Effect of Side-Wings on Draught: The Case of Ethiopian Ard Plough (Maresha)

Solomon Gebregziabher¹,², *, Karel De Swert¹,⁷, Wouter Saeys¹, Herman Ramon¹, Bart De Ketelaere¹, Abdul M. Mouazen³, Petros Gebray², Kindeya Gebrehiwot⁴, Hans Bauer⁵, Jozef Deckers⁶, Josse De Baerdemaeker¹

¹Division Mechatronics, Biostatistics and Sensors, University of Leuven, Kasteelpark Arenberg 30, B-3001 Leuven, Belgium
²School of Mechanical and Industrial Engineering, Mekelle University, P.O.Box 231, Mekelle, Ethiopia
³Cranfield Soil and AgriFood Institute, Cranfield University, Bedfordshire MK43 0AL, United Kingdom
⁴Department of Land Resource Management and Environmental Protection, Mekelle University, P.O.Box 231, Mekelle, Ethiopia
⁵The Recanati-Kaplan Centre, WildCRU, University of Oxford, UK; Current address: PO Box 80522, Addis Abeba, Ethiopia
⁶Division Soil and Water Management, University of Leuven, Celestijnenlaan 200E-2411, BE-3001 Leuven, Belgium
⁷IPS Belgium s.a. 42, Avenue Robert Schuman 1400 Nivelles, Belgium

*Corresponding Author. Tel.: +32 16 3 21437/45, +251 913 926679; Fax: +32 16 328590
E-mail: sgher1@yahoo.com

Abstract
Ethiopian farmers have been using an ox-drawn breaking plough, known as \textit{ard} plough – \textit{maresha}, for thousands of years. \textit{Maresha} is a pointed, steel-tipped tine attached to a draught pole at an adjustable shallow angle. It has narrow side-wings, attached to the left and right side of it, to push soil to either side without inverting.

The aim of this paper is to explore the effect of side-wings on draught using a field soil bin test facility. To this end, a mobile and an \textit{in-situ} soil bin test system, for online measurements of draught, was designed and developed. This research considered tool geometry (\textit{maresha} plough with and without side-wings) and rake angle (shallow – 8º, medium deep – 15º, and deep – 24º, representing primary, secondary and tertiary tillage processes in Ethiopia, respectively).

\textit{Maresha} plough with side-wings has greater contact area, between the moving soil and tool, than its wingless counterpart. When the ploughshare surface and soil slide relative to one another, the draught expected to increase with contact area, as adhesion and friction resistance increases with area. However, experimental analysis indicated that the \textit{maresha} with side-wings required less draught compared to \textit{maresha} without side-wings ($p < 0.001$). This might be attributed to the effect of side-wings on crack propagation by a wedging effect to enhance and facilitate subsequent ploughing.

This paper also dealt with the effect of rake angle on draught. Though the depth setup was getting smaller $d1<d2<d3$ for the successive tillage runs, analysis showed increment in draught force ($p < 0.001$) with rake angle. This might be attributed to higher soil compaction that comes with depth and downward force resulting from repeated use of \textit{maresha} every season to the same depth for thousand years.

Although more and rigorous studies should be undertaken considering soil, tool, and operational parameters to arrive at conclusive results, this paper gave some insights regarding effect of side-wings on \textit{maresha} plough and rake angle on draught. This shows that there is still room for improvement of \textit{maresha} plough geometry for minimum draught requirement and optimum soil manipulation.

\textbf{Key words}: \textit{Ard}, Data acquisition system, Depth, Draught, Mobile and \textit{in-situ} soil bin, \textit{maresha}, Rake angle, Side-wings.
1. Introduction

Various researchers have undertaken studies on effect of plough share including its component attachments’ contributions on draught requirement and soil loosening.

The two types of tine design are usually referred to as narrow tines and winged or sweep-type tines (Spoor, 2006). For compacted surface layers, there is likely to be a need to reduce the confining resistance ahead of the deeper tines; this is achievable using shallower narrow tines working ahead of deeper tines, which preferably should be winged (Spoor, 2006). Spoor and Godwin (1978) investigated deep loosening of soil by rigid tines, the attachment of wings to the tine foot and the use of shallow tines to loosen the surface layers ahead of the deep tine increases soil disturbance particularly at depth, reduces the specific resistance, increases the critical depth and allows more effective soil rearrangement. With sweeps or wings attached to the sides of many of chisel tines, subsoilers, slant tines and oscillating tines, the overall soil disturbance increased for a minimal increase in energy expended (Smith, 1973; Trousse and Humbert, 1959; Balaton, 1971; Lindner, 1974; Schulte, 1974; as cited in Spoor and Godwin, 1978).

