
Retrofit Self-Optimizing Control of Tennessee
Eastman Process

Lingjian Ye∗, Yi Cao†, Xiaofeng Yuan‡ and Zhihuan Song‡
∗Ningbo Institute of Technology, Zhejiang University, 315100, Ningbo, China, Email: lingjian.ye@gmail.com

†School of Energy, Environment and Agrifood, Cranfield University, Bedford MK43 0AL, UK, Email: y.cao@cranfield.ac.uk
‡Department of Control Engineering, Zhejiang University, 310027, Hangzhou, China, Email: yxf80, songzhihuan@zju.edu.cn.

Abstract—This paper considers near-optimal operation of
the Tennessee Eastman (TE) process by using a retrofit self-
optimizing control (SOC) approach. Motivated by the factor that
most chemical plants in operation have already been equipped
with a workable control system for regulatory control, we propose
to improve the economic performance by controlling some self-
optimizing controlled variables (CVs). Different from traditional
SOC methods, the proposed retrofit SOC approach improves
economic optimality of operation through newly added cascaded
SOC loops, where carefully selected SOC CVs are maintained
at constant by adjusting set-points of the existing regulatory
control loops. To demonstrate the effectiveness of the retrofit SOC
proposed, we adopted measurement combinations as the CVs for
the TE process, so that the economic cost is further reduced
comparing to existing studies where single measurements are
controlled. The optimality of the designed control architecture
is validated through both steady state analysis and dynamic
simulations.

I. INTRODUCTION

The well-known Tennessee Eastman (TE) challenge prob-
lem was published by [1], based on an actual industrial
process. The plant consists of the following 4 reactions

A(g) + C(g) +D(g)→ G(liq)

A(g) + C(g) + E(g)→ H(liq)

A(g) + E(g)→ F (liq)

3D(g)→ 2F (liq)

where A, C, D, E are the reactants, G and H are the desired
products and F is the byproduct. Besides, there exists an inert
component B in the material circle, which is contained in the
feed and removed through the purge to maintain inventory
balance. The process includes 5 major operating units: the
reactor, a product condenser, a vapor-liquid separator, a recycle
compressor and the product stripper.

Downs and Vogel [1] posed various control and optimization
tasks to operate such a plant-wide process, e.g. (1) track the
set-points of some key variables (e.g. production rate and
product quality) quickly and smoothly with set-point changes
and/or disturbances; (2) minimize the valve movements (con-
trol energy) along with set-point tracking; (3) optimize the
economic cost for daily operation, etc. To deal with this TE
challenge problem, systematic approaches for both control
structure and controller design have been applied to the TE
problem. McAvoy and Ye [2] configured a basic PID control

system using the relative gain array and other controllability
analysis tools, which met basic requirements posed in the
problem. However, their control system was operated around
the base case values provided by Downs and Vogel [1], which
is economically expansive. To improve the economic perfor-
mance, Ricker [3] solved out optimal steady state working
points for all 6 defined operating modes. It was demonstrated
that compared to the base case, a significant cost reduction
(about 1/3) can be realized by operating the optimal point
identified. He also presented a well-configured decentralized
control structure [4], which achieved excellent performances
for various control tasks. In other works, model predictive
control was also considered to complete the posed control
tasks for the TE process [5], [6]. Larsson et al. [7] applied
the self-optimizing control (SOC) strategy [8] to improve the
economic optimality via selecting controlled variables (CVs)
for the control system. Besides of the conventional constrained
variables (e.g. liquid levels, production rate and quality), they
selected the reactor temperature, recycle flowrate and the mole
fraction of C in the purge as the CVs, so that the operation
is self-optimizing under disturbances and different operating
conditions. Also, they showed that the improvements were
mainly achieved in the case of production rate changes, as
compared to the one in [4].

