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ABSTRACT

Approximate integral equations are derived for the
compressible laminar boundary layer with arbitrary pressure
gradient and arbitrary suction or injection velocity through a
porous wall. Reasonable agreement is obtained when particulsr
solutions to the integral equations are compared with solutions
by previous authors. |

Experiments in an incompressible turbulent boundaxy
layer over a porous surface reveal two laws for the inner and
outer regions; laws which correlate previous experimental resulis.
The laws are used to calculate shear distributions and variations
of slkin friction with Reynoldé nunber and enable Preston tubes to
be used to estimate skin friction over a porous surface.

The outer region theory is extended to boundary layers
in small pressure gradients and at separation. The only universal
functions required are obtained from zero pressure gradient flow,
No other constants are used to calculate the mean velocity profiles
for boundary layers in small pressure gradients, with suction or
injéction and at separation or reattachment. The theory agrees
with the available experimental results for turbulent boundary
layers in energy equilibrium,

Experiments in fully developed pipe flow show how the
mean flow is altered when there is suction through a porous
section of the pipe. An approximate theory for the inner region
compares reasonsbly well with the experiments for small suction

velocities,
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1. Introduction

In order to predict the skin friction or the heat transfer
at the surface of a body moving through the atmosphere, it is -essential
4o know the behaviour of the boundary layer over the body. The growth
of a laminar boundary layer may be controlled by applying suction
through a permeable surface or through discrete slots in the surface
in order to prevent separation or deley ftransition to turbulent flow
with its associated high skin friction. It may be necessary to heat
a surface to prevent icing or alternatively to cool the surface to
prevent it from reaching high temperatures. The high temperatures at
high Mach numbers are due to the conversion of kinetic energy into heat
energy by the shear stresses in the boundary layer. An effective
method of cooling heated bodies is to inject a gas through a porous
wall into the boundary layer, thus modifying the velocity and temperature
profiles at the surface. A very small velocity through a porous surface
has a significant effect on the boundaxry layer skin friction and heat
transfer rates. Velocities of the order of 0+.001 of the free stream
velocity, injected into a laminar houndary layer can reduce the heat
transfer rates by as much as 50f%.

The present work falls easily into three parts. In Paxrt I
the laminar boundary layer is discussed and an approximate solution to
the compressible laminar boundary layer equations with suction or
injection is obtained. Part IT deals with the incompressible turbulent
boundary layer over porous surfaces through which there is a small
suction or injection velocity. An experiment on a porous cylinder in
axisymmetric flow reveals two laws for the immer and outer regions of
turbulent boundaxy layers; laws which are shown to correlate the mean
flow and the shear stress distributions in turbulent boundary layers in
small pressure gradients, at separation or reattachment, and with suction
or injection. The laws reduce to the well known 'law of the wall' and
'velocity defect law' when the suction or injection velocity and the
pressure gradient are zero. In Part ITI an sxperiment in fully




developed turbulent pipe flow, when there is suction through a porous

section of the pipe, is described and the results are compared with
theory.

No attempt is made to evaluate the overall effect on aircraft
performance and nowhere in the analysis has any account been taken of
the pump power required and the duct losses associated with suction or
injection installations. The stability of the laminar boundary layer
is not considered although it is to be expected that injection will
cause an earlier transition to turbulent flow.
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PART I

=)

LAMINAR BOUNDARY LAYERS OVER POROUS
SURFACES WITH SUCTION OR TNJECTION

2. Introduction

There are few exact solutions to the partial differential
equations describing the laminar boundary layer over a porous surface,
and these are for special cases such as the flow far from the leading
edge of a flat plate with uniform suction. A few approximate analytical
solutions have been published and several numerical solutions.  However,
in the solutions the normal veloclty distributions at the wall have been
severely Limited by the transformations used. In the present theory,
an extension of Lilley's method (1959) is used to obtain approximate
solutions when there are arbitrary distributions of the normal velocity
at the wall, the free stream velocity, and the wall temperature, Lilley
considers boundary layers over solid surfaces and uses the Stewartson
(1949) and Illingworth (1949) trensformetion together with the method
of Lighthill (1950) . Lighthill replaces a velocity in the boundary
layer equations by its form near to the wall and quite accurate solutions
for the skin friction and wall heat transfer rates are obtained, thus
showing that the skin friction and heat transfer depend to a large
extent on the local conditions near to the wall.

T1lingworth (1954) has extended Lighthill's method to deal
with variable freestream and wall temperature distributions in a
compressible flow when both the Prandtl number, ¢ , and the viscosity-
temperature index,w , are equal to unity. ILilley assumes the viscosity
to be proportional to the temperature across the boundary layer, but
introduces a more accurate wall viscosity-temperature relationship and
is able to include an arbitrary Prandtl number, which is, however, not
too small compared with unity.

The present theory gives two integral ecuations, one for the
skin friction and one for the heat trensfer rate. In order to estimate
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the accuracy of these equations, solutions are obtained and compared
with those of Donoughe and Livingood (1954), Iglisch (1949), Lew and
Farucei (1955) and Low (1955). The accuracy of the integral equations
is of the same order as that of Lighthill's equations which were for an
impermeable wall.

In the following sections the methods for calculating
incompressible and compressible laminar boundary layers with suction
or injection through a permeable wall will be summarised before the
new theory is outlined.

Chapter 1
A Review of Previous Work

3. The incompressible laminar boundexy layer

The normal velocity at the wall, Y , 1s considered to be
very small so that the Nevier-Stokes equations reduce to the usual
boundary layer equations. For a perfect gas the equations of continuity,
momentum, and energy for a steady laminar incompressible boundary layer
flow in two dimengions, using the coordinate system shown in figure 1,
are

.@..’:..L. 3 é}.[- — G
a3 ay - ’ (3.1)
w o +V§..._U' z*/'{_f. ..a:.lg: i at)
d3x " 3y ‘P 3y* ¢ ox (3.2)
wdT o v 2T = T
and ch + Vo5 B,)’ ?C( ) Pc\ ay ’ (5-3)

W is the veloci‘by' in the %¢ -direction which is in the direction of the
free stream, v is the velocity in ‘the N~ direction normal to the surface,
G is the specific heat at constant pressure, Q is the density, /x. is
the viscosity, /3 is the static pressure and T is the temperature.

The subscripts ; and w Wwill be used to denote free stream end wall
conditions respectively. The boundary conditions are
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U= O and. \i-avw(*x) vhen y=0O ,
and U e Ly a8 f e OO,

The simplest example of viscous flow over a porous surfaoce
with suction is that of a uniform stream over a semi-infinite flat
plate far downstream of the leading edge. The velocity component, vV ,
is everywhere constant and the 'asymptotic suction velocity profile' is

— | — ﬂ»"?(%} : (3.1)

(A suction velocity corresponds to a negative value of Vi .) The
solution (Griffith snd Meredith 1936) is an exact solution of the Navier-
Stokes equations. The corresponding axisymmetric solution for flow
slong an infinite circular cylinder has been found by Wuest (1955).

The boundary layer partial differentisl equations may be
transformed to ordinary differential equations for flow over infinite
wedges, that is flow in which the free-stream velocity and the difference
between the wall axxd the stream temperatures are proportional to powers

given by

of the distance from the leading edge, i.e.
. : &

|

where C ,m, B and & are constents. Flow satisfying these conditions
is generally termed 'wedge type flow' or 'similarity flow'. The
following transformations (Donoughe and Livingood 195)) are 1ntroduced

7= Jﬁ‘ =T-T e =Y (3.6)
Tw—T ,J \)’I.LL‘

where p is the independent variable of Blasius and T amd f are

dependent varisbles representing the temperature and the stream function,

4! , for which |, » 3V v= - oV The momentum and energy
Ix
equations now reduce to the ordinary differential equations

Fl=m(fy - mrl ffT-m, (3.7)
i = “@z:l mf.a v 2eflT (3.8)

and.
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which were solved numerically for the skin friction and the heat transfer
rates by Donoughe and Livingood when there is a blowing velocity through
the wall and by Koh and Hartnett (1961) when there is suction. A
summary of the earlier solutions for wedge type flow is given by
Livingood and Donoughe (1955). ,

Solutions for wedge-type flow have been uged ag a first
approximation in calculations of local heat transfer coefficients teo
bodies of arbitrary cross section (Eckert and Livingood 1953 and
Staniforth 1951). In wedge-type flow the distribution of the blowing
velocity, Vy, , is limited to one of the form, W, ocmwi‘!' , wirich
implies an infinite value of VYw at the leading edge of a flat plate
(where m=0 ), which is ocontrary to the boundary layer approximations.

Iglisch (1949) obtained an exact solution for a uniform free-
stream over a flat plate through which there is a constant suction
velocity. The boundaxy layer equations were trangformed to a non-
linear second order parsbolic equation which reduces to the Blasius
form at the leading edge of the plate. Iglisch used an iterative
process to calculate the velocity profiles along the plate and showed,
that the profiles approach the asymptotic form (equation 3.4) as ac-wse.
Approximate solutions to the same problem have been given by Schlichbing
(1942) , Mmwaites (1952) and Curle (1960). The experdmental results of
Kay (1952) and Head (1955) for a boundary layer over a flat plate with
distributed suction are in agreement with Iglisch's theory.

Integral methods have been used in which a velocity profile,
satisfying certain boundary conditions, is substituted into the momentum
or energy integral equations, which may be derived as follows: the
continuity equation (3.1) is multiplied by LT  and added to the

F+|
momentum equation (3.2) multiplied by uF , end the resulting equation

is integrated from the wall to the outer edge of the boundary layer.
Thus (Wuest 1961)

A i(uf*zgﬂ_) + §r

-w _ 2

du, ?
l.l.': d'x, u, g; i, ¥

(3.9)
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where JC j ( |- m)ﬁ-t ) d
-—~-(r+s>j (- (%) ')d
and ﬁ,;@-—-(rﬂ)f ) 3 'Ju?) dy

When r=0 , equation (3.9) reduces to von Kdrmén's momentum integral

(3.10)
(3.11)

(3.12)

equation ,

e,lw . d (urg) 4 & du, _ v

u, dx Uy "Fuz ’ (3°l32
vhere &, =f,

is the momentum thickness and 9 = j’a is the
displacement thickness.

When f=1{ equation (3.9) reduces to the
energy 'in’cegral equation
W 2d
u” d= ( ) u, pud

where &£= f, »

term,

(3.14)

is the energy thickness end _g = 2d is a dissipation

The integral methods which have been developed usually depend

pon satisfying one or more of the integral equations (3.9) and a limited
number of boundary conditions

The boundary conditions at the outer
edge of the boundary layer are
o=,

Y
3y"
and. the so-called compatibility conditdions at the wall, vhere
= O Vo= Ny and Ty :/1(..‘?..(,{“) , are
, 2 3Y v
.,vw(ﬁ%.) oL db oy v(é_&..) (3.15)
aj W ? dﬂfa a.yi w
and -V é‘i&) =y( Bu)
oy */w \ Bji’vfw

(3.16)
Further competibility equations may be derived by differentiating the

momentum equation and finding the limit as Y=o

For flow over a solid surface it is possible to choose a
polynomial in f’é‘

and evaluate the coefficients by satisfying certain
boundary conditions, In this way a singly infinite set of velocity
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profiles is obtained (Pohlhausen 1921), so that for a particular value
of, for example, the form parameter, H% %{-ﬂ) , only one profile will
exist. Unfortunately this is not possiblé for flow over a porous
surface because the same value of the form parameter can correspond to
any number of combinations of the pressure gradient and the blowing or
suction velocity. In other words a doubly infinite set of velocity
profiles is really required.

Head (1961) discusses the various ways in which sets of
velocity profiles may be built up by using either polynomisls or sets
of profiles from knovn exact solutions. The accuracy of the solution
to a particular problem will depend largely on the set of velocity
profiles wirich forms the basis of the method. A doubly infinite set
of profiles will usually have a wider application than a singly infinite
set,

Head concludes that the prediction of separation, with suction,
using methods which depend on a singly infinite family of profiles
satisfying the momentum equation and the first compatibility condition
(Schlichting 1949, Braslow et al 1951) are not very satisfactory. The
doubly infinite family of profiles which satisfy the momentum equation
and the first and second compatibility conditions (Jorda 1952, van Ingen
1958) are better than the singly infinite methods but are not as
accurate as the methods which satisfy the momentum and energy equations
and the first or second compatibility conditions (Head 1957, 1961).

It would be interesting to know the solution to the boundary
layer equations when suction is applied through slots in the surface
rather than through a porous surface. Rheinboldt (1955) has considered
two cases of discontinuous suction on a flat plate, (.1.) a solid surface
followed by a porous section and (ii) one slot some distance after the
leading edge. Rheinboldt uses a series expansion for the stream function
near the wall which is matched to an asymptotic expansion further from
the wall. Rheinboldt has also extended his method to flow around e
cylinder with suction after a certain angle.
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Finite difference methods have been used by Gortler (1948)
and Schréder (1951) and more recently by Smith and Clutter (1963). The

Ffundamental idea of finite difference methods is that of replacing the
® -derivatives by finite differences, in order to approximate the
partial differential equation by an ordinary differential equation.
Care is required to ensure the stability of the numerical methods.

The method of Smith and Clutber which is based on the method of Hartree
and Womersley (1937), appears to be very powerful and has been used
successfully for the case of discontinuous suction considered by
Rheinboldt.

4. The compressible laminar boundary lsyex

If certain simplifying assumptions are introduced regarding
/u, F and the Prandtl number &, the compressible equations may be
reduced to the incompressible form., If & == and s« oc T so that
/éf’ = /U.,(), , the compressible form of the momentum equation becomes
independent of the energy equation and the skin friction is then
independent of the compressibility effects and of the thermal conditions
at the wall, just as in the case of the incompressible boundary layer.
Thus the ways in which heat transfer and dissipation modify the skin
friction, i.e. by thickening the boundary layer and changing the
viscosity, exactly cancel. Lew and Fanucci (1955) consider the
boundary layer over a flat plate with constant suction under these
conditions and reduce the problem to that solved by Iglisch.

Low (1955) has obtained numerical solutions to the momentum
and energy equations when the pressure gradient is zero, the Prandtl
mumbexr is 072 and the linear viscosity law holds. The momentum
equation reduces to the Blasius form and the energy equation is solved
by a method similar to that used by Polhausen (1921) for the compressible
energy equation with zero transpiration. TLow's solution is for
similaza-i'by flow in which the normal velocity at the wall is proportional
to x¢ 2,
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Young (1948) obtained an exact solution to the compressible
boundary layer equations far downstream from the leading edge of a flat
plate with uniform suction and with zero heat transfer., Velocity and
temperature profiles were evaluated with & = 076, ) = 076 and 1.0,
and for various Mach numbers. (w is defined by Ah z(-;‘-)m ).

The extension of compressible houndary layer methods of
solution, to flow over permeeble surfaces, is complicated if the wall
temperature is not known, because the transformations which have been
used do not transform v in a simple way: +the product of the density
and the suction or injection velocity is often an essential part of the
transformation. However, solutions could probably be obtained if the
suction or injection velocity were allowed o change so that PwVw
were of a certain form, implied by the transformation.

Chapter 2

An Approximate Theory for the Compressible Laminar
Boundary Layer with Suction or Injection

5. The compressible equations

For a perfect gas the equations of continuity, momentum and
energy for a steady laminar compressible boundary layer flow in two-
dimensions are (Lilley 1959)

spu | 3pv _
Eﬁ; + —a-fl =0 (5.1)
W gy 3U« V al& L O‘-ut - j;; é”-b‘:

P - pegr =2 (%) q (5.2
o pu2h *ev 2. ay( 2 (h-(1-9)%)) o (5.9
where f”c is the total enthalpy defined by the equation

h={ 4+ f - (5.)

L is the enthalpy.
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, The boundary conditions to be applied are:
() a8 y=0 , U= O | vau() , T=Tu(®),

() ) (pae W
Sk =0,

() a’G Y= oo, W=UL(, T.-uT(:r) and 55"

where Kk is the thermal conductivity, Qw(®) is the rate of
heat transfer per unit area to the wall and ’Z’w(x) is the

shear stress at the wall.
A stream function, f;i , which satisfies the continuity equation

- ds defined

e[ O A -
e?o Y = Po o (5.5)

where the subscript p refers to the stagnation conditions in the

isentropic flow external to the boundary layer.
If the Stevartson (1949) and Tllingworth (1949) transformation

is used to change the (x,y) coordinates to (X ,Y ) coordinates where
3% -1

Y
X = f( )"‘ doc, and Y = g-'_[-ﬂ dy, , (5.6)
© Jy Fo
the equations of momentum and energy become

3W , vy _hy au._ Po
UW‘PVBY h‘ P! oaY %"‘o (5~7)

wa U3k +vdh = Pov 3 {/u, BY(L -(- "“)......_L)} (5.8)

aX Y
where . is the speed of sound, & is the ratio of the specific heats,
U=23% ema V= -2 . (5.9)
oY X
During the transformation the following relations were used:
2 - 2 g
al? + E,z-‘- W, = aj , (5.10)
- 3%t a. b
(&)= = 28 (52
© Cla Pﬂ
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T U, o
=5 +trl= = 4+ =7 (5.12)
Q’l

The relations be'l:ween w () and U(X) Tw(>) and '-Z'w()() , Ww(2<)
and VW(X) and between Qw(':c) and QW(X) which are implied by the
transformation are:
wE)= UK. %—; > | (5.14)
2y~

(= Qe W), (5.15)
TW(""C} = Tw(x)/‘_‘fﬁw(.%ﬁ )2 where T""( X) ""'/"o (—%—% w ’ (5.16)
and Qw@ﬁ)g Qw (X)__w.&“' ( ') where QW(X)”- k, (%l) < (5.17)

In the present theory, which follows that of Lilley (1959) but
now includes the transpiration velocity, Vw , it is possible to consider
a value for ¢ other than unity but it is not possible to include an
arbitrary viscosity-temperature index. However a more accurate wall

viscosity-temperature relationship will be included in the analysis,

The method is basicelly the same as that used by Lighthill (1950); the
argument being that the skin friction and the heat transfer rate at the
wall are determined primarily by the local conditions near the wall, and
consequently some of the terms in the equations will be replaced by their
values at, or near to the wall. The theory is virtually the first
stage of an iterative method in which a first approximation for certain
terms is substituted into the equationg which are then solved to obtain
a more accurate second approximation.

Baquations (5.7) and (5.8) can be written

Ul + V& = (1-5)u, 9 du. + % (c (5.18)

Lag

23S 38 = ;-cr ulal }
md VS HWYR "o }Y{C‘cw ) (5:29)

a”'h
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where PPo _ = C{X,Y o (5.20)
Fofeb it =)
emd 5= | =N - ‘ (5.21)

Following the ebove discussion it will be assumed that C takes its wall
value and is therefore a function of X but not of Y .

The momentum and energy equations, which are in terms of the
independent variables (X,Y ), are transformed to the (X, ¥ ) coordinates:

292) _ g du! a

Bx)w...". 5;&& + Y U (C(X) 4’ ) (5.22)

35 = Yo 2 (C(x).U2 -0 U'af o
and 98 = Jeo m(c(x),ugw(s + =2 EZFL}) , (5.23)
where Z == U,2--UQ' (5.24)

These equations which are in Von Mises' form, 2re for a
pseudo-incompreasible flow with a density and kinematie viscosity of(’
and V), respectively.

6. The transformed momentum equation

In this section certain approximations will be made to the
transformed momentum equation (5.22). The Laplace transform of the
resulting equation reduces to a modified Bessel equation which is then
solved, and an integral equation for the skin friction is obtained.

A gtream function, § » s introduced such that

@ = Q) '*ww 1 (6.1)

were Y= (Do =a () =-W = dl - (38) (6

(Y is a function of X but is independent of Y .

Hence, using the independent varizbles (X ,$), equation (5.22) may be
written

(B, (ELE @) vels
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e (32)(28) - s Rk 3)-2 g SCELCE
then, at § =0Q, IQ(",» @)dx :::IQ()(‘,C’)GQX (6.5) IJ
and, at @ = %ﬁ fxfa(x‘}@)oi‘ﬂi = O (6.6) ‘I
X £ Jp
and f‘z(x:%)ix’“""oa | (6.7)

since R (X, m) = O .

