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Synthesizing a gain-scheduled output feedback H∞ controller via parameter-dependent Lyapunov functions
for linear parameter-varying (LPV) plant models involves solving an infinite number of linear matrix inequal-
ities (LMIs). In practice, for affine LPV models, a finite number of LMIs can be achieved using convexifying
techniques. This paper proposes an alternative approach to achieve a finite number of LMIs. By simple manip-
ulations on the bounded real lemma inequality, a symmetric matrix polytope inequality can be formed. Hence,
the LMIs need only to be evaluated at all vertices of such a symmetric matrix polytope. In addition, a con-
struction technique of the intermediate controller variables is also proposed as an affine matrix-valued function
in the polytopic coordinates of the scheduled parameters. Computational results on a numerical example using
the approach were compared with those from a multi-convexity approach in order to demonstrate the impacts
of the approach on parameter-dependent Lyapunov-based stability and performance analysis. Furthermore,
numerical simulation results show the effectiveness of these proposed techniques.

Keywords: Gain-scheduling control, parameter-dependent Lyapunov functions, linear parameter varying
(LPV) systems, linear matrix inequality (LMI), nonlinear control, robust control.

1. Introduction

The dynamic characteristics of nonlinear plants vary following their operating conditions. Con-
ventional gain-scheduling techniques can be used to handle this nonlinear property. Although
this design approach has been successfully and popularly implemented in many engineering
applications in order to cover the entire operating range of the system plants, it comes with
no guarantees on the robustness, performance, or even nominal stability of the overall gain
scheduled design (Shamma and Athans 1990). An advanced robust gain-scheduling technique,
namely linear parameter-varying (LPV) control (Shamma and Athans 1991), provides an alter-
native approach that is often used to handle plant uncertainty and nonlinearity. Importantly, an
LPV controller theoretically guarantees stability, robustness, and performance properties of the
closed-loop system (Wu 2001, Apkarian and Adams 1998, Becker and Packard 1994).

An LPV plant model was first introduced by Shamma and Athans (1991) whereby its dynamic
characteristics vary, following some time-varying parameters whose values are unknown a priori
but can be measured in real-time and lie in some set bounded by known minimum and maximum
possible values. Algebraic manipulation methods such as Jacobian linearization (Ostergaard
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et al. 2009, Corno et al. 2008, Lu et al. 2006), function substitution (Shin et al. 2002), or state
transformation (Balas 2002, Shamma and Cloutier 1993), are normally used to derive an LPV
model from the original nonlinear model. Moreover, in the literature, there are several different
varieties of LPV models, e.g. grid LPV model (Corno et al. 2008, Lu et al. 2006, Wu et al. 2002,
1996), affine LPV model (Apkarian and Adams 1998, Apkarian 1997, Apkarian et al. 1995)
(or polytopic LPV model), tensor-product (TP) convex polytopic model (Baranyi et al. 2006,
Baranyi 2005, 2004), etc.; these have been introduced for gain-scheduled H∞ control synthesis
and analysis which is usually based on single quadratic Lyapunov function (Apkarian et al.
1995, Becker and Packard 1994) or parameter-dependent Lyapunov function, e.g. parameter-
dependent (Corno et al. 2008, Wu et al. 2002, Apkarian and Adams 1998, Wu et al. 1996), affine
parameter-dependent (Gahinet et al. 1996), piecewise-affine parameter-dependent (Lim and How
2003, 2002), blending parameter-dependent (Shin et al. 2002), multiple parameter-dependent
Lyapunov functions (Lu et al. 2006, Lu and Wu 2004).

Using a single quadratic Lyapunov function, for both the affine LPV model (Apkarian et al.
1995) and the TP convex polytopic model (Chumalee and Whidborne 2009) cases, a finite number
of LMIs need only to be evaluated at all vertices while, for the grid LPV models (Wu et al. 1995)
case, an infinite number of LMIs have to be evaluated at all points over the entire parameter space
in order to determine a pair of positive definite symmetric matrices (X,Y). However, in practice,
the symmetric matrices (X,Y) can be determined from a finite number of LMIs by gridding the
entire parameter space with a non-dense set of grid points. Having determined the symmetric
matrices (X,Y), a more dense grid points set can be tested with these determined symmetric
matrices (X,Y) to check whether the LMIs are still satisfied (Wu et al. 2002, 1996). If not,
this process is repeated with a denser grid until the symmetric matrices (X,Y), that satisfy the
LMIs for all points over the entire parameters space, are obtained (Wu et al. 2002, 1996, Lim and
How 2003). However the result of such a heuristic gridding technique is not necessarily reliable
and the analysis result is dependent on the choice of gridding points (Wang and Balakrishnan
2002). In addition, for a grid LPV model case, the resulting gain-scheduled controller has high
computational on-line complexity at the gain-scheduling level (Wu et al. 1995) while, for the
other two cases, the gain-scheduled controller is constructed as an affine matrix-valued function
in the polytopic coordinates of the scheduled parameters (Apkarian et al. 1995, Chumalee and
Whidborne 2009).

In general, the single quadratic Lyapunov function is more conservative than the parameter-
dependent Lyapunov function when the parameters are time-invariant or slowly varying (Gahinet
et al. 1996). In addition, when the parameters have a large variation, the piecewise-affine
parameter-dependent (Lim and How 2003, 2002), blending parameter-dependent (Shin et al.
2002), and multiple parameter-dependent Lyapunov functions (Lu et al. 2006, Lu and Wu 2004)
are less conservative than the parameter-dependent Lyapunov functions. This result from the
fact that an LPV model with a large parameter variation can be modelled as a switching linear
parameter-varying (SLPV) system which can be made discontinuous along the switching surface
by dividing the entire parameters spaces into parameters subsets that are small variation regions.
Solving LMIs with the parameters subsets improve the performance measure (γ). Moreover, Yan
and Ozbay (2007) provide sufficient conditions to guarantee the stability of the SLPV systems in
terms of the dwell time and the average dwell time, where a switching signal of the SLPV systems
with dwell time τ means a time interval between any two consecutive switching from one model
to another model is equal to or greater than τ . However, using parameter-dependent (Corno
et al. 2008, Wu et al. 2002, Apkarian and Adams 1998, Wu et al. 1996), blending parameter-
dependent (Shin et al. 2002), and multiple parameter-dependent Lyapunov functions (Lu et al.
2006, Lu and Wu 2004), an infinite number of LMIs have to be evaluated at all points over the
entire space of parameters. Furthermore, the resulting gain-scheduled controller requires more
complex on-line computations at the gain-scheduling level (Corno et al. 2008, Lu et al. 2006, Lu
and Wu 2004, Shin et al. 2002, Wu et al. 2002, Apkarian and Adams 1998).
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In this paper, we consider the design problem of gain-scheduled controllers with guaranteed
L2-gain performance for a class of affine LPV systems using parameter-dependent Lyapunov
functions. By simple manipulations on the parameter-dependent Lyapunov functions or the
bounded real lemma (Apkarian et al. 1995) inequality, a symmetric matrix polytope form of these
inequalities is obtained. Hence, the LMIs need only to be evaluated at all vertices of the system
state-space model matrices and the variation rate of the scheduled parameters. In addition,
the intermediate controller variables, i.e. Âk(θ), B̂k(θ), Ĉk(θ) and Dk(θ), are proposed to be
constructed as an affine matrix-valued function in the polytopic coordinates of the scheduled
parameters, hence this reduces the computational burden and eases controller implementation.
Furthermore, they are applicable to both regular and singular problems without the need for
constraints on the D12 and D21 matrices of LPV models. The performance of the proposed
approach is tested on a numerical example (Leith and Leithead 1999) that is known to cause
difficulties for LPV controllers.

