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1. INTRODUCTION

Polarization-sensitive optical coherence tomogra-
phy (PS-OCT) is a variant on an older technique, opti-
cal coherence tomography (OCT) [1, 2]. OCT is a high-
resolution imaging technique offering an axial resolu-
tion of less than 20 

 

µ

 

m (determined by the limited
coherence length of the broadband source used to illu-
minate an interferometer). The limited coherence
length of the source ensures that, at the detector, the
only interferometric (coherent) signal arises from light
backscattered from a well-defined depth within the tis-
sue. This depth is given by the requirement that the
sample and reference optical path lengths must be
matched to within the coherence length of the source.

PS-OCT is a combination of OCT and polarization-
sensitive detection [3]. A PS-OCT interferometer mea-
sures the interference fringe intensity for two orthogo-
nal components of the electric field vector of the elec-
tromagnetic wave. It was demonstrated that a dual
channel PS-OCT system, in which two detectors simul-
taneously record the signals from orthogonal polariza-
tion states of the emerging light, allow complete char-
acterization of the tissue via the depth-resolved Müller
matrix and Stokes parameters [4–6]. The polarization-
sensitive images can provide additional information on
the structure of the tissue because the polarization state
of the light is changed through its interaction with bio-
logical tissues, due to both scattering and birefringence.

It has been known for over a century that collagen-
rich tissues, such as tendon, cartilage, and cornea, dis-
play considerable optical birefringence [7, 8]. This is

generally attributed to the high degree of physical
anisotropy brought about by the directionally aligned
collagen fibers, which form the extracellular matrix of
the tissues. The molecular packing structure of the col-
lagen fibers is such that the index of refraction is higher
along the length of the fiber than along the cross sec-
tion, leading to linear birefringence.

The change of state of the polarization at the scatter-
ing was considered in recent papers [9, 10], where
Monte Carlo (MC) simulation for a multiple scattering
process in a turbid medium was used and the experi-
mental results were presented. In [11], the results of
simulation based on the Stokes–Müller formalism were
presented. This simulation was based on an MC algo-
rithm combining the birefringent and multiple scatter-
ing of the medium for backscattered light.

In this work, we present a Monte Carlo algorithm
that combines a rigorous treatment of the change in the
polarization of light due to both scattering and birefrin-
gence using the more effective/fast Jones formalism
with confocal- and coherence-gated detection.

2. BASIC MONTE CARLO TECHNIQUE

The principles of the MC method have been widely
described elsewhere. This method is based on the ran-
dom simulation of a large number of possible trajecto-
ries of photons as they travel through a highly scatter-
ing medium. The simulation consists of a sequential
random walk of photon packets between scattering
events from the site of photon injection into the
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medium to the site where the photon leaves the
medium. Total internal reflection on the medium
boundary is taken into account as suggested in [12].
OCT generally entails both spatial and temporal filter-
ing of the backscattered signal. To implement confocal
spatial filtering, we followed a scheme developed early
[13] and illustrated in Fig. 1. Objective lens 

 

L

 

1

 

 collects
an exiting photon packet, which is refocused onto a pin-
hole of diameter 

 

d

 

 by lens 

 

L

 

2

 

. By recording the position
(

 

x

 

m

 

, 

 

y

 

m

 

) and exit angle of a photon packet as it leaves the
medium, one can easily calculate the position (

 

x

 

d

 

, 

 

y

 

d

 

)
where the photon packet traverses the detection plane
using

(1)

Here, 

 

f

 

 is the focal length of 

 

L

 

1

 

 and 

 

L

 

2

 

, 

 

h

 

 is the distance
of 

 

L

 

1

 

 from the medium surface, and 

 

α

 

x

 

 is the angle
between the photon exit trajectory (projected onto the

 

x

 

–

 

z

 

 plane) and the normal to the medium surface 
(projected onto the 

 

α

 

y

 

 plane).

3. JONES AND STOKES–MÜLLER FORMALISMS

The transmission of polarized light through a scat-
tering and birefringent medium can be treated with var-
ious methods. This work presents a Monte Carlo simu-
lation for polarized light using the matrix formalism
developed by Jones [14, 15]. This formalism describes
the polarized light as a two-element matrix, the Jones
vector:

(2)

Here, 

 

E

 

s

 

, 

 

E

 

p

 

 are two orthogonal components of the elec-
tric field vector of the electromagnetic wave. The trans-
mission of this wave through a polarizing medium is
described by a 2 

 

×

 

 2 matrix:

(3)

where 

 

J

 

in

 

 and 

 

J

 

out

 

 are the Jones vectors before and after
the polarizing element and 

 

M

 

 is the Jones matrix within
general complex elements.