It is well known that adopting measurement combinations
as CVs is better than using single measurements. Many
approaches have also been developed for measurement com-
bination CVs [9], [10], [11], [12], [13]. Nevertheless, an ap-
plication of measurement combination CVs to the well-known
TE process has not yet been reported elsewhere. The reason
may be due to the inherent control difficulty of the TE process,
which is open-loop unstable and highly integrated. This inher-
ent control difficulty makes adopting measurement combina-
tion CVs complicated if the SOC loops have to be designed
together with the basic regulatory control. This complexity
is alleviated through the proposed retrofit approach, where
the SOC is implemented in an upper cascade layer so that
the inherent regulatory control difficulty is independent from
the SOC design. Another reason is perhaps that most SOC
methods in the literature were developed under the assumption
that uncertainties the system suffered can be well described
by a few “disturbance variables”. Moreover, the operation is
perturbed around a nominal point when these disturbance vari-
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ables change. However, the TE process is operated with several
particular disturbance scenarios and operating conditions, it
is difficult to define some consistent “disturbance variables”,
which should be known to the designers for most existing SOC
methods. Recently, we have developed a new SOC approach
for CV selection [14], which approximately minimizes the
average economic loss of all possible “disturbance scenarios”
or more generally say, “operating conditions”, hence well-
suited for the TE background.

The remainder of this paper is arranged as follows: Section
2 introduces some backgrounds of the control problem for
the TE process, two existing control structures of interest [4],
[8] are mainly reviewed. In Section 3, we briefly outline a
newly developed SOC approach, which minimizes the global
average loss for all operating conditions and well-suited for
addressing the TE problem. Results for self-optimizing CVs
and simulations are provided in Section 4. Finally, Section 5
concludes this paper.

II. CONTROL PROBLEM FOR TE PROCESS

The TE process includes 12 manipulated variables (MVs)
and 41 measurements [1]. For the MVs, they have all been
scaled within 0-100 limits in percentage as provided in the
benchmark problem. For the measurements, they are defined
with different sampling frequencies and dead time to keep
consistence with the industrial practice, see [1] for more
details.

Although many control structures have been developed for
the TE process in the literature, in the remainder of this paper,
we will focus on the ones proposed by [4] and [7] due to their
efficiency in performance. (For the sake of convenience, they
will be denoted as “CS Ricker” and “CS Skoge” afterwards.)
Furthermore, the choice of CV selection is of particular
interest in this study and reviewed below. According to their
control policies, the following process variables should be
controlled in closed-loops:

1) Separator level and stripper level. These two liquid levels
are integrating variables and have no steady state effects,
they must be stabilized in the first place.

2) Production rate (stripper underflow) and product quality
(mole %G in product). Manufacturing objective defines
their targets under different operating modes and specifi-
cations, these constitute equality constraints and should
be controlled to satisfy the targets. (Except that for mode
4–6, the production rate is aimed to be maximized.)

3) At the optimum, there are 5 active constraints that needs
to be controlled at their boundaries: reactor pressure
(maximum) and level (minimum), compressor recycle
valve (closed), stripper steam valve (closed) and agi-
tator speed (maximum). [4] provided detailed physical
interpretations why these constraints are active at the
optimum.

Above control requirements consume 9 degrees of freedom
(DOF) for plant operation. For the remaining unconstrained 3
DOF, [4] chose to control the reactor temperature (Trct), %A
and %C in the feed (more precisely, yA: the combined %A+

%C and yAC : %A/(%A+%C) in the feed) based on heuristic
analysis. Decentralized control structure was considered with
appropriately configured loop pairing relationships. Controller
tuning is also carried out for all PI controllers, see [4] for
more detail. The designed control system was very efficient
and nicely completed various control tasks proposed by [1] .

On the other hand, [7] applied the so-called SOC methodol-
ogy to improve the operational economic performance for TE
process. Their control strategy addressed the situations when
the plant is operated under disturbances and different operating
conditions (specifically, production rate/throughput change by
±15%). A systematic procedure for control structure design
and self-optimizing CVs selection was carried out. They found
that the most promising CVs for the remaining unconstrained 3
DOF are reactor temperature Trct, recycle flowrate (Frecycle)
and %C in the purge (yCpurge

). These results were at first
surprising and contradicting to engineers’ insights of process
control, however, the authors had conducted dynamic simula-
tions to demonstrate that their control strategy is viable. As
compared to the one in [4], the main economic improvements
were achieved in the cases of throughput changes.

III. A RETROFIT SOC METHODOLOGY WITH AN
ENHANCED CV SELECTION METHOD

A. A retrofit SOC methodology

The current industrial practice is that for existing chemical
plants, they have already been installed with control sys-
tems working reasonably well in terms of important control
tasks, although they may not be necessarily optimal from an
economic perspective. Practically, designers advocating SOC
methodology face the following challenges:

1) Develop an efficient SOC method for CV selection,
which may necessarily be a multi-objective task, e.g.
it has been realized that one should seek a compromise
between the economic performance and CV complexity.

