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Abstract

A performance index for control systems has been defined as the supremum of the
absolute error that occurs over all time and all inputs. The input to the system is
known only to the extent that it belongs to a known function space. This paper
shows how this performance index is determined for certain sampled data systems
with an input space characterised only by a bound on the derivative of the input.
An example of a design using this performance index is given.
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1 Introduction

A measure of performance for control systems has been defined by Zakian [1]. The
lack of performance é is defined as the least upper bound of the absolute error that
occurs over all time and all inputs

é =sup{le(t,f)|:te R, f € F} (1)

where ¢(t, f) is the system error, ¢ is time and f € F is the system input, which
belongs to the known function space of inputs F. Zakian [1] derived an expression to
determine € for linear time-invariant analogue control systems where the input space
F is characterised by a uniform bound on the derivative of the input. However, this
expression is not applicable to sampled data control systems, this paper shows how
¢ can be determined for certain sampled data control systems.

The calculation of é is less simple for sampled data systems than for continuous
time systems. However it is relatively simple to calculate the lack of performance
¢* at the sampling instances rather than over all time where

& =sup{le*(k, )l : k=0,1,2,..., f*€F"} (2)

where e*(k, f*) is the system error at the sampling instances, k is unit of discrete
time and f* € F* is the system input, which belongs to the known function space
of inputs F*. An expression is derived in Section 2 which shows how é* can be
determined for any linear sampled data system. This expression is analogous to the
expression derived by Zakian.

The error between the sampling instances may exceed the error at the sampling
instances, in such cases € is greater than é*. Section 3 shows how € can be determined
for the discrete time system shown in Fig. 1. The relationship between F and F~,
and hence the relationship between € and é* is given in Section 4

The performance index é is of particular value when applied to ‘critical’ control
systems [2]. A critical control system is one where the error is required to be strictly
within prescribed bounds, any violation of these bounds results in unacceptable
operation. An example of the design of an analogue critical control system is given
in [3]. Section 5 outlines a design procedure for critical sampled data control systems
using € as the performance index, and Section 6 shows the design of a sampled data
control system for the pointing mechanism of a satellite earth scanning antenna.



2 Performance at Sampling Points

The input f*(k) is known only to the extent that it belongs to the known function

space F* which is defined as the class of all functions f* : ZZ — IR such that
ffk)=0 V k=-1,-2,..., freF* (3)

and there is a finite positive number D* such that

The response of the error at the kth unit of discrete time to the input f* is denoted
by e*(k, f*).

For all f* € F* the output is related to the input by the convolution summation

k
e*(k, f) = 3_e"(k—n)f(n) (5)

n=0

The response e*(k—n) is simply the weighting sequence e*(k) delayed n units of
discrete time, where e*(k) is the response to the Kronecker delta sequence applied
at k = 0. The unit step response e*(k, k) is the response to the unit step h(k) where

0, k<0
h(k)z{L E>0 - (6)

Thus . .
e*(k, k)= Zoe*(k—n) = Z_%e*(n) (7)

so the input output rule can be expressed as
(k) = T e k-m)f ) (8)
5 fha bt

- E{Z W)= 3 c £ )
= Z —n,h)f*(n) — e (k—n—1,h)f"(n) (10)

2
— Z e*(k—n,h)[f*(n) — ff(n—1)] (11)

A bound é* on the error is now stated as

e* =sup{le*(k,f*)|:k=0,1,2,..., f*eF*} (12)

Do
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é* is the greatest error as k ranges over the space ZZ and the input ranges over the

input space F™*.
Theorem 1

The following result
e =D"|le"(h) |y

provides a simple formula for computing é* where
le“(R) (I, = > le*(n, )]
n=0

Proof

Now

&* = sup{|e*(k, )] : £ =0,1,2,..., freF'}
Since f*(k) =0 for k = —1,—2,..., it follows that, from (11)

k
le*(k, f*)] < Z_%Ie*(k—na R 1f(n) = fr(n—=1)|

k
sup |e*(k, f*)| < D* ) |e*(k—n,h)]
freFx

n=0

sup sup |e*(k, f*)| < D" 3 |e*(n, )]

freF* keZ n=0
e < D™ |ler(h) Ily

Now consider an input sequence f; € F7* where

D* sgn e*(k—n), 0<n<k

fim - i ={ ¢ bEn
which from (11) gives
k
e(k, f3) = D3| (b=, h)|

n=0

k
= D* Z le*(n, h)|
n=0

sup [e™(k, f,)| 2 €"(k, £3,)
keZZ

thus
et 2 D* || (h} |,

(13)