Raper (2005) showed subsoilers with straight shanks required higher tillage draught compared to the bentleg shanks. The SDN subsoiler shank (straight shank, Deere, narrow point) required 9.25 kN, which was the largest draught required, while the smallest draught of 5.85 kN was measured for the BBP shank (Bentleg, Bigham Brothers, Paratill).

Marandi et al. (2010) used soil bin incorporating a carriage having capable of testing three prototypes of tools in a test run. Georgison (2010) investigated the effect of various settings on tool loading to improve the design of the soil engaging components of a rotary tine aerator.

Awad-Allah et al. (2009) investigated the dynamics of single and multiple tines at different cutting speeds and depths with and without an added vibratory motion. Ranta et al. (2009) analyzed the influence of the kinematic regime of discs in different soil conditions on the soil bed quality. Marakoglu and Carman (2009) evaluated the effects of design parameters of a cultivator share on draught and soil loosening in a soil bin, described by Carman and Dogan (2000). Dedousis (2007) investigated the soil forces and disturbance from different disc geometries and shapes using soil bin developed by Hann and Giessibel (1998). Under the same
set up, Vozka (2007) determined draught, area of disturbance, and specific resistance of the
selected implements.
Sahu and Raheman (2006) predicted the draught requirements from the knowledge of the
draught requirements of reference tillage tools in a reference soil condition, in which the setup
included soil processing system. Mamman and Oni (2005) used a soil bin facilities to determine
the effects of design parameters (slide and nose angles) and operating parameters (soil depth and
measured the forces acting on moldboard ploughs at six degrees of freedom, which used Clyde
(1936) as a basis. Niyamapa and Salokhe (2000a&b) studied the force requirement, pressure
distribution, and soil disturbance and force mechanics under vibratory tillage tools.
Manuwa (2002), Manuwa and Ademosun (2007), and Manuwa (2009) investigated the influence
of soil parameters on draught. Manuwa and Ajisafe (2010), then, developed an overhead gantry
to enhance system versatility with better working space by saving the time and labor required for
soil preparation and experimentation. Rosa (1997) developed a monorail system, capable of
driving soil tools – narrow tools – at a maximum steady speed of 10m/s under load and a
maximum draught of 1.5KN. Elliptical, triangular and flat tool shapes presented the lowest to
highest draught requirements, respectively. The system was retrofitted to a small 10m long linear
soil bin, yet was capable of maintaining target tool speeds of 0.5–10 m/s over 1 to 3 m distances
(Rosa and Wulfsohn, 2008).
Benard (2010) applied the concept of bionic non-smooth surface to disc ploughs and
experimented to examine the effects of different bionic units on reducing soil resistance. Qaisrani
(1993) and Qaisrani et al. (1992&2010) applied dung beetle having a number of small convex
surfaces made of ultra high molecular weight polyethylene (UHMW-PE) and stuck on the
surfaces of mouldboard plough at an angle of 62^0 with the horizontal - based on the findings of
Suminitrado et al. (1988) that most of soil movements on the plough surface happen at an angle
of 62^0. Experiments showed that the modified ploughs had better scouring properties and
required less draught than conventional tools.
Numerical Simulation of Soil-Tool Interactions were undertaken by using Finite Element
Modelling techniques (Mouazen and Nemenyi, 1999; Plouffe et al., 1999 a & b, Ibrahim et al.,
2015) and Discrete Element Method (Bravo et al., 2012), and experimented using soil bin to
verify the results calculated.
Although several reports on the effects tool design and operational conditions on the performances of different tillage tools and implements by means of a soil bin test system are available in the literature, there is a dearth of information on the Ethiopian traditional ard plough—maresha including effect of side wings on draught requirement. Hence, this paper mainly aims at undertaking experiments using field soil bin facility to understand the effect of side-wings on draught. Besides, it dealt with the effect of rake angle on draught.

2. Animal drawn implement (Ethiopian ard plough)

Animal drawn plough (ard plough) that differs very little from the old primitive plough is widely in use in Ethiopia. The first ever photograph of an Ethiopian farmer with his oxen and marasha, near Senkata (Tigray) in March 1868, is shown in Figure 1 (Nyssen et al., 2011). Most of the components of the traditional implement are wooden except for the ploughshare and metal loops and leather strip or rope, a tying unit. It is a light implement weighing 17 to 26 kgs (Goe, 1987), which makes it handy enough for one person to carry over different terrain (Fig. 2a). A single person can manage to keep the oxen pull the implement along a straight line forward at a relatively constant speed by preventing the oxen from stopping and/or grazing (Fig. 2b). The relative simplicity and regenerative character of animal traction technologies, their strong indigenous nature and simple support systems, have resulted in their integration into small farm systems (Gebresenbet et al., 1997a).