2) Systematic solution to improve economic performance
on basis of an existing control system without redesign-
ing a fresh one. This way, one is allowed to pay minimal
efforts and preserve important merits of an existing
control system.

3) Convince the man in charge of plant operation to com-
mission the designed self-optimizing control system.

Up to date, the first issue is intensively studied by re-
searchers in this area and a number of outcomes have been
reported. However, the others are highly relevant to industrial
practice and less discussed. To the best experiences of the
authors, the field operators/engineering would rather rely on
their in-position control systems because they commonly con-
trol single measurements thus easily fit into peoples’ physical
judgements. On the other hand, a well configured SOC system
often uses measurement combinations as CVs, which lacks
clear physical interpretations. In this context, it is hardly
possible to persuade chemical factories risk shutting down
current operation and then installing a possibly deleterious
control system (in their minds).



Above mentioned truths necessitate the development of an
SOC methodology compatible to existing control systems,
which are mainly designed for regulatory control purpose. Two
requirements should be met in order: (1) Fundamental regu-
latory control tasks should be satisfied. In any circumstance,
there should exist an interface that allows one to restore back
into the former control system easily. This helps increase the
operators’ confidence on the new control system. (2) Economic
performance is improved by controlling the self-optimizing
CVs obtained. In this paper, we propose a so-called retrofit
SOC methodology to address these requirement. Although the
concept of retrofit is widely adopted for process improvement
(e.g. [15] and refs therein), it is the first time to apply such
a concept to implement SOC. Existing methodologies in the
literature only consider design SOC structure in the blueprint
phase, however, the retrofit SOC proposed in this work shows
a way in which SOC can be implemented in operational
processes.

Suppose that there exists an in-position control system
(regulatory control) in usage, the CVs are firstly divided
into two classes: (1) y1, including variables that have no
steady state effects (e.g. liquid levels) and active constraints
(equality variables); (2) y2: other CVs except for y1. As we
know, y2 should be replaced with self-optimizing CVs for a
better economic performance, as in a tradition SOC frame-
work. However, in the proposed retrofit SOC methodology,
we configure an independent control layer (self-optimizing
control layer) upon the in-position control system. In the upper
self-optimizing control layer, the obtained CVs for SOC are
controlled by adjusting the set-points of y2, which are further
sent downwards to the lower regulatory control layer and
be tracked. The proposed control system has the following
features:
• Regulatory control tasks are naturally addressed by the

preserved control system in lower layer;
• By controlling the self-optimizing CVs in upper layer, the

economic performance of daily operation is improved;
• Interfaces are left to interact with the new control system.

For example, since controlling measurement combina-
tions are not easily understood by the field operators, a
saturation block can be imposed on the controller outputs
in the upper layer by choosing a reasonable range of y2’s
setpoint, which makes them feel safe and confident. Fur-
thermore, it is also convenient to restore back to former
control system, simply by switching the controllers in
upper layer into “manu” mode. When operated in the
“auto” mode, it would be agreeable to adjust set-points
of y2, which can be constrained in safe ranges.

B. A new SOC method for CV selection

Recently, the authors of this paper have developed a new
SOC approach for CV selection [14], which approximately
minimizes the average loss under all operating conditions. Al-
though two algorithms are proposed therein, in the sequence,
the less rigourous one is presented, which has an appealing
advantage that the CVs are solved analytically based on the

optimal values of measurements obtained. Furthermore, the
sensitivity matrix required in the algorithm is allowed to be
evaluated at a single reference point.

Consider the next static optimization problem

min
u

J(u,d) (1)

with measurements

y = f(u,d) (2)

where J is the cost function to be minimized, u ∈ Rnu , d ∈
Rnd , and y ∈ Rny are the manipulated variables, disturbances,
and measurements, respectively. f : Rnu×nd → Rny is the
measurement model. The objective is to select c = Hy as
CVs such that the economic loss is minimized under different
disturbance scenarios and operating conditions.

Remark: Although the symbol d is used above to denote
disturbances [14], the method can be easily extended to any
possible operating conditions that cannot be easily described
by simple disturbance variables, e.g. a particular case with a
pressure setpoint change or a case of instrument failure. Also,
since occurrence of disturbance is considered as a type of op-
erating condition, we will refer the term “operating condition”
to all possibilities afterwards, without loss of generality.