The organization of the paper is as follows. A vertex-type stability analysis technique for affine
LPV systems based on parameter-dependent Lyapunov functions is briefly summarized in the
next section. In section 3, gain-scheduled output feedback H∞ control synthesis methods for
affine LPV systems using parameter-dependent Lyapunov functions are proposed. Numerical
comparisons of LPV synthesis techniques using multi-convexity (Apkarian and Tuan 2000) and
the proposed method are presented in section 4, where numerical simulation results are also
presented. This paper concludes with some comments.

The notation used in the paper is standard. Rm×n is the set of real m × n matrices. The
identity matrix size p×p and zero matrix size m×n are denoted Ip and 0m×n, respectively. The
transpose, inverse, and Moore-Penrose pseudo-inverse of a matrix M are denoted MT, M−1, and
M+, respectively. Θ×Φ denotes the Cartesian product of two sets Θ and Φ. For real symmetric
matrices M, the notation M < 0 stands for negative definite and means that all the eigenvalues
of M are negative, that is, xTMx < 0 for all nonzero vectors x. The notation † denotes matrices
without interest. In large symmetric matrix expressions, the notation ? represents a symmetric
matrix block. For instance,

X(θ)A(θ) + B̂k(θ)C2 + (?) = X(θ)A(θ) + B̂k(θ)C2 + AT(θ)X(θ) + CT
2 B̂T

k (θ)

2. Stability Analysis using Parameter-Dependent Lyapunov Functions

Following Gahinet et al. (1996), an affine LPV system is given by,

ẋ(t) = A
(
θ(t)

)
x(t), x(0) = xo (1)

where t ∈ R is time, x ∈ Rp is the state vector, θ(t) =
[
θ1(t), . . . , θn(t)

]T ∈ Rn is a vector of
time-varying real parameters which is assumed to be measured in real-time and n is the total
number of time-varying parameters. The plant state matrix A

(
θ(t)

)
is a continuous mapping

matrix functions A : Rn → Rp×p and is assumed to depend affinely on the vector parameters
θ(t). That is

A
(
θ(t)

)
= A0 + θ1(t)A1 + · · ·+ θn(t)An (2)

where A0,A1, . . . ,An are known fixed matrices. We also assume that each parameter θi(t) lies
between known extremal values θi and θi, θi(t) ∈

[
θi, θi

]
, and θ(t) lies in a polytope Θ, θ(t) ∈ Θ.

The rate of variation θ̇i(t) is well defined at all times and satisfies θ̇i(t) ∈
[
vi, vi

]
and θ̇(t) lies in

a polytope Φ, θ̇(t) ∈ Φ.



March 17, 2012 16:41 International Journal of Systems Science IJSS˙v2

4 Sunan Chumalee and James F Whidborne

A matrix polytope is defined as the convex hull of a finite number of matrix vertices Ni with
the same dimensions (Apkarian et al. 1995). That is,

Co {N1,N2, . . . ,Nr} :=

{
r∑
i=1

αiNi : αi ≥ 0,
r∑
i=1

αi = 1

}
(3)

The plant state matrix A
(
θ(t)

)
can also be written as a convex combination of the matrix

vertices as

A
(
θ(t)

)
= Co

{
Â1, Â2, . . . , Âm

}
= α1Â1 + α2Â2 + · · ·+ αmÂm (4)

where m = 2n, 
Â1

Â2

Â3
...

Âm

 =


1 θ1 θ2 . . . θn−1 θn
1 θ1 θ2 . . . θn−1 θn
1 θ1 θ2 . . . θn−1 θn
...

1 θ1 θ2 . . . θn−1 θn




A0

A1
...

An

 (5)

and, following Pellanda et al. (2002, Algorithm 3.1), in order to compute αi, we first compute
the normalized co-ordinates

αθj =
θj − θj(t)
θj − θj

, j = 1, . . . , n (6)

Then, for each vertex Θi, i = 1, . . . ,m, the corresponding polytopic co-ordinates are calculated
by

αi =
n∏
j=1

α̃θj , α̃θj =

{
αθj , if θj is a co-ordinate of Θi;

1− αθj , if θj is a co-ordinate of Θi.
(7)

Lemma 2.1: (Chumalee 2010, Lemma 3.3.1.) Given a symmetric matrix polytope, M(θ(t)) ∈
Rp×p, for which M(θ(t)) =

∑m
i=1 αiM̂i, where αi is determined using (6) and (7), is a negative

definite symmetric matrix for all possible parameter trajectories, M(θ(t)) < 0, ∀θ(t) ∈ Θ, if

and only if M̂i < 0, i = 1, . . . ,m.

Proof : Sufficiency: since αi ∈ [0, 1] for i = 1, . . .m and
∑m

i=1 αi = 1 then there is always at least

one i such that αi > 0. Thus M̂i < 0 for all i implies
∑m

i=1 αiM̂i < 0 and hence M(θ(t)) < 0
for all θ(t) ∈ Θ.

Necessity: from (6) and (7), for all j there exists a θ(t) ∈ Θ such that there is an αj = 1 and

αi = 0 for i = 1, . . .m, i 6= j. Hence for all j there exists a θ(t) ∈ Θ such that M(θ(t)) = M̂j

and so it is necessary that M̂j < 0 for all j. �

For convenience, in the following sections, we will henceforth often drop the dependence of θ on
t. Following Gahinet et al. (1996), the system (1) is said to be parameter-dependent stable if there
exists a continuously differentiable parameter-dependent Lyapunov function V (x,θ) = xTP(θ)x
whose derivative, V̇ (x,θ), is negative along all state trajectories and is given by V̇ (x,θ) =

xT
(
AT(θ)P(θ) + P(θ)A(θ) + Ṗ(θ)

)
x. This is equivalent to the existence of a P(θ) = PT(θ)
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such that (Gahinet et al. 1996)

P(θ) > 0,

AT(θ)P(θ) + P(θ)A(θ) + Ṗ(θ) < 0, ∀(θ, θ̇) ∈ Θ×Φ (8)

Although an exact parameter-dependent function for a continuously differentiable parameter-
dependent Lyapunov variable P(θ) is still not established, a basis parameter-dependent function
for the parameter-dependent Lyapunov variable is suggested in Wu et al. (2002), Apkarian and
Adams (1998), Wu et al. (1996) and is to copy the plant’s parameter-dependent function. There-
fore, we can constrain the basis parameter-dependent function for the parameter-dependent
Lyapunov variable to vary in an affine fashion

P(θ) = P0 + θ1P1 + · · ·+ θnPn = α1P̂1 + α2P̂2 + · · ·+ αmP̂m (9)

where m = 2n, αi is determined using (6) and (7) and


P̂1

P̂2

P̂3
...