Therefore, near §= C , equation (6.3) may be wwitten approximately
= 2 6(x §) = wuc & G(x %), | (6.8)
where G(X, @)"‘- 2(%@) + f Q(X,O)dx . (6.9)
©
whilst for large values of @ , G(X, @) has a similar form with i
G(x, &)= 2(x, 3) +fQ(x§ 3) dx’ (6.10) ||
o il
such that G(X, m) = 0. (6.11) ‘
The boundary conditions for G&G(X, é)are
as @-——-‘rm, G(X_,@)W"O,, (6.12)
as X —>O , G("@) —_— 0, (6.13)
x x a
! R 2 SZ ’ i i
G, ®) = U= + { (22 )vudx ..jsx,o.au,ax, .
and as @-"-0, (,@) ) L’(a@) w A ( )J_I‘ (6.14) |

therefore

G(x, @) U(O) U +j hu au éx f(éz"w dx (6.16)

From the definition of S ,(equation ( 5521)) S(X',‘O> = |- %ﬂ , (6.15) ’
‘ ,
o!d I

Expressions for U amd 22 which are accurate near the wall are now
substituted into this equation. Following Fage and Felkner (1931), the
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expression for the velocity, {J , near the wall is

U= Twx).Y | (6.17)
Y Ao 2 \
or since § = ‘- UdY' = Zw®. Y~ 4 (PW(X) , (6.18)
Jo 2
en = 2'2’;., s 'é.' K
th ino ( /%!X} @) , (6.19)
and (_r_?js__) = - 2Tw(x) . (6.20)
Y R

Thus, equation (6.8) is
ke
3 elx 3) = /2w CE &7 3" (X
- 6(x, %) A/ff‘;f.-w $ Bé‘g( .3) (6.21)
and the boundary cond:.t:,on at @w-o is

X
ckd) =)+ f b U g 2 u) § - (22 Wl o’ (5.2
@"'O /uo (») /‘a
Using the Laplace transform notation f( I,J@) - ‘S‘c::'th(t é) dt (6.23)

and the condition G = 0O when t=0 , equation (6.21) may be writben

| PG~ §* fgz : (6.21)
where t = J (_# 'Z‘w(x').Cg)t dx’. (6.25)
o P"Q

Equation (66) of Lighthill's peper (1950) is similar to the Bessel
equation (6.24) and both satisfy similar boundary conditions. The

solution of equation (6.2.) is thus

- G Gy B Ly3HE)
SPQEEINGHE)

e 2 )W)
where Gégowu‘(0)+jﬁﬁ, du, +J—-g w(X}Vw of X , (6.27)

wk

o hy o Ao
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and I3(—) end I’:. _) are modified Bessel functions of the Tirst
kind, “Now G- O as CB ~e- o0 | therefore, from the properties of
Bessel functions, the coeff‘:_c:.en’cs of I_,?.g and I% must be equal
and opposite. I—Ience

e 3
&~ =2 C 4“) Tw(t) (6.28)
g=o 0% (s )/o-o
This equa'blon is inverted by the Convolution Theorem to give

U, (O) j hw(&i JU.(}('}C[)(_' . E_ f’&fw‘(x’)f"w(x’)- dx'
d X

P(:’)(f’/‘) jC(ﬁTMx) (f (?:w(z) C(z). dz) dX'. (6.29)

This is the integral equation for the skin friction in the pseudo-
incompressible flow.

7. The transformed energy equation

If the expression for (4. in equation (5.1k) is substituted
into the equation for the total enthalpy (equ. 5.12) then

h, = (i+3*‘ U, )-:. (7.1)

Therefore the transformed energy equation (5 °23) can be written
’Ef-!

2O (B 50n) o

When o~ = ! the right hand side of this equatn.on is zero. TFor other
values of o the expressions for U and ??\‘.zl from the solution of the
momentum equation could be substituted into the right hand side and the
method of variation of parameters could be used to find the complete
solution of the equation. Bernard Le Fur (1959) solved the equation
in this way for incompressible flow and thus found the heat transfer
correction term to allow for the recovery enthalpy. However for
incompressible flow the right hand side, which represents the frictional
heating term, is usually neglected.,




For simplicity, the full solution will not be found in this
way. As a first approximation it will be assumed that the changes in
U and C between the cases of heat transfer and zero heat transfer are
negligible, This is the method used by Lilley (1959), and quite
satisfactory solutions were obtained.

The boundary conditions for § are S(x,w): O and SO
ag X—= O Near to the wall, § has the form

S, = |~hw 4 me(x)A/ﬁ , (7.3)
Y=o h, h, Mo T ()

&

vhere (Qw(X) is the rate of heat transfer to the wall,

(Qw(x) =k, ( ?_:.r)w > Bquation (7.3) is derived by writing the
Y IV

total enthalpy in the form

hywo =hw + Y& (2D) )

3
wi
and substituting the expression for Y from equation (6.18).

If Sq(x} QJ) is the complete solution of equation (7.2) when
there is zero heat transfer, and S(X,lp) is the solution with heat
transfer, then S,()f ,{?)) (whioh is defined §,= 5-95, ) is the
solution of the equation

(p-v-n»o (7014-)

BS| — \)0 a‘ as )
5%~ & C "é?p(u “5@“’ (2.5

5, satisfies the boundary conditions

S0 as %‘wvmo and as X-==0O ,

w8 =hu(-h® ~Qu 28 (7.6)
h, h, ’\//“-c Tw(X)

as § (::(P_(pw) e "‘wa is the wall enthalpy with zero heat

transfer,

Equation (7.5) in terms of the coordinates (X, @) is

,.?E:) Yw 495 o % c(). 2 (v s | (7.7)
3P/ Ax o 33\ 233/
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which will be solved by a similar method to that used for the momentum
equation: +the forms for |} and 93, , which are accurate near the
wall, will be substituted into equa%:.on (7.7). Now equation (6.19) is

T &%
Uz oo =af 522 o A o[ &] (7.8)
and from equation (7.6),
33 - me(Xz/ _L “‘"Ji
E2 =0 he N Ml 2 @ (7:9)

therefore equation (7.7) may be written

&VWQW,/ v @uas, _

"’\, Q/é‘- ?w(x) X
2% 3 /2%
N AR ON Robitahh -] ( 3s, ).
« EQ, C /40 >3 @ 5% ) (7.10.)
c . A
vt ,_,f /24, %w(@). dz (7.11)
s f’é & /-L
and F(X) = — " Vw QWPQ (7.12)
h,(_'l/“ T
then equation (7.10) élmpllfles to
F(t) BS' (@’ 23, (7.13)
or in the Laplace transform nobtation (equ. 6.23)
— -3 - b -
F(h.&%=p5 - 2 (d*2s.)
la’) 4 P ’ a@(.&. a@) (7"111')

The homogeneous form of this Bessel equation is equivalent to equation
(21) in Iighthill's paper and has the solution

5 T (1A 4 b, (2pEEA
- ' . i a2 &
5= o I~§(':_,;'F T ) * 5T é(aP ¢ ) - (7.15)
where @, and f:sq' nust be determined from the boundary conditioms,

The complete solution of equation (7.1)) will now be found by
the method of variation of psremeters (see for example Piaggo 1952).




31

A solution is assumed to be

8, = P(3)3, +Q(®).35, (7.16)
where §zm éq 1. %("‘}) (7.17)
Pu— “5"'%'7 T
Sy = 07 1 3(‘@ (7.18)
and -4 g (7.19)
ToseeT ‘
The equations to determine P and G are
- -
d
';E% N S“E "'CB"'"‘-—"‘"fl- (7.20)
t a. 3352 '
and 91% = §g @ﬂﬁ , (7.21)

d¢ S, §3"' S; gz
where the prime indicates a differential with respect to é . From
equations (7 17) and (7.18)

505, 515, = 85 {1,6) T4 () - L@ 13) ) |

Now the Wronskian, w (Ig(%), I"?BL(%)) (t Idi(sg‘)l,sa.(%) —L;( 9 I"-'g (g)
is equal to — 2 Sm T" (BErdélyt 1953), and therefore
§,5,- 8,5, =-9 {m% Sin 2. (7.23)

Equations (7. 20) and (7.21) may now be written

SIMCELRENOR 2 (7.2)

3 SinTl/3
and Qw-f (%2'"’ 1 (ci/)c%‘*o@ (7.25)

3 Sin W
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The complete solution of equation (7.1l) is obtained by substituting
(7.17), (7.18), (7.24) and (7.25) :m’uo equa"c:z.on (7.16). Thus

5(0.8)= 8" 14E)(2E.) f 1,(q)3°d% + 3 14(9) BH -

3*3 A

)J Ti(q). 8 "3 + 31 ISORION (7.26)

35«r Ffz

51, (Ent

where F‘\( f‘) and. B(})} are to be found from the boundary conditions.

As -~ oo then § -=0O , therefore from the properties of modified

Bessel functions, the coefficients of I*é. and I“"é must be equal and
opposite. Hence

e J< I46)-T4@)dy + A+ B =0

or —-% ‘E’—'%’”%fwué(ﬁ/)d% + A+ B=0C (7.27)

vhere K .L((Z,) is a modified Bessel fumction of the second kind., From
Erdelyl (1954 ) the integral,

[ Kolpe)< de = 2T E (o a i) (E - 4),

providing (ué. -1»9) DO and ?70 , and therefore equation (7.27)
reduces to

“IFE =

..% P(%)r@_);, F+A+8=0 | (7.28

The boundary conditions at the wall are:
¢=-o , S= hwo (0 -h () = R (7.29)

h)
4.
and $* 25 me ' =F . (7.30)
% Dt

( FQ and F3 are defined by these equations). As @w O equation
(7.26)reduces to
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’.’s
'3, (‘3‘9) A (w)
and its differential with respeot to @ reduces to

5735 - (_..)* 4
2%
and therefore from the bo md.ary conditions (7.29) and (7.30)

A =(2)sT(R)pe F(F) ;
s B= f’er’(")( )....

The expressions for A and B are substituted into equation (7.28)
which is rearranged to give

- 4 L = L A
=(2)3 (3.) g ...(3”.)31“"-» L3
SORCIROMOT L
rcs)
By the Gonvolution 'l‘heorem the inverse transform of ’93 F is

HE = day (et 5( 250 + sLIRE)) k.

vhere & is the Delta function (an impulse function). Equation
(7.11) is used %o transform :[‘rom the € +to the 'x-— coordinate, Thus

P, = @ (e oF (210 j ( j T dz) d d (b he) o

where the expressn.on is vml‘b“ben :Ln o't:.el’cges form :f'or short‘ness
Sm:.larly,

’,“'5]:.:4:: , [(fc?ﬁdz) Vwa cly.,
nx ) ?f*o)

and therefore the inverse transform of equatmon (3.21) is

Qw(x)~~“()°*3"'""‘) @) 20y d2)° VaQups dx.
FES) (3f»oﬂo'ff J @) ok

o <%,
-3 tw /‘o) h, f ( f c(z)’tw‘(%)&i)s 5‘;(&—"3}‘:&1" M

[}

r(%) o8
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This is the integral equation for the heat transfer rate to the wall
in the pseudo-incompressible flow, and it will be discussed in
scgtion 10.

8. The incompressible boundary layer

When the flow is incompressible the integral equations for
the skin friction (6. 29) and the hea‘b ‘tr'msfer rate (7.32) reduce to

V. o
U.?(m)w.g.if/‘r %, | (f &cf,z) ?j’w c’.cx: +ﬁ Ve Ty de, (8.1)
and Qw('x)““ -k :a__ﬁ) o ]( 2 da) S iTu(e) -

7. T3)
("'ﬁ)g "(f}"z [ ([wtday™ Vv«@w oo, e
0 3, ’t'
Where ¥ is the temperature (on a temperature scale with the free
stresm zero). In obtaining the incompressible equations, it is
assuned that /J. and. P are constant, and that the frictional heating
’ce:cm , in the energy equation (3.3) is negligible.
PCP( ay)

8.1 Wedge-type flow

Equations (8.1) and (8.2) will now be compared with the
known exact solutions for wedge type flow (Donoughe and Livingood 1954),
For similarity or wedge type flow, the free stream velocity, iL,(ac} ,
the skin friction, 2w(X) , the blowing velocity, vy (x) , end the
local Nusselt mumber, 7Y, (), may be expressed as powers of ¢ as
follows:

m
w(x)= cx , (8.3)
| am-
Tl = Kix™ 2, (8.4)
i

Vw(’:(:) = G%? (8.5)
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maitle
and  Nu(e) =N =T | | (8.6)

where the local Nusselt number is defined

s (o) = — Qui(=). % (8.7)
k T

and M 1is the pressure gradient parameter and & is the wall

temperature gradient parameter:

€= X ij-(%) i Tw(x) = Byx% (8.8)
Tw X
(e, K,G, ;:I and B, are constants.)

These conditions are the same as those used by Brown and Donoughe (1952),
Emnons and Leigh (1953) and Donoughe and Livingood (195.), They are
the conditions for similerity between the velocity and temperature
profiles when the Prandtl number, o= 1 .

It is convenient to write the equations in terms of the blowing velocity

" » and the Reynolds

paramneter, ch , the skin friction parameter, Tw

number, B, , vhere

l

T
fo=__2  Vu(x) — - Vw
‘ﬂ’* el “ (LL (). \)) Qe (8.5)

m+l u.
)= %, (m)(PuB/*)Ji - ;EL&/“ (810
end Ke = %U-t : (8.11)

Equations (8.3) to (8.7) are substituted into the integral
equations (8.1) and 8.2), and after eveluating the 'Beta type' integrals
(Dwight 1960), the equa’bions reduce to

| + (’”"‘”) fufur= " (1) rEIrERES)
W 3"(m+;)°¢3 r'(‘é’) p(uiz :3 )
wn MR =l RF) /5 | (8.13)

7

(8.12)
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u/ <
% % 3(m+l) 2 (&) N( ——*"m ) e

3/3 f‘(%%") Mgy * 1)
3, % 4 o
s D= B (M) T(E) F(ﬂ“jg(m+. 1) (8.15)

7
31/3 2” rl(?;m«rfb * %>

When Vw =0 these equations are identical to those obtained by
Lighthill (1950).

If the skin friction parameter, f‘: , is evaluated from
equation (8.12) for particular values of §,, end M , end compared with
the exact results of Donoughe and Livingood ,then quite large errors are

where (m R;%)Vw=o =2

apparent ranging from &% to 24%. One reason for the large error is
that it contains the combined exrrors of the blowing 'herm and the zero
blowing term. However an improved solution for JCW is ob'ba.:xned if
we assume that equation (8,12) is only used to determine £ fw , the
difference between the skin friction with blowing and that without
blowing, i.e.

A}c” (3( ' FROM ECw, ?.li‘."(ﬁ/’)ﬁau 812 WHEN Y, =0 °

The variation of the skin friction parameter with pressure gradient and
injection parameter, )Cw , evaluated in this way, is shown in fig.2.
The above correction has been used for these calculations only. It is
not used for any of the other solutions. The solution tends to diverge
asm-—-> ¢, This is due to the similarity condition imposed on Wy ,
i.e. V= ch'r“ , which implies an infinite blowing or suction
velocity at the leading edge when the free stream pressure gradient
parameter is less than one. The present theory is perfectly well
behaved when there are realistic blowing or suction velocity distributions.
(This is shown later in this section.)

A more accurate and more satisfactory similarity solution
witich uses a better aprroximation for the blowing velocity term in the

momentum equation is presented in section 9.
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The Nusselt number has been evaluated ugsing equation (8.13)
and its variations with different pressure gradients, wall temperature
gradients and blowing velocities are shown in figures 3, L and 5.
During the calculations the exact values obtained by Donoughe and
Livingood were used for ( s K %“) Vo (2} = O and for _{;: .

Injection through a porous wall modifies the veloclty profile
by reducing the velocity gradients and the shear stresses. The
tenperature is coupled to the velocity profile through the convective
terms (and the frictional heating term) in the energy equation.
Injection reduces the temperature gradients so that the flow near the
wall is closer to the wall temperature and the heat transfer rates are
reduced., The smaller shear stresses near the wall resuvld in a
reduction of the viscous dissipation or the frictional heating and
therefore the heat transfer rate to a cool wall would be reduced.

8.2 Uniform free stream snd constant blowing velocity

If the momentum equation (8.1) is partially inverted (see
Appendix A) then

A R -Z |
?w(x)?-'.(flﬂ ’ »/}Zf([ﬁfw%da)ng?w cl_':ac, +

rE)a’

"'ﬁ""f (j 'way‘h o= ).% d(u?(:x:.)) } (8.16)

where the last term is a Stiel“cjc\as integral and therefore has a value
when the free streem velocity, {L, , is constant.

When the blowing velocity, Ww , is zero and there is a
uniform free stream, then from equation (8.1) the skin friction is

L
Qyw(ﬁﬂ)x KQ:’CE

3y Vi cs
and K = _LL,%:?: a(/"f)) ,

7% ()"
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Equation (8.17) will be used as a Tirst approximation to
t‘w@@ . On substituting (8.17) into the right hand side of equation
(8.16) and integrating, the second approximation for 'Z,’w(m) becomes

O w(&ﬂ_f v ) + 4 S

o

APPROX. f‘("') (8.19)

Now the dimensionless form of the flow through the wall is
defined by equation (8.9) as

}
f = ’”‘M/ﬁ where QQ:“}.;L..LE.F
1
and. therefore equation (8.19) nay be WH tten
(Z‘w)znd porron G %"% )K : | (8.20)
where RQC 1= - 2/¢fﬂ(“§;) F(‘%‘Z fw . (8 is not a function of ¢ )
3V

If equation (8.20) were substituted into the right hand side
of equation (8.16) and integrated, a third approximation for ?,’w( ‘3(’.)
would be found; and if this procedure were continued, an equation for
Cw(oz) of the form

w(@”%ﬁ: (l Q:}ca) b. (me/)) 'x.‘/q{{»} (8.21)

could be obtained.

’_‘L‘he first two terms will now be considered and this implies
that R'Jr " is small, i.e. the velocity through the well is small,
The equation for ’&’w(m) thus obtained will be compared with the
calculations of Iglisch (1949) end Curle (1960).

In order to find the value of @y in equation (8.21), the
expression for ?JW(’X) will be substituted into the terms on the
right hand side of equation (8.16), Three different approxmﬁ*tp»j “
methods will be used. ’
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Pirst Method

" Z“* 3/4 @
jfw dz will be put equal to A w(:x:) -,
wh::.ch is correc“b only when Vi =C . On substituting

W(}:) Woae (l g Roe ) into the integrals of equation (8.16):

(f %é%) Vo Tucle, mvw( ) {(‘L)P(”) J‘%W(S 22)

3

(f /'J.dz) = C (’5) {/\ . (!+ as R m,), (8.23)

Hence on substituting (8.22) and (8.23) into (8.16) then

Tw(x) = K’"nc:’f(! +(% az-1) R*xy’) . o (B.z)
Therefore from (8.21) and (8.24) Qs = a/q. and so R
T = KCH (- R ) L (8.25)

Second Method

L' the approximation which Lighthill (1950) suggested is used,

i.e, % L J{
. L’wazol% ﬁb—.’,(ﬂc‘x,)t“w__ o , (8.26)

then from equation (8.16), the value of (Z»Jw('xt)when Vw =0 is
modified o

-

’Z’_(’Ja)w——f{,zm 2 , (8.27)

‘5‘ '4
where H (/U-P) 3 / 5 . , o (8.28)
and. equation (8, 21) is mod:fled to

V() = K, m’“(l - %(&x@) , (8.29)
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[}
£ Y
2
where P, 0% = —P(F)I (3‘7) foo = —1.31 ch : (8.30)
Equation (8.29) is substituted into equation (8,16), Thus
%0 -
%= k(e g (egm) R )
and so from equa;“bion (8.29)
2_T% % Z
T =K 2 '(!v;;ﬁ,ﬂc ...... ) . (8.31)
Third Method

In the first and second methods the approximations were used
to evaluate both terms on the right hand side of equation (8.16), The
second term can however be evaluated withouh using an approximation.
The expression which is obtained in place of (8,23) is

2(;) Ka:w:: <I+~ -gﬁm ..... ) S (8.32)

and the final equation for %w ( OC) is given by

Gl = 'Kémwé.(z % RaE..... ) ° (8.33)

In order to compare equations (8.25), (8.3L) and (8. 33) vwrith
previous work, the function 'g is introduced such +that

§' - Vw x| | (8.3)
@y 2 Cn
From equation (8,20) 0 = 3§i‘ ,» end from equation (8,30)
Rx = 2-62 %'/2 . Therefore equation (8.25) is
,
(x) - 1 +2058" o, | (8.35)
Koc = MEE

equation (8.31) is ¢ (’Jc) = |+ | 96%'/'1 ey 982fw » (8.36) |
PP

K’oc 3 ;%!40-3%




L
and equation (8.21) is Twlo) |~|--'l?_~5%2 = | + .I‘QS:S:WU_ .
Kifx‘i ' L 1
15143 (8.37)

These skin friction solutions are presented in figure 6 and compare quite
well with the theories of Curle and Iglisch.

9. A more accurate sirilavrity solution

=

The approximation for W which was used in section 6 gives
reasonable solutions when there is a realistic blowing distribution.
However, in similarity flow, the blowing or suction distribution of the
form Y, o :;e:(%:!' , which implies infinite velocities at the leading
edge, mathematically requires a better approximation for %*— in order
that the skin friction solution does not diverge as m-—e O ' .

In this section a more accurate similarity solution of the
nmomentun equation for incompressible flow is outlined, More terms are
considered in the series for %3;’-*1 , and the boundary condition S ..o
as @-‘" o is satisfied, ¢ —a—ﬁ

The golution for i vhen Vy=0Q is derived in Appendix B
and it is shown that an exponential tern, uﬁ(‘@@% o ') , ensures
that 9% —e- (O as @ —— O, This exponential term is then used
in the approximate series for BE when there is suction or injection.

The details of the me%hod, which is very similar to that used
in solving the energy equation (section 7), are given in Appendix B3.

A geries for % of the form

L 2 h
%%,,(E + gg‘%/z-i- B3 )ax {gif ) (9.1)

is used in place of 2..?,1’1‘..._
section 6. The Lapig:cg Transform of the momentum equation is again
reduced to a modified Bessel equation and the method of Variation of

Pavameters is used to find the particular inbtegral, Finally, after

which was used in the original analysis in




taking the inverse transform, the following equation for the skin
friction is obtained:

= 21/3 l—'("“ﬁ P(%) ' ( " )'4/5
3(m+l)%3 (Jw)i"‘ Wm+3 \

\ G o/

may [ERE 2%, (mEROD) po

3m+& p(i’.2m+“§-) /'5 C# £ (]Sm +5)
Im+3 Am + > (m"'

% v
) 2 ~(m+o AR A
(.L.) F(M-m +6) JCH %y \ 2
(9.2)

The skin friction parameter, .fv: , has been evaluated fronm
this equation (by a 'trial and error' method) and is presented in
figure 8 showing the variations with the pressure gradient parameter,
mM , and the blowing velocity paremeter, JCW . The solution for _-Fw
when fw is zero is the solution obtained by Lighthill (1950). The
curves compare reagonably well with the exact solutions obtained by
Donoughe and Livingood (1954) and Koh and Hartnett (1960).