Recorded information showed, in 1939 Italians introduced a steel mouldboard plough (Fig. 3) at the small holder level, which was unsuccessful (Nyssen et al., 2011). The Italians concluded that the Ethiopian farmers were conservative and do not want to adopt new technologies (Goe, 1987); and this showed farmers’ ideas were not taken seriously and their traditional plough was not studied well. The reasons were its heavy weight, the requirement of complicated adjustments and the higher power requirements than that of the Ethiopian ard, especially in soils with higher clay contents (Goe, 1987; Goe and Astatke, 1989; Nyssen et al., 2011). Several organization and institutions have also been trying to modify, introduce, and develop various tillage implements, and to mention some are: FAO in 1950s (Goe, 1987); Alemaya
University and Jimma Agricultural Technical School in Ethiopia between 1955 and 1965 (Canaday, 1959; UNDP Report); Chilallo Agricultural Development Unit (CADU) later changed to Arsi Rural Development Unit (ARDU) in 1968 (Anon., 1969, 1970, 1971); Institute of Agricultural Research (IAR) of Ethiopia in 1976 (Berhane, 1979); The International Livestock Center for Africa (ILCA) (Astatke and Mathews, 1982; Astatke and Matthews, 1984); The Relief and Rehabilitation Commission (RRC) (Anon., 1981); the Agricultural Implements Research and Improvement Centre (AIRIC) in 1985 (Pathak, 1988); Selam Vocational Training and Farm Implements Production Center (Zaugg, 1992); The National Institute of Agricultural Engineering, Silsoe, UK (NIAE) (Starkey, 1988); Ethiopian Ministry of Agriculture (MOA) (Gebresenbet et al., 1997a); and International Livestock Research Institute (ILRI) (Gebresenbet and Kaumbutho, 1997).

Gebresenbet et al. (1997a) showed that only a few researchers and farmers have been involved in innovation efforts in animal traction technology in Ethiopia with inadequate grasp of the context of the problems faced by many small farmers. Previous researches on animal drawn tillage implements relied on experience, culture, and trial and error (Gebregziabher et al., 2006). Inadequate knowledge on different tillage tool designs and the indiscriminate use of tillage tools is detrimental to long term improvement of soil quality and crop yields. Hence, a better understanding of soil-tool interaction calls for a systematic approach of researches including utilising indigenous knowledge and incorporating design features of traditional implements in the development process. This is because, designing an implement must take into account the agricultural and industrial systems, within which the implements are manufactured and operated.

3. Materials and Methods

3.1 Performance of traditional maresha plough in Ethiopia

With the ard design, maresha is a pointed, steel-tipped tine attached to a draught pole at an adjustable shallow angle and the soil is not inverted like the case with the mouldboard plough. Instead, the soil is broken or fractured, lifted and then pushed to the sides of the furrow, forming a V-shape furrow (Astatke, FAO) by the two narrow wooden side-wings fitted to each side of the
share. The ground between the furrows, which is remained untouched, is broken up by additional ploughings (extra cross-tilling) carried out at different angles across a plot. According to farmers’ explanation, side-wings help to increase the soil loosening efficiency (tilled area), helping Ethiopian farmers to meet timeliness for land preparation during sowing seasons.

Under typical farm conditions in the Ethiopian highlands, a pair of indigenous oxen is used to till with a draught force requirement of about 1.0 kN (Gebreslasie et al., 2004). Indigenous zebu breeds, weighing 270-330 kg, are mostly used for traction. The average working speed of oxen is 0.4 to 0.5 m/s (Geza, 1999), 0.63 m/s (Gebresenbet et al., 1997b), whereas the average speed using horses is 0.75 to 1.07 m/s (Geza, 1999). However, a pair of crossbred cows moves faster (an average of 0.894 m/s) than a pair of oxen, and exerts proportionally greater pulling force when operating in the same field (Gebresenbet et al., 1997b). The difference in speed is attributed to the greater body weight of the cows and the corresponding greater traction that could be generated. The operational speed of draught animals mainly depends on several factors such as training, animal species, operator, harnessing, the weight of the load to be pulled and climatic conditions (Gebresenbet et al., 1997b).

