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Abstract

Crack propagation deviation tendency in specimens containing an interface between wrought alloy

substrate and Wire + Arc Additive Manufacture (WAAM) built Ti-6Al-4V is investigated from the

viewpoints of microstructure, residual stress and bi-material system. It is found that a crack initiated at

the interface tends to grow into the substrate that has equiaxed microstructure and lower resistance to

fatigue crack propagation. Experimental observations are interpreted by finite element modelling of

the effects of residual stress and mechanical property mismatch between the WAAM and wrought alloy.

Residual stresses retained in the compact tension specimens are evaluated based on measured residual

stress in the initial WAAM built wall. Cracks perpendicular to the interface kept a straight path owing

to the symmetrical residual stress distribution. In this case the tangential stress in bi-material model is

also symmetric and has the maximum value at the initial crack plane. In contrast, cracks parallel to the

interface is inclined to grow towards the substrate due to the mode II (or sliding mode) stress intensity

factor caused by the asymmetric residual stress field. Asymmetric tangential stress in the bi-material

model also contributes to the observed crack deviation trend according to the maximum tangential

stress criterion.

Keywords: additive manufacturing, titanium alloy, crack path selection, microstructure, residual stress,

bi-material, finite element model

1. Introduction

Due to their excellent mechanical properties and corrosion resistance, high strength titanium alloys are

extensively used as a key structural material in the aerospace industry. At present, titanium parts are

mostly fabricated by the conventional wrought based processes such as machining from solid billets

and therefore have a very high buy-to-fly ratio [1]. The new additive manufacturing (AM) technology

has proved a highly effective method to reduce the production time and cost comparing with the

traditional manufacturing process. The Wire + Arc Additive Manufacture (WAAM) process [2,3],

which feeds a wire at a controlled rate into an electric or plasma arc to melt the wire onto a substrate or

the previously deposited layer, is a developing AM technology that has found applications in the

aerospace and other industrial sectors. Compared to the powder-based AM processes, WAAM has a

much higher material deposition rate, lower process cost and no powder handling requirement [4].

However a higher amount of post process machining is required due to the lower dimensional accuracy

and surface roughness. WAAM is very promising for fabricating large components in high strength

titanium alloys.
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One of the main challenges to the widespread use of AM technologies to produce safety critical

structural components has been widely recognised as the issues of material properties and repeatability

[5, 6]. So far a number of studies have been conducted in this area for AM Ti-6Al-4V (referred to as

Ti-6-4 in the text). These include the static strength, ductility, high cycle fatigue and fracture toughness

properties of wire based AM [6-10], powder bed selective laser melting (SLM) [11-14] and powder

bed electron beam melting (EBM) [15]. Fatigue crack growth behavior has also been studied in SLM

and EBM Ti-6-4 [11, 14, 15]. However, there is no published work yet on fatigue crack growth rates in

the wire based AM metals. Furthermore, AM metal may be required to be built on to a substrate in

practice; hence the need to study crack growth behaviour at the interface of two different alloys in

order to apply the AM alloys in realistic structural assemblies or repairs. Since the damage tolerance

design requirement requires not only the fatigue crack growth properties but also modelling and

predictive tools, it is very important to study the influence of microstructure and residual stress that are

identified as the key factors for WAAM built Ti-6-4 [16].

The conventional α+β forging processes are widely used to for the high strength Ti-alloy to obtain a

typical equiaxed or bi-modal microstructure with excellent mechanical properties [17]. Many studies

have been conducted to investigate the microstructure and mechanical properties of AM deposited

titanium alloys. Previous studies [3, 4] have shown that the β grain of WAAM Ti-6-4 is similar to those

in powder bed AM alloys deposited by SLM [18] or EBM [19, 20]. The microstructure of WAAM

Ti-6-4 consists of fine Widmanstätten α in the upper deposited layers and a banded coarsened 

Widmanstätten lamella α in the lower layers [9], which is quite different from the equiaxed or bi-modal 

microstructure of the high strength Ti-6-4 in wrought condition. The coarse lamellar microstructure is

also observed for other AM process produced titanium alloys [8, 9, 20] and is found to retard the crack

growth rate [17, 21]. The difference in the microstructure results in different mechanical properties.