P̂m

 =


1 θ1 θ2 . . . θn−1 θn
1 θ1 θ2 . . . θn−1 θn
1 θ1 θ2 . . . θn−1 θn
...

1 θ1 θ2 . . . θn−1 θn




P0

P1
...

Pn

 (10)

Differentiating (9) with respect to time gives

Ṗ(θ) = θ̇1P1 + · · ·+ θ̇nPn = β1P̃1 + β2P̃2 + · · ·+ βmP̃m (11)

where βi can be determined in a similar manner to αi using (6) and (7) and
P̃1

P̃2

P̃3
...

P̃m

 =


0 v1 v2 . . . vn−1 vn
0 v1 v2 . . . vn−1 vn
0 v1 v2 . . . vn−1 vn
...
0 v1 v2 . . . vn−1 vn




P0

P1
...

Pn

 (12)

Substituting (4), (9) and (11) into (8), and recalling that
∑m

i=1 αi = 1 and
∑m

i=1 βi = 1, we get

m∑
i=1

αiP̂i > 0,
m∑
i=1

m∑
k=1

α2
i βk

(
ÂT
i P̂i + P̂iÂi + P̃k

)

+2

m−1∑
i=1

m∑
j=i+1

m∑
k=1

αiαjβk

(
1

2

(
ÂT
i P̂j + P̂jÂi + ÂT

j P̂i + P̂iÂj + 2P̃k

))
< 0, (13)

∀(θ, θ̇) ∈ Θ ×Φ. As α2
i βk ∈ [0, 1], i, k = 1, . . . ,m, 2αiαjβk ∈ [0, 0.5], i = 1, . . . ,m − 1, j = i +

1, . . . ,m, k = 1, . . . ,m, and
∑m

i=1

∑m
k=1 α

2
i βk+2

∑m−1
i=1

∑m
j=i+1

∑m
k=1 αiαjβk = 1, by Lemma 2.1

solving (13) for parameter-dependent Lyapunov variable P(θ) =
∑m

i=1 αiP̂i need only to be done
at all vertices. Hence we get the following proposition.
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Proposition 2.2: The system (1) is parameter-dependent stable whenever there exist a positive

definite symmetric matrix P̂i, i = 1, 2, . . . ,m, such that the following LMI conditions hold

P̂i > 0, (14)

ÂT
i P̂i + P̂iÂi + P̃k < 0, (15)

ÂT
i P̂j + P̂jÂi + ÂT

j P̂i + P̂iÂj + 2P̃k < 0, (16)

for i, k = 1, . . . ,m and 1 ≤ i < j ≤ m

Note that P̂i and P̃i, i = 1, . . . ,m map to Pj , j = 1, . . . , n using (10) and (12), respectively. In
addition, the numbers of LMIs for (14)-(16) are m, m2 and m2(m−1)/2, respectively. Therefore,
the total number of LMIs to be solved is m(m2 +m+ 2)/2.

Some similar results to Proposition 2.2 appear in Jadbabaie (1999), and also in Bernal and
Guerra (2010), Rhee and Won (2006) and Tanaka et al. (2003), but in the context of fuzzy
logic control systems. Note also that there are other approaches that could be used to obtain
a finite number of LMIs, e.g. multi-convexity (Gahinet et al. 1996, Apkarian and Tuan 2000),
S-procedure (Feson et al. 1995), gridding parameter space (Corno et al. 2008, Lu et al. 2006, Wu
et al. 2002, 1996), etc.

Proposition 2.3: (Apkarian and Tuan 2000, Multi-convexity approach) Assume that θ̇ = 0,
The system (1) is parameter-dependent stable whenever there exist a positive definite symmetric

matrix P̂i, i = 1, 2, . . . ,m, and scalars λi, i = 1, 2, . . . ,m, such that the following LMI conditions
hold

P̂k > 0, (17)

λk ≥ 0, (18)

ÂT
k P̂k + P̂kÂk < −λkI, (19)

ÂT
i P̂i + P̂iÂi + ÂT

j P̂j + P̂jÂj − (ÂT
i P̂j + P̂jÂi + ÂT

j P̂i + P̂iÂj) ≥ −(λi + λj)I, (20)

for k = 1, . . . ,m and 1 ≤ i < j ≤ m

Corollary 2.4: Assume that θ̇ = 0. If Proposition 2.3 is satisfied then Proposition 2.2 is
satisfied.

Proof : First, we show that if the inequality (19) is satisfied then the inequality (15) is satisfied.

Let ÂT
k P̂k + P̂kÂk = Mk and Mk + λkI < 0 hence, for all nonzero vector x ∈ Rp, xTMkx +

λkx
Tx < 0 if and only if xTMkx < −λkxTx ≤ 0 since λk ≥ 0 and xTx > 0. This yields

xTMkx < 0 or ÂT
k P̂k + P̂kÂk < 0.

Next, we show that if the inequality (20) is satisfied then the inequality (16) is satisfied. Let

ÂT
i P̂i + P̂iÂi + ÂT

j P̂j + P̂jÂj = M and ÂT
i P̂j + P̂jÂi + ÂT

j P̂i + P̂iÂj = Mij . We have

xTMx − xTMijx + (λi + λj)x
Tx ≥ 0, for all nonzero vectors x ∈ Rp. From (19), we have

xTMx + (λi + λj)x
Tx < 0, therefore 0 > xTMx + (λi + λj)x

Tx ≥ xTMijx. This yields

xTMijx < 0 or ÂT
i P̂j + P̂jÂi + ÂT

j P̂i + P̂iÂj < 0 �

The corollary above shows that the set of possible solutions for Proposition 2.3 is a subset of
that for Proposition 2.2 which is more general since ÂT

k P̂k+ P̂kÂk and ÂT
i P̂j + P̂jÂi+ÂT

j P̂i+

P̂iÂj can be less than a negative definite symmetric matrix rather than they are just less than a
diagonal negative definite matrix −λkI and −(λi+λj)I, respectively. In addition, Proposition 2.2
shows that the determination of a negative definite symmetric matrix is not necessary, hence,
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comparing with Proposition 2.3, the number of LMIs, decision variables and the computational
time are reduced while the achieved performance γ level is improved.

3. Controller Synthesis using Parameter-Dependent Lyapunov Functions

In the previous section, a sufficient condition to guarantee the stability property of the LPV
closed-loop system using parameter-dependent Lyapunov functions has been presented in which
the analysis conditions can be represented in the form of a finite number of LMIs. Next, we
consider the problem of designing a gain-scheduled output feedback H∞ control with guaranteed
L2-gain performance for a class of affine LPV systems for which the proposed techniques in the
previous section can be directly extended to synthesizing a gain-scheduled H∞ controller.