Mouazen et al. (2007) found different contributions of each ox to the total traction with oxen of unequal strength. The stronger ox moved faster than the weaker ox, creating an asymmetric position of the yoke. In this situation, the weaker ox had to work harder - by spurring to walk a head of the stronger ox - to overcome the force transferred from the strong ox and correct the asymmetric position of the yoke.

Hence, the difficulties experienced in experiments on animal drawn implements due to unequal oxen strength and differences in pace of walking (Mouazen et al., 2007), uncontrolled implement behaviour, and field conditions, thus, calls for a systematic approach.

3.2 Soil Bin Test System

The new tillage systems and the need for improved energy efficiency of tillage operations emphasize optimizing tillage tool design. Development of an efficient tillage tool for optimum soil manipulation and minimum draught requirement requires a clear understanding of the interface between soil and tillage tool supported by experimental and theoretical analyses.
These methodologies could significantly assist in optimizing the implement design and operational conditions aiming at minimum draught requirement and optimum soil manipulation performance. Despite continuous development of the theoretical description of interaction processes between soil and tillage tools, experimental approach is still irreplaceable not even the more and more intensive contribution of the newest software, could change this.

The soil bin test system, an experimental verification, allows the measurement of different soil-tool interactions. Soil bin facilities vary in scope from small indoor bins to large outdoor soil bins, depending on the objectives for which they are developed, space available, energy requirement, and financial constraints (Wismer, 1984). Soil bin systems could be straight or circular, movable with stationary tools or stationary with movable tools (Durant et al., 1980). Design and experimentation with a soil bin can be effectively accomplished only if the complex interaction between the soil and the machine/tool is clearly understood (Al-Janobi and Eldin, 1997).

3.3 Animal Drawn Plough in Soil Bin

Although there is no information to research linking between maresha plough and soil bin experimentation in particular, there is little research on animal drawn implements other than maresha plough using soil bin test system. Aikins et al. (2007) developed an ox-drawn ridging plough using the Godwin-Spoor narrow tine soil force prediction model, and compared predictions with measurements of draught and vertical forces, and a cross-sectional area of soil disturbance. Loukanov et al. (2005) experimented with animal-drawn mouldboard plough to investigate effect of enamel coating on specific draught. Gebresenbet (1995) used a soil bin to measure the forces acting on a curved tool, and attempted to develop empirical prediction models of draught.

The few researches undertaken on animal drawn tool in an indoor soil bin facilities, i.e., with imported (disturbed) soil, thus, miss out the real-life situation where the plough interacts with the soil in its natural configuration and its spatial variability.
Taking account of challenges facing researches on animal traction tillage implements, along with the lessons drawn there from, and taking into account energy needs, soil variability and financial constrains, a mobile and an in-situ soil bin test facility was developed, and discussed in the next section.

3.4 Development of a mobile and an in-situ testing device

There are no specific theories on determining the dimensions of a soil container. In general terms, soil bins can be classified into large-scale soil bins and small-scale soil bins. The size of the soil bin influences the type of testing, the amount of data collected, and the number of test tools per test run. The significant difference between a large-scale and a small-scale soil bin is the overall length of the soil bin (Mahadi, 2005). Therefore, one can classify any soil bins longer than 20 m as large-scale bins and those shorter or equal to 20 m as small-scale soil bins (Mahadi, 2005). Small scale soil bin test systems were designed (Onwualu and Watts, 1989; Durant et. al, 1980; Godwin et al., 1980; Stafford, 1979; Siemens and Weber, 1964) with lengths ranging from 5 to 13 m.

Having reviewed soil bin test facilities, a mobile in-situ soil bin facility, which could be classified as small scale soil bin test system, was designed and developed to carry out soil-maresha interaction study (Fig. 4). A 20m long mobile facility assumed enough to move to another spots. The facility has three parallel rows/rail-tracks, in which, one row is featured with 20m long by 1.435m wide. It includes rails mounted on treated wooden sleepers. The rail has a moving carriage, towed by a two-wheel (walking) tractor using steel cable. The carriage is equipped with a test tool, instrumentation, and a data acquisition system for online measurement of draught.

3.4.1 Drive System

Traditional tillage in Ethiopia uses a pair of oxen to pull the ploughing implement. Because of mass inertia of the carriage, a greater force was necessary to trigger initial movement of the
carriage, which was heavy to be done by a pair of oxen. Hence, a two-wheel (walking) tractor (15 hp, Model DF, Changzhou Dongfeng Agricultural Machinery Group Co., LTD – DFAM, with CHANGCHAI engine, China) was used, to produce enough draught to conduct the experiments.