10. Solutions to the compressible equations

Equations (5.14) to (5.7), which express the pseudo-
incompressible forms of velocity, wall shear stress and heat transfer
rate in terms of the original compressible forms, are used to change
the integral momentum and energy equations (6.29 and 7.32) into their

compressible forms. Thus
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mere = (1 + 5= M(x))'z(ﬂ

Convem.en‘b dimensionless forms of these equations are il

obtained by introducing a blowing parameter, F , a skin friction
parameter, F-w” , and a heat transfer parameter, S (:x:) which are

defined: Wl i
= |
» (10.3)

Fu(>) = "‘?-?wvw( = /‘La) ) = g—%:%&%(%)
F (%) = Zw<3 U«i‘, )fi ( e =Pw in( :;Y'%j (10.4) r

?&U"o‘ Ol
ww! Al
and S(ac) (-JTANTON N“) QQ} (
_(_Qw(=) ) {Pmu-a‘x __,___,%i (10.5)

Pa. a(‘?x (‘i‘ﬁ) l"l (PO) }\f /U'm wa .

where L is the enthalpy b= L+ W / ) and the subscript &
denotes s constant reference condition in the isentropic flow outside



the boundary layer. It is assumed that the viscosity ~ tenperature
W . )
relationship is Ak, «¢Tw , vhere W is a constant, and that & ,

the ratio.of the specific heats, is 1-L4. Equations (9.3), (9.L) and

(9.5) together with the relations,

Jo- 3 TR RN
Cw=fenle = (T u(_‘;:,)
/U'n iw Tw Lw
from equation ( 5020), and for isentropic flow
2
TAA Lo
’ % Sf?.
and. o ([ 4 £ )
fo

are used to change equations (9.1) and (9.2) into the dimensionless

forms:

M(o) +f v "‘W@ j‘Fwa(m) doc, 4

s

(10.6)

(10.7)

(10.8)
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These equations may be solved by methods similar to those
used by Lilley (1959). However at present only the simple solutions
for flow over a flat plate will be considered.

When there is a uniform free stfeam and constant wall enthalpy,
equations(10.9) and (10, 10) reduce to

o -4
g=-j For Fyw o2, jF;;
2, (...) Y.

Q

"I 2) d=x, (10.11)

and S(DC)%*E)I ‘f}C (f (Fw Qo‘z) +
P(g 0«3
.L.

" 356\3 Fu f(f zob)i{Swa }dx,.

" ﬂ(@ 23 5, F’ u it c, (10.12)

These are equivalent to the incompressible equa‘b:z.ons and 'they will have
similar solutions providing that f "’ fw and Ty QQ 3 in the
incompressible solutions are replaced by Fw FW and S{x)i‘or the
compressible solutions.

When the suction or injection velocity through the porous
surface is constant, the solution to equation (10,11), by comparison
with equations (8.36) and (8.37), is approximately

() = Fw = 1 +092 Fy (10.13)
tw(m)vw“a EFW’ j Yw=0
or i +§'25_Fw . (10.12)

Lew and Fanucci (1955) present a curve for the skin friction with
uniform suction for the compressible boundary layer. Tw

is plotted against EE T : Pwiw Ly

< Tw
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vhere C ﬂ;—l— and §=== %)2<~%§ . These terms
are related/f;f ’;:v and Fw“ by the équa‘tio;ls:
7
= 0w EF"W (10.15)
AT

and T, ._[ h ,f— Fu - (10.16)
JER ()T

In figure 7 it is shovn that equations (10 13) and (10.1%) agree
resgonably well with Lew and Panucci's curve,

The similarity solutions of the compressible boundary layer
equations for a uniform free stream and constant wall enthalpy, by
comparison with equations (9,2) and (8.1L), are

2 !"(" F"Z -4*Fwﬁq “*”( ) usf‘(a) (3) u:»sr,( ) (10.17)
33
-

ana k. Qe. “"(kiw@ez)vw 0‘( (t{%g(f)‘?aw ) (10.18)

f' o3 _
where E- V:B..% and kh is the Stanton heat transfer
coefficient ziven by f{ - - Qw (’JC) .
L=

(20.19)
Cti(hy—hw,)
The variation of the skin J.I‘lC'thIl parame’cer, calculated from
equation (10.17), is compared with those presented by Low
(1955) and Brown and Livingood (1952) in figures 9 and 10. (In Low's
paper (fw)mw'” 4 Fw and (f'w);.aw"' Fw :)  The
reduction in the Stanton heat transfer coefficient i th injection is

shovm in figure 11,

11. Résuné

Approximate integral equations have been derived for the
compressible laminar boundary layer with injection through a porous
well., The equations for the skin friction end the heat transfer to
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the wall reduce to those presented by Lilley (1959) when the transpiration
velocity is zero, and to those of Lighthill (1950) when the transpiration
velocity is zero ana the flow is incompressible, In order to estinate
the accuracy of these integral equations, solutiong are obtained for

the special cases which have been solved by previous authors,

The incompressible forms of +the integral equations have been
sélved for similarity floy ang for flat plate floy with continuous suction
or injection, and the solutions have been compared with the known exsct
solutions. The uniform suction or injection solution is close to the

skin friction solution, although the energy equation is still well
behaved, It is shown how o better approximation for 33 removes
the singularity ang gives a solution close to the exsct solution,

If improved velocity ang temperature distributions nesy the
wall were used, then the accuracy of the method would be improved, A
suitable improved velocity distribution is given by Spalding (1958).

The present theory (Stevenson 1961) has been extended Dby
Craven (1962) to include the effects of foreign gas injection. Injection
through 2 porous wall adds mass to the wall region but not momentum
in the x -~direction, The injected 8as, which is accelerated in the

friction ig less than with the same volume of airp because the mags to
accelerate is less. However if an equal mass of g light gas is
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injected then the velocity gradients near to the wall and the resulting 4
skin friction are less then with air injection. Some of the curves |
(Craven 1962) showing the reductions in skin friction and heat transfer :
at a Mach number of L, using helium and hydrogen as the injected gases,

are compared with those for air in figures 12 and 13.

A light gas injected through a wall diffuses into the boundary
layer but its concentration near the wall is high and therefore the
density is low, and the effect of pressure gradients will be similar

to those which occur with a hot wall, i.,e. near the wall, the effects
of pressure gradient will be enhanced because the lighter gas will be
accelerated or decelerated more easily by the external pressure gradient.




49
PART II

TURBULENT BOUNDARY IAYERS OVER POROUS SURFACES
WITH SUCTION OR INJECTION

12, Introduction

There is no adequate theory for shear flow turbulence
and the semi-empivical theories which have been published require
experimental results to determine whether certain terms are
constants, and if so, what values these take. There have been many
experiments in turbulent boundary layers over solid surfaces but
there are relatively few which include suction or injection and 3;
these show considerable scatter iia the results,

In chapter 41 there is a review of the experimental results
and thearies which have been published, but the review does not
include a discussion of the approximations which are used in order
to solve the boundary layer equations, because it is more convenient &
to discuss these when considering a new theory for turbulent boundary
layers in chapter 6,

Hertnett et al (1960) discuss the experimental results of
Mickley and Davis (1957) far incompressible flow and those of
Tenderland and Okuno (1956) and Pappas and Okuno (1960) for
compressible flow, and compare these with the theoretical predictions
of Dorrance and Dore (1954) and Rubesin (1954). Hartnett suggests
that the skin friction results of Mickley and Davis are possibly i

low. The present experiments in an axisymmetric incompressible il

boundary layer over a porous cylinder were intended to check those 0

of Mickley and Davis, The experiments, which are compared with the
exlsting theories, reveal two laws » one for the inner region of the

turbulent boundary layer and one for the outer region., The laws are
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valid for both suction and injection providing there is no pressure
gradient, and they reduce to the 'law of the wall' and the 'velocity
 defect law' when the transpiration velocity is zero. The laws are shown
to agree with the experimental results of Mickley and Davis (1957), Black
and Sarnecki (1958) and Dutton (1960).

The law for the inner region is used to derive an equation
relating the pressure recorded by a Preston tube on a porous surface to
the local skin friction. The law for the outer region is used to
calculate the variations in skin friction with Reynolds number for a
range of injection velocities,

The law for the‘ outer region with suction or injection is a
special case of a more general theory for the ouber region of turbulent
boundary layers which is derived in chapter 6. The new approximate
theory carrelates the mean velocity in the outer region of incompressible
turbulent boundary layers in small pressure gradients, at separation, and
with injection or suction through a porous wall, It is probably the
first theory to correlate equilibrium turbulent boundary lsyers under all
these conditions,

The theory initially uses a dimensional analysis to show that
the outer region depends on a function of the form 3(‘ (%‘-; )‘Q) "'f(-hi'%xa),
and not necessarily on a velocity defect term, CLL;-LL) s which has been
used by Clauser (1954), Mickley and Smith (1963) and Black and Sarnecki
(1958). (Q is o dimensionless parameter independent ofj ¢ it could be
a pressure gradient parameter or injection velocity parameter. L is the
mean velocity in the 3¢ -direction and ,is the velocity at the outer
edge of the boundary layer Wherejﬁﬁ ). An outer region which depends
on a velocity defect term is a special case of the present theory,

The theory shows that the outer region equation follows
immediately from the inner region equation if an overlap region is to
exist between the inner and outer solutions, BEven if there is an unknown

constant with respect toy in the imner region equation, the constant can

be eliminated in the outer region solution simply by applying the
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boundary condition at the edge of the boundary layer,
The theory is shown to be consistent with the turbulent shear

stress distributions at separation, and with suction or injection,

Chapter 1

13, A Review of Previous Work

The momentum and, continuity equations for the mean flow in a
two~dimensional turbulent boundary layer with zero Pressure gradient are
approximately (Townsend 1956a)

2udw 4 duv o 3 (WT_GA) 4 3TV _ ydu
o Ay  IXE -V 2y

»

U L3V _ A~
ety T

where W and V are the mean velocities in the oz and Y directions, and
W and V are the componentsof the velocity fluctuations., In most cases .
the term 8 (U.."" V”-) is small, and it is neglected in the following
analyses. It will be assumed that au' and%[ are very small in the

inner region (the region close to the Wall) and the momentum and

continmuity equations therefore simplify to
Vv .%9: 4 2 U‘JV# = v _.._‘31”:_
Sy CN} oy?

duL L o
a  Vw = - 2 : (13,1)
dy = oy

where T is the total shear stress which is the sum of the viscous shear

stress, g__g& » end the Reynolds stress, — pi?’{ﬁ » (The approximations
are discussed in more detail in chapter 6). Host of the theories for
suction or injection are based on the momentum transfer theory of Prandtl,
together with the assumption that the mixing length is proportional to
the distance from the wall, This yields




R (5.2

where | is von Kdrmén's constant. This equation is further substantiated
by Townsend (l956b) who considers regions of turbulent shear flow in which
there is equilibrium between the local Bates of energy production and
dissipation,

In the sublayer, the region very close to the wall where the
Reynolds stresses are assumed to be negligibly small compared with the
viscous stresses, equation 13.1 may be integrated twice with respect to j .
After substituting the wall conditions s the solution reduced to

J¥2 = Ug Log, |+ Ywi
Vo Ve ( ug)' a | (13.5)

where Uy is the friction velocity(aﬁ.ﬂ .

The equation for the inner ttg'bulen‘t region will now be derived,
and it will be shown how this equation reduces to those obtained by
various authors by substituting the appropriate boundary conditions.

If equation 13.2 is substituted into equation 13,1, then

Vw%i = %(K’f(%?)z) - (13.4)

This equation is integrated twice with respect to y s bto give

L.
L LG Y%y — Uy VWl _ c,)ﬁ + d (13.5
K v Vw \ WF )

where € and o‘ are in general functions of \w and tha but aré‘inde—-
pendent of y N

13.1 ZXay (1948)

Koy considers the asymptotic suction case and uses the

boundary conditions
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%ﬂo amd =Wy at y=& .

If these conditions are used together with equation 13.5 then,
C-."'.:Vw(kt N dz—LLOGQ%
e S K S
e Vi 27y
L i {2,
and therefore equation 13.5 reduces to e =|+ ‘_‘_;Z-ZLL'LGG@- (S) (13.6)
] .
This is the equation obtained by Kay, but his experimental results for
suction did not agree with the equation, This is because the mixing
length hypothesis is not valid in the outer region where the boundary

conditions were applied.

-

13,2 Glarke, lenkes and Libby (1955). [ L

Clarke et al write equation 13.5 in the following fighn

L = A+BLOGe (LY L Y o¢] (%‘:"3) .

T, K2 W (13.7)

When V=0 this equation reduced to the accepted 'law of the wall! equation,

Y <A +BLog, (%ﬁ) 1 (15.8)

WU
However Clarke et al overlook the implicit relation between A y Band. V.
(see section 20 for mare details),

5.3 Rubesin (1954), Dorrance and Dore (1954) and Mickley and Davis (1957)
Rubesin and Dorrance and Dore consider the compressible

boundary layer, and obtain integral equations for the sublayer region and !

for the inner turbulent region. Mickley and Devis write the equations in 1

incompressible form, assuming that they hold on either side of a transition

point a‘bj:ﬂ’,,, « At this point the velocities and shear stresses are .

matched | l’gj

A Y=Y, ,U=Ug and QL %—)‘L g(F szt(%f >m- (13.9)

The velocity-shear relationship which is valid in the sublayer ,
and which is assumed to hold in the inner turbulent region, is obtained
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by integrating equation 13.1 and substituting the wall conditions. Hence ;i

P ="¢-Tw (13.10)
Equations 13,9 and 13,10 are combined at J“‘_"fjﬂv to give 5]
2 IS |
U Yy + U z(K(q._%) t
G F W o j ay o (13.11)

If this condition toggther with =i, at y=Y, 1s used to determine ¢
and ¢ in equation 13,5, then il

c==| & d=__rog Y% Qg_t_»gg un-

Therefore equation 13.5 may be written

LOG, ";;-‘J’ Loee”':;% -Q.KU«;; {(ku g <vw~q ) } (13,33

This is the equation presented by Mlckley and Davis.,

(13.12)

Mickley and Davis have published a very comprehensive set of
experimental results of the mean flow in a turbulent boundary layer in a
wind tunnel which had a porous wall 12 feet long and 1 foot wide. Blow~
ing velocity ratios, /i, , which were constant in a particular experiment,
ranged between O and 0,01 and free stream velocities between 17 and 60 feet
per second., A small pressure gradient was present in the experiments but
does not seem to be included in the skin friction calculations, This is
discussed further in section 21 where it is shown that the effect of the |
small pressure gradient increases the skin friction by as much as 80% I
when %ﬁ- = 0,003, although it has negligible eff'ect when there is no |
blowing velocity,

Mickley and Davis compare their experlmental results with |
equation 13,13 by plotting Log(i‘i«") against (H— ) and they show ]
that a straight line of the predicted slope,! Mu.t» s ls obtained and also

that von Kirmdn's constant, & , is independent of Mw . However it was not
possible to correlate the variations in the conditions at the edge of the

sublayer where :I“"'ja. « It was shown that the velocity defect term,
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,only correlated the velocity profiles in the outer region when
Vyy Was zero.

13,4 Black and Sarnecki (1958)

i
If it is assumed that the shear relation of equation 13,10 is l

valid at the same time as the linear mixing length equation 13.2, then A
Cm—{ and equation 13,5 may be written ;

1.
A Lo@e(w = 2 (\;WLL-b u_%)ﬁ +d .
hY Wy

v (13.14) ‘

(As Vi7 O then c!-a—'z\;“-—ﬁ where B is the constant in the no-blowing law of
the wall equation 13.8).

If d is made equal to ..‘ELDGJ(_%:_'tthen i

) ‘
- \Z
U + Vild = (‘_{.V:L LOG, Q_) , (13.15)

2K k/
where L is the constant of integration. This is the equation which Black

and Sarnecki call the bilogarithmic law, The equation is rewritten

L) Ywiiog, .‘j) Lo L‘»l‘)
o, ria u..,L KZLL

( Vw LOG, le') LOG, __}J 5
712

\:wu _J (13.16)

so that the left hand side of the equation contains only the quantities
which are easily measured, and the right hand side is linear in LOGSU'

‘When there is irgection it is convenient to introduce the substitution |

VoV tog Y = Y |
T ,,/ ey (13.17) |

and hence equation 13,16 becomes

| | !
u 2=t - 2) ~ H
G-y =(n-h) +2n, Y (13.18)

where Ny = — t’l(" Yw . LOG, ‘:}.s.;%,_ N (13.19) §
' U«.og .




Ccompared with the velocity (y , The experiments of Black ang Sernecki, “
Mickley and Davig and the present Tesults confirm that K is independent IlJ

deterumined frop a velocity profile without assuming a form pop L s the

13,5 ZTurcotte ( 1960) and Ieadon (1961) _
Turcotte assumes that the shesp Stress in the fully turbulent

Partion of the boundary layer is unaffected by injection ang Suggests g
similarity Parameter V% » (The Subscript ¢ refers to zero blowing
conditions, ) However in : reply to Turcotte!s Paper, Ieadon shows that
the shegr stress assumption ig incorrect, Leadon Suggests that g Proper
similarity barameter shoulg include the free stream_velocity.
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consisted of an 8" long, 4" diameter porous tube which was mounted as
part of a long cylinder extending fromthe zontraction to the working
section of the College of Aeronautics 3 feet x 3 feet open circuit

wind tunnel, which has the fan at the end of the diffuser, Air from the
compressar flowed along the inside of the cylinder, through an inch
thick felt filter and then through the porous tube. The rig, without
the porous tube, had originally been used for base pressure measurements,
A large aerofoil in the wind tunnel contraction supported the cylinder
and there was a small vertical support after the working section.

A material was required, which was smooth as far as the
boundary layer was concerned, and which was porous so that a uniform
flow of air, rather than a series of jets, could be forced through it.
The material, which best suits this specification, is Porosint Grade A
made by Sintered Products Limited. Porosint is a sintered bronze
material with quite a smooth surface because the holes are only about
10 microns in diameter. The material consists of spherical granules
which are welded together at their points of contact, and through a
microscope, the holes in the surface have a sort of bell-mouthed appear-~
ance, The pressure drop across the porous tube was far higher than the
kinetic energy (‘é‘P v,,3) of the air passing through the tube, so that
turning vames were not required inside the tube,

A micrometer screw traversing gear (fig. 14), which was
calibrated to 0,001 inch, enabled boundary layer profiles to be taken on
the top and bottom surfaces of the aylinder at any longitudinal position,
Mean velocity profiles through the boundary layer were measured with a
pitot tube which had a rectangular cross section 0,014 inch x 0.1 inch
and the readings were corrected for the transverse total pressure
gradient by the method of Young and Maas (1936). Hot wire traverses
using a 0,001 inch diameter platinum wire gave the same velocity
profiles as those with the pitot tube but hot wires were not used all
the time because they needed recalibrating too frequently., This was

probably because of the dust in the laborator;r., Traverses using a



58

static tube 0,06l inch diameter did not detect any change in the static
pressure through the boundary layer,

The air flow to the porous tube was measured with an orifice
plate in the supply pipe. The orifice plate calibration was checked by
taking momentum traverses across the end of the supply pipe. A thick
felt filter was positioned in the pipe to simulate the oorrect pressure
range across the orifice. The velocity distribution,‘lw(ﬁ:}, through the
porous tube was estimated with a hot wire anemometer when there was no
flow through the wind tunnel, |

A Betz manometer was used to record the pressure difference
across the orifice plate and two Chattock gauges were used to measure
the free stream velocity and the pitot tube pressure.

The Preston tubes which were used consist of a tube 3 inches
in length and 0,064" outside diameter soldered onto a 0,004 inch thick
curved metal strip at the downstream end (see figure 15b), The tubes
had a very slight curvature so that an elastic band, at the downstream
end, held the mouth of the tube against the model,

Pitot and static traverses in the working section showed that
the velocity outside the boundary layer was constant to within 0, 35%.

Pitot tube traverses in the boundary layer on the cylinder
showed that the mean velocity profiles changed slightly from day to day.
A series of Preston tubes around the cylinder showed variations in
(P"Po) of &10% (fig. 15c). ( P»—R) is the pressure reéecorded by the
Preston tube relative to the static pressure. It was thought that the
variations were due to changes in the position of transition, however,
using surface flow indicators, moving the position of a roughness strip
(a strip of course sandpaper around the cylinder) , and trying various

transition wires, still resulted in day to day variations., The trouble

was eventually traced to the large aerofoil in the wind tunnel contraction,

Ailerons were fixed onto the aerofoil and it was found that a fraction
of a degree change in the angle of the allerons completely altered the
flow on the model, The trouble was due to a very slight rotation of
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the flow in the working section and the day to day variations were due to

|
slight changes in the local incidence along the span of the aerofoil due ;
to temperature changes. E
The aerofoil section was removed and the cylinder air supply
was fed from downstream of the working section and at the same time the
length of porous tube was increased from 8 inches to 24 inches, Porosint |
is only made in 8 inch lengths and three tubes had to be used. The Vy ‘ |'
distribution along the porous tube is shown in fig, 19. An elliptic nose .
was used on the model, which is shown in figures 16, 17 and 18, The |
supporting wires allowed the model to be aligned with the air flow.
The distribution of (P-'h; around the cylinder was within
#1% (fig. 15d) and pitot traverses on the top and bottom of the cylinder

at a particular Qe-position were the same, There were no day to day

variations, : i

15, lMomentum equation for axisymmetric flow

The integral momentum equation for a steady incompressible
turbulent boundary layer along a cylinder with zero pressure gradient is
(Young 1939)

doc U pur T 2 (35.4) ||

where Cf is the local skin friction coefficient and the momentum thick-~

ness, g.& s is defined

5 i
§ = j (+D) e (1- %) (15.2) |

where @2 is the outside diameter of the cylinder and 3 is measured from
the surface of the cylinder. The displacement thickness, 8, , is defined

8 ,
5= £ (1 +E)(1-&)dy (35.5)

The differences between flat plate and axisymwetric flow are discussed in

section 18,
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16, Experimental results

The mean velocity profiles were measured at seveml positions

along the cylinder and for several values of the blowing velocity,

with a constant free stream velocity of 50 feet per second. Curves of
ﬁﬂ-i){; +Y)  ogeinst Y were plotted (see figs. 21 and 22) and
integrated graphically to find the momentum thickness, S . The
variations ing along the cylinder are shown in figure 20, and it was
necessary to estimate 3——3 from these curves in order to evaluate the
skin friction using the integral momentum equ ‘b:.on(lS J; The estimated
accuracy of the skin friction measurements is ¥10% in o¢p when vy = 0 and
10,0003 when there is a blowing velocity.