WAAM Ti-6-4 has slightly lower yield and ultimate tensile strengths than those of forged bar, the

ductility is comparable but the high cycle fatigue life is significantly higher [9, 22]. Furthermore, the 

as-deposited WAAM Ti-6-4 exhibits direction dependent mechanical properties. In the literature, the

welding torch movement direction is defined as the longitudinal direction (L) and the layer building

direction is the transverse (T), see Fig.1. The average yield and ultimate tensile strengths are higher in

the longitudinal direction than that in the transverse direction [7]. Fatigue crack growth rate is also

slightly greater in the longitudinal than the transverse direction [23]. For the SLM [14] and EBM

Ti-6-4 [15], no noticeable difference was observed in the crack growth rate in the Paris law region

between the two directions.

Fig. 1 Layout of test specimens on a WAAM-substrate wall showing the WAAM-substrate interface

location on each type of C(T) specimen (unit: mm)

Longitudinal

Transverse

Welding torch direction
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Differences in the microstructure and mechanical properties in the wrought and WAAM conditions

raise another issue for the designers. WAAM deposited on to a wrought substrate makes a bi-material

system with an interface region. Crack path selection and the interface fracture property in bi-material

systems has previously been studied [24]. The crack trajectory in a bi-material system depends on the

local properties and local stress and strain field. For example, in a laser beam welded aluminum alloy

sheet, it is observed that crack extends towards the softer fusion zone that has much lower yield

strength than the base metal [25]. The bi-material interface regions are found to be the weakest

location for material failure due to the microstructure and mechanical property heterogeneity [26].

Therefore, understanding the crack growth behavior at the bi-material interface is very important to

improve the structural integrity design of WAAM deposited components.

Residual stress caused by the thermal contraction of the melting materials [27] is another key factor

that can impact the crack growth behavior. Residual stress can be either beneficial or detrimental

depending on its sign, magnitude, distribution and interaction with the service load induced stress field.

Attempts have been made to quantify residual stress in AM parts [27-29]. For example, the neutron

diffraction method was used to probe parts produced by the LENS method (a powder based AM

process) and found significant compressive residual stress within a built component [28], which were

observed to increase the fatigue life as the compressive stress caused crack tip closure; hence retarding

the crack growth rate. Another study [29] showed that the peak residual stress shifted as weld beads

were added to previous welds and can have the beneficial effect of lowering the peak stress,

particularly in the weld toe area, which is a common site of in-service cracking. It should be pointed

out that cracking occurs perpendicular to the deposited layers in [28, 29]. The influence of residual

stress on cracks running parallel to the deposited layers is not found in the open literature.

Experimental tests have been conducted to study the fatigue crack growth behaviour of WAAM

deposited Ti-6-4 by our research group [30-32]. A recent paper [33] reported the effects of

microstructure and residual stress on the growth behavior of crack perpendicular to the

WAAM-substrate interface. This paper aims to understand the path selection of a crack at the interface

either perpendicular or parallel to the interface. Firstly, fatigue crack growth test of compact tension

specimens from previous tests is introduced. Subsequently, finite element models are presented for

calculating residual stresses retained in the test specimens and resultant stress intensity factors, and

investigating the crack path selection in the bi-material system (substrate and WAAM alloys). Finally,

crack path selection issues are discussed from the viewpoints of microstructure, residual stress and

bi-material system, respectively.

2. Experimental

2.1 Manufacturing process and experimental setup

Fatigue tests of compact tension, C(T), specimens were conducted at Cranfield University [30-32] to

investigate crack growth behavior at the WAAM-substrate interface. The specimens were machined

from a “wall” (Fig. 1) fabricated by the Welding Engineering and Laser Processing Centre at Cranfield

University using the WAAM technology using process parameters given in Table 1 [30]. A total of four

walls were manufactured for this project. One of them was used for residual stress measurement; the

other three were used to produce the test specimens shown in Fig. 1. Five C(T) specimens were

machined from each wall to fatigue test standard. Fig. 2 shows the geometry and the dimension of the

C(T) specimens complying with the ASTM standard [34]. The nominal thickness is 6 mm.

Five different crack scenarios (Fig. 1) were investigated on the fatigue crack growth pattern at the

WAAM-substrate interface, which are potentially important for design considerations. Fatigue tests



Materials & Design, Volume 104, 15 August 2016, pp365-375, DOI:10.1016/j.matdes.2016.05.027

4

were conducted using an Instron Model 8031 servo-hydraulic test machine in the following two steps:

(1) pre-crack of 3 mm was prepared to eliminate the effect of the machined notch root. At the load

ratio 0.1, the maximum load was kept at 6 kN for pre-cracking to 2.5 mm length and then reduced to 5

kN for a further 0.5 mm crack growth. (2) Crack growth tests were conducted under the maximum

load of 5 kN and load ratio 0.1. A travelling microscope of X7 magnification factor was used to

monitor the crack tip location. The loading frequency was 10 Hz for both the pre-cracking and fatigue

crack growth tests. Three specimens were tested for each geometry type.