Consider a generalized affine LPV model with state-space realization taken from Apkarian
et al. (1995) is

ẋ = A(θ)x+ B1(θ)w + B2u

z = C1(θ)x+ D11(θ)w + D12u

y = C2x+ D21w (21)

where x ∈ Rp is the state vector, w ∈ Rm1 is the generalized disturbance vector, u ∈ Rm2 is the
control input vector, z ∈ Rq1 is the controlled variable or error vector, y ∈ Rq2 is the measurement
output vector, θ ∈ Θ, θ̇ ∈ Φ, and continuous mapping matrix functions A : Rn → Rp×p,
B1 : Rn → Rp×m1 , C1 : Rn → Rq1×p and D11 : Rn → Rq1×m1 . Note that the A(·), B1(·), C1(·)
and D11(·) matrices can also be written as a convex combination of the matrix vertices in a
similar manner to (9):

 A(θ) B1(θ) B2

C1(θ) D11(θ) D12

C2 D21 0

 =
m∑
i=1

αi

 Âi B̂1i
B2

Ĉ1i
D̂11i

D12

C2 D21 0

 (22)

The gain-scheduled output feedback H∞ control problem using the parameter-dependent Lya-
punov functions is to compute a dynamic LPV controller, K(θ), with state-space equations

ẋk = Ak(θ, θ̇)xk + Bk(θ)y

u = Ck(θ)xk + Dk(θ)y (23)

which stabilizes the closed-loop system, (21) and (23), and minimizes the closed-loop quadratic
H∞ performance, γ, ensures the induced L2-norm of the operator mapping the disturbance signal
w into the controlled signal z is bounded by γ

∫ t1

0
zTzdt ≤ γ2

∫ t1

0
wTwdt, ∀t1 ≥ 0 (24)

along all possible parameter trajectories, ∀(θ, θ̇) ∈ Θ × Φ. The assumed dimensions of the
controller matrices are Ak : Rn × Rn → Rp×p, Bk : Rn → Rp×q2 , Ck : Rn → Rm2×p, and
Dk : Rn → Rm2×q2 . Note that A and Ak have the same dimensions, since we restrict ourselves
to the full-order case. The closed-loop system, (21) and (23), is described by the state-space
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equations [
ẋ
ẋk

]
= Acl(θ, θ̇)

[
x
xk

]
+ Bcl(θ)w

z = Ccl(θ)

[
x
xk

]
+ Dcl(θ)w (25)

where

Acl(θ, θ̇) =

[
A(θ) + B2Dk(θ)C2 B2Ck(θ)

Bk(θ)C2 Ak(θ, θ̇)

]
Bcl(θ) =

[
B1(θ) + B2Dk(θ)D21

Bk(θ)D21

]
Ccl(θ) =

[
C1(θ) + D12Dk(θ)C2 D12Ck(θ)

]
Dcl(θ) = D11(θ) + D12Dk(θ)D21 (26)

Based on the parameter-dependent Lyapunov functions, V (x,θ) = xTP(θ)x, there is an LPV
controller K(θ) of the form of (23) that stabilizes the closed-loop system, (21) and (23), if and
only if there exists P(θ) = PT(θ) such that (Gahinet et al. 1996)

P(θ) > 0,
d

dt

(
xTP(θ)x

)
+ zTz − γ2wTw < 0 (27)

along all possible parameter trajectories, ∀(θ, θ̇) ∈ Θ × Φ. Note that, unlike the single
quadratic Lyapunov function case (Apkarian et al. 1995), P(θ),Ak(θ, θ̇),Bk(θ), . . . ,Dk(θ) and
Acl(θ, θ̇),Bcl(θ), . . . ,Dcl(θ) do not depend affinely on the scheduled parameters θ. The inequal-
ity (27) leads to (Gahinet et al. 1996)

AT
cl(θ, θ̇)P(θ) + P(θ)Acl(θ, θ̇) + Ṗ(θ) P(θ)Bcl(θ) CT

cl(θ)
BT

cl(θ)P(θ) −γI DT
cl(θ)

Ccl(θ) Dcl(θ) −γI

 < 0 (28)

Introducing intermediate controller variables, i.e. Âk(θ), B̂k(θ), Ĉk(θ), as (Apkarian and Adams
1998, Gahinet 1996)

Ak(θ, θ̇) =N−1(θ)
(
X(θ)Ẏ(θ) + N(θ)ṀT(θ) + Âk(θ)−X(θ)

(
A(θ)−B2Dk(θ)C2

)
Y(θ)

− B̂k(θ)C2Y(θ)−X(θ)B2Ĉk(θ)
)
M−T(θ) (29)

Bk(θ) =N−1(θ)
(
B̂k(θ)−X(θ)B2Dk(θ)

)
(30)

Ck(θ) =
(
Ĉk(θ)−Dk(θ)C2Y(θ)

)
M−T(θ) (31)

where N(θ) = −X(θ) + Y−1(θ), Ṅ(θ) = −Ẋ(θ) − Y−1(θ)Ẏ(θ)Y−1(θ), M(θ) = Y(θ) and
Ṁ(θ) = Ẏ(θ). A pair of positive definite symmetric matrices

(
X(θ),Y(θ)

)
is taken from the

structure of the parameter-dependent Lyapunov variable, P(θ), which is defined as (Wang and
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Balakrishnan 2002)

P(θ) =

 X(θ) −
(
X(θ)−Y−1(θ)

)
−
(
X(θ)−Y−1(θ)

)
X(θ)−Y−1(θ)


=

[
Ip X(θ)

0p×p −
(
X(θ)−Y−1(θ)

)][Y(θ) Ip
Y(θ) 0p×p

]−1

(32)

Ṗ(θ) =

[
Ẋ(θ) −Ẋ(θ)−Y−1(θ)Ẏ(θ)Y−1(θ)

−Ẋ(θ)−Y−1(θ)Ẏ(θ)Y−1(θ) Ẋ(θ) + Y−1(θ)Ẏ(θ)Y−1(θ)

]
(33)

P−1(θ) =

[
Y(θ) Y(θ)

Y(θ)
(
X(θ)−Y−1(θ)

)−1
X(θ)Y(θ)

]

=

[
Y(θ) Ip
Y(θ) 0p×p

] [ Ip X(θ)

0p×p −
(
X(θ)−Y−1(θ)

)]−1

(34)

where the positive definite symmetric matrices
(
X(θ),Y(θ)

)
∈ Rp×p, X(θ)−Y−1(θ) ≥ 0, and

Rank
(
X(θ)−Y−1(θ)

)
≤ p (Packard et al. 1991). Note that, the equations (29)–(31) show that

Ak(θ, θ̇),Bk(θ) and Ck(θ) can not depend affinely on the scheduled parameters θ when the
symmetric matrix X or Y is parameter-dependent. In this paper, we propose the intermediate
controller variables, i.e. Âk(θ), B̂k(θ), Ĉk(θ) and Dk(θ), and