Some velocity profiles at a particular position on the cylinder

for different blowing velocities are shown in figure 23. (The

sg~coordinate is measured from the beginning of the porous tube.)

17. A comparison with the previous theories

A few of the experimental results in the region near the wall
are plotted as LOG ua.galnst(l +un‘ )7- in figure 24 and are shown to
agree with iickley and Davis' equata.%n @3.13 The straight lines in
figure 24 have gradients of :,(u""' where K = 0,418, and therefore the
experimental points confirm that K is independent of WV .

Some of the velocity profiles are plotted in the way suggested
by Black and Sarnecki (see section 13.4) in figure 25. The skin friction
predicted from the slope and intercept of the straight logarithmic part
of the curves agree with the measured skin friction (see table 1). It is
only possible to estimate the skin friction from the gradient and inter-
cept with an accuracy of about 115%.

The variation in skin friction with Reynold's number will be

discussed in section 26.

18. Axisymmetric flow

It is necessary to discuss the likely differences between

axisymmetric and flat plate flow. A few reports on the subject have been
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published and they indicate that the boundary layer in the present

experiments is almost the same as that on a flat plate. Landweber (1949)
and Eckert (1952) assumed that the velocity profiles on a cylinder could
be represented by a 1 /7 power law, and that the relationship between the

wall shear stress and the boundary layer thickness for the cylinder is

identical to that on a flat plate, from which they calculated the boundary.

layer growth using the integral momentum equation, If % , the ratio of
the boundary layer thickness to the radius of the cylinder, is 0,5 then
Eckert's theory suggests that the skin friction on the cylinder is 5%
greater than on a flat plate.

Ginevskii and Solodkin (1958) and Sparrow et al (1963) consider
the boundary layer to be composed of a laminar region near the wall and a
turbulent outer region. Ginevskii and Solodkin follow the analysis of
Prandtl and assume that the mixing length is proportional to the
distance from the wall and Sparrow follows the analysis of Deissler and
Ioeffler (1959) and assumes that the logerithmic region exténds to the
outer edge of th& boundary layer, The theories suggest that the skin
friction in the present experiments would be 5 to lo%gt'ea‘ber than on
a flat plate.

When ¥y, the distance from the wall, is small compared with
the radius of the cylinder very little difference is to be expected
between flat plate and axisymmetric flow and the velocity profiles are
close to those predicted by the 'law of the wall' equation. Richmond
(1957) and Yasuhara (1959) measured velocity profiles on cylinders and
estimated the skin friction by comparing the profiles with the law of
the wall equation., Their results are roughly in agreement with the
theories,

The theories and experiments for axisymmetric flow indicate
that the skin friction in the present experiments may be slightly higher,

perhaps 5% higher, than that on a flat plate.
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Chapter 3
A Taw of the Wall for Turbulent Boundary Iayvers with Suction or Injection

19, The law of the wall equation

The equation for the inner turbulent region, equation 13,14,

may be written

%ﬁ{ Vil «H) --L} = 1 Loe, Yz ~_<O(+ zu_»,,) ‘ (9.1)

This is similar in form to that given by Townsend (1956b) and reduces to

the familiar law of the wall equation when ¥y= O, i,e,

Y Uy

%-a - ﬁ LOG5— + B (19.2)
The experimental curves for flow over a permeable or impermeable wall
may now be corfrpared on one figure if L%‘%—-» is plotted against
'2-.’“."..2‘{( W" !} and the inner turbulent region should plot

as a®ries of‘ parallel lines if the mixing length coefficient W is
independent of Viy « The present experimental results were plotted in
this way and it was found that they plotted very close to the accepted
impermeable wall curve (fig. 25)., The experimentol results show that the
ternm (o‘%-.gv% in equation 19,1 varies very little with suction or
injection. v

There still remains some doubt as to the values for the
constants K and B in the 'law of the wall' equation when there is no
suction or injection, However the values which were found by Dutton
(1959) will be used, and therefore the 'law of the wall' equation with

suction or injection is

2&t{(|+wa z ‘} =55 LOG,O%‘E +~— 59 (19.5)

In the following sections this equation will be compared with previous

experimental results,
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20, A comporison between equotion (19.3) ond that suggested by

Black and Sernecki (1958

Black and Scrnecki wrote their bilogarithmic law in the form

n b Loe 4 by se, wryY (20.1)
4 _ a,+b,loc + w (Log, Yt 20,1
T N DT v
with Q, = %(;’; 1)’ , b = 2;2 and
A=-1 Vw Log, Uzk. | (20.2)
2K wy e Yy

Several dimensionless parnmeters which might provide o possible criterion
for specifying conditions at the edge of the sublayer (yqu_) were
considered, Eight possible equations for A were obtained by considering
the subloyer equation (13.3), and A was then plotted against V""/u.c. and -
compared with the experimental results, There is o considerable scatter
in the experimental results, but Black and Sarnecki chose the equation
for >\ which seemed to predict most accurately the actual variation for

layers on smooth and nearly homogencous wolls, The equation is

A= «szm — ??E LQee{g}_ Loa,_(wim)YS (20,3)
. m

where M == LLo..VW and Ng—..—. ..u_:.B 3 m‘?—‘é‘ .
Qug | L
This equation is presented in figure 27 together with some
experimental results, and is reproduced from Black and Sornecki's paper,
The equivalent variastion which is implied by the 'law of the

wall with suction or injection!, equation (19,3) is

/\-=_5_.§f._‘§. %&—H (20.4)

ond is also shown in figure 27,
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23« To estimate the skin friction from a velocity traverse

The 'law of the wall!' equzfaion with suction or injection

(equation 19.3) mey be written in the form

2 Uy {(! \IwLL hod } 5‘5 4 LOC ‘.:b = Loe, ¥3L (21.1)

595 vy

S
against LOE o ~ has been

From this equation a set of curves of LL
evaluatéd for particular values of C ( Q(U'?"))ut fixed values of
& (fig. 28). If the value of mn'- 1s known f‘or a particular profile,
then figure 28 may be used to plot curves ofa against LOG,Q‘D%"-L-‘
for particular values of cf » If the experlmentul profile is plotted on
these curves, then the skin friction may be estimated as in figure 29.
The values of Ue which are estimated in this way will be denoted by U.'@
and the experimental values obtained from momentum traverses by Ugg .

Some velocity profiles are shown plotted as Zu@((.%.i +) ,_,[)

L
against LQG,O-‘!;)-—E in figure 30, Values for the friction velocity U.,-:‘

(or the skin friction C}*‘ ) were estimated in this way from the velocity
profiles and the results are given in table 1,

The skin friction results which were calculated from the
momentum traverses as described in Section 16 are also given in table 1.
The value of C: may be estimsted from a velocity profile very accurately
whereas the experimentally measured skin frictions are only accurate to
£0,0003, The differences between the experimentally determined skin
friction measurements and those estimated from the law of the wall
equation 19.3 or 21,1 are within the experimental accuracy. Therefore
the hypothesis that 'the unknown function of‘i‘% in equation 19.1 is
approxinately const'mt is in agreement with the present experimental
results,

The experimental results presented in Black and Sarnecki's
report are plotted in figure 31, Only the straight logerithmic partions
are plotted for clarity. The positions of the experimental straight
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lines with regard to the straight line of equation 19.3 do not show any
trend with changes in Vg, The position of the straight line is very
dependent on the accuracy of Uegg and forvy=o , a & 10% error in Ve
results in equation 19.3 plotting =s the chain dotted lines in fig,31.

 Mickley and Davis do not seem to include the pressure gradient
term in their skin friction calculations, Some of their values for ‘%FE
are given in table 2, together with modified values which include the
pressure gradient term, These are compared with values of'Cgﬁ which are
estimated from the law of the wall equation, Some of Mickley and Davis'
velocity profiles are compared with equation 19.3 in fig. 32.

The law of the wall equation with suction or injection shows

reasonable egreement with the available experimental results,

Chapter L
Ihe Use of Preston Tubes to Measure the Skin Friction on a Permeable Wall

22, Measurement of Skin I'riction

It is very difficult to obtain an asccurate measurement of the
local skin friction in turbulent boundory layers. Pitot tube traverses
may be used together with von Karmin's momentum integral equation to
relate the local shear stress to the changes in the momentum thickness
(see section 16), but the method requires the differentiation of experi-
mental results in the streamwise direction which is rather inaccurate,
and the method is also very sensitive to three dimensional effects,

Accurate measurements of the velocity profile very close to the
wall have been made (Wills 1963) in order to find the velocity gradient
and hence the skin friction, but large corrections to the instrumentation
calibrations are required due to the presence of the wall and the method
is extremely difficult, Dhawen (1952) and Suith and Walker (1958) have
made successful measurements with skin friction balances which consist
of an isolabed portion of the surface connected to strain gauge
balances, Ludwieg (1950) measured the heat transfer rates to the wall
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and related these to the skin friction, and it was shown that the 'law of
the wall'! (with zero transpiration) held in pressure gradients just as it
did in zero pressure gradient.

Stanton tubes and Preston tubes may be used to estimate the skin
friction. Stanton tubes (Stanton et al 1920) are very small pitot tubes
which are used in the linear velocity profile in the sublayer region and
Preston tubes (Preston 1954) sre pitot tubes which are used in the uni-
versal logarithmic region. Preston tubes were originally calibrated in
pipe flow on the assumption that the law of the wall was the same in pipe
and boundary layer flows, but there is now some doubt as to the exact
calibration curve (see the discussion - Head and Rechenberg 1962),

Purther work is continuing to determine the best calibration curve since
the use of Preston tubes is the easiest method of estimating skin friction.

The theory presentéd in this chapter shows how Preston tubes
may be used to estimate the skin friction in turbulent boundary layers
over porous walls through which there is a small normal velocity. The
theory gives an equation which may be used with the Preston tube cali-
bration curve (whichever calibration curve is eventually chosen). The
theory follows that of Hzu (1955) but the equations now include the
suction or injection velocity at the wall, The final equation is relatively
simple to aPply and the skin friction results which are obbtained in an
experiment compare favourably with those obtained using the integral

momentum equation.

25. Theory
The law of the wall equation for turbulent boundary layers with

zero pressure gradient and zero transpiration velocity, which is valid in

the immer turbulent region, is

U o Lo d%® Lp - ‘w@
™ " CRRvRE B = f("‘:b"‘“‘“ (23.1)

where ¥ and B are constants, Hsu (1955) fits a power law profile to

this region of the form
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2]
& == C JU‘“C'« (2312)
Uy \Y

where  and N are constants which best fit the experimental results,
(Hou uses the velues,C= 86l and r\w- )
If there is suction or :Lngectlon through a porous wall then the

law of the wall equa’cion is modified to (equ. 19.3)
A
2o fe w0 = L Loe, Y

TJ;;{(’ ) p =g %57 + B (23.3)
In the last chapter it was shown that K and B are approximately inde-
pendent of V¥, and e and therefore toke the values for the case of zero
transpiration, Some of the exaerlnentv.l results are plotted as

QU‘?-‘ ({t 4 VWU~ ) against LOG I in fig, 34 and are compared

[+ \)
m.'bh an eque t:Lon of the form

u Yl
L;L:(fw"w ) = e(L)

The equation shows reasonable agreement in the overlap or logarithmic

(23.4)
region and it is now rearranged to give the equation for the velocity, ks
2 20 N
(55 S (23.5)

It will be assumed that the presence of the pitot tube does not affect the
flow in the boundary layer and that the bressure recorded by the pitot

tube is an average of the integrated pressure over the open portion of

the tubes 0 s .
(P“*’a) :#512J U den
‘ o (23.6)
where (P’ %) is the pressure recorded by the tube relative to the static
pressure, b , ande refers to the area of the tube opening, A pitot tube
which touches the wall and has a circular cross section of inside diameter

2a and outside diametér 2b is considered, Equation 23,6 is written
bya

(m;%)m% - '%Z fp{ QJ‘JQ“~ (5_17)*, dy | (23.7)
b
b-a
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2 2
ar (P“l’c)TTa? = *é*(JJ?LA Q. chszﬁlﬂ-"f‘s’ (23.8)
Ty

; — s == y . J = . Y . - G
vhere y—b chmC# o L (1 + tSmﬁ)) ; k X .
The equation for L s equation 23.5, is substituted into equation 23,8 and

the subsequent equation integrated to give

3 Ty
(b= P STE L6) + Cutan e T )

i€ \ N
| (23.9)
2 2
where Czut<f§.’§.}2 l‘.(t) ’
T (s ) b
2 2N Y
; e~
Im(t) xﬁﬂ (! +- ﬁSm @) COSZC? Ok’b . (23.3_0)
n= i1’213 2
Equation 23,9 can be written,
2+<r 2450

R {6 Lo s s e

+ cz(“;“j imhl(g (23.11)

where - d =12 b

When V=0  +this equation reduces to

.
T d E (g o

L ST 23,1
Fpve Apv? ) (£5.22)
3 2 »
T 4pye N 4PV ’
wee k= () (23

Hesu evaluated I‘((:) for different values of £ (see table 3) and showed
that the value of>ﬁ, changes very little with & Providing that b is less
than about 0,6, i,e, if = thick walled tube is used then I'(t) —”11,(0) .
There is doubt as 4o the appropriate values for the constants K ana &
in the law of the wall equation and thercefore corresponding doubt with
regard to the values far € andn |, Hsu used the values, ¢ = 8,61 ang
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M= 77 s and therefore equation 23,13 reduces to

x= 2-6274 + O 3I5p

(23.15)
when C=O , and
= 7-62 O B15f
o= Z:6298 + 08158 (23.16)
when £ =O-5 s where
2 - !
c(_.-;LQe;o%’wd MPQLOG’OCPEOZ‘S_{_ .
4pv? “4pur

The calibration formula which Preston (1954) obtained for pipe flow is
o= T604 + o»"s”r5@ , (23.17)
the formula suggested by the Staff of the N,P.L. {1961) is

o= 2:647 +0BI5 >, (23.18)

and that suggested by Smith and Walker (1958) is

16'

g T
If it is assumed that I,(@"‘“’ l;@’) then equation 23,13 reduces to
equation 23,18 when 1= ‘/‘7 and C=R}-4 ;> and to eguation 23,19 when
N=0"[4 andC=8' 2D , The resulting equations for U"/uyﬁf‘rom

o = 6D 4+ O BT (23,19)

. 23,2) = LY S 2}:‘;3'.:'/“" , 23,20
equ, 23 ) are L @,4( S ( )
nd oo g 4n( YU /7 (23.21)

W v

These are compared with some 'law of the wall' equations in figure 35,
It is difficult to decide which are the correct values for ¢ and ry but
Heau's theory gives an equation of the right form and the values of C

and M may be adjusted to sult the calibraotion curve which is eventually
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chosern,

When there is a normal velocity at the wall, equation 23.l1l
mst be used, C and N are independent of V4 and therefore have the
values obtained for the case of zero transpiration, and the integrals,
Il(t),[ 2@) . I3<l:) , may be evaluated for the particular pitot tube
which is being used in the experiment, Some values for I“ 1,_ andlsare
given in table 4., Equation 23,11 is therefcre of the form

. 4 3
(P*’?o‘ = V; i /7<‘ + Vw (1-95/7 . U.z;rl/v (23.22)
g \ T F2 % 3 8 4>

where g ,81 B 33 and 3,4 are known, Curves of (P* h,) ageinst C& may
be plotted for particular values of Yw and Uy .

If it s sssuned thet I, (t) = I, (€)= I,(8) = L,(0)= T

equation 23,11 reduces to
¥
2 N\ 2 {+2n n
et b —— anlli e ) P
4py? 273 W\ 29 22\ 29
and this is the equation which will be used to calculate the skin friction

in the experiment described below, Hsu's values for C and fV are used

in the calculations,

2L, IHExperiment using Preston tubes

The Preston tube is described in section 14 and was used on thé
second model (fig. 16). The Preston tube was placed st different positions
on the surface of the cylinder and the pressures, which were recorded for
different blowing velocities with a constant free stream velocity of 50
feet per second, are shown in fig, 36. There is o certain length at the
beginning of the porous surface during which the boundary layer is adjust-
ing itself to the new conditions, In this region the ac ~derivatives,
which were sssumed to be negligible in the theory, are probably large and
the inner region equation 19.3 will not be valid, (The Preston tubes would

probably indicate too high a skin friction in the region.) Therefore the




Preston tube results will only be compared with the nmomentum traverses
over the latter portion of the porous tube,

The Preston tube, which has an outside diameter of 0,064 inches
with & equal to 0.68, was always within the overlap region during the
experiments, Curves of (P— ’D°> against Cg were evaluated for several
blowing velocities from equabion 23,23 (fig. 37) and the curves are used
to estimate the skin friction from the Preston tube readings, The skin
friction results are shown in fig, 38,

In section 21 it was shown how the skin friction may be ob-

tained for a particulsr suction or injection velocity from a velocity

profile using equation 19.3. The skin friction results estimated in this
way, end those obtained using the momentum integral method (section 16), |
are compared with the skin friction results using Preston tubes in |

fig, 38 and they agree quite well.

Chapter 5

A Modified Velocity Defect Law for Turbulent Boundsary Lavers with Suction
or Injection |

25, The wmodified velocity defect equation.

For a turbulent boundary layer with zero pressure gradient over
an impermesble wall, von Kirmén showed that the equation for the mean

velocity distribution in the imner and outer regions is given by

&= oy ) + &(7s) (25.1)

where d)( y/g) is a function of ‘y/cg only, having the constant value 4)(0)
throughout the inner region, It follows that

Ei*:”..‘:i L= ——_‘)Z.- LO%(%) + »C?@" ‘I?(%) = ﬁ;@ (25,2)

Loy

is the equation for the outer region, the velocity defect equation,

whereas

w o=t Loc—:,e(:‘i\_)*:f@ + d(o) | (25.3)




is the law of the wall equation for the inner region. —JC is a function
of 3/@ only,.

In the case of a permeable wall, these laws are modified as a
result of the finite transpiration velocity at the wall, Then the
external pressure gradient is zero, it is found that 'the law of the wall

with suction or :‘Lnjec’cion', (equation 19.3) is
2_9.3_{ t+Vw'~i) } 1 Log, (5““ + B

where [ and B take the same values as for the case Vw=0 over the range

(25.4)

of transpiration velocities which result in a measurable skin friction,
Following von Ksrman it is now postulated that the equation for the inner

and outer regions is
Zx {U + ku> ’} \ L% <yu~z,> + (%) (25.5)
where 5 in equation 25,4 is equal to :(Cb ). It follows that
2u_'c {(H,_ku) (“ \lwu. }m.. LOG 3/5 +c_?{i) 6(3‘/5)
F( 3/5) (25.6)

This is the wmodified velocity defect laW for turbulent boundary layers

with suction or injection but with zero pressure gradient, In the next

chapter it will be shown that this equation is a special case of a more

general 'law for the outer region'.
Townsend (1956a) plots U

Y
against / Sa for various values
w
of 2¢ for the case of zero blowing, and verifies that f (3/(?) is a

universal function when there is no pressure gradient. & o is defined as
_,r._“* ct =1,

T .
When there is injection, the term & will be defined as the

value of’y at which QU-T{(H»‘NW) (\+ VW‘*) % =],

The present experimental results 'mc" those of uI:Lckley and Davis (1957)
are plotted as 2tx ( Vi Wy )a. (' 4 Yot "} against d/‘go

in figs. 39 and 40, and the x?f,sults fall cfose to the zero blowing curve

the value of J at which
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presented by Townsend (1956a). F(“’Ys) is therefore the same function
es ¥ (‘y/s) in the velocity defect equation (25,2).
For high blowing velocities Uha has negligible effect on the

outer region and equation 25.6 reduces to
W N\
F(¥s) = 2K (% ) (1 =(£)%) -

The experimental results (Pig. 41) again verify that F(y/s) is a

universal function,

(25.7)

The logarithmic plot of the velocity defect curve is shown in
fig, 42. There is some scatter in the value of él_'g(i) but it is no
greater than that for the case of zero blowing {Coles 1961). (The scatter
will be discussed in section 30.1.)