A brief description of the algorithm [14] involves the
following steps:

1) For all N operating conditions, say d(i), i = 1, ...N ,
the cost function J is minimized using an optimization
solver. The optimal values of the measurements, yopt

(i)
are stored to form a matrix as

Y =
[
(yopt

(1) )
T (yopt

(2) )
T · · · (yopt

(N))
T

]T
(3)

Here, the measurement vector y is defined to include an
artificial measurement: constant 1, through which means
the set-points of all final derived CVs are 0.

2) In the presence of measurement noises, construct an
extended matrix Ỹ as

Ỹ =

[ 1√
N
Y

Wn

]
(4)

where Wn is a diagonal matrix with its diagonal ele-
ments as the error magnitudes of each measurement.

3) Choose a particular operating point as the reference
point, the gain matrix of y with respect to the MVs
is evaluated as Gy,ref .

4) Simply, the CV combination matrix H can be computed
as HT = (ỸTỸ)−1Gy,ref . (In a noise-free case,
replace Ỹ with Y).

Note, solution for CV selection is basically not unique,
provided that only steady state performance is concerned. A
universal expression for the combination matrix should be
H̃ = BH, where B is any nu × nu nonsingular matrix.
However, one favorable choice is selecting B = (HGy,ref )

−1

such that the gain from u to c is I, which achieves decoupling
control at the reference point for a multi-variable system thus
facilitates dynamic control.



TABLE I
OPTIMIZATION RESULTS

Cost[$/h] yA[%] yC [%] rct temp ◦C
normal 114.01 32.21 18.75 122.9
IDV(1) 111.27 32.35 19.69 123.0
IDV(2) 169.03 30.47 17.94 124.2
throughput +15% 140.55 33.45 19.68 124.3
throughput -15% 91.01 30.80 17.50 121.6
40 G/ 60 H 129.07 32.92 18.93 123.4
rct press 2645 kPa 134.93 32.01 18.82 123.6

IV. SELF-OPTIMIZING CONTROL OF THE TE PROCESS

In this section, the TE process is studied to pursue better
economic performance, with application of the CV selection
method and SOC methodology described above.

A. CV selection

First of all, the same 9 CVs, including two liquid levels
with no steady-state effects and 7 equality constraints (see
Section 2), are controlled. These CVs are selected with the
same reasons as was done in CS Ricker and CS Skoge.
Consequently, we are left with 3 unconstrained DOF for SOC
purpose.

For operating conditions, [7] considered IDV(1) and IDV(2),
because the other disturbances defined by [1], either have no
steady state effects or too severe to be handled (IDV(6): loss
of feed A, recommended to be handled with override control).
Besides, they also considered the situations when the set-point
of production rate (throughput) is changed by ±15%. Besides
of these, we additionally incorporate two situations as posed
by Downs and Vogel [1]: (1) when the product mix changes
from 50 G/50 H to 40 G/60 H; (2) a step change of set-point
for reactor pressure to be 2645 kPa. Therefore, there will be 7
operating conditions in total (including the normal operating
condition) investigated in this study.

The operating cost of TE process, J is defined consisting
of purge cost, product stream cost, compressor cost and steam
cost. Firstly, optimization (minimizing J) for all 7 operating
conditions are performed using a Genetic Algorithm. Since
there are only 3 sensitivity-seeking DOF for optimization, the
algorithm is based on CS Ricker, where the set-points of yA,
yAC and Trct are used as the decision variables to minimize
J , i.e.

u =
[
yA yAC Trct

]T
(5)

in the formulated optimization problem.
Results of the minimal cost and optimal decision variables

are summarized in Table 3. Meanwhile, optimal values of
all 41 measurements are also obtained for these 7 cases
(numerical values are not shown here).