Compaction induced by vehicle traffic has adverse effects on a number of key soil properties such as bulk density, mechanical impedance, porosity and hydraulic conductivity (Radford et al., 2000; Hamza and Anderson, 2005). One approach that has been proposed to minimise machinery-induced compaction is to utilise controlled traffic systems whereby vehicle traffic and the resulting soil compaction is restricted to either permanent wheel tracks or sacrificial lanes across afield (Reeder, 2002; Hamza and Anderson, 2005). This leaves the cropped area either free of all traffic, or limits the impact of vehicle movement to certain periods in the production cycle (Chamen et al., 2003).

Taking into account the problem of machinery-induced compaction and wider wheelbase of power source (two-wheel tractor) than the working width of the testing device, a steel cable was used to pull the carriage with minimum elasticity. With this, experiments were carried out without affecting the initial soil conditions.

3.4.2 Draught

A load cell (from Celtron SQB-5tSS, the Netherlands), having a maximum load of 500 kg and a sensitivity of 2.99mV/V, was used to measure draught. The load cell attached as intermediate member to a spot between the plough shank and steel frame (Fig. 5). Designing sturdy structural attachment (steel frame) was necessary for a proper setup in order to measure the soil resistance on the surface of the tillage tool, without flipping, toppling, and tilting of carriage. To avoid interference of soil with the measurement, the load cell was positioned above the soil surface instead of directly locating behind the ploughshare. As a result, the measuring position differed or at offset from the position of impact, which was considered during calibration. The design took account of allowing for a free contact of load cell with shank of plough, a contact
point where the draught is transferred. The free contact allowed for a force transfer without
coupling effect, which could not be avoided with a solid connection. Besides, in order to allow
forces to be absorbed by the frame and ensure proper measurement, the connection of *maresha*
plough (shank) with the frame made using rotating end pin. In general, a load cell with free
contact at one end with the plough shank (pinned with steel frame) and bolted at the other end
(steel frame and the carriage,) was used to measure the total force required to pull the tillage tool
through the soil.

3.4.3 Data Acquisition System

The data acquisition hardware (from IOtech, Ohio - USA) was placed in a frame mounted on the
carriage together with external 12V battery power source. The hardware included: DBK43A (8-
channel strain gage module); Daqbook/2000E (ethernet 16 bit, 200 kHz data acquisition system;
including DaqView software); DBK34A (uninterruptible power supply for DC powered
systems), and CA-37-3T (expansion cable from Daqbook to DBK modules).

A load cell was interfaced with a data logging system and a computer. The wiring between DBK
43A and load cell (supplied from different companies) was based on resistance measurement
across the bridge points (Table 1).

The incoming milli volts (mV) from the load cell was rescaled to give kilograms i.e. with the
setup and DASYLab 8.0.1 software package (National Instruments, Ireland), the data sets were
read, interpreted, scaled, averaged, displayed and stored on the laptop.

3.4.4 Calibration of Load Cell

Calibration was undertaken to calculate tool draught based on the following assumptions:

- The location of area of centroid of *maresha* plough is the point (at point ‘b’) of
 concentrated load measured, which is equivalent to the sum of distributed load of the soil
 resistance.

11
'C' stands for the vertical projected distance, in metre, from the area of centroid of *maresha* plough (point ‘b’) to the weld connection point of ploughshare and plough shank ‘a’. Let the length between points ‘a’ and ‘b’ be L_{ab}, in meter, and rake angle be ‘a’ in degree.

Thus, $C = L_{ab} \sin \alpha$ \hspace{1cm} (1)

- L_1, in metre, is the projected distance from point ‘a’ to centre of the load cell - lower hole, point ‘d’

- L_2, in meter, is the distance between point ‘d’ and Point ‘e’ (pinned connection of plough shank on the steel frame)

- $F_{Load, Resistance}$, in Newton, is load applied for calibration purpose, representing assumed equivalent concentrated load, soil resistance on Plough

- $F_{Load Cell}$, in Newton, is force transferred to load cell.

For an analytical solution, using schematic and free body diagram (Fig. 6), at static force equilibrium, the force and moment equations are given by equations 2 and 3, respectively.

\[\sum F = 0, \quad \vec{F}_{Load, Soil\ Resistance} - \vec{F}_{Pin} - \vec{F}_{Load\ Cell} = 0 \] \hspace{1cm} (2)

\[\sum M_{d, Load\ Cell} = 0, \quad \vec{F}_{Load, Soil\ Resistance} \times (L_1 + C) - \vec{F}_{Pin} \times L_2 = 0 \] \hspace{1cm} (3)

Equating (2) and (3), the force measured by load cell, $F_{Load\ Cell}$ in Newton, is then given by equation (4), i.e.,

\[\vec{F}_{Load\ Cell} = \frac{F_{Load, Soil\ Resistance} \times (L_1 + L_2 + C)}{L_2} \] \hspace{1cm} (4)

Where C is given by equation (1).