Table 1 Build parameters used for the production of the WAAM-Substrate wall [30]

Layers 1-3 4-6 7-9 >9

Current(A) 160 155 150 145

Arc voltage(V) 20.4

Wire feed speed (mm/s) 33.33

Travel speed (mm/s) 4.5

Plasma gas flow rate (l/min) 0.8

Torch shielding gas rate (l/min) 8

Wire diameter (mm) 1.20

Layer height (mm) 1.25

Fig. 2 Geometry and dimension of WAAM build C(T) specimen (unit: mm)

2.2 Fatigue crack trajectory

Figure 3 presents the crack growth trajectory observed on polished specimen surfaces. The photos are

presented in two categories by the applied load direction versus the WAAM-substrate interface.

(1) Applied load parallel to the WAAM-substrate interface: specimen Type A (crack initiates from the

substrate and propagates into the WAAM alloy) and Type C (crack initiates from the WAAM alloy and

propagates into the substrate). The crack was found to maintain a straight line perpendicular to the

interface for both specimens as shown in Figs. 3a and 3c. This is attributed to both the geometry and

load symmetry. As shown in the previous work [33], residual stresses and microstructure only affected

the crack growth rate, but not the crack propagation trajectory.

(2) Applied load perpendicular to WAAM-substrate interface: Type B (initial crack at the interface),

Type D (initial crack in the WAAM alloy, 3 mm above the interface) and Type E (initial crack about 3

mm below the interface, in the heat affected zone (HAZ) on the substrate side). Figs. 3b, d and e show

that the cracks in these specimens all propagated into the substrate even if it is 3 mm away from the
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interface. Although the applied load is symmetric, the microstructure and material properties are

different on either side of the crack, which may have affected the crack path selection. Process induced

residual stress is another factor that can influence the crack path selection by altering the crack tip

stress distribution.

WAAM

HAZ

Substrate P P

(a) Type A

WAAM

HAZ

Substrate

P

P

(b) Type B

WAAM

HAZ

Substrate

P

P
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Materials & Design, Volume 104, 15 August 2016, pp365-375, DOI:10.1016/j.matdes.2016.05.027

6

Fig. 3 Macroscopic photographs showing fatigue crack trajectory in the interface of WAAM-substrate C(T)

specimens.

2.3 Measurement of the residual stress

To validate the residual stress prediction model presented in [33], residual stresses retained in Type B

specimen were measured by the contour method [35]. The contour method involves cutting the

component of interest into two parts, measuring the relaxed deformation profile of the cut surfaces and

applying this profile as boundary conditions in an elastic finite element (FE) analysis to back-calculate

the original out-of-plane residual stress field at the cut face.

The cutting process was conducted using an Agie Charmilles wire EDM machine (FI-440CS) with a

100 �� brass wire diameter. The specimen was ‘finger’ clamped on the wire EDM bed to avoid any

free movement during the cutting operation. Once the cutting process was completed, the distorted cut

faces were measured using a Zeiss Eclipse co-ordinate measuring machine (CMM), fitted with a

Micro-Epsilon laser probe and a 4 mm diameter ruby-tipped Renishaw PH10M touch trigger probe.

The measurement spacing adopted was on a 0.1 mm square grid.

Noise in the measured surface contour is unavoidable due to the nature of the EDM cut surfaces and

uncertainty in CMM measurements. Because the stress calculation magnifies the noise in the data, it is

important to smooth the surface deformation data. In the present work data smoothing was conducted

using cubic spline fitting. For this purpose, several ‘knot spacings’ (1x1, 2x2, 3x3, 5x5 and 7x7 mm2)

were examined. The uncertainty in the calculated stresses at any given node on the cut surface was

estimated by taking the standard deviation of the new stress and the stress from the previous, coarser

P
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HAZ

Substrate

P P
(c) Type C
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Substrate

P
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fit [36]. The minimum average stress uncertainty was 6.4 MPa which corresponded to an optimum

knot spacing of 3x3 mm2 in this case.