(14)



So from (19) and (24)
&= D* W, (25)

and the theorem is proved. oo

This theorem is analogous to that for the continuous time case given by Zakian [1].

3 Performance Over All Time

The limitation of theorem 1 is that it gives the supremum of the output at the
sampling points only. This value may be exceeded at times between the sampling
points, so a means of calculating the supremum of the error at all times €, as defined
in (1) is required.

Therefore the system is considered as a continuous time system, with continuous
inputs and outputs. However, the process of sampling means that a digital control
scheme which is composed of linear time-invariant (LTI) components and fixed
parameter digital controllers is a linear time-variant (LTV) system when considered
as a continuous time system.

Consider the system shown in Fig. 2. An input which occurs at a time between
samples will not be seen by the plant until the next sample, so the plant cannot
respond until the sampling instant. The relationship between the system input
and output is thus not independent of time, therefore the system cannot be time-
invariant.

For an LTV system, the error at any time is related to the input by the linear
time-variant convolution

e(t,f) = [ " eld, 7, E)F(r)dr (26)

where f(t) is the input and e(¢,7,8) is the response at time t to a unit impulse
6(t — ) applied at time 7.

Thus in order be able to calculate é, an expression which gives the supremum of
the error at any particular time for all LTV systems is first derived. From this,
an expression from which é can be calculated is derived for the particular sampled
data control scheme shown in Figure 1.

The input is known to the extent that it belongs to the known function space F

which is defined as the set of all functions f : IR — IR such that f(¢) =0 for ¢t <0,



the derivative f() is piecewise continuous and there is a finite positive number D
such that
D=sup{‘f(1)(t)|:t20,f6.7:} (27)

Let e(t, 7, k) denote the response at time ¢ to a unit step h(t —7) where A(t —7) = 0
for t <7 and h(t —7) = 1 for t > 7. From (26)

eft,m,h) = [ "ot # B A (28)
AT VON—
trh) = | " o2, 7, 8) &+ — / "e(t, 7, 6) dr’ (29)
— ¢t,0,h) — /0 " e(t, 7, 8) dr’ (30)
and differentiating gives
d—e(%:’—h) gl o (31)

Integrating (26) by parts and substituting (31) gives
¢
elt, ) = —e(t WA, + [ eltm, B)FO() dr (32)
0
and since f(0) = 0 and e(¢,¢,h) =0,

oft, F) = /0 " el 7 By dr (33)

Theorem 2

The supremum of the error of a causal linear time-variant system at a specific time
t is given by

sup e(t, )| = D [ le(t, 7, )] dr (34)
Proof
From (33) and (27)

suple(t, A < D [ le(t, )] dr (35)

For a time ¢ > 0 there exists an f,, € F defined by

D s t, 7.k f IRt et .
(1) - gn e(t, 7, h) or STS
Fu'(7) { 0 for <0 (38)



which from (33) gives

¢
e(t, fu) =/ e(t,7,h) sgn e(t,7,h) dr (37)
0
t
el fo ) = D/ le(t, 7, k)| dr (38)
0
So from (35) and (38), the theorem is proved. oo

Theorem 3

For the digital control scheme shown in Fig. 1, for all ¥ = 0,1,2,... and f € F
with a given sampling interval T, the supremum of the error at the particular times
kT +t, where 0 < t, < T, namely

é(t;) =sup {|le(kT +t,, f)|: k=1,2,..., feEF} (39)
is given by
ét;) =D <ts +T > |e(kT +ts,0, h)|) (40)
k=0
Proof

For the control scheme in Fig. 1, because the input is sampled, e(t, 7, h) remains
constant at a time ¢ for the starting time 7 ranging between sampling points. In
addition, the initial error is unity, and remains so until the next sampling instant.
A typical error step response is shown in Fig. 3.