BEquation 25,6 is now written in the form
b Uy (O +_VwU~«)J§:‘__ F(Ys) Vw Y'...{}.
Lo w,vw [ NK Uy

This equation has been used to evaluate the velocity profiles, W

(25.8)

against ‘y/S s for particular values of XL%.”‘ and some of the profiles are
presented in figs., 43 to L6, )
In fige 47 equation 25,8 is compared with one of the experimental
injection profiles, and in fig, 48 it is compared with a near asymptotic
suction profile which was measured by Dutton (1960), There is very good
agreenent,
Tewfik (1963) did an experiment using a very sinilar rig to
that used in the present experiments except that the cylinder was 2 inches
diesmeter, The velocity profiles which were measured by Tewfik for a
particular blowing velocity, collepsed onto one curve which is shown in
fig. 49, The curve is similar in shape to that given by equation 25.8
and the skin friction oppears to be in the range 0,001 to 0.00’I 5. This
range is again obbtained if the profiles are compared with the !law of
the wall equation with suction or injection' (fig. 59). Tewfik measured
the skin friction by momentum traverses and obtained values considerably
higher in the range 0,0015 to 0,002,
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26, Veristion of skin friction with Reynolds number
If the conbinuity and momentum equations for a turbulent

boundary layer (section 13) are integrated from © to & then

S
Vo= - d—_‘j 4+ Vw
(26.1)
and f cly' +uy = J%ﬁ.. (26.2)
°
where the variations with o of the mean square burbulent velocity compon~-

ents CLT’—' a.rxil_.(l""i have been neglected. Thus when equation 26,1 is sub-

stituted into 26,2, the shear stress at the wall is given by

S N
e v 2 [ty -0 2 (R
e .‘

S

(26.3)
or, in a form which :anludes the momentum defect term,
-Zw o VW, 4 3 g‘(u. LLLL)o‘j
? (26.4)

A more convenient form can be derived if we define the functions \ , S ) ‘2)

C a,ndg as

()= 5 0=+ 5 o)=Y >

LLQ‘

C, fF Ty dy,  (witm (ca), JF "(7.) ‘i’l ), and  (26.5)
f 569 w(mu@(, u(m..,@) dn, (26.6)

where F is the universal function of y/g .
Thus equation 26,4 reduces to
= Mw ‘i_g.) 8 A
p W, d=x (26.7)
where the prime denotes differentiation with respect to 3’ « The modified

velocity defect equation (25.8) may be written

Z
w=ty—sFuy +F w | (26.8)
4.

v

-
i
i
f

e

e




and equation 25.5, when 52:«! , reduces to
2wv(s~!>xLLoeg‘w5¢é)+ p(1)
o v, ( 5 (1), (26.9)
@« &= '[Z QK#M ; (26,10)

where M = K {_%.__"..Eﬁ_!(s 9) %’(‘)} (26,11)

The velocity distribution of equation 26,8 is substituted into the integral
for the momentum thickness, 52 s and the integral is evaluated, The errors
involved in assuming that F (3'/5) is universal in the sublayer region are

negligibly small., Hernce

Sg =Y .Q,Mf’(ﬁtb, ~ Yw (C'Q' -—SQ<C *)' + Yw (63313 ___@4),.\/\: )(26.12)
W, \? 4y, ©2 Qu,% o. Uy

The profile parametersC, ,Co , CaandC@ have been evaluated using the

universal function, F(-\)/ﬁ , together with equation 26,5 and are shown

in fig. 50,
The equation relating the skin friction to the Reynolds number,
Qé (—- ) , for a particular value of \% is tneref‘ore
2
R _(5@ VW(C) §_ S (s +vw(ea)s _ (Ca), Voo 8’ 2" (26.13)
¢ 2u, b u?

In order to calculate the Reynolds number from this equation, only the
skin friction end the blowing velocity parameter need be specified - no
experimental results are required, The variation of skin friction with
Reynolds number, evaluated from equation 26,13 is presented in figs. 51
and 52,

The Reynolds number, > (-. 2{—‘—5-‘? is obtained by integrating

equation 26,7 Thus g’

el
(,.._ +Vw

(26.14)
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This equation was integrated numerically and the resulting curves of Cfg
against 2 ,are presented in fig. 53. During the calculations the
values which were used for @(O, C, and C, differ slightly from those

- used by Coles (see table 5) but the final skin friction . Reynolds
number curves whenVy =0 are quite close,

Mickley and Davis' experimental results when corrected for
pressure gradient as described in section 21 agree with the theory
(see figs. 52 and 53),and the present experimental results (figs. 54 and
55) eare shown to agree reasonably well considering that the measurements
are in axisymmetric flow, where skin frictions5j higher than those on a
flat plate are tc be expected (see section 18).

Rubesin (1954) presented a theory for injection and evaluated
the variations of C5 with ng by assuming that the law of the wall
region exténded to the edge of the boundary layer. The constants in the
law of the wall are changed fron their no-blowing experimental values,
to values which give the correct C£o ~~ R . variation when Vw=0 s
These constants were then used for the case with blowing, together with
the assumption that %%t at the edge of the sublayer is independent of

Viu o The curves af<%§nu]23c which were obtained by Rubesin are com-~
pared with the present theory in fig, 53. Rubesin's theory (which is
also for compressible flow) gives higher values of skin friction than
the present theory, the present experiments, and the experiments of
Mickley and Davis, Rubesin's theory compares very well with the experi-
mental results in compressible flow (Tenderland and Okuno 1956) and it
was for this reason that Hartnett et al (1960) suggested that Mickley
and Davis' results were possibly low (see £ig, 57). However, care should
be taken when compering experimental results with an equilibrium theory.,
Coles (1961) has shown that an incompressible turbulent boundary layer is
not in an equilibrium (fully developed, normal, ideal, asymptotic) state
until the Reynolds number, Q 51 s is greater than about 3000. The
relaxation length, the distance the boundory layer requires to adjust

itself to an equilibrium state, is probably related tc the boundary layer
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thickness, such that flows at a particular Reynolds number have similar
relaxation lengths, If this is the case, then the Reynolds number =t
which the boundary layer actually attains an equilibrium state will be
larger for a higher lach number., (For the higher linch number at the
same Reynolds number, o« is smallen) The incompressible turbulent
boundory layer in Mickley and Davis! experiments would probably be in
equilibrium because their porous section was 12 feet in length., On the
model used in the present experiments the boundary layer is certainly not
in an equilibrium state for the first 12 inches of the porous cylinder
but is probably close to equilibrium when 2¢ is greater than 12 inches,
(This is indicated by the rapid change in Preston tube readings over the }
first part of the porous cylinder (see fig. 36) ). The experiments in i
compressible flow (Tenderland and Okuno 1956, Pappas and Okuno 1960) were i
on models less than 12 inches in length and the boundsry layers were ]
possibly a long way from a fully developed (or equilibrium)state,

Squire (1963) discusses available experimental and theoretical
results and compores them in three figures which are reproduced as
figs. 56, 57 and 58, The figures have axes Tw PW NVw

;i;“."“' @"""‘“"“" 2
Cy v 2 WVW-W and .(:.f, ~ .i"WYI‘.‘ﬁ where the Subscr:s.pt
Sre b, CSo e e Uy
eférs to conditions when the blowi ng veloclty is zero. The present

theoretical curves are also shown in the figures and it is seen that the
20, NVNw .

plot of % agqlnst ol u Cf‘a is the only one which collapses the

theoretical curves onmto one curve,

Chopter 6
The Qubter Region of Turbulent Boundary Layers

27, Introduction
It will ve shown that the modified velocity defect law with

suction or injection is a special case of a more general law for the

outer region of turbulent boundary layers. The thecory initially uses

a dimensional analysis to show that the outer region depends on a

Jiyi
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W o -
function of the form (ﬁ”z’ @)"’5’ (‘L‘&‘t)&)and not necessarily on a
velocity defect term, (u.,;» U.) , which has been used by Clauser (1954),
Mickley and Smith (1963) and Black and Sernecki (1958). (Q is a
dimensionless parameter independent of Y it could be a blowing velocity
parameter, or a pressure gradient paraneter. )

Clauser (1954), realising that the past history of the boundary
layer is very important, managed to adjust the pressure gradient in his
experiments so that the mean velocity profiles at different positions
along the flow collapsed onto one curve When—"-."’-l‘l& wes plotted against

‘:"/5 » OClauser's experiments are a special casetof the present theory.

Mickley and Smith (1963) found by experiment that the outer
region of turbulent boundary layers with small injection velocities
through a porous wall, collapsed onto one curve when Wi was plotted
against ‘y/g . (Un«)m corresponds to the maximum valu:e* of The shear
stress which occurs in the particular profile. (For boundery layers with
injection the maximum shear stress does not cccur at the wall,) However
with suction the maximum shear stress occurs at the wall but the velocity
profiles do not appear to collapse onto one curve when a velocity defect
term, %L’;-J’« , iswed (see Black and Sarnecki 1958). The equation given
by the present theory is more general than that of Mickley and Smith,

Coles (1956) introduced a wake function, w( /8) s which
represents the departure of the mean velocity profile from the 'Iaw of
the wall' velocity profile. The wake function, which is tabulated by
Coles, is considered to be independent of the skip friction and pressure

gradient, The velocity profile is written

A S PN

Ly K !S + K. 2 \ /‘:“\)

The func‘olon, w (3}/5) , is normalised so thot w(o) =0 , m(l)r—Q_
and / . (j/ 53 = | , Coles analysed available experimental

data®nd showed that the wake function represented the velocity profiles

reasonably well except near separation where the 'law of the wake!

reduces to [T w(‘y/)’
w, z \'¢
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which is presented in figg 60. The equation does not compsre favourably
with the experimental results at separation., The 'law of the wake' is
not based on any simllarity concept and goes beyond the limits of dimen-
sional analysis, Black and Sarnecki (1958) were unsuccessful when they
tried to use Coles' wake function when there was suction or injection.
It is well known that the inner region of a turbulent boundary ,

layer adjusts itself +to the local wall condltions reasonably quickly

whereas the outer region with its slow rates of energy transfer, takes
some time to relax to its new form. The present spproximate theory will
not hold during this relakation period, hawever it is shown to be quite

useful when considering non—equilibrium lsyers,

In the following sections the inner region solutions will be

reviewed before the new theory is introduced.

28. The inner region

The momentum and continuity equations for the mean flow in a
two~dimensional turbulent boundory layer are approximately (Townsend
1956a) s
2udu ,Buv | 3 (TF-VE) , AWV __dR L yFu

3% 3y ox EYH dx dYy:  (28,1)
and %L‘; + % =0 | ' (28.2)
dP (= —u, duy _ .
where d=e pu ey is the pressure gradiemt, In most cases the
tern 9. ([ITE - \7’1) is small and it will be neglected in the
f‘ollm'%zz analysis., We shall assune that %ﬁ';‘arﬁ %‘5’" are very small in

the inner region, the region very close to the wall, This assumption will

be checked once we have the solution for 44 in the inner region., The

monentun and conbinuity equations therefore simplify to

Wy QU 4 9TV ey 33#-
"3y 9y = | oyt (28.3)




in the imner region., The equation is integrated with respect to Y
in order to obtain the equation for the shear stress distribution in the

inner regions

T = Ty +»un-~u\§l~’:; Y.

¢ P ola=

(2 is the total shear stress, the sum of the viscous shear stress /./.é_&_a_,
and the Reynolds stress -—()U;.’V‘) a)'
The momentum transfer or the mixing length hypothesis of

(28,4)

Prandtl, together with the usual assumption that the mixing length is
proportional to the distance from the wall, yields the relation between
the shear stress and the velocity gradient; o5 = e t&j"( uNt (5, 5)
where ) is von Keérnfn's constant, This equation will not be ¥a2lid in
the region very close to the wall where the viscous shear stress predom-
inates,

The mixing length hypothesis was used by Rubesin, Dorrance and
Dore, and Black and Sarnecki to derive the equations for a turbulent
boundary layer with transpiration through a porcus wall (section 13).
Stratford (1959a) uses the same hypothesis when considering a turbulent
boundary layer with negligible wall shear stresss: however Stratford is able
to derive the same equation by dimensional arguments.

Equation 28,5 is further substantisted by Townsend (1956b)
who considers regions of turbulent shear flow in which there is equi=-
librium between the local rates of energy production and dissipation.

Rotta (1962) reviews the imner region approximations in detail
and shows that the available experimental results verify equation 28,5.

The total shear stress in equation 28.4 is eliminated by
using equation 28,5, and the resulting equation is integrated with
respect tzsy when (a) , bthe blowing velocity is =zero, (b) the pressure
gradient is zero, (c) the pressure gradient and the skin friction are
zero, (d) the blowing velocity and the pressure gradient sre zero, and

(e) the blowing veloclity and wall shear stress are Zero, —




8L

(a) TVhen =0 Ya
L | L
X 5 (py+0) -1 \
Kw - 2(by+i) + 06| | *+ Py(le,
Ur (py+) [ Gy +i) 2t | B @ (28.6)
U, ‘
where P:_—E{" %%3 , and B (U‘—’t:l’7 is independent of J .
(b) fihen CLLLJ -
d= ©
QUxK%M) Rf—-—“‘-OG Yrr LB ( (28.7)

where B'z. is independent of ¥ . This is the law of the Wall

equation with suction or injection which was described in section 19.

(¢) When %‘gﬁ"‘ Cw

2 (9.;)3: - RL Log, JL.._;"W 4+ Bz

Ve (28.8)
where 83 is a constant.
(d) TVhen \.’_*a' due o
dx
wo_ _‘- LOG, TT 4 B
. K 5 (28.9)

where B is a constant. Equation 28,9 is the 'law of the wall'
equation. Millikan (1938) derived the same equation by dinensional
analysis.

(e) Then Tw= Vw-—-o i

{ O’P\ ! -2
LLT‘Q_)’IQ-Q—;“-E'E) +B4)

_ (28.10)
where B‘.q is independent of )

In deriving equations 28,6 to 28,10 it has been assumed that

the region, in which equation 28.5 is valid, is independent of the

conditions at the outer edge of the boundsry layer, and therefore é: and
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Lk, do not appesr in the equations.
When b—-u»o in equation 28.6 or .X:’..---O in equation 28.7, the

equations must reduce to the zero pressure gmdlent equation 28.9.

Therefore
— qur
m(.;i? (Bimres ( ) (28,11)
and BQ(VW)W B . (28.12)

Similarly, as the wall shear stress approaches zero, equation 28.6 must

reduce to 28,10 and equation 28,7 must reduce to 28.8, Hence

B (“’.’:‘:P) & B4

(28.13)
OB Uy— O Uz
Vi L LGS y..l’.f.. .
wa B, (L) = By * % SO G (28.1)

Stratford (1959a) and Townsend (1960) show that 54 in the separation .
equation 28,10 is negligibly small when the Reynolds number, Q%>10 .

Before the momentum equation 28,1 was solved it was assumed that

‘%&i and % were very small in the inner region, At separation for

example, this may be checked by using the equation for the velocity dis-
tribution in the inner region (equ. 28,10) with B = « Thus if the

terms A :mdBV are neglected, we are assuming that
Jac a};
ﬂ: ya (L, ciu,‘> & - W, duﬂ
3 ol:x.
o &Y i?’..g — 2D - dd } &L (28,15)
3KES LD dx doe
where ( -'“"'C? <:1LL is a pressure gradient parameter., The various
{‘Li a—‘— » 7

terms in the expression 28.15 have been evaluated using the separation
experinental results of Schubauer and Klebanoff (1951) and it is found

that the convective terms, (LS4 _ y S are only 2% of the
] = 4 . s :
X aY
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pressure gx‘eidient term, At separation the equation for the total shear L
stress in the inner region (equ. 28,4) reduces to
_.2 duy = 2DY . i
2{’“'" w, d= (28.16)
This equation is compared with Schubsuer and Klebanoff's measured values :
of sheer stress in fig. 88, The theoretical line is quite close to the
experimental shear stress distribution throughout the inner region and it
is therefore further justification for neglecting the convective terms.
The same arguments may be applied to poundary layers in a pressure gradient

or with suction or injection,

29, Eguations for the outer region

The method follows that of von Kirnan but now includes an
unknown function of EL— and (3 in place of the usual -G:q: in the zero
pressure gradient equation, (L moy be 2 dimensionless pressure gradient
parameter or a transpiration velocity parameter or a combination of these,
or any other relevant porameters. The equation far an overlop region, a
region in which the inner and outer solutions are valid, is written in
the form

)C;(%e °Q> = T:T LOGe ‘%};Y TC (29.1)

where C, is a constant and 3C‘ is the unknown function of ﬁ-_tand Q.
Following von Karmsn it is now postulated thnt the boundary layer profile

in the outer region is given by
(L, Q) = 4 LOG 3”’"—%&)(3)
f\( e ) v /§

where ®(:%§Cj is & universal function toking the constent value , in the
e
overlep region, \hen 8/5#*1 it follows that

(_,_ ,‘,Q\ - Lage_ﬁ,%ﬁ + &),

(29.2)

A
”, (29.3)




and thus

£ ,0) -f(2,Q) <~ Froad () - & (%)
| (29.4)

Bquations 29.1, 29,2 and 29,4 are rearranged to give the three equations

which will be referred to as 'the equations for the oubter region':

(a) from eque 29.1
K{f(. ,CD) C} LoG, Suy w:F(&LrT, & ,G): LogYe (29.5)

in the overlap region.
(b) from equ. 29.2

{f ('" ‘Q> C} roc, 84z roe,T; + (%) -¢, --S(3/>(29.6)

in the oubter region.

(c)
KRS )50 DY -5 9-fr e 9= 3050
in the outer region, (/5) (29 7)

j: is a func'tlon of'«a 2 al: and () only, 'bece.usei\%&x moy be written in
terns of mcl(;)‘_ (equ. 29 3). The outer region includes the overlap
region and the outer region equations 29,6 and 29.7 are valid in the
overlap region where 3(3/3) = LOG, d{ $ .

In sppendix C the same cuber region equations are derived by =
nethod similer to that of Millikan (1938). It is assumed that the inner
region does not depend on the conditions at the ocuter edge of the boundary
layer and that the outer region is independent of the viscosity,y . The

dinmensional equstions for the inner and outer regions ore written in the

Inner region j;(i, Q) == 8(%“!;?) (29.8)
Outer region F&i 4. 3~-&é'“' )Q) = @(j/g) ) (29.9)

forms

~U...’Qg u‘,g
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When the skin friction is zero, a constant reference velocity must re-
ploce U4 in the equations. Equations (29.8) and (29.9) do not imply
sinilar velocity profiles or self preserving flow (Townsend 1956a). In
the appendix it is shown that an overlop region will exist in which
equations (3.8) and (3.9) are valid, providing the equations are of the

forn

jC(_U.: Ne) =- LO@QJUJ? +C, (29,10) 5
i
TURT

o (8= %Y s

in the overlap region. The equations for the outer region, equations
(29.5), (29.6) and (29.7), follow by a method similer to that at the

beginning of this section.
Thus, if we know the equation for the overlap region in the form

JC(M, ) = LOGy :"/g, - (29.12)

then the equata.ons for the whole of the outer region sare automatically

= w“f‘-w@)r«- s(%s). (29.23)

and )C(_.* Ga) f(“” b Q)* s0) - 3(3/5) F‘(‘y/g) (294 14)

where & and F are functions of 3/3 only and must be determined from experi- }.

ment, However they should take the sane numerical values in a boundary

layer with a pressure gradient or with transpiration, as they do in a
boundery lsyer with zero pressure gradient, It is reasonable to expect
similority of the turbulent structure based on *y/s in the outer region in
this woy, but in the inner region it is more difficult because similarity
could be based on Y or *-YU"' ' 4
U’ltima‘oel;) the ’cheoretical equations must be compared with experi-
mental results. If there is satisfactory ngreement then the original

assumptions ~re justified, We cannot e nect aoreement when the turbulence
Y _




is not fully developed, as for example at very low Reynolds numbers, Jjust
af'ter tronsition.

When the inner region equations were derived in section 28, the
equation which was integrated was independent of both ¥ and ® i.e. from
equations (28,4) and (28,5)

i{}clu, (uz.%ku._udu,ij)

dy (29.15)
which is independent of ¥ and §. It is therefore not surprising that
the equations (28.6) to (28.10) are solutions for the overlap region. .

In the following sections the equations for the overlap region
will be used to derive the equations for the outer region, which will then
be compered with some experimental results in zero pressure gradient and

at separation.

30, The functions S{/fhna FOs)
30.1 Zero pressure gradient

The law of the wall equation for turbulent boundary loyers with

zero pressure gradient (equ. 28.9) is

LW o b Log Yux 4+ B | o .
Uy = K iy T ’ (30.1)

where K and B are constonts. The equations for the outer region are L

derived by rearranging this equation to give \?‘:,

Los, Y5 = K(G ”g> - oG, Yxo | (Go.2)

in the overlap region, and replacing LOG, 3‘/lg byS(j/Qto give

5(37&)“ K (&"{ B) ~ LOG, Q%E (30.3)
in tlie outer region,

When Q’/gw! then  S(1) = K( e *B) — LOE, ‘-“:38 (30.4)
and therefore S\( \)" ' y/g} K(U" -—u) == F(“y/{g) . (30.5)

Lo~
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This is the accepted 'velocity defect equation' for the outer
region with zero pressure gradient and zero transpiration, If experimental
results are plotted as \:,/go against 2?-5—9-'- s they fall close to a single
curve (see Clauser 1954 or Townsend 19563’3* gﬂ is defined as the value of
y at which F@/g) =K.

It is difficult to find the exact value of the constant, 3(;) R
because the equation for S(1) includes the skin friction, the boundary
layer thickness and the constants in the law of the wall equation; all of
which are difficult to determine., Some experimental results are plotted
as  S(Yg) sgainst Vg in rig. 6L,

5(0 is related to Coles' constant, 4)(!) = U L LOGQ%

by the equation e K

S({)«.—. K(é}(!)'-B) ‘ (30.6)

Coles (1961) has recalculated the majority of the published zero pressure
gradient turbulent boundery layer mean flow results, and has evaluated
the size of the wake component which is related to C%)(z&}. Coles shows
that the wake component, and therefore qb(i) s 1s constant above Reynolds
numbers of R 51>30{}Q in equilibrium flows,

Coles uses a value of 7,9 for (b(;) and values of O.4 and 5.1
for K and B . If these are substituted into equation 30,6 then S(;)= 1.1.