A 3D linear elastic FE analysis was performed using the ABAQUS code to calculate the residual stress

from the applied deformation at the cut surface. The 3D FE model of the specimen was generated

using the perimeter of the cut face measured by the CMM. The elastic properties (Young’s modulus

and Poisson’s ratio) of the test specimen were defined and residual stresses back-calculated by

applying the opposite of the smoothed deformation contour to the cut plane as boundary conditions.

Measured stress profile is compared with FE prediction and presented in Section 3.1.

3. Finite element analysis

3.1 Residual stress effect on crack path selection

3.1.1. Residual stress in C(T) specimens

An elastic FE model was developed to simulate cutting of C(T) specimen from the WAAM wall in our

previous paper [33]. The specimen cutting process can be regarded as a stress relief process due to

material removal [37]. An element removal model is available in ABAQUS [38] that can be used to

remove parts from an initially built model to simulate the machining process.

Residual stresses retained in the Type A and C specimens, i.e. crack perpendicular to the interface, are

reported in [33]. Before removing any material, the measured residual stress field in the wall (Fig. 4) is

put into the FE model as the initial stress condition using a user defined subroutine (designated as

SIGINI in ABAQUS). To model the residual stress in type B specimen (crack parallel to the interface),

C(T) specimen model and refined mesh with singularity elements around the crack tip are illustrated in

Fig. 5. The modelling procedure is the same as in [33]. To validate the FE model, Fig. 6 compares the

FE calculated and test measured residual stresses retained in the B specimen prior to the fatigue crack

propagation test. Prediction is in good agreement with the test.

(a) 2D normal stress map in the cutting plane A-A
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Fig. 4 Measured residual stress in the wall

Fig. 5 Finite element model for calculating residual stress retained in C(T) specimen
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Fig. 6 Residual normal stress retained in the Type B specimen (with notch, no crack)

Bearing in mind that the aim of this paper is to understand the crack path selection near the

WAAM-substrate interface, a longer crack length was used in the FE model, i.e. 30 mm for Type A and

C so that the crack tip is located at the interface. For the Type B, D and E specimens, a 17 mm crack

length was used in the FE models (representing 14 mm notch plus 3 mm pre-crack). Calculated

residual stress distributions near the crack tip are shown in Figs. 7 and 8. Calculated residual stress

intensity factors (Kres) are extracted from the contour (J)-integral and given in Table 2. From these

results, following observations can be drawn:

(1) For the Type A and C specimens, the residual stress distribution (Fig. 7) is symmetric when the

crack initiates and propagates perpendicular to the WAAM-Substrate interface. The resultant mode I

stress intensity factors (KI,res) are 1.50 MPa√m for Type A specimen and 10.183 MPa√m for Type C

when a = 30 mm (crack tip at the WAAM-substrate interface). The mode II residual stress intensity

factor (KII,res) is zero for both specimens as shown in Table 2, indicating that the influence of residual

stress is limited to increasing the total mode I stress intensity factor and subsequently increasing the

crack growth rate, but not changing the crack trajectory (pure mode I crack propagation). This explains

the straight crack path on the Type A and C specimens (Figs. 3a and c).

(2) For the Type B, D and E specimens, residual stress distribution and induced deformation (Fig. 8)

are apparently asymmetric. Calculated values of residual stress induced stress intensity factor (Kres) in

Table 2 indicate that Kres is considerable for both the mode I and mode II crack growth. Consequently

the crack propagated under the mixed mode, i.e., the crack path deviated from the expected path (Fig.

3b, d, e) due to the asymmetric residual stress distribution. The deviation angle depends on the

proportion of the applied load to the residual stress magnitude.
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Fig. 7 Residual stress (σ22) in the crack tip of C(T) specimens, (a) Type A, (b) Type C

(Refined singularity mesh region around the crack tip: 6 mm × 4 mm)

Fig. 8 Residual stress (σ22) in the in the crack tip of C(T) specimens, (a) Type B, (b) Type D (c) Type E

(Refined singularity mesh region around the crack tip: 6 mm × 4 mm)

Table 2 Residual stress induced stress intensity factor (Kres) for the C(T) specimen

Type of Specimen A B C D E

Crack length, a (mm) 30 17 30 17 17

Kres of mode Ⅰ, KI,res (MPa√m) 1.502 5.850 10.183 4.743 7.242

Kres of mode Ⅱ, KII,res (MPa√m) 0.000 2.704 0.000 1.771 3.731

3.1.2. Maximum tangential stress criterion (elastic stress field)

The influence of residual stress distribution on crack deviation angle is determined by the maximum

tangential stress criterion (elastic) that is available in ABAQUS [39]

