intuitively, B/G pair shows a higher positive average 

dependence measure of 0.044 in the contraction phase than in the expansion phase (0.027) 

(see note of Figure 5-1). Hence, the lower tail dependence structure of the B/G pair is 

quite evident, confirming a high probability of extreme bond-gold return comovement 

during the bear market. Unlike the E/O pair, the B/O pair shows less variability, yet there 

is considerable evidence of extreme comovements during the crisis period as the 

dependence measure of both the O/E and O/B pairs are higher in the business contraction 

phase. But, it is of interest to note that O/B covariance structure is considerably low, 

indicating that investment in bonds facilitates risk diversification. Part C: The pair RE/G 

shows a negative average dependence measure of 0.091, which implies that gold is 

suitable for risk diversification. Though both the real estate pairs witness high volatility 
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and increase in dependence measure post August 2007 subprime crisis, they do not show 

any indication of extreme comovements in either bear or bull markets. Part D: The pair 

G/O show positive dependence structure with an average value of 0.18 (see note of Figure 

5-1). The pair shows high volatility in the lower tail. This indicates that the gold and oil 

returns have a high probability of extreme comovements in the crisis period.  

In sum, the average dependence structure is highest for equity-paired copulas. Further, 

evidence shows that the probability of lower tail dependence measures for all the asset 

pairs is higher than the upper tail measures except for the B/O pair. An important 

implication of this is that there is a loss of diversification benefit due to financial 

contagion. Yet for the B/O pair, the average dependence measure is low (0.017), 

indicating that investment in bonds aid in risk reduction. Bond and gold pairs have a low 

or a negative dependence structure measure and hence these assets are best suited for risk 

diversification. Yet, the dependence measure of the B/G pair is considerably high (0.044) 

during the economic contractionary phase (see note of Figure 5-1). This implies a 

contagion effect of the bond and the gold market in the contraction period. Therefore 

considering the probability of the lower tail dependence structure of each of the bond and 

gold pairs separately, investment in gold is more favourable than to investment in bond 

for all asset pairs except for oil during the contraction period for maximizing portfolio 

diversification, though investment in bonds will lead to higher returns with reduced risk 

diversification benefits. 
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Figure 5-1: Time Path of Bivariate Copula Pairs 

 

 

A (i): Dependence Structure of Equity-Bond Copula Pair 

 

 

A (ii): Dependence Structure of Equity-Real Estate Copula Pair 
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A (iii): Dependence Structure of Equity-Gold Copula Pair 

 

 

A (iv): Dependence Structure of Equity-Oil Copula Pair 
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B (i): Dependence Structure of Bond-Real Estate Copula Pair 

 

 

B (ii): Dependence Structure of Bond-Gold Copula Pair 
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B (iii): Dependence Structure of Bond-Oil Copula Pair 

 

 

C (i): Dependence Structure of Real Estate-Gold Copula Pair 
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C (ii): Dependence Structure of Real Estate-Oil Copula Pair 

 

 

D: Dependence Structure of Gold-Oil Copula Pair 

Notes: In the figure, Panel A to D shows the time path of the time-varying dependence structure 

of the 10 asset-pairs. The average dependence measures for the period 1987 to 2012 of the 

different asset pairs are: E/B = 0.113, E/RE = 0.078, E/G = -0.047, E/O = 0.103, B/RE = 0.112, 

B/G = 0.029, B/O = 0.017, RE/G = -0.091, RE/O = 0.005 and G/O = 0.180. The average 
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dependence measures for the asset pairs during the expansion period are: E/B = 0.103, E/RE = 

0.077, E/G = -0.047, E/O = 0.100, B/RE = 0.111, B/G = 0.027, B/O = 0.017, RE/G = -0.094, 

RE/O = 0.003 and G/O = 0.162.  The average dependence measure for the asset pairs during the 

contraction period are: E/B = 0.192, E/RE = 0.084, E/G = -0.046, E/O = 0.124, B/RE = 0.121, 

B/G = 0.044, B/O = 0.013, RE/G = -0.069, RE/O = 0.017 and G/O = 0.321.  The expansionary 

and the contractionary periods are based on the NBER cycles as discussed in Table 5-1. The lower 

tail corresponds to contractionary phase and the upper tail corresponds to expansionary phase. 

 

5.5 The Dynamics of the Multivariate Asset Return 

Comovements 

5.5.1 The parameters of the Multivariate Dependence Structures  

After estimating the pair wise copula estimates, I next focus on constructing the 

multivariate copula models. In this analysis, I consider both elliptical and non-elliptical 

copulas of the Archimedean family. Table 5-7 provides the parameter estimates of both 

the classes of copulas. First, I focus on the non-elliptical class of copulas that include 

Clayton, Frank and HG copulas as a basis of the 5-dimensional hierarchical copulas 

computed in this study. The dependence parameter of the hierarchical (H) structure of all 

the copulas is significant. The value of the estimate is highest for the H-GH copula (1.312) 

and lowest for the H-Clayton copula (0.102). Thus, the dependence estimate measures of 

the non-elliptical H-copulas vary over a broad range, which leads to over estimation of 

the dependence structure.  In particular, based on the information criteria measure of the 

goodness of fit test statistic, the best fit copula model is the H-Clayton copula.  

Next, I consider the elliptical copulas for the Student-t and the Gaussian copula. The high 

‘degrees of freedom’, i.e. 28, for Student t-copula confirms that there is a considerable 

evidence of significant comovements and tail dependence of the multivariate copula 

model.  The findings report that all the estimation parameters are significant for both the 
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copulas. Yet, the performance test statistics, i.e. AIC and BIC measures, show that the 

Student-t multivariate copula is a better fit of the observed data than the Gaussian copula. 

Table 5-7: Parameter Estimates of Multivariate Elliptical Copulas 

 Elliptical Copula Hierarchical (H) Non-Elliptical Copula 

 Student t-

copula 

Gaussian 

copula 

H-Clayton 

copula 

H-GH 

copula 

H-Frank 

copula 

  - - 0.102** 

 (0.01) 

1.312** 

(0.01) 

0.557**  

(0.01) 

d  28 - - - - 

1  0.019**  

(0.009) 

0.018**  

(0.01) 

- - - 

2  0.921 **  

(0.21) 

0.920**  

(0.022) 

- - - 

AIC -33.645 -32.585 -3.778 0.451 -2.893 

BIC -22.514 -25.163 -3.766 0.463 -2.880 

Log 

likelihood 

19.823 18.293 -1.892 0.222 -1.450 

Notes: The table reports the copula estimates for the different multivariate elliptical and non-

elliptical copula models. Goodness of fit AIC, BIC and log-likelihood statistics is presented for 

each of the copula models. The standard errors of the copula estimates are reported in the 

parentheses.  

** signifies rejection of the null hypothesis at 5 percent level. 

 

5.5.2 Time-path of the Multivariate Dependence Structures 

Figure 5-2 shows the time path of the dependence parameter for both the multivariate 

copulas, namely and the H-Clayton copula (Part A) the Student-t copula (Part B). We 

notice that the time path projected by the H-Clayton copula is close to the white noise, 

while the Student t-copula seems to be informative. Thus, in my discussion I focus on 

Part B of Figure 5-2, i.e. the multivariate Student t-copula. The shaded region in the figure 

represents the contractionary periods. It is observed that the dependence measure reaches 
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high peaks during these phases. Interestingly, the regimes of the JDS align closely with 

the economic expansionary and contractionary phases of the dating cycle committee as 

proposed by NBER (the dating cycles are reported in Table 5-1). 

Figure 5-2: Dependence Structure of the Multivariate Copula 

 

A: Time Path of Joint Dependence Structure of Hierarchical Clayton Copula 

 

B: Time Path of Joint Dependence Structure of Multivariate Student–t Copula  

Note: The figure represents the time-path of the multivariate copulas. Part A corresponds to 

hierarchical Clayton copula while Part B represents the Student-t copula. The shaded regions in 

Part B corresponds to the contractionary periods. The period of analysis is from the fourth quarter 

1987 to the fourth quarter 2012. 

 

During the late 1980s, the Gross Domestic Product (GDP) rose from 3 percent in 1987 to 

4.3 percent in 1988. Modest growth and low unemployment marked the expansionary 
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phase in the economy, triggering a sharp fall in the dependence measure. By the early 

1990s, signs of trouble began to emerge in the US economy. Investor sentiments about 

the inflation due to large US budget deficits pushed the economy into recession during 

July 1990 to March 1991. In this phase the dependence structure witnessed a sharp rise 

peaking to 0.097. The recession of 1991-1992 and the prolonged high unemployment 

rates gradually ended over the next couple of year as the economy stated to recover. Yet, 

the fiscal discipline during the 1990s which was extended to 1993 substantially reduced 

the scope for the US economy to introduce policy changes for future growth. Further, the 

failure of the Health and security Act in 1994 resulted in a mere contraction of the 

economy. Consequently, we observe a rise in the dependence structure during the years 

1993-1994. In the following years, 1995 to 1997 the corporate profits declined. The 

economy entered into a sub-contractionary period with yet another rise in the dependence 

measure. But, even as the manufacturing profit rate fell significantly, the stock market 

witnessed a sharp rally during 1997-2000. The ‘wealth effect’ of the rising equity markets 

replaced the revival of the manufacturing profits. In 1998, the Wall Street witnessed the 

bailout of Long Term Capital Management (LTCM), triggering a reaction across the US 

financial markets. The dependence structure significantly rose during this period. 

In the early 2000s, the US economy witnessed dot com bubble. This was created by the 

growing gap between the rising equity prices and the falling corporate profitability. The 

economy entered a contractionary phase following the dot com crisis. As the recession 

deepened, the US Federal Reserve brought down the interest rate. Consequently, the 

economy recovered as the investors increased their spending rate. Corporations restored 

their inventories. The US household debt exploded. This laid the foundation for the 2007-

2009 subprime crises. During this contractionary phase the dependence measure reached 
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a peak value of 0.154. Thereafter, the US economy witnessed a slow recovery. Yet, the 

average dependence remained high in the following years 2009-2012. 

Panel A of Figure 5-3 shows the probability of extreme variations in the JDS. It is 

observed that neither the lower nor the upper tails are statistically significant. Hence, 

extreme events are less likely to happen and also there is no time variation in the tail 

dependence of the JDS. For economic significance, it implies that if certain asset returns 

experience extreme downturn or upturn, then it will not impact the joint dependence 

measure. In Panel B of Figure 5-3, I show the average joint dependence measure 

combining all the assets during the period August 1987 to September 2012. It is evident 

that the dependence measure during the economic contractionary period is higher than 

the economic expansionary period. Further, it shows evidence of increase in the 

dependence measure post August 2007 subprime crisis. 
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Figure 5-3: Joint-Dependence Structure 

 

Panel A: Probability of Tail Dependence  

 

Panel B: Average Joint-Dependence Structure 

Note: The figure shows dependence structure of the joint return movements of the three different 

asset class. The period of analysis is from the fourth quarter 1987 to the fourth quarter 2012. The 

shaded portion in Panel A represents the upper and the lower tail dependence. It is evident that 

no significant variation is observed. Panel B presents the average dependence measure for the 

whole sample. It is evident that the dependence measure increases post sub-prime crisis. In panel 

B the various economic expansion (E) and economic contraction (C) corresponds to the economic 

cycles as dated by NBER. The periods are presented in Table 5-1. 

 

5.6 Summary  

In this chapter, I use copula models to examine the return comovement of five assets 

belonging to three different asset classes: financial assets (equities and bonds), real estate 

(housing) and commodities (gold and oil) for the US market. I examine the bivariate and 
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the multivariate dependence structures using static and time-varying elliptical and non-

elliptical copulas. First, I model the appropriate marginal distributions for each of the 

financial assets using the standard ARMA (p, q)-t-EGARCH (1, 1) model. Next, I carry 

out the misspecification test of the conditional distributions following Diebold et al. 

(1998) to verify the reliability of the models constructed. Thereafter, five copula models 

are constructed, namely Student-t, Clayton, Frank, GH and MJC to examine the bivariate 

dependence structure of the asset return pairs. Moreover, I allow the dependence structure 

to follow an evolution process to examine the time varying nature of the dependence 

measure. I report and analyse the goodness of fit statistics and the time path of the 

dependence structures of each of the bivariate copula pairs. Next, I construct two elliptical 

multivariate copulas, i.e. Student-t and Gaussian, and three hierarchical non-elliptical 

multivariate copulas, i.e. H-Clayton, H-Frank and HGH, to examine the dependence 

structure of the multi-asset return comovements. I report and analyse the goodness of fit 

statistics and time path of the dependence structure for each of the multivariate copula 

models. Based on my examination, the key findings are as follows: 

First, the Student-t copula provides superior dependence measures for all the 

combinations of the asset pairs across the three different asset classes. Further, as we 

increase our sample size, Student-t copula should be most appropriate and preferred from 

an estimation purpose. Second, concerning the bivariate copula approach: i) the Student-

t copulas dominate in both the static case with constant dependence structure and the time 

varying case with the dependence structure following an ARMA process, ii) in case of  

non-elliptical copulas the Clayton copulas show the best fit statistics followed by MJC. 

Yet, it should be noted that only in the case of B/RE and E/RE the time-varying Clayton 

copula dominates over Student t-copula. This is because of the asymptotic joint 
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distribution of B/RE and E/RE.  Third, the LR test statistics of the time-varying copulas 

rejects the null for all the copula pairs. This specifies that the dynamics of the dependence 

structure are well captured by the evolutionary process of the time-varying copula models. 

Consistent with this finding, I also observe that the static dependence measure 

overestimates the correlation of the asset returns during the expansion phase and 

underestimates the correlation measure in the contraction phase. Fourth, for the 

multivariate copula models, the Student-t copula dominates over the Gaussian copula. 

Likewise the H-Clayton copula dominates over the other non-elliptical Archimedean 

copulas. Focusing on the non-elliptical hierarchical copulas, I find that the goodness of 

fit statistic is considerably low and the corresponding dependence structure generated is 

close to white noise and provides less information. In contrast to the H-Clayton copula, 

the time path dependence structure generated by the Student t-copula provides substantial 

information regarding the comovement of the multi-asset returns. Results also show an 

increase in the dependence measure of the return comovements for the combination of all 

the assets since the August 2007 subprime crisis. This suggests that some diversification 

benefits are reduced due to high measure of return comovement. Further, it is observed 

that Student-t copula provides the best fit and its time-variant construction dominates over 

the other copula models. This indicates that Student –t distribution stages a dominant role 

in distribution fitting.  

These findings have important implications for portfolio diversification and asset 

allocation. For instance, if the dependence structure of the asset returns comovements is 

sufficiently estimated, dynamic asset allocation techniques can be adopted to rebalance 

the multi-asset portfolio. Analysing the tails of the dependence structure reveals critical 

information for active portfolio management, specifically during extreme market 
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conditions. In particular, the findings of the lower tails favour (i) investments in gold over 

bond during economic contraction phase to maximize risk diversification and (ii) show 

that investment in bonds provide superior hedge for oil.  

Even if the dependence structure of the asset return comovements might not be perfectly 

predicted especially during periods of economic crisis, my findings still hold important 

implications for portfolio diversification and hedging. In phases of economic contraction, 

the primary concern of the investors is to minimize losses. Time path of the dependence 

structure reveal that there is evidence of financial contagion between all assets, yet the 

probability of joint extreme events is significantly less for the gold-paired copulas. This 

implies that in order to hedge financial risks when it is most needed, investors should hold 

a component of gold in their portfolio. 

 

5.7  Appendix 

The table below reports the copula parameter estimates for static and time-varying 

Clayton, MJC and Student t-copula models for bond, real estate a, oil and gold based 

pairs. Panel A of Table 5-A1 and Table 5-A2 summarizes the time-invariant copula 

models. The constant dependence parameters of all the copulas are significantly different 

from the linear correlations (linear correlations are reported in Table 5-2). To evaluate the 

goodness-of-fit for the different time-invariant copulas the AIC, BIC measures are 

reported. The findings suggest that Student t-copula is a more appropriate fit for the 

dependence measure. 

Panel A of Table 5-A1 and Table 5-A1 reports the static dependence measure of the 

different asset return pairs. Based on the AIC and BIC measures it is evident that the 

Student-t copula outperforms the rest. Also, the lower and the upper tail probability 
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parameter estimates  LU  ,  of MJC copula are significant. It is important to note that 

the probability of lower tail extreme comovement are higher than the upper tail. This 

indicates that the likelihood of extreme return comovement (degree of association 

between various asset return) is higher in the economic contraction phase than in the 

economic expansion phase. An important implication of this finding is that some of the 

diversification benefits of investing in fixed income assets are lost during periods of 

economic decline.  

Panel B of Table 5-A1 and Table 5-A2 reports the persistence and variation effects in the 

dependence structure of the asset return comovements. The degrees of freedom for the 

Student t-copula  d , ranges from 7.478 to 19.955, which indicate that there is evidence 

of considerable comovements and tail dependence of the various asset returns. Observing 

the estimates of the MJC copula, which allows us to examine the asymmetric upper and 

lower tail dependence measures; evidence for asymmetric tail dependence of asset return 

comovements is observed, which is less likely to be captured by the linear correlation 

measure of return comovements. Results show that in general the lower tail dependence 

is higher than the upper tail dependence measure  U . Thus, there is evidence of higher 

probability of comovement among asset returns in the economic contraction regime than 

in the economic expansion regime.  

Similar results are obtained for static dependence measure (see Panel A of Table 5-A1 

and Table 5-A2). However, it is interesting to note that the probability of static tail 

dependence measures are overestimated in case of upper tail and underestimated in case 

of lower tail. This bears considerable implications for dynamic asset management 

strategies. Since, the static case is a restricted approximation of the time-varying 
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evolution of dependence parameters, Likelihood Ratio (LR) test is conducted to claim the 

acceptance of the most appropriate copula models that defines the dependence structure. 

The null hypothesis of the test is that there is no significant difference when one moves 

from the restricted to the unrestricted time-varying model. The LR test statistics reported 

in the Panel B of Table 5-A1 and Table 5-A2 rejects the null for all the copula pairs. This 

suggests that the dynamics of the dependence structure is well captured by the 

evolutionary process parameters of the time-varying copula models. 
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Table 5 (A-1): The Estimates of Copula Parameters 

 B/G B/RE B/O 

Panel A: Time-invariant having constant dependence parameter    

Student t-copula 

  0.076 (0.037)** -0.063 (0.044)** -0.163(0.045)** 

AIC -12.0 -3.23 -3.25 

BIC -12.0 -3.19 -3.22 

Log Likelihood -6.03 -1.62 -1.64 

Clayton copula 

  0.063 (0.045)** -0.05(0.030)** -0.140(0.040)** 

AIC -5.86 -0.65 -0.06 

BIC -5.84 -0.64 -0.05 

Log Likelihood -2.93 -0.32 -0.03 

Modified Joe-Clayton Copula 

U  
0.000 (0.095)** 0.009 (0.000)** 0.000 (0.000)** 

L  0.340 (0.076)** 0.000 (0.000)** 0.041 (0.000)** 

AIC -11.3 -0.27 0.55 

BIC -11.3 -0.24 0.57 

Log Likelihood -5.68 -0.14 0.27 

Panel B: Time-varying with time dummy 

Student t-copula    

d  7.869 (6.323) 19.564 (6.78) 7.478 (4.702) 

1  0.010 (0.086)** 0.135 (0.12)** 0.044 (0.047)** 

2  0.604 (0.072)*** 0.403 (2.12) 0.841 (0.024)** 

3  
0.014 (0.169) 0.013 (1.2) 0.059 (0.290) 

AIC -31.5 -0.51 -31.5 

BIC -31.3 -0.49 -31.4 

Log Likelihood 5.7 5.26 5.7 

LR (3) statistics (p-value) 11.984*** 

(0.000) 

11.45*** 

(0.000) 

10.2*** 

(0.000) 
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Clayton Copula 

L

o  
-5.289 (.098)** -2.051 (1.09)** -1.043 (0.19) 

L

1  
3.007 (4.01)) -3.744 (1.96) -3.091 (1.12) 

L

2  
-0.804 (.295)** -0.091 (0.143) -0.71 (0.19)** 

L

3  
0.002 (1.000) -0.001 (2.12) 0.000 (.010) 

AIC -17.0 -1.79 -7.22 

BIC -16.8 -1.75 -7.18 

Log Likelihood 8.52 6.90 5.61 

LR (3) statistics (p-value) 15.784*** 

(0.000) 

13.754*** 

(0.000) 

10.762*** 

(0.000) 

 

Modified Joe-Clayton Copula 

   

L

o  
-9.205 (1.000)** -9.193 (2.81)** -9.577 (7.530)** 

L

1  
-7.063 (4.13) -7.914 (0.17) 9.996 (2.072) 

L

2  
0.408 (0.048) -0.164 (2.786) 4.143 (3.338) 

L

3  
0.001 (2.32) -0.001 (.012) 0.000 (2.720) 

U

0  
-9.991 (1.408)** -9.992 (3.46)** -9.992 (2.120)** 

U

1  
0.330 (5.127) 1.340 (7.49) 0.329 (3.800) 

U

2  
9.999 (3.15) 9.943 (1.47) 9.991 (3.450) 

U

3  
0.002 (2.68) -0.001 (1.45) 0.001 (0.930) 

AIC -13.8 0.65 2.04 

BIC -13.7 0.72 2.11 

Log Likelihood 7.94 6.31 7.00 

LR (6) statistics (p-value) 12.734***  

(0.000) 

11.464*** 

(0.000) 

14.891*** 

(0.000) 

U  
0.000 (0.095)** 0.010 (0.000)** 0.000 (0.000)** 
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L  0.410 (0.076)** 0.000 (0.000)** 0.046 (0.000)** 

Notes: The table reports the copula estimates of different bond-paired copula models. Panel A 

reports the time-invariant copula estimates, while Panel B presents the time-varying copula 

estimates. Goodness of fit AIC, BIC and log-likelihood statistics is presented for each of the 

copula models. The LR (d) test statistics test the null hypothesis that the time-invariant copula 

model is not rejected as one move from time-invariant to time-varying copula models, where (d) 

is the degrees of freedom of the LR test. The standard errors of the copula estimates and p-values 

of the LR tests are reported in the parentheses. The MA processes of B/G, B/Re, and B/O are 4, 

1 and 2, respectively. 

*** and ** signifies rejection of the null hypothesis at 1 and 5 percent levels, respectively. 

 

Table 5 (A-2): The Estimates of Copula Parameters 

 RE/G RE/O G/O 

Panel A: Time-invariant having constant dependence parameter    

Student t-copula 

  -0.051 (0.004)** 0.101 (0.004)** 0.340 (0.006)** 

AIC -12.0 -3.23 -3.25 

BIC -12.0 -3.19 -3.22 

Log Likelihood -6.03 -1.62 -1.64 

Clayton copula 

  0.013 (0.045)** 0.039 (0.30)** 0.011 (0.04)** 

AIC -5.86 -0.65 -0.06 

BIC -5.84 -0.64 -0.05 

Log Likelihood -2.93 -0.32 -0.03 

Modified Joe-Clayton Copula 

U  
0.000 (0.095)** 0.000 (0.000)** 0.000 (0.000)** 

L  0.000 (0.076)** 0.000 (0.000)** 0.557 (0.000)** 

AIC -11.3 -0.27 0.55 

BIC -11.3 -0.24 0.57 

Log Likelihood -5.68 -0.14 0.27 
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Panel B: Time-varying with time dummy 

Student t-copula    

d  8.754 (6.323) 19.955 (6.78) 9.558 (4.702) 

1  0.001 (0.086) 0.000 (0.12) 0.099 (0.019)** 

2  0.230 (0.072)*** 0.389 (2.12) 0.899 (0.016)** 

3  
0.034 (0.169) 0.013 (1.2) 0.009 (0.72) 

AIC -31.5 -0.51 -31.5 

BIC -31.3 -0.49 -31.4 

Log Likelihood 5.7 5.26 5.7 

LR (3) statistics (p-value) 11.984*** 

(0.000) 

11.45*** 

(0.000) 

10.2*** 

(0.000) 

Clayton Copula 

L

o  
-0.066 (.098)** -6.727 (1.09)** -5.047 (2.19)** 

L

1  
-0.009 (4.01) 0.579 (1.96)** 0.771 (3.12)** 

L

2  
0.088 (0.295)* -0.970 (0.143) -1.096 (0.12)** 

L

3  
0.002 (1.000) -0.001 (2.12) 0.000 (.018) 

AIC -17.0 -1.79 -7.22 

BIC -16.8 -1.75 -7.18 

Log Likelihood 8.52 6.90 5.61 

LR (3) statistics (p-value) 15.784*** 

(0.000) 

13.754*** 

(0.000) 

10.762*** 

(0.000) 

 

Modified Joe-Clayton Copula 

   

L

o  
-1.692 (1.000)** -1.342 (2.81)** -1.99 (7.53)** 

L

1  
4.339 (4.13) -0.685 (0.17) 0.791 (2.13) 

L

2  
2.472 (0.048) 2.452(2.786) 1.467 (5.55) 

L

3  
0.001 (2.32) -0.001 (.012) 0.000 (2.12) 
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U

0  
-8.849 (1.408)** -0.838 (3.46)** -0.981 (2.12)** 

U

1  
1.586 (5.127) -0.550 (7.49) -0.573 (3.80) 

U

2  
9.102 (3.15) 1.746 (1.47) 0.721 (3.45) 

U

3  
-0.002 (2.68) -0.001 (1.45) 0.001 (1.13) 

AIC -13.8 0.65 2.04 

BIC -13.7 0.72 2.11 

Log Likelihood 7.94 6.31 7.00 

LR (6) statistics (p-value) 12.734***  

(0.000) 

11.464*** 

(0.000) 

14.891*** 

(0.000) 

U  
0.000 (0.095)** 0.000 (0.000)** 0.000 (0.000)** 

L  0.000 (0.076)** 0.000 (0.000)** 0.603 (0.000)** 

Notes: The table reports the copula estimates of different real estate and gold-paired copula 

models. Panel A reports the time-invariant copula estimates, while Panel B presents the time-

varying copula estimates. Goodness of fit AIC, BIC and log-likelihood statistics is presented for 

each of the copula models. The LR (d) test statistics test the null hypothesis that the time-invariant 

copula model is not rejected as one move from time-invariant to time-varying copula models, 

where (d) is the degrees of freedom of the LR test. The standard errors of the copula estimates 

and p-values of the LR tests are reported in the parentheses. The MA processes of Re/G, Re/O, 

and G/O are 2, 2 and 2, respectively. 

*** and ** signifies rejection of the null hypothesis at 1 and 5 percent levels, respectively. 
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            CHAPTER 6: Modell ing the D ynamics of the Dependence Structure Models 

Modelling the Dynamics of the Dependence Structure Models 

6.1 Introduction 

A model identifying variations in the asset market linkages and decomposing the effects of 

macroeconomic and non-macro factors influencing the dependence structure of different asset 

return comovements is critical for accurately estimating the portfolio risk. Further, identifying 

the determinants of asset return comovements across different asset classes has significant 

implications for policymakers and financial regulators. If different assets show positive 

comovements especially during periods of economic contraction (For example, the probability 

of extreme comovement of E/B pair in the expansion phase is 0.103 as compared to 0.192 in 

the contraction phase, see Figure 5.1), then an understanding of key determinants of their 

dependence structures will aid in implementation of appropriate interventions by the policy 

makers. Previous studies exist on stock-bond return comovement; however, research on the 

determinants of the linkages amongst other asset classes is relatively scarce. Thus, in spite of 

knowing the importance of such an examination the present body of literature fails to answer 

various questions as highlighted in the literature review. For instance, questions such as what 

are the determinants of the multi-asset return comovements? What are the differential impacts 

of these economic factors during the economic contraction and economic expansion? Are there 

any other non-macroeconomic factors that influence the return comovements of the 

conventional assets and the commodities and oil? These questions still remain unexplored in 

the existing studies. 

To answer the above questions, two key issues need to be addressed. First, to model the 

dependence structure of the asset return comovements and second to link it with the factors 

that influences it. In the previous two chapters I have comprehensively addressed the former 
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issue. I have examined the dependence structures and have identified and explored their 

stylised facts. Now, focusing on the latter issue, two prime concerns arise. First, to identify the 

state variables that is likely to influence the return comovements and second, to construct a 

structural model that adequately identifies and accommodates for the dynamics of the state 

variables, i.e. the determinants of the return comovements. In this chapter, I address these 

issues. In particular, the purpose of this chapter is twofold: First, to propose the state variables 

and second, to model the dynamic of the behaviour of these factors. 

This work, in modelling the dynamics of the determinants of the return comovements, has a 

number of distinct features. First, I consider a wide range of macro and non-macro variables to 

explore the determinants of the dynamics of the dependence structures for the 11 combinations 

of asset pairs. The state variables include interest rates, output gap and inflation and also risk 

aversion. I also consider macroeconomic uncertainty measures to accommodate for economic 

uncertainties as shown by David (2008) and Bekaert et al. (2009a). Additionally, other non-

macro variables are included such as liquidity for stock and bond markets, variance premium 

and depth of recession. This is, to the best of my knowledge, the first study that 

comprehensively examines the macro and non-macro determinants of the dependence structure 

for three different asset classes. Third, I propose two structural frameworks to examine the 

influence of the state variables on the dependence structures. First, I model a structural 

framework to examine the dynamics of the state variables. This structural framework has three 

key economic implications i) it allows the dynamics of the state variables to depend on the 

expectations of future values as is true in cases of macro-models ii) it captures the 

contemporaneous correlation between the fundamental state variables and iii) it captures the 

structural changes in the macro-economic relationships. These regime-switching models 

accommodate for heteroskedastic shocks in the state variables. Second, I impose structural 

restrictions inspired by New-Keynesian dynamics in identifying the macroeconomic variables. 
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Third, the estimated state variables are fed into a Markov Switching Stochastic Volatility 

(MSSV) model to examine the influence of the state variables on the return comovements.  

The rest of the paper is organized as follows: Section 2 presents the Markov switching model 

in investigating the dependence structure. Section 3 discusses the selection and modelling of 

the dynamics of state variables and Section 4 Section 5 concludes the paper. 

 

6.2 Modelling the Dynamics of the Dependence Structure 

I employ a Markov switching (MS) model in investigating the dependence structures. Further, 

this study allows each state variable to follow an evolutionary process which is presented in 

the following section. Although autoregressive conditional heteroskedasticity (ARCH) models 

can be employed to tackle this issue (Bollerslev et al., 1988; Engle, 1982), the standard 

normally and independently distributed (NID) assumption of the error term is often violated in 

the practice. I, therefore, specify a model for the state variables that allows each of the vectors 

to follow an independent stochastic volatility (ISV) process. The stochastic volatility (SV) 

specification builds in a time-varying variance process for each of the elements of the structural 

factors, by allowing the variance to be a latent process. 

 

7.2.1 The Markov Switching (MS) Model 

I specify the MS model, which defines the dependence structure ty  as 





L

l

t

S

tltlt xSy
1

,   
(6-1) 



 

120 

where L denotes the number of switching coefficients, tlx , represents the explanatory state 

variables and  
tSt P  ~  with  P  as the probability density function of the innovations, 

defined by the vector  . Each of the independent state variables follows a Markov switching 

stochastic volatility (MSSV) process, which we discuss next. 

  

6.2.2 The Stochastic Volatility (SV) Model 

In contract to the ARCH-type models, I allow the log volatility of the state variables to evolve 

stochastically over time. Therefore, my main motive is to make the model parsimonious and 

yet flexible. Following the discrete type convention (Ball and Torous, 1999; Shephard, 1996), 

I characterize the SV model as an extension of the time-diffusion process 

ttttt xbxax  

11    (6-2) 

where   represents the diffusion term, 1 ttt xxx
 
and t  

is the standard normal random 

variable. The residual of the above equation is tttt xe  

1 . The model allows the volatility 

   to evolve stochastically, following a first-order autoregressive process 

ttt   

2

1

2 loglog  (6-3) 

where 𝜂𝑡 ∼ 𝑁(0, 𝜎𝜂
2), 𝑖. 𝑖. 𝑑. represents the disturbance term. It makes the variance subjected to 

random shocks, making the process stochastic. 

Harvey et al. (1994) provides a quasi-maximum likelihood estimation procedure for the SV 

models. The approach transforms the residuals in equation (6-2) to 1 ttt bxaxe  and 

allows formulating a quasi-likelihood function by employing Kalman filter. The log of the 

squared residuals is  
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2

1

22 loglog2loglog tttt xe     (6-4) 

Considering 
2log tt ez  and 

2log ttg  equation (6-) reduces to 

2

1 loglog2 tttt xgz     (6-5) 

where ttt gg   1 . Next I discuss the MSSV model, which is employed to examine the 

dynamics of the dependence structure in equation (6-1). 

 

6.2.3 The Markov Switching Stochastic Volatility (MSSV) model 

This is a generalization of the SV and the MS model. This model allows the volatility to vary 

across different regimes. Assuming constant volatility in the regimes will yield in either 

underestimation or overestimation of the volatility. Thus, the motivation to use MSSV is that 

it allows different estimates of the elasticity of variance   . In this study the MSSV model is 

characterized as 

ttmt

tttt

gg

xgz













1

2

1 loglog2
 

(6-6) 

In contrast to equation (6-5), the above equation defines 
2log mm   , allowing me to capture 

the different regimes at a particular point in time. Duffee (1993) provides evidence for 

structural breaks with the monetarist experiment and shows that even the SV models lack in 

analysing these effects in the economy.  With the regimes governing the dynamic behaviour of 

the estimated state variables, I can condition a particular regime and calibrate the density of the 

variable of interest. In this parameterization of the MS model, the transition probabilities from 

state m to state n in time t  are defined as  nSmSp ttmn  1Pr . It should be noted that for 
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Mm ,...,1 , only  1MM  needs to be specified as 

   


  
1

1 11 Pr1Pr
M

m ttttmn nSmSnSMSp . In my model I allow the 

unconditional volatility to change between different states by allowing i  in equation (6-2) to 

take values  Mm ,...,1 at time t . The corresponding equation transforms to 

ttmtt xbxax  

11    (6-7) 

An important component of the structure of the Markov switching model is that the switching 

of the states follows a stochastic process. Thus, identifying states based on distributional 

characterise of the regime switching variable, such as (𝜇 ± 𝜎), i.e. mean plus or minus standard 

deviation, would lead to restricted form of the switching model failing to capture the true 

dynamics of the dependence structure. However, weak regime classification will imply that the 

model is unable to successfully distinguish between the regimes from the behaviour of the data 

leading to misspecification.  In order to address this issue, in this study I identify the regimes 

based on regime switching classification. An ideal switching model should classify the regimes 

sharply, i.e. the regime transition probabilities (𝑝𝑚𝑛) should be as close to 0 or 1. Based on 

Ang and Bakaert (2002) I construct the regime classification statistic (RCS) for M states as 

𝑅𝐶𝑆(𝑀) = 100𝑀2
1

𝑇
∑ (∏ 𝑝𝑚𝑡

𝑀

𝑚=1
)

𝑇

𝑡=1
 

 

 where  𝑝𝑚𝑡 = 𝑃𝑟 (𝑆𝑡 = 𝑚|𝐼𝑇) indicate the regime transition probabilities and 100𝑀2 serves 

as a normalizing constant to keep the statistic between 0 and 100. A value of 0 signifies perfect 

regime classification, whereas a value of 100 implies that the regimes are not capable of 

distinguishing the behaviour of the data, i.e. dependence structure, across the defined regimes 

and hence they are irrelevant. 
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I use Kalman filter of the estimation of the MSSV model. However, it should be noted that the 

above procedures makes our process exclusively path dependent. Hence, to remove the path 

dependence I compute the conditional expectation of the log-volatility forecast by taking the 

weighted average output of the previous iteration. 

Next I discuss the filtering procedure used for the MSSV model based on Kalman filter 

mechanism for the SV models and Hamilton (1989) filter that allows estimation of the 

probability of the regimes at time t  iteratively.  