In addition to the analytic solution, calibration using software (GageCal) was necessary. Calibration with GageCal required setting the value of quiescent/Tare to zero for soil-tillage purpose, however, to measure weight the quiescent/tare value should be the weight of measuring platform. Name plate calibration was required adjusting for excitation, offset, gain, and scaling with respective potentiometers without connecting the load cell. Final setup in GageCal required connecting sensor and adjusting the offset using OFFSET potentiometer. The first offset adjustment was correcting the internal circuitries offset so that the calibration was as accurate as possible. Using electronic, GageCal shorted the channel’s inputs together. Later on, the offset was to take into account the actual sensor.
There were two modules for scaling i.e. scaling channel with the analog input, and scaling module. In order to avoid double scaling, only the scaling module was used.

To minimize the noise in the raw data, hardware and digital filters were also used. The selection of hardware filter was based on experimentation with resistors (Table. 2) by positioning jumpers on DBK43A to filtering position, which activated the analog filter to cancel the noise. The properties of the filter were determined by a resistor, by placing in an electrical circuit. Experimentations showed that the standard filter with a frequency of 13.3Hz lowered most of the noise. Besides, a digital filter module was used to filter the incoming data, and a low pass filter at 135 Hz gave better data.

3.5 Design Parameters: Tool Geometry and Rake Angle

3.5.1 Tool Geometry

The two plough geometries considered were: maresha without side-wings, and maresha with side-wings (Fig. 7).

3.5.2 Rake Angle

Depending on soil type and the type of crop cultivated, the land is ploughed 3 to 5 times before planting (Goe, 1999). Gete (1999) explained subsequent ploughings are deeper, except for the last tillage operation, which is done after broadcast sowing. The depth of tilling in the first pass reaches 5-10 cm depending on soil texture, degree of soil compaction, and moisture content. The final pass reaches down to a depth of 20 cm. Considering the three subsequent ploughing, i.e., primary, secondary and tertiary tillage processes in Ethiopia, in an experimental line, three ploughs were manufactured for each geometry type, i.e., for shallow, primary – α_1, 8°; medium deep, secondary – α_2, 15°; and deep, tertiary – α_3, 24° degree (Fig. 8).

The respective tool settings could be given by depths: $D1 = 0.1329L$, $D2 = 0.2516L$ and $D3 = 0.3406L$ where L is length of plough.
The study considered successive tillage process in an experimental line, i.e., the 1st tillage run performed on top undisturbed soil layer, however, the 2nd and 3rd successive tillage runs performed on furrows and underneath undisturbed soil layers left by 1st and 2nd tillage runs, respectively. Hence, this paper considered 1st, 2nd, and 3rd tillage runs on undisturbed soil layers having depths of \(d_1\) (0.1329L = \(D_1\)), \(d_2\) (0.1187L = \(D_2 - D_1\)), and \(d_3\) (0.089L = \(D_3 - D_2\)), respectively, for analysis, and assumed possible boundary effects are negligible.

3.6 Experimenting

3.6.1 Experimental Field

The experimental field is located at an altitude of 2150 meters above sea level, at the veterinary campus of Mekelle University, on the skirts of city of Mekelle, the regional capital of Tigray, Ethiopia. The experimental soil is classified as Vertisol. Despite their high agricultural potential, Vertisols are generally regarded as marginal soils, among others, high shrink-swell potential (Astatke et al., 2002; Deckers et al., 1998; Potter and Chichester, 1993) which leads to a high incidence of prolonged water-logging during the main rainy season from June to September (Astatke et al., 2002). The soil was covered with grass and there were stones of various sizes in the soil.

3.6.2 Soil Size Distribution

The Bouyoucos Hydrometer method was used to determine the particle size distribution of the soil sample, shown in Table. 3.

3.6.3 Experimental Layout and Experimentation
The overall length, the stretch of the entire soil bin structure, is 20m. Deducting of front and rear pits for starting and ending experiments, the working length of the soil bin is 16m. The experimental design layout considered six experimental rows to have three replicates for each plough geometry types. As shown on Figure 4, the developed soil bin has three rows. Once experimenting on three rows was completed, three rails lines were relocated and installed in reference to the fourth rail to form additional three rail track - rows. Accordingly, experimenting on six rows became possible i.e. by dedicating rows 1, 3, 5 and rows 2, 4, 6 for the maresha without side-wings and maresha with side-wings, respectively.