So, for kT <7 < (k+1)T,

0 forr t<7
e(t,7,h) =4 1 for 7<t<(k+1)T (41)
e(t, kT, h) for t>(k+1)T

where £ =0,1,2,.... Let nT < t < (n+1)T, and so from (34)

suple(t, f)| =D <t5+TZ|e(t,kT,h)|) (42)
feF k=0
where n = 0,1,2,.... Let t = nT 4 t;, then
sup |e(nT +t5, f)| =D (ts + T |le(nT +t,, kT, h)[) (43)
fEF k=0

Because of the periodic nature of the system

e(t,7,h) =e(t+ kT, 7 + kT, h), b=0,1,2... (44)



and so from (43)

sup le(nT + t,, f)| = D (ts +T > |e(kT +1,,0, h)|> (45)
feF

k=0

so for any t, over all sampling instances.

sup suple(nT +t, f)| =D (ts +T Y |e(kT +t,,0, h)]) (46)
n=0,1,2,... f€F k=0
and so the theorem is proved. od

From theorem 3, it is easy to determine é numerically by a one-dimension search
for the maximum value of € over t;, so

€= sup é(t,) (47)

4 The Relationship Between F and F*

The input f*(k) € F* represents a periodic sample of an input f(¢) € F. If the
sampling period is T', then from (4) and (27) then

D*=DT (48)
Thus from (40) for t, = 0, (i.e. at the sampling instant)
&0) = DT > |e(kT,0,R)| (49)
k=0

which is equivalent to (13)

5 Design Procedure

The method of inequalities [4,5] is a multi-objective formulation of the design prob-

lem expressed as
gilp)<e for i=1...m (50)

where ¢; are performance indices , p € IR" is the set of design parameters, and ¢; are
real numbers chosen by the designer representing tolerable values of the performance



indices. The aim is the satisfaction of the set of inequalities in order that an
acceptable design is reached. The inequality (50) may be solved by numerical
methods such as the moving boundaries process (MBP) [4].

The performance measure é(p) can be used in conjunction with the method of
inequalities by setting ¢;(p) = é(p) where

é(p) =sup{le(t, f,p) : t € R, f € F} (51)

with p representing the parameters of the controller K(z,p). The problem is thus
to satisfy

é(p) <e (52)

where ¢ is the maximum tolerable value of the system error e. Additional per-
formance indices, such as the maximum control effort or the bandwidth, could be

included if desired.

Expression (47) is more computationally expensive than (13). Therefore, to reduce
the computational effort, the design procedure is conducted in two stages:

i) Use the MBP to solve the amended design problem
e'(p)<e (33)

where
&(p) = sup{le’(k, f*,p)| : £ =0,1,2,..., [T e€F} (54)
using (13). Calculate é(p), and if €(p) > ¢ then go on to the second stage.

ii) Solve the design problem (52) using the MBP in conjunction with (47).

It should be noted that, from (41), e(7,0,h) = 1. So, from (49)
€(0) > DT (55)

and hence from (47)
¢> DT (56)

This means that é cannot be made less than D x T'. It also gives a means of choosing
the sampling period T', from (56) and (52)

€

= (57)



6 Design of an Earth Scanning Satellite Antenna
Control System

An earth scanning antenna on a space satellite is to be used to collect information on
temperature and humidity using sensors which pick up microwave radiation emitted
naturally from the earth and its atmosphere. The antenna is required to follow a
variety of position reference profiles which have a maximum reference velocity of
1.0 rad/sec. The design requirement is that the positional error be less than 1.2
degrees. To keep down hardware costs, a microprocessor based servo control system
is used to drive the pointing mechanism.