 

6.2.4 Estimation filter for the MSSV model 

The Kalpan filter employed for projection is an iterative process. It forecasts the state variable 

at '1' t period and updates it when tz  is observable in the equation (6-6). For deriving the 

filtering equations I denote: 

 11

),(

1| ,,   tttt

nm

tt nSmSgEg  ,  11

,

1|

,

1| ,,)(   ttt

nm

ttt

nm

tt nSmSggEp  ,

 11| ,   ttt

m

tt mSgEg  and  1

2

1|1| ,)(   tt

m

ttt

m

tt mSggEp  . 

Following Smith (2002), I first forecast log-volatility and then update the previous forecasted 

estimate. The sequential steps are: 

Step 1: The log-volatility is forecast using: 

n

ttmm

nm

tt gg 1|1

,

1|     (6-8) 

2

1|1

2,

1| n

n

ttm

nm

tt pp     
(6-9) 

Step 2: The forecasted estimate is updated using 
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 nm
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(6-11) 

The conditional densities are computed using the following equation 

 
 

nm

tt

nm

tt

nm

ttt

nm

tt

tttt p

p

zz

p

nSmSzf ,

1|

1

2
,

1|

2,

1|

2
,

1|

11

2
2

exp

2
2

1
,, 



























































  

(6-12)  

It can be noted that the above procedures makes the process exclusively path dependent. Hence, 

to remove the path dependence I rely on Kim (1994) as stated in Smith (2002). I compute the 

conditional expectation of the log-volatility forecast by taking the weighted average output of 

the previous iteration using the formulations stated below. 
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I calculate the regime probabilities based on Smith’s (2002) modification of Hamilton’s (1989) 

filter. First, I estimate the regime probabilities using 

     11111 PrPr,Pr   ttttttt mSnSmSnSmS   (6-15)  
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The term  11Pr   tt mS   in the equation (6-15) is the previous iteration filter output. Next I 

calibrate the joint density using 

     111111 Pr,,,,   tttttttttt mSnSmSzfnSmSzf   (6-16)  

where  11,,   tttt nSmSzf   is defined previously in equation (6-12). In step three we 

integrate the regimes to calculate the unconditional density as given in equation (6-17) and then 

we update the probability of the regimes in state '' t  using equation (6-18). 
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7.3 Estimating the State Variables 

7.3.1 Selection of the State Variables 

Here, I provide a discussion of macroeconomic and non-macroeconomic factors which we 

include in our analysis.  

Macroeconomic Variables – The selection of our standard macroeconomic variables is based 

on the existing literature (d’Addona and Kind, 2006; Fama and Schwert,1977; Bekaert and 

Engstrom, 2010) . I include three macro-economic factors: inflation, the nominal risk-free rate 

and the output gap. These variables predominantly affect both cash flows and discount rates 

and hence affect asset values (d’Addona and Kind, 2006). However, it is not always easy to 

predict their precise impact on asset returns. For instance, since bonds have predetermined 

fixed cash flows, inflation influences stocks and bond returns differently. Analogously, if the 
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output gap is associated with dividends, they should influence stock returns but not fixed 

income securities. Yet, both inflation and output gap drives the term structure of interest rates. 

Therefore, these two state variables have an influence on the asset prices. But, since equities 

are a claim on real assets, expected inflation should not influence the discount rate on stocks. 

Yet, a recurring finding by Fama and Schwert (1977) show that stock returns are negatively 

correlated with expected inflation. This also suggests that equities are inadequately hedged 

against inflation shocks. Campbell and Vuolteenaho (2004) interpret this as money illusion, 

whereas Bekaert and Engstrom (2010) argue that inflation and risk premiums are correlated. In 

this study, the sign of the exposure is left unconstrained. This allows the model to gain 

maximum power in explaining the variation in the data.  

The interest rate affects most of the variations in the bond returns. I, therefore, include nominal 

risk-free rate as a factor in the model. Yet, for long-term bonds the appropriate determinant is 

the long-term interest rate, which can be decomposed into nominal risk-free rate, expected 

inflation and term premium. An increase in these components decrease the bond returns. In 

order to capture the effect of the term and the inflation premium I use a number of direct 

‘economic’ risk proxies, which is discuss next. 

Risk Premium Factors – In this study I use various measures of economic uncertainty and 

risk aversion to proxy asset risk premia. Bekaert et al. (2010b) show that stochastic risk 

aversion significantly influences positive stock-bond return correlation. Further, Wachter 

(2006) finds that risk aversion is positively related to equity and bond premiums, but its effect 

on interest rates is ambiguous. However because of the effects of consumption smoothing and 

precautionary savings, a rise in risk aversion may increase or decrease interest rates 

respectively. In summary, the effect of risk aversion on asset returns is not straight forward. 

Bekaert et al. (2009a) provide evidence for economic uncertainties, which impact risk-

premiums and asset valuation. Through the precautionary savings effect an increase in 
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economic uncertainty will lower the interest rates. Hence, it leads to an ambiguous effect on 

equity valuation that is often considered to be negatively affected with changing economic 

conditions. Therefore, economic uncertainty can drive asset returns in the opposite direction 

depending on the effects of term structure and risk-premium. In addition, David (2008) 

provides an alternative illustration for the use of uncertainty measures. He shows that higher 

economic uncertainty triggers investors to react more swiftly to information and therefore it 

has a profound effect on asset return covariance. In the paper, I use inflation and economic 

output as measures of uncertainty in identifying the determinants of dependence structures of 

return comovements.  

In this study I use an empirical proxy for risk aversion based on Bekaert and Engstrom’s (2010) 

model, which is created using Campbell and Cochrane’s (1995) external habit specification. 

This risk aversion proxy is based on historical consumption growth data. Since it behaves 

counter cyclically it is unlikely to capture complete variations in equity risk-premium. Thus, I 

use an additional variable, i.e. the variance premium. Bollerslev et al. (2009) show that variance 

premium has predictive power for forecasting equity returns. Drechsler and Yaron (2011) 

include additional non-Gaussian components in the consumption growth model. Employing 

their extended model, they show that risk aversion and nonlinear components significantly 

influence variance premium. In contrast, Connolly et al. (2005) use the VIX implied volatility 

estimate as a proxy for stock market uncertainty. They report that stock-bond co-movements 

are inversely related to stock market uncertainty. This can be justified as ‘flight to safety’, 

where investors switch from risky assets to relatively less risky financial investment options. 

This study includes two additional variables, i.e. inflation uncertainty and output gap 

uncertainty, to account for economic uncertainty in our model.  

Stock and Bond Liquidity Factors – Liquidity affects asset pricing in two central ways. First, 

in illiquid markets beta may fail to quickly respond to economic shocks. Second, economic 



 

128 

shocks that increase liquidity may have a positive impact on asset returns. This corresponds to 

the liquidity price factor. Therefore, the impact of liquidity on asset return co-movements 

depends on how liquidity shocks vary across markets. For example in periods of economic 

crisis, investors may move from less liquid stocks to treasury bonds. Consequently, the 

resulting price pressure may trigger negative equity and safer assets, such as bonds and gold, 

returns co-movement. Monetary policy can affect liquidity in financial markets. It may increase 

borrowing constraints or trigger trading activity, influencing asset returns to covary. Existing 

studies by Chordia et al. (2005) and Goyenko et al. (2009) are rather inconclusive in accounting 

for these liquidity effects. To address this issue, we consider unconstrained proxies of liquidity 

shocks in our estimation model.  To measure stock market illiquidity we use capitalization-

based proportion of zero daily returns across all listed firms in the US market, i.e. Standard & 

Poor’s (S&P) 500 index and for bond market illiquidity we use bid-ask spreads9 across all 

securities, i.e. one month , three months, and one, two, three, five, seven, ten, twenty and thirty 

years of maturity.  

Business Cycle Proxies – Plosser and Rouwenhorst (1994) and Estrella and Hardouvelis 

(2012) use the term spread as a leading indicator of economic activity. Yet, more recent 

evidence shows that the spread is not as informative as it has been in the past. In particular, 

Dotsey (1998) and Henry et al. (2004) show that the relationship between business cycles and 

economic output behave asymmetrically. Ocal (2006) provides evidence for asymmetric 

relations in economic outputs and growth. Therefore, the existence of a non-linear relationship 

between these variables is more likely than a linear one. Building on this, I use an alternative 

measure to capture the different regimes of the business cycle. My measure of modified depth 

of recession is based on Lee and Wang’s (2012) estimate of business cycle proxy. This measure 

                                            

9 It should be noted that bond illiquidity can be measured using several proxies including systematic liquidity 

risk. However, for the purpose of this study we use bid-ask spread as a bond illiquidity factor.  
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allows the estimate to have values for both recession and expansion of the economy’s business 

cycle. A negative value indicates an economic expansion period. The higher the value, the 

greater is the economy’s recovery in process. In contrast, a positive value of this measure 

relates to a recessionary period. 

In summary, my model includes the following economic state variables: the risk free rate )( trf

, output gap )( to , inflation )( ti , risk aversion )( tra , output uncertainty )( tou , inflation 

uncertainty )( tiu , bond market illiquidity )( tds , equity market illiquidity )( tlr , variance 

premium )( tvp , term spread )( tts and the depth of recession )( tdr . I collect these variables in 

a vector )( tK to identify the explanatory structural factors )( tX . The chapter Appendix 

provides an account of the data used. Next, I focus on the modelling of the state variable 

dynamics. 

 

7.3.2 Modelling of State Variable Dynamics 

To estimate the structural factors )( tX , it is necessary to specify the dynamics of the state 

variables )( tK
 
that include the macro and non-macroeconomic factors. The three key reasons 

why I implement these structural framework are i) to allow the dynamics of the state variables 

to depend on the expectations of future values as is true in cases of macro-models ii) to capture 

the contemporaneous correlation between the fundamental state variables and iii) to capture 

the structural changes in the macro-economic relationships. To attain structural identification 

of the shocks in Equation (6-6), I split the state variables into two sets: i) “macro variables 

)(mv ”,   ttttmvt raiorfK ,,,,
 and ii) “other variables )(ov ”, i.e. 

  tttttttovt drtsvplrdsiuouK ,,,,,,,
. The ‘other variables’ (ov) include the non-
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macroeconomic variables. For modelling mvtK ,  I employ a New Keynesian model, which is 

discussed in the following sub-section. To identify the ovtK ,  shocks I characterize a simple 

empirical model where the other variables are dependent on the macro variables. An alternative 

source of motivation for the structural equation comes from Goyenko et al. (2009) where they 

illustrate that inflation affects market illiquidity.  

I characterize the structural model as: 

ovtmvt

mv

ovovtovtovovt XKKSK ,,,1, )(    (6-19) 

where tS
 
represents the set of regime variables that drive the coefficient matrices. ovtK , is 

modelled based on Hamilton’s (1989) specifications. ov
 
is a diagonal matrix, 

mv

ov
 
is a 47  

matrix, which appropriates contemporaneous covariance with the macro variables mvtK ,  
and 

ovtX ,  
is the vector of uncorrelated structural shocks of the “other variables”. Employing 

Equation (6-19), the “other variable”, i.e. non-macro, factors may partially exhibit 

autoregressive dynamics of the macro-state variables. Further, ovtX ,  
should be interpreted as 

non-macro variable shocks eliminated from the macro-economic shocks. Finally, allowing the 

drifts to depend on the regime variable tS  enables me to model the structural changes in the 

liquidity parameters (Hasbrouck, 2009). 

 

Structural Model for the Macro Variables 

Based on Bekaert et al.’s (2010) New-Keynesian model I formulate the structural model for 

mvtX , . The model comprises three equations i) the demand )(IS  equation, ii) the aggregate 
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supply )(AS  equation and iii) the forward feeding monetary policy )(MP  rule. This allows me 

to capture the time-varying risk aversion dynamics in the structural model. 

         rf

tt

MP

ttt

MP

ttMPt XoSbiESarfrf   11 1 
 

(6-20) 
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(6-21) 

    i

tttttASt XoiiEi    11 1
 

(6-22) 

ra

ttrat Xrara  1
 

(6-23) 

The parameter )( in the equation (6-20) represents the forward-looking monetary policy 

smoothing estimate. Cho and Moreno (2006) show that changes in monetary policy 

significantly influence macro dynamics and structural shocks. I, therefore, introduce a standard 

Markov-chain process to allow the monetary policy to vary across two regimes )( MP

tS  with 

constant transition probabilities.  

The parameters   and   in the equations (6-21) and (6-22) represent the degree of IS and 

AS forward-looking behaviour respectively. The parameter )(  estimates the impact of real 

interest rate on the output gap and )(  the effect of output gap on inflation. A high positive 

value of   and   indicate that monetary transmission mechanism has a significant influence 

on economy’s output and inflation. The state variable (𝑟𝑎𝑡)
 
accommodates stochastic risk 

aversion to the demand equation of the New-Keynesian model that nests on Campbell and 

Cochrane’s (1995) external habit model. In particular (𝑟𝑎𝑡)
 
represents the local curvature of 

the utility function. The parameter )(  measures counteracting effect of consumption-

smoothing and precautionary-savings of risk aversion on the real economy. Though, the output 
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shocks and risk aversion are negatively correlated, I do not give a definite sign to the estimate 

in the equation (6-21). 

 

6.4 Specification Tests 

In order to ensure that the state variable and the MSSV models are adequate in estimating the 

dynamics of the state variables and factor exposures, they must satisfy a number of 

requirements. To this end, this study performs a battery of specification tests on the residuals 

of the models. In particular, univariate tests and covariance tests are performed. 

 

6.4.1 Univariate Test 

Consider following equation defines that defines the reduced form model, encompassing both 

the state variable models and the MSSV models used to identify the structural factors and the 

factor exposure of the determinants of the return comovements.  

𝑦𝑡 = 𝜇(𝑅𝑠) + 𝛽𝐾𝑡−1 + 𝜎(𝑅𝑠)𝜀𝑡 (6-24) 

In this study, it suffices to state that  𝑅𝑠 assumes two values which represents the regimes 1 

and 2. Let the conditional probability for 𝑅𝑠 = 1 be 𝑝𝑡−1 and the corresponding conditional 

probability for 𝑅𝑠 = 2 be (1 − 𝑝𝑡−1). Considering these conditional probability estimates the 

residual of the above model is defined as:  

𝑟𝑒𝑠𝑖𝑑𝑡 = 𝑦𝑡 − 𝛽𝐾𝑡−1 − (𝑝𝑡−1𝜇1 + (1 − 𝑝𝑡−1)𝜇2) (6-25) 

where 𝜇1and 𝜇2 are the means of regime 1 and regime 2 respectively. The conditional variance 

(𝐶𝑉𝑟𝑒𝑠𝑖𝑑,𝑡−1) of 𝑟𝑒𝑠𝑖𝑑𝑡 is: 

𝐶𝑉𝑟𝑒𝑠𝑖𝑑,𝑡−1 = 𝑝𝑡−1𝜎1
2 + (1 − 𝑝𝑡−1)𝜎2

2 + 𝑝𝑡−1(1 − 𝑝𝑡−1)(𝜇1 − 𝜇2)2 (6-26) 
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where 𝜎1
2 and 𝜎2

2 are the variances of regime 1 and regime 2 respectively. Based on 

Timmermann (2000), the conditional skewness (𝐶𝑆𝑘𝑟𝑒𝑠𝑖𝑑,𝑡−1) and the conditional kurtosis 

(𝐶𝐾𝑟𝑟𝑒𝑠𝑖𝑑,𝑡−1) is given by: 

𝐶𝑆𝑘𝑟𝑒𝑠𝑖𝑑,𝑡−1

=
𝑝𝑡−1(1 − 𝑝𝑡−1)(𝜇1 − 𝜇2)(3(𝜎1

2 − 𝜎2
2) + (1 − 2𝑝𝑡−1)(𝜇1 − 𝜇2)2

[𝑝𝑡−1𝜎1
2 + (1 − 𝑝𝑡−1)𝜎2

2 + 𝑝𝑡−1(1 − 𝑝𝑡−1)(𝜇1 − 𝜇2)2]3/2
 

(6-27) 

𝐶𝐾𝑟𝑟𝑒𝑠𝑖𝑑,𝑡−1 

=
𝑝𝑡−1[3𝜎1

2 + (𝜇1 − 𝜇)4 + 6𝜎1
2(𝜇1 − 𝜇)2] + (1 − 𝑝𝑡−1)[3𝜎1

2 + (𝜇1 − 𝜇)4 + 6𝜎1
2(𝜇1 − 𝜇)2]

[𝑝𝑡−1𝜎1
2 + (1 − 𝑝𝑡−1)𝜎2

2 + 𝑝𝑡−1(1 − 𝑝𝑡−1)(𝜇1 − 𝜇2)2]3/2
 

 

In the univariate specification tests, I test for zero mean, no higher order correlation for five 

lags, i.e. whether or not 𝜇0, 𝑙1, 𝑙2, 𝑙3, 𝑙4 and 𝑙5 are zero in the following equations. 

𝐸[𝑟𝑒𝑠𝑖𝑑𝑡] − 𝜇0 = 0 

𝐸[(𝑟𝑒𝑠𝑖𝑑𝑡 − 𝜇0)(𝑟𝑒𝑠𝑖𝑑𝑡−1 − 𝜇0)] − 𝑙1 = 0 

𝐸[(𝑟𝑒𝑠𝑖𝑑𝑡 − 𝜇0)(𝑟𝑒𝑠𝑖𝑑𝑡−2 − 𝜇0)] − 𝑙2 = 0 

𝐸[(𝑟𝑒𝑠𝑖𝑑𝑡 − 𝜇0)(𝑟𝑒𝑠𝑖𝑑𝑡−3 − 𝜇0)] − 𝑙3 = 0 

𝐸[(𝑟𝑒𝑠𝑖𝑑𝑡 − 𝜇0)(𝑟𝑒𝑠𝑖𝑑𝑡−4 − 𝜇0)] − 𝑙4 = 0 

𝐸[(𝑟𝑒𝑠𝑖𝑑𝑡 − 𝜇0)(𝑟𝑒𝑠𝑖𝑑𝑡−5 − 𝜇0)] − 𝑙5 = 0 

To test for excess skewness and kurtosis, we examine whether or not 𝑒𝑠𝑘 and 𝑒𝑘𝑟 are equal to 

zero in the following equations, respectively. 

𝐸[(𝑟𝑒𝑠𝑖𝑑𝑡 − 𝜇0)3]

𝐸[(𝑟𝑒𝑠𝑖𝑑𝑡 − 𝜇0)2]3/2
− 𝐶𝑆𝑘𝑟𝑒𝑠𝑖𝑑 − 𝑒𝑠𝑘 = 0 
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𝐸[(𝑟𝑒𝑠𝑖𝑑𝑡 − 𝜇0)4]

𝐸[(𝑟𝑒𝑠𝑖𝑑𝑡 − 𝜇0)2]2
− 𝐶𝑆𝑘𝑟𝑒𝑠𝑖𝑑 − 𝑒𝑘𝑟 = 0 

The estimates of 𝜇0, 𝑙1, 𝑙2, 𝑙3, 𝑙4, 𝑙5, 𝑒𝑠𝑘 and 𝑒𝑘𝑟 are obtained using general Methods of Moment 

(GMM) employing a Newey-West (1987) weighting matrix accommodating for 5 lags. The 

univariate test of zero means, unit variance, presence of zero excess skewness and kurtosis 

follows a chi-squared distribution with one degree of freedom. The test of no autocorrelation 

up to 5 lags follows a chi-squared distribution with degrees of freedom equal to the number of 

lags. 

6.4.2 Covariance Test 

The covariance test is carried out to ensure that the state variables adequately capture the 

covariance between the factor shocks. The following condition is tested: 

𝐸[𝑟𝑒𝑠𝑖𝑑𝑖,𝑡𝑟𝑒𝑠𝑖𝑑𝑗,𝑡] = 0, 𝑓𝑜𝑟 𝑖 = 1, … , 𝑁 ;  𝑗 = 1, … , 𝑁 ;  𝑖 ≠ 𝑗 

where 𝑁 denotes the number of state variables. The joint test follows a chi-squared distribution 

with degrees of freedom equals to 𝑁(𝑁 − 1)/2. Further, I also test whether the shocks of each 

of the state variables have zero covariance with the factor shocks. This follows a chi-square 

distribution with 10 degrees of freedom.  
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Table 6-1: Specification Tests for the State Variables and the MSSV Models 

Panel A: Specification Tests for State variable Models 

State Univariate Test  Covariance 

 Variables mean lag 1a lag 2a lag 3a lag 4a lag 5a 
Excess 

Skewness 

Excess 

Kurtosis 
Variance Test 

rf 0.999 0.738 0.723 0.871 0.587 0.688 0.170 0.370 0.742 0.900 

o 0.999 0.061 0.169 0.311 0.462 0.515 0.380 0.250 0.096 0.970 

i 0.876 0.830 0.514 0.681 0.752 0.817 0.280 0.430 0.828 0.976 

ra 0.999 0.553 0.621 0.667 0.714 0.726 0.270 0.400 0.530 0.999 

ou 0.999 0.259 0.324 0.382 0.438 0.496 0.390 0.400 0.202 0.999 

iu 0.149 0.981 0.988 0.995 0.442 0.195 0.180 0.220 0.535 0.936 

lr 0.999 0.522 0.755 0.879 0.934 0.96 0.220 0.270 0.936 0.999 

ds 0.282 0.907 0.981 0.105 0.512 0.323 0.340 0.260 0.929 0.982 

ts 0.999 0.694 0.781 0.839 0.895 0.934 0.150 0.280 0.935 0.999 

vp 0.999 0.927 0.877 0.353 0.501 0.639 0.310 0.220 0.198 0.999 

dr 0.999 0.934 0.953 0.947 0.967 0.973 0.160 0.320 0.825 0.999 
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Panel B: Specification Tests for MSSV Models 

State Univariate Test   

 Variables mean lag 1a lag 2a lag 3a lag 4a lag 5a 
Excess 

Skewness 

Excess 

Kurtosis 
Variance  

eb 0.999 0.076 0.18 0.316 0.442 0.282 0.330 0.600 0.748  

ere 0.999 0.124 0.176 0.076 0.114 0.181 0.130 0.470 0.939  

eg 0.152 0.647 0.599 0.624 0.520 0.566 0.470 0.450 0.728  

eo 0.999 0.461 0.526 0.516 0.516 0.584 0.230 0.120 0.981  

bre 0.999 0.551 0.343 0.435 0.411 0.396 0.260 0.140 0.954  

bg 0.999 0.835 0.913 0.349 0.346 0.442 0.330 0.190 0.953  

bo 0.999 0.983 0.989 0.993 0.995 0.997 0.440 0.120 0.985  

reg 0.999 0.965 0.944 0.951 0.955 0.972 0.400 0.120 0.727  

reo 0.999 0.801 0.878 0.929 0.925 0.948 0.310 0.120 0.971  

go 0.999 0.125 0.305 0.441 0.556 0.698 0.220 0.440 0.887  

Note: The table reports the specification tests for the state variables and the MSSV models that examine the determinants of the asset return comovements. 

Panel A presents the Monte-Carlo p-value estimates of the univariate and covariance tests for the 11 state variables - the risk free rate (rft), output gap 

(ot), inflation (it), risk aversion (rat), output uncertainty (out), inflation uncertainty (iut), bond market illiquidity (dst), equity market illiquidity (lrt), variance 
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premium (vpt), term spread (tst)  and the depth of recession (drt). The p-values are reported for zero mean, serial correlation for up to five lags, zero excess 

Skewness, zero excess kurtosis, and constant variance.  The covariance test reports the Monte-Carlo p-values of zero covariance of the factor shocks of 

one state variable with the factor shocks of the other state variables. Panel B Panel A presents the Monte-Carlo p-value estimates of the univariate and 

covariance tests for the 10 different pairs of asset return comovements – Equity-Bond (eb), Equity-Real Estate (ere), Equity-Gold (eg), Equity-Oil (eo). 

Bond-Real Estate (bre), Bond-Gold (bg), Bond-Oil (bo), Real Estate-Gold, Real Estate-Oil and Gold-Oil (go). The p-values are reported for zero mean, 

serial correlation for up to five lags, zero excess Skewness, zero excess kurtosis, and constant variance.  The results of both the panels indicate that the 

state variable model and the MSSV models are correctly specified, providing consistent outcomes that adequately accommodate the dynamics of the state 

variables and the determinants of the return comovements. 
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6.5 Summary 

A good understanding of the determinants of the asset return comovements and its 

influence on the return dependence structure is not only essential for designing efficient 

portfolios but also have key significance for researchers and policy makers. In order to 

accomplish this it is necessary to have sound structural models that can capture the 

dynamics of not only the dependence structure but also the state variables, i.e. the 

determinants of the return comovements.  

Against this backdrop, in this chapter I present the modelling of the dynamics of the 

dependence structure and that of the state variables. Unlike majority of the existing 

studies, I follow a two structure framework. These models have several novel 

characteristics in capturing the time-varying nature of the variables. First, the structural 

model of the state variables has three key advantages. They are i) it allows the dynamics 

of the state variables to depend on the expectations of future values as is true in cases of 

macro-models ii) it captures the contemporaneous correlation between the fundamental 

state variables and iii) it accommodates the structural changes in the macro-economic 

relationships. Second, the macroeconomic variables are estimated following the New-

Keynesian dynamics. Thus, it has three equations i) the demand equation, ii) the aggregate 

supply equation and iii) the forward feeding monetary policy rule. This allows my study 

to capture the time-varying risk aversion dynamics in our structural model. 

This chapter also presents several significant modelling features that this study employs 

to examine how the macro and non-macroeconomic variables impact the asset return 

comovements during economic contraction and expansion regimes. First, unlike the 

autoregressive conditional heteroskedasticity (ARCH) models, the developed Markov 
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switching stochastic volatility framework does not rely upon the unrealistic standard 

normally and independently distributed (NID) assumption of the error term, which is 

often violated in the practice. Second, in contrast to the ARCH-type models, my 

framework allows the log volatility of the estimated state variables to evolve 

stochastically over time. Therefore, it makes the model parsimonious and yet flexible. 

Third, my model (MSSV) overcomes the limitation of constant volatility in its regimes. 

Assuming constant volatility in the regimes will yield in either underestimation or 

overestimation of the volatility. However, the developed MSSV model allows different 

estimates of the elasticity of regime variance. Forth, my proposed approach chooses the 

regimes based of regime classification statistic. This ensures that our model identifies 

significant regime behaviours that are neither restricted of irrelevant. Fifth, the estimation 

process of my models is free from the limitations of being path dependent. This adds to 

the robustness of the MSSV model estimation process. 

In sum, the dual structural framework assures sound examination of the determinants of 

the dependence structure which is discussed in the nest chapter.     
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6.6 Appendix 

Table 6 (A-1): Data Description 

Output Gap (ot): Gross Domestic Product (GDP) is the measure of output. The gap is 

the percentage difference between the output and its expected output gap. 

Expected Output Gap (ge):It is estimated as 
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Where GDPt is the level of real GDP at time t and 
qtGDP  is the quadratic trend value 

of real GDP. To measure 









t

t

t
GDP

GDP
E 1 , the median of the survey response from Survey 

of Professional Forecasters (SPF) is used when available. 

 

Output Uncertainty (out): Mean of SPF’s real output volatility. 

 

Inflation (it measured as )( ): Log difference of the Consumer Price Index (CPI) for 

all items for all urban consumers. 

 

Inflation Uncertainty (iut measured as )( u ): It will be estimated as the fractional 

uncertainty measure of inflation 






 



 e
. 

 

Risk Aversion Factor (rat): The measure of the risk aversion factor is based on external 

habit specifications of Campbell and Cochrane (1995) taken from Baele et al. (2010). 

The values are considered from Bekaert and Engstrom (2009). 

 

Nominal Risk-free Rate (Rf): Three-month Treasury bill rate 

 

Stock Market Illiquidity (lrt): Capitalization-based zero daily returns across all listed 

firms 
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Bond Market Illiquidity (dst): Bid-ask spreads across all securities, i.e. one month , 

three months, and one, two, three, five, seven, ten, twenty and thirty years of maturity. 

 

Variance Premium (vp): The difference between ex-post realized variance and variance 

swap rate. 

 

Term Spread (tst): Difference between ten-year and three-month Treasury bill yields. 

This will serve as a proxy for short term economic condition. 

 

Depth of recession (drt):It is based on Lee and Wang’s (2012) estimate of business 

cycle proxy. 

 

 

Demand Equation with Stochastic Risk Aversion factor 

In Campbell and Cochrane’s external habit model the pricing kernel, i.e. the stochastic 

discount factor (𝑠𝑑𝑓𝑡), is represented as:  

𝑠𝑑𝑓𝑡+1 = −𝜑Δ𝑐𝑔𝑡+1 + 𝜑𝑟𝑎𝑡+1 (A-1) 

where Δ𝑐𝑔 is logarithmic value of consumption (𝐶𝑡) growth and 𝜑 is the curvature 

parameter of the utility function represented as 𝑈(𝐶𝑡) = (
𝐶𝑡−𝑍𝑡

1−𝜑
)

1−𝜑

 . 𝑍𝑡 in the utility 

function corresponds to the habit (level of habit). The surplus consumption ratio (𝑆𝐶𝑅) 

allows to capture the relation between consumption and habit, which relates to the history 

of consumption 𝑆𝐶𝑅𝑡 =
𝐶𝑡−𝑍𝑡

𝐶𝑡
. In particular, the process of 𝑟𝑎𝑡 shows how habit responds 

to the history of consumption. We define 𝑟𝑎𝑡 as 𝑙𝑜𝑔 (
1

𝑆𝐶𝑅𝑡
).  The time-varying 

characteristics of 𝑟𝑎𝑡 is specified as:  



 

142 

𝑟𝑎𝑡 = 𝜇𝑟𝑎 + 𝛽𝑟𝑎
1 𝑟𝑎𝑡−1 + 𝛽𝑟𝑎

2 (𝑟𝑎𝑡−1)1/2𝜖𝑡
𝑟𝑎 (A-2) 

where 𝜖𝑡
𝑟𝑎 is a standard normal innovation process and 𝜇𝑟𝑎, 𝛽𝑟𝑎

1  𝑎𝑛𝑑 𝛽𝑟𝑎
2  are the 

parameters that define the dynamics of the stochastic risk aversion process. 𝜖𝑡
𝑟𝑎 

accommodates for the conditional uncertainty in the stochastic risk aversion process. The 

square root process in the equation (A-2) ensures that the conditional variance of the 

stochastic discount factor in Equation (A-1) is positively related to the inverse of the 

surplus consumption ratio.  This suggests that risk aversion rises as SCR declines. The 

consumption process is characterised as: 

∆𝑐𝑔𝑡 = 𝜇∆𝑐𝑔 + 𝛽𝑐𝑔
1 (𝑟𝑎𝑡−1)1/2[(1 + 𝛼2)1/2𝜖𝑡

𝑐𝑔
+ 𝛼𝜖𝑡

𝑟𝑎] (A-3) 

where 𝜇∆𝑐𝑔 = 𝐸𝑡−1[∆𝑐𝑔𝑡], 𝛽𝑐𝑔
1  and 𝛼 are parameters and 𝜖𝑡

𝑐𝑔
 is a standard normal 

innovation specific to the consumption growth process. In the Equation (A-2) and (A-3) 

𝜖𝑡
𝑟𝑎 and 𝜖𝑡

𝑐𝑔
 are assumed to be jointly 𝑁(0, 𝐼). Thus, the conditional covariance between 

risk aversion and consumption growth equates to 𝐶𝑜𝑣𝑡−1(∆𝑐𝑔𝑡, 𝑟𝑎𝑡) = 𝛼𝛽𝑐𝑔
1 𝛽𝑟𝑎

2 𝑟𝑎𝑡, 

where 𝛼 represents the conditional correlation between ∆𝑐𝑔𝑡 and 𝑟𝑎𝑡. The value of 𝛼 is 

expected to be negative to have an intuitive counter-cyclical risk aversion.  

The real interest rate (𝑟𝑖𝑟) in a jog-normal framework is characterised as: 

𝑟𝑖𝑟𝑡 = −𝐸𝑡[𝑠𝑑𝑓𝑡+1] −
1

2
𝑉𝑎𝑟𝑡[𝑠𝑑𝑓𝑡+1] 

(A-4) 

From the Equation (A-1), (A-2) and (A-3), 𝑉𝑎𝑟𝑡[𝑠𝑑𝑓𝑡+1]equates to: 

𝑉𝑎𝑟𝑡[𝑠𝑑𝑓𝑡+1] = 𝜑2𝑟𝑎𝑡[(𝛽𝑐𝑔
1 )2 + (𝛽𝑟𝑎

2 )2 − 2𝛼𝛽𝑐𝑔
1 𝛽𝑟𝑎

2 ] (A-5) 
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Substituting the value of 𝑉𝑎𝑟𝑡[𝑠𝑑𝑓𝑡+1] from the Equation (A-5) in the Equation (A-4) and 

using (A-1), we have: 

𝑟𝑖𝑟𝑡 = 𝜑𝐸𝑡[Δ𝑐𝑔𝑡+1] − 𝜑[𝜇∆𝑐𝑔 + (𝛽𝑟𝑎
1 − 1)𝑟𝑎𝑡]

−
𝜑2

2
𝑟𝑎𝑡[(𝛽𝑐𝑔

1 )2 + (𝛽𝑟𝑎
2 )2 − 2𝛼𝛽𝑐𝑔

1 𝛽𝑟𝑎
2 ] 

 

  ⇒ 𝑟𝑖𝑟𝑡 = −𝜑𝜇∆𝑐𝑔 + 𝜑𝐸𝑡[𝛥𝑐𝑔𝑡+1] − 𝜑𝛥𝑐𝑔𝑡 + 𝜔̅𝑟𝑎𝑡 (A-6) 

where 𝜔̅ = −𝜑(𝛽𝑟𝑎
1 − 1) −

𝜑2

2
[(𝛽𝑐𝑔

1 )2 + (𝛽𝑟𝑎
2 )2 − 2𝛼𝛽𝑐𝑔

1 𝛽𝑟𝑎
2 ]. From the above 

equation, solving for 𝑐𝑔𝑡 we obtain: 

𝑐𝑔𝑡 = −𝜇𝑟𝑎 + 𝐸𝑡[𝑐𝑔𝑡+1] −
1

𝜑
𝑟𝑖𝑟𝑡 + 𝜔𝑟𝑎𝑡 

(A-7) 

where  𝜔 = 𝜔̅ 𝜑⁄ = (1 − 𝛽𝑟𝑎
1 ) −

𝜑

2
[(𝛽𝑐𝑔

1 )2 + (𝛽𝑟𝑎
2 )2 − 2𝛼𝛽𝑐𝑔

1 𝛽𝑟𝑎
2 ]. To transform 

Equation (A-7) into a demand equation we use: 

𝑟𝑖𝑟𝑡 = 𝑟𝑓𝑡 − 𝐸𝑡[𝑖𝑡+1] + 𝑖𝑗𝑖 (A-8) 

where 𝑟𝑓 is the nominal risk-free rate,  𝑖 is the inflation and 𝑖𝑗𝑖 arises from Jensen’s 

inequality. We, therefore, assume constant inflation risk premium. In order to equate 

consumption and output, we use the following framework.  