30,2 With transpiration

The equation for the inner region of a turbulent boundary layer

over a porous surface with suction or injection (equ. 28.7) is

2O (|4 Yl '_'fi‘__ =1 Log, ¥ 4 B, * .
Viw (( L ) i) = K ¢ ¥ 2 (30.7)

where 32 is, in general, a function of Wy and Ug. The equations for

the outer region are obtained by rearranging equation 30,7 to give

Ltoe, ¥ = Uy w3 L g ur®
A (T O it



in the overlap region, and thus

A
S(¥s) ZKgf{(u-%%)m} B w%%g--» (50.9)

ma F(Y5) = 2K Us {(vau) (;.y,.vw } (50.10)

in the outer region. Equation (30,10) is the 'modified velocity defect
law with suction or injection' which was discussed in section 25, The !
experimental results again verify that the function, F (3/5 , is the same
as that in the velocity defect equation (see figs. 39 to 41)., Some i
experimental results are plotted as S{y/ g) against »y/é, in fig. 62 and

are reasonably close to the zero pressure gradient curve.

30,3 AL separation
Stratford (1959a) and Townsend (1960) show that the equation -
for the inner region ot separation (equ. (28. 10) with B‘fo ) is

W= < (3011)
K dcﬁ y)

where g’g‘; is the pressure gradient., The equation, which is valid in the }L

overlap region, is rearranged to give ]
i

LOG, y/g 2106, QKSU-« T .:_.> (30.12) '
2

dx<

and therefore the equations for the ocuter region are ﬂ

|
]
5(.‘3’/&) = 2106, Ku _ (30_13)1’
|

31(%2?

and F(J/S) - 2 LOG, &’a . (30,12)
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Some of the experimental results of Schubsuer and Klebanoff (1951) and

Stratford (1959b) are plotted as 3/50 agoinst E’imb X

The results again fall close to the zero pressure oradlerrb curve. (The

in fig. 60.

scatter is due to B 4 not being exactly zero,). The separation of turbu-
lent boundary layers is discussed in more detail in section 31,2

To sum up, the equations for the ouber regiori, together with
the solutions for the overlap region, have been compared with experimental
results in order to confirm that & and F are functions :"'/ only. In the
remainder of Part 2 it will be assumed that F'(y/‘;‘) and 5(’)’/6.) ore
universal functions, The values for S(%?) which are used in the cale~
culations are given in table 6, and were evaluated using F'(j/s) from the
velocity defect curve with zero pressure gradient, together with a value
for (1) of 1.05, which best fits the experimental results, (If it had
been realised at the time that Coles' constants gave a value for (}5(‘)
of 1.1, then this value might have been used instead of 1,05),

31, Turbulent boundary layers in a pressure graciient
31,1 The equations

The equation for the overlap region of a turbulent boundary

loyer in a pressure gradient (equ. 28.6) is

3 %
= 2({33-{-:)@ + LOG, Egjg_’{;’: + B,(u.-u,})) , (L)
w, | du. |

where !;m-— U.“ J‘J‘? and B is independent of Yy - In section
29 it was shown that on equation for Log 3/5 , which is valid in the

overlap region, is also valid in the outer region provided LOG& J’/é: is

replaced by SC-B’/{S\) o The equation for the outer region is therefore

Kmu‘* '-m.-"zE + i...‘;)‘:':.?il
U
o

& ‘ 4+ B (Ll‘a: P\ » (31.2)

where (}'-“3' e.xhé + k) . (31.3)




K = 2F, +ro6, g:jt + B,(u.f,{:) 5 (31.4)
’ = z " (31.5)
where E‘ = (!75 —Q}(!’Sl '{“‘) ; S‘ = S(]} . o

Equation (31.2) is subtracted from equation (31.4) in order to eliminate

the unknown function, B' s and the equation is then rearranged:

2 Ur (31.6)
KoL

LL = N ~ JE -1 E+!
&= = -{t‘ E+2we@?ﬁﬂ

E may be written in terms of the pressure gradient parameter, D

(-5 g =p(a ),

E = {D ..5._;:} 2xp. S -+ !}% - (32.7)

Several velocity profiles, % against ‘\’//8 s which have been calculated
] . |
from equation 31,6 for porticular values of [ are shown in figs, 63 and 6k. |

31.2 Velecity profiles st separation or reattachment

When the skin friction is zero, the equation for the outer !

region, equation 31,6, reduces to

w _ (- 2D? b.s) |

= |~ 2P0 oxp 8, _ exp.S :

vhere D= K - ....,i'\ . B.= BY%e | (3L,9) |
4’*2)([) S, ( ke / ’ = K

These equations are more general than those in the previous section on
separation (section 30.3), where dewas assuned to be zero,
It is not possible to deduce the value of [ at which separation

or reattachment occurs because the form of B ' is not known, However when
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separation does occur in an experiment, the value of D and the velocity
prof‘ile should correspond to one of the family of profiles represented
by equation 31.8.

The reattachment profiles after a separation bubble which were
measured by licGregor (1954) are shown in fig. 65 and the separation
profile which was measured by Schubauer and Klebanoff (1951) is showm
in figs. 66 and 67. Some of the zero skin friction profiles of Stratford
(1959b) are shown in fig. 68. The shape of the experimental profiles are
in good agreement with the theoretical curves of equation (31.8), and
the theoretical values of D agree with those in the experiments

Ir %‘f from equation (31.8) is substituted into the equations
for the displac'emen‘c thickness, c?, s and the monmentum thickness, S’.‘.
then

- L
SJ;(“" "&‘,) d(y/é) = gﬁg«z(ﬂ"l’% - I) > (31.10)

= 8 [(1- 203 9%)

f+]

and 2
£ 2
28D Jenp.s T 2D (2xp S, +9,-2 T, expS:)
R__._{exb_i (a5, pS: )} (51.12)

K
where J, =Jréxt,% &{y/c;) . J; J'QK#, S. A(%) . (31,13)

o
J and J, are constents. The form parameter, H , at separation or

reattachment is therefore

H= £ ' |
& (-509DF | — |-51I _g (31.14)
Tere 9 /expS, + Ty ~T.. 2 exb S
( s, + % - b3 \‘ ~ 509,

«z.x}» -7
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The errors introduced into J, and 3-?_ by neglecting differences in the
sublayer region are negligible,

Separation and reabtachment occur when B,q‘ is very nearly zero.
This corresponds 4o a value for £ of 0,015% and a value far H of 2.69.

When B‘AEQ the equation for the velocity profile reduces to

%= %p(s;&) : (31.15)

This is consistent with equation (30.14).

31.3 A hypothetical eguation for the inner region

It will be assumed that B o, 2t separation is zero. The equation

for the overlap region (equ. 28.6) is

= 2(by+>q+ LOG, ?;5; j«gz = + B,(u.-p{’) (31.26)

where ba - ﬁ-i S.’i_.&' + VWhen i;) —em oo aquation (31.16) must reduce
oy :
to the zero pressuf?’e gradient 'law of the wall' equation. A simple form i

for B. which satisfies the two limiting conditions is B

B (uv,p) = KB-2+ w%(l +4..:_i-i~2=> (31.17)
pv

where ¥ and B are the constants which occur in the law of the wall
equation, Their product is approximately 2 (see table 7). Thus

B, LoG (; + ‘f“lz) (31.18)
Py

If this is substituted into equation (31,16) then

K, = ( J‘”} +E0Ce %j_:%;i + LOG (!+?Du’”>) (31.19)




where h}: may be written

M - P(g%l(}fﬁ) ;  P= ""1)5 duy (31,20)
W v u2 o
The hypothetical velocity profiles in the immer region may now be
evaluated for particulsr values of %:g and P, Some of the profiles,
when c:fﬂ 0,002 and 0,0002, are shown in figs, 69 and 70. The figures
are interesting because they show that the inner region profiles with
pressure gradient are almost the same as those with zero pressure gradient
at the same value of skin friction, This has been shown experimentally
by Ludweég and Tillmann (1949).

31,4 The experimental results of Schulnuer and Klebanorf (1951)

Schubauer and Klebanoff present some results for a boundary

layer in a pressure gradient, The variation of the pressure gradient in
their experiment is shown in fig. 74 in terms of the pressure gradient
parameter, [} (=-— é., du., . FPor several feet, the pressure gradient
parameter is larger ﬁhan:’%hat at the separation point. It is now suggest-
ed that the boundery layer is adjusting itself as quickly as possible,
trying to attain an energy equilibrium state, but not sudceeding until
the separation point is reached. It is only be separating that the
boundary layer is able to modify the external flow sufficiently to
reduce the external pressure grodient and thus achieve an equilibrium
state,

The law of the wall (eq. 28.9) has been used to estimate the
skin friction from the velocity profiles of Schubauer and Klebanoff
(see figs, 71 and 72). The family of equilibrium velocity profiles for
each of these values of skin friction were then plotted using equation
(31.6) (Fig. 73 is given as an example), The apparent pressure gradient
parameters for the velocity profiles of Schubauer and Klebanoff were
then estimated from these curves. The "apparent pressure gradient para-
meters" are shown in fig. e Some of the profiles in the inner region

are shown in fig, 75,




31,5 The experimental results of Clauser (195L.) ‘
Clauser measured the mean velocity profiles in turbulent

boundary layers subject to two small pressure gradients. The pressure
gradients were adjusted so that the mean velocity profiles at different
positions along the flow collapsed onto one curve when L__‘;Z_‘_f; was
plotted against 3/5 . The experimental curves are shcw% *n figs. 75
and 76, *

BEquation (31.6) is now rearranged to give

vE‘f*l _E+! I)Z
w "’

el E‘_._E + %LCDG&

Uy E+l E-1] (31.21)
z
where E = (175 2')(}?5 "'4) .
This equation iswed to evaluate curves of Wl against :‘J/ S

L
for particulor values of p§ . In figs, 75 and 76 it is shown that these
curves are of the same shape as those measured by Clauser. i
The theoretical variations of A and & will now be compared

with Clauser's experimental values, A and & are defined

[ S 40h)

([ 40 ’ (51.22)

G=

tly

o0
- §-[

The displacement thickness, S' , and the momentum thickness, S'i s are
related to Yand & by the equations

4 = ,\/gg FAN (31.24) 1

and 52 = 4[:9;'\* - G“\/’;) & (31.25)
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, A
The theoretical curves of@‘"‘"ﬁ) and { %i:’% against J/;S‘ , which are
Vg Ny

evaluated from equation (31,21), are inteégrated to obtain the variations
in the parameters {5 and »f% with ‘:w:g‘ + (The errors which sre introduced

by neglecting differences in the sublayer region are small), The
theoretical curves of &5 and%é against Fg are shown in fig, 78, and the
curve of (5 against .@w is comgared with Clauser's experimental points in
fige 79

The parameters PDS ,G and B are infinite at separation and it
is often more convenient to use the parameters, N‘ and Ng,, which are

defined,

N,=G,[F (31.26)
2
and = £ - (31.27)
Thus, H = T:_lﬂ-' (31.28) 4
and -§é_ ._j_fi = N,Nn(le‘.)@’ R (31,29)
u, 2%

where U0 is the pressure gradient parameter,

_ The theoretical variation of H with '"'l%-. a—é is shown in

fig. 80. It must be noted that these curves are for layers in energy
equilibrium, If the boundary layer is not in equilibrium then D would be
the 'apparent pressure gradient parameter! ; and in adverse pressure
gradients the true external pressure gradient parameter would be larger
than this. This is illustrated in fig. 81 where the measured pressure
gradient parameters in Schubauer and Klebanoff's experiments are compared

with the equilibrium theory,

Turbulent boundery lsyers in pressure gradients are usually not
in equilibrium, and this accounts for the considerable scatter in the

curves of 4 against T which ocours in the literature (see the review

by Rotta 1962), The pressure gradient parameters are invariably based on
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that of the free stream velocity gradient, However it has been shown
that the boundsry layer cannot adjust ibself quickly enough to the ex-
ternal pressure gradient and it is for this reason that the 'apparent
pressure gradient' has been introduced.

From equations (31.24) (31.26) and (31.27), the ratio of the
displacement thickness to the boundary layer thickness is

T MM (31.30)
The theoretical curves of H against .§.’. are presented in fig, 77 and
are compared with some measurements near separation reproduced from the
report by Sandborn (1959).

31,6 The experimental results of von Doernhoff and Tetervin (1943)
Von Doerhoff and Tetervin showed experimentally that curves

of % against M for particular values of d/g were almost independent
of the skin friction and pressure gradient. % is expressed in terms
ofd/ 8 by the equation

Y ! .
/S * NIN'&("’NJ (31.31)

The theoretical velocity profiles of figs. 63 and 6L are used to plot
curves of a* against H for particular values of the skin friction. The
curves are c'omparecl with the experimental results of von Doenhoff and
Tetervin in fig., 82 and with the results of Schubauer and Klebanoff in
fig. 83.

The present theory is used to evaluate the curve of L-3‘-'55’a,ga:i.nst

H , and in figure 84 this is compared with the semi-empirical c’urves of

Iudwieg and Tillmamn, and Spence (see Duncan, Thom and Young 1960), U.g
is the value of tL a‘by 82 .

The velocity profiles, and the parameters based on the profile

shapes, which are predicted by the present theory, compare extremely
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wzll with previous theorics and experimental results,
Chapter 7
Shear Stress Distributions
32, The integrated momentum equation
In the previous sections the momembum equation,
2 (W=-V7) +2udu 4 97 _ w,du 4 9%
Ox e Dy doc 3y
: : 3 T "‘79 2U
T Uy g
Was considered, and it was assumed that B)Ji -y

%ﬁ% were small in the inner region., The momentum equation therefore
reduces to

dav _ | du, +9 e~ uyy (32.2)

ER dx - dy¥
in the inner region, This equation was subsequently solved by making
certain approximations and an equation for the mean Plow in the overlap
region was obtained. The dimensional equations for the outer region were
then used to derive the equation for the velocity distribution in the
outer region, The outer region includes the logarithmic overlap region,
and by comparison with experimental velocity profiles, is valid for
almost all of the boundary layer; all except the region very close to the
wall where~)zg is less than about 0,02, (Excluding boundary layers with
suction which have a relatively large sublayer and in this case the outer
solution is only valid to about 0.06J2b .)

Variations in the ¢ ~direction will now be considered by

substituting the outer region velocity distribution into an integrated

momentum equation, The errors which are imtroduced by neglecting the i

differences in the sublayer region are insignificant, The tern
2 (’{;’,huv"") in equation (32.1) is usually small and will be
neglected in the following snalysis,
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In arder to obtain the integrated momentum equation, first of
all the conmtinuity equation, g_i__ + %3!,; = © , is substituted into the
momentum equation (32,1) and the resulbting equation is integrated with
respect toy giving

T

Nauﬁ'& +uv = uduy +2Z -
| da J de PP (32.3)

T
(% is the total shear stress (::/—Lé-y-’ - PN ) ). The

continuity equatlon is integrated with Tespect 'lnd' to give

'U:m-( BU~ dj + Yw 5 and (32.4)

e}
the resulting equation is substituted into equation 32.3. Thus

'g Qéw e Vi b —-'LLdUt\y J‘au" d3 j (32.5)

= LTw 4 Vgl —ib, du..j + ‘Zju.au. SJQ (32.6)
¢ -ij aué‘dz

¥
where 2 = “"/8 ¢ 1t is convenient to write §U~ in tbe form:
X

E’iﬁx_ + B(u-u Jg’ + 2(u-u) 3y , (32.7)
B:x: » P 'l Dk

where ? is a functlon of se only. The free stream velocity, th, , and

the boundary layer thickness, (9 » are also functions of 3¢ only and

"of&

therefare au"wO and 3, “___*3 dg :“‘l&?_[—.é .
Thus, equation éZ 7) moy be vmltter?i 82 doe § doe
ou _ du. + (u-u) 25 _ L ou d& (32.8)

22  dox fal; o § oy doe
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This expression for @_3_4- is substituted into the integrated momentum

)
equation (32,6) and thé equation is resrranged:

t
g ’gw + VL + (ji fQSJou.de—— wy - u,y} }
+ d5 fag J‘ u@_{g_—u)aQ Suf 3u-w) "'2}
e 4]

) (32,9)

In the following sections this equation will be used to evaluate the

shesr stress distributions in boundary layers at separation and with

suction or injection. -

33. Boundary layers with suction or injection

The equation for the outer region of turbulent boundery layers

with suction or injection in zero pressure gradient (equ. 25.8) may be

written,
. F’(%) v FUD) Y
%. (H w§>> + 4;51/&) u, (33.1)

|
where 'YW is consbant and, g-;.— Wy, Thus {I
(U3

1 ) z !
T é%%:&)— = Fip)v(¥) (33.2)

where V(éﬁ) .,.‘5/_.< + VYw é’ ) VW(t + VW% )M) (33.3)

Equation (32.9) can therefore be written in the form,

t L o 4 7
(5%} »;(_;f\»tg + \va:Z' +d§ S Qv(g)f “ W‘Z;)“‘%m‘“?ﬁ“(‘&)f%j |

‘o ' (35.4)
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and by using equation (33.1) to eliminate %: in equation (33.4),

equation is obtained for the shear stress dlstrloutlon in terms of the

four integrals,

T _n
(Cﬂ mj( F ('Z) Cé,Z)n:: L2,3,49.  (33.5)

The integrals have been evaluated numerically and are shown in fig, 50,
When Y = S equ'xtlon (33.4) reduces to

g v+ 4 s{mug s gy v e}
+°‘g{f(-—~>o’z 4[]

This equation relates the terms & & Jg and, - O‘a » Thus, if the skin

(33.6)

friction coefficient, C:F s and the tr:msnlr-ltlon velocity ratio, Vw N
are specified then the shear stress distribution, th , through the ‘

. w
boundary layer for different values of cig may be ev'raluated.

2
The equation which relates the growth of the boundary layer to
the change in skin friction (equ. 30.9) is

of) = W ( Vil \7 — LOC U.&
NO QKﬁ{(‘+W£1;~) — 1t KB, LQGQ*S—*' (53.7)

In section 19 it was shown that | and B are approximately constant and
therefore take their values for the ecase V=0 over the range of
transpiration velocities which result in o measursble skin friction, The

equation for & is obtained by rearranging equation (33,7):

§ = gv %P(QKLL. ‘{(H— {;:J } KE">~‘5(‘)) (33.8)

5
M
N
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Therefare 8 r,.fg;_tig {H— 2KV, é)} ) (33.9)

i

4
where Vz(g) = %(l + Y_Vf é’?) 2;.. Ly ....'...{(l + Vw %ﬁzjé:._ l} . (33.10)
’ \ U, VYw g w, 3
If this equation for g;-g is used, together with the previous equation for
the shear stress distrimbution, then %? becomes a function of C; and %Lw-z
only, A shear stress distribution which corresponds to 3 = constant is
shown in fig, 85 and comperes favourably with the curve calculated by
Ieadon (1961) from the experimental results of Mickley and Davis (1957),
Shear stress distributions with suction are shown in fig, 87 i
and they are of the same shape as that calculated fron experimental i
results by Dutton (1960), |
If the blowing velocity ratio is large (Y-‘l' } 0.005) then the |
skin friction is small and Yw ’g’z 771« In this case equations (33,1), ,‘
(33.2) and (53.3) simplify o ! ;

TN
. :~£(.)’.:/)*)
u, 2K\ (L, ’

. =0= 1
and V.(g) @] ™ a’g

The shear distribution is now fully defined by the equations

(AN 2
¥ - C Vw . W dS [ u.)‘d' _wfw g
= T [ e & 4,

and (When‘y/g‘zl )

SRR RVOERCTE
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The boundary lay\?r growth, % is governed primarily by the blowing
velocity ratio, f ¢ the skin friction has a negligible effect,

Equations (33.13) and (33.14) were used to calculate the shear
stress distributions shown in fig. 86.

She Boundary layers in o pressure gradient

The equation for the mean velocity in turbulent lLoundary layers
in a pressure gradient but without suction ar injection (equ. 31.6) is

U. . { vt ’Eq“! E“‘“I LL |

= = |~{E ~E 4+ .l LOG - 2 Uz 3h.1)
w, | {‘ 2 =y I T Ghe2) |

}’f

o & | |

where E = (}98 ex{mS—r ') . (34.2) ’
f

If§ #5&.~Uu S, g_y_g , (this satisfies the cond:.t:.on‘so ?(x)) ]
then a (L...u‘ __( U.'z (LL (A, 3“&: i . (34‘3) E(
#é‘ bé BIDS 3 ]

taé' is not a particularly useful variable because t_pc? —% o a8 separation
is approached. Equation (34.3) will now be written in terms of

& duy 9,
D”m&;ﬁ“f’%’*) . Thus

a(u_u') dg .....(E' E)%}_f I dD ‘ZD) "(LOG E-—'l E»{-f

5@ Joe D d= & E+l E-J

(34.4)

|
|

vhere £ in terms of D is

1
E=l (DLL?"%KPS + U??)l
Uy

Either equation (34.,3) or (3L.4) may be used together with equation (32,9)
to evaluate the shesr stress distribution through the boundary layer, |
If the skin friction is very small (pe=Q) then the it
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equations simplify considerablys

J.
_.‘:L_ = 8~2D2(;s.,* _‘3)
L QX!DE 'Q'XP)*Q- r (3446)

O.D Lig =

(a(u. W) . d%) = —(u- U‘)(ZD ab ?> (34.7)

oo Uy == O

BEquation (34.7) is substituted into the equation for the shear stress
distribution (equ. 32.9). Thus

E)?::1_9: = ig ji- {'"LZ"‘T_‘"-:‘-*Z + 2[%"10{'2} +
,
"éio"';"@ -0){- QJ(’ '““)“’“ g + %,f(%,)dz} +

U O’z'-[-i‘i"”z}

(34.9)

) 2
here N = »é:— - --—-. , J [u' d’” ‘"‘f «-‘:—L_TO[ . 34,10
wher D 3™ 4 0((_(.(‘ ‘Z ( )

BEquation (34,9) gives the shenr stress distribution through turbulent

boundary layers at separstion s at reattachment and with negligible wall
shear stress,
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The shear stress distributions in fig. 88 have been calculated
for the conditionsN =0 and 0.1 ,and D= 0,013, This value of [ corres~
ponds to that of the separation profile measured by Schubauer and
Klebanoff (1951). It is, significant that the thecretical shear stress
curve for N= 0 is close to Schubauer and Klebanoff's experimental points,
because the present theory is expected to correspond to equilibrium
conditions, and true equilibrium conditions correspond to very small

D dax *
It has been suggested by Coles (1956) and Rotta (1962) that

the shear stress measurements of Schubauer and Klebanoff are about 30%

changes in the = ~direction and therefare N

too high, If this is the case then the present theoretical curves do
not compzre quite so wéll with the experimental nmeasurements as they
would appear to do in fig. 88. However Newman's (1951) shear stress
measurements at separation are even higher than those of Schubauer and
Klebanoff,

It must be noted that the terms containing the turbulent
velocity components, apart from the UV term, hove been neglected in

the integrated momentum equation § in particular the integral, f Bu;rz. A'Z,
has not been included in the calculations, However the contribution from ¢

these terms is probably small,

35. Suggestions for Future Work

4n tapparent pressure gradient', DM,P s has been introduced when . |
considering non-equilibrium boundary layers with an external pressure

gradient percncter, ) It would be useful to measure velocity

ExT °
profiles in various pressure gradients in order to find the relation |
between g..Qf—xT and ’2{._9_&52_, , and the experiments may help in |
formulating a theory.