The original matrix formalism developed by
Jones is restricted to describing the propagation of
polarized light through a birefringent medium only
at normal incidence. The extended Jones matrix
method was introduced to overcome this limitation
and describe nonnormal propagation [16, 17]. The
method can thus be used to describe the transmission
of off-axis light through a multilayer birefringent
medium.
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An alternative treatment of polarized light propaga-
tion is based on the Stokes–Müller formalism, where
the state of the polarization is described by a Stokes
vector

(4)

and transmission through a polarizing element, by a 4 

 

×

 

4 matrix

(5)

where the matrix 

 

L

 

 is the Müller matrix with 16 real ele-
ments.
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Fig. 1.

 

 Schematic of the confocal/OCT detection: 

 

L

 

1

 

, 

 

L

 

2

 

, 

 

L

 

3

 

,

 

L

 

4

 

 are the short focus lenses (

 

f

 

 = 8 mm) producing pairs of
narrow aperture collimators; 

 

d

 

1

 

 and 

 

d

 

2

 

 are diaphragms 10 

 

µ

 

m
in diameter; 

 

Z

 

f is the focal point depth within the medium;
S is the laser source (P = 0.2 µW, λ = 1025 nm, lc ≈ 20 µm);
D is the detector of optical radiation; and n0 and n1 are the
refractive indices of external and modeling media, respec-
tively. The line with arrows shows an example of detected
signal: source–medium–pinhole detector.
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If polarized light propagates through several polar-
izing elements, the resulting Jones or Müller matrices
are given by the product of each element. All 16 ele-
ments of the Müller matrix can be found from four
complex elements (that is, eight real numbers) of the
Jones matrix, and the Stokes vector is derived from the
Jones vector:

(6)

Therefore, Jones formalism is simpler and easier to use
in calculation than Stokes–Müller formalism and is
preferable for the description of polarized light in a
Monte Carlo simulation.

4. MONTE CARLO ALGORITHM
FOR A UNIAXIAL BIREFRINGENT TURBID 

MEDIUM

The proposed Monte Carlo simulation consists of
two steps. First, a large number of photon histories are
generated and stored on hard disk. Then, the transfor-
mation of the Jones vector is calculated to describe the
polarization state of each emerging photon packet after
N scattering interactions as

(7)
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Jout = R ψ j–( )P k0 kej l j, ,( )R ψ j( )S θ j'( )R ϕ j'( )
j 1=

N

∏ J in,

(8a)

(8b)

(9)

(10)

Here, Jin and Jout represent the Jones vectors of the inci-
dent and the detected photon packets, respectively;
R(ψ) is the rotation matrix; ψ defines the angle between
the fast axes of the birefringent medium and the com-
ponent Es of the electric field of an electromagnetic
wave; P(ko , ke , l) is the propagation matrix describing
phase retardation between the ordinary and extraordi-
nary rays with ko and ke wave numbers, respectively; l
is the distance traversed by the photon within the bire-
fringent medium; R(ϕ') is the rotation matrix, whose
angle ϕ' describes the change of the azimuth angle of
the photon trajectory relative to the old direction due to
a scattering event; and S(θ') is the matrix for each single
scattering event derived from Mie theory, where θ' is
the polar scattering angle. We used a published source
code from [18] to calculate this scattering matrix for
homogeneous spherical scatterers.

The wave number for the extraordinary wave can be
derived using the expression for the normal surface of
the birefringent medium [17] given by

(11)

Here, no and ne are the ordinary and the extraordinary
indices of refraction, respectively; ω is the angular fre-
quency of the wave; c is the speed of light in vacuum;
and kea, keb, and kec are the wave-vector components of
the extraordinary wave in the principal coordinate sys-
tem defined as

(12)

(13)

(14)

where the indices a, b, and c are referred to the principal
coordinate system (a, b, c) and α, β, and ke are the pro-
jections of the wave vector on the axes of the local coor-
dinate system of a photon packet. The vector c is in line
with the orientation of the optic axis of the birefringent
medium. The vectors a and b are perpendicular to c and
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each other. Substituting Eqs. (12)–(14) into Eq. (11),
we obtain

(15)

where

(16)

uke
2

v ke– w+ 0,=

u
θcsin

2

ne
2

--------------
θccos

2

no
2

---------------,+=

(17)

(18)

with

(19)

Solving Eq. (15), we obtain the wave number of the
extraordinary wave:

(20)

The wave number of the ordinary wave is given by

(21)

5. RESULTS

In our simulation, we launched 109 photons, of
which 106 were detected. These 106 traces were stored
on hard disk. The simulation parameters are listed in
the table. The basic Monte Carlo code to generate these
parameters required about 400 h of calculation on a
1 GHz Athlon processor. This ASCII data file took
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no
2