� = cos-1
3KII

2 +�KI
4+8KI

2KII
2

KI
2+9KII

2 (1)

where, crack deviation angle (�) is measured counterclockwise with respect to the initial crack plane,

i.e. � = 0 represents crack propagation in the “straight-ahead” direction when KII=0, whereas � < 0

if KII>0 or � > 0 if KII<0. Values of KI and KII depend on the proportion of applied maximum

load to the residual stress magnitude that is calculated by FE model in Section 3.1.1. Calculated crack

deviation angles are presented in Section 4.3.
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3.2 Crack path selection in the bi-material system

Mechanical properties of WAAM and wrought Ti-6-4 are given in Table 3. The WAAM alloy has a

higher Young's modulus but lower yield and ultimate tensile strength in both the longitudinal and

transverse directions. When a crack is adjacent to the WAAM-substrate interface, it could be regarded

as propagating in a bi-material system having different mechanical properties between the two process

conditions. Consequently, a complex stress field is found around the crack tip owing to the elastic and

plastic mismatch [40]. An elastic-plastic FE model is developed in this paper to predict the crack path

selection due to the elastic (Young's modulus) and plastic (yield strength) mismatch.

Table 3 Mechanical properties of WAAM and substrate Ti-6Al-4V [7, 23]

Material Direction
Young's modulus

(GPa)

Yield strength

(MPa)

Ultimate tension strength

(MPa)

WAAM
Longitudinal 123.5 840 923

Transversal 126.5 810 906

Substrate Isotropic 110 950 1033

3.2.1 Elastic-plastic FE model of bi-material system

Figure 9a shows the C(T) specimen model by the plane strain element (8-node second order

isoparametric element designated as CPE8 in ABAQUS; 15170 elements in total). A refined mesh is

used at the crack tip and the quarter-node elements are used at the crack tip to capture the high stress

gradient (Fig. 9b). The loading pin is simulated as a rigid body due to the relatively small deformation

compared with the C(T) specimen. Interaction between the loading pin and C(T) specimen is simulated

by the surface-to-surface contact pairs. Fig. 9 also shows the material property definition in the

bi-material system. The isotropic hardening rule was used to specify the plastic behavior. The

relationship between yield stress and plastic strain was defined in ABAQUS to model the stress-strain

curve given in Ref [23]. Taking the type B as an example, the specimen is modelled by two material

zones divided by the WAAM-substrate interface. The upper and lower zones are modelled by the

WAAM and wrought Ti-6-4 properties, respectively.

Fig. 9 Elastic-plastic finite element model of crack extension in bi-material system (Type B): (a) FE

model of the C(T) specimen; (b) Detail mesh around the notch and crack tip area

WAAM

Substrate

Load pin WAAM

Substrate

Crack tip

Load pin

(a)

(b)
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3.2.2 Maximum tangential stress criterion in the elastic-plastic stress field

Since there is no criterion currently available in ABAQUS for predicting crack growth direction in an

elastic-plastic material, in this paper, the Maximum Tangential Stress (elastic-plastic) criterion, named

as the MTSP [41], was applied to estimate the crack trajectory at the WAAM-substrate interface.

According to this criterion, the crack will propagate along the direction where the tangential stress is

the greatest. Hence, the crack deviation angle (θ) can be determined by the following equation

σT,max= max
θ
���(�)�

���eval
(2)

where reval is the radial distance from the crack tip to the point where the crack deviation angle is

evaluated, σT(θ) is the normal stress in the tangential direction that is obtained from the elastic-plastic

FE model. Evaluation of crack deviation angle (θ) is performed by the following steps.

(1) Calculated stress components (σx, σy, τxy) are transformed from the global Cartesian coordinate (x-y)

to the local cylindrical coordinate (R-T) system, as shown in the Figs. 10a and b.