Figure 4 shows a block diagram of a linear model of the servo system dynamics,
where:

u(s)  Voltage applied across DC servo motor
ve(s) Net voltage across motor armature

74(s) Current in motor armature

Tm(8) Torque generated by motor at motor shaft
w(s)  Angular velocity of motor shaft

y(s)  Angular position of antenna

vp(s) Back EMF generated by the motor

K, Motor torque coefficient

K, Motor back EMF constant (incorporating effect of viscous damping)
R Resistance of the motor armature winding

L Inductance of the motor armature winding

J Total mechanism inertia referred to the motor shaft output

N Gearbox reduction

The system dynamics are combined into a transfer function G(s), which relates
the angular displacement of the motor output shaft to the voltage applied at the
motor. The antenna is assumed stiff, and non-linearities such as stiction and gearbox
backlash, are ignored.

I(‘t /’{}bﬁ
s(JLs?+ JRs + K, K,)

G(s) = (58)
Voltage to the motor is applied by a digital controller K (z, p) via a zero-order hold
unit. Input to the controller consists of the error e between the reference position
profile signal f and the antenna positional output y. It is assumed that both f(t)
and y(t) are scaled in radians. The reference signals of the position profiles are
obtained from look-up tables, and the angular position of the antenna is measured



by an inductosyn, which is sampled by the digital controller with a sampling period
T. The discretised reference input profiles have previously been sampled from the
desired continuous time profiles. Quantitisation effects of the signal measurements
are ignored. The control scheme is thus in the form of Fig. 1.

The position reference profiles have a maximum reference velocity of 1.0 rad/sec, so
the input space bound D from expression (27) is D = 1.0. The input space bound
D~ is determined from (48). The design requirement is

e = 1.2 deg = 0.0209 rad (59)

The model parameters have the following values:

K; = 0.19 Nm/Amp
K, = 0.22 Vs/rad
R = 2.00 Ohms

L = 140 mH

J = Tx10"* kgm?
N = #/

so the plant transfer function G(s) in combination with the zero-order hold unit
may be represented by the discrete transfer function

(60)

Glz) = 2 1—_‘”‘Sﬂs—)a(s) (61)
From (57) and (59)
T < 0.0209 sec (62)

Thus the design was initially tried with a sampling rate T = 20 msec. This was
found to give unsatisfactory results, although (53) was satisfied, the MBP was
unable to satisfy (52). Hence the design was repeated with 7' = 10 msec and T' =5
msec, both of which gave acceptable results with (52) satisfied. For T' = 5 msec,
this was achieved with the initial design. The results are shown in Table 1. The
step responses ¢(0,t, h) with the sampling points of the final designs are shown in
Figs. 5 to 7. Plots of é(¢s) against t, of the final designs are shown in Figs. 8 to 10.

7 Concluding Remarks

The performance measure ¢ is a natural indicator of the performance of a control
system which explicitly considers the system inputs. This performance measure is
particularly suitable for the design of critical control systems. This paper extends

10



T = 20 msec T = 10 msec T = 5 msec

Design | K(z) | 325572:0042-0260 | 7032401000458 | 6002570 50m0:008
Stage (i)

e* 0.0206 rad 0.0209 rad 0.0205 rad

é 0.1751 rad 0.0212 rad 0.0205 rad
Design | K(z) | 17754080t | ro3zsaacctass | o above
Stage (ii)

e 0.0297 rad 0.0201 rad 0.0205 rad

Table 1: Design Results

the results of Zakian [1] to certain sampled data systems, to provide a means of
calculating é. The design example shows that it is important to consider the per-
formance at all time, particularly when the sampling time is comparatively long.
As would be expected, the difference between é and €* decreases with decreasing
sampling period, as the system controller becomes closer to a continuous time con-
troller.

The use of é* to design sampled data control systems is closely related to the I'-
optimal control approach [6,7]. However, the ['-optimisation approach does not
consider intersample behaviour. Morari and Zafiriou [8] detail how sampled data
control systems can be designed using H* and H, techniques which consider per-
formance over all time. Additional analysis of intersample behaviour using H* and
H; techniques can be found in [9] and [10].
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