𝑜𝑡 = 𝑐𝑔𝑡 + 𝑧𝑡 (A-9) 

where 𝑧𝑡 is a 𝑖𝑖𝑑 representing demand shock arising from the gaps between output and 

consumption such as government spending. Assuming a liner de-trending of output, 

i.e.  𝑜̅𝑡 = 𝑜𝑡 − 𝜀𝑡, we have: 
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   𝑜̅𝑡 = 𝑐𝑔̅̅ ̅𝑡 + 𝑧𝑡 (A-10) 

Now substituting Equations (A-7) and (A-8) in Equation (A-10) we get: 

𝑜̅𝑡 = 𝛽𝐼𝑆 + 𝐸𝑡+1[𝑜̅𝑡+1] −
1

𝜑
(𝑟𝑓𝑡 − 𝐸𝑡[𝑖𝑡+1]) + 𝜔𝑟𝑎𝑡 + 𝑋𝑡

𝑜 
(A-11) 

where  𝛽𝐼𝑆 represents all the constant terms and 𝑋𝑡
𝑜 = −𝑧𝑡. 
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Table 6 (A-2): Summary Statistics of Macroeconomic and non-Macroeconomic Factors 

Panel A: Summary Statistics 

 Variables Mean Std. Dev. Median Kurtosis Skewness 

      

Nominal Risk-free Rate (rf) 0.0372 0.0237 0.0422 -0.8852 -0.0566 

Expected Output Gap (o) 0.0001 0.0101 0.0010 2.0031 -0.3057 

Inflation (i) 0.0101 0.0005 0.0100 10.0148 2.2034 

Risk Averseness (ra) 3.5402 0.1494 3.4763 -0.2398 0.8652 

Output Uncertainty (ou) -0.0533 0.0668 -0.0835 -0.7717 0.7849 

Inflation Uncertainty (iu) 0.0249 0.0083 0.0225 0.1552 1.0038 

Equity Market Illiquidity (lr) 0.5047 0.4245 0.6989 26.2029 -2.5877 

Bond Market Illiquidity (ds) 0.0098 0.0040 0.0091 12.5236 3.0383 

Variance Premium (vp) 0.0397 0.0282 0.0312 4.6614 1.9146 

Term Spread (ts) 0.0011 0.0323 0.0004 6.3284 -0.5551 

Depth of Recession (dr) -0.4682 1.3215 -0.6490 12.7422 2.9179 
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Panel B: Factor Correlation  

  rf o i ra ou iu lr ds ts vp dr 

rf 1           

o 0.080 1          

i 0.063 0.037 1         

ra 0.324 -0.061 -0.008 1        

ou 0.468 0.019 0.147 -0.243 1       

iu 0.482 0.074 0.168 -0.039 0.575 1      

lr 0.019 0.021 0.320 -0.078 0.003 -0.010 1     

ds -0.398 -0.058 -0.031 -0.151 -0.189 -0.179 -0.127 1    

ts -0.118 -0.065 0.047 0.122 -0.001 -0.155 0.017 -0.287 1   

vp -0.156 -0.003 0.213 0.258 -0.197 -0.094 -0.120 0.509 -0.180 1  

dr -0.110 0.183 0.014 -0.145 -0.083 -0.042 -0.038 0.439 -0.265 0.451 1 

Note: Panel A of the table reports the annualized summary statistics of the macroeconomic and non-macroeconomic factors considered in examining the 

determinants of the asset return commovements. In total 11 factors are used. They are:  Nominal Risk-free Rate (rf), Expected Output Gap (o), Inflation 

(i), Risk Averseness (ra), Output Uncertainty (ou), Inflation Uncertainty (iu), Equity Market Illiquidity (lr), Bond Market Illiquidity (ds), Variance 

Premium (vp), Term Spread (ts), Depth of Recession (dr). The first four factors constitute the macroeconomic factors and the rest are the non-

macroeconomic factors. The variables: Nominal Risk-free Rate (rf), Expected Output Gap (o), Inflation (i) are considered as the macroeconomic factors 

based on extant literature (d’Addona and Kind, 2006; Fama and Schwert, 1977) and also because these variables are the commonly used macro factors in 

rational macroeconomic models (Baele et al. 2010). Since, Risk Averseness (ra) is estimated from historic consumption growth data, this variable 

measures the fundamental risk averseness and hence it is considered as a macroeconomic variable in this study. Alternatively, the non-linear dynamics of 
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risk aversion is measured using Variance Premium (vp), which is considered as a non-macroeconomic factor. The other non-macroeconomic factors 

include economic uncertainty measures, i.e. Output Uncertainty (ou), Inflation Uncertainty (iu), liquidity factors, i.e. Equity Market Illiquidity (lr), Bond 

Market Illiquidity (ds), and leading indicators of economic cycles, i.e. Term Spread (ts), Depth of Recession (dr). These variables are considered as non-

macroeconomic variables as they do not directly feature in the standard macroeconomic model. All the factor shocks are estimated using two stage 

structural framework as elaborated in the sub-section 7.3.2. The summary statistics of the variables show excess skewness and kurtosis emphasises the 

evidence of extreme events during the time period 1st August 1987 to 1st September 2012. The frequency of the data used is quarterly. Panel B: The 

Panel B of the table reports the correlation among the macroeconomic and the non-macroeconomic factors. The correlation figures suggest that there is 

no evident possibility of multicollinearity issues in the models used. 
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              CHAPTER 7:  Examining  the D eterminant s of the Bi-variate D ependence Structu res 

Examining the Determinants of the Bi-variate Dependence 

Structures 

7.1 Introduction 

In this chapter I examine the determinants of time varying dependence structure of the 

return comovements of three different asset classes using Markov switching stochastic 

volatility model and the structural frameworks developed in the previous chapter. As 

discussed in the previous chapters, identifying the determinants of asset return 

comovements across different asset classes has significant implications for investors, 

policymakers and financial regulators. It is fair to say that investors no longer invest in 

only conventional financial assets such as equities and bonds, but in a wide range of 

alternative financial assets including commodities and real estate. Novel to this work is 

the analysis of the determinants of the asset return comovements of three different asset 

classes. Previous studies have dealt with the determinants of conventional financial 

assets; however studies examining the combination of bivariate asset return dynamics are 

sparse. Moreover, research on the determinants of joint dependence structure of a 

portfolio of different asset classes, which I refer as multi-assets, is non-existent. I present 

such an analysis in the next chapter. 

In this chapter I focus on the analysis of 10 different bivariate asset pairs comprising of 

stocks, bonds, gold, oil and real estate. Against this backdrop, the purpose of the chapter 

is three fold: First, I seek to analyse if the dependence structures exhibit evidence of 

regime switching behaviour. Second, I identify macro and non-macroeconomic factors 

and examine their impact on the dependence structure of the asset return comovements. 
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Third, I investigate whether the impact of these factors on the dependence structures is 

regime specific.  

This empirical investigation has a number of distinct features. First, I not only include 

conventional financial assets, i.e. equities and bonds, but also commodities and real estate 

in our sample. Further, the period of analysis is from 1987 to 2012 (1st August 1987 to 1st 

September 2012), which allows me to capture the effects of economic contraction caused 

by several financial crises on the behaviour of different asset classes. Second, as 

elaborated in Chapter 4, I use conditional copula models to overcome the limitations of 

simple linear correlation in examining the extreme dependence structure of the asset 

return comovements. Third, this analysis considers a wide range of macro and non-

macroeconomic variables to explore the determinants of the dynamics of the dependence 

structures for ten combinations of asset pairs. As macroeconomic variables included are 

interest rates, output gap and inflation and risk aversion. I also consider macroeconomic 

uncertainty measures to account for economic uncertainties. Additionally, liquidity, 

variance premium and depth of recession are included as non-macroeconomic. It is, to 

the best of my knowledge, the first study that comprehensively examines the macro and 

non-macro determinants of the dependence structure for three different asset classes. 

Fourth, I impose structural restrictions inspired by New-Keynesian dynamics in 

examining the dynamics of the macroeconomic variables. The regime-switching models 

accommodates for heteroskedastic shocks in the estimated state variables. Finally, I 

decompose the performance of the model to examine the impact of macroeconomic and 

the non-macroeconomic factors. This provides useful insights in identifying the key 

determinants of the dependence structures. 
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In the light of the above discussion, I investigate the robustness of the findings, providing 

a multivariate-GARCH (MGARCH) analysis to test the covariance dynamics of the asset 

return comovements. This study suggests a bivariate regime switching MGARCH 

framework that uses a regime state variable that varies across the covariance of the 

marginal distribution behaviour of the asset returns in examining the dynamics of the 

asset return comovements during economic expansion and economic contraction phases.  

This study reports several key insights. My findings indicate that dependence measures 

tend to rise faster than they fall, which corroborates the anecdotal evidence of contagion 

in financial markets across different asset classes. Further, the results show that interest 

rate and inflation have significant effect on the dependence structure during the economic 

contraction regime, whilst risk aversion plays a significant in the economic expansion 

regime. Among the non-macro factors output uncertainty, bond illiquidity measure and 

depth of recession contribute significantly in explaining the variations of the dependence 

structures. The findings also show that in the economic expansion regime the illiquidity 

measure negatively load on equity-bond dependence structure. The significant impact of 

the liquidity factors corroborates the evidence for “flight-to-liquidity” phenomenon as 

reported in the previous literature (Connolly et al., 2005). Further, the significant 

influence of the economic uncertainty measures indicates that higher the uncertainty 

about future economic state variables, the more swiftly the investors are likely to react to 

news. This in turn affects both the variances and the covariance of the asset returns. I, 

therefore, also contribute to the literature on the learning models as proposed by Veronesi 

(1999) and David and Veronesi (2008). Finally, the changing regimes of the asset return 

comovements demonstrate the potentials gains of timely switching over from risky assets 

like stocks, oil to bond and gold. These regimes correspond to economic expansion and 



 

151 

economic contraction periods characterized by low and high asset return covariance, 

respectively. 

 The rest of the chapter is organized as follows: Section 2 presents the description of the 

return comovement data and the state variables. Section 3 discusses the dynamics and the 

factor contribution of the bivariate dependence structures and finally Section 4 provides 

the summary of the chapter. 

 

7.2 Examining the Dependence Structures of Bivariate Asset 

Return Comovements 

7.2.1 Data Description 

I examine the determinants of the dependence structure of the comovements of two 

conventional financial assets, i.e. Standard & Poor’s (S&P) 500 index (E) and US 10 year 

Government bond return index (B), two commodities, i.e. S&P GSCI Gold index (G) and 

West Texas Intermediate – WTI Cushing crude oil spot prices per barrel (O) and S&P 

Case-Shiller Composite-10 home price index (RE) for real estate. The dependence 

measure of the various asset returns is formulated using monthly returns to calibrate the 

ex-post quarterly dependence structure from the fourth quarter 1987 to the fourth quarter 

2012 (1st August 1987 to 1st September 2012). I estimate the dependence structures of 10 

bivariate-asset pairs by using time-varying conditional copula models as discussed in 

Chapter 4. 
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Table 7-1: Summary Statistics 

Panel A: Descriptive Statistics of Asset Returns (1987 – 2012) 

   Equity (E) Bond (B) Real Estate (RE) Gold (G) Oil (O)  

Mean (%) 6.274 5.524 3.394 5.438 6.331  

Standard Deviation (%) 16.428 1.293 2.730 15.449 33.000  

Kurtosis 3.854 0.138 0.611 1.986 1.687  

Skewness -1.114 -0.165 -0.726 0.064 -0.357  

Panel B: Diagnostics (1987-2012) 

 Equity (E) Bond (B) Real Estate (RE) Gold (G) Oil (O)  

Jarque-Bera statistics 208.3** 

(0.000) 

7.7** 

(0.020) 

31.5** 

(0.000) 

45.7** 

(0.000) 

48.4** 

(0.000)  

ARCH LM statistic (1) 31.586** 

(0.000) 

17.737** 

(0.000) 

1741.764** 

(0.000) 

4.586** 

(0.033) 

13.676** 

(0.000) 
 

ARCH LM statistic (5) 17.489** 

(0.000) 

8.571** 

(0.000) 

371.920** 

(0.000) 

3.003** 

(0.016) 

4.563** 

(0.000) 
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ARCH LM statistic (10) 12.804** 

(0.000) 

4.903** 

(0.000) 

190.231** 

(0.000) 

1.927** 

(0.041) 

2.913** 

(0.001) 
 

Ljung-Box statistic (1) 433.293** 

(0.005) 

9649.404** 

(0.000) 

4232.160** 

(0.000) 

4.433** 

(0.036) 

5.757** 

(0.017) 
 

Ljung-Box statistic (5) 1.254 

(0.282) 

1932.252** 

(0.000) 

914.690** 

(0.000) 

3.005** 

(0.011) 

3.223** 

(0.007)  

Ljung-Box statistic (10) 0.869 

(0.562) 

971.691** 

(0.000) 

452.606** 

(0.000) 

1.619 

(0.100) 

2.156** 

(0.022)  

Panel C: Descriptive Statistics of the Dependence Structures 

   Mean Standard Error 

Standard 

Deviation Kurtosis Skewness  

Equity-Bond (EB) 0.1131 0.0124 0.1250 5.2245 1.9484  

Equity-Real estate (ERe) 0.0777 0.0072 0.0720 -0.9398 -0.0323  

Equity- Gold (EG) -0.047 0.0037 0.0370 -0.3393 -0.0670  

Equity-Oil (EO) 0.1048 0.0297 0.2980 -0.1854 0.1111  

Bond-Real estate (BRe) 0.1125 0.0048 0.0487 -0.1293 -0.3535  
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Bond-Gold (BG) 0.0286 0.0072 0.0726 4.1310 -0.8807  

Bond-Oil (BO) 0.0168 0.0007 0.0074 5.3784 -1.7145  

Real estate-Gold (ReG) -0.091 0.0035 0.0356 1.0910 1.0125  

Real estate-Oil (ReO) 0.0046 0.0044 0.0437 1.8548 0.3699  

Gold-Oil (GO) 0.1802 0.0166 0.1672 -0.3301 -0.2617  

Note: Panel A represents the descriptive statistics of the asset returns. The sample period is from the fourth quarter of 1987 to the fourth 

quarter of 2012. The returns are annualized from the monthly observations. Annualized return = [(1+monthly mean return)12 - 1], Annualized 

standard deviation = [monthly standard deviation
2/112 ]. Panel B provides the diagnostic test results. Under the normality null hypothesis, 

Jarque-Bera test statistic follows a Chi-square distribution with fixed (2) degrees of freedom. The null hypothesis of the ARCH-LM test is: 

there is no evidence of ARCH effect. We conduct the test at lags 1, 5 and 10 with corresponding 1, 5, 10 degrees of freedom. Tests using 

other lags yield the same results. The Jarque-Bera test statistics in Panel (B) confirm that the unconditional distributions of the asset returns 

are not normal. We conduct the Ljung-Box test for serial correlation, corrected for heteroscedasticity at lags 1, 5 and 10. The p-values are 

reported in the parentheses. The significant LM statistics confirm the presence of autoregressive conditional heteroskedastic (ARCH) effects. 

The Ljung-Box test also reports that most of the asset returns are serially correlated for at least one of the lag orders. Panel C reports the 

descriptive statistics of the dependence measures of the different asset pairs for the period 1987 to 2012: equity and bond (EB), equity and 

real estate (Ere), equity and gold (EG), equity and oil (EO), bond and real estate (BRe), bond and gold (BG), bond and oil (BO), real estate 

and gold (ReG), real estate and oil (ReO) and gold and oil (GO). The estimates of the copula parameters can be provided on request. The 

summary statistics show excess skewness and kurtosis which suggests that the distributions have a fatter tail and thus extreme variance is 

highly probable. ** signifies rejection of the null hypothesis at 5 percent level. 
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Table 7-1 presents the summary statistics of the asset returns and the dependence 

structures of the return comovements. The statistics reported in Panel (A) and Panel (B) 

have already been discussed in Chapter 5, Table 5-2. In sum, the annualized mean return 

of oil (6.33 percent) is higher than any other assets followed by equity and bond returns 

of 6.27 and 5.52 percent, respectively. The standard deviation is highest for oil returns 

(33 percent) followed by equity returns (16.42 percent). Except for gold returns, the asset 

returns are negatively skewed. All the asset returns show excess kurtosis, indicating that 

the distributions have a fatter tail and the probability of extreme variance is more likely 

as compared to a normal distribution. Further, the Jarque-Bera test statistics in Panel (B) 

of Table 7-1 confirm that the unconditional distributions of the asset returns are not 

normal. Thus, it is less likely that multivariate Gaussian distribution will provide the best-

fit for the dependence structure.  

In this sub- section I focus on Panel (C) of Table 7-1 which presents the mean and the 

standard deviation of the dependence structure for the various pairs of the asset return 

comovements. The dependence structure for all the asset pairs are positive except for 

equity-gold (-0.047) and real estate-gold (-0.091). This suggests that gold provides a good 

hedge for equity and real estate. The average dependence structure is highest for the gold-

oil pair (0.18) followed by equity bond (0.11). Higher average values of dependent 

structure imply greater comovements. The summary statistics show excess skewness and 

kurtosis which suggests that the distributions have a fatter tail and thus extreme variance 

is highly probable. 

As elaborated in Chapter 4, the bivariate distributions are estimated using copula function. 

In doing so, I first estimate the univariate marginal distribution of each asset returns. 
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ARMA (p, q) – EGARCH (1, 1) model is used for each of the asset return time-series. 

The optimal lag orders for each of the return series is selected using the Akaike 

information criteria (AIC). The mean equations of equity, bond, real estate, gold and oils 

follow ARMA (2, 2), ARMA (5, 5), ARMA (7, 7), ARMA (6, 6) and ARMA (7, 6), 

respectively. I confirm that the marginal models are free from autocorrelation and 

heteroskedastic effects. The results are provided in details in Chapter 5.  

Further, to evaluate the adequacy of the marginal models, misspecification tests are 

conducted following Diebold et al. (1998). I examine the correlograms of 
l

t uu )ˆ( 
and 

l

t vv )ˆ( 
for ‘l’ ranging from one to four. The values u and v are the probability integral 

transformations of the estimates of the marginal models. The correlograms confirm 

absence of any serial correlation in the first four moments, which indicates that our 

marginal models for the different asset returns are correctly specified. The results of these 

tests are provided in Chapter 5, Table 5-4.  

For examining the determinants of the dependence structure of asset return comovements, 

I  include four macroeconomic variables, i.e.,  the risk free rate )(rf , output gap )(o , 

inflation )(i , and risk aversion )(ra  and seven non-macroeconomic variables, i.e. output 

uncertainty )(ou , inflation uncertainty )(iu , bond market illiquidity )(ds , equity market 

illiquidity )(lr , variance premium )(vp , term spread )(ts  and the depth of recession )(dr

. Next, I discuss each of these state variables and examine their regime switching 

behaviour. 
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7.2.2 The Dynamics of the State Variables 

This sub-section provides the volatility dynamics of the state variables that are considered 

as the key determinants of the asset return comovements in the existing literature. Figure 

7-1 plots the regime probabilities of the state variables and Figure 7-2 provides the 

conditional volatilities of the various structural factors. I present the discussion of these 

two figures in tandem. 

Figure 7-1 reveals that all the structural factor models show significant regime-switching 

behaviour both in terms of statistics and economic significance. Panel (A) of Figure 7-1 

shows the expansion regimes of the output gap and the inflation shocks. The inflation 

regime follows the real economy shocks closely. The probability of expansion regime is 

more than the probability of the contraction regime. Yet, the probability of an output 

shock is higher than the inflation shock. Both the state variables witness regime changes 

in four specific periods: the early 1990s period of economic prosperity, the early 2000s 

economic recession following the LTCM bailout, the recovery of the economy since 2004 

after the dot com bubble burst and the September 11 terrorist attack and the economic 

contraction following the 2008 US subprime crisis. Examining the volatility of the output 

and inflation shown in Panel E of Figure 2 we observe a near permanent switch to low 

volatility regime for both output and inflation uncertainty. This is consistent with the 

phenomenon of a Great Moderation10, which relates to declining business cycle volatility 

post 1980s. For output uncertainty, the switch in volatility occurs in 1991, and for 

                                            

10 The Great Moderation refers to the lower variability of inflation and output growth observed since the 

mid to late 1980s. The key reasons for reduced volatility in economic cycles are related to the institutional 

and structural changes in the developed economies during late 1980s till the beginning of the 21st century. 

During this time some of the key economic variables such as gross domestic product, industrial production 

and unemployment witnessed reduced volatility and uncertainty shocks. 
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inflation the change occurs in 1998. In terms of volatility levels the inflation volatility is 

always higher than the output volatility. This is evident in both the contraction and in the 

economic expansion regimes. 

In Panel (B) of Figure 7-1, risk version shows a stronger counter-cyclicality, which 

indicates that risk aversion expansion regime is most likely to occur during economic 

recession. The risk aversion is notably higher in three distinct periods: 1991-1995, 2002-

2004 and 2008-2011. Panels (D) and (E) of Figure 7-1 present the regime changes in 

depth of recession with inflation and output, respectively. Note that depth of recession 

follows a counter-cyclical behaviour. Three distinct regimes are visible: the early 1990s, 

2001-2003, and the years witnessing the sub-prime crisis 2008-2010. Likewise, in Panel 

(G) of Figure 7-1, term spread shows similar regime changes. Yet, the regimes for term 

spread differ from the former. In particular, term spread witness regime changes in the 

periods 1990-1992 and 2008-2010. Panel (D) of Figure 7-2 provides evidence that overall 

the level of volatility for depth of recession is higher than term spread. 

Panel (F) of Figure 7-1 shows the illiquidity regimes of the equity and bond markets. 

While for both the markets, the regime is in the high variance state, the variability is more 

in case of equity market illiquidity. For bond market illiquidity the spike is clearly 

observed in the period 2008-2010. The stock illiquidity follows a similar pattern, though 

the regime switches to the low volatility in the years during the recessionary periods. 

Panel (C) of Figure 7-2 confirms that the bond illiquidity is less volatile compared to the 

stock illiquidity. 
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Figure 7-1: Regime Probabilities of State Variables 

Panel A: Output and Inflation Regime 

 

Panel B: Output and Risk Aversion Regime 

 

Panel C: Inflation and Risk Aversion Regime 
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Panel D: Depth of Recession and Inflation Regime 

 

Panel E: Depth of Recession and Output Regime 

 

Panel F: Bond and Equity Market Illiquidity Regime 
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Panel G: Term Spread and Output Regime 

 

Note: The figures show the smoothed probabilities of the combinations of the different state 

variables in the expansion regime. The analyses of the two regimes are defined in section 5.2. 

Panel A shows the probabilities of the output expansion regime (OE) and the inflation expansion 

regime (IE). Panel B shows the probabilities of the output expansion regime (OE) and the risk 

aversion expansion regime (RAE). Panel C shows the probabilities of the inflation expansion 

regime (IE) and the risk aversion expansion regime (RAE). Panel D shows the probabilities of the 

depth of recession expansion regime (DR) and the inflation expansion regime (IE). Panel E shows 

the probabilities of the depth of recession expansion regime (DR) and the output expansion regime 

(OE). Panel F shows the probabilities of the bond market illiquidity expansion regime (DS) and 

the equity market illiquidity expansion regime (LR). Panel G shows the probabilities of the term 

spread expansion regime (TS) and the output expansion regime (OE). The period of analysis is 

from the fourth quarter 1987 to the fourth quarter 2012. 

 

Figure 7-2: Conditional Volatilities of the Various Structural Factors 

Panel A: Output and Inflation 
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Panel B: Risk Aversion and Variance Premium 

 

Panel C: Bond Illiquidity and Equity Illiquidity 

 

Panel D: Term Spread and Depth of Recession 
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Panel E: Inflation Uncertainty and Output Uncertainty 

 

Note: The figure shows the annualized conditional volatilities of the various factors identified in 

our variable model. Panel A shows output (O), inflation (I) and risk free rate (RF). Panel B shows 

risk aversion (RA) and variance premium (VP). Panel C shows bond (DS) and equity market 

illiquidity (LR). Panel D shows term spread (TS) and depth of recession (DR). Panel E shows 

inflation uncertainty (IU) and output uncertainty (OU). The period of analysis is from the fourth 

quarter of 1987 to the fourth quarter of 2012. 

 

7.3 The Dynamics and the Factor Contributions of the 

Dependence Structures 

7.3.1 Dependence Structure Dynamics 

Let us begin by determining whether there is evidence of regime switching behaviour for 

each of the various dependence structures of the asset return comovements. Table 7-2 

reports the transition probabilities of the two regimes, i.e. State 1 and State 2, along with 

the respective expected durations11 of the regimes. The findings indicate significant 

transition probabilities for both the regimes. The two regimes are identified as the 

Dependence Structure High State (DSHS) regime (State 1) and the Dependence Structure 

                                            

11Following Hamilton’s (1989) formula we estimate the expected duration of the regimes as






 
0 )22(11

1

)22(11 )1(
i

i pip , where )( 2211 pp are the transition probabilities in Regime 1 (Regime 2). 
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Low State (DSLS) regime (State 2). The appropriate number of regimes is identified 

based on the Regime Classification Statistic (RCS) as discussed in the previous chapter. 

The transition probability and the expected duration values presented in Table 7-2 reveal 

that the DSHS regime tends to be considerably longer than the DSLS regime for the 

various dependence structures. Yet, it is interesting to note that this pattern is reverse for 

equity-gold and bond-oil return comovements, where the DSLS regime is longer than the 

DSHS regime. The standard deviations in Table 7-2 indicate the higher uncertainty in 

predictive power of the model in each of the states. It is worth noting that the standard 

deviation estimates are higher in the DSHS regime than in the DSLS regime. This 

indicates that the dependence structure in the DSHS is more volatile than in the DSLS. 

The key implication is that the dependence structure increases faster than it decreases. 

However, a reverse trend is visible for equity-gold and bond-oil return comovements. 

These results provide evidence of contagion in the financial market across different asset 

classes except for equity-gold and bond-oil pairs.  

Moving on to Figure 7-3, I present the regime switching probabilities of the various 

dependence structures of the asset return comovements. The key finding is that the regime 

states vary for different pairs of asset return. This suggests that macroeconomic and non-

macro factors affect different asset return comovements differently. This further implies 

that it is important to understand the dynamics of the dependence structure in order to 

construct more efficient portfolios. Clearly, a better understanding of the effects of 

economic and non-macroeconomic factors on the comovements of asset return dynamics 

will support strategic asset allocation. Panel (A) of Figure 7-3 shows the DSHS regime 

of equity-bond dependence structure, which captures periods of high economic 

uncertainty, characterized by increased output gap uncertainty and rising liquidity shocks. 
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In contrast, the DSLS regime captures economic expansion marked by rising interest rates 

and falling bond prices. The states identified for the other pairs have a similar 

interpretation. State 1, i.e. DSHS, captures economic contraction and State 2, i.e. DSLS, 

captures economic expansion with falling gold prices and rising equity prices. Panel (C) 

and Panel (G) show that the DSLS regime of the dependence structure is longer than the 

DSHS regime. The equity-gold, i.e. Panel (C), and bond-oil, i.e. Panel (D), dependence 

structures exhibit counter cyclical characteristics and in contract to other pairs, equity-

gold and bond-oil dependence on average are negative. The findings indicate that i) 

investment in gold serves as a good hedge for equity and ii) investment in bonds provides 

a good hedge for oil. In Panel B for the equity-real estate dependence structure, State 1, 

i.e. DSHS, captures economic decline when housing rates tends to fall, whereas State 2, 

i.e. DSLS, corresponds to economic expansion where there is a high demand for real 

estate assets and rising stock prices. The volatility of the dependence measure in the 

economic contraction period is relatively higher than the economic expansion period. For 

the equity-oil pair (Panel D) the periods of economic decline is persistent over three 

distinct periods: i) June 1990 to March 1991, which relates to the first Persian Gulf War, 

ii) August 1998 to January 2003, the period that witnessed large mergers in the oil 

industry12 and ii) the third quarter of 2008 corresponding to the sub-prime crisis. The 

period from August 1998 to January 2003 also witnessed bailout of LTCM and Russian 

and Brazilian government bond crisis. It is interesting to note that the dependence 

structure of real estate and oil pair shows evidence of two distinct periods. The economic 

expansion regime corresponds to period prior to September 2000. Post this period the 

                                            

12 The deals include the creation of the Exxon-Mobil, BP Amoco Plc and the merger of Arco with BP 

Amoco Plc.  
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dependence structure remains in State1, i.e. DSHS. From Panel H it is evident that post 

sub-prime crisis the dependence structure measure of real estate-gold return co-

movements is in DSHS regime. A key implication of this finding is that some 

diversification benefits are lost in investing in gold post the sub-prime crisis. 

The table below presents the summary of the significant impacts of the state variables. 

The detailed factor loadings are reported in the Appendix.  



 

167 

Table 7-2: Summary of Significant Factor Exposure 

 

Panels 

Dependence 

Structure States 
Macroeconomic 

Factors 

Non-macroeconomic Factors  

SD 

 

TP 

 

Dur. 

RF O I RA OU IU LR DS TS VP DR 

A: 

Equity-

Bond  

State 1 

 (DSHS) 

(+) (-) (+)  (+)   (+)   

(+) 

 0.078*** 

(0.008) 

0.86*** 

(0.26) 

29.9 

State 2 

(DSLS) 

(+)  (-)  (-)  (-) (-)   (-)  0.069* 

(0.002) 

0.82** 

(0.84) 

10.66 

B: 

Equity-

Real 

Estate  

State 1 

 (DSHS) 

(+)  (+)         0.097*** 

(0.0004) 

0.88** 

(0.19) 

14.76 

State 2 

(DSLS) 

(-)  (-)         0.03*** 

(0.0003) 

0.78** 

(0.22) 

6.14 

C: 

Equity-

Gold  

State 1 

 (DSHS) 

(-) (+) (-)  (-) (+)  (-) (-)  (-)  (-) 0.021** 

(0.000) 

0.67*** 

(0.18) 

7.56 

State 2 

(DSLS) 

   (+)  (+)  (+)    0.064 

(0.99) 

0.73** 

(0.56) 

8.88 

D: 

Equity-

Oil  

State 1 

 (DSHS) 

    (+)   (+)    

(+) 

0.133*** 

(0.006) 

0.77*** 

(0.33) 

19.84 

State 2 

(DSLS) 

       (-)    

(+) 

0.071*** 

(0.002) 

0.73** 

(0.32) 

14.46 
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E: 

Bond-

Real 

estate  

State 1 

 (DSHS) 

(+)       (+)    (-) 0.030*** 

(0.000) 

0.82** 

(0.14) 

25.32 

State 2 

(DSLS) 

(-)       (+)    0.0251 

(0.99) 

0.78** 

(0.32) 

6.52 

F: 

Bond-

Gold 

State 1 

 (DSHS) 

    (-) (+)  (-)  (-)  0.027** 

(0.00) 

0.83** 

(0.37) 

10.02 

State 2 

(DSLS) 

    (+) (-)  (+)    0.091** 

(0.00) 

0.77** 

(0.29) 

6.75 

G: 

Bond-Oil  

State 1 

 (DSHS) 

(-)  (-)  (+)   (-)    0.009** 

(0.00) 

0.72*** 

(0.45) 

9.31 

State 2 

(DSLS) 

(-)  (+) (+) (-)   (+)    0.012** 

(0.99) 

0.82** 

(0.65) 

13.5 

H: 

Real 

estate-

Gold 

State 1 

 (DSHS) 

(-)  (-) (-)        0.080** 

(0.00) 

0.75** 

(0.37) 

13.78 

State 2 

(DSLS) 

(+)  (-) (+)     (+)   0.025** 

(0.99) 

0.85** 

(0.71) 

5.70 

I: 

Real 

estate-Oil 

State 1 

 (DSHS) 

(+)  (-)         0.036*** 

(0.00) 

0.85*** 

(0.18) 

21.91 

State 2 

(DSLS) 

 (-) (+)         0.019** 

(0.00) 

0.64** 

(0.35) 

4.56 
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J: 

Gold-Oil 

State 1 

 (DSHS) 

     (-)  (+) (-)   0.21*** 

(0.00) 

0.78** 

(0.99) 

30.6 

State 2 

(DSLS) 

     (-)  (+) (-)   0.065** 

(0.99) 

0.72** 

(0.98) 

11.89 

Note: The table reports the summary the parameter estimation results of the Markov switching stochastic volatility models of the ten state variables for 

the various dependence structure. The appropriate numbers of regimes are identified by the Regime Classification Statistic as stated in Equation (10). The 

findings indicate significant transition probabilities for both the regimes. The two regimes are identified as the Dependence Structure High State (DSHS) 

regime (State 1) and the Dependence Structure Low State (DSLS) regime (State 2). DSHS relates to economic contraction phase and DSLS relates to 

economic expansion phase. In the set of macroeconomic state variables RF is risk free rate, O is output gap, I is inflation and RA is risk aversion. In the 

set of non-macro factors OU is output uncertainty, IU inflation uncertainty, LR measure equity illiquidity, DS is bond illiquidity measure, TS is term 

spread, VP is variance premium and DR is depth of recession. Significant impacts of the independent variables are shown in the table. The significance 

levels are at five/one percent and the positive and negative signs in parenthesis denote the sign of the coefficient of the independent variable. SD reports 

the standard deviation of the regime states. TP corresponds to the transition probabilities of the two states. TP for state 1 refers to the probability of the 

dependence measure to stay in the expansion regime and TP for State 2 corresponds to the probability of the dependence measure to stay in contraction 

regime.  The Standard errors are reported in parenthesis. Duration (Dur) corresponds to the expected duration of the Dependence Structure High State 

(DSHS) regime (State 1) and the Dependence Structure Low State (DSLS) regime (State 2). The sample period is from the fourth quarter 1987 to the 

fourth quarter 212. The coefficient estimates can be provided on request.  

** corresponds to 5 percent significance level and *** corresponds to one percent significance level. 
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Figure 7-3: Regime Switching Probabilities of the Dependence Structures 

Panel A: Regimes of Equity-Bond Dependence Structure 

 

Panel B: Regimes of Equity-Real estate Dependence Structure 

 

Panel C: Regimes of Equity-Gold Dependence Structure 
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Panel D: Regimes of Equity-Oil Dependence Structure 

 

 

Panel E: Regimes of Bond-Real estate Dependence Structure 

 

Panel F: Regimes of Bond-Gold Dependence Structure 
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Panel G: Regimes of Bond-Oil Dependence Structure 

 

Panel H: Regimes of Real estate-Gold Dependence Structure 

 

Panel I: Regimes of Real estate-Oil Dependence Structure 
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Panel J: Regimes of Gold-Oil Dependence Structure 

 

Note: The figure shows the Markov switching model-implied regimes of the ten dependence 

structures. Panels A to J show the time path of the model-implied regimes of the bivariate asset 

pairs. State 1 corresponds to the expansion regime of the dependence measure. State 2 

corresponds to the contraction regime of the dependence measure. The explained variable in the 

dependence structure of the various asset return comovements. The conditional std. is the standard 

deviation of the two states. The period of analysis is from the fourth quarter 1987 to the fourth 

quarter 2012. 

 

7.3.2 Factor Exposure 

The factor exposures of the macro and the non-macro variables for the dependence 

structure high state - DSHS (State 1) and for the dependence structure low state - DSLS 

(State 2)13 are reported in Table 7-2. Panel A: For the equity-bond dependence structure 

majority of the factors are significant in both the regimes. All macro-economic variables 

except for risk aversion (RA) are significant and among the non-macro factors, output 

uncertainty (OU), liquidity measures (LR and DS) and variance premium (VP) are 

significant. In the DSHS regime output gap (O) has a negative coefficient, indicating that 

positive output gap shocks have an inverse effect on the return comovement. In the DSLS 

                                            

13 The appropriate number of regimes is identified based on the Regime Classification Statistic (RCS) as 

discussed in the previous chapter. 
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regime all the factors are negatively loaded except for risk-free rate. Negative sign 

indicates that a positive factor shocks leads to a decline in the asset return covariance.  

Panel B: For equity-real estate dependence structure, only macro-economic factors, i.e. 

risk-free rate (RF) and output gap (O) are significant. The factors produce positive 

coefficients in the DSHS regime and negative coefficients in the DSLS regime. Panel C: 

In the DSHS regime of the equity-gold dependence structure, the macro-economic factors 

(risk-free rate, output gap, inflation) and all of the non-macro variables except for stock 

illiquidity measure (LR) are significant. However, in the DSLS regime only risk aversion 

(RA), inflation uncertainty (IU), bond illiquidity (DS) factors are significant. It is 

interesting to note that the factor coefficients are negative in the DSHS regime and 

positive in the DSLS regime. Therefore in contrast to the DSLS regime, a positive factor 

shock reduces the dependence in the DSHS regime. 