(2) The tangential stress, ��(�), at a given radius reval was recorded, where � ranges from -180° to

180°, shown in Fig. 10c. At the evaluation point, distance to the crack tip reval must be smaller than

the radius of the theoretical plastic zone [39], which is 0.104 mm by Irwin’s plastic zone model [42]

for Type B specimen. In this study, the tangential stress was evaluated at two points, i.e. reval equals

0.005 and 0.02 mm, as shown in Fig. 10c.
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(3) The angle where the tangential stress is the highest is the crack growth direction, according to the

MTSP criterion. It can be seen from Fig. 10c that the crack deviation angle is about -6.5° for the Type B

specimen, i.e., crack tends to enter the substrate when it is initiated at the WAAM-Substrate interface.

4. Results and discussions

4.1 Crack path selection at the interface

Experimental test results in Section 2 have indicated that fatigue crack growth path around the

interface is dependent on the initial crack orientation (i.e. either perpendicular or parallel to the

interface). Crack maintains a straight path when it is perpendicular to the interface, whereas crack

tends to grow into the wrought substrate when it is parallel to the interface. Influences of

microstructure, residual stress and bi-material system on crack deviation tendency are analysed and

discussed in the following sections.

4.2 Influence of microstructure and fatigue crack growth rate

Figure 11 shows the difference in the microstructure and crack growth rate [33] between the wrought

and WAAM Ti-6-4. The fatigue crack growth rate of WAAM alloy in the T-L direction is also reported

in Fig. 11c. Microstructure of the wrought alloy is the α+β equiaxed structure (Fig. 11a) that is the 

same as most high strength Ti-6-4 used in the airframes. The WAAM alloy has the Widmanstätten

lamellar structure (Fig. 11b) that is also reported for WAAM [7] and other AM process deposited

titanium alloys [10, 11].
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MPa m

Baseline wrought (Isotropic)
Baseline WAAM (L-T) [23]
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/
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Fig. 11 Optical micrographs showing the crack growth pattern in the wrought substrate (a), WAAM (b),

and comparison of fatigue crack growth rate da/dN vs. stress intensity factor range ∆K (c)

(a) (b)

(c)
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Differences in the microstructure can cause different resistance to fatigue crack propagation. In the

substrate, cracks propagate smoothly in the fine α+β equiaxed structure and consequently have a 

higher growth rate (Fig. 11a and c). In the WAAM alloy, a crack takes a tortuous route owing to the

lamellar structure which results in a slower growth rate (Fig. 11b and c). Fig. 11c shows that the

WAAM Ti-6-4 exhibits a lower crack growth rate in both the longitudinal and transverse directions

than that in the wrought alloy (isotropic) in the Paris law region (Region II). This is also reported by

Edwards et al [14] for the electron beam melted Ti-6-4.

The relationship of the crack growth rate and stress intensity factor range characterizes the resistance

to crack propagation under fatigue load. Comparisons shown in Fig. 11c indicate that WAAM Ti-6-4

has higher resistance to crack propagation than the wrought alloy used in the substrate. Cracks tend to

propagate towards the material that has lower resistance to propagation when the crack is initiated at

the WAAM-substrate interface and is parallel to the interface, i.e., cracks will grow into the substrate

for the Type B, D and E specimens.

4.3 Influence of residual stress

FE models in Section 3.1 show that residual stress distribution is symmetric for the Type A and C

specimens but asymmetric for the Type B, D and E. According to the maximum tangential stress

criterion (eq. 1, elastic condition), the crack deviation angle induced by residual stress depends on the

proportion of the applied maximum load to the residual stress. Table 4 provides the total stress

intensity factor (Ktot) owing to the applied maximum load and residual stress, crack propagation

angle (�) that is estimated by eq. 1 based on the calculated KI, tot and KII,tot.

As can be seen from Table 4, for the Type A and C specimens, the mode II stress intensity factor is

zero (KII,tot= 0) under the combined residual stress and applied load, hence the crack deviation angle is

also zero, indicating that the crack keeps a straight propagation path in the Type A and C specimens

(Figs. 3a and c). However, for the Type B, D and E specimens, residual stress results in considerable

mode II stress intensity factor with positive values (KII, tot > 0); consequently this results in negative

crack deviation angle (� < 0), meaning that the cracks tend to propagate into the substrate alloy, as

shown in Figs. 3 b, d and e. Furthermore, the prediction results show that Type E specimen has the

maximum deviation angle, and Type D has the minimum angle value, which is in agreement with the

experimental observations shown in Fig. 3.