The measurement subset for self-optimizing CV selection
is chosen as

y =
[
1 yA yAC Trct yCpurge

Frecycle

]T
(6)

which are controlled by either CS Ricker or CS Skoge. Finite
difference method is used to evaluate the sensitivity matrix Gy

TABLE II
ECONOMIC LOSSES [$/H] OF 3 CONTROL SYSTEMS

CS Ricker CS Skoge This paper
normal 0.0 0.0 0.03
IDV(1) 0.0 0.03 0.03
IDV(2) 2.7 1.7 1.6
throughput +15% 6.1 1.5 0.0
throughput -15% 2.6 0.6 0.0
40 G/ 60 H 0.7 0.3 0.9
rct press 2645 kPa 0.3 4.5 0.2
sum 12.4 8.63 2.76

, by perturbing the set-points of yA, yAC and Trct around the
normal operating condition. Gy is obtained as

Gy =


0 0 0
1 0 0
0 1 0
0 0 1

0.0755 1.167 −0.0395
0.564 0.166 −0.221


Then, the algorithm described in Section 3 is applied and

the CV combination matrix H is solved as

H =

−505.9 23.75 −10.79 1.38 −28.82 4.60
973.4 −51.59 20.02 −1.80 66.12 −10.08
−170.9 1.35 −4.11 1.49 1.29 0.10


B. Steady state evaluation

The economic performance of obtained self-optimizing CVs
are validated against CS Ricker and CS Skoge. The economic
losses are computed by assuming that all CVs are perfectly
controlled at the steady state for all the 3 investigated con-
trol systems, as listed in Table 4. CS Skoge outperforms
CS Ricker mainly in the case of throughput changes, which
verifies those results provided in their paper [7]. However,
when the set-point of reactor pressure is set to be 2645 kPa,
which has not considered by [7], CS Skoge gives even a
poorer economic loss of 4.5 $/h than CS Ricker (0.3 $/h).

Improvements can be made by selecting measurement
combinations as CVs, as validated in this paper. For the
7 investigated cases, smaller economic losses are achieved
for those cases when either CS Ricker or CS Skoge give a
large loss. For example, in the case of throughput ± 15%,
CS Ricker gives a loss of 6.1 $/h and 2.6 $/h, respectively.
Whilst our approach gives both 0 losses. When the set-
point of reactor pressure changes, in which case CS Ricker
performs bad, our approach achieves a loss of 0.2 $/h. In
the case of normal operating and product mix changes, our
approach does not perform better, however, the sacrificed loss
is very small. In summary, by controlling the measurement
combinations, this paper achieves a total loss of 2.76 $/h for
the 7 investigated cases, which is substantially reduced as
compared to CS Ricker and CS Skoge (12.4 $/h and 8.63
$/h).

C. Dynamic simulations
Since CS Ricker was so well-configured in stabilizing the

plant operation and completing fundamental control tasks, it



will be used as a basis to control the obtained self-optimizing
CVs. Following the proposed retrofit SOC methodology, an
independent control layer (3-inputs-3-outputs) is built upon
CS Ricker. The 3 self-optimizing CVs are controlled by
adjusting set-points of yA, yAC and Trct, which are further
sent to the lower control loops for set-point tracking. A
decentralized control strategy is considered, to this end, a
decoupling combination matrix H̃ = (HGy)

−1H is calculated
as

H̃ =

−31.2 0.804 −1.239 0.085 0.825 0.238
−7.58 −0.084 −0.435 0.043 0.977 0.017
−99.0 −0.031 −2.243 1.028 1.547 −0.153


to enhance the controllability between the inputs and outputs.
From a steady state point of view, the performances of
H and H̃ are equivalent. However, using H̃ is easier for
implementation because the inputs and outputs are decoupled.
PI controllers are employed for all loops configured in the
upper control layer.

For illustrative purpose, in the following, we firstly investi-
gate an arranged series of operating scenario as: (1) Initially,
the system is operated under normal condition; (2) At 10 h,
the setpoint of production rate (throughput) is set by +15%.
To avoid abrupt fluctuation, the set-point change is ramped
within a period of 10 h (10 h - 20 h); (3) At 80 h, the
production rate is reset to normal condition, simultaneously,
the set-point of reactor pressure is changed from 2800 kPa to
2645 kPa. Similarly, both the set-point changes are ramped
within a period of 10 h.
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Fig. 1. Dynamic performance of CS Ricker

As a comparison, CS Ricker and CS Skoge are both tested
for the given operating scenarios, as shown in Figure 1 and
2. It is evident that both of them work well in tracking the
specified set-point changes, for both the production rate and
reactor pressure. However, their economic performances are
somewhat different.
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Fig. 2. Dynamic performance of CS Skoge