With two plough geometry types, three rake angles for successive three tillage depths, and three replicates, a total of 2x3x3 experimental runs, equals 18 tillage runs were performed.

With such arrangement, the testing device could accommodate even more rows depending on the experimental requirement, number and type of tillage tools to be considered, and available space.

4. Data Analysis

Analysis was undertaken by box plot; and multivariate analysis was undertaken with one way ANOVA using MATLAB tool box. Linear regression and calculation of the Pearson correlation coefficient \(R \) and levels of significance \((P) \) were used to measure the degrees of association based on analyses of variance. Histogram also used to see the draught density and distribution with rake angles.

5. Results and Discussions

5.1 Effect of Side-Wings on Draught

During a tillage operation various factors can affect energy requirement of a tool. These factors can be categorized in three main groups: (1) Soil parameters: soil physical, mechanical properties,
and soil dynamics properties, (2) Tool parameters: tool type, tool shape and size, tool rake angle, tool sharpness, and tool material, and (3) Operational parameters: depth and speed. In addition to soil shear strength properties e.g., soil cohesion and soil-soil friction, draught requirement of soil engaging implements is also affected by soil-material friction. This paper assumed the effect of soil parameters and speed is similar for experimenting with two plough geometries except for soil-tool friction. Soil sliding resistance is made up of friction and adhesion forces that are brought about between the soil and material interface. A large proportion of the energy used to operate tillage tools goes to overcome frictional sliding resistance as soil moves over the tillage tools surfaces.

When a material surface and soil slide relative to one another, the frictional resistance of the contact surface must satisfy the Coulomb’s equation (5):

\[F = CaA + P \tan \delta \]

Where, \(Ca=\) soil-material adhesion (Pa); \(\delta=\) angle of soil/material friction (degree), \(P = \) normal force on surface (N), \(F = \) frictional resistance (N), and \(A = \) contact area (m\(^2\)).

In adhesive soil, the frictional resistance, \(F\), is mainly produced by adhesion and can be minimized if the contact area (\(A\)) is reduced (Qian, et al., 1999). When tool surface and soil slide on one another, the frictional resistance expected to increase with interfacial contact area, according to Coulomb’s law of soil shear strength (McKyes, 1985).

Considering the contact area between the moving soil and tool, maresha plough with side-wings has greater contact area than its wingless counterpart. However, results (refer Figs. 9) showed that maresha plough with side-wings required lower draught than maresha plough without side-wings (\(p < 0.001\)) despite the greater moving soil and tool contact area for maresha with side-wings as compared to maresha without side wings. Thus, the result might be attributed to side-wing shape and its wedging effect, which might helped for crack propagation and facilitate subsequent penetration by the plough share, i.e., reducing the soil resistance ahead of the plough share. This might be inline to the finding with paratill (Raper, 2005). However, other literature showed the opposite results, where smaller draught is recorded for tines without wings. For example, previous studies comparing draught of a wing-subsoiler with that of the same subsoiler geometry without wing showed the former to have about 15% larger draught as compared to the latter (Spoor and Godwin, 1978).
5.2 Effect of Rake Angle on Draught

With the respective rake angle, the tillage depth of undisturbed soil, i.e., \(d_1\), \(d_2\), and \(d_3\), setup was getting smaller for the three successive tillage runs in an experimental line. From the data set, average of replicates was considered for analysis, i.e., 6 averages of 18 experimental runs representing 3 depths by two plough geometries. Accordingly, the effect of rake angle on draught was investigated with histogram (Fig. 10) and showed the data density distribution for both *maresha* plough geometries is normal. It was also observed that with successive tillage runs, the data density of draught inclines to higher with rake angle for the respective tillage depths on undisturbed soil layers. This was also supported by multivariant analysis that increase in rake angle resulted in higher draught for successive tillage runs despite the tool depth settings \(p < 0.001\). This might be attributed to soil compaction with depth and downward force of the ploughshare acting on the layer below, because of repeated tillages for thousand years.