A recent report by Libby et al (196)) considers equilibrium

boundary layers in pressure gradients,and a theory is outlined which ‘

enables velocity profiles to be defined by two perameters & and R '

g, = (2w 4@ (2 ) and b = 9 ). Libby considers the




self preserving flows obtained by Clauser (1954) and by Iudsieg snd
Pi1lmenn (1949) and those which exist for zero pressure gradient. (A
self preserving flow is one which satisfies the equation
. PN
b = 6(Ys) (35.1)
L4

where §(¥g) 1is the seme function for all the veloolty profiles in the
flow. (%)may differ from one self preserving flow to another. )
The values of s, and ‘Z' are chosen so that the theoretical profile is
the seme shepe as that of a self preserving set of profiles.  The
‘shcore‘clcal profile is then used together with the momentum integral equa:ln.on :
to calculate the variations of €§ 8 and (., 2long the flow. The
theoretical variations are shown to agree with the experiments. The
present outer region theory may be used to preduct the velocity profiles,
and it is suggested that these are used with the momentum integral
equation in place of the profiles used by Libby.
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PART III

TURBULENT FLOW IN A POROUS PIPE

36, Introduction
The turbulent structure in a pipe is different from that in a

boundary layer. For example boundary layers have a region at their outer
edge which exhibits intermittency, i.e., the flow is partly rotational
and partly irrotational, whereas in fully developed turbulent pipé flow
there is no intermittency. Also the turbulence in pipe flow is constrain-
ed between the walls whereas that in a boundary layer may increase or
decrease depending on the external pressure gradient, The mean velocity
profiles in a fully developed turbulent pipe flow are the same ab
different positions along the pipe and the pressure gradient and the skin
friction are constant,

Yuan et al (1957, 1958, 1961) studied the effect of injection
through a porous walled pipe into fully developed turbulent pipe flow.
A bS-inch diasmeter porous stainless steel pipe 24 inches in length was
connedted as part of a long 5-inch diameter pipe, Pitot tube and thermo-
couple traverses were made and the velocity and temperature distributions
were shown to compare reasonably well with an spproximate theory in the
outer region. The theory was based on the mixing length hypothesis and
the boundary conditions were applied at the centre of the pipe.

The present experiments in the Aerona&i‘bical Laboratory at
Queen Mary College show how the mean flow is altered when there is suction
through a porous section of a pipe, First of all an approximate theory
will be presented, the experiments will then be described and the results

will be compared with the theory.
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Chapter 1
Theory

37. The continuity and the momentum equation

The boundary layer or viscous flow equations of contimuity
and momentum for axisymmetric incompressible flow, in cylindrical

coordinates (22,1 ) have the following forms (see Iaufer 1954.) 3

L i orv, _
S T 5 =0 (37.1)

L O + V. »atl,l —_ o[P; _ dwr 1ok, v.&iuﬁ

Boe S oo doc F or ar?  (37.2)
+2 8w, —_—
e S Sdu‘t

where V, is the mean velocity in the v ~direction. The term S in this
equation will be small, as it is in turbulent boundary layers, and it is

neglected in the following analysis,
The boundary conditions for fully developed turbulent pipe

flow with suction or injection through the wall ares

(1) at ¥r=0

WV, =0 ,V,=0_ wu=Uu, & 3w _q

? mfa [
(i1) at r=oa , where Q. is the radius of the pipe,

WV =0, v, = (Vo) , w=0

and Y QU (37.3)
3
Now 3_%'Vt.u = w3y, + Fv, ol . C(37.4)
or °or ar

it L(2 (T VI =L 2 TVY-VSe -9 B (57,5)
F\2r o ror ror
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Equation (37.4)is rearranged and the continuity equastion is used to
eliminate Sr¥. , thus
4 drviu g du V, O \
-2 Joc Y (37.6)

Equations (37.5) ard (37.6) sre added to the momenbtum equation (37.2) to give

3w (F 37 T T "?("af‘F (@ ’éﬁ—?‘) Grn

which is multiplied by ¥ and integrated with respect to  from O to o
to give the following integrated momentum equation

a.
3 1y = df * we

The equation can be rewritten in terms of y s Where](* o~ ) is the
distance from the wall, p
e, 2 (4l DETI)-- G )5 -
u.? 20¢ 2 W, ax (57-9)
Similerly the continuity equation (37.1) is multiplied by ¥ and ’
integx aued from =0 to o, thus | \

. dr = v
axj *rwolr o { )w,

Q.

|
« a2 (u( S AL AT (37, >}’
% ’

where V 1is the velocity in thejdirec‘tion. When-'-'*.rw is zaro the veloeity
profiles sre similar, %, is constant,and equation (37.9) reduces to the ,

friction, namely

C = N o!P)
J 2 \ % U oar

well known equation relating the pressure drop along a pipe to the skin f
o
l

(37.12)
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38. An approximate solution for the inner region

The theory follows that used for the turbulent boundary layer,
Tt is assumed that the terms 9% and XY are negligibly small in the
o v
inner region compared with the other terms in the momentum equation, which

therefore simplifies to

SV o _rdR _ 3 r?5>

. de S\ (38.1)
where the shear stress, ¢’ is DU«'VT*/LBU' ~+ The contimity equation
e ( T
implies that

'V, = a.(V, .
w
( (38.2)
Equation (38.1) is integrated,
v == - r*-’- dR ?j . f‘\ f == ‘
p L x - + <constan Q’<Vr-)w ,

8.
and whentv =G. this reduces to

O = - a dP ~ &Tw , constant | (38.4)
2 T P 38.k

Equation (38.4) is subtracted from (38.,3) to give

V.U = Q(Vv>wu$ (CLQ‘ rﬁ)%}%"r_’}__ - l'*;: + Oéz:’w ’ (38.5)

ar, in terms of

J s
— OV = j(Q_aa:/)gg f)_ _,(a-—_‘y)%‘_ + o Tw 8.6

This equation is more complicated than that obtained for the boundary
layer flow., However if it is assumed that Yy is small compared with the
radius of the pipe, it reduces tos

o T de T T (38.7)




which is the same as that for boundary layer flow., Again it will be

assuned that

J_du K R |
(%)" dy (38,8)
where K is von Karman's constant, so that equation (38.7) becomes
A
‘ dP o vy Tw ) |
j.‘i&.‘; = K(j L4 Vw +_ﬂ_35_/_> . I
4y ~ e ® . (3849)

Equation (38.,9) is non~linear and only two special linear cases will be
considered: (i) when Vy=0 end (ii) when dR =0 .
(i) Then Vw=0O  the solution of equation Tic38 9) is (see section 28) 1

)|

o = 2y + toal PV | () o

L NE
¥ )M—%
where - C’l P. s and B is independent of Y . However

for fully éleveqiloped furbulent pipe flow, from equation (36,12),

Sdb 29 %

P da cn'e

and therefore, consistent with the previous assumption that Y is small

(38,11)

compared with a. , equation (38,9) reduces to

ol = K(Z —
C! e W KUy ' - (38,12)
which has the solution

A 1 Log, I%xr 4+ B

T ~ K Y (38.13)

where B is a constant. This is of course the 'law of the wall' equation.,
Values of 0.4 and 5.1 will be used for K and B in the calculations
for pipe flow.



(ii) When —j—;é‘ =( ‘the solution of equation (38.9) is
0 oA

A
21.12:( A2 :) =llog d% ., g /v . (38.14)
Vo 717;9 0% =+ B (Vu, ue)

where 82 is independent of Y .

When there is suction through a permeable section of the pipe /
the pressure gradient is reduced and the skin friction is increased,
Consequently, consistent with the assumnption that y is small compared
with @. , equation (38.14) should be a reasonable solution for all moderate
suction velocities, (Obvicusly if the suction velocity is too large the
original assumptions made in reducing the Navier Stokes equations to the
boundary layer equations will be invalid,) ‘

When air is forced through the permeable wall into the pipe,
the pressure gradient increases and the skin friction is reduced. In
this case the pressure gradient term in equation (37.9) will increase to
become of comparable magnitude to the skin friction term and therefore
equation (38,14) will not be valid with injection.

Chapter 2
Suction Experiments in Pully Developed Turbulent Pipe Flow

39+ Apperatus
The apparatus is shown in figures 89 to 92, A 36 foot length

of 3,625 inches internal dilameter steel pipe was comnected at its down-
stream end with a flexible tube to a D.C. centrifugal fan (220 V, 26 amp.)
Adr entered the pipe through a cylindrical air clesrer made fron Vyon, a
porous plastic sheet material, Vyon, which is manufactured by Porous
Plastics Limited, retains particles down to about 25 microns,

25 feet downstrean of the inlet there was 2 32 inch porous
section; which consisted of L interlocking 8 inch lengths of porosint
sinilar to these used in the boundary layer experiment deseribed in Part 2,
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The porous section of the Pipe was enclosed by a chamber consisting of a
3 foot length of 1 foot diameter pipe with end plates. The chamber was
connected by means of six 1-83- inch rubber tubes to a six inch diameter
flexible tube attached to a D.C. centrifugal fan (220 v, 6 amp. ) which
provided a pressure difference across the porous tube up to a maximum of
19 inches of water,

Static pressure tappings, each consisting of a small piece of
1/16 inch outside diameter brass tube cemented into a hole in the Pipe ar
porous tube so that it fitted flush with the inside surface, were placed
at 1 foot intervals along the pipe upstream of the porous section and at
intervals of 2§ inches along the porous section, A pitot tube or a
static tube was fixed to a micrometer screw traversing gear which could
be positioned at any of four stations along the suction chamber, The
details of the traversing gear and one of the stations are shown in
figure 92, The pitot or static tube passed through a shaped piece of
tufnol which was fixed with araldite to the body of the suction chamber
and also to a slot 13" by 4" in the porous tube, Air could only enter
the suction chamber by Passing through 3/16" of Parosint, A suction
velocity of 0,25 £t./sec. through the porous tube required a pressure
drop of 15 inches of water scross the tube and consequently the small
changes in static pressure along the pipe did not cause significant
variations in the suction velocity, Another traversing micrometer was
positioned 3 feet upstrean of the parous section., The pressure drop
across the porous tube was heasured from one tube of a vertical multie
tube manometer and the static and pitot bressures were measured on an
inclined multitube msnometer which was calibrated against a Betz
- manometer,

The pitot tube was electrically insulated from the traversing
micrometer and the suction chamber, and it was arranged so that an
electric circuit was completed as the pitot tube touched the porous wall,
The pitot tube and the static tube are the same as those used in the
boundary layer experiment,

4 disc inserted between two off the pipes 2 feet from the
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inlet protruded 1/16" into the pipe to act as a trip device to ensure sz
fixed transition from laminar to turbulent flow,

40. Experimental results
Static tube traverses across the porous tube did not detect any

change in pressure, even with the maximum suction velocities, The static ’
tube confirmed that the Pressure tappings along the porous tube were not
affected by the suction velocities, The static pressure at the first ’
tapping downstream of the suction chamber was almost independent of r
changes in the suction velocity, and this tapping was used as a datum f
il.e. throughout a set of traverses at different stations along the pipe r
for a particular suction velocity, this static Pressure was kept constant i
by adjusting the speed of the fan connected downstrean of the pipe, ﬁ

The pitot tube was traversed across the Ppipe at each of the five h
stations along the pipe for suction velocities ranging from O to 0,275 £t/ ‘ﬁ
sec. During one set of traverses at different suction velocities, the |
detunm static pressure was kept constant ang during the other set of
traverses the suction velocity was adjusted so that there was zero
pressure gradient along the Porous tube, The static Pressure variations
along the pipe are shown in figure 93, and the velocity distributions
along the centre line of the Pipe are shown in figure 94,

The mean velocity profiles at the station upstrean of the
suctlon chamber are compared with the 'law of the wall', equation (38.13)

in figure 95. The skin friction indicated by the lew of the wall
equation agrees with that calculated from the Pressure drop along the
pipe using equation (37.12). The measured velocity profiles fall on the
universal outer region curve for fully developed turbulent pipe flow
(fig. 96.).

The velocity profiles ot the stations along the suction chamber
are shown in figures 97 to 99, Curves of %E(L‘¥4L> against Ya
(fig. 100), ana (G Y(1~Ya) inst Yo (fig. 101) lotted

fig., 100), andg )/ o agains o (fig. were plotte
and, using equations (57.11) and(37.9), the suction velocity and the skin




friction were evaluated, The pressure distribution along the porous section
is not uniform because the bore of the tubes sre tapered by as much as
0,015", The variations in the Pressure gradient cause uncertainties of

X 15% in the value of the skin friction coefficients,

Figure 102 shows the velocity profiles at different positions
along the pipe when the suction velocity was 0,274 ft/sec. The lower
curve coarresponds to fully developed turbulent pipe flow with zero suction,
the next curve is the velocity profile 6 inches after the beginning of the
parous section, the next after Linches, then 22 inches and the higher curve
is the profile 30 inches after the beginning of the porous section. It |
can be seen that the veldeity profile changes very quickly near to the wall
but changes more slowly towerds the outer region, There is the added
complication that the ratio l"—?} increases along the porous tube
because the velocity W,decreases from 88 to 78 ft./sec. An increase of

{:“1‘ - would give a higher velocity ratio %:' at a particuler distance from
the wall and the changes in %' between the last three stations could be
due to this effect,

Ia figures 103 and 104 the measured velocity profiles are
compared with the inner region equation (38.14) (assuming that Bﬂ is
equal to its zero suction value i.e, Baz B). The agreement is very
good for the lower suction velocities but gradually, as the suction
velocity is increased, the theory becomes less favourable, The differ=
ences between theory and experiment could be due to curvature effects
(in the theory it was assumed that y was negligibly small compared with
Q. ) or to pressure grodient effects, but is more probably due to }!u:‘f:-'
increasing along the porous section. The latter effect is indicated by
the following diagram:




f K Theoretical profile at e where
] suction velocity is “_/_y‘
: e,

T Theoretical brofile at x+8% where

suction velocity is l‘i!’! + 8 (.‘i!)’
U-. u‘l

~Experimental profile at ac+ o

LogJY%:
2%
The diagram shows s velocity profile satisfying local conditions near to
the wall but being influenced by upstrean conditions towards the outer
region,

In the region near the wall the effect of suction is Just the
same as that in turbulent boundary layers .. Suction removes mass from
the wall region but it does not remove momentum in the de-direction., The
momentum is dissipated in the form of heat by the viscosity and therefare
there are higher velocity gradients and therefore a fuller velocity
profile i,e. the velocity . at a particular value of y is higher with
suction than without suction,

The experimental rig used for the suction experinents has been
used for provisional injection experimen’ss by connecting the chamber to
& compressed air supply., The effect of injection on the velocity
profiles is shown in figs, 99, 100, 101, and 105.

The suction chamber has also been positioned near to the inlet
of the pipe in order to study boundary layers with suction in the entry
length, Some of the velocity profiles are shown in fig. 106, More de-
teiled experiments in the entry length and with injection are planned,

41, Suggestions for Future Work

It is suggested that the outer region boundary layer analysis
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be extended to the flow near the centre line of a pipe, The universal
function, S(éyé\), will obviously not apply to Pipe flow, where there is
no intermittency, but a function of J/& will probably exist which enables
the velocity profiles in pipe flow to collapse onbo one curve, The
analysis will be quite simple for pipe flow without suction or injection
and for pipe flow with suction but with zZero pressure gradient. However
the analysis will be far more conplicated in other cases s i.e. when the
non~linesr inmer region equation has to be solved. The analysis will
enable flows in slowly diverging or converging circular ducts to be
predicted, and possibly will predict separation of a fully developed
flow in a diverging duct., It will be interesting to calculate the shear
stress distribution across the pipe with and without suction,

CONC1USIONS
1l. ILaminar Theary

Approximate integral equations have been derived for the

compressible laminar boundary layer with arbitiary pressure gradient,
and arbitrary suction or injection velocities through a porous wall., i
In particular the incompressible forms of the integral equations have i
been solved for similerity flow and for flat plate flow with continuous i
suction or injection. The uniforn suction ar injection solutions are , |
close to the exact solutions and it is to be expected that other f
realistic distributions of pressure gradient and blowing velocity will

give reasonable solutions,

Solutions to the compressible integral equations for a
uniform free stream over a flat plate, when there is constant wall e
enthalpy and the suction or injection velocity is uniform or satisfies !i}‘f
similarity conditions, are shown to compare favourably with solutions I’:

obtained by previous authors,

2. Turbulent Boundary Iayers

The skin friction in the axisyumetric incompressible turbulent
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boundary layer experiments on the porous cylinder may be 5% greater than
on a flat plate and the shape of the profiles may not be exactly the sanme
as these on a flat plate bub the experiments have been useful in formalat-
ing two laws for the inner and outer regions » laws which correlate the
previous experimental results of Mickley and Davis s Dutton,and Black and
Sarnecki, The laws reduce to the 'law of the wall' and the 'velocity
defect law' when the injection or suction velocity is zero., The laws
have been used to calculate shear distributions and variations of skin
friction with Reynolds number and have made it possible to estimate the
local skin friction over porous surfaces by using Preston tubes,

The total shear stress distribution with suction is a different
shape from that with injection but the two constituent parts, -g_;..
and — OV are similar, as is shown in figure 107. The actual distri-
bution of the Reynolds stress s =] wv' » is modified slightly by the
appropriate conditions in the inner region, but the turbulent structure
in boundary layers with suction or injection will be basically the same.

The outer region theory has been extended to turbulent
boundary layers in pressure gradients and at separation, The outer region
equation together with the equation for the overlap region has been used
to evaluate mean velocity profiles,The only univérsal functions which were
used were obtained from the zerc pressure grofent flow. No other constants
were required to calculate the velocity profiles for boundary layers in
small pressure gradients, with suction or injection and at separation or
reattachment. The total shear stress variation across a boundary layer
at separation has been evaluathd,

The theory agrees very well with the available experimental

results for turbulent boundary layers in energy equilibriunm,

3. Turbulent Pipe Flow
Experiments in fully developed turbulent pipe flow have shown
how the mean flow is altered when there is suction through a porous

section of the pipe, An approximate theory, similar to that for the
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boundary layer, is presented and compared with the experimental profiles
in the inner region. For small suction veloecities the theory agrees )
reasonably well and, within experimental accuracy, the skin friection

predicted by the theory is correct.




119

REFERENCES

Black, T.J. and Sarnecki, A,J. (1958) The turbulent boundary layen
with suction and injection. ARG, 20,501,

Braslow, A.L., Burrows, D,L., Tetervin, N, and Visconti, F. (1951)
Experimental and theoretical studies of area suction for the
control of the laminar boundary layer on sn NACA, 6L AOLO airfoil.
NACA Rpt.1025. -

Brown, W.B. and Donoughe, P.L. (1952) Tebles of exact laminar

boundary layer equations which result in specific-weight flow 3
profiles locally exceeding free stream values. NACA.TN,2800. ‘ !

Clarke, J.H., Menkes, H.R. and Libby, P.A. (1955) A provisional
analysis of turbulent boundary layers with injection. J. Aero.
Sei. 22, pp.255-260,

Clauser, F.H, (195L) Turbulent boundary laeyers in adverse pressure
gradients. J. Aero. Sci. 21, pp.91-108. e

Coles, D, (1954) The problem of the turbulent boundary leyer.
ZANP. 5, pp.181-202,

Coles, D. (1956) The law of the wake in the turbulent boundary layer.
J. Fluid Mech. 1, pp.l9l-226.

Coles, D. (1961) The turbulent boundary layer in a compressible
fluid. Rand Corporation, Santa Monica, P,2417.

Craven, A.H. (1960) Boundary layers with suction and injection.
College of Aeronautics Rpt. Aero 136,

Craven, A.H, (1962)  The compressible laminar boundary layer with
foreign gas injection. College of Aeronautics Rpt. Aero 155. o

Curle, N, (1960) The estimation of laminar skin friction, including
the effects of distributed suction., Aero. Quart. 11, pp.l-21.