-----– 
  ,sin=

w
kd
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ke v v
2

4uw–( )
1/2

+ / 2u( ).=

ko noω/c( )2 α 2
– β2

–[ ]
1/2
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Parameters used in the simulation

D Pinhole diameter 10 µm

f Focal length 8 mm

NA Numerical aperture 0.25

h Lens height over medium 7.95 mm

λ Wavelength 1300 nm

µs Scattering coefficient 25 mm–1

µa Absorption coefficient 0.015 mm–1

n Refractive index of medium 1.47

∆n Birefringence 0.01

nsca Refractive index
of scattering particle

1.55

RAD Diameter of scattering particle 1000 nm
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Fig. 2. Stokes vector for homogeneous tissue linearly polarized at +45° incident light: (a) S0 parameter, (b–d) parameters S1, S2, and S3.
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Fig. 3. Normalized depth-resolved Stokes parameter S2 of a two-layer tissue (boundary at depth 100 µm). The fast axis orientation
is identical for both layers, but the birefringence ∆n is greater in the deeper layer by ∆n21, where ∆n21 = (a) 0, (b) 0.002, (c) 0.004,
(d) 0.006, (e) 0.008, and (f) 0.01.

500 Mb of disk space. OCT detection is realized by
selecting photon packets according to their transit time
in the medium. The calculation of the polarization state
of these detected photons required 10 min.

To analyze the polarization state of the partially
polarized backscattered light, we applied a standard
method using the Stokes vector S = (S0, S1, S2, S3)T,
which is derived from the Jones vector (see Eq. (3)).
The element S0 describes the overall intensity of the
backscattered light. The element S1 corresponds to ver-
tical or horizontal linearly polarized light. The element
S2 describes light linearly polarized at 45° to the hori-
zontal/vertical. The last element S3 describes circularly
polarized light. Figure 2 shows the Stokes vector
parameters of backscattered photons, with a range of
the path length from 0 to 1000 µm (presented here as
the penetration depth in the range 0–500 µm). The inci-
dent light is assumed to be linearly polarized at +45°.

The oscillations of the Stokes vector are clearly seen
in the case of a uniform birefringent medium. The bire-
fringence ∆n can readily be calculated from the oscilla-
tion period of the S2 or S3 parameters. The oscillation

period d equals approximately 65 µm (see Fig. 2) and
is related to ∆n via

(22)

Therefore, the value of d corresponds to a birefringence
∆n = 0.01, which matches the value of birefringence
originally specified in the table. This gives us confi-
dence that the simulation code is working correctly.
The results of the simulation also show qualitative
agreement with recently reported experimental results
[19], where the oscillations of Stokes parameters were
observed for rodent muscle.

We also investigated a two-layered tissue with dif-
ferent birefringence properties in each layer. Figure 3
shows the normalized depth-resolved Stokes parameter
S2 of a two-layered tissue. The depth of the boundary is
100 µm. This figure demonstrates how the depth-
resolved Stokes parameters depended on the difference
in the birefringence of the layers ∆n21 = ∆n2 – ∆n1,
where ∆n1 and ∆n2 are the birefringence between the
first and second layers. Figure 3a corresponds to iden-
tical birefringence in both layers and shows only the
effect of depolarization with depth. The other plots
(Figs. 3b–3f) are made for different steadily increasing

2π 2π
λ

------∆n 2d( ).=
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values of the birefringence mismatches between layers
∆n21. It is seen that the increase of ∆n21 leads to a stron-
ger decay of depth-resolved Stokes parameters with
depth, i.e., a stronger depolarization of backscattered
light. This result is interesting, and we are currently
working to understand this effect.

6. CONCLUSIONS
We have developed a Monte Carlo model for polar-

ized light propagation in a birefringent multiple scatter-
ing multilayered medium. By including confocal and
time-gated detection, the code can be used to model the
signal from a PS-OCT interferometer. This makes it
possible to assess the depth-sensitivity of PS-OCT and
model different types of tissues with more complicated
structure.

We have investigated one- and two-layer birefrin-
gent turbid tissues. The Stokes vector variations with
depth were simulated. The oscillations of the Stokes
vector were clearly observed in the case of the birefrin-
gent medium. This result shows qualitative agreement
with published experimental results of other groups.
The effects of scattering-induced depolarization are
clearly shown and demonstrate that the “single back-
scatter” model does not describe PS-OCT well. In a
homogeneous medium, with optical transport proper-
ties similar to real tissue, the amplitude of the oscilla-
tions in the Stokes parameters decreases to 10% of its
initial value at a depth of approximately 500 µm. The
influence of the spatial nonuniformity of the medium
birefringence has also been considered. It has been
found that the effect of depolarization for a nonuniform
birefringent medium is stronger than that for uniform
birefringent tissue. This question will receive further
consideration in later work.
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