6. Conclusions

In the face of numerous reports on studies of the effects of draught on the performance of different tillage tools and implements by means of soil bin test systems, sufficient information is lacking on experiments on the Ethiopian *maresha* plough with a soil bin test system. Besides, there is no information regarding the effect of side-wings of *maresha* plough on draught. The paper discussed the development of a mobile and *in-situ* soil bin test system, and with experimentation, insights observed on the effect of side-wings of *maresha* on draught, i.e., its wedging effect to enhance crack propagation and reducing the soil resistance ahead of the plough share. Despite the fact that tool depth was getting smaller for the three successive tillage runs in an experimental line, higher rake angle also resulted in higher draught which could be explained in terms of soil compaction that comes with depth, and to downward force resulting from repeated tillages every season to the same depth for thousand years.
Hence, this work gave some insights for further investigation on the effect of different tool settings, and sizes and shapes of side-wings on soil failure pattern and draught requirement targeting setting of standards. Understanding of the effect a tool has on a particular soil will help in proper design of the Ethiopian *maresha* plough. Adjustments in plough design can also improve the quality of work enabling a tiller to select a different type of tool for each condition he encounters or wishes to establish.

7. **Acknowledgements**

The authors acknowledge the financial support of the Flemish Interuniversity Council (VLIR) under the framework of the project entitled ‘VLIR & Mekelle University Inter University Partnership Programme, 2003–2013; subproject Farm Technology’.

8. **References**

12) Canaday, E. 1959. Imperial Ethiopian College of Agriculture and Mechanical.

10) Georgison, R.R. 2010. Forces on a rotary tine aerator under normal working conditions. Department of Agriculture and Bioresource Engineering, University of Saskatchewan, Saskatoon.

23) Luebecke, H. N. 1944. Report to land drainage division, MAFF.

Vozka, P. 2007. Comparison of alternative tillage systems. Cransfield University, School of Applied Sciences, National Soil Resources Institute. MSc Thesis

9. **Figures**

Fig. 1. Traditional plough: The first ever photograph of an Ethiopian farmer with his oxen and marasha, near Senkata (Tigray) in March 1868. © Royal Engineers of the British Army, reprinted with permission of the King’s Own Museum, Lancaster, UK. (Nyssen et al., 2011).

Fig. 2. Traditional plough, Photo, ILCA collection, Samuel Jutzi and Guido Gryseels (Nyssen et al., 2011): (a) Mode of transport, and (b) during ploughing.

Fig. 3. Italian mouldboard ploughs imported into Ethiopia (near Mekelle, in 1938). Photo by Guidotti, “Gift of H.E. the Head of State to the inhabitants of Tigray” states the original legend of this photograph obtained from the Istituto Agronomico per l’Oltremare (Florence, Italy) (Nyssen et al., 2011).

Fig. 4. A mobile and an *in-situ* soil bin test system with three rows: (a) 1, Dataloger and battery; 2, Rear carriage unit; 3, Steel frame; 4, Front carriage unit; 5, Rail; 6, Wooden Sleeper; 7, Extension of steel frame for loadcell and plough attachment; 8, Load cell; 9, Plough; 10, Free wheel (wheel gage), (b) 1, Two rails for one line - each with 10m length, forming a total of 20m length; 2, Rail Connector/plate; 3, Wooden Sleeper; 4, Carriage with Implement and data acquisition system; 5, Steel Rope for Pulling Carriage; 6, Two-wheel (Walking) Tractor; 7, Pit for defined experiment with starting and ending, and (c) 1, Carriage; 2, Data logger; 3, Battery; 4, Laptop.

Fig. 5. Steel Frame with load cell and attachment: 1, Steel frame; 2, Load cell; 3, point contact between load cell and plough shank; 4, Plough shank; 5, *maresha* plough without side-wings; 6, *maresha* plough with side-wings.

Fig. 6. Load Cell: (a) Schematic of Load Cell Assembly and Acting Forces, and (b) Projected Free Body Diagram (View A-B)

Fig. 7. Traditional Ethiopian plough - *maresha*: (a) with side-wings (soil-tool contact surface area ~ 0.0376m2), and (b) without side-wing (soil-tool contact surface area ~ 0.0184m2).

Fig. 8. Tool rake angle and depth (α_1, α_2, and α_3 are rake angles for successive three tillage runs in an experimental line for depths setup of D1, D2, and D3, in which d_1, d_2, and d_3, respectively, are tillage depths of undisturbed soil layer.)
Fig. 9. Effect of tool geometry on draught: Box-plot (WW, with side-wing; WO, without side-wing; 1, 2, and 3 stands for three successive tillage runs, respectively.)

Fig. 10. Effect of tillage depth on draught - Histogram: (a) *Maresha* with side-wings, (b) *Maresha* without side-wings
10. Tables

Table 1. DBK43A - Wiring and Color differences of IOtech - USA and Load Cell from Celtron, the Netherlands
Table 2. Filter and Resistor Relations
Table 3. Soil Size Distribution of the Experimental Site