To better explore the detail, we calculate the instantaneous
value of the 3 self-optimizing CVs, c = Hy in the whole
simulation time. (Note that, for these two control systems, c =
Hy are not controlled hence they can be regarded as “open
loop” systems.) It is interesting to note that, the 3 CVs values
in CS Ricker all deviate from 0 significantly at about 20-80 h
(throughput +15%). Meanwhile, the operating cost runs above
the minimal cost line (140.55, red line) under this operating
conation. However, when the reactor pressure is maintained
at 2645 kPa (90-150 h), the 3 CVs go back to near 0 and
the operating cost is around the minimal cost (134.93). These
dynamic economic performances are in agreement with those
results obtained in steady state analysis, namely, CS Ricker
gives economic losses of 6.1 and 0.3 for the two investigated
operating conditions, respectively. Finally, in the whole 150 h
simulation time, the overall economic cost for CS Ricker is
calculated as 21088 $.

For CS Skoge, it is observed that during 20-80 h, c1 and
c3 deviate away from 0 in certain extent whilst c2 maintains
near 0. The economic cost, however, is maintained (virtually)
around the minimal value, which indicates that the economic
loss is not large. In the phase of 90-150 h, c1 deviates largely
from 0 while the other 2 CVs are quite near 0. Consequently,
the economic cost approximately runs above minimal red line,
thus a notable loss occurs. Again, the dynamic simulation
results are in accordance with the steady state analysis, which
gives losses of 1.7 and 4.5 respectively. The final operating
cost for this control system is 21195 $, which is even worse
than CS Ricker for the arranged operating conditions.

Finally, the proposed retrofit SOC control system is tested
with the measurement combinations controlled. The results in
Figure 3 indicates following points:

1) The specified setpoint changes for both production rate
and reactor pressure are tracked quickly and smoothly,
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Fig. 3. Dynamic performance of controlling the control system in this paper

because the control system is directly configured upon
CS Ricker with the lower regulatory controllers un-
changed, hence the merits of CS Ricker are preserved.

2) In spite of operating condition switches, the 3 self-
optimizing CVs are controlled around 0 with the func-
tion of new added PI controllers, by adjusting the set-
points of yA, yAC and Trct.

3) The economic cost is automatically operated around
the minimum for the all simulation time, thus a good
economic performance is attained. The overall operating
cost in the 150 h duration is calculated as 20722 $, which
saved 366 $ and 473 $ as compared to CS Ricker and
CS Skoge, respectively.

Besides of above simulations, all the 7 operating scenarios
have also been simulated independently. Table III summarizes
the average costs in an operation time of 150 h, with the
system states initially as steady state values under the normal
condition. The verified dynamic performances are similar to
steady state results. Among 7 operating conditions tested, the
proposed one achieves minimal average cost for 4 cases (in
the presence of measurement noises, we consider a difference
of ±0.1 average loss is negligible), namely, normal condition,
throughput ±15%, and reactor pressure at 2645 kPa. Further-
more, in the other remaining 3 cases, the differences between
then best control system and the proposed one are also very
small although it is not optimal. For example, in the case of
IDV(2) the minimal average loss is 170.35 (CS Skoge) whilst
the one in this study is 170.75. See Table III for more of such
results.

V. CONCLUSIONS

A retrofit SOC control system is configured upon an ex-
isting control system (CS Ricker) for the TE plant. In the

TABLE III
AVERAGE COST [$/H] FOR 7 OPERATING CONDITIONS

CS Ricker CS Skoge This paper
normal 114.00±3.45∗ 113.94±4.45 114.04±8.17
IDV(1) 111.62±16.15 111.49±7.76 111.63±15.84
IDV(2) 171.85±5.13 170.35±5.88 170.75±8.70
throughput +15% 147.15±21.69 143.15±20.61 141.54±22.44
throughput -15% 93.41±11.48 90.35±8.78 90.27±11.81
40 G/ 60 H 130.85±25.76 130.60±20.17 131.23±26.78
rct press 2645 kPa 137.68±30.07 142.89±35.02 137.78±30.68

∗ a± b: a is the average loss and b is the standard deviation

independently configured SOC layer, the derived measurement
combinations are controlled to achieve better self-optimizing
performance, by adjusting set-points of yA, yAC and Trct.
The optimality of the designed control architecture is validated
both through steady state analysis and dynamic simulations.

However, there are still some aspects remained unsolved
in this paper, for example, self-optimizing control for other
5 operating modes for the TE process, and the measurement
subset selection problem for constituting self-optimizing CVs.
These challenges will be further investigated in an extension
of this study.
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