(
X(θ),Y(θ)

)
to depend affinely

on the parameters θ as

Âk(θ) = Âk0
+ θ1Âk1

+ · · ·+ θnÂkn
= α1Ãk1

+ α2Ãk2
+ · · ·+ αmÃkm

(35)

B̂k(θ) = B̂k0
+ θ1B̂k1

+ · · ·+ θnB̂kn
= α1B̃k1

+ α2B̃k2
+ · · ·+ αmB̃km

(36)

Ĉk(θ) = Ĉk0
+ θ1Ĉk1

+ · · ·+ θnĈkn
= α1C̃k1

+ α2C̃k2
+ · · ·+ αmC̃km

(37)

Dk(θ) = Dk0
+ θ1Dk1

+ · · ·+ θnDkn
= α1D̃k1

+ α2D̃k2
+ · · ·+ αmD̃km

(38)

X(θ) = X0 + θ1X1 + · · ·+ θnXn = α1X̂1 + α2X̂2 + · · ·+ αmX̂m (39)

Y(θ) = Y0 + θ1Y1 + · · ·+ θnYn = α1Ŷ1 + α2Ŷ2 + · · ·+ αmŶm (40)

Ẋ(θ) = θ̇1X1 + θ̇2X2 + · · ·+ θ̇nXn = β1X̃1 + β2X̃2 + · · ·+ βmX̃m (41)

Ẏ(θ) = θ̇1Y1 + θ̇2Y2 + · · ·+ θ̇nYn = β1Ỹ1 + β2Ỹ2 + · · ·+ βmỸm (42)

Note that X̃j and Ỹj , j = 1, . . . ,m, map to Xi and Yi, i = 1, . . . , n, respectively in a similar
manner to (12). This proposed technique offers obvious advantages in reducing computational
burden and ease of controller implementation because the intermediate controller variables can
be constructed as an affine matrix-valued function in the polytopic coordinates of the scheduled
parameters. An existing method for computing the intermediate controller variables, that is
based on explicit controller formulas (Gahinet 1996), is given in Appendix A. Define

P1(θ) =

[
Y(θ) Ip
Y(θ) 0p×p

]
(43)

Following Apkarian and Adams (1998), by premultiplying the first row and postmultiplying the
first column of (28) by PT

1 (θ) and P1(θ) respectively and substituting (26) and (29)–(33) in
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(28), we get


Ẋ(θ) +

(
X(θ)A(θ) + B̂k(θ)C2 + (?)

)
?

ÂT
k (θ) + A(θ) + B2Dk(θ)C2 −Ẏ(θ) +

(
A(θ)Y(θ) + B2Ĉk(θ) + (?)

)
BT

1 (θ)X(θ) + DT
21B̂

T
k (θ) BT

1 (θ) + DT
21D

T
k (θ)BT

2

C1(θ) + D12Dk(θ)C2 C1(θ)Y(θ) + D12Ĉk(θ)

? ?
? ?
−γI ?

D11(θ) + D12Dk(θ)D21 −γI

 < 0 (44)

where the notation ? represents a symmetric matrix block. Moreover, substituting (22) and
(35)–(42) in (44), we have

m∑
i=1

m∑
k=1

α2
i βk


X̃k +

(
X̂iÂi + B̃ki

C2 + (?)
)

?

ÃT
ki

+ Âi + B2D̃ki
C2 −Ỹk +

(
ÂiŶi + B2C̃ki

+ (?)
)

B̂T
1i

X̂i + DT
21B̃

T
ki

B̂T
1i

+ DT
21D̃

T
ki

BT
2

Ĉ1i
+ D12D̃ki

C2 Ĉ1i
Ŷi + D12C̃ki

? ?
? ?
−γI ?

D̂11i
+ D12D̃ki

D21 −γI



+2
m−1∑
i=1

m∑
j=i+1

m∑
k=1

αiαjβk


X̃k + 1

2

(
X̂jÂi + B̃kj

C2 + X̂iÂj + B̃ki
C2 + (?)

)
1
2

(
ÃT

kj
+ Âi + B2D̃kj

C2 + ÃT
ki

+ Âj + B2D̃ki
C2

)
1
2

(
B̂T

1i
X̂j + DT

21B̃
T
kj

+ B̂T
1j

X̂i + DT
21B̃

T
ki

)
1
2

(
Ĉ1i

+ D12D̃kj
C2 + Ĉ1j

+ D12D̃ki
C2

)
?

−Ỹk + 1
2

(
ÂiŶj + B2C̃kj

+ ÂjŶi + B2C̃ki
+ (?)

)
1
2

(
B̂T

1i
+ DT

21D̃
T
kj

BT
2 + B̂T

1j
+ DT

21D̃
T
ki

BT
2

)
1
2

(
Ĉ1i

Ŷj + D12C̃kj
+ Ĉ1j

Ŷi + D12C̃ki

)
? ?
? ?
−γI ?

1
2

(
D̂11i

+ D12D̃kj
D21 + D̂11j

+ D12D̃ki
D21

)
−γI

 < 0 (45)
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in which the inequality (45) can be also rewritten as

m∑
i=1

m∑
k=1

α2
i βk

(
Ψclii +QTK̂T

i P + PTK̂iQ
)

+ 2
m−1∑
i=1

m∑
j=i+1

m∑
k=1

αiαjβk

(
1

2

(
Ψclij

+QTK̂T
i P + PTK̂iQ+ Ψclji +QTK̂T

j P + PTK̂jQ
))

< 0 (46)

where

Ψclii =


X̃k + X̂iÂi + (?) ? ? ?

Âi −Ỹk + ÂiŶi + (?) ? ?

B̂T
1i

X̂i B̂T
1i

−γI ?

Ĉ1i
Ĉ1i

Ŷi D̂11i
−γI



Ψclij =


X̃k + X̂jÂi + (?) ? ? ?

Âi −Ỹk + ÂiŶj + (?) ? ?

B̂T
1i

X̂j B̂T
1i

−γI ?

Ĉ1i
Ĉ1i

Ŷj D̂11i
−γI



Ψclji =


X̃k + X̂iÂj + (?) ? ? ?

Âj −Ỹk + ÂjŶi + (?) ? ?

B̂T
1j

X̂i B̂T
1j

−γI ?