Panel D: The non-macro variables, i.e. output uncertainty (OU), bond illiquidity (DS) and 

depth of recession, are significant in the DSHS regime of the equity-oil dependence 

structure. Yet, in the DSLS phase only bond illiquidity (DS) and depth of recession (DR) 

are significant. Since a negative value in the depth of recession signifies economic 

recovery and vice versa, the coefficient bears a negative sign in the DSHS regime and a 

positive sign in the DSLS regime. Panel E: In the DSHS regime of bond-real estate 

dependence structure only risk-free rate (RF) and the non-macro factors such as bond 

illiquidity (DS) and depth of recession (DR) are significant. In contrast, in the DSLS 

regime only the former two variables are significant.  

Panel F: It is interesting to note that for bond-gold dependence structure only non-macro 

variables are significant. The factors include output and input uncertainty (OU and IU), 
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bond illiquidity (DS) and variance premium (VP). Panel G: For bond-oil dependence 

structure the macro variables (risk-free rate and inflation) and the non-macro variables 

(output uncertainty and bond illiquidity measure) are significant in the DSHS regime. 

Apart from these factors risk aversion (RA) is significant in the DSLS regime.  Panel H: 

In case of real estate-gold dependence structure risk-free rate (RF), inflation (I) and risk 

aversion (RA), i.e. only macroeconomic variables, are significant in both the regime. 

Within the non-macro variables only term spread (TS) is significant in the DSLS regime. 

Panel I: The macroeconomic factors risk-free rate (RF) and risk aversion (RA) are 

significant in the DSHS regime of the real estate-oil dependence structure. In the DSLS 

regime apart from risk aversion (RA), output gap (O) is also significant. Panel J: In 

contrast for gold and oil the dependence structure only non-macro variables are 

significant. The factors include inflation uncertainty (IU), bond illiquidity (DS) and term 

spread (TS). These variables are significant in both the regimes. The factor loadings are 

provided in the Appendix. 

 

7.3.3 Factor Contributions 

This section reports to what extent the various factors contribute to the model fit in 

explaining the asset return comovements. I test the explanatory power of the determinants 

by constraining my MSSV model to various factors and examining the model fit. Table 

7-3 reports the results. 

Based on the information criteria, i.e. AIC and BIC, the findings indicate that the fit 

worsens considerably when the non-macro factors are dropped for equity-bond and 

equity-oil pairs’ dependence structure. Yet, the macroeconomic factors play a dominant 
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role in explaining the dependence structure of the equity-real estate, the real estate-gold 

and the real estate-oil pairs. In particular, the study identifies that interest rate and 

inflation have significant effect on the dependence structure during the DSHS regime, 

whilst risk aversion is significant in particular during the DSLS regime. Among the non-

macro factors output uncertainty, bond illiquidity measure and depth of recession 

contribute significantly in explaining the variations of the dependence structure.  

Overall, my findings indicate that non-macro factors contribute significantly in 

explaining the dynamics of the dependence structure. In particular, it is interesting to note 

that in the DSLS regime the illiquidity measure negatively load on equity-bond 

dependence structure. This suggests that an increase in illiquidity in the market triggers 

higher demand for bonds resulting in lower interest rates. This cross-market effect 

indicates that a negative shock in the equity market increases the comovements as 

opposed to a positive shock in the bond market. This results in outflow of investment 

from equity to treasury bonds and gold. 

Table 7-3: Factor Contributions to Model Performance 

Model Performance Full Model Minus non-Macro Factors  Minus Macro Factors 

Panel A: Equity-Bond Dependence Structure 

AIC -115.170 -101.657 -113.973 

BIC -91.947 -63.045 -66.671 

Panel B: Equity-Real Estate Dependence Structure 

AIC -157.069 -176.795 -150.834 

BIC -83.845 -140.184 -98.532 

Panel C: Equity-Gold Dependence Structure 

AIC -391.583 -280.013 -253.836 

BIC -355.241 -243.402 -201.534 
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Panel D: Equity-Oil Dependence Structure 

AIC -40.769 -44.864 -36.437 

BIC -113.993 -81.4765 -58.739 

Panel E: Bond-Real estate Dependence Structure 

AIC -192.375 -121.128 -112.478 

BIC -119.152 -84.516 -60.176 

Panel F: Bond-Gold Dependence Structure 

AIC -239.127 -245.289 -246.278 

BIC -165.904 -208.677 -193.976 

Panel G: Bond-Oil Dependence Structure 

AIC -520.391 -518.871 -478.333 

BIC -497.168 -482.260 -426.031 

Panel H: Real estate-Gold Dependence Structure 

AIC -168.608 -243.788 -189.917 

BIC -95.384 -207.176 -137.615 

Panel I: Real estate-Oil Dependence Structure 

AIC -349.523 -357.599 -351.277 

BIC -276.299 -320.987 -298.973 

Panel J: Gold-Oil Dependence Structure 

AIC -12.133 -39.949 -130.545 

BIC -60.902 -3.337 -78.242 

Note: The table reports the factor contributions for the Markov switching stochastic volatility 

models. Panels A to J reports the factor contributions of the various dependence structure. The set 

of macroeconomic state variables include risk free rate, output gap, inflation, and risk aversion. 

The non-macro factors are output uncertainty, inflation uncertainty, equity illiquidity measure, 

bond illiquidity measure, term spread, variance premium and depth of recession. AIC is Akaike 

information criterion and BIC is Bayesian information criterion. Based on the information criteria, 

i.e. AIC and BIC, the findings indicate that the fit worsens considerably when the non-macro 

factors are dropped for equity-bond and equity-oil pairs’ dependence structure. The 

macroeconomic factors play a dominant role in explaining the dependence structure of the equity-

real estate, the real estate-gold and the real estate-oil pairs. 
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7.3.4 The MGARCH framework and Covariance Dynamics – 

Robustness Check 

In this section, I examine the robustness of my previous results. Since the dependence 

structures are a scaled statistic of the covariances and the asset return volatilities, for 

robustness check, I examine the factor exposure of the conditional asset return co-

volatility using regime switching MGARCH framework. 

While in my above discussion I estimate the appropriate regime using the Regime 

Classification Statistic, here I characterize the latent regime shift variable between two 

possible states of the return covariance dynamics. Considering 𝑆𝑖,𝑡 as the endogenous 

latent regime variable dependent of the asset return co-variance over time, I characterize 

the value of 𝑆𝑖,𝑡 to High (HS) and Low (LS) state if they exceed one standard deviate 

away from the mean on either direction. The two states/regimes are defined as  

𝑆𝑖,𝑡 = 1, 𝑖𝑓[𝜌𝑗,𝑘 > {𝑚𝑒𝑎𝑛(𝜌𝑗,𝑘) + 1𝑠𝑡. 𝑑𝑒𝑣. (𝜌𝑗,𝑘)}] 

 

𝑆𝑖,𝑡 = 0, 𝑖𝑓[𝜌𝑗,𝑘 < {𝑚𝑒𝑎𝑛(𝜌𝑗,𝑘) − 1𝑠𝑡. 𝑑𝑒𝑣. (𝜌𝑗,𝑘)}] 

 

This allows me to check for the robustness of our regime switching analysis discussed in 

the previous section. The regime states evolve through a Markov process with conditional 

probabilities of the switching states given by 

 

𝑃𝑆𝑖,𝑡
= [𝑃𝑟𝑜𝑏 (

𝑆𝑖,𝑡 = 1

𝑆𝑖,𝑡 = 0
)] , ∑ 𝑃𝑆𝑖,𝑡

= 1 
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In the above equation 𝜌𝑗,𝑘 is the time-varying conditional asset return correlation for the 

asset pairs 𝑗 and 𝑘. The time-varying correlation values are calculated using diagonal 

BEKK MGARCH model (Baba et. al, 1990). 

In conducting the robustness check, I use BEKK model to estimate the dependence of the 

asset return comovements. The diagonal BEKK model is selected over other MGARCH 

models because of its following advantages i) the specifications allow for parsimonious 

model estimation, ii) the model is flexible to examine the dynamics of the conditional 

covariances and iii) the model ensures positive definiteness of the conditional 

covariances. More importantly I do not use the generalized BEKK model because it is 

likely that the parameter estimates of the generalized BEEK model are biased by the fact 

that they influence two variance equations simultaneously or by sole number of regressors 

(Tse, 2000). These critics do not all apply to the diagonal BEKK model that is used as the 

off-diagonal elements are equal to zero. Moreover the parameters to be estimated are 

lower while maintaining the positive definiteness of the conditional covariance matrix. I 

define the variance equations of the diagonal BEKK model by the following set of 

equations: 

ℎ11,𝑡 = 𝑎11 + 𝑏11
2 𝜀1,𝑡−1

2 + 𝑐11
2 ℎ11,𝑡−1 

ℎ22,𝑡 = 𝑎22 + 𝑏22
2 𝜀2,𝑡−1

2 + 𝑐22
2 ℎ22,𝑡−1 

        ℎ12,𝑡 = 𝑎12 + 𝑏11𝑏22𝜀𝑖,𝑡−1
2 + 𝑐11𝑐22ℎ12,𝑡−1 

ℎ12,𝑡 = ℎ21,𝑡 

 

 

(7-1) 

In the above equations ℎ11,𝑡 and ℎ22,𝑡 represent the conditional variance of the asset 

returns and  ℎ12,𝑡 is the covariance. Using the above specification I estimate the values 
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of  ℎ12,𝑡, ℎ11,𝑡 and ℎ22,𝑡 to compute the time-varying conditional correlation estimates 

measuring the asset return comovements. The correlation coefficient is transformed from 

range [−1,1] to (−∞, ∞) using Fisher’s transformation, i.e. 𝜌𝑗,𝑘
𝑇 =

1

2
𝑙𝑛 (

1+𝜌𝑗.𝑘

1+𝜌𝑗.𝑘
). The 

estimates of the diagonal BEKK parameters are provided in the Appendix. Next, I discuss 

the influence of the macroeconomic and non-macroeconomic variables on the regime 

switching behaviour of the asset return comovements. 

Table 7-4 presents the factor exposures for the time varying conditional correlation 

estimates during the regimes, high (HS) and low (LS) states. The MGARCH regimes HS 

and LS correspond to the DSHS and DSLS regimes as discussed in the previous section. 

It is observed that the findings from our MGARCH framework are consistent with my 

previous results.  

In particular, the findings show that the interest rate and inflation plays a significant role 

during the economic contraction phase. The impact of risk aversion on the asset return 

comovements is evident during the economic expansion regime. Considering the non-

macroeconomic factors, uncertainty and liquidity measures significantly impact the return 

comovement. The findings also indicate the only the macroeconomic factors have an 

influence on the real estate-oil return comovements. Most importantly the influences of 

the factor exposures bear the same sign as our previous MSSV models. This adds to the 

robustness of the arguments made on the impact of the determinants of the asset return 

comovements during periods of economic expansion and economic contraction. 
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Table 7-4: Factor Exposure Using Regime Switching MGARCH Framework 

Regimes 

Macro-economic Factors Non-macroeconomic Factors   

RF O I RA OU IU LR DS TS VP DR TP 

Panel A: Equity-Bond Dependence Structure 

HS 1.34** -0.53** 0.54** -0.09 0.42** -0.28 0.00 3.23** 0.37 0.14** 0.008 0.74*** 

 (0.006) (0.009) (0.092) (0.99) (0.001) (0.767) (0.999) (0.021) (0.910) (0.051) (0.999) (0.026) 

LS 1.82** -0.04 -1.78** -0.07 -0.48** -0.08 -0.36* -0.07 0.46 -0.20** 0.01 0.26** 

 (0.026) (0.992) (0.024) (0.993) (0.025) (0.739) (0.056) (0.949) (0.975) (0.053) (0.981) (0.004) 

LL 106.058 

Panel B: Equity-Real Estate Dependence Structure 

HS 1.17*** -0.05 1.29** 0.01 -0.097 -0.040 0.00 0.10 0.36 0.20 0.01 0.72** 

 (0.016) (0.939) (0.017) (0.971) (0.998) (0.003) (0.998) (0.997) (0.962) (0.971) (0.996) (0.019) 

LS -0.96** -0.01 -1.16** 0.01 0.25 0.11 0.00 0.06 -0.09 -0.38 0.02 0.28** 

 (0.005) (0.976) (0.031) (0.993) (0.946) (0.997) (0.991) (0.997) (0.842) (0.995) (0.995) (0.022) 

LL 109.4 
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Panel C: Equity-Gold Dependence Structure 

HS -1.92** 5.54** -1.96** -0.23 -0.42** 6.75** 0.00 -1.40** -0.30* -0.19* -0.14* 0.67*** 

 (0.009) (0.011) (0.009) (0.918) (0.004) (0.006) (.999) (0.040) (0.001) (0.001) (0.022) -0.18 

LS 0.08 0.41 0.07 0.13** 0.05 1.94** 0.00 -1.22** -0.09 -0.07 -0.06 0.33** 

 (0.964) (0.955) (0.994) (0.003) (0.968) (0.005) (0.998) (0.025) (0.819) (0.992) (0.996) (0.001) 

LL 110.048 

Panel D: Equity-Oil Dependence Structure 

HS -0.05 0.07 0.35 0.35 1.60** -0.05 0.00 0.54** 0.02 0.07 -0.11** 0.77*** 

 (0.974) (0.995) (0.995) (0.977) (0.004) (0.992) (0.999) (0.005) (0.991) (0.765) (0.976) (0.033) 

LS -0.17 0.34 -0.69 0.31 0.57 0.31 0.00 -0.39* -0.15 -0.01 0.19** 0.23** 

 (0.957) (0.719) (0.944) (0.959) (0.993) (0.796) (0.889) (0.032) (0.889) (0.994) (0.009) (0.032) 

LL 107.563 

Panel E: Bond-Real estate Dependence Structure 

HS 2.28** 0.21 0.066 0.03 -0.03 -0.07 0.00 7.70** -0.01 -0.12 -0.21* 0.68** 

 (0.013) (0.949) (0.834) (0.977) (0.936) (0.979) (0.997) (0.002) (0.997) (0.899) (0.029) (0.009) 
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LS -0.22* 0.03 0.075 -0.12 0.30 0.01 0.00 1.97** 0.01 -0.06 0.04 0.32** 

 (0.009) (0.988) (0.925) (0.995) (0.953) (0.991) (0.999) (0.006) (0.959) (0.996) (0.972) (0.032) 

LL 104.187 

Panel F: Bond-Gold Dependence Structure 

HS 0.14 0.16 0.07 0.07 -0.15** 0.28*** 0.00 -0.13** -0.06 -0.02 0.00 0.73** 

 (0.991) (0.991) (0.999) (0.999) (0.007) (0.028) (0.997) (0.007) (0.993) (0.996) (0.999) (0.007) 

LS 0.16 -0.47 -0.08 0.00 0.38*** -0.51*** 0.00 1.52** 0.02 -0.11 0.00 0.27** 

 (0.996) (0.979) (0.993) (0.999) (0.001) (0.002) (0.999) (0.005) (0.996) (0.996) (0.999) (0.029) 

LL 117.592 

Panel G: Bond-Oil Dependence Structure 

HS -0.21* -0.06 -0.89** 0.15 0.36* 0.03 0.00 -0.64** -0.080 0.29 -0.01 0.72*** 

 (0.002) (0.968) (0.005) (0.993) (0.017) (0.989) (0.999) (0.002) (0.996) (0.997) (0.998) (0.005) 

LS -1.10** 0.28 0.44** 0.12** -0.45* -0.08 0.00 1.86** 0.12 0.09 0.02 0.82** 

 (0.969) (0.016) (0.005) (0.998) (0.996) (0.976) (0.999) (0.009) (0.991) (0.976) (0.997) (0.005) 

LL 288.195 
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Panel H: Real estate-Gold Dependence Structure 

HS -1.29** -0.17 -0.88* -0.85*** 0.06 -0.07 0.00 0.13 -0.06 -0.01 0.00 0.65** 

 (0.002) (0.998) (0.996) (0.002) (0.996) (0.992) (0.999) (0.995) (0.997) (0.999) (0.999) (0.003) 

LS 1.08** 0.15 -3.51* 0.22* -0.16 0.07 0.00 0.05 1.93** 0.06 0.00 0.35** 

 (0.004) (0.894) (0.001) (0.9)89 (0.783) (0.992) (0.999) (0.996) (0.011) (0.994) (0.999) (0.001) 

LL 101.06 

Panel I: Real estate-Oil Dependence Structure 

HS 1.80** 0.03 0.83** 0.045 0.15 -0.18 0.00 0.01 -0.08 0.09 0.00 0.68*** 

 (0.005) (0.996) (0.006) (0.992) (0.994) (0.968) (0.999) (0.999) (0.994) (0.985) (0.999) (0.018) 

LS -0.01 -0.60* 1.06** -0.28 0.10 0.13 0.00 -0.20 0.16 0.25 -0.04 0.32** 

 (0.997) (0.004) (0.001) (0.967) (0.998) (0.992) (0.999) (0.971) (0.891) (0.935) (0.997) (0.035) 

LL 110.836 

Panel J: Gold-Oil Dependence Structure 

HS 0.05 -0.03 -0.10 0.06 0.13 -1.01** 0.00 1.78*** -0.39** -0.06 0.02 0.69** 

 (0.993) (0.988) (0.977) (0.991) (0.908) (0.998) (0.997) (0.005) (0.048) (0.939) (0.991) (0.001) 
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LS 0.02 0.09 0.34 0.01 0.12 -1.69** 0.00 -0.62** -0.76** 0.07 -0.07 0.31** 

 (0.990) (0.982) (0.970) (0.998) (0.916) (0.002) (0.999) (0.012) (0.032) (0.995) (0.962) (0.008) 

LL 114.16 

Note: The table reports the summary the parameter estimation results of regime switching MGACH framework of the ten state variables for 

the various dependence structure. The estimates presents the factor exposures for the time varying conditional correlation estimates during 

the regimes, high (HS) and low (LS) states. The MGARCH regimes HS and LS correspond to the DSHS and DSLS regimes as discussed in 

Table 2. The HS regime relates to economic contraction phase and LS regime relates to economic expansion phase. In the set of 

macroeconomic state variables RF is risk free rate, O is output gap, I is inflation and RA is risk aversion. In the set of non-macro factors OU 

is output uncertainty, IU inflation uncertainty, LR measure equity illiquidity, DS is bond illiquidity measure, TS is term spread, VP is variance 

premium and DR is depth of recession. LL corresponds to the Log-Likelihood values of the regime switching model. The standard errors are 

reported in parenthesis. The sample period is from the fourth quarter 1987 to the fourth quarter 212.  

** corresponds to 5 percent significance level and *** corresponds to one percent significance level. 
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7.4 Summary 

Considerable time variation in the asset return comovements has been of key interest to 

portfolio managers and academic researchers. Much of the research in this area has been 

restricted to the conventional financial assets, i.e. stocks and bonds. There is little research 

on the impact of changes in the real economy and non-macroeconomic factors on the 

return dynamics of assets comprising financial, commodity and real estate. Further, the 

extant research has examined the asset return comovements by using linear correlation as 

a measure of comovements. However, it is well recognized in the literature that linear 

correlation fails to provide an accurate estimate of the dependence structure when dealing 

with multivariate distributions with complex dynamic characteristics. In this work this 

limitation is addressed using the copula approach. 

Using quarterly US data from 1987 to 2012 (1st August 1987 to 1st September 2012) for 

three different asset classes and several macro and non-macroeconomic variables, this 

study reports a number of significant findings. First, I confirm that the dependence 

structures of asset return comovements of all asset pairs show significant regime-

switching behaviour both in terms of statistical and economic significance. Two regimes 

are identified which corresponds to economic expansion and economic contraction 

phases. Specifically, the DSLS corresponds to the economic expansion phase and the 

DSHS corresponds to the economic contraction phase.  Second, examining the factor 

contributions, it is evident that the model fit worsens considerably when the non-macro 

factors are dropped for the equity-bond and equity-oil pairs. Third, the results indicate 

that interest rate and inflation have significant effect on the dependence structure during 

the economic contraction regime, whilst risk aversion plays a significant in the economic 

expansion regime. Among the non-macro factors output uncertainty, bond illiquidity 
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measure and depth of recession contribute significantly in explaining the variations of the 

dependence structures. Fourth, the findings reveal that real estate-oil dependence 

structure is influenced only by macroeconomic developments. Finally, the study shows 

that the dependence structure regimes are asset return comovement specific. This suggests 

that macroeconomic and non-macro variables affect different asset return comovements 

differently. 

Overall, the regime switching analysis of the dependence structure has two key 

implications for asset allocation and portfolio diversification. First, the changing regimes 

of the asset return comovements demonstrate the potentials gains of timely switching over 

from risky assets like stocks, oil to bond and gold. These regimes correspond to economic 

expansion and economic contraction periods characterized by low and high asset return 

covariance, respectively. Second, the dependence structure of all asset pairs is higher 

during the economic decline phase than during economic expansion phase, except for 

equity-gold and bond-oil pairs. This implies that investment in gold provides 

diversification for equity-based portfolio, while bond provides a good hedge for oil. 
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7.5 Appendix 

Table 7 (A-1): Parameter Estimates of the Two-State Markov Switching Stochastic Volatility Model 

 Macro-economic Factors Non-macroeconomic Factors    

 RF O I RA OU IU LR DS TS VP DR Std. Dev. TP Dur. 

Panel A: Equity-Bond Dependence Structure 

DSHS 7.43** 

(0.58) 

-3.4** 

(0.78) 

10.4** 

(0.43) 

0.007 

(0.005) 

4.41** 

(0.53) 

-0.53 

(0.58) 

-0.002 

(0.00) 

4.13** 

(0.32) 

0.55 

(0.35) 

1.16*** 

(0.32) 

-0.02 

(0.01) 

0.078*** 

(0.008) 

0.86*** 

(0.26) 

29.9 

DSLS 13.16** 

(0.78) 

-0.254 

(0.88) 

-6.42** 

(0.66) 

-0.016 

(0.82) 

-11.4*** 

(0.9) 

-0.977 

(0.75) 

-0.16** 

(0.92) 

-1.65** 

(0.67) 

0.94 

(0.86) 

-1.37** 

(0.98) 

-0.043 

(0.92) 

0.069* 

(0.002) 

0.82** 

(0.84) 

10.66 

AIC -115.170 

-91.947 

85.585 

BIC 

LL 

Panel B: Equity-Real Estate Dependence Structure 

DSHS 12.9*** 

(0.34) 

-0.04 

(0.64) 

11.98** 

(0.48) 

0.005 

(0.87) 

-0.09 

(0.44) 

-0.43 

(0.92) 

-0.01 

(0.99) 

-0.15 

(2.49) 

0.27 

(0.20) 

0.49 

(0.99) 

-0.02 

(0.00) 

0.097*** 

(0.0004) 

0.88** 

(0.19) 

14.76 

DSLS -2.93* 

(0.71) 

0.03 

(0.53) 

-13.98** 

(0.90) 

-0.001 

(0.92) 

0.20 

(0.24) 

0.60 

(0.93) 

0.01 

(0.99) 

0.08 

(0.99) 

-0.07 

(0.96) 

-0.4 

(0.99) 

0.01 

(0.99) 

0.03*** 

(0.0003) 

0.78** 

(0.22) 

6.14 

AIC -157.069 

BIC -83.845 
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LL 106.534 

Panel C: Equity-Gold Dependence Structure 

DSHS -3.00*** 

(0.19) 

3.02** 

(0.26) 

-23.1** 

(0.21) 

-0.001 

(0.002) 

-0.52** 

(0.264) 

3.35** 

(0.514) 

0.005 

(0.93) 

-1.51** 

(0.13) 

-0.4** 

(0.09) 

-0.5** 

(0.12) 

-0.13** 

(0.002) 

0.021** 

(0.000) 

0.67*** 

(0.18) 

7.56 

DSLS -0.06 

(0.99) 

-0.08 

(0.99) 

-0.07 

(0.99) 

0.14* 

(0.002) 

0.033 

(0.99) 

7.55** 

(0.99) 

-0.001 

(0.91) 

1.12* 

(1.73) 

0.012 

(0.99) 

0.034 

(0.99) 

0.01 

(0.99) 

0.064 

(0.99) 

0.73** 

(0.56) 

8.88 

AIC -391.583 

BIC -355.241 

LL 209.926 

Panel D: Equity-Oil Dependence Structure 

DSHS -0.083 

(0.93) 

0.26 

(0.94) 

0.06 

(0.89) 

0.025 

(0.87) 

5.24** 

(0.239) 

-0.24 

(0.51) 

0.003 

(0.99) 

0.15** 

(0.119) 

0.646 

(0.94) 

0.09 

(0.99) 

-0.06** 

(0.029) 

0.133*** 

(0.006) 

0.77*** 

(0.33) 

19.84 

DSLS -0.399 

(0.169) 

0.029 

(0.27) 

-0.14 

(0.21) 

0.015 

(0.025) 

0.018 

(0.205) 

0.187 

(0.557) 

0.0012 

(0.95) 

-0.73** 

(0.03) 

-0.65 

(0.99) 

-0.85 

(0.92) 

0.54** 

(0.026) 

0.071*** 

(0.002) 

0.73** 

(0.32) 

14.46 

AIC 40.769 

BIC 113.993 

LL 7.615 

Panel E: Bond-Real estate Dependence Structure 

DSHS 8.44** 

(0.29) 

0.67 

(0.99) 

0.23 

(0.42) 

0.002 

(0.002) 

-0.35 

(0.93) 

-0.90 

(0.93) 

-0.041 

(0.99) 

3.9* 

(0.17) 

-0.145 

(0.90) 

-0.29 

(0.99) 

-0.57* 

(0.00) 

0.030*** 

(0.000) 

0.82** 

(0.14) 

25.32 
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DSLS -2.1** 

(0.106) 

0.08 

(0.99) 

-0.37 

(0.99) 

-0.01 

(0.99) 

0.061 

(0.99) 

0.02 

(0.97) 

0.01 

(0.99) 

6.71* 

(0.135) 

-0.05 

(0.99) 

0.30 

(0.93) 

0.04 

(0.99) 

0.0251 

(0.99) 

0.78** 

(0.32) 

6.52 

AIC -192.375 

BIC -119.152 

LL 124.187 

Panel F: Bond-Gold Dependence Structure 

DSHS 0.091 

(0.94) 

0.03 

(0.78) 

0.09 

(0.87) 

0.08 

(0.00) 

-2.73** 

(0.01) 

0.53** 

(0.20) 

-0.003 

(0.99) 

-1.06** 

(0.06) 

-0.31 

(0.75) 

-0.82** 

(0.36) 

0.005 

(0.99) 

0.027** 

(0.00) 

0.83** 

(0.37) 

10.02 

DSLS 0.06 

(0.98) 

-0.19 

(0.91) 

-0.07 

(0.97) 

0.02 

(0.99) 

3.48** 

(0.07) 

-1.19** 

(0.08) 

0.002 

(0.99) 

3.31*** 

(0.07) 

0.49 

(0.94) 

-0.22 

(0.83) 

0.002 

(0.99) 

0.091** 

(0.00) 

0.77** 

(0.29) 

6.75 

AIC -239.127 

BIC -165.904 

LL 147.563 

Panel G: Bond-Oil Dependence Structure 

DSHS -1.72** 

(0.04) 

-0.01 

(0.98) 

-0.30** 

(0.49) 

0.083 

(0.91) 

1.39** 

(0.061) 

0.069 

(0.92) 

0.00 

(0.99) 

-0.33** 

(0.39) 

-0.01 

(0.92) 

0.031 

(0.96) 

-0.01 

(0.99) 

0.009** 

(0.00) 

0.72*** 

(0.05) 

9.31 

DSLS -0.95** 

(0.04) 

0.12 

(0.83) 

0.76** 

(0.01) 

0.124** 

(0.01) 

-1.06** 

(0.061) 

-0.46 

(0.99) 

0.00 

(0.99) 

3.86** 

(0.23) 

0.005 

(0.99) 

0.025 

(0.95) 

0.002 

(0.99) 

0.012** 

(0.00) 

0.82** 

(0.05) 

13.5 

AIC -520.391 

BIC -497.168 
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LL 288.195 

Panel H: Real estate-Gold Dependence Structure 

DSHS -7.01** 

(0.19) 

-0.07 

(0.97) 

-0.58** 

(0.14) 

-0.67** 

(0.00) 

0.00 

(0.99) 

-0.33 

(0.92) 

0.01 

(0.99) 

0.480 

(0.91) 

-0.40 

(0.99) 

-0.40 

(0.91) 

-0.001 

(0.99) 

0.080** 

(0.00) 

0.75** 

(0.07) 

13.78 

DSLS 1.60** 

(0.01) 

0.37 

(0.99) 

-0.22** 

(0.01) 

0.71** 

(0.00) 

-0.07 

(0.99) 

0.54 

(0.99) 

0.00 

(0.99) 

0.28 

(0.99) 

0.24* 

(0.01) 

0.011 

(0.00) 

-0.001 

(0.99) 

0.025** 

(0.00) 

0.85** 

(0.01) 

5.70 

AIC -168.608 

BIC -95.384 

LL 112.280 

Panel I: Real estate-Oil Dependence Structure 

DSHS 5.01** 

(0.02) 

0.06 

(0.98) 

-0.68** 

(0.335) 

0.003 

(0.99) 

0.483 

(0.94) 

-0.21 

(0.85) 

0.01 

(0.99) 

0.49 

(0.91) 

-0.24 

(0.96) 

0.20 

(0.97) 

-0.04 

(0.99) 

0.036*** 

(0.00) 

0.85*** 

(0.18) 

21.91 

DSLS -0.2.0 

(0.94) 

-0.92** 

(0.07) 

1.08** 

(0.30) 

-0.02 

(0.99) 

0.34 

(0.92) 

0.05 

(0.99) 

-0.11 

(0.84) 

-0.07 

(0.99) 

0.13 

(0.93) 

-0.12 

(0.99) 

0.07 

(0.99) 

0.019** 

(0.00) 

0.64** 

(0.35) 

4.56 

AIC -349.523 

BIC -276.299 

LL 202.761 

Panel J: Gold-Oil Dependence Structure 

DSHS 0.35 

(0.71) 

-0.09 

(0.93) 

-0.07 

(0.68) 

0.00 

(0.99) 

0.31 

(0.96) 

-0.41** 

(0.25) 

0.001 

(0.99) 

4.28** 

(0.04) 

-0.81** 

(0.41) 

-0.08 

(0.94) 

0.01 

(0.99) 

0.21*** 

(0.00) 

0.78** 

(0.99) 

30.6 
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DSLS 0.07 

(0.99) 

0.05 

(0.99) 

0.19 

(0.91) 

0.01 

(0.99) 

0.07 

(0.99) 

-1.01** 

(0.09) 

-0.02 

(0.99) 

4.23** 

(0.11) 

-0.22** 

(0.07) 

0.04 

(0.99) 

-0.03 

(0.99) 

0.065** 

(0.00) 

0.72** 

(0.08) 

11.89 

AIC -12.133 

BIC 60.902 

LL 34.160 

Note: The table reports the summary the parameter estimation results of the Markov switching stochastic volatility models of the ten state variables for 

the various dependence structure. The appropriate numbers of regimes are identified by the Regime Classification Statistic as stated in Equation (10). The 

findings indicate significant transition probabilities for both the regimes. The two regimes are identified as the Dependence Structure High State (DSHS) 

regime (State 1) and the Dependence Structure Low State (DSLS) regime (State 2). DSHS relates to economic contraction phase and DSLS relates to 

economic expansion phase. In the set of macroeconomic state variables RF is risk free rate, O is output gap, I is inflation and RA is risk aversion. In the 

set of non-macro factors OU is output uncertainty, IU inflation uncertainty, LR measure equity illiquidity, DS is bond illiquidity measure, TS is term 

spread, VP is variance premium and DR is depth of recession. Significant impacts of the independent variables are shown in the table. SD reports the 

standard deviation of the regime states. TP corresponds to the transition probabilities of the two states. TP for state 1 refers to the probability of the 

dependence measure to stay in the expansion regime and TP for State 2 corresponds to the probability of the dependence measure to stay in contraction 

regime.  The Standard errors are reported in parenthesis. Duration (Dur) corresponds to the expected duration of the Dependence Structure High State 

(DSHS) regime (State 1) and the Dependence Structure Low State (DSLS) regime (State 2). The sample period is from the fourth quarter 1987 to the 

fourth quarter 212. The coefficient estimates can be provided on request.  

** corresponds to 5 percent significance level and *** corresponds to one percent significance level. 
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Table 7 (A-2): Parameter Estimates of Diagonal BEKK – MGARCH model 

    Variance Equation Parameters 

  𝒂𝟏𝟏 𝒂𝟏𝟐 𝒂𝟐𝟐 𝒃𝟏𝟏 𝒃𝟐𝟐 𝒄𝟏𝟏 𝒄𝟐𝟐 

Equity-Bond 

Coefficient 0.000 0.000 0.000 0.634** 0.032** 0.780*** 0.844** 

Std. Error 0.000 0.000 0.000 0.174 0.149 0.099 0.311 

LL 420.619             

Equity-Gold 

Coefficient 0.000 0.000 0.000 -0.624** 0.267*** 0.792*** 0.949*** 

Std. Error 0.000 0.000 0.000 0.174 0.094 0.082 0.057 

LL 346.942             

Equity-Real Estate 

Coefficient 0.001 0.000 0.000 0.163** 0.698** 0.819*** 0.743*** 

Std. Error 0.000 0.000 0.000 0.103 0.148 0.068 0.058 

LL 543.997             

Equity-Oil 

Coefficient 0.000 0.000 0.003 0.794** 0.512** 0.705** 0.657** 

Std. Error 0.000 0.000 0.002 0.167 0.115 0.092 0.200 

LL 280.883             

Bond-Gold 

Coefficient 0.000 0.000 0.000 -0.024** 0.288** 0.914** 0.947*** 

Std. Error 0.000 0.000 0.000 0.294 0.109 0.132 0.064 

LL 423.010             
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Bond-Real Estate 

Coefficient 0.000 0.000 0.000 0.188** 0.717** 0.840** 0.729*** 

Std. Error 0.000 0.000 0.000 0.103 0.157 0.231 0.059 

LL 626.505             

Bond-Oil 

Coefficient 0.000 0.000 0.003 -0.216** 0.608** 0.844** 0.605*** 

Std. Error 0.000 0.000 0.002 0.179 0.110 0.259 0.223 

LL 351.603             

Real Estate-Gold 

Coefficient 0.000 0.000 0.000 0.229** 0.745** 0.957*** 0.709*** 

Std. Error 0.000 0.000 0.000 0.092 0.148 0.066 0.053 

LL 550.264             

Real Estate-Oil 

Coefficient 0.000 0.000 0.005 0.782** 0.409** 0.744*** 0.470** 

Std. Error 0.000 0.000 0.002 0.107 0.087 0.041 0.311 

LL 476.061             

Gold-Oil 

Coefficient 0.000 0.000 0.002 0.392** 0.604** 0.916*** 0.656** 

Std. Error 0.000 0.000 0.002 0.129 0.170 0.063 0.202 

LL 280.937             

Table 7 (A-2) presents the diagonal BEKK – MGARCH estimates of the 10 bivariate asset pairs. These asset pairs consist of three different asset classes. 