Table 4 Calculated total stress intensity factor (Ktot) and the crack deviation angle (�)

under maximum applied load (Pmax=5kN) and residual stress

Type of Specimen A B C D E

Crack length, a (mm) 30 17 30 17 17

KI induced by applied maximum load, KI, app (MPa√m) 24.756 15.216 24.756 15.216 15.216

KII induced by applied maximum load, KII, app (MPa√m) 0

K�,tot = KI, app+ KI, res (MPa√m) 26.258 21.060 34.939 19.953 22.452

K��,tot = KII, app+ KII, res (MPa√m)) 0.000 2.704 0.000 1.771 3.731

Crack deviation angle, θ (°) 0.000 -14.185 0.000 -9.990 -17.945

4.4 Influence of mechanical property mismatch

The mismatch of mechanical properties of WAAM and substrate Ti-6Al-4V is another factor which

may cause the crack deviation at the interface. Crack path selection in the bi-material system of tested
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samples was investigated using the elastic-plastic FE model described in Section 3.2. Calculated

results are presented in two groups according to the crack growth direction with respect to the WAAM-

Substrate interface.
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For the Type A and C specimens (cracks propagate perpendicular to WAAM-Substrate interface), Fig.

12a shows the tangential stress distribution near the crack tip (reval= 0.02 mm) at the interface (a = 30

mm), i.e., the crack tip at the interface exactly. It should be noted that the crack tip plastic zone is

located in the WAAM alloy zone for the Type A specimen but in the substrate zone for the Type C.

Although Type A and C specimens give different tangential stress distribution due to the difference in

mechanical properties, the tangential stress reaches its maximum value when θ = 0° for both specimens,

indicating that cracks will follow a straight growth path when propagating perpendicular to

WAAM-Substrate interface.

For the Type B, D and E specimens (cracks grow parallel to the interface), Fig. 12b shows the

tangential stress distribution around the crack tip (reval= 0.02 mm) when a=17 mm, i.e. at the beginning

of the fatigue crack growth test. Unlike the case of symmetric residual stress distribution for Type A

and C specimens, an asymmetric stress distribution is caused by the mismatch in mechanical properties

between the WAAM and substrate alloys. The tangential stress reached its maximum value at θ = -6.5,

-2 and -2° for Type B, D and E, respectively. According to the MTSP criterion presented in Section 3.2,

cracks will tend to deviate into the substrate.

It should be pointed that this paper aims to explain the crack propagation tendency at the WAAM-

Substrate surface. Although the FE models (containing residual stress and bi-material properties)

provide the same deviation tendency as the experimental results, the calculated deviation angle only

represents the tendency of initial deviation. Since the deviation angle is a function of stress intensity

factors (KI,tot and KII,tot), it is strongly related to the growing crack length. Crack deviation continues

during the subsequent crack propagation process, therefore as the crack gets longer, it will in turn

impact the residual stress redistribution and the stress intensity factor values; hence the deviation angle.

A more complex model needs to be developed to predict the continuing change in the crack deviation

angle and crack growth path, which is beyond the scope of this paper and will be the subject of future

work.

5. Conclusions

Crack propagation deviation tendency in specimens containing an interface between wrought substrate

and WAAM Ti-6Al-4V is investigated from the microstructure, residual stress and bi-material points of

view. FEA has been performed to explain the effects of residual stress and bi-material properties. The

following conclusions can be drawn.

(1) Since the lamellar structured WAAM alloy has lower crack growth rate than that in the equiaxed

wrought condition, cracks have a tendency to grow towards the wrought substrate when they are

initiated at and in parallel with the WAAM-substrate interface.

(2) Residual stress distribution is symmetric in the Type A and C but asymmetric for the Type B, D and

E specimens. Cracks keep a straight propagation path in the Type A and C specimens, since the mode

II stress intensity factors induced by residual stress are zero. For the Type B, D and E specimens,

residual stress results in a considerable mode II stress intensity factor that leads to crack path deviation

into the substrate.

(3) The mismatch of the material elastic and plastic mechanical properties between the WAAM and

wrought alloys also has an influence on the crack path selection. The bi-material FE model shows that

when cracks propagate perpendicular to the WAAM-substrate interface, the tangential stress is

symmetric and reached a maximum value at θ = 0. Asymmetric tangential stress is found when cracks

grow parallel to WAAM-substrate interface. According to the maximum tangential stress criterion,
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crack will deviate into the substrate.

In summary, all three influential factors (microstructure, residual stress and bi-material properties)

support the experimentally observed crack deviation trend, i.e., crack deviates into the substrate when

it initiates at and in parallel with the WAAM-substrate interface.
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