Ĉ1j
Ĉ1j

Ŷi D̂11j
−γI


Q =

[
C, D21, 0(p+q2)×q1

]
, P =

[
B̃T, 0(p+m2)×m1

, DT
12

]
K̂i =

(
Ãki

B̃ki

C̃ki
D̃ki

)
, B̃ =

[
Ip 0
0 B2

]
C =

[
0 Ip

C2 0

]
, D12 =

[
0 D12

]
, D21 =

[
0

D21

]
(47)

By Lemma 2.1 and knowing the matrix vertices (X̂i, Ŷi), i = 1, 2, . . . ,m, the system ma-

trix vertices K̂i can be determined from (46), that is an LMI in K̂i, at all vertices for which

(K̂1, K̂2, . . . , K̂m) have to satisfy all of m2(m+ 1)/2 LMIs. Furthermore, knowing Ãki
, . . . , D̃ki

,
the controller system matrices Ak(θ, θ̇), . . . ,Dk(θ) can be computed on-line in real-time using
(29)–(31) and (38) with instantaneous measurement values of θ and θ̇, where the proposed inter-

mediate controller variables Âk(θ), B̂k(θ), Ĉk(θ) and Dk(θ), and
(
X(θ),Y(θ)

)
depend affinely

on the parameters θ and they can be computed on-line in real-time using (35)–(40). Hence, the
proposed method reduces computational burden and eases controller implementation compared
to the explicit controller formulas (Apkarian and Adams 1998, Gahinet 1996).

However, usually, the parameter derivatives either are not available or are difficult to estimate
during system operation (Apkarian and Adams 1998). To avoid using the measured value of θ̇, we
can constrain either X(θ) or Y(θ) to depend affinely on θ. This yields Ẋ(θ)Y(θ)+Ṅ(θ)MT(θ) =
−(X(θ)Ẏ(θ) + N(θ)ṀT(θ)) = 0 (Apkarian and Adams 1998), hence equation (29) becomes

Ak(θ) =N−1(θ)
(
Âk(θ)−X(θ)

(
A(θ)−B2Dk(θ)C2

)
Y(θ)

−B̂k(θ)C2Y(θ)−X(θ)B2Ĉk(θ)
)

M−T(θ) (48)
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Lemma 3.1: (Gahinet and Apkarian 1994, Projection lemma) Given an inequality problem
of the form

Ψ + QTKTP + PTKQ < 0 (49)

where Ψ ∈ Rm×m is a symmetric matrix, Q and P are matrices with column dimension m. Let
Q⊥ and P⊥ be any matrices whose columns form bases of the null spaces of Q and P respectively;
the above problem is solvable for a matrix K of compatible dimensions if and only if

QT
⊥ΨQ⊥ < 0, PT

⊥ΨP⊥ < 0 (50)

By Lemmas 2.1 and 3.1, the LMIs of (46) are solvable at all vertices for K̂i if and only if
there exist a pair of positive definite symmetric matrices

(
X(θ),Y(θ)

)
that satisfy the following

theorem.

Theorem 3.2 : There exists an LPV controller K(θ) guaranteeing the closed-loop system, (21)

and (23), quadratic H∞ performance γ along all possible parameter trajectories, ∀(θ, θ̇) ∈ Θ×Φ,
if and only if the following LMI conditions hold for some positive definite symmetric matrices
(X(θ),Y(θ)), which further satisfy Rank(X(θ)−Y−1(θ)) ≤ p.

(
NX 0
0 I

)T
 ÂT

i X̂i + X̂iÂi + X̃k X̂iB̂1i ĈT
1i

B̂T
1iX̂i −γI D̂T

11i

Ĉ1i D̂11i −γI

(NX 0
0 I

)
< 0 (51)

(
NY 0
0 I

)T
 ÂiŶi + ŶiÂ

T
i − Ỹk ŶiĈ

T
1i B̂1i

Ĉ1iŶi −γI D̂11i

B̂T
1i D̂T

11i −γI

(NY 0
0 I

)
< 0 (52)

(
NX 0
0 I

)T

 ÂT
i X̂j + X̂jÂi + ÂT

j X̂i + X̂iÂj + 2X̃k X̂iB̂1j + X̂jB̂1i ĈT
1i + ĈT

1j

B̂T
1iX̂j + B̂T

1jX̂i −2γI D̂T
11i + D̂T

11j

Ĉ1i + Ĉ1j D̂11i + D̂11j −2γI

(NX 0
0 I

)
< 0

(53)

(
NY 0
0 I

)T

 ÂiŶj + ŶjÂ
T
i + ÂjŶi + ŶiÂ

T
j − 2Ỹk ŶiĈ

T
1j + ŶjĈ

T
1i B̂1i + B̂1j

Ĉ1iŶj + Ĉ1jŶi −2γI D̂11i + D̂11j

B̂T
1i + B̂T

1j D̂T
11i + D̂T

11j −2γI

(NY 0
0 I

)
< 0

(54)(
Xi I
I Yi

)
> 0, for i, k = 1, . . . ,m and 1 ≤ i < j ≤ m (55)

Note that Theorem 3.2 provides a new approach where an alternative to the multi-convexity
approach (Apkarian and Tuan 2000) is given in Appendix B. In addition, NX and NY denote
bases of the null spaces of [C2,D21] and [BT

2 ,D
T
12], respectively. The inequality (55) ensures

X(θ),Y(θ) > 0 and X(θ)−Y(θ)−1 ≥ 0.

4. Numerical example

To demonstrate the effectiveness of the proposed approach, we consider the example of Leith
and Leithead (1999). For this example it has been shown that for an LPV plant model derived
from the Jacobian, a common approach, with an LPV controller synthesized using the method of
Apkarian et al. (1995), the closed-loop system is only stable when the LPV controller is applied
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to the LPV model for a response to a step change in demand from -3 units to 0 units. However,
when the same LPV controller is applied to the original nonlinear plant, the nonlinear closed-loop
system appears to be unstable (Leith and Leithead 1999, Chumalee and Whidborne 2008).

Moreover, Chumalee and Whidborne (2008) have identified that the closed-loop instability
occurs because the mismatch uncertainty between the Jacobian-based LPV model and the orig-
inal nonlinear model is in a region close to the right-half s-plane. Furthermore, Shin (2002),
Chumalee and Whidborne (2008) have shown that the state transformation methods (Balas
2002, Shamma and Cloutier 1993) give an LPV model that more accurately represents the
nonlinear plant than the Jacobian linearization method. Hence, the closed-loop instability be-
tween the state transformation-based LPV controller and the original nonlinear model does not
occur (Chumalee and Whidborne 2008).