The asset pairs are Equity-Bond, Equity-Gold, Equity-Real Estate, Equity-Oil, Bond-Gold, Bond-Real Estate, Bond-Oil, Real Estate-Gold, Real Estate-

Oil and Gold-Oil. In this study the variance equations of the diagonal BEKK model are defined by the following set of equations: 

ℎ𝑗𝑗,𝑡 = 𝑎11 + 𝑏11
2 𝜀𝑗,𝑡−1

2 + 𝑐11
2 ℎ𝑗𝑗,𝑡−1,   ℎ𝑘𝑘,𝑡 = 𝑎22 + 𝑏22

2 𝜀𝑘,𝑡−1
2 + 𝑐22

2 ℎ𝑘𝑘,𝑡−1,    ℎ𝑗𝑘,𝑡 = 𝑎12 + 𝑏11𝑏22𝜀𝑗,𝑡−1𝜀𝑘,𝑡−1 + 𝑐11𝑐22ℎ𝑗𝑘,𝑡−1 and  ℎ𝑗𝑘,𝑡 =

ℎ𝑘𝑗,𝑡. In these equations ℎ𝑗𝑗,𝑡 and ℎ𝑘𝑘,𝑡 represent the conditional variance of the asset returnsj and k and  ℎ𝑗𝑘,𝑡 is asset return covariance. The matrices ‘b’ 
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and ‘c’ are assumed to be diagonal matrices. Using the above specification the values of  ℎ𝑗𝑘,𝑡,ℎ𝑗𝑗,𝑡 and  ℎ𝑘𝑘,𝑡 are estimated to compute the time-varying 

conditional correlation estimates measuring the asset return comovements.  

** corresponds to 5 percent significance level and *** corresponds to one percent significance level. 

 

Table 7 (A-3): Diagnostic Check of the Diagonal BEKK – MGARCH models 

  Equity-Bond Equity-Gold Equity-Real Estate Equity-Oil Bond-Gold 

Lags Q-Stat Prob. Q-Stat Prob. Q-Stat Prob. Q-Stat Prob. Q-Stat Prob. 

1  1.920609  0.7504  7.131075  0.1291  6.761696  0.1490  3.528402  0.4736  8.067143  0.0891 

2  7.037174  0.5326  8.704601  0.3678  13.18022  0.1058  5.362587  0.7182  10.81184  0.2126 

3  14.05220  0.2974  11.16584  0.5148  19.33946  0.0807  7.140146  0.8482  14.60964  0.2635 

4  17.33161  0.3645  13.55977  0.6315  25.75927  0.0575  10.58926  0.8341  18.29890  0.3067 

5  23.34273  0.2723  14.94830  0.7794  37.32855  0.0107  13.48406  0.8557  23.42872  0.2682 

6  25.09550  0.4006  16.45047  0.8711  41.71569  0.0139  18.17736  0.7943  24.53787  0.4312 

7  29.76401  0.3746  20.98426  0.8260  45.39450  0.0201  22.23211  0.7704  29.56928  0.3841 

8  30.97365  0.5183  22.52350  0.8928  46.61476  0.0459  25.56056  0.7827  32.15103  0.4593 

9  35.77808  0.4791  25.52824  0.9030  52.25894  0.0390  30.09536  0.7448  36.40412  0.4498 

10  38.79038  0.5246  32.86939  0.7807  57.30889  0.0373  32.93864  0.7781  43.95188  0.3078 
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11  41.64262  0.5732  39.70749  0.6560  62.07737  0.0374  34.42498  0.8493  54.47330  0.1339 

12  42.95235  0.6793  41.53405  0.7334  64.60179  0.0551  35.23641  0.9147  58.02773  0.1523 

  Bond-Real Estate Bond-Oil Real Estate-Gold Real Estate-Oil Gold-Oil 

Lags Q-Stat Prob. Q-Stat Prob. Q-Stat Prob. Q-Stat Prob. Q-Stat Prob. 

1  1.939815  0.7468  6.694748  0.1529  3.563686  0.4683  7.202386  0.1256  5.572912  0.2334 

2  7.159745  0.5195  12.98617  0.1123  5.434926  0.7102  8.807700  0.3588  10.74244  0.2167 

3  14.38952  0.2765  18.96247  0.0894  7.266899  0.8395  11.34429  0.4997  13.00194  0.3689 

4  17.80416  0.3355  25.12803  0.0676  10.85825  0.8181  13.83693  0.6109  15.31505  0.5017 

5  24.12835  0.2368  36.12457  0.0149  13.90382  0.8353  15.29778  0.7591  16.58735  0.6796 

6  25.99183  0.3536  40.25108  0.0201  18.89354  0.7576  16.89483  0.8531  20.02658  0.6953 

7  31.00800  0.3167  43.67493  0.0299  23.25023  0.7204  21.76624  0.7920  25.32240  0.6102 

8  32.32170  0.4509  44.79853  0.0660  26.86500  0.7241  23.43788  0.8640  33.33293  0.4022 

9  37.59612  0.3960  49.93977  0.0612  31.84343  0.6666  26.73657  0.8691  35.98532  0.4693 

10  40.93944  0.4291  54.48973  0.0630  34.99915  0.6946  34.88444  0.6995  45.14968  0.2655 

11  44.14028  0.4657  58.73886  0.0677  36.66715  0.7757  42.55831  0.5335  50.94354  0.2192 

12  45.62661  0.5706  60.96336  0.0991  37.58800  0.8603  44.63115  0.6117  51.82609  0.3270 
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Table 7 (A-3) reports the Q-statistics of the autocorrelation function of the standardized residuals of the diagonal BEKK models. In total the results are 

presented for 10 bivariate pairs – a combination of three different asset classes. The asset pairs are Equity-Bond, Equity-Gold, Equity-Real Estate, Equity-

Oil, Bond-Gold, Bond-Real Estate, Bond-Oil, Real Estate-Gold, Real Estate-Oil and Gold-Oil. The Null Hypothesis of the Q-test is: There is no residual 

autocorrelations up to lag h. The tests are performed for 12 lags. The findings indicate that the Null Hypothesis cannot be rejected. Thus, there is no 

evidence of autocorrelation in the residuals of the diagonal BEKK – MGARCH models. This ensures the adequacy of the BEKK – MGARCH models in 

attaining reliable estimates and inference. 
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             CHAPTER 8: Examining the Det erminants of  the Joint Dependence Structure 

Examining the Determinants of the Joint Dependence Structure 

8.1 Introduction 

This chapter examines the macroeconomic and the non-macroeconomic variables that 

influence the Joint Dependence Structure (JDS) of the non-linear asset returns of three 

different asset classes. This study is important because it presents the first empirical 

evidence examining the factors that drive the joint return distribution combining different 

asset classes. 

But, why study the joint dependence structure? It is fair to say that investors no longer 

invest in only conventional financial assets such as equities and bonds, but in a wide range 

of alternative financial assets including commodities and real estate. Therefore, in 

constructing an optimal portfolio, it is critical to identify the economic circumstances and 

understand the impact of macro and non-macro factors on asset return comovements. 

Fewer studies have dealt with a combination of bivariate asset return dynamics; however, 

research on the joint dependence structure of a portfolio of all the different asset classes, 

which I refer as multi-assets, is non-existent. Against this backdrop, the purpose of this 

examination is three fold: First, I seek to analyse if the JDS of the multi-asset return 

comovements exhibit evidence of regime switching behaviour. Second, this study 

examines the factor exposure of various macro and non-macroeconomic variables on the 

JDS. Third, I investigate the factor contributions in different regimes.  

This empirical investigation has a number of distinct features. First, similar to my 

previous examination of the bivariate dependence structure, this analysis considers i) 

three different asset classes, ii) a wide range of macroeconomic and non-macroeconomic 
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variables and iii) the period of analysis is from 1987 to 2012 (1st August 1987 to 1st 

September 2012), which allows me to capture the effects of economic contraction caused 

by several financial crises on the behaviour of different asset classes. It is, to the best of 

my knowledge, the first study that examines the factors that drive the joint dependence 

structure for a portfolio of three different asset classes. Second, while research widely 

acknowledges that return distributions of financial assets are non-normal, the extant 

literature primarily uses linear dependence measure to examine the asset market linkages. 

I, therefore, use dynamic conditional multivariate model as an alternative measure of 

association which overcomes the limitations of simple linear correlation in examining the 

extreme dependence structure of the asset return comovements.  

Third, I use two stage structural factor model framework in examining the dynamics of 

the state variables and their influence on the JDS. Further, the state variables are estimated 

through a New-Keynesian framework. Importantly, the regime-switching model 

accommodates for heteroskedastic shocks in the state variables. The details of the model 

development and the model specifications are provided in Chapter 6. Finally, this study 

decomposes the performance of the Markov switching stochastic volatility (MSSV) 

model to examine the impact of the macroeconomic and the non-macroeconomic factors. 

This provides useful insights in identifying the key determinants of multi-asset return 

comovements.  

Finally, towards the end of this chapter, I examine the practical applications of this 

research work. I examine the forecasting performance and the economic value of 

understanding asset return comovements. Specifically, I present the forecasting analysis 

of the MSSV models that capture the dynamic behaviour of the asset return comovements. 

Further, I check whether regime switching forecast provides more accurate results than a 
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single regime stochastic volatility model. This adds to the robustness of the application 

of the developed regime switching model.  

This chapter reports several key findings. First, the findings confirm that the joint 

dependence structures of asset return comovements show significant regime-switching 

behaviour both in terms of statistical and economic significance. The two regimes 

identified represent economic expansion and economic contraction phases. Second, the 

findings show that among the macroeconomic variables, inflation plays a central role 

(positive influence) during both the phases of the economy. Also, risk aversion is 

positively significant during the economic contraction phase, whereas risk free rate 

negatively affects the JDS during the economic expansion period. This indicates that 

when risk aversion is high during periods of economic contraction, interest rates may be 

low, increasing the bond prices, but riskier assets like stocks which are positively 

correlated with interest rate shocks during economic contraction may witness fall in 

prices. Third, among the non-macroeconomic factors, uncertainty variables and bond 

illiquid play a dominant role in both the phases of the economy. The findings also report 

that input uncertainty and bond illiquidity have the highest coefficient values. The 

significant impact of the liquidity factor provides evidence for “flight-to-liquidity” 

phenomenon as reported in the previous literature (Connolly et al., 2005). While more 

research is accounted for in the field of “flight-to-liquidity” and its interaction with 

liquidity, some previous studies give credence to our findings. For instance, Li (2007) 

shows that systematic liquidity risk is priced in bond markets. However, they do not 

conduct study for other financial assets. Further, the significant influence of the economic 

uncertainty measures indicate that higher the uncertainty about future economic state 

variables, the more swiftly the investors are likely to react to news. This in turn affects 
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both the variances and the covariances of the asset returns. Fourth, examining the factor 

contributions, it is observed that the model fit worsens considerably when the non-macro 

factors are dropped. Thus, it is fair to say that the non-macroeconomic factors play a vital 

role in explaining the variations in the JDS. My findings are also conclusive from the 

quartile regressions, which are conducted to test for robustness of the findings. An 

additional contribution of this thesis relates to the forecasting performance of the MSSV 

models. The findings show that MSSV framework enhances the flexibility in the model 

accommodating the persistence of volatility shocks. For instance, if shocks are more 

persistent in periods of economic contraction than in periods of economic recovery, this 

can be captured by the regime parameters. Moreover, the Markov switching model is able 

to capture the ‘pressure smoothening’ effects of those shocks that are not persistent and 

are followed by low volatility regimes. The results also indicate that the dynamic strategy 

which considers the factors that drive the return comovements outperforms the portfolio 

returns constructed based on multivariate conditional covariance strategy. 

The rest of the chapter is organized as follows: Section 2 discusses the factor exposure 

and the factor contributions of the state variables on the JDS. Section 3 provides the robust 

tests using quantile regressions. Sections 4 and 5 explores the contributions to practise of 

the research work. Specifically, Section 4 examines the forecasting performance of the 

Markov switching models and Section 5 analysis the economic value of understanding 

asset return comovements.   Finally, Section 6 concludes the chapter.  
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8.2 Examining the Determinants of the Multi-Asset Return 

Comovements 

As reported in the previous chapter, this work examine the determinants of the 

dependence structure of the comovements of two conventional financial assets, i.e. 

Standard & Poor’s (S&P) 500 index (E) and US 10 year Government bond return index 

(B), two commodities, i.e. S&P GSCI Gold index (G) and West Texas Intermediate – 

WTI Cushing crude oil spot prices per barrel (O) and S&P Case-Shiller Composite-10 

home price index (RE) for real estate. I characterize the dependence measure of the 

various asset returns using monthly returns to calibrate the ex-post quarterly dependence 

structure from the fourth quarter 1987 to the fourth quarter 2012 (1st August 1987 to 1st 

September 2012). 

For examining the determinants of the joint dependence structure (JDS) of the 

comovement asset return, we  include four macroeconomic variables, i.e.,  the risk free 

rate )(rf , output gap )(o , inflation )(i , and risk aversion )(ra  and seven non-

macroeconomic variables, i.e. output uncertainty )(ou , inflation uncertainty )(iu , bond 

market illiquidity )(ds , equity market illiquidity )(lr , variance premium )(vp , term 

spread )(ts  and the depth of recession )(dr . A detailed discussion on each of these state 

variables and their regime switching behaviour are presented in Chapters 6 and 7, 

respectively. 

 

8.2.1 Regime Switching Behaviour of the Joint Dependence 

Structure 

Let us begin by determining whether JDS shows evidence of regime switching. Panel A 

of Table 8-1 reports the transition probabilities of the two regimes, i.e. Regime 1 and 
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Regime 2, along with the respective expected durations14 of the regimes. The two regimes 

are identified using the Regime Classification Statistic (RCS) as discussed in Chapter 6. 

The findings indicate significant transition probabilities for both the regimes. These 

identified regimes represent i) the Dependence Structure High State (DSHS) (Regime 1) 

and the Dependence Structure Low State (DSLS) (Regime 2). 

The transition probability and the expected duration values presented in Panel A of Table 

8-1 reveal that the JDS DSLS regime (Regime 2) tends to be considerably longer than its 

DSHS regime. This has key economic significance, suggesting that investments in 

various asset classes lead to considerable diversification as the JDS tends to stay in its 

lower state. It is worth noting that the standard deviation estimates are higher in the DSHS 

regime than in the DSLS regime (see Panel A). This indicates that the dependence 

structure is more volatile during the economic contraction regime, which corresponds to 

DSHS, than during the economic expansion regime, which corresponds to DSLS. 

                                            

14Following Hamilton’s (1989) formula we estimate the expected duration of the regimes as






 
0 )22(11

1

)22(11 )1(
i

i pip , where )( 2211 pp are the transition probabilities in Regime 1 (Regime 2). 
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Table 8-1: MSSV Model Estimates and Factor Exposure 

Panel A: Model Characteristics                 

  Tr. Prob. Std. Dev. Exp. Duration AIC        

Regime 1 

(DSHS) 0.850 0.050 6.657 
-311.587 

       

Regime 2 

(DSLS) 0.904 0.011 10.385               

 

Panel B: Coefficient Estimates 

    Macroeconomic Variables Non-Macroeconomic Variables 

  Constant RF O I RA OU IU LR DS TS VP DR 

Regime 1- DSHS 

(Economic 

Contraction) 

-0.173 0.100 -0.180 0.546** 0.166*** 0.532*** -4.522*** -0.001 5.238** 0.097 0.013 -0.012** 

(0.164) (0.779) (0.120) (0.012) (0.006) (0.005) (0.003) (0.258) (0.038) (0.421) (0.914) (0.032) 

Regime 2 –DSLS 

(Economic 

Expansion) 

-0.111 -1.552*** -0.056 0.722** 0.026 -0.135* 3.010*** 0.000 -3.544*** 0.048 0.037 0.002 

(0.479) (0.000) (0.167) (0.044) (0.448) (0.052) (0.000) (0.721) (0.000) (0.676) (0.672) (0.356) 

 

Panel C: Model Performance          

  Full Model (-) non-Macro (-) Macro (-) non-Macro & I (-) Macro, IU & DS     

AIC -311.587 -240.045 -259.311 -232.11 -233.075     

BIC -238.363 -203.433 -207.008 -200.091 -203.011         

Note: The table reports the Markov Switching Stochastic Volatility (MSSV) Model characteristics, the model estimates and the factor contribution to the 

model performance. Regime 1 corresponds to the expansion regime of the dependence measure (DSHS) and Regime 2 corresponds to the contraction 

regime of the dependence measure (DSLS). The expansion regime of the dependence structure (DSHS) relates to economic contraction (EC) phase and 

the contraction regime of the dependence structure (DSLS) relates to economic expansion (EE) phase. Panel A: Tr. Prob. (TP) corresponds to the transition 

probabilities of the two states. TP for state 1 refers to the probability of the dependence measure to stay in the expansion regime (DSLS) and TP for State 

2 corresponds to the probability of the dependence measure to stay in contraction regime (DSLS). Std. Dev. reports the standard deviation of the regime 

states.  The Standard errors are reported in parenthesis. Expected (Exp.) Duration (Dur.) corresponds to the expected duration of the dependence measure 

in the expansion regime (DSHS - Regime 1) and in the contraction regime (DSLS - Regime 2). The sample period is from the fourth quarter 1987 to the 

fourth quarter 212. Panel B: In the set of macroeconomic state variables RF is risk free rate, O is output gap, I is inflation and RA is risk aversion. In the 
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set of non-macro factors OU is output uncertainty, IU inflation uncertainty, LR measure equity illiquidity, DS is bond illiquidity measure, TS is term 

spread, VP is variance premium and DR is depth of recession. Panel C: It reports the factor contributions of five different model characteristics. The 

corresponding AIC and BIC values are reported. It is evident that non-macroeconomic variables play a central role in enhancing the model fit. Further, 

among the non-macro variables illiquidity and uncertainty factors are significantly important. Among the macroeconomic variables, inflation plays an 

important role in defining the JDS.  

* corresponds to 10 percent significance level, ** corresponds to 5 percent significance level and *** corresponds to one percent significance level. 
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8.2.2 Factor Exposure of the State Variables 

The factor exposures of the macro and the non-macro variables for the JDS DSHS regime 

(Regime 1) and for the dependence structure DSLS regime (Regime 2) are reported in 

Table 8-1. Concerning the macroeconomic factors, in the economic contraction phase, 

inflation and risk aversion factor are significant, while in the economic expansion phase, 

risk-free rate and inflation are significant. Findings show that increase in risk averseness 

in the contraction phase increase the joint dependence of the return comovements. This 

suggests that when the risk aversion is high in a recession or crisis, interest rates may be 

low that increase the bond prices, further the risky assets positively correlated with the 

interest rates witness a decrease in their prices as well. More interestingly, inflation shows 

a positive influence on the JDS during both the regimes. This implies that (expected) 

inflation may reflect information about the real interest rate and hence may induce 

positive correlation between different asset returns. While no studies in the past have 

looked into the relationship between inflation and the combined return movement of 

different asset classes, some past literature on the effect of inflation and stocks gives 

credence to our finding on the positive influence inflation on the JDS. In particular, Fama 

and Schwert (1977) show that stocks are very poor hedges against inflation, an 

interpretation of this finding relates to the concept of money illusion (Campbell and 

Vuolteenaho, 2004).  

Considering the non-macroeconomic factors, in the economic contraction regime, output 

uncertainty, inflation uncertainty, bond market illiquidity and depth of recession factors 

are significant, whereas in the economic expansion regime, inflation uncertainty and bond 

illiquidity factors are significant and 5 percent level or less. Overall, the factor coefficients 

indicate that the non-macroeconomic factors play a more dominant role in defining the 
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multi-asset return comovements. This being said, the input uncertainty (IU) and bond 

illiquidity factors have the highest coefficient values. However, the influences of these 

factors are not alike. While IU negatively influences the dependence structure during the 

economic contraction phase, it has a positive influence during the economic expansion 

regime. The positive impact of IU reveals that during the economic expansion phase 

increasing economic uncertainties impact risk-premiums and asset valuations. This 

finding is also consistent with the learning models of Veronesi (1999), in which 

uncertainty decreases the equity risk premium. More interesting is the evidence of 

negative impact during the economic contraction phase, which suggests that through 

precautionary savings effect during periods of economic recession an increase in 

economic uncertainty lowers the interest rates. In contrast to the uncertainty factor, bond 

liquidity has a positive influence during the economic contraction phase and has a 

negative influence during the economic expansion phase. The former could simply 

emphasize how liquidity shocks comove across markets, whereas the latter is potentially 

consistent with the fact that economic recovery may drive investors and traders from less 

liquid Treasury bonds into highly liquid riskier assets like stocks, and the resulting price-

pressure effects may induce negative return correlations among the more and the less 

risky financial assets. Thus, the findings’ liquidity effects correlate to the “flight-to-

liquidity” phenomenon. 

 

8.2.3 Factor Contribution of the State Variables 

In this section I present to what extent the various factors contribute in explaining the JDS 

of the multi-asset return comovements. To determine this, the MSSV model is re-

estimated, leaving out various factors and reporting the determination in the model fit. 
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Panel C of Table 8-1 reports the results. The factors are divided into pure macro variables 

(the interest rate, output gap, inflation and risk aversion measure calibrated from 

consumption data) and the rest of the variables, i.e. non-macroeconomic factors 

(uncertainty measures, illiquidity measures, variance premium and depth of recession). 

Based on the information criteria, i.e. AIC and BIC, the message is clear and consistent 

across both the regimes. The findings indicate that the fit worsens considerably when the 

non-macro factors are dropped. Within the set of macroeconomic factors inflation plays 

the most significant role in both the regimes. Among the non-macroeconomic variables, 

uncertainty measures and the illiquidity factors are dominant in both the economic cycles 

in explaining the variations in multi-asset return comovements.    

Overall, the findings indicate that non-macro factors contribute significantly in explaining 

the dynamics of the dependence structure. In particular, it is observed that the non-macro 

variables influence the JDS differently in different regimes. Finding that illiquidity 

measure load positively during the economic contraction phase, suggests that liquidity 

variation induces positive correlation among the asset returns. Though, more work in this 

area is needed, some previous studies give credence to my findings. Goyenko and 

Sarkissian (2008) report a strong linkage between bond illiquidity and stock returns. Li 

(2007) shows that systematic liquidity risk is priced in the bond market, while they do not 

consider other assets.  Finally, Bansal et al. (2010) show that stock illiquidity aids in 

predicting stock-bond correlation. 
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8.3 Robustness Check of the Factor exposures 

To make sure that my main conclusions are robust to measurement issues, I estimate the 

quantile regression model to further investigate the factors that drive the dependence 

structure. Though this approach permits estimating various quantile regressions (Koenker 

and Bassett, 1978), I rely on least absolute deviation regression to overcome the low-

power problem of the ordinary least square regressions (Connolly, 1989). The results 

from the different quantile regressions help to provide robust description of the factors 

that drive underlying dependence structure in different regimes. 

The coefficients of the quantile regression are estimated at 𝜃 (denotes the quartiles for 

which the relation between the dependence structures and the explanatory variables is 

estimated) at 0.10, 0.25, 0.50 and 0.75. I also include two additional extreme percentiles 

at 0.99 and 0.01 levels to observe the changes in the dependence structure when large 

deviations are present. The statically inferences from these regression models are drawn 

by the bootstrapping method (Andrews and Buchinsky, 2000; Angelis, Hall and Young,  

1993). It is necessary to state here that lower θ values indicate economic expansion phase 

and the higher θ values indicate economic contraction phase. 

The results are presented in Table 8-2. The findings are consistent with the previously 

stated MSSV model estimations. During the economic expansion phase, among the macro 

economic factors risk-free rate and inflation have significant influence and among the 

non-macro factors inflation uncertainty and bond illiquidity measures are significant. In 

the economic contraction phase, among the macro factors inflation and risk aversion 

factor is significant, while among the non-macro factors uncertainty and illiquidity 

measures have a significant impact on the JDS. Nevertheless more often than not the signs 

are consistent with the previous findings. The interest rate shock is negative in the 
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economic expansion, which reflects the effect of discount rate on the asset returns. More 

intriguing is the insignificance of the variance premium in both the regimes. The variance 

premium measure allows in capturing the non-linearities in the consumption growth 

technology. Since, variance premium dependents positively with implied volatility of 

risky asset (such as stocks) returns but negatively with observed volatility, I can establish 

whether the “flight-to-liquidity” effect is due to the risk-premium component. Recall that 

the variance premium has counter cyclical pattern, being high in recession (discussed in 

Chapter 6). Thus, a positive coefficient suggests that the exposure of asset returns to cash 

flow shocks such as the output gap is increased in absolute terms in recession. 

Table 8-2: Quantile Regressions and Factor Contributions to Model 
Performance 

    Quantile Regression(𝜃) OLS 

Factors Variables 0.01 0.10 0.25 0.50 0.75 0.99  Regression 

M
ac

ro
ec

o
n

o
m

ic
 v

ar
ia

b
le

s 

RF -1.150** -0.862 -0.781 -0.873 -0.708 0.511 -0.085*** 

  (0.022) (0.192) (0.162) (0.144) (0.121) (0.559) (0.001) 

O -0.348 -0.632 -0.095 -0.007 -0.062 -0.048 -0.087 

  (0.545) (0.287) (0.144) (0.067) (0.183) (0.319) (0.194) 

I 0.883** 0.729*** 0.587*** 0.782*** 0.502*** 0.351*** 0.772*** 

  (0.018) (0.003) (0.000) (0.001) (0.001) (0.000) (0.001) 

RA 0.051 0.075 0.076 0.032** 0.032** 0.085*** 0.064** 

  (0.428) (0.205) (0.266) (0.036) (0.031) (0.001) (0.026) 

N
o

n
-M

ac
ro

ec
o
n

o
m

ic
 v

ar
ia

b
le

s 

OU -0.185 -0.132 -0.172* 0.163* 0.169** 0.432*** 0.324** 

 (0.156) (0.189) (0.092) (0.065) (0.011) (0.004) (0.038) 

IU 2.931*** 1.847*** 1.591*** 2.300** -2.156*** -4.994*** -2.453*** 

 (0.006) (0.001) (0.000) (0.035) (0.000) (0.000) (0.000) 

LR 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
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  (0.672) (0.789) (0.841) (0.811) (0.500) (0.805) (0.774) 

DS -3.101*** -3.427*** -4.781*** 2.872*** 3.580*** 6.930*** 2.713*** 

  (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 

TS 0.011 -0.106 -0.219 -0.131 -0.223 0.072 -0.245 

  (0.956) (0.636) (0.339) (0.457) (0.178) (0.810) (0.136) 

VP 0.033 0.186 0.099 -0.192 -0.004 -0.091 -0.057 

  (0.874) (0.401) (0.658) (0.247) (0.982) (0.790) (0.653) 

BS 0.004 0.001 0.006 0.003 0.001 -0.011** 0.002 

  (0.556) (0.906) (0.234) (0.421) (0.805) (0.022) (0.581) 

 

Constant 0.247 0.307 0.245 -0.107 -0.223 -0.223 -0.266* 

    (0.357) (0.195) (0.370) (0.623) (0.319) (0.491) (0.072) 

R2Measure 0.576 0.538 0.466 0.458 0.583 0.645 0.623 

  JDS Mean 0.007 0.022 0.046 0.061 0.079 0.154 0.063 

Note: The table reports quantile regression estimates at 𝜃 (denotes the quartiles for which the 

relation between the dependence structures and the explanatory variables is estimated). The lower 

𝜃 values represent economic expansion regime and the higher 𝜃 values represent expansion 

regime.In the set of macroeconomic state variables RF is risk free rate, O is output gap, I is 

inflation and RA is risk aversion. In the set of non-macro factors OU is output uncertainty, IU 

inflation uncertainty, LR measure equity illiquidity, DS is bond illiquidity measure, TS is term 

spread, VP is variance premium and DR is depth of recession. 

* corresponds to 10 percent significance level, ** corresponds to 5 percent significance level and 

*** corresponds to one percent significance level. 

 

8.4 Examining the Forecasting Performance of MSSV Models 

Thus far we have seen that this work provides rich insights for the practitioners and policy 

makers in three key domains: i) asset allocation, ii) Value at Risk and iii) asset pricing 

theory. The first domain relates to asset allocation: Consider an investor seeking to 

allocate resources between various assets, a classic approach is to design a portfolio that 

minimizes the return variances. But, in order to achieve this it is necessary to have the 
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deeper insight on the asset return comovements that we analyse and present in this work. 

The second domain relates to Value at Risk (VaR): A key feature of VaR studies is to 

examine the extreme behaviour asset behaviour (Dave and Stahl, 1998). In this study I 

not only examine the dynamic behaviour of the asset return comovements during periods 

of economic expansion and contraction but also examine the factors that influence the 

return comovements. The third domain relates to establishing the link between higher 

moments of asset return and the factors that impact the return comovements. This 

primarily relates to the key feature of asset pricing theory in establishing the link between 

expected returns and covariance of returns (Ross 1976). A parametric approach assuming 

that asset returns (𝑟𝑡) follow a classic factor analysis framework is expressed as 𝑟𝑡 = 𝛼 +

Σ𝐹𝑡+𝜀𝑡, where (𝜀𝑡
′𝐹𝑡

′)′~𝑁𝐼𝐷 {0, (
1 0
0 𝜎𝐹

2)}, Σ is a matrix of factor loadings and 𝐹𝑡 is a k-

dimensional vector of factors. The asset pricing theory suggests that as the dimension of 

asset returns increase to such an extent that it well represents the market then 𝛼 converges 

to 𝛼 ≅ 𝐼𝑟𝑓 + Σ𝑅𝑝, where 𝑟𝑓 is risk-free interest rate, 𝐼 is a vector of ones and 𝑅𝑝 represents 

a matrix of factor risk premiums associated with 𝐹𝑡. Applied researches in the field of 

asset pricing theories consider factor risk premiums as the variance of the factors. In line 

with the application of asset pricing theory, this study does not directly consider the asset 

returns but analyses the second moment of return comovements of 𝑁 dimensional asset 

return series.  In sum, this study presents a way of tackling asset pricing theory, portfolio 

analysis problems and Value at Risk. However, knowing that volatility of financial 

returns plays an important role in many financial decisions, it is important and useful for 

practitioners and policy makers to have one time ahead forecast of asset return 

comovements in taking investment and corrective decisions. Therefore, in this sub-

section, I present the forecasting analysis of the MSSV models that capture the dynamic 
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behaviour of the asset return comovements. Further, I check whether regime switching 

forecast provides more accurate results than a single regime stochastic volatility model. 

This adds to the robustness of the application of our regime switching model. 

Since the main goal is to examine the asset return comovement forecasting performance 

using Markov switching stochastic volatility model, the study considers a reasonably 

adequate hold-off sample. Thus, 16 years of observation is chosen to estimate the model 

parameters and forecasting is estimated for 10 years.  Moreover, since it is not a priori 

assumption that our switching model outperforms a single regime model, the exercise of 

forecasting is repeated for different subsamples. In essence, I fit the model for four years 

and estimate one step ahead forecast, delete the first observation and add the next one and 

then again re-estimate a one-step ahead forecast. In order to evaluate the possible changes 

in the pattern of the asset return comovements, this work performs the forecasting 

exercise for two subsamples. In the first one, the model is estimated for the period 1987 

to 2002 and forecast for the period 2003 to 2012. For the second part I fit the model for 

2003 to 2012 and forecast for the period 1987 to 1996. 

To investigate the quality of the forecast, the median of squared errors (minimizes the 

impact of outlying observations on forecasting evaluation) of the forecasting period of 

both the regime switching MSSV model and the non-regime switching stochastic 

volatility model are calibrated. Further, based on Pagan and Schwert (1990) I run a 

forecast efficiency regression to examine whether the regime switching model out 

performs the non-regime model (NRM) in accommodating the dynamic volatility of the 

asset return comovements. I model the forecast efficiency regression as 𝑣𝑟𝑐,𝑡 = 𝛼 +

𝛽𝑣𝑟𝑐,𝑡 + 𝜖𝑡. In this framework, if the mean and the variance forecast of the asset return 

comovements are unbiased, then the regression implies that  𝛼 = 0 and 𝛽 = 1. To test the 
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forecasting efficiency the regression model is estimated using ordinary least square 

wherein standard errors are corrected for autocorrelation and heteroskedastic following 

Newey and West (1987). Further, the standard errors are corrected for the uncertainty 

originating from the estimation of the factors, i.e. the macro and the non-macroeconomic 

state variables, used to compute the forecasting.  As rolling sample for forecasting is used, 

based on West and McCracken (1983) I multiply the Newey-West standard errors 

by √(1 − 𝜋2 3⁄ ) , where 𝜋 = 10 16⁄ , i.e. forecasting period by parameter estimation 

period. 

 Table 8-3 presents the median of squared errors (the difference between the median of 

squared errors of MSSV and the non-regime models) and the parameters of the forecast 

efficiency regression, i.e. 𝛼 and 𝛽, for the MSSV and the non-regime switching models, 

respectively. The results are reported for the rolling forecasting for both the sub-samples. 

It is evident that the median of squared errors are significantly lower of the MSSV models. 

Moving on to the parameters of the forecast efficient regressions for the MSSV models it 

is observed that the null hypotheses 𝛼 = 0 and 𝛽 = 1 are not rejected. The economic 

significance of this is that the MSSV models adequately capture the dynamics of the asset 

return comovements. In contrast for the non-regime switching model, the null hypotheses, 

i.e. 𝛼 = 0 and  𝛽 = 1, are significantly rejected at 10 and 5 percent levels. This indicates 

that the non-regime switching models are inefficient in capturing the dynamics of the 

return comovements. 

The findings of 𝛼 ≠ 0 and 𝛽 ≠ 1 indicate that the non-regime switching model forecasts 

either underestimates or overestimates the true volatility of asset return comovements or 

both during phases of high and low volatility in return comovements. To distinguish 
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between the two cases, i.e. high and low volatility of return comovements, I re-estimate 

the forecast efficiency regression by allowing a break in the regression line at the median 

forecast. That is to say that I have two pairs of  (𝛼, 𝛽) estimates, one pair  (𝛼+, 𝛽+) for 

forecasts above the median and (𝛼−, 𝛽−) for below the median. The results are presented 

in the Table 8-4. The findings indicate that (𝛼+, 𝛽+) are significantly different from (0,1). 

The estimated negative coefficients of 𝛽+ indicates that non-regime models overestimate 

the true variance. This observation is in line with both the samples. 

The findings imply that single-regime models provide inefficient estimates of asset return 

comovements during regimes of high volatility which is more profound during periods of 

economic contraction. Alternatively, my MSSV framework enhances the flexibility in the 

model accommodating the persistence of volatility shocks. For instance, if shocks are 

more persistent in periods of economic contraction than in periods of economic recovery, 

this can be captured by the regime parameters. Moreover, the Markov switching model is 

able to capture the ‘pressure smoothening’ that are not persistent and are followed by low 

volatility regimes. 
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Table: 8-3: Out-of-Sample Volatility Forecasting Using MSSV and Non-Regime Switching Model 

Forecasted Sample 1 Sample 2 

Asset-Return MSE 

(MSSV-NRSM) 

𝛼  𝛽 MSE 

(MSSV-NRSM) 

𝛼  𝛽 

Comovements MSSV NRSM MSSV NRSM MSSV NRSM MSSV NRSM 

Equity-Bond 0.013 0.000 0.003 0.995 -0.248 0.014 0.000 0.004 0.968 2.514 

  0.042 1.000  0.059 0.826 0.038 0.011 1.000 0.049  0.113 0.028 

Equity-Real Estate 0.006 0.000 0.001 0.976 1.269 0.010 0.000 0.002 1.017 1.160 

  0.081 1.000 1.000 0.234 0.087 0.038 1.000 0.098  0.162 0.061 

Equity-Gold 0.036 0.000 0.002 1.013 3.245 0.082 0.000 0.000 1.019 -0.016 

  0.024 1.000  0.099 0.808  0.000 0.019 1.000 1.000 0.166 0.000 

Equity-Oil 0.033 0.000 -0.001 1.042 1.590 0.053 0.000 0.028 0.962 0.141 

  0.044 1.000 1.000 0.178  0.025 0.068 1.000 0.031 0.411 0.000 

Bond-Real Estate 0.063 0.000 -0.001 0.898 7.295 0.003 0.000 0.001 1.009 0.308 

  0.069 1.000 1.000 0.181 0.000 0.029 1.000 1.000  0.922 0.000 

Bond-Gold 0.019 0.000 0.001 0.931 0.479 0.063 0.000 0.002 1.020 0.799 

  0.068 1.000 1.000 0.176 0.000 0.076 1.000 0.099 0.775 0.048 

Bond-Oil 0.049 0.000 0.000 0.900 18.045 0.020 0.000 0.000 0.984 0.217 

  0.014 1.000 1.000 0.102 0.000 0.049 1.000 1.000 0.870 0.000 

Real Estate-Gold 0.041 0.000 0.002 0.917 -0.461 0.025 0.000 0.000 0.909 2.781 

  0.040 1.000  0.099 0.179 0.006 0.028 1.000 1.000 0.176 0.000 
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Real Estate-Oil 0.040 0.000 0.008 0.943 4.926 0.010 0.000 0.000 0.944 1.450 

  0.018 1.000  0.049 0.149  0.004 0.088 1.000 1.000 0.449 0.041 

Gold-Oil 0.012 0.000 0.003 0.961 -0.056 0.029 -0.001 -0.004 1.094 14.256 

  0.048 1.000  0.057 0.149 0.000 0.051 1.000 0.061 0.122 0.000 

Joint 

Dependence Structure 

0.024 0.000 0.000 1.015 1.709 0.022 0.000 0.000 0.934 3.050 

0.019 1.000 1.000 0.743 0.048 0.042 1.000 1.000 0.108 0.000 

Note: This table reports the difference between the median of square errors of MSSV models and the non-regime switching models (NRSM) and forecast 

efficiency regression estimates of the MSSV model and the non-regime switching model (NRSM). The parameters are estimated for two forecasting 

periods, i.e. Sample 1 and Sample 2. In sample 1, the models are estimated for the period 1987 to 2002 and forecasting is done for the period 2003 to 

2012. In sample 2, the models are estimated for the period 2003 to 2012 and forecasted for the period 1987 to 1996. The forecasting estimates are calibrated 

for ten pairs of asset return comovements and for the joint dependence structure. For each of the asset pairs, it is evident that the MSSV model’s median 

square errors are significantly lower than the non-regime switching models. This indicates that MSSV models outperform the non-regime switching 

models in out-of-sample forecasting of asset return comovements. This finding is observed for both the samples. The forecast efficient regression estimates 

show that the (𝛼, 𝛽) values are not significantly different from (0, 1). In the forecast efficiency regression framework, if the mean and the variance forecast 

of the asset return comovements are unbiased, then the regression implies that  𝛼 = 0 and 𝛽 = 1. However, the (𝛼, 𝛽) estimates for the non-regime models 

are significantly different from (0, 1). The findings of 𝛼 ≠ 0 and 𝛽 ≠ 1 indicate that the non-regime switching model forecasts either underestimates or 

overestimates the true volatility of asset return comovements or both during phases of high and low volatility in return comovements. The findings indicate 

that in contrast to the MSSV approach, the non-regime switching models yield biased forecasts.  
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Table: 8-4: Forecasting Performance of MSSV and Non-Regime Switching Model 

Panel A: Sample 1 

Forecasted Below Median Forecast Above Median Forecast 

Asset-Return 𝛼− 𝛽− 𝛼+ 𝛽+ 

Comovements MSSV NRSM MSSV NRSM MSSV NRSM MSSV NRSM 

Equity-Bond 0.000 -0.003 0.994 4.435 0.000 0.003 1.016 -0.122 

  1.000 0.098 0.126 0.000 1.000 0.091  0.128  0.021 

Equity-Real Estate 0.000 -0.001 0.952 12.887 0.000 0.000 0.977 0.307 

  1.000 0.109 0.101 0.000 1.000 1.000 0.107 0.000 

Equity-Gold 0.000 -0.002 1.058 3.989 0.000 0.020 0.927 0.700 

  1.000 0.091 0.279 0.000 1.000 0.047 0.109 0.000 

Equity-Oil 0.000 0.018 1.015 2.301 0.000 0.002 0.989 0.046 

  1.000 0.015 0.100 0.000 1.000 0.102 0.126 0.000 

Bond-Real Estate 0.000 0.002 0.905 1.475 0.000 0.000 0.924 0.447 

  1.000 0.090 0.108 0.000 1.000 1.000 0.101 0.000 

Bond-Gold 0.000 -0.004 0.938 1.907 0.000 0.000 0.903 0.029 

  1.000 0.092 0.112 0.000 1.000 1.000 0.100 0.000 

Bond-Oil 0.000 0.000 0.905 1.935 0.000 0.001 1.033 0.464 

  1.000 1.000 0.106 0.000 1.000 0.180  0.421 0.000 

Real Estate-Gold 0.000 0.000 1.027 5.600 0.000 0.003 1.038 -4.116 
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  1.000 1.000 0.546 0.000 1.000 0.091 0.604 0.000 

Real Estate-Oil 0.000 0.009 0.911 3.353 0.000 0.006 1.033 0.122 

  1.000 0.091 0.101 0.000 1.000 0.091  0.5067  0.046 

Gold-Oil 0.000 0.012 1.025 7.324 -0.001 0.000 1.055 -0.017 

  1.000 0.039 0.258 0.000 1.000 1.000 0.258 0.000 

Joint Dependence Structure 
0.000 0.000 0.931 2.376 0.000 0.000 1.019 0.107 

1.000 1.000 0.119 0.000 1.000 1.000 0.529 0.039 

Panel B: Sample 2 

Forecasted Below Median Forecast Above Median Forecast 

Asset-Return Alpha  Beta Alpha  Beta 

Comovements MSSV NRSM MSSV NRSM MSSV NRSM MSSV NRSM 

Equity-Bond 0.000 0.004 1.019 7.531 0.000 0.007 0.981 -0.593 

  1.000 0.091 0.234 0.000 1.000 0.091 0.654 0.000 

Equity-Real Estate 0.000 0.003 1.029 1.666 0.000 0.001 0.932 -2.479 

  1.000 0.090  0.595 0.060 1.000 0.182 0.288 0.000 

Equity-Gold 0.000 0.000 1.017 0.986 0.000 0.003 0.986 -0.017 

  1.000 1.000 0.329 0.372 1.000 0.091 0.649 0.029 

Equity-Oil 0.000 0.000 1.060 0.755 0.000 0.040 0.977 -0.299 

  1.000 1.000 0.129 0.047 1.000 0.026 0.329 0.032 

Bond-Real Estate 0.000 0.000 1.017 1.591 0.000 0.000 0.987 0.169 
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  1.000 1.000 0.378 0.000 1.000 1.000 0.629 0.000 

Bond-Gold 0.000 0.000 1.022 2.699 0.000 0.004 0.954 -6.029 

  1.000 1.000 0.281 0.000 1.000 0.091  0.322 0.000 

Bond-Oil 0.000 0.000 1.004 1.321 0.000 0.000 0.969 0.107 

  1.000 1.000 0.529 0.047 1.000 1.000 0.627 0.000 

Real Estate-Gold 0.000 -0.001 0.908 5.070 0.000 0.000 0.989 -0.667 

  1.000 0.091 0.418 0.000 1.000 1.000 0.482  0.002 

Real Estate-Oil 0.000 0.000 0.992 3.074 0.000 0.000 0.967 0.359 

  1.000 1.000 0.483 0.000 1.000 1.000 0.258 0.027 

Gold-Oil 0.000 -0.030 1.017 2.469 -0.001 0.010 0.955 0.408 

  1.000 0.042 0.329 0.000 1.000 0.037  0.386 0.032 

Joint Dependence Structure 
0.000 0.004 1.026 1.159 0.000 0.000 0.932 0.619 

1.000 0.091 0.432 0.047 1.000 1.000  0.152 0.047 

Note: This table reports the forecast efficiency regression estimates of the MSSV model and the non-regime switching model (NRSM). The parameters 

are estimated for two forecasting periods, i.e. Sample 1 and Sample 2. In sample 1, the models are estimated for the period 1987 to 2002 and forecasting 

is done for the period 2003 to 2012. In sample 2, the models are estimated for the period 2003 to 2012 and forecasted for the period 1987 to 1996. Panel 

A and Panel B report the forecast efficient regression estimates for Sample 1 and Sample 2, respectively. The forecasting estimates are calibrated for ten 

pairs of asset return comovements and for the joint dependence structure. For each of the samples the forecast efficient regression is estimated allowing 

for a break in the regression at the median forecast. Therefore, for each sample, the table reports the forecast efficiency regression estimates for below 

median (𝛼−, 𝛽−) and for above median (𝛼+, 𝛽+). In this framework, if the mean and the variance forecast of the asset return comovements are unbiased, 

then the regression implies that  𝛼 = 0 and 𝛽 = 1. For the MSSV model, the (𝛼−, 𝛽−) and the (𝛼+, 𝛽+) estimates are not significantly different from (0, 

1). However, for the non-regime switching model the (𝛼+, 𝛽+) estimates are significantly different from (0, 1). In particular, it is evident that the 𝛽+ values 

are significantly less than one. This shows that in periods of high asset return comovements (economic contraction phase) , the estimates are biased. In a 
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similar vein the positive 𝛽+ values during periods of low asset return comovements suggests that the non-regime switching model underestimates the true 

variance of the return covariance during economic expansion phase. Alternatively, the findings indicate that the non-regime switching models provide 

biased out-of-sample forecasts. This observation is consistent across both the samples.
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8.5 Economic Value of Asset Return Comovements 

Up till now, I have argued that understanding the factors that drive the asset return 

comovements provides an opportunity for the investors to enhance their asset allocation 

decisions. This subsection examines whether this opportunity generates significant 

economic value using short-horizon dynamic strategy. In short-horizon dynamic strategy 

investors seek to maximize their one-period utility and do not hedge against future 

changes in the investment opportunity set (Fleming et al., 2001). Since short-horizon 

dynamic strategy ignores the hedging component, it is expected to underperform the 

optimal strategy under Merton’s (1973) framework. Therefore, compared to an optimal 

strategy, a short-horizon strategy sets a higher bar for significant economic value added. 

To distinguish the value of asset return comovement estimation from that of return and 

volatility forecasting, I assume that the expected return and the volatility of the assets as 

constant. This assumption can be interpreted as the perspective of an investor who ignores 

the short run volatility of the returns and saves for retirement. 

Fleming et al.’s (2001) framework does not allow an analytical solution for the optimal 

portfolio. Therefore, they evaluate their short-horizon dynamic strategy by examining two 

sub-optimal portfolios relating to maximum-mean and minimum-variance. To overcome 

this issue, I assume power utility function over terminal wealth, i.e. 𝑈(𝑊𝑇) =

𝑊𝑇
1−𝛾 (1 − 𝛾)⁄ , where 𝛾 is the risk aversion coefficient of the utility function. Based on 

Campbell and Viceira (2002), one-period optimal asset allocation is defined as 
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𝐴𝑡
𝑤 =

1

𝛾
Σ𝑡

−1(𝐸𝑡𝑟𝑡+1 − 𝑅𝑓𝑡. 𝐼 − 𝜎𝑡
2 2⁄ ) 

(8-1) 

where  𝐴𝑡
𝑤 is the vector of asset weights, Σ𝑡 is the conditional asset return covariance 

matrix, 𝐸𝑡𝑟𝑡+1 is the expected asset return vector, 𝑅𝑓𝑡 is the risk-free rate, 𝐼 = [1, 1]′ and 

𝜎𝑡
2 is the vector of asset variances.  

Below, I present a comparison of two strategies: a multivariate conditional covariance 

(MCC) strategy and dynamic strategy, using three different asset classes, which 

comprises of five different assets, i.e. stocks, bonds, gold, oi and real estate. The MCC 

strategy investor employs multivariate conditional covariance using diagonal BEKK 

model for his/her one-period ahead forecast and the dynamic strategy investor takes into 

consideration the macroeconomic and the non-macroeconomic factors as his/her basis for 

forecasting one-period ahead asset return comovements. The investors form their 

portfolio based on the above Equation 10-1 and rebalance them after the end of each 

quarter. The portfolio formation starts with 16 years of information (1987 to 2002) and 

the investment period is from 2003 to 2012.  

I use Willing-to-Pay (WTP) as a measure of certainty equivalence to evaluate the 

economic value. WTP is defined as the maximum fee (𝑓) an investor is willing to pay for 

holding a dynamic strategy over the other strategy. WTP is defined as: 

𝑊𝑇𝑃 = 𝑠𝑢𝑝 {𝑓|𝐸 (𝑈(𝑊𝐸𝑀𝐴/𝑀𝐶𝐶)) ≤ 𝐸 (𝑈(𝑊𝑑𝑦𝑛𝑎𝑚𝑖𝑐 − 𝑓))} 

 

(8-2) 
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Considering terminal wealth 𝑊𝑇 = 𝑊𝑖 ∏ (1 + 𝑟𝑡)𝑇
𝑡=1 , where 𝑊𝑖  is investor’s initial 

wealth, expected log-utility is defined using: 

𝑊𝑙𝑜𝑔(𝑈(𝑊𝑇))

= (1 − 𝛾) ∑ 𝑙𝑜𝑔(1 + 𝑟𝑡)
𝑇

𝑡=1
+ (1 − 𝛾)𝑙𝑜𝑔𝑊𝑖 − 𝑙𝑜𝑔(1 − 𝛾) 

= (1 + 𝛾)𝑇. log (1 + 𝑟𝑡)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ + (1 − 𝛾)𝑙𝑜𝑔𝑊𝑖 − 𝑙𝑜𝑔(1 − 𝛾) 

(8-3) 

 

The above equation suggests that 𝑈(𝑊𝑇) is log normally distributed. Therefore, expected 

utility is computed as 

𝑈(𝑊𝑇)̅̅ ̅̅ ̅̅ ̅̅ ̅ = 𝑒𝑥𝑝 ((1 + 𝛾)𝑇. log (1 + 𝑟𝑡)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

+
1

2
(1 − 𝛾)2𝑇2𝑉𝑎𝑟̂(𝑙𝑜𝑔(1 + 𝑟𝑡)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅)) .

𝑊𝑖
1−𝛾

1 − 𝛾
 

(8-4) 

 

The table below compares the performance of the two strategies under various 

assumptions of risk aversion and the-risk free rate. The last column reports the 

bootstrapped p-values of the hypothesis: 𝐻𝑛𝑢𝑙𝑙: 𝑊𝑇𝑃 ≤ 0. The economic significance of 

the findings are as follows. First, for constant relative risk aversion investors, the dynamic 

strategy outperforms the MCC strategies, i.e. for all instances the hypothesis 𝑊𝑇𝑃 ≤ 0 

is rejected. Second, the findings show that the dynamic strategy is more risky. In other 

words the mean and the volatility is higher for the dynamic strategy. However, the Sharpe 

ratios indicate that the dynamic strategy investors are better rewarded for their risky 

portfolios. Third, the WTP decreases with increase in risk aversion (𝛾). This suggests that 
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higher risk aversion discourages investors in holding riskier assets, thus making it 

difficult to differentiate between either of the strategies. Fourth, the WTP increase with 

increase in risk-free rate. This is because the dynamic strategy investors are more 

informed in taking advantage of the diversification opportunities arising from the 

influence of risk-free rate on the asset return comovement.  

Overall, the findings reported in Table 8-5 indicate that the dynamic strategy outperforms 

the MCC strategy. This, therefore, justifies that understanding the dynamics and the 

influence of macroeconomic and non-macroeconomic factors on asset return 

comovements enhance asset allocation decisions.  

Table 8-5: Economic Value of Forecasting Asset Return Comovements 

  MCC Strategy Dynamic Strategy     

  Mean Std. Dev SR Mean Std. Dev SR WTP p-value 

𝛾 = 5                 

0.5% 18.00 19.02 0.92 21.16 20.71 0.99 0.19 0.091 

1.0% 17.25 18.26 0.89 19.80 19.79 0.95 0.36 0.071 

1.5% 16.63 17.39 0.87 19.04 19.07 0.92 0.41 0.055 

2.0% 15.89 16.34 0.85 18.72 19.00 0.88 0.56 0.046 

2.5% 15.04 15.48 0.81 18.01 18.03 0.86 0.87 0.024 

3.0% 14.34 14.18 0.80 17.80 17.62 0.84 1.24 0.001 

3.5% 13.65 12.85 0.79 16.90 16.54 0.81 1.66 0.001 

𝛾 = 10             

0.5% 10.71 11.10 0.92 14.69 14.33 0.99 0.11 0.092 

1.0% 9.76 9.84 0.89 14.19 13.88 0.95 0.34 0.064 

1.5% 8.66 8.23 0.87 13.34 12.87 0.92 0.39 0.059 

2.0% 7.96 7.01 0.85 12.14 11.52 0.88 0.51 0.047 

2.5% 7.36 6.00 0.81 11.14 10.04 0.86 0.53 0.040 

3.0% 6.36 4.20 0.80 10.39 8.79 0.84 0.68 0.015 

3.5% 5.66 2.73 0.79 9.14 6.96 0.81 0.82 0.007 
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𝛾 = 15             

0.5% 6.41 6.42 0.92 10.72 10.32 0.99 0.10 0.092 

1.0% 5.81 5.40 0.89 9.60 9.05 0.95 0.32 0.080 

1.5% 5.06 4.09 0.87 8.65 7.77 0.92 0.33 0.079 

2.0% 4.57 3.02 0.85 7.90 6.71 0.88 0.47 0.041 

2.5% 3.73 1.52 0.81 6.65 4.83 0.86 0.50 0.038 

3.0% 3.65 0.81 0.80 5.80 3.33 0.84 0.56 0.022 

3.5% 3.60 0.13 0.79 5.10 1.98 0.81 0.62 0.010 

Note:  The table compares the performance of MCC strategy and the dynamic strategy. The 

portfolio formation starts with 16 years of information (1987 to 2002) and the investment period 

is from 2003 to 2012. The annualized mean, standard deviation and the Sharpe ratios are reported 

for both the strategies. It is evident that the dynamic strategy yields higher returns and is more 

volatile than the MCC strategy. However, the Sharpe ratios are higher for the dynamic strategy, 

suggesting that investors are better rewarded for their risky portfolios. The investors are assumed 

to have power utility function and constant relative risk aversion represented as 𝛾. The Willing-

to-pay (WTP) certainty equivalence measure computes the maximum fee (𝑓) an investor is 

willing to pay for holding a dynamic strategy over the other strategy. The last column reports the 

bootstrapped p-values of the hypothesis: 𝐻𝑛𝑢𝑙𝑙: 𝑊𝑇𝑃 ≤ 0. The hypothesis is rejected for all the 

cases at 10, 5 or 1 percent significance levels. The findings show that the dynamic strategy 

outperforms the MCC strategy. 

*, **, *** represents significance at 10, 5 and 1 percent levels 
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8.6 Summary 

Understanding financial asset return correlation is a key facet in portfolio construction. 

But, in designing efficient portfolio strategies it is not only critical to know what factors 

influence the asset returns but also their impact on the return comovements during the 

various phases of the economic cycle. For the last decades, several studies have probed 

this cardinal relationship between stock and bond returns. But, more importantly, present 

studies thus far have not examined the influence of these factors on the joint return 

distribution of a portfolio consisting of different class of assets. In practice, investors do 

not only investment in only conventional assets, i.e. stocks and bonds, but also in other 

financial assets such as commodities and real estate. Thus an examination of the time 

varying dynamics of the joint dependence structure (JDS) of the return comovements is 

of key importance. Further, without assessing what time variation in the comovements a 

formal model of fundamentals can generate, the examination may remain as a premature 

judgment. While it is difficult to think of factors that causes sudden and steep increase or 

decrease in the JDS, nevertheless it remains useful to quantify and examine the factors 

that most significantly influence the multi-asset return comovement. Additionally, the 

extant research has examined the asset return comovements by using linear correlation as 

a measure of comovements. However, it is well recognized in the literature that linear 

correlation fails to provide an accurate estimate of the dependence structure when dealing 

with multivariate distributions with complex dynamic characteristics (Barsky, 1989; 

Chan, et al., 2011; Reboredo, 2011). The copula technique that is employed in this work, 

thus, enables us to examine scale-free dependence structure.  
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Using data from 1987 to 2012 (1st August 1987 to 1st September 2012) for three different 

asset classes and several macro and non-macro variables, this study reports a number of 

significant findings. First, the findings indicate that the joint dependence structures of 

asset return comovements show significant regime-switching behaviour both in terms of 

statistical and economic significance. The two regimes identified correspond to economic 

expansion and economic contraction phases. Second, the findings state that among the 

macroeconomic variables, inflation plays a central role (positive influence) during both 

the phases of the economy. Also, risk aversion is positively significant during the 

economic contraction phase, whereas risk free rate negatively affects the JDS during the 

economic expansion phase. Third, among the non-macroeconomic variables, the 

uncertainty and illiquidity variables play a dominant role in both the phases of the 

economy. The findings also reveal that the input uncertainty and bond illiquidity factors 

have the highest coefficient values. Fourth, examining the factor contributions, I confirm 

that the model fit worsens considerably when the non-macro factors are dropped. Thus, 

it is fair to say that the non-macroeconomic factors play a critical role in explaining the 

variations in the JDS. The findings of this study are also conclusive from the quartile 

regressions, which are estimated for robustness check. 

Towards the end of this chapter, I evaluate the practical contributions of this research 

study. Overall, the findings indicate that the dynamic strategy outperforms the 

multivariate conditional covariance strategy. This, therefore, justifies that understanding 

the dynamics and the influence of macroeconomic and non-macroeconomic factors on 

asset return comovements enhance asset allocation decisions. Moreover, the findings 

imply that single-regime models provide inefficient estimates of asset return 

comovements during regimes of high volatility which is more profound during periods of 
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economic contraction. Alternatively, the MSSV framework enhances the flexibility in the 

model accommodating the persistence of volatility shocks. 

 

8.7 Appendix 

 

Table 8 (A-1): Turning Points in the Business Cycle 

Turning Point Date Expansion (E)/Contraction (C) Months in Phase 

0 8/1987 E1 35 

1 7/1990 C1 8 

2 3/1991 E2 120 

3 3/2001 C2 8 

4 11/2001 E3 73 

5 12/2007 C3 18 

6 6/2009 E4 40 

Notes: The turning points of the business cycle are based on the NBER-official dates of troughs 

and peaks (NBER, 2012). The sample period is from the fourth quarter of 1987 to the fourth 

quarter of 2012, yielding 302 monthly observations. Each month in the sample is divided into 

either an expansionary phase or a contractionary phase based on the turning point. The 

expansionary period has 268 months and the contractionary period has 34 months. 
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                    CHAPTER 9 : Examining  Internat ional Equit y Market Comovements: Evidence from Emerging Ind ia Equ it y Market 

Examining International Equity Market Comovements:  

Evidence from Emerging Equity Market 

9.1 Introduction 

In this chapter I extend my work of asset return comovements by examining the 

international equity market linkages between the emerging Indian equity market and the 

developed economies. 

But, why study the asset market linkages between emerging Indian equity market and the 

developed equity markets? With globalisation of financial markets international investors 

face both challenges and opportunities. On one hand, they are able to diversify their 

portfolio risk much more easily as the emerging economies have opened their markets to 

international investors. However, on the other hand, the markets have become closely 

integrated thereby increasing the risk of contagion.  It has therefore become ever so 

critical to accurately estimate return comovements in different economic regimes and 

more importantly to identify the factors which drive these comovements. The existing 

evidence on return comovements largely focuses on developed markets and research 

involving emerging markets is relatively sparse. An investigation of the drivers of 

comovements and how they change during bearish and bullish economic conditions has 

significant implications for policymakers and international investors. If returns 

comovements of emerging and developed markets are positive during periods of 

economic turbulence, then an understanding of key determinants will aid in 

implementation of appropriate policy interventions in containing financial contagion. 

Equally, greater insights of the drivers of comovements will help international investors 

in their asset allocation decisions. The study examines the extreme stock return 
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comovements of emerging Indian market and selected developed markets in different 

economic conditions. Further the work identifies key determinants of the equity return 

comovements by considering a variety of international and Indian economic factors. 

It is widely acknowledged that India is playing an ever increasing role in driving the world 

economic growth. India with its large and skilled human capital, access to natural 

resources and growing markets for goods and services offers an attractive destination for 

the international investors. Aloui et al. (2011) report that among the BRIC (Brazil, Russia, 

India and China) nations, India’s well established trade links with the world is next only 

to China. Thus, there is little doubt that amongst the emerging economies, India is going 

to play an increasingly important role in shaping the world’s economy in the coming 

years. Further, since the economic liberalisation in 1992, the cumulative annual Foreign 

Institutional Investments (FIIs) in the Indian equity markets have surged from a mere $4 

million in 1992-93 to approximately $125 billion in 2012 (SEBI 2012). However, during 

the US led sub-prime crisis in 2008-2009, India experienced an outflow of $12 billion 

(SEBI 2011). Thus, the high volatility of the portfolio flows during the recent global 

economic crisis has triggered serious macroeconomic challenges for emerging economies 

like India since the stock markets are a leading indicator of a country’s economic well-

being. An understanding of the causes of comovements during the different phases of the 

economy, i.e. economic contraction phase and economic expansion phase, will therefore 

provide greater insights to both Indian policy makers and international investors. The 

study aims to achieve this by investigating the economic sources of stock return 

comovements of the emerging Indian equity market and the developed equity markets of 

US, UK, Germany, France, and Canada. 
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This study makes two key contributions to the existing literature. First, I propose an 

alternative approach, i.e. the copula framework, in examining the time-varying 

evolutionary effects of the extreme return comovements especially during periods of 

financial turmoil and economic contraction. Second, I identify the various channels which 

influence the return comovements, thus identifying the key drivers of equity market 

linkages. 

This research reports several interesting and relevant findings. First, consistent with 

existing literature (Yilmaz, 2010; Kenourgios et al., 2011) I show that probability of 

extreme comovements in the economic contraction regime is relatively higher. Second, 

the findings show that both Indian and international inflation uncertainty are likely to 

adversely affect international portfolio’s risk diversification potential since they 

positively impact the return comovements. Third, the results indicate that an increase in 

the international interest rates has a positive impact on the return comovements. This 

suggests that both international and Indian equity markets are adversely affected by the 

hike in international interest rates. However, while an increase in the Indian interest rates 

negatively affects its stock market, it has no impact on the international equity markets. 

Fourth, the findings show that increase in stock market volatility in the developed markets 

during the economic contraction phase does not adversely impact the Indian stock market 

returns. Finally, the findings show that Indian dividend yield (DY) and price-to-earnings 

(PE) ratios seem to have a greater positive impact on return comovements during the 

economic expansion phase as compared to the economic contraction phase. However an 

increase in international dividend yield during the economic contraction phase increases 

the return comovements suggesting that it fails to uplift the investors’ sentiments in both 

international and Indian equity markets.  
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The rest of the chapter is presented as follows: Section 2 discusses the relevant literature 

on dependence structure of return comovements. Section 3 discusses the methodology. 

Section 4 discusses the empirical findings and finally Section 5 concludes the chapter. 

 

9.2 Literature Review 

Understanding the asset market linkages, especially during the economic contraction 

periods, enables in predicting financial contagion. For investors this allows to better 

manage their risk exposure to foreign contracts. Further, establishing the factors that 

influence the return comovements between emerging economy and developed economies 

will enable the policy makers to understand the effect of their monetary and fiscal policy 

decisions on the dynamics of the equity markets. Existing studies usually consider the 

issues related to market integration and financial contagion together in examining the 

comovements between stock markets, i.e. if financial markets are segmented, financial 

contagion cannot occur. In this regard, though the past studies report significant linkages 

between emerging and developed equity markets (Ghosh et al., 1999 for Asian emerging 

markets; Fujii, 2005 for latin American emerging makets), research on extreme 

comovements during the economic contraction and economic expansion phases is sparse.  

In examining financial contagion, one body of literature examines volatility spillover 

which characterizes the structure of asset return relationships across markets. However, 

from empirical point of view, methodologies vary considerably. For instance, Asgharian 

and Nossman (2013) use stochastic volatility models with jumps to examine the volatility 

spillover effects from the US and regional stock markets on the local markets for Pacific 

Basin region and China. The results indicate significant spillovers for almost all the 
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countries except China. However, the stochastic volatility models with jumps are exposed 

to potential misspecifications as i) jumps in the returns can generate large movements, 

but the impact may be temporary, ii) the diffusive stochastic volatility process may be 

persistent but it assumes small normally distributed increments that are considered by the 

Brownian motion and iii) we do not always have jumps in mean and variance, but a 

smooth diffusion process where clusters can be found. Li (2007) examines the volatility 

linkages between Chinese stock exchanges and the US stock market using multivariate 

GARCH framework. This approach too has several limitations. Since the GARCH 

process assumes equal weight for small and large changes in return, it fails to account for 

the differential impact caused due to abnormal returns (Zhang et al., 2009). While Zhang 

et al. (2009) accommodates for these differential impacts, their study is restricted to 

Shanghai and Hong Kong stock markets. Further, they do not consider an evolutionary 

process of the dependence structure. Additionally, far few studies consider the 

asymmetric nature of the comovements in modelling market interdependence (see Vaz 

De Melo Mendes, 2005). Consequently, this study differs from the previous studies as it 

allow the marginal distributions of the equity returns to follow an appropriate GARCH 

process that accommodates for risk-return trade-off. Further, my analytical framework 

takes into account the autoregressive evolutionary process and also considers the 

asymmetric nature of the return comovements. 

Another body of literature examines contagion using cross-market returns’ correlations 

during stable and crisis periods. For example King and Wadhwani (1990) and Lee and 

Kim (1993) provide evidence of contagion when the correlation during the crisis period 

is relatively higher than the stable period. They find that the likelihood of contagion 

increases during highly volatile periods. However, this approach has several limitations. 
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Forbes and Rigobon (2002) argue that the presence of heteroskedasticity problem during 

periods of high market volatility causes biased linear correlation estimates. Pesaran and 

Pick (2007) suggest that contagion involves a dynamic increase in return correlation 

rather than a static estimate. Further, Chiang et al. (2007) highlight the potential issues of 

omitted variable bias in estimating cross-market correlations. To overcome these 

limitations, authors have used alternative techniques, such as vector autoregressive 

(VAR) and autoregressive conditional heteroskedastic (ARCH)-type of models, to study 

cross-market return comovements. These studies report mixed evidence. For example 

Baele (2005) finds evidence of contagion between the US and several European stock 

markets during periods of high market volatility. In contrast, Bekaert et al. (2005) report 

no contagion between the US and the countries in Europe, Asia and Latin America caused 

by the Mexican crisis. In more recent studies, Pesaran and Pesaran (2010) show that 

movements in asset return volatilities are shared across markets during the global 

financial crisis of 2008. Seelanatha (2011) report similar findings suggesting that the 

decline in stock prices in the emerging markets during the crisis periods reflect their high 

dependency with the US market. 

Extant research has shown that modelling stock return comovements is a challenging task. 

It is essential to note that though research widely acknowledges that return distributions 

of financial assets are non-normal, most studies primarily use linear dependence measure 

to examine the asset market linkages. While the linear dependence structure is widely 

used, this measure of association fails to accurately characterize the non-normal 

distribution of the financial returns (Jondeau and Rockinger 2006). Poon et al.,(2004) 

show that the linear measure of correlation fails to distinguish extreme positive and 

negative returns. Thus, the asymmetric correlation between the stock returns during 
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periods of economic expansion and contraction cannot be explained by the conventional 

measure of comovements (Beine, Capelle-Blancard and Raymond 2008). Further, linear 

correlation measure assumes a Gaussian return distribution which is unrealistic. Under 

such scenario, Multivariate Generalized Autoregressive Conditional Heteroskedastic 

(GARCH) models (ŞErban, Brockwell, Lehoczky and Srivastava 2007) and/or the use 

copula functions (Longin and Solnik 2001) are highly effective in modelling return 

comovements (Cherubini et al. (2004) and Paton (2006)). While the multivariate GARCH 

accommodates of non-normally distributed stock returns, Copula approach specifically 

deals with the extreme comovements of stock market returns. Using copula approach, 

Jondeau and Rockinger (2006) show that dependence is higher and more persistent in the 

European markets than between other global stocks. Similarly, Kenourgois et al. (2011) 

and Yang and Hamori (2013) provide evidence for increase in dependence during crisis 

periods between the emerging nations and the developed markets. In this line, my work 

adds to the literature by considering the evolutionary effect of the dependence structure. 

Considering India, given the evidence that it has emerged as one of the fastest growing 

developing nations in the world, one would expect Indian equity market to show strong 

linkages with the developed equity markets. However, empirical work provides mixed 

evidence. For example, in one of the early studies, Sharma and Kennedy (1977) examine 

the equity return comovements of the Indian with London and New York stock markets. 

They report no significant comovements of asset returns. Their results could be attributed 

to the closed nature of the Indian economy and the regulated capital flows which existed 

till the 1980s. In contrast, Kumar and Mukhopaday (2002) using GARCH framework 

provide evidence of volatility spillover between the US and the Indian equity market for 

the period 1999-2001. Similarly, Wong et al. (2005) use weekly data for the period 1991 
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to 2003 in examining the relationship between Indian equity market and the US, UK and 

Japan stock markets. They show that i) all the developed equity markets are cointegrated 

with the Indian stock market and ii) provide evidence of unidirectional causality from 

only the US and the Japan stock markets. On the contrary, Kolluri and Wahab (2010) 

show that during the period 1997 – 2009 the UK stock market influences Indian capital 

markets more than the US stock market. Whilst Poshakwale and Thapa (2010) document 

the evidence of increased integration of Indian equity markets with global markets and 

attribute this to the rapid growth of foreign equity portfolio investment flows, they do not 

explicitly test for the determinants of stock return comovements. Similarly, though Gupta 

and Donleavy (2009) provide evidence of time varying return comovements, they neither 

examine the dependence structures nor the factors influencing the return comovements of 

Indian and global stock return comovements. In this context, this empirical work 

examines extreme return comovements during periods of economic expansion and 

contraction across Indian and international markets and identifies the factors that 

influence stock market linkages. 

 

9.3 Empirical Model 

The method used in the study is based on the theory of copula. As I elaborately discussed 

the dependence structure modelling process in Chapter 4, here I present a brief note on 

the copula model used in this particular study.  

Nelsen (2006) describes copula, C, as a function that couples multiple distribution 

functions of random variables (RV) to their unit-dimensional distribution function. 

Application of this cumulative distribution function (CDF) is derived from Sklar Theorem 
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(Sklar 1959). The theorem states that for a joint distribution function ),(, yxH YX for all

yx, , a function, copula ),( vuC , can be characterized in ),( R such that

))(),((),( yFxFCyxH YXXY  , where )(xFX
and )(yFY

are the marginal distribution 

functions. 

 

9.3.1 Conditional Copula 

I consider two RV, X and Y and introduce a conditioning vector K. Let the conditional 

CDF of the RV be )|,(| KyxH KXY and the marginal distributions be )|(| KxF KX and

)|(| KyF KY given K. Then there exists a copula C, such that 

),())|(),|((()|,( ||| vuCkyFkxFCkyxH KYKXKXY 
 

(9-1) 

where, kKyx )|,( and  is the support of k for all k  and RRyx ),( . In equation 

(4-5), u and v are the realizations of )|(| kxFU KX and )|(| kyFV KY
 
given kK  . U 

and V are the conditional probability integrals of the RV, X and Y (Sklar 1959). The 

details on conditional copulas are presented in Chapter 4. Next, I focus on the model 

specifications. 

9.3.2 Copula Model Specifications 

It is well established that financial returns generally fail to follow a normal distribution 

and rather adhere to Student’s t-distribution (Hu 2010). Building on this, I model each 

marginal distribution of the asset returns employing an Autoregressive Moving Average 

ARMA (p, q)-Exponential Generalized Autoregressive Conditional Heteroskedastic 
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EGARCH (1, 1)-t model to accommodate for differential impacts in return volatility 

clustering. Based on these marginal return distributions, the dependence structures are 

estimated. 