Consider the nonlinear plant example taken from Leith and Leithead (1999)

ẋ1(t) = −x1(t) + r(t)

ẋ2(t) = x1(t)− |x2(t)|x2(t)− 10

y(t) = x2(t) (56)

where t ∈ R is time, both x1(t), x2(t) ∈ R are the state, r(t), y(t) ∈ R are the control input and
the measurement output, respectively. Employing the state transformation methods (Balas 2002,
Shamma and Cloutier 1993) yields a state transformation-based LPV model, taken from Shin
(2002), Chumalee and Whidborne (2008), as[

ṅ1

ṅ2

]
=

[
−1− 2θ 0

1 0

] [
n1

n2

]
+

[
1
0

]
u

y =
[
0 1

] [n1

n2

]
(57)

where n1 = x1 − |x2|x2 − 10, n2 = x2, u = r − |x2|x2 − 10, and θ = |n2|. An LPV controller
requirement is to ensures a step response settling time of less than 2 seconds with zero steady-
state error (Leith and Leithead 1999). Thus, an LPV controller is synthesized with the criterion∥∥[W1S, W2KS]T

∥∥ < 1 where S = [I + GK]−1 and KS = K[I + GK]−1 are the sensitivity
function and the control sensitivity function, respectively. The performance weighting, W1, and
robustness weighting, W2, taken from Leith and Leithead (1999) are

W1(s) =
0.5

s+ 0.002

W2(s) =
0.02s

s+ 1000
(58)

The objective of this mixed-sensitivity function is to shape the sensitivity function S and control
sensitivity function KS with performance weighting functions W1 and robustness weighting
functions W2 respectively. W1 has a low frequency gain 250 (48 dB), a high frequency gain
0, and a -3 dB frequency around 0.0024 rad/sec, which corresponds to 0.4% tracking error,
infinity sensitivity function peak, and 0.0024 rad/sec desired bandwidth of sensitivity function,
respectively. W2 has a low frequency gain 0, a high frequency gain 0.02 (-34 dB), and a -3
dB frequency around 676 rad/sec, which corresponds to infinity control sensitivity function
peak, penalize limits on the response of the control signals, and 676 rad/sec desired bandwidth
of control sensitivity function, respectively. Hence, we should get a controller that is good at
command following, good at disturbance attenuation, low sensitivity to measurement noise, with



March 17, 2012 16:41 International Journal of Systems Science IJSS˙v2

14 Sunan Chumalee and James F Whidborne

Table 1. Numerical comparisons of LPV synthesis techniques; an (X(θ),Y(θ)) case

Condition (θ, θ̇) ∈ [0, 10]× [−10−6, 10−6] # of LMI # of decision variables CPU time (s) performance γ

Multi-convexitya 16 46 0.5914 0.0909
Theorem 3.2 14 41 0.2076 0.0787

SQLFb 5 21 0.0289 0.0886

Condition (θ, θ̇) ∈ [0, 10]× [−25, 25] # of LMI # of decision variables CPU time (s) performance γ

Multi-convexitya 16 46 0.5672 0.0935
Theorem 3.2 14 41 0.2268 0.0810

SQLFb 5 21 0.0289 0.0886

Condition (θ, θ̇) ∈ [0, 10]× [−106, 106] # of LMI # of decision variables CPU time (s) performance γ

Multi-convexitya 16 46 0.7097 0.0974
Theorem 3.2 14 41 0.2515 0.0886

SQLFb 5 21 0.0289 0.0886

Condition (θ, θ̇) ∈ [0, 104]× [−25, 25] # of LMI # of decision variables CPU time (s) performance γ

Multi-convexitya 16 46 0.9515 1.3982
Theorem 3.2 14 41 0.3067 0.7272

SQLFb 5 21 0.0604 1.6121

a Apkarian and Tuan (2000), shown in Appendix B.

b Single quadratic Lyapunov function (Apkarian et al. 1995).

reasonably small control efforts, and that is robustly stable to additive plant perturbations.
The results and numerical features of the LPV synthesis technique for the case where the

pair (X(θ),Y(θ)) are affine are presented in Table 1. It shows that, when the parameters have
a large variation, (θ, θ̇) ∈ [0, 104] × [−25, 25], the computational time and the performance
γ are increased for all three methodologies, i.e. multi-convexity (Apkarian and Tuan 2000),
Theorem 3.2, and single quadratic Lyapunov function (SQLF) (Apkarian et al. 1995) approaches.
The rate of parameters variation θ̇ does not affect the computational time and the performance
γ for the SQLF (Apkarian et al. 1995) approach. This result from the fact that the rate of
parameters variation is not used during computing LMIs. But, the rate of parameters variation
affects the performance γ for both the multi-convexity and the proposed approaches as the
performance γ is getting smaller when reducing the rate of parameters variation. The smallest
performance γ can be achieved when the parameters are time-invariant or slowly varying, (θ, θ̇) ∈
[0, 10]× [−10−6, 10−6]. The number of LMIs, decision variables, and the computational time are
reduced while the achieved performance γ level is less conservative when using Theorem 3.2
compared with the multi-convexity technique, shown in Appendix B. The LMIs are solved using
the MATLAB Robust Control Toolbox function (Balas et al. 2007), mincx, on a laptop computer
(Intel(R) Core(TM)2 Duo Processor T7250 2.00 GHz with 2 GB DDR2 SDRAM).

A condition of (θ, θ̇) ∈ [0, 10]× [−25, 25] and (X,Y(θ)), X is parameter-independent, are se-
lected for synthesizing an LPV controller in order to demonstrate the transient response to a step
change in demand from -3 units to 0 units of the closed-loop system between the LPV controller
with the original nonlinear model (56) through nonlinear simulation in MATLAB Simulink envi-
ronment. The performances γ of 0.0936, 0.0810, and 0.0886 are obtained via multi-convexity (Ap-
karian and Tuan 2000), Theorem 3.2, and single quadratic Lyapunov function (Apkarian et al.
1995) approaches, respectively.

Figure 1 shows the step responses of three LPV controllers. One can see from Figure 1 that the
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Table 2. Computational time of Âk(θ),

B̂k(θ), Ĉk(θ) and Dk(θ)

Method CPU time (us)

Explicit formulasa 1635
Proposed methodb 284

a Gahinet (1996), Appendix A.

b Equations (35)-(38).

transient responses of the controllers from multi-convexity (Apkarian and Tuan 2000) and single
quadratic Lyapunov function (Apkarian et al. 1995) approaches are slightly over damped while
the transient response of the approach-based controller is slightly under damped. The control in-
puts r(t) to these three transient responses are also shown in Figure 2. In addition, the derivative
of the parameter-dependent Lyapunov functions d

dt(V (x,θ)) are shown in Figure 3 to illustrate
stability of the closed loop system for all three methodologies used. The numerical simulation
results presented in Figures 1–3 verifies that both single quadratic Lyapunov function (Apkarian
et al. 1995) and multi-convexity technique (Apkarian and Tuan 2000) approaches are more con-
servative than the proposed approaches. Furthermore, Table 2 shows computational time of the
intermediate controller variables using Explicit formulas (Gahinet 1996), shown in Appendix A,
and the proposed technique, equations (35)–(38). One can see from Table 2 that our proposed
technique has a lower computational time and ease controller implementation compared with
the multi-convexity technique.

5. Conclusion

In this paper, new sufficient conditions for gain-scheduledH∞ performance analysis and synthesis
for a class of affine LPV systems using parameter-dependent Lyapunov functions are as proposed
in Theorem 3.2. Compared with the multi-convexity technique (Apkarian and Tuan 2000), shown
in Appendix B, fewer LMIs and decision variables are required and the computational time is
lower while the achieved performance γ is improved. The analysis and synthesis conditions are
represented in the form of a finite number of LMIs. In contrast with the explicit controller
formulas (Apkarian and Adams 1998, Gahinet 1996), shown in Appendix A, the intermediate

controller variables, i.e. Âk(θ), B̂k(θ), Ĉk(θ) and Dk(θ), are proposed to be constructed as an
affine matrix-valued function in the polytopic coordinates of the scheduled parameters without
the need for constraints on the D12 and D21 matrices. Hence, this reduces the computational
burden and eases controller implementation.