 

9.3.2.1 Marginal Model 

The marginal distributions of the equity returns are assumed to follow an ARMA (p, q)-

EGARCH (1, 1)-t process (Nelson 1991). The model is characterized as 
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where  𝑋𝑖,𝑡 is the asset return series, 𝜃𝑖 and  𝜀𝑖,𝑡−1 are the conditional mean and error term, 

which is the news relating to the volatility from one lag period. 𝛽𝑗 is the autoregressive 

component and 𝛼𝑘 is the moving average parameter. The noise process 𝜀𝑡 represented in 

Equation 9-4 follows a skewed Student-t distribution with (d) degrees of freedom and 𝜎𝑡
2 

conditional variance. 𝜎𝑡−𝑗
2  is the GARCH component and the leverage effect is captured 

by 𝑎3. The information contained about the volatility of the lagged period is captured by 

𝜀𝑡−1 which represents the ARCH component. The information set is considered as the 
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condition vector ‘k’. The order of the ARMA term ‘p’ is determined using Akaike 

Information Criteria (AIC).  

This study estimates the ARMA (p, q) – EGARCH (1, 1) model for each of the financial 

return time-series. The most appropriate lag orders for each of the return series are 

selected using the Akaike information criteria (AIC), observing the conditional variance 

equation as an EGARCH(1, 1)-t process. The mean equations of the equity returns of 

India, US, UK, Germany, France and Canada follow ARMA (1, 1), ARMA (3, 3), ARMA 

(4, 4), ARMA (1, 1), ARMA (1, 1) and ARMA (1, 1) processes, respectively. I confirm 

that the marginal models are free from autocorrelation and heteroskedastic effects. To 

evaluate the adequacy of the marginal estimations, misspecification tests are conducted 

following Diebold et al. (1998). The correlograms of 
l

t uu )ˆ(  and 
l

t vv )ˆ(  for ‘l’ ranging 

from one to four are examined. The values u and v are the probability integral 

transformations of the estimates of the marginal models. The correlograms confirm 

absence of any serial correlation in the first four moments, which indicates that our 

marginal models are correctly specified. This ensures that the copula models correctly 

estimate the dependence structure of the stock return comovements. 

 

9.3.2.2 Tail Dependence Measure 

The tail dependence measure is another property of the copula that is very useful in 

analyzing the joint tail dependence of bivariate distributions. Tail dependence estimates 

the probability of the RV in lower or upper joint tails. Intuitively, this measures the 

tendency of the asset returns to co-move up and down together. 



 

241 

 
u

uuCu
LtuFYuFXPLt uYXu

U




 




1

),(21
)(/)( 1

11

1
 

(9-5) 

 
u

uuC
LtuFYuFXPLt uYXu

L ),(
)(/)( 0

11

0 



 
 

(9-6) 

where  ]1,0[, LU 
 and 

1

XF
 and 

1

YF  are the marginal density functions of the RV 

series. If the tail dependence measures are positive then upper or lower tail dependence 

exists, i.e. )( LU 
 measures the probability of the RV-X is above (below) a high (low) 

quantile, given that the RV-Y is above (below) a high (low) quantile.  

Further, I allow for the tail dependence estimate to follow an evolution process that 

captures the level changes. The evolution process is characterized as 
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The dependence parameter follows an ARMA (1, q) process, characterized by 
1 , the 

autoregressive term, and 
2 , the forcing variable. While the former term accounts for the 

persistence effect, the latter term captures the variation effect of the dependence 

parameter. A dummy variable term 𝛽3𝐷
 
is added to allow for level variation in the 

dependence. The dummy variable takes the value ‘0’ for economic expansion phase and 

‘1’ otherwise. I obtain the dependence parameter of the Student-t and modified Joe-

Clayton (MJC) using maximum likelihood (ML) method (the estimation process is 

provided in chapter Appendix, and the details are presented in Chapter 4). 

The performance of the copula models are examined based on Akaike information 

criterion (AIC), and Bayesian information criterion (BIC). The former is adjusted for 
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small sample bias (Rodriguez, 2007) and the latter is a goodness-of-fit test for the copula 

models to compare the different dependence structures. 

 

9.3.3 The Dynamic Model to Examine Dependence Structures 

Similar to the methodology explained in Chapter 6, I employ Markov Switching 

Stochastic Volatility (MSSV) model in investigating the dependence structures. While 

the details are present in Chapter 6, here I present a brief description of the model used in 

this study. 

Each of the state variables follow an evolutionary process. Although autoregressive 

conditional heteroskedasticity (ARCH) models can be employed to tackle this issue 

(Bollerslev, Engle and Wooldridge 1988; Engle 1982), the assumption that the error term 

is normally and independently distributed (NID) does not hold good in practice. 

Therefore, I, specify a model for the state variables that allows each of the vectors to 

follow an independent stochastic volatility (ISV) process. The stochastic volatility (SV) 

specification builds in a time-varying variance process for each of the elements of the 

structural factors, by allowing the variance to be a latent process. 

This model allows the volatility to vary across different regimes since assuming constant 

volatility in two regimes will yield in either underestimation or overestimation of the 

volatility. Thus, the main motivation for using Markov Switching Stochastic Volatility 

(MSSV) is that it allows different estimates of the elasticity of variance   . The MSSV 

model is characterized as 
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In contrast to Stochastic Volatility (SV) model, in the above equation I define

2log mm   , which allows in capturing the different regimes at a particular point in time. 

Duffee (1993) provides evidence for structural breaks with the monetarist experiment and 

shows that even the SV models lack in analysing these effects in the economy.  With the 

regimes governing the dynamic behaviour of the state variables, I condition a particular 

regime and calibrate the density of the dependence structures and the state variables. In 

this parameterization of the MS model, the transition probabilities from state m to state n 

in time t are defined as  nSmSp ttmn  1Pr . It should be noted that for Mm ,...,1

, only  1MM  needs to be specified as

   


  
1

1 11 Pr1Pr
M

m ttttmn nSmSnSMSp . This model allows the 

unconditional volatility to change between different states by allowing𝜎𝑚 in taking values 

 Mm ,...,1  at time t.  

The appropriate number of regimes is chosen based on the Regime Classification Statistic 

(RCS) as explained in Chapter 6. The Appendix of this chapter provides a description of 

the same. I use Kalman filter of the estimation of the MSSV model. However, it should 

be noted that the above procedures makes our process exclusively path dependent. Hence, 

to remove the path dependence I compute the conditional expectation of the log-volatility 

forecast by taking the weighted average output of the previous iteration. I then calculate 

the regime probabilities based on Smith’s (2002) modification of Hamilton’s (1989) filter 

(the estimation process is given in the chapter Appendix, and the details are presented in 

Chapter 6). 
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9.4 Empirical Results 

9.4.1 Data Description 

In this study I use monthly data from April 1997 to March 2013 for examining the 

dependence structure of stock return comovements of Indian and developed equity 

markets. The sample includes i) Standard & Poor’s (S&P)CNX Nifty Index of the 

National Stock Exchange of India, ii) US S&P 500 composite index, iii)Financial Times 

Stock Exchange (FTSE) - 100 index of UK, iv) DAX-30 index of Germany, v) CAC all-

tradable index of France, and vi) S&P composite index of Canada. The price indexes are 

obtained from DataStream. The equity returns are computed on a continuous 

compounding basis, calculated as 100 times the logarithmic difference of the dollar 

adjusted index/price values, i.e. 𝑅𝑡 = 100 × 𝐿𝑛(𝑃𝑡 𝑃𝑡−1⁄ ) where 𝑃𝑡 is the value of the 

index/price at time t.  

Previous studies show that changing economic conditions affect asset returns, (Fama and 

French 1989). Consequently, I examine the dependence structure of the monthly stock 

returns in different economic cycles. The data is obtained from the National Bureau of 

Economic Research (NBER) for the United States and the Economic Cycle Research 

Institute (ECRI) for the United Kingdom Germany, France and Canada. The analysis of 

the stock return comovements for the economic cycle phases is based on the economic 

expansion and contraction periods of the respective developed economies.15 The 

economic phases for the developed economies included in the sample are reported in the 

                                            

15 We consider economic expansion and contraction periods only for developed economies because 

according to ECRI, the Indian economy has been in the expansionary phase throughout ours ample 

period, i.e., April 2997- March 2013.  
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chapter Appendix. Every month is classified as either an economic expansion or an 

economic contraction month. This is based on the turning point, i.e. trough to peak dates, 

as specified by the NBER’s and ECRI’s Economic cycle dating committee16. Thus, two 

sub-samples are created, the business expansion (E) phase and the business contraction 

(C) phase. In Table 9-1, in the next page, provides the summary statics of the stock 

returns. 

                                            

16 The NBER and ECRI considers recession, i.e. contraction phase, as a significant decline in economic 

activities spread over several months. The various economic indicators include real GDP, real income, 

whole-retail sales and industrial production. An expansionary phase marks the end of a contraction phase 

and beginning of the recovery phase in the economic cycle (for details see NBER 2012; ECRI 2014).   
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Table 9-1: Summary Statistics of Asset Returns 

Panel A:  Descriptive Statics  

 Contraction Period Expansion Period April 1997 – 

March 2013 

 Mean (%) S.D.  

(%) 

Kurtosis Skewness Mean (%) S.D.  

(%) 

Kurtosis Skewness Mean (%) S.D. (%) 

In(E) - - - - 11.64 26.32 1.23 -0.51 11.64 26.32 

US(E) -25.64 23.16 -0.09 -0.25 10.30 14.62 1.07 -0.67 4.65 16.44 

UK(E) -1.25 18.41 0.09 -0.59 3.45 14.06 0.65 -0.71 2.50 14.98 

G(E) -24.33 32.86 0.69 -0.39 14.63 20.34 2.26 -0.72 5.26 23.91 

F(E) -30.84 27.57 -0.07 0.07 7.95 17.89 0.54 -0.66 2.91 19.52 

C(E) -17.57 26.31 0.47 -0.65 7.60 15.13 4.40 -1.24 5.00 16.57 

Panel B: Diagnostics (1997 – 2013) 

 J-B stat. ARCH LM (1) ARCH LM (5) ARCH LM (10) B-G LM (1) B-G LM (5) B-G LM 

(10) 

 

  

In(E) 19.29*** 

(0.000) 

-0.02* 

(0.070) 

0.26*** 

(0.004) 

0.13*** 

(0.004) 

-1.90** 

(0.038) 

0.01 

(0.385) 

0.07 

(0.665) 

 

  

US(E) 31.35*** 

(0.005) 

0.18** 

(0.018) 

0.02 

(0.731) 

-0.01 

(0.913) 

0.64** 

(0.032) 

0.01 

(0.807) 

0.02 

(0.749) 

 

  

UK(E) 18.64*** 

(0.000) 

0.16** 

(0.036) 

-0.02 

(0.714) 

0.08 

(0.272) 

0.06 

(0.404) 

0.17** 

(0.034) 

-0.01 

(0.923) 
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G(E) 62.38*** 

(0.000) 

0.16** 

(0.034) 

0.04 

(0.582) 

0.08 

(0.241) 

0.78** 

(0.043) 

0.01 

(0.860) 

-0.02 

(0.759) 

 

  

F(E) 16.97*** 

(0.000) 

0.17** 

(0.022) 

0.08 

(0.270) 

0.055 

(0.464) 

0.16** 

(0.028) 

-0.02 

(0.710) 

0.04 

(0.570) 

 

  

C(E) 162.52** 

(0.000) 

0.15** 

(0.047) 

0.038 

(0.617) 

-0.02 

(0.763) 

0.20** 

(0.006) 

-0.08 

(0.250) 

0.01 

(0.931) 

 

  

Notes: This table provides the summary statistics of annualized monthly stock dollar-adjusted returns of India and the developed economies. In (E), US 

(E), UK (E), G (E), F (E),  C (E) are the dollar-adjusted equity returns of India, US, UK, Germany, France, France and Canada respectively. The time 

period of the study is from April 1997 to March 2013. The sample is divided into two-samples to examine the return comovements during the economic 

contractionary and expansionary phase. These phases are determined based on the turning points of the business cycle are based on the National Bureau 

of Economic Research (NBER) official dates of troughs and peaks the United States and the Economic Cycle Research Institute (ECRI) for the United 

Kingdom, Germany, France, Canada and India. The sample period is from April 1997 to March 2013, yielding 192 monthly observations. Each month in 

the sample is divided into either an expansionary phase or a contractionary phase based on the turning point. Panel A represents the descriptive statistics. 

The average monthly dollar-adjusted return figures are annualized using the formulae: Annualized return = [(1+monthly mean return)12 - 1], and 

annualized standard deviation = [monthly standard deviation 2/112 ]. Panel B provides the test results. Under the normality null hypothesis, Jarque-Bera 

test statistic follows a Chi-square distribution with fixed (2) degrees of freedom. The null hypothesis of the ARCH- Lagrange multiplier (LM) test is: 

there is no evidence of ARCH effect. We conduct the test at lags 1, 5 and 10 with corresponding 1, 5, 10 degrees of freedom. Tests using other lags yield 

the same results. We conduct the Breusch-Godfrey (B-G) LM test for serial correlation, corrected for heteroskedasticity at lags 1, 5 and 10.The p-values 

are reported in the parentheses. 

***and ** signifies rejection of the null hypothesis at 1 and 5percent significant levels, respectively. 
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Panel A of Table 9-1 presents the annualized dollar-adjusted stock returns and standard 

deviations including the summary statistics for the expansion and the contraction periods 

and for the whole period from April 1997 to March 2013. The economic sub-periods show 

significant variations in average returns compared to the returns for the whole sample 

period. As expected, equity returns are positive during the expansionary phase and 

negative during the contractionary phase. Germany reports the highest equity returns of 

14.63 percent followed by India (11.64 percent) during the expansionary phase. Whereas 

in the contraction period, France records lowest returns of -30.84 percent followed by US 

(-25.64 percent). Standard deviations of average returns confirm that returns during the 

economic expansion period are more stable compared to the contractionary period. The 

summary statistics confirm the presence of excessive skewness and kurtosis relative to 

Gaussian distribution, which suggests that the return distributions have fatter tails 

increasing the probability of extreme variance.  

Panel B of Table 9-1 confirms that the Jarque-Bera test statistics strongly reject the 

normality assumption of the unconditional distribution of the equity returns. The 

Lagrangian Multiplier (LM) test confirms presence of autoregressive conditional 

heteroskadastic (ARCH) effects. Further, the Breusch-Godfrey (BG) LM tests suggest 

that stock returns for most markets are serially correlated for at least one of the lag orders. 

Results violate Gaussian distribution assumption which implies that linear measures of 

comovements are not likely to provide an accurate estimation of return comovements. 

These findings emphasize the use of copula function approach as an alternative method 

to predict a more reliable dependence structure of the asset returns.  

 



 

249 

9.4.2 Dependence Structure Dynamics 

Table 9-2 reports the copula parameter estimates of the time-varying MJC copula models 

for the Indian and foreign stock return pairs.  Panel A reports the probability of extreme 

comovements during economic expansion, i.e. the lower tail (𝜏𝐿), and economic 

contraction, i.e. the upper tail (𝜏𝑈). The results indicate that there is evidence of higher 

likelihood of extreme comovements during economic contraction phase than in the 

economic expansion phase. Consistent with this finding we see that the average degree 

of association between the Indian and the equity returns of the developed economies is 

higher in the contractionary phase than in the expansionary phase (see Panel B). For 

example in the case of India-US the dependence measure during the contraction period is 

0.831 whereas during the expansion period it is 0.517. The economic significance of this 

finding is that the international investors will forgo some diversification benefits due to 

high equity market dependence during the contractionary phase. One of the key reasons 

for the high degree of market linkage during the contractionary phase can be attributed to 

the increased market openness post Indian economic liberalization.  

The beta values in Panel A capture the persistence and variation effects in the dependence 

structure of the asset return comovements. The significant beta values indicate importance 

of considering the evolutionary path of the dependence structure while modelling the 

return comovements. Since, the static case is a restricted approximation of the time-

varying evolution of dependence parameters; I conduct a Likelihood Ratio (LR) test to 

confirm the suitability of the time-varying conditional copula model. The null hypothesis 

that there is no significant difference in the dependence measure estimated via static and 

the time-varying model is rejected as the LR test statistics are highly significant for the 

different market pairs. This signifies that the time-varying copula models account for the 
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dynamics of the dependence structure. The table also reports the AIC, BIC measures to 

evaluate the goodness-of-fit of the different copulas. In sum, the Indian and international 

market stock return comovements are time-varying and asymmetric in nature. It is, 

therefore, critical to examine the factors that influence the return comovements during 

the different phases of the economic cycle. I present this analysis in the subsequent sub-

sections. 

Table 9-2: Parameter Estimates of Copula Models 

 In/US In/UK In/G In/F In/C 

Panel A: Time-varying Modified Joe-Clayton (MJC) Copula 

L

o  
2.168** 

(0.159) 

2.410* 

(0.129) 

2.810** 

(0.054) 

2.753** 

(0.210) 

2.850** 

(0.045) 

L

1  
-8.442 

(5.877) 

-1.731** 

(0.465) 

-0.010 

(0.807) 

-1.999 

(0.138) 

-0.091 

(0.981) 

L

2  
0.032 

(0.195) 

0.294 

(0.325) 

-0.902 

(0.730) 

-0.944*** 

(0.027) 

0.212 

(0.391) 

L

3  
0.004 

(0.871) 

0.001 

(0.911) 

0.002 

(0.650) 

0.001 

(0.761) 

0.002 

(0.810) 

U

0  
3.410** 

(2.682) 

1.678 

(0.272) 

1.920** 

(0.045) 

1.333** 

(0.375) 

-5.421*** 

(0.018) 

U

1  
0.998** 

(.026) 

0.199** 

(0.074) 

0.100 

(0.450) 

0.180 

(0.781) 

0.017** 

(0.091) 

U

2  
-0.842*** 

(0.040) 

-0.584** 

(0.525) 

-0.920*** 

(0.055) 

-0.828** 

(0.045) 

-0.902*** 

(0.061) 

U

3  
0.310** 

(0.019) 

0.20** 

(0.078) 

0.002 

(0.451) 

0.001 

(0.090) 

0.190** 

(0.051) 

AIC -47.317 -50.609 -50.060 -52.110 -55.375 

BIC -27.772 -31.064 -30.515 -32.565 -35.830 

LR (6) statistics (p-value) 40.65*** 

(0.000) 

18.02*** 

(0.006) 

13.07** 

(0.041) 

20.75*** 

(0.000) 

29.26*** 

(0.000) 

Lower Tail Average  L (p-value) 0.299*** 

(0.056) 

0.230*** 

(0.016) 

0.350*** 

(0.014) 

0.313*** 

(0.009) 

0.056*** 

(0.036) 
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Upper Tail Average  U (p-value) 0.437*** 

(0.000) 

0.412*** 

(0. 013) 

0.372*** 

(0.027) 

0.425*** 

(0.013) 

0.534*** 

(0.014) 

Panel B      

Dependence Measure (Expansion) 0.517 0.494 0.545 0.525 0.597 

Dependence Measure (Contraction) 0.831*** 

(5.429) 

0.627*** 

(5.841) 

0.621*** 

(3.948) 

0.667*** 

(6.193) 

0.772*** 

(5.041) 

Notes: The table reports the copula estimates of different equity-paired copula models. Panel A 

reports the time-varying MJC copula estimates. Goodness of fit AIC and BIC statistics are 

presented for each of the copula models. The LR (d) test statistics test the null hypothesis that the 

time-invariant copula model is not rejected as one move from time-invariant to time-varying 

copula models, where (d) is the degrees of freedom of the LR test. The standard errors of the 

copula estimates and p-values of the LR tests are reported in the parentheses. Due to space 

constraint the estimates of the static model are not presented. They can be provided on request. 

Panel B reports the comparison for the whole period of the study (April 1997 to March 2013). 

The p- values are reported in the parenthesis. The MA processes of In/US, In/UK, In/G, In/F and 

In/C are 13, 15, 11, 9 and 14, respectively. 

***, ** and * signifies rejection of the null hypothesis at 1, 5 and 10 percent levels, respectively. 

 

Figure 9-1 presents the time path of the dependence structures of the five different 

combinations of the Indian and international equity return pairs. I present the lower and 

the upper tail dependence structures along with the time-varying conditional copula 

models for each pair. It is evident that for all the models the probability of extreme 

comovements in the upper tail is higher than the lower tail (see note of Figure 1). For 

instance, the average probability of extreme comovement in the upper tail is highest for 

Indian-Canadian equity pair, i.e. 0.534, and lowest for the Indian-German pair, i.e. 0.372 

(see Panel E and Panel C of Figure 1). This indicates that there is a higher possibility of 

extreme comovements during the Canadian economic contraction regime than during the 

German economic decline regime. Thus, during economic decline regime Indian equity 

market provides a safer place for risk diversification for the German investors relative to 

the Canadian investors. 
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Figure 9-1: Time Path of Indian and Foreign Equity Dependence Structures 

 

 

A: Dependence Structure of Indian Equity-US Equity Copula Pair 

 

 

B: Dependence Structure of Indian Equity-UK Equity Copula Pair 
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C: Dependence Structure of Indian Equity-German Equity Copula Pair 

 

 

D: Dependence Structure of Indian Equity-French Equity Copula Pair 
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E: Dependence Structure of Indian Equity-Canadian Equity Copula Pair 

Notes: In the figure, Panels A to E show the time path of the time-varying dependence structure 

of Indian and the foreign equity return-pairs. The average dependence measures for the period 

1987 to 2012 of the different asset pairs are: In/US = 0.524, In/UK = 0.504, In/G = 0.545, In/F = 

0.528 and In/C = 0.619. The lower tail corresponds to the extreme movements in the economic 

expansionary phase and the upper tail corresponds to the extreme movements in the economic 

contractionary phase. 

 

9.4.3 Economic Factor Contributions 

Thus far, we have the overall picture of how the stock returns move in tandem. In this 

subsection, I examine the factors that drive the forward-looking dependence structure 

during the economic expansion and contraction phases using MSSV model as illustrated 

earlier. Specifically, this research explores whether Indian-international equity market 

linkages are related to financial market development indicator, country specific 

macroeconomic variables and associated stock market measures. Existing literature 

reports that financial market development is closely related to market integration. In 

particular, previous studies show that financial market development measures (proxied 
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by equity market capitalization to GDP, equity market turnover ratio) have significant 

association with stock market integration (Bekaert and Harvey, 2000; Carrieri, Errunza 

and Hogan, 2007; Panchenko and Wu, 2009). Thus, in line with De Jong and De Roon 

(2005) I consider a measure of Indian equity Market Openness (MO) as a proxy for 

financial development measure.  MO is computed as the total market capitalization of the 

S&P Investable Index over the S&P Global Index. To account for macroeconomic 

variables, I rely on existing literature that identifies specific macroeconomic factors that 

significantly influence stock return dynamics. Chui and Yang (2012) show that federal 

rates and Producer Price Index (PPI) have significant influence on the US, the UK and 

the German capital markets. Consistent with the Modigliani-Cohn hypothesis, Campbell 

and Vuolteenaho (2004) show that inflation significantly affects stock markets. Based on 

the previous studies this work, therefore, include three macroeconomic factors: i) PPI, ii) 

interest rate (IR), i.e. three month Treasury bill rate, and iii) inflation uncertainty (IU). 

Inflation is measured (it measured as )( ) as the log difference of the Consumer Price 

Index for all items for all urban consumers. To estimate Expected Inflation )( e  Treasury 

Inflation Protected note is subtracted from ten-year Treasury note. Inflation Uncertainty 

(iut is meaasured as )( u ) is estimated as the fractional uncertainty measure of inflation 








 



 e
. Increase in IU has detrimental effect on the stock markets. Further, 

inflationary pressures impact the stock prices through the discounted cash flow 

framework. Likewise, Interest rate (IR) is expected to have significant influence in both 

the economic contractionary and the expansionary phase. During the economic expansion 

phase the rightward shift of the aggregate demand raises the real income and inflation. 

This leads to a demand-pull inflation which is counter-balanced by an increase in the real 
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interest rate by the central bank. Whereas, during the economic contractionary phase, the 

government increases spending through expansionary fiscal policy. With rising interest 

rate, investments tend to fall subjected to high cost of borrowing. This crowding effect 

hampers the economic growth and has an unfavourable impact on the equity markets. 

Similarly, since higher than expected price inflation has a bearish effect of the stock 

markets, an increase in the level of PPI is viewed unfavourable by the investors. Thus, 

inclusion of these variables will reveal key insights on the dynamics of the 

macroeconomic factors affecting the asset market linkages. 

To account for stock market uncertainty, I use VIX and DVAX as the proxies for stock 

market uncertainties in the India, US, Canada and the European nations, respectively. 

Fama and French (1988) and Kalay (1982) highlight the influence of dividend yield on 

expected stock returns and variances in stock prices. Further, Panchenko and Wu (2009) 

report significant influence of dividend yield and price to earnings ratio on concordance 

of asset returns in emerging capital markets. I, thus, include two stock market indicators, 

i.e. dividend yields (DY) and price to earnings ratio (PE). To mitigate the issues related 

to omitted variable bias in examining the influence of Indian factors on the dependence 

structure, a control variable, i.e. stock traded turnover ratio (TR), is included. Further, to 

take into consideration the existing literature on capital market linkages (Panchenko and 

Wu, 2009), I also include market capitalization (MC) as a stock market indicator. An 

increase in market capitalization value suggests improved market sentiments. Inclusion 

of these variables helps us to ascertain additional explanatory powers of the factors that 

influence the dependence structure of return comovements. But most importantly, this 

study includes the key fundamental variables established in the asset return dynamics and 

asset market linkages by Bakeart and Harvey (2000), Scruggs Glabanidis (2003), 



 

257 

Panchenko and Wu (2009) and Chui and Yang (2012) amongst other to investigate the 

determinants of the return comovements during the extremes.  

Table 9-3 presents the impact of Indian and international factors on the stock return 

comovements. The findings show evidence of two regimes of the dependence structure, 

i.e. Regimes (1) and (2), corresponding to economic contraction (EC) phase and economic 

expansion (EE) phase, respectively. Here, it is important to remind that these economic 

phases relate to the developed markets. The findings reveal several interesting insights. 

The findings show that market openness (MO) is positive and statistically significant in 

both the phases of the economy for all the international markets. This suggests that 

increase in stock market openness increases the likelihood of extreme comovements 

across Indian and international equity market returns. The significant effect of MO on 

stock market linkages can be explained by De Jong and De Roon’s (2005) segmentation 

risk premia phenomenon. A high segmentation risk premia is priced into the risk premium 

of an emerging market’s stocks when the emerging market is loosely connected with the 

rest of the international financial markets. However, as the emerging market loosens up, 

the segmentation risk premia declines, decreasing the equity risk premia of the emerging 

market’s stocks. This happens because of the greater risk sharing between domestic and 

international investors, which increase the concordance between domestic and foreign 

stock markets. The positive and significant influence of MO also implies that increased 

equity market integration post Indian liberalization has contributed to the phenomenon of 

financial contagion. Consistent with the existing literature on market linkages of 

emerging markets (Bekaert and Harvey, 2000; Carrieri, Errunza and Hogan, 2007), it is 

evident that the Indian financial market development control variable, i.e. stock traded 

turnover ratio (TR) is significant.  
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Considering the Indian factors, the findings reveal significant and positive influence of 

inflation uncertainty (IU) during the economic expansion periods. This finding is however 

intuitive as increase in IU has detrimental effect on the stock markets. More interestingly, 

interest rate (IR) has a significantly negative influence in both the economic 

contractionary and the expansionary phases. This has significant economic significance. 

The negative influence of IR during the economic contraction phase possibly suggests 

that an increase in the Indian interest rate invites international capital flows that boost the 

Indian stock market while the international stock markets are still in a bearish phase. In 

contrast, the negative impact of IR in the economic expansion phase shows evidence of 

crowding effect in the Indian market. Similar to IR, Producer Price Index (PPI) has a 

negative influence in both the phases of the economy, though it is only significant for 

Indian-US and Indian-Canadian markets. Considering the stock market indicators, DY 

and PE have greater positive impact during the economic expansion phases. This suggests 

that higher DY and PE positively impact the Indian equity market, bringing in 

international capital flows and thereby increasing market linkages during periods of 

economic expansion. While similar findings are reported by some recent research on 

international market linkages (Aloui, Aïssa and Nguyen, 2011; Panchenko and Wu, 2009; 

Bracker, Docking and Koch, 1999), they do not specifically show the influence of the 

domestic and international factors on the dependence measure, especially during the 

various phases of the economy. The stock market indicator, market capitalization (MC), 

bears the same sign as the other market indicator TR. However, MC is not statistically 

significant. Finally, it is worth noting that Indian stock market volatility is only significant 

for the Indian-US market during the contraction phase. It bears a positive sign suggesting 

that an increase in Indian stock market volatility increases the dependence measure. Given 
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the established linkage of increase in stock return volatility during periods of economic 

decline, this result is not surprising.  

Moving on to the international factors, the results reveal several interesting insights. The 

inflation uncertainty (IU) variable shows a similar influence like the Indian IU factor, 

indicating that inflation uncertainty in the international markets triggers an increase in 

dependence measure. Though insignificant, the negative sign of inflation uncertainty can 

be attributed to the fact that stock market investors are subjected to inflation illusion 

(Modigliani and Cohn, 1979). The investors fail to understand the effect of inflation on 

nominal dividend growth, considering that the stock prices are undervalued when the 

inflation is high and may become over valued when inflation falls. What is more 

appealing is the influence of interest rates (IR) on the return comovements. In contrast to 

the Indian IR factor, the international IR variable has a positive impact. This has 

significant economic implications. The possibility of the increase in dependence measure 

due to an increase in international interest rates can be attributed to the reduction in 

investments as IR rises. This suggests that both international and Indian equity markets 

are adversely affected by the hike in international interest rates. However, while an 

increase in the Indian interest rates negatively affects its stock market, it has no impact 

on the international equity markets. The impact of DY varies across the regimes and is 

country specific. While, clearly, more research is accounted for in this area, it suggests 

that during periods of economic contraction high DY fails to uplift the investors’ 

sentiments in the developed markets. Similar results are observed for the other stock 

market indicator, i.e. PE, during the economic contraction phase. More unexpected is the 

influence of stock volatility (SV) on the dependence measure. The impact is negative and 

is significant during the economic contraction regime. This suggests that increase in stock 
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market volatility in the developed markets during the economic contraction phase does 

not adversely impact the Indian stock market returns. Finally, it is evident that the impact 

of international stock market indicator (MC) is negative. This indicates that high market 

capitalization reflects positive investor sentiments and hence contributes towards 

reduction in the dependence measure.  
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Table 9-3: Impact of Domestic and International Variables 

    
Panel A: India-US Panel B: India-UK 

Panel C: India-
Germany 

Panel A: India-
France 

Panel A: India-
Canada 

Factors Variables 
Regime 
1 (EC) 

Regime 2 
(EE) 

Regime 1 
(EC) 

Regime 2 
(EE) 

Regime 
1 (EC) 

Regime 2 
(EE) 

Regime 
1 (EC) 

Regime 
2 (EE) 

Regime 
1 (EC) 

Regime 2 
(EE) 

In
d
ia

n
 

MO 2.027*** 3.237*** 5.014*** 6.897*** 0.620*** 0.683*** 2.306*** 2.603*** 5.422*** 16.130*** 

 (0.005) (0.002) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.001) 

IU -0.228 0.207*** 0.304 1.641*** 0.583 0.676*** -0.330 0.780 -0.810 1.423*** 

 (0.713) (0.000) (0.492) (0.0271) (0.745) (0.000) (0.440) (0.109) (0.117) (0.000) 

IR -0.510*** -0.813*** -3.795*** -3.428*** -2.547** -2.079*** -0.412 -0.523** -0.660*** -3.717*** 

 (0.000) (0.000) (0.000) (0.000) (0.035) (0.009) (0.798) (0.020) (0.000) (0.000) 

PPI -1.968*** -2.169*** -0.332 -0.202 -0.477 -0.331 0.020 -0.129 -0.344*** -0.839 

 (0.037) (0.005) (0.672) (0.110) (0.781) (0.853) (0.745) (0.938) (0.000) (0.842) 

DY 0.600 1.951*** 0.138*** 1.192*** 0.061 1.745*** 0.053 0.598*** 0.784*** 1.413*** 

 (0.3810) (0.000) (0.000) (0.000) (0.781) (0.000) (0.548) (0.000) (0.000) (0.000) 

PE 0.064 0.033 0.133 0.192*** 0.106 0.156 -0.422 0.134 -0.071 0.116*** 

 (0.981) (0.757) (0.446) (0.000) (0.259) (0.457) (0.673) (0.503) (0.556) (0.018) 

SV 0.326** 0.009 -0.007 0.029 0.063 -0.023 -0.164 0.103 0.014 0.061 

 (0.042) (0.936) (0.190) (0.383) (0.780) (0.714) (0.120) (0.452) (0.546) (0.177) 

TR -0.029*** -0.005 -0.006 -0.025** -0.014 -0.030** -0.041 -0.024 -0.008 -0.002 
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(0.000) (0.862) (0.729) (0.047) (0.692) (0.049) (0.781) (0.548) (0.673) (0.757) 

MC -0.186 -0.076 -0.002 -0.017 0.059 -0.028 -0.208 -0.009 -0.009 -0.029 

 (0.240) (0.906) (0.209) (0.383) (0.780) (0.500) (0.590) (0.452) (0.256) (0.177) 
In

te
rn

a
ti
o

n
a

l 

IU -0.188 3.941** -1.129 2.413** 0.159 3.716*** -0.753 1.114 0.148 2.618*** 

 (0.710) (0.019) (0.031) (0.046) (0.550) (0.000) (0.201) (0.462) (0.308) (0.000) 

IR 0.172 3.853** 1.193** 2.672** 0.528 5.816*** 0.071 9.227** 0.096 1.596*** 

 (0.8722) (0.015) (0.038) (0.045) (0.503) (0.000) (0.431) (0.019) (0.741) (0.000) 

PPI -0.955** -1.459 0.453 0.402 0.016 0.037 -1.340*** -0.391 -0.194** 0.051 

 (0.0401) (0.121) (0.341) (0.246) (0.118) (0.110) (0.000) (0.291) (0.043) (0.110) 

DY 2.123*** -1.450*** 0.683** -1.073*** 1.269*** 0.972*** 0.891*** 0.093 0.439** -0.141 

 (0.000) (0.000) (0.0462) (0.000) (0.000) (0.000) (0.000) (0.329) (0.0470) (0.815) 

PE 0.008 0.007 0.190** 0.069 0.068 0.123** -0.133 0.313 0.090** 0.042 

 (0.613) (0.209) (0.036) (0.741) (0.256) (0.038) (0.778) (0.500) (0.031) (0.719) 

SV -0.117*** -0.008 -0.003 -0.099 -0.071 -0.070 -0.368** -0.011 -0.025 -0.008 

 (0.000) (0.316) (0.585) (0.109) (0.502) (0.911) (0.035) (0.405) (0.714) (0.376) 

MC -0.120*** -0.091 -0.064 0.019 0.060 -0.384*** -0.948*** -0.043 -0.020 -0.125 

 (0.000) (0.541) (0.502) (0.671) (0.984) (0.000) (0.000) (0.911) (0.624) (0.633) 

Std. Dev. (Regime) 0.076*** 0.098*** 0.098*** 0.027*** 0.097*** 0.065 0.085*** 0.134*** 0.030*** 0.025 

  [0.001] [0.002] [0.001] [0.000] [0.002] [0.001] [0.001] [0.024] [0.000] [0.990] 

Transition Prob. 0.99** 0.83** 0.88** 0.78** 0.98*** 0.79** 0.97*** 0.78** 0.82** 0.78** 
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  [0.860] [0.840] [0.190] [0.220] [0.420] [0.560] [0.810] [0.320] [0.140] [0.320] 

AIC -406.490 -316.784 -368.634 -316.093 -476.874 

Note: The table reports the summary the parameter estimation results of the Markov switching stochastic volatility models of five explanatory variables 

for the various dependence structure. Regime 1 corresponds to expansion regime of the dependence measure and Regime 2 corresponds to the contraction 

regime of the dependence measure. The expansion regime of the dependence structure relates to economic contraction (EC) phase and the contraction 

regime of the dependence structure relates to economic expansion (EE) phase. The set of domestic (Indian) explanatory variables constitute Indian market 

openness (MO), inflation uncertainty (IU), interest rate (IR), producer price index (PPI), dividend yield (DY) price to earnings ratio (PE), stock volatility 

(SV)and market capitalization (MC). The Stock traded turnover ratio (TR) is the control variable. The set of international explanatory variables constitute 

inflation uncertainty (IU), interest rate (IR), producer price index (PPI), dividend yield (DY), price to earnings ratio (PE), stock volatility (SV) and market 

capitalization (MC). Std. Dev. (Regime) reports the standard deviation of the regime states. Transition Prob. (TP) corresponds to the transition probabilities 

of the two regimes. TP for Regime 1 refers to the probability of the dependence measure to stay in the expansion regime and TP for Regime 2 corresponds 

to the probability of the dependence measure to stay in contraction regime.  The Standard errors are reported in brackets. The p-values of the factor 

coefficients are reported in parenthesis. The sample period is from April 1997 to March 2013.  

** corresponds to 5 percent significance level and *** corresponds to one percent significance level. 
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9.4.4 Robustness Check: Panelled Quantile Regressions  

Standard linear regression estimates the mean relationship between a dependent variable 

an independent variables based on a conditional mean function 𝐸[𝑦|𝑋], where y is the 

endogenous variable and X is the set of exogenous variables. However, such an 

assumptions provides restricted analysis of the relationship between the regressors and 

the endogenous variable. However, greater insights can be obtained regarding the 

relationship between the dependent and the independent variables by examining the 

relationship at different points in the conditional distribution of the endogenous variable. 

Quantile regression enables us to conduct such an analysis. In reference to this study the 

different points in the conditional distribution of Y relates to the various quartiles of the 

return comovements that characterizes the cyclical changes of the economy. Hence, 

examining the impact of the regressors on the dependent variable using quantile 

regression allows me to conduct a robustness check of the results that I have obtained 

using regime switching framework. 

Here, I estimate the quantile regression model to further investigate the factors that drive 

the forward-looking dependence structure during the extremes. Though this approach 

permits estimating various quantile regressions (Koenker and Bassett Jr, 1978), I rely on 

least absolute deviation regression to overcome the low-power problem of the ordinary 

least square regressions (see Connolly, 1989).  

I estimate the coefficients of the quantile regression at 𝜃 (denotes the quartiles for which 

the relation between the dependence structures and the explanatory variables is estimated) 

from 0.10, 0.25, 0.05 and 0.75. I also include two additional extreme percentiles at 0.99 

and 0.01 levels to observe the changes in the forward-looking dependence structure when 
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large deviations are present. The statistical inferences from these regression models are 

drawn by bootstrapping method (Andrews and Buchinsky, 2000; Angelis, Hall and 

Young, 1993). Here, it is necessary to state that lower θ values indicate economic 

expansion phase and the higher θ values indicate economic contraction phase. 

In Table 9-4 reports the regression results from the quantile methods that provide crucial 

support for the arguments as illustrated in the previous sub-section. Several interesting 

findings are apparent here. First, MO plays a more dominant role during periods of 

extreme economic expansion which is marked by low dependence measure. This has 

critical economic significance. During periods of economic expansion, increase in 

markets openness between Indian and international equity markets escalate the 

dependence measure which has detrimental impact during the economic contraction 

phase. Though, more research is required in the area of market openness and its 

differential effects during periods of economic expansion and contraction, some recent 

research gives credence to our argument that increase in market openness during 

economic expansion phase (which increase the dependence measure between the Indian 

and the international equity markets) contributes to financial contagion during periods of 

economic contraction (Poshakwale and Thapa, 2009). Importantly, the significantly 

positive impact of stock market openness indicates that it provides additional explanatory 

power over both domestic and international influences.   

Second, concerning the Indian variables, IR and PPI show a significant negative 

influence. In contrast, inflation uncertainty has a positive influence only during periods 

of economic expansion. The negative influence of IR indicates that positive revisions to 

Indian interest rate reduce the current equity premium affecting the Indian equity returns. 

Further, the positive impact of DY during economic expansion phases suggests that they 



 

266 

work to increase Indian stock market performance. In doing so, they influence capital 

flows to India. Interestingly, Indian stock market volatility is only positively significant 

during extreme periods of economic contraction. Third, considering the international 

factors, in particular, interest rate and dividend yield have a significant influence. More 

interestingly, in contrast to the factor exposure of the Indian IR variable, the international 

IR variable shows a positive significant influence during periods of extreme economic 

expansion and contraction. This suggests that with rising interest rates in international 

markets, investments tend to fall subjected to high cost of borrowing which also 

significantly affects the Indian market. Yet, another interesting observation is the 

coefficient exposure of DY. The signs are negative during the economic expansion phase 

(though only significant at 0.01 quantile) and positive during the economic contraction 

phase. This possibly suggests that even if firms pay dividends during economic recession 

signalling high level of earning potential in the future, they fail to significantly impact the 

investors’ sentiments during economic turmoil.   

Finally, it is worth nothing that both the Indian and the international stock market 

volatility factors are only significant during the extreme economic contraction phase. 

However, the impacts are different. While an increase in Indian stock market volatility 

increases the dependence measure, increase in international stock market volatility 

reduces the dependence measure. This indicates that while high stock volatility in Indian 

market reflects global economic downturn, high stock market volatility in international 

markets fails to severely impact the Indian stock markets during phases of extreme 

economic contraction. 
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Table 9-4: Quantile Regression Estimates Examining the Impact of Domestic and International variables 

    Quantile Regression (θ) Pooled 

Factors Variables 0.01 0.10 0.25 0.50 0.75 0.99  Regression 

 C -0.004 0.265*** 0.450*** 0.528*** 0.562*** 0.693*** 0.464*** 

  (0.945) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 
D

o
m

es
ti

c 

MO 1.028*** 5.700*** 2.721*** 2.762*** 3.084*** 2.858** 3.338*** 

 (0.000) (0.000) (0.000) (0.004) (0.000) (0.011) (0.000) 

IU 1.264*** 0.749*** 0.627*** 0.339** 0.161 0.142 0.543*** 

 (0.000) (0.000) (0.000) (0.024) (0.253) (0.563) (0.000) 

IR -4.716*** -3.308*** -2.607*** -1.945*** -1.718*** -2.901*** -2.411*** 

 (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 

PPI -5.083*** -2.005** -0.156 0.415 -0.882* -2.301** -0.725 

 (0.000) (0.043) (0.875) (0.572) (0.090) (0.000) (0.170) 

DY 1.721*** 1.058*** 0.506** 0.206 0.119 0.080 0.453*** 

 (0.000) (0.000) (0.000) (0.149) (0.345) (0.718) (0.000) 

PE 0.212*** 0.128 0.084 0.018 0.020 0.117 0.056 

 (0.000) (0.295) (0.193) (0.727) (0.697) (0.112) (0.212) 

SV 0.018 -0.028 0.031 0.014 0.049** 0.059*** 0.030 

 (0.653) (0.540) (0.539) (0.777) (0.049) (0.000) (0.217) 
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TR -0.034*** -0.016** -0.004 -0.005 -0.012** -0.002 -0.012 

 (0.000) (0.045) (0.630) (0.632) (0.034) (0.665) (0.084) 

MC -0.031 -0.049 -0.083 0.012 -0.050 -0.044 -0.057 

  (0.737) (0.525) (0.262) (0.832) (0.279) (0.347) (0.191) 

In
te

rn
at

io
n

al
 

IU 2.049*** 0.186 0.278 -0.013 -0.453 0.206 0.480 

 (0.000) (0.720) (0.569) (0.981) (0.358) (0.735) (0.174) 

IR 3.157*** 1.124*** 0.351 0.471 0.942* 1.385** 0.684** 

 (0.000) (0.000) (0.320) (0.300) (0.082) (0.041) (0.035) 

PPI 1.325 -0.535 -1.509 -1.697** -1.158** -0.170 -1.209** 

 (0.360) (0.728) (0.313) (0.014) (0.015) (0.760) (0.040) 

DY -2.017*** -0.296 -0.099 0.836 2.245*** 3.229*** 1.031** 

 (0.000) (0.616) (0.877) (0.254) (0.000) (0.000) (0.015) 

PE 0.208 0.304*** 0.108 0.142** 0.142*** -0.001 0.136*** 

 (0.165) (0.000) (0.180) (0.011) (0.000) (0.965) (0.000) 

SV -0.013 0.017 -0.009 -0.008 -0.022 -0.121*** -0.017 

 (0.667) (0.577) (0.716) (0.720) (0.302) (0.000) (0.344) 

MC -0.241 -0.113 0.040 -0.099 -0.156** -0.210** -0.054 

  (0.168) (0.338) (0.725) (0.263) (0.034) (0.022) (0.412) 

 R2 0.480 0.261 0.147 0.139 0.229 0.389 0.354 

  Mean 0.166 0.435 0.502 0.550 0.618 0.801 0.551 
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Note: the coefficients of the quantile regression Note: The table reports quantile regression estimates at 𝜃 (denotes the quartiles for which the relation 

between the dependence structures and the explanatory variables is estimated). The lower 𝜃 values represent economic expansion regime and the higher 

𝜃 values represent expansion regime. The set of domestic (Indian) explanatory variables constitute Indian market openness (MO), inflation uncertainty 

(IU), interest rate (IR), producer price index (PPI), dividend yield (DY) price to earnings ratio (PE), stock volatility (SV)and market capitalization (MC). 

Stock traded turnover ratio (TR) is the control variable. The set of international explanatory variables constitute inflation uncertainty (IU), interest rate 

(IR), producer price index (PPI), dividend yield (DY), price to earnings ratio (PE), stock volatility (SV) and market capitalization (MC). The p-values of 

the factor coefficients are reported in parenthesis. The sample period is from April 1997 to March 2013.  

* corresponds to 10 percent significance level, ** corresponds to 5 percent significance level and *** corresponds to one percent significance level. 
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9.5 Summary  

This study examines the drivers of time-varying equity return comovements during 

economic expansion and contraction regimes. Using equity market index data from April 

1997 to March 2013 for India and five major developed economies (the US, the UK, 

Germany, France and Canada), I examine the regime switching behaviour of the extreme 

return comovements and identify the factors which drive these comovements. Robust 

estimation of tail dependence structures during economic contraction and expansion 

periods has important implications for the international portfolio investors seeking 

diversification of risk by investing in emerging markets like India. Further, understanding 

of the factors which drive international equity market linkages would provide greater 

insights for international investors.  

The study reports several interesting findings. The findings show that the probability of 

extreme comovements in the economic contractionary phase is relatively higher than in 

the expansionary phase. This has profound implications for international portfolio 

diversification since historically one of the attractions of investing in the emerging 

markets was their relatively low correlations with the developed markets which offered 

international investors opportunities to diversify risk. Further, it is evident that both 

Indian and international inflation uncertainty are likely to adversely affect the risk 

diversification potential of the Indian market since they positively impact the return 

comovements. Similarly, international interest rates also positively impact the return 

comovements which imply that both international and Indian equity markets are 

adversely affected by these developments. On the contrary, while an increase in the Indian 

interest rates negatively affects its stock market, it has no impact on the international 

equity markets. Interestingly, the study finds that increase in stock market volatility in the 
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developed markets during the economic contraction phase does not adversely impact the 

Indian stock market returns. Finally, the findings show that Indian dividend yield (DY) 

and price-to-earnings (PE) ratios seem to have a greater positive impact on return 

comovements during the economic expansion phase as compared to the economic 

contraction phase. However an increase in international dividend yield during the 

economic contraction phase increases the return comovements suggesting that it fails to 

improve the investors’ sentiments in both the Indian and the international equity markets. 

Findings reported in the paper have significant implications for both the policy makers in 

emerging economies like India and the international investors seeking to diversify 

portfolio risk.  First, for the policy makers the impact of interest rates and inflation on 

return comovements could be used for anticipating financial contagion and/or spill over 

effects. For international investors, reliable and accurate estimation of the dependence 

structure of the equity returns comovements will enable them to achieve better asset 

allocation and greater risk diversification. This is particularly critical since during 

extreme market conditions, the tail dependence structure can potentially reveal critical 

information for active portfolio management. 
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9.6 Appendix 

Copula Estimation 

I obtain the dependence parameter of the Student-t and modified Joe-Clayton (MJC) using 

maximum likelihood (ML) method. Referring to equation (9-1) I have
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From the above equation, the log-likelihood of the sample ),( ,1,1 tt yx
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2) 

As noted by Jondeau and Rockinger (2006), the ML estimation may be difficult to 

compute if the number of unknown parameters is large, in which case only numerical 

gradients can be computed instead of having an analytical expression of the likelihood 

gradients.  This leads to considerable slowing down of the numerical estimation. I, 

therefore, compute the ML estimation using Inverse Function of Margins (Joe and Xu 

1996).  This is a two-step estimation process. First, the marginal distribution parameters 

are estimated employing an ARMA (p, q)-EGARCH (1, 1)-t process as discussed above. 
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I also capture the time variation of the dependence structure which further increases the 

number of unknown parameters to be estimated.  The following estimation equation is 

used for computing the values of 1̂  and 2̂ . 

  2,1;,;,argˆ
21  forkyxLMax ttXYK 

  
(A- 3) 

Next, I estimate the copula parameter )ˆ(  using the following equation. 
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(A- 4) 

In this second step the marginal densities do not influence the copula estimation parameter 

as the marginal parameters are computed using equation (A- 3). Therefore, the second 

remains unchanged and computes asymptotically efficient and normal estimates of the 

copula parameter (Cherubini, Luciano and Vecchiato 2004; Joe 1997). 

 

Estimation filter for the MSSV model 

The Kalman filter employed for projection is an iterative process. It forecasts the state 

variable at '1' t period and updates it when tz is observable in the equation (9-8). For 

deriving the filtering equations I denote: 

 11

),(

1| ,,   tttt

nm

tt nSmSgEg 
,

 11

,

1|

,

1| ,,)(   ttt

nm

ttt

nm

tt nSmSggEp 
,

 11| ,   ttt

m

tt mSgEg 
and

 1

2

1|1| ,)(   tt

m

ttt

m

tt mSggEp 
. 

Following Smith (2002), I first forecast log-volatility and then update the previous 

forecasted estimate. The sequential steps are: 
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Step 1: The log-volatility is forecast using: 
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Step 2: The forecasted estimate is updated using 
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The conditional densities are computed using the following equation 
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It can be noted that the above procedures makes our process exclusively path dependent. 

Hence, to remove the path dependence I rely on Kim(1994) as stated in Smith (2002). I 

compute the conditional expectation of the log-volatility forecast by taking the weighted 

average output of the previous iteration using the formulations stated below. 
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The regime probabilities are calculated based on Smith’s (2002) modification of 

Hamilton’s (1989) filter. First, wI estimate the regime probabilities using 

     11111 PrPr,Pr   ttttttt mSnSmSnSmS 
 

(B- 8) 

The term  11Pr   tt mS   in the equation (B- 8) is the previous iteration filter output. 

Next I calibrate the joint density using 
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where  11,,   tttt nSmSzf   is defined previously in equation (B- 5). In step three I 

integrate the regimes to calculate the unconditional density as given in equation (B- 10) 

and then we update the probability of the regimes in state '' t  using equation (B- 11). 
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Turning Points in the Economic Cycle 

Table 9 (A-1): Turning Points of Economic Expansion and Contraction phases 

Panel A: US    

Turning Point Date Expansion (E)/Contraction (C) Months in Phase 

0 4/1997 E1 47 

1 3/2001 C1 8 

2 11/2001 E2 73 

3 12/2007 C2 18 

4 6/2009 E3 46 

Panel B: UK    

Turning Point Date Expansion (E)/Contraction (C) Months in Phase 

0 4/1997 E1 133 

1 5/2008 C1 20 

2 1/2010 E2 7 

3 8/2010 C2 18 

4 2/2012 E3 14 

Panel C: Germany    

Turning Point Date Expansion (E)/Contraction (C) Months in Phase 

0 4/1997 E1 45 

1 1/2001 C1 31 

2 8/2003 E2 56 

3 4/2008 C2 9 

4 1/2009 E3 51 

Panel D: France    

Turning Point Date Expansion (E)/Contraction (C) Months in Phase 

0 4/1997 E1 64 

1 8/2002 C1 9 

2 5/2003 E2 57 

3 2/2008 C2 12 

4 2/2009 E3 50 
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Panel E: Canada 

Turning Point Date Expansion (E)/Contraction (C) Months in Phase 

0 4/1997 E1 129 

1 1/2008 C1 18 

2 7/2009 E2 45 

Notes: The turning points of the economic cycle are based on the National Bureau of Economic 

Research (NBER) official dates of troughs and peaks the United States and the Economic Cycle 

Research Institute (ECRI) for the United Kingdom, Germany, France and Canada. (ECRI 2014; 

NBER 2012). The sample period is from April 1997 to March 2013, yielding 192 monthly 

observations. Each month in the sample is divided into either an expansionary phase or a 

contractionary phase based on the turning point. 

 

Regime Classification Statistic 

An ideal switching model should classify the regimes sharply, i.e. the regime transition 

probabilities (𝑝𝑚𝑛) should be as close to 0 or 1. Based on Ang and Bakaert (2002) I 

construct the regime classification statistic (RCS) for M states as 

𝑅𝐶𝑆(𝑀) = 100𝑀2
1

𝑇
∑ (∏ 𝑝𝑚𝑡

𝑀

𝑚=1
)

𝑇

𝑡=1
 

 

 where  𝑝𝑚𝑡 = 𝑃𝑟 (𝑆𝑡 = 𝑚|𝐼𝑇) indicate the regime transition probabilities and 100𝑀2 

serves as a normalizing constant to keep the statistic between 0 and 100. A value of 0 

signifies perfect regime classification, whereas a value of 100 implies that the regimes 

are not capable of distinguishing the behaviour of the data, i.e. dependence structure, 

across the defined regimes and hence they are irrelevant. 

 

 

 

 



 

278 

     CHAPTER 10 : Summary and C onclusion  

Summary and Conclusion 

10.1 Introduction 

Considerable time variation in the asset return comovements has been of key interest to 

portfolio managers and academic researchers. Much of the research in this area has been 

restricted to the conventional financial assets, i.e. stocks and bonds. There is little research 

on the impact of changes in the real economy and non-macro factors on the return 

dynamics of assets comprising financial, commodity and real estate. Extant research on 

the comovements of assets other than stock and bonds also does not explicitly consider 

the factors that might influence the dependence structures of their return comovements 

(Case et al., 2012; Chan et al., 2011; Liow and Yang, 2005). Further, dependence measure 

has prime importance in analyzing financial contagion. Studies in the past have dealt this 

issue considering linear correlation as an estimate of the comovement between two 

random variables. Though this measure of association is easy and convenient to calibrate, 

it might yield highly biased results in case of non-normal distribution of the sample data. 

In particular, the linear correlation measure fails to provide an appropriate estimate of the 

dependence structure when dealing with multivariate distributions exhibiting complex 

dynamic and asymmetric characteristics. Since, literature confirms the presence of 

asymmetric dependence among various asset returns (Barsky, 1989; Reboredo, 2011), it 

is fair to say that linear measure of association leads to inefficient estimation of return 

comovements especially when analysing periods of economic expansion and contraction.  

Thus, to address these research gaps in the existing literature, this study explores the 

differential impact of the various macro and non-macroeconomic factors on the 

dependence structure of asset return comovements using two stage Markov switching 
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stochastic volatility framework. This work uses an alternative method to estimate the 

dependence structure of the asset return comovements based on the theory of copula. The 

prime motivation to employ copula is that it enables to examine scale-free dependence 

structure, which is preserved during simulation. Further, there is no restriction on the 

distribution of the data set, unlike other parametric methods.  

This study provides critical insights on the behaviour of return comovements of three 

different asset classes. These findings have strong implications for researchers, 

practitioners and policy makers. Below, I present the summary of the key contributions 

to the existing Literature. 

 

10.2 Contributions to the existing literature 

10.2.1 Modelling the dependence structure of asset return 

comovements 

In this study, I use copula models to examine the return comovement of five assets 

belonging to three different asset classes: financial assets (equities and bonds), real estate 

(housing) and commodities (gold and oil) for the US market. The period of study is from 

the fourth quarter 1987 to the fourth quarter 2012. I examine the bivariate and the 

multivariate dependence structures using static and time-varying elliptical and non-

elliptical copulas. Based on my examination, the most important conclusions are as 

follows: 

First, the Student-t copula provides superior estimation for dependence structure for all 

the combinations of the asset pairs across the three different asset classes. Second, 

concerning the bivariate copula approach: i) the Student-t copulas dominate in both the 
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static case with constant dependence structure and the time varying case with the 

dependence structures following evolutionary ARMA processes, ii) in case of  non-

elliptical copulas the Clayton copulas show the best fit statistics followed by MJC. Yet, 

it should be noted that only in the case of B/RE and E/RE the time-varying Clayton copula 

dominates over Student t-copula. This is because of the asymptotic joint distribution of 

B/RE and E/RE.  Third, the LR test statistics of the time-varying copulas rejects the null 

for all the copula pairs. This specifies that the dynamics of the dependence structure are 

well captured by the evolutionary process of the time-varying copula models. Consistent 

with this finding, I also observe that the static dependence measure overestimates the 

correlation of the asset returns during the expansion phase and underestimates the 

correlation measure in the contraction phase. Fourth, for the multivariate copula models, 

the Student-t copula dominates over the Gaussian copula. Results also show an increase 

in the dependence measure of the return comovements for the combination of all the 

assets since the August 2007subprime crisis. This suggests a reduction in diversification 

benefits due to high measure of return comovement. 

 

10.2.2 The dynamics and the determinants of bivariate asset 

return comovements 

Employing two stage Markov switching stochastic volatility framework and using the US 

data from 1987 to 2012 for three different asset classes and several macro and non-macro 

variables, I report a number of significant findings. First, I confirm that the dependence 

structures of asset return comovements of all asset pairs show significant regime-

switching behaviour both in terms of statistical and economic significance. Two regimes 

are identified which corresponds to economic expansion and economic contraction 
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phases. Specifically, the Dependence structure Low State (DSLS) corresponds to the 

economic expansion phase and the Dependence Structure High State (DSHS) corresponds 

to the economic contraction phase.  Second, examining the factor contributions, it is 

evident that the model fit worsens considerably when the non-macro factors are dropped 

for the equity-bond and equity-oil pairs. Third, the results indicate that interest rate and 

inflation have significant effect on the dependence structure during the economic 

contraction regime, whilst risk aversion plays a significant in the economic expansion 

regime. Among the non-macro factors output uncertainty, bond illiquidity measure and 

depth of recession contribute significantly in explaining the variations of the dependence 

structures. Fourth, the findings reveal that real estate-oil dependence structure is 

influenced only by macroeconomic developments. Finally, the study shows that the 

dependence structure regimes are asset return comovement specific. This suggests that 

macroeconomic and non-macro variables affect different asset return comovements 

differently. These findings are robust to the alternative regime switching MGARCH 

framework. 

 

10.2.3 The dynamics and the determinants of joint asset return 

comovements 

This study examines the macroeconomic and the non-macroeconomic factors that 

influence the Joint Dependence Structure (JDS) of asset returns of three different asset 

classes using the US data from 1987 to 2012. The empirical work reports several novel 

insights. First, the findings indicate that the joint dependence structures of asset return 

comovements show significant regime-switching behaviour both in terms of statistical 

and economic significance. The two regimes identified correspond to economic 
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expansion and economic contraction phases. Second, the findings state that among the 

macroeconomic variables, inflation plays a central role (positive influence) during both 

the phases of the economy. Also, risk aversion is positively significant during the 

economic contraction phase, whereas risk free rate negatively affects the JDS during the 

economic expansion phase. Third, among the non-macroeconomic variables, the 

uncertainty and illiquidity variables play a dominant role in both the phases of the 

economy. The findings also reveal that the input uncertainty and bond illiquidity factors 

have the highest coefficient values. Fourth, examining the factor contributions, I confirm 

that the model fit worsens considerably when the non-macro factors are dropped. Thus, 

it is fair to say that the non-macroeconomic factors play a critical role in explaining the 

variations in the JDS. The findings of this study are also conclusive from the quartile 

regressions, which are estimated for robustness check. 

 

10.2.4 The dynamics and the determinants of the Indian and the 

developed equity market linkages  

This study also examines the economic sources of stock return comovements of the 

emerging Indian equity market and the developed equity markets of US, UK, Germany, 

France, and Canada during periods of economic expansion and economic contraction for 

the sample period April 1997 to March 2013. 

The study reports several novel findings. The findings show that the probability of 

extreme comovements in the economic contractionary phase is relatively higher than in 

the expansionary phase. This has profound implications for international portfolio 

diversification since historically one of the attractions of investing in the emerging 

markets was their relatively low correlations with the developed markets which offered 
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international investors opportunities to diversify risk. Further, it is evident that both 

Indian and international inflation uncertainty are likely to adversely affect the risk 

diversification potential of the Indian market since they positively impact the return 

comovements. Similarly, international interest rates also positively impact the return 

comovements which imply that both international and Indian equity markets are 

adversely affected by these developments. On the contrary, while an increase in the Indian 

interest rates negatively affects its stock market, it has no impact on the international 

equity markets. Interestingly, the study finds that increase in stock market volatility in the 

developed markets during the economic contraction phase does not adversely impact the 

Indian stock market returns. Finally, the findings show that Indian dividend yield (DY) 

and price-to-earnings (PE) ratios seem to have a greater positive impact on return 

comovements during the economic expansion phase as compared to the economic 

contraction phase. However an increase in international dividend yield during the 

economic contraction phase increases the return comovements suggesting that it fails to 

improve the investors’ sentiments in both the Indian and the international equity markets. 

 

10.3 Contributions to practice 

The findings of this work have important implications for portfolio diversification and 

asset allocation. For instance, if the dependence structure of the asset returns 

comovements is accurately estimated, dynamic asset allocation techniques can be adopted 

for rebalancing the multi-asset portfolio. Analysing the tails of the dependence structure 

reveals critical information for active portfolio management, specifically during extreme 

market conditions. In particular, the findings of the lower tails favour: i) investments in 
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gold over bond during economic contraction phase to maximize risk diversification and 

ii) investment in bonds provide superior hedge for oil.  

Even if the dependence structure of the asset return comovements might not be perfectly 

predicted especially during periods of economic crisis, these findings still hold important 

implications for portfolio diversification and hedging. In phases of economic contraction, 

the primary concern of the investors is to minimize losses. Time path of the dependence 

structure reveal that there is evidence of financial contagion between all assets, yet the 

probability of joint extreme events is significantly less for the gold-paired copulas. This 

implies that in order to hedge financial risks during when it is most needed, investors 

should hold a component of gold in their portfolio. The lower tails provide evidence that 

all the other assets provide limited financial diversification during crisis period. 

Overall, the regime switching analysis of the dependence structure has two key 

implications for asset allocation and portfolio diversification. First, since there are two 

regimes for each of the asset pair returns comovements, the asset allocation strategies 

must be aligned with the regime-switching behaviour of the dependence structure. 

Second, the dependence structure of all asset pairs is higher during the economic decline 

phase than during economic expansion phase, except for equity-gold and bond-oil pairs. 

This implies that investment in gold provides diversification for equity-based portfolio, 

while bond provides a good hedge for oil. 

Considering the examination on Indian and the developed economies equity market 

linkages – the findings have significant implications for both the policy makers in Indian 

emerging market and the international investors seeking to diversify portfolio risk.  First, 

for the policy makers the impact of interest rates and inflation on return comovements 
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could be used for anticipating financial contagion and/or spillover effects. For 

international investors, reliable and accurate estimation of the dependence structure of the 

equity returns comovements will enable them to achieve better asset allocation and 

greater risk diversification. This is particularly critical since during extreme market 

conditions, the tail dependence structure can potentially reveal critical information for 

active portfolio management. 

An additional contribution of this thesis relates to the examination of the practical 

applications of modelling and examining the determinants of asset return comovements. 

The findings imply that single-regime models provide inaccurate estimates of asset return 

comovements during regimes of high volatility which is more profound during periods of 

economic contraction. Alternatively, the MSSV framework enhances the flexibility in the 

model accommodating the persistence of volatility shocks. Moreover, the Markov 

switching model is able to capture the ‘pressure smoothening’ effects of those shocks that 

are not persistent and are followed by low volatility regimes.  Considering economic 

significance - the findings show that significant economic value is generated when 

comovements are more precisely forecasted. Overall, the findings indicate that the 

dynamic strategy outperforms a multivariate conditional covariance strategy. This, 

therefore, justifies that understanding the dynamics and the influence of macroeconomic 

and non-macroeconomic factors on asset return comovements enhances asset allocation 

decisions.  
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10.4 Limitations and Scope for Future Research 

Positivists dominate social science research in finance. Herein lies a paradox, which I 

acknowledge in this section. The repressive nature of capital market research and the 

process in which it is disseminated lacks multidimensional perspectives. Furthermore, 

assumptions and ideologies of empirical financial research are based on unidimensional, 

neoclassical economic models. Thus, the deterministic view of quantitative financial 

research is similar that of statistical mechanics. Alternatively, viewing subjectively, the 

things are quite different. First, the appearance of certainty in measuring correctness of a 

theory is comforting, even though we neglect the disturbing ambiguity about objects that 

are neither correct nor false. In my case measuring the significance of a measure of 

association between asset returns suggests underlying interdependence between different 

assets, thus neglecting the influence of human interference in making financial investment 

decisions. Second, I consider the relationship between asset returns as a single 

dimensional universally identical object, strictly governed by laws. Yet, human beings 

contrive to define institutions and customs that govern social interactions. The rules of 

the society are thus not static and they change both undesirably and unlikely. In my view 

of this quantitative research, I do not distinguish myself from this unpredictable pattern 

of human behaviour, assuming independent asset risks. The independence assumption is 

obviously not realistic. In sum, financial activities can be viewed as inelastic interactions 

between human beings. They tend to be more subjective which stands in contrast to the 

objective assumptions of the positivist paradigm, which underpins the limitations of my 

research study. 

However, it should be acknowledges that quantitative studies in capital markets dominate 

finance and it has certainly led to the creation and better understanding of market 
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behaviour and predictions. Capital market researchers have influenced market regulatory 

policies and development of new financial instruments. Hence, they are recognized for 

their notable accomplishments. In view of these recompenses, it manifests to a scholar in 

finance like me to pursue research in similar veins. 

Future research may overcome some of these limitations and produce more robust 

findings. Future avenues of empirical work in this field lies in improving the macro 

models. While the New Keynesian model puts useful restrictions on the macro-dynamics, 

if monetary policy switches through time, it generates a number of significant 

macroeconomic issues regarding the stability and determinacy of the rational expectations 

equilibrium. Thus, future research can be undertaken to overcome two particular 

limitations: i) parameter instability and ii) the rational expectation assumption that 

constraints the ability of the current macro models to fully characterize the macro 

dynamics. While this study overcomes the former limitation by incorporating regime 

switching behaviour in the models, future studies can employ generalized methods of 

moments technique to potentially resolve the second limitation. Further, survey-based 

expectations can be used to identify the parameters of a dynamic stochastic general 

equilibrium model that aims to capture the macro dynamics.  Unlike real expectations, 

survey-based expectations are not conditioned to model specifications and reflect varied 

perception of the economic agents. 
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GLOSSARY 

Arbitrage 

Pricing Theory 

 

A theory that states expected return of a financial asset is a function of various 

risk factors. In particular, the theory predicts a relation between the returns of 

an asset and a linear combination of macro-economic factors and/or market 

indices.  

 

Asset 

Allocation 

 

The process of distribution an investor's wealth among various asset classes 

for portfolio construction. 

Asset Class 

 

Securities that are grouped together based on similar risk and return 

relations and attributes. 

 

Beta 

 

An estimate of non-diversifiable (systematic) risk as a function of asset's 

sensitivity to market portfolio. 

 

Bond 

 

A bond is a financial security in which an investor receives a variable or a 

fixed interest rate by lending money to a corporate or a government entity. 

Brownian 

Motion 

 

A stochastic process where the change in the underlying variable at an 

infinitesimally small period follows a normal distribution with mean and 

variance proportional to the length of that period. 

 

Capital Asset 

Pricing Model 

(CAPM) 

A theory that derives expected return of an asset based on non-diversifiable 

(systematic) risk and risk-free rate of return. 

Copula 

 

A techniques to measure correlation between variables with identifiable 

distributions 

 

Correlation 

Coefficient 

 

A statistic that measures the relationship between two variables. It varies 

from (-) one to (+) one. 

Diversification 

 

A process of allocating capital in various financial assets with the aim of 

minimizing risk in a portfolio. 

 

Economic 

Index 

A statistical measure of changes of an economic state variable. 

 

Efficient 

Frontier 

The loci of portfolios that have the maximum payoffs for a particular level of 

risk. 

 

Flight to 

Liquidity 

Relates to the situation when investors move their investments from more 

less liquid assets to more liquid assets. 
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GARCH 

Model 

A technique employed to forecasts volatility. In these type of models the 

variances follow a mean-reverting process. One of the kay advantage of the 

GARCH models is that it can accommodate volatility clustering, i.e. periods of 

high volatility are followed by high volatility and periods of low volatility are 

followed by low volatility. 

 

Hedging 

 

An investment process or a trading strategy undertaken to eliminate a 

particular source of risk. 

 

Idiosyncratic 

Volatility 

The volatility caused due to unique characteristics of a specific financial 

instrument. 

Investment 

 

A commitment of fund by an investor for a specific period of time in order to 

derive expected returns that compensate investor's opportunity cost for that 

period. 

 

Marginal 

Risks 

 

Rate of change of risk with respect to a small variation in a particular 

variable. 

 

Markov Chain 

 

A stochastic process where the next change of an event depends on the 

present state and not on the preceding sequence of events. 

 

Maximum 

Likelihood 

Function 

 

A technique that estimates the parameters of a model by maximizing the 

probability of occurrence of an observed variable. 

 

Mutual Fund 

Theorem 

A theorem stating that investor's portfolio should hold a combination of risky 

and risk free assets depending on the risk preference of the investor. 

 

Optimal 

Portfolio 

The investor specific highest utility portfolio on the efficient frontier. 

 

Portfolio  

Management 

Managing a group of investments that have different payoff patterns over 

time. 

 

Portfolio 

Optimization 

A technique that maximizes portfolio returns subjected to equation of 

constraints. These are ideally based on risk and applicability of short selling. 

 

Portfolio 

Return 

The expected return of a group of investments over a specific period of time. 

 

Principal 

Component 

Analysis 

An analysis to determine the factors that explain most of the variations in a 

group of correlated variables. 
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Quadratic 

Programming 

It relates to optimization of a quadratic function subjected to equation of 

constraints. 

 

Regime-

switching 

Model 

A time-series model where parameters take a specific value for some defined 

regimes. 

 

Regression 

Analysis 

 

A technique used to determine the relationship of a dependent variable as a 

function of a number of independent variables. 

Return 

 

The expected payoff an investor estimates by holding an investment for a 

specific period of time. 

Risk 

 

The volatility of future returns that is influenced by various economic factors, 

market factors and firm performance. 

 

Risk Premium 
The compensation an investor seeks because of investment uncertainty. 

 

Stochastic 

Process 

A model defining the probabilistic behavior of a variable, which has an 

uncertain future outcome. 

 

Separation 

Theorem 

The former employs investment in the market portfolio and the latter is based 

on specific investor's risk preference. 

 

Stationary 

Process 

 

A stochastic process where the statistical properties of a variable are time-

independent. 

Stocks 

 

Generally refers to common stocks that are equity investment stating 

ownership of a firm. 

 

Tail 

Dependency 

It relates to the degree of correlation in the tail of two variables in the same 

probability space. 

 

Utility 

Function 

A locus that represents preference of economic entities based on risk and 

expected return of an investment. 

Variance 

 

A statistic to measure variability across the mean. It is equal to sum of the 

squared differences from the mean divided by the total number of 

observations. 

  

 