The approach was then applied to synthesize an LPV controller where it was tested with the
nonlinear model taken from Leith and Leithead (1999). The nonlinear simulation results show
the effectiveness of the proposed approach.

Appendix A. Explicit Controller Formulas

Algorithm A.1: (Apkarian and Adams 1998, Gahinet 1996) Computation of Âk(θ), B̂k(θ),

Ĉk(θ), and Dk(θ).
Step 1: Set Dk(θ) =

(
D+

12D12

)
D0(θ)

(
D21D

+
21

)
, where D0(θ) is any matrix such that

σmax

(
D11(θ) + D12D0(θ)D21

)
< γ. This amounts to solving a Parrott problem.
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Figure 1. Nonlinear step response from -3 to 0 with the original nonlinear plant

Step 2: Compute the least-squares solutions of 0
[
D21 0

][
DT

21

0

] [
−γI DT

cl(θ)
Dcl(θ) −γI

](ΘB1(θ)[
†
] )

= −

 C2[
BT

1 (θ)X(θ)
C1(θ) + D12Dk(θ)C2

] (A1)

 0
[
0 DT

12

][
0

D12

] [
−γI DT

cl(θ)
Dcl(θ) −γI

](ΘC1(θ)[
†
] )

= −

 BT
2[(

B1(θ) + B2Dk(θ)D21

)T
C1(θ)Y(θ)

] (A2)

where Dcl(θ) = D11(θ) + D12Dk(θ)D21 and † denotes matrices without interest here.
Step 3: If Π21C2 = 0, set ΘB2(θ) = 0. Otherwise, compute ΘB2(θ) such that

Ψ + CT
2 Π21ΘB2(θ) + ΘT

B2(θ)Π21C2 < 0 (A3)

where Π21 = I−D21D
+
21 and

Ψ = AT(θ)X(θ) + X(θ)A(θ) + Ẋ(θ) + ΘT
B1(θ)C2 + CT

2 ΘB1(θ)

+

[
BT

1 (θ)X(θ) + DT
21ΘB1(θ)

C1(θ) + D12Dk(θ)C2

]T [
γI −DT

cl(θ)
−Dcl(θ) γI

]−1 [
BT

1 (θ)X(θ) + DT
21ΘB1(θ)

C1(θ) + D12Dk(θ)C2

]
(A4)

Similarly, set ΘC2(θ) = 0 if Π12B
T
2 = 0. Otherwise, compute ΘC2(θ) such that

Π + B2Π12ΘC2(θ) + ΘT
C2(θ)Π12B

T
2 < 0 (A5)
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Figure 2. Control input to the original nonlinear plant

where Π12 = I−D+
12D12 and

Π = A(θ)Y(θ) + Y(θ)AT(θ)− Ẏ(θ) + B2Θ
T
C1(θ) + ΘT

C1(θ)BT
2

+

[(
B1(θ) + B2Dk(θ)D21

)T
C1(θ)Y(θ) + D12ΘC1(θ)

]T [
γI −DT

cl(θ)
−Dcl(θ) γI

]−1 [(
B1(θ) + B2Dk(θ)D21

)T
C1(θ)Y(θ) + D12ΘC1(θ)

]
(A6)

Step 4: Compute Âk(θ), B̂k(θ), and Ĉk(θ) as

Âk(θ) =−
(
A(θ) + B2Dk(θ)C2

)T
+
[(

X(θ)B1(θ) + B̂k(θ)D21

) (
C1(θ) + D12Dk(θ)C2

)T]
×
[
−γI DT

cl(θ)
Dcl(θ) −γI

]−1
[(

B1(θ) + B2Dk(θ)D21

)T
C1(θ)Y(θ) + D12Ĉk(θ)

]
(A7)

B̂k(θ) =
(
ΘB1(θ) + Π21ΘB2(θ)

)T
(A8)

Ĉk(θ) =ΘC1(θ) + Π12ΘC2(θ) (A9)
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Figure 3. The derivative of the parameter-dependent Lyapunov functions d
dt

(V (x,θ))

Appendix B. Multi-Convexity Approach

A generalized affine LPV model with state-space realization taken from Apkarian and Tuan
(2000) is

ẋ = A(θ)x+ B1(θ)w + B2(θ)u

z = C1(θ)x+ D11(θ)w + D12(θ)u

y = C2(θ)x+ D21(θ)w (B1)

Note that, unlike the system (21), the state-space data B2(·), C2(·), D12(·), and D21(·) of the
system (B1) are parameter-dependent on θ.

Theorem B.1 : (Apkarian and Tuan 2000) For the affine LPV system (B1), there exists an
LPV controller (23) solution to the LPV control problem with guaranteed L2-gain performance

with level γ along all possible parameter trajectories, ∀(θ, θ̇) ∈ Θ × Φ, whenever there exist
symmetric matrices X0, X1, . . ., Xn and Y0, Y1, . . ., Yn and scalars λ0, λ1, . . ., λn, µ0, µ1,
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. . ., µn and σ such thatX̃k + X̂jÂj + ÂT
j X̂j X̂jB̂1j ĈT

1j

B̂T
1jX̂j −γI D̂T

11j

Ĉ1j D̂11j −γI

− σ
 ĈT

2j

D̂T
21j
0

 [Ĉ2j D̂21j 0
]
< −

(
λ0 +

n∑
i=1

θ2i λi

)
I (B2)

−Ỹk + ŶjÂ
T
j + ÂjŶj ŶjĈ

T
1j B̂1j

Ĉ1jŶj −γI D̂11j

B̂T
1j D̂T

11j −γI

− σ
 B̂2j

D̂12j
0

[B̂T
2j D̂T

12j 0
]
< −

(
µ0 +

n∑
i=1

θ2i µi

)
I

(B3)[
X̂j I

I Ŷj

]
> 0 (B4)[

XiAi + AT
i Xi XiB1i

BT
1iXi 0

]
− σ

[
CT

2iC2i CT
2iD21i

DT
21iC2i DT

21iD21i

]
≥ −λiI (B5)[

YiA
T
i +AiYi YiC

T
1i

C1iYi 0

]
− σ

[
B2iB

T
2i B2iD

T
12i

D12iB
T
2i D12iD

T
12i

]
≥ −µiI (B6)

λ0 ≥ 0, λi ≥ 0, µ0 ≥ 0, µi ≥ 0 (B7)

for j,k=1,2,. . .,m and i=1,2,. . .,n

Note that X̂j and Ŷj , j = 1, . . . ,m, map to Xi and Yi, i = 0, . . . , n, respectively in a similar
manner to (10). Having determined X(θ) and Y(θ) using Theorem B.1, N(θ) and M(θ) can be
determined from the factorization problem:

I−X(θ)Y(θ) = N(θ)MT(θ) (B8)
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