Deissler, R.G. and Loeffler, A.L. Jr. (1959) Analysis of turbulent
flow and heat transfer on a flat plate at high Mach numbers with
variable fluid properties. - NASA. Rpt. R-17.

Dhavan, 8. (1952) Direct measurements of skin friction. NACA.TN.2567.

von Doenhoff, A.E. and Teteruin, N, (1943)  Determination of general
relations for the behaviour of turbulent boundary layers.
NACA Rpt.772.

Doncughe, P.L. and Livingood, J.N.B. (195L) Exact solutions of laminar
boundary layer equations with constent property values for porous
wall with variable temperature. NACA.TN, 3151,

Dorrance, W.H. and Dore, F.J. (195L) The effect of mass transfer on
the compressible turbulent boundery layer skin friction and heat
transfer. J. Aero, Sei. 21. pp.L0L-L10,




120

Duncan, W.J., Thom, A.S, and Young, A.D. (1960)  The Mechanics of
Fluids. Edward Arnold Lid. p.342.

Dutton, R.4. (1959) The velocity distribution in a turbulent boundary
layer on a flat plate. ARC.CP. No..453. ARC.Rpt.19576.

Dutton, R.A. (1960) The effects of distributed suction on the
development of turbulent boundary layers. R & M.3155.

Dwight, H.B. (1960) Tables of Integrals and other Mathematical Data.
Macmillan Co. New York. 3rd Edition. p.196.

Eckert, E.R.G. & Livingood, J.N.B. (1953) Method for calculation of
laminar heat transfer in air flow around cylinders of arbitrary
cross section. NACA.Rpt.1118.

Eckert, H.U. (1952) Simplified treatment of the turbulent boundary
layer along a cylinder in compressible flow. J. fero. Sci. 19,
Pp.23-29.

Emmons, H.W. & Leigh, D.C, (1953) Tebulation of the Blasius function
with blowing and suction.  ARC,.CP.No,157,

Erdélyi, A, (1953) Higher Trancendental Funotions. McGrew-Hill Book
Co. Inc., New York, Vol.2, p.80.

Erdélyi, A. (1954) Tables of Integral Transforms, McGraw-Hill Book
Co. Inc., New York. (a) Vol.l, p,125. (b) Vol.2, p.18L.

Page, A. & Falkner, V.M. (1931) Relation between heat transfer and
surface friction for laminar flow. R.& M,1408.

Ginevskii, A.S. & Solodkin, E.E. (1958) Effect of transverse curvature
of the surface on the characteristics of an axi-symmetrical turbulent
boundary layer. Prikladnaya Matematika i Mekhanike. 22, pp.8L9-825.

Gortler, H. (19.8) Ein Differenzenverfahren zur Berechnung Laminarer
Grenzschichten. Ing. Archiv. 16, p.173.

Griffith, A.A. and Meredith, F.W, (193%6) Unpublished. See 'Modern
Developments in Fluid Dynamics'. ed. Goldstein, 1938, p.53k.

Hartnett, J.P., Masson, D.J., Gross, J.F. and CGazley, C. Jr. (1960)
Mass-transfer cooling in a turbulent boundary ‘layer. J. Aerospace
Sei.27, p.623.

Hartree, D.R. and Womersley, J.R. (1937) A method for the numerical or
mechanical solution of certain types of partial differential equations,
Proc. Roy. Soc. London, A.10L, pp.353-366,

Heed, M.R. (1957)  An spproximate method of csloulating the laminar
boundary layer in two-dimensional incompressible flow. ARC. s
R.& M.3123. '

Head, M.R. (1961) Approximate methods of calculating the two-dimensional
laminar boundary layer with suction. Boundaxy Layer and Flow Control.
Pergamon Press, p.801,

i




Head, M.R. and Rechenberg, I. (1962) The Preston tube as a means of
measuring skin friction. ARC.23,459, M. 3153,

Hsu, E.Y. (1955) Measurement of local turbulent skin friction by means
of surface pitot tubes. David W. Taylor Model Basin, Rpt.957.
N5715-~1.02,

Iglisch, R. (19L9) Exact calculation of the laminar boundary layer in
longitudinal flow over a flat plate with homogeneous suction.
NASA, TM,.1205.

I1lingworth, C.R. (191;9% Steady flow in the laminar boundary layer.
Proc. Roy. Soc. (4) 199, pp.533-558.

T lingworth, C.R. (195L) Separation of a compressible laminar boundaxry
layer. Quart. Mech. and Appl., Maths. Vol.7, pp.8-3l.

van Ingen, J.L. (1958) Een Twee-parameter methode voor de Berekening
van de Laminaive Grenslaag met Afzuiging,  Memo, MT Tech, Hogeschool
Delft, Viiegtuigbouwkunde.

Kay, J.M. (1948)  Boundary layer flow along a flat plate with wiform
suction. ARC. R.& M. 2628,

Klebanoff, P.S. and Diehl, Z.W. (1951) Some features of artificially
thickened fully developed turbulent boundary layers with zero pressure
gradient. NACA, TN,24,75.

Koh, J.C.Y. and Hartnett, J.P, (1961)  Skin friotion and heat transfer
for incompressible laminar flow over porous wedges with suction and
variable wall temperature. Int. J. Heat Mass Trensfer, Vol.2,
Pp.185-198,

Landweber, L. (1949) Effect of transverse curvature on frictional
resistance. David W, Taylor Model Basin , USN. Rpt%.689,

Leufer, J. (1954) The structure of turbulence in fully developed pipe
flow, NACA. Bpt.1174.

Leadon, B.M. (1961) Comments on "A sublayer theory for fluid injection”.
Jnl. Aerospace Sci. Vol.28, pp.826-827,

Le Fur, B. (1959) Heat trensfer and recovery factor in a laminar boundary
layer with arbitrary pressure gradient and wall temperature
distribution. J. Aerospace Sci. Vol.26, pp.682-683.

Lew, H.G. and Fanueci, J.B. (1955) On the laminar compressible boundary
layer over a flat plate with suction or injection. J. Aero. Sei.
Vol,22, pp.589-592,

Libby, P.A., Baronti, P,0. and Napolitano, L. (1964)  Study of the
incampressible turbulent boundary layer with pressure gradient.
ATAA, J. Vol.2, pp.hl5-L52,

Lighthill, M.J. (1950) Contribution to the theory of heat transfer
through a laminar boundary layer. Proc. Roy. Soc. A, Vol.202,
Pp.359-377.




Lilley, G.M. (1959) A simplified theory of skin friction and heat
transfer for a compressible laminar boundary layer, College of
Aeronautics Note No. 93,

Livingood, J.N.B, and Donoughe, P.IL. (1955) Summary of laminar boundaxy
layer solutions for wedge~-type flow over convection and transpivation
cooled surfaces. NACA, TN,3588.

Low, G.M. (1955) The laminar compressible boundary layer with fluid
injection., NACA., TN - 3400,

Ludwieg, H. (1950) Instrument for meaguring wall shearing stress of
turbulent boundery layers.  NACA. M.128..,

Ludvieg, H. and Tillmann, W. (192;.9) Investigation of the wall shearing
stress in turbulent boundary layers, ACA, TM.1285,

McGregor, I. (1951.) Regions of localised boundary layer separation and
their role in the stalling of aerofoils. Ph,D. Thesis, Faculty of
Eng. Univ. of London,

Mickley, H.S. and Devis, R.S. (1957)  Momentun trensfer for flow over a
flat plate with blowing.  NACA, IN.4017,

Mickley, H.S. and Smith, K.A. (1963) Velocity defect law for a transpired

turbulent boundary layer, ATAA, J. 1, p.1685.

Millikan, G.B. (1938) A critical discussion of turbulent flows in
channels and cirecular tubes, Proc. 5th Int. Cong. for App. Mech.
Wiley, pp.386-392.

Nash, J.F. (1960) A correlation of skin friction measurenent in
campressible turbulent boundary layers with injection, ARC, 22,386,

Nevman, B.G. (1951) Skin friction in a retarded turbulent boundary layer
near separation. Aero. Res, Consultative Comn, (Australia).  Rpt,
ACA. 53,

Pappas, C.C. and Olamo, A.J, (1960) Neasurements of the skin friction
of the compressible turbulent bo r layer on a cone with foreign
gas injection. J. Aerospace Sci. 27, p.321.

Plaggio, H.T.H. (1952) Differential Equations. G. Bell & Sons, Ltd,
London, p,88,

Pohlhausen, K, (1921) On the approximate integration of the differential

equation of the laminar boundary layer. Z. Angew, Wath, Mech.1, p.252

Preston, J.H. (3.951;-) Determination of turbulent skin friction by ncans
of pitot-tubes., J. Roy. Aero. Soc. 58, p.109,

Rheinboldt, W, (1955) On the calculation of steady boundary layers for
continuous suction, with discontinuously variable suction velocity,
NASA, TT.F29. 1961.




123

Richmond, R.L, (1957) Experimentel investigation of thick axially
symnetric boundary layers on cylinders at subsonie and supersonic
speeds.  Guggenheim Aero. Leb. California Tnst. of Tech. Memo. 39,

Rotta, J 0. (1962) Turbulent Boundary Layors in Tncompressible Flow.
Progress in Lero, Sei. Pergamon Press.

Rubesin, M.W. (1954)  An analytical estimation of +he effect of
transpiration cooling, NACL, IN.3341.

Sandborn, V.4, (1959) 4n equation for the mean velocity distribution
of boundery layers. NASA. Memo. 2,5.598, |

Schlichting, H. (1942)  Die Grenzschicht an der ebenen Platte mit
Absaugung und Ausblasen, Luftfahrtforseh.10, ».293.

Schlichting, H, (1’949) An approximate method for +the calculation of
the laminar boundary layer with suction for bodies of arbitrary
shape, NACA, TM.1216.

Schréder, K, (1951) Vervendung der Differenzenrechnung zur Berechnung
der laminaren Grenzschicht, Math.Nachw, L, p.439.

Schubauer, G.B, and Klebanoff, P.S. (1951) Investigation of separation
of the turbulent boundary layer, NACA, N,.2133,

Schultz-Grunow, F. (1947)  New frictionsl resistance law for smooth
plates. NACA, TN.1257.

Smith, A.M.0. and Clutter, D.W, (1963) Solution of the incompressible
laminar boundary layer equations., ATAA, J, 1, p.2062.

Smith, D.W. and Walker, J.W, (1958)  Skin friction measurements in
incompressible flow. NACA, TN,4231.

Spalding, D.B. (1958) Heat transfer from surfaces of non-uniform
temperature, J. Fluid Mech. L, pp.22-32

Sparrow, E.M., Eckert, E,R.G. and Minkowycz, W.J, (1963) Heat transfer
and skin friction for turbulent boundary layer flow longitudinal to
a circular cylinder., J. App. Mech,30, pp.37-L3

Squire, L.C. (1963)  Some notes on turbulent boundary layers with fluid
injection at high supersonic speeds. RAE Tech. Note Aero,290L.,

Staff of Aerodynamics Div, N,P.L.(1961) On the measurement of local
surface friction on a flat plate by means of Preston tubes.
R.& M. No,3185.

Staniforth, R. (1951)  Contributions to the theory of effusion cooling
of gas turbine blades, General Discussion on Heat Transfern,
ASME. Sept.l1-13,

Stenton, T.E., Marshall, D, and Bryant, C.N. (1920) On the conditions
at the boundary of a fluid in turbuwlent motion., Proc. Roy. Soc.
(A), Vol.97, p.u13.




124,

Stevenson, T.N. (1961) Laminar boundary layer with injection through a
permeable wall. College of Aeronautics Rpt.145.

Stewartson, K. (19.9) Correlated incompressible and compressible boundary
layers. Proc. Roy. Soc, A. 200, p.8,

Stratford, B.S. (1959a) The prediction of separation of the turbulent
boundary layer. J. Fluid Mech, 5, pp.1-16,

Stratford, B.S. (195%)  An experimental flow with zero skin friction
throughout its region of pressure rise., J. Fluid Mech, 5 » Pr.17-35,

Tenderland, T. and Okuno, A.F. (1956) The effect of fluid injection on
the compressible turbulent boundary layer. NACA, RM.A56D05,
NACA/TIL 5126,

Tewfik, O R, (1963) Some characteristics of the turbulent boundary
layer with air injection, ATAA, J. 1, pp.1306-1312,

Torda, T.P. (1952) Boundary layer control by continuous surface suction
or injection. J, Math, Phys. 31, p.206.

Tovmsend, A.A. (1956a) Structure of Turbulent Shear Flow, Cambridge
Univ., Press.

Townsend, A.A. (1956b) The properties of equilibrium boundary layers.
J. Fluid Mech. 1, pp.561-573,

Townsend, A.A, (1960) The development of turbulent boundary layers with
negligible wall stress. J, Fluid Mech. 8, Pp.143-155,

Turcotte, D,L, (1960) A sublayer theory for fluid injection into the
incompressible turbulent boundary layer, J, Aerospace Sci. 27,
Pp.675-678,

Wills, J,A.B. (1963) A note on a method of measuring skin friction,
N.P.L. Aero, Note 1011,

Wuest, W. (1955) Asymptotische Absaugegrenzschichten an langsangestromten
zylindrischen KSrpern. Ing. Archiv, 23, P.198.

Wuest, W, (1961) Survey of calculation methods of laminar boundary layers
with suction in incompressible flow, Boundary Leyer and Flow Control,
Pergamon Press, p.77L.

Yasuhara, M, (1959) Experinents on axi-symmetric boundary layers along
& cylinder in incompressible flow. Trans, Japan Soc, ALero, Space
Sci. 2, pp.72-75.

Toung, A.D. (1939)  The calcwlation of 4he total and skin friction drags
of bodies of revolution at zero incidence. R.& M, 1871, |

Young, A.D. (1948) lote on the velocity and tempersture distributions
attained with suction on a flat plate of infinite extent in compressible
flow., Quart. J. Mech, Appl. Math, 1, Pp. 70-75,



125

Young, A.D. and Meas, J,N, (1936) The behaviour of a pitot tube in a
transverse total pressure gradient. R.& M,1770.

Yuan, S.W. and Barazotti (1958) Experimental investigation of turbulent
pipe flow with coolant injection. Heat Transfer and Fluid Mech. T.
California, pp. 25~39.

Yuan, S.W. and Brogren, E.W (1961) Turbulent flow in a circular pipe
with porous wall. Phy. of Fluids L, pp.368~372.

Tuan, S.W. and Galowin, L.S. (1957) Transpiration cooling in the turbulent
flow through a porous-wall pipe. 9th Int. Congr. App. Mech. Brussels, |
PP.331-340.




126

ACKNOWILEDGMENT S

The author would like to acknowledges

the help and encouragement given during the

many discussions with Professor A.D. Young
and Professar G.M. Lilley,

the consideration and co-operation of
Dr, Whitehead and the technicians at
Queen Mary College,

the co~operation of the drawing office and
workshop staff at The College of Aeronautics,

the valuable daily talks with Dr. M. Gaster,

and the financial suppart of The College of

Aeronautics,




127
APPENDIX A

A Partial Tnversion of the Momentum Equation

Equation (6.28) is Y
f: S
T=a3”1(3 P =

2 r($) e

where, for incompressible flow,

(A.1)

x

/ﬂ?« & 6=u + -ﬁ 2Cw Ve oo, (4.2)

Yo /°

Equation (A.1) is rearrsnged to give

¥, =25 (%) wbsgz

/ ’ (4.3)
3% (3 7/
and the inversion of “bh:.s equation is
v = 2% el dul _ 27%uvw ] oLE

(A1)

4/@ F’ (&: t)% {aﬁi /A- }

Using equation (6 °25) the equatlon for the skin friction, in terms of

j;.,;;) (Eﬁ)% (( z “"eLz) c!(u. ('Jc‘))

&)dskj

. ! 7
o Tw oz ? Vi Ty o2,
/L[,(«L ) " 5 (A.5)

a
The tern involving UL,( 3‘1) is a 'Stieltjds integral! and it has a
value when the free stream velocity, W., , is a constant. The equation

is first used in section (8.2) as equation (8.16).
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APPENDIX B

A NMore Accurate Slin Fristion Solution

B.1 The series for i%

In section 6, the inaccuracy of the skin friction solution
is largely due to the p‘oor approxjma‘tlon used for ‘:{?, . More terms
are now considered in the series for -5:% with the hope of obtaining
better solutions. The following analysis for incompressible flow is
similar to that used to solve the energy equation in section 7.

The equation of motion in Von Mises form is

3.9, + (& D, =), @)

2 2 .
where Z= o -ul .n“/ov , Qﬁbgfu and

P
Csﬂ) Y ii‘”)" ! (5.2)

Following L.Lgn’chlll (1950) an expression for the veloci ty, W, namely
uw(iqf‘«a" 552' + D£¢§] which is most accurate near the wall is

substl‘cu ed into equa tion (B.1). A series for %-% of the form
5
%?E = P"P ‘5-3’ + Pé + 0[5 J’] will be considered.

Only the first term of this series was considered in the previous analysis

in section 6.

Bquation (B.1) may now be written

2 vzk 2 .
§§1 - 'L 33&} - aé + PS + % % ------ (B.3>

where £ ‘—"—"f (Q/LA /33' ) doe N (B.4)

P - p(_gyw , Pa=p _fY- = B =T o (8.5)
)7) 2/.;(72.3,) [a/‘ffz‘wyi

Tw
(P, s Pz. a.n/gpz are functicns of 2 only.)
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o0
- -pt
Using the Laplace transform notation & = |& Z ot and the condition
Z =0 when £ = | equation (8,3 is
; .
— - — o F)
f)~ é 14. Ps+ B &
a@* -¢ TS e (8.6)

and the homogeneous part of this equation has the solution (see section 6)
5 ¥
where ?_4‘33&& :

Aand B must be determined from the boundary conditions. The conplete
solution to equation (B.6) will now be found by the method of variation

of parameters. A solution is assumed to be

P3)z, + @Rz, , (8.8)

where :'3..;:’ = %.;/ﬂ I-%((i/) and.. E?—z =9 Iea,-_(?) . (B.9)

The equations tc determine P and Q. are thus

-4 J— A
— T~ ':" <% = 2
dP aEQ(E’q¢ ’ ‘f‘_g““ R e ) , (B.10)
di) T2§l“ﬁ|z'2.
, L — — Ll
4 = ) LY 1)
= 49 = (B3E. B +REY) o)
= 2,2, -2, Z,

where the prime denotes differentiation with respect to 5

Now the Wronskian (Erdélyi 1953), W l&((y) I-2 (%)) is equal to

~EE, = 3 Sz so that

P:—"-" — LT 5 % éi“‘ dé
3Squ‘TT‘( (B3 +P +P,8%) & J.:;.(cﬁ) 2, (8.12)

angd + L

Q- %m-ﬁrf (‘3-;&5 + R+ R3)$ I‘%(Qf/\)dge‘ (8.13)

o—

Z Son ‘;—“f’r, and therefore Z, ,

Ty




The solution to equa ‘b:on (B.6) is "rms 3

2-od' 148 1)~ I 2 1) | (R A28y

SRR f ( R8P4,

3 (B.14)

vhere o. and b are to be € determined from the boundary conditions :

———

Z=U" andl OF .- 2Tn at =0 " Therefore > from equation

2% s~
(B.14), a= NOYE: )3 Rl end b= (1) sr'( V3 (‘7-'2.'««> Thus
equation (B 11;.) may be written

Zz= a$3m11’—§ 77>~L«£3?/&m %() ?/ I—-L q}>f(p% +Pm 7/+

2 ) T40) + Sk G/f(”-*?' FBmty +Rmg )T V(s.15)

Y e
where M= QT“m .4 and m :(l> {23
3% 2TT 3

This equation is now differentisted with respect to <i, and the limit is
taken ag 7/ > O, After some algebra:

5% bmig3; 3
5 = (oMM B2y bty amng s !
?/?/—a—o m= r(5) 23!"( P(%) 2 F(z)f’(
(B.16)
Hence after substituting the expressions for M,m ) b and ., _ *i
— §-"i - ._";'_‘ - 5 ‘%/ il
(Q'EW>+L1?"Q? +2RO+ R + of[87%], (B.17) |
oo/
and after :mvertlng this equation,

J_ . T:;T 2 2 31
¢ + R +23 j_}é‘; + S(Lc.(o))}w[@/](m@

aé“«»a /“'()
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If this expression for B'E is compared with the original series

the P = _ /Q’&w )Vw 5= Vw cLu,',z___ 2% Vw g U.’;,.O)k{
T Q/*P ) AT dx /* * ( ())

uﬁ
If equation (B, le:.s inverted, an integral equation for the skin friction o
is obtained. However the singularity at m= O still exists for 4
similarity flow and this is because the series for g—% does not

w7 =

satisfy the boundary condition 3;—- © a3 &—» oo . If the
series were modified to include this boundary condition, as shown in
section (B,3), then the solution would not diverge at certain values of
M. Away to include the boundary conditions is indicated by looking

at the solution for SZ  when Vv, =0 .
2P
. 3z =
B.2 A solution for 3% Vhen V,=0O

When Vo = O equation (B.16) reduces to
— 4 2
- 7,3
3Z — bm 9 2 K;j(q/)

39 (B.19)
r(5) (%)

2y
where K;-()J.S a modified Bessel function of the second kind. Substituting
for b , m and Y » equation (B, 19)

= (% 3}%‘) éz > p SK‘L@) (B.20)

or 9 &5“‘_ 2 2% ) K (B.21)

'Bé P ) P(_‘_) ( > é(%) | B.21
The inversion of eA k’*v Ky ( .2 }>/1> is é—t-v_,@,
195k a).

Therefore, using the Convolution theorem, the inversion of equation




132
(B.21) is ¢ a\*x
& - -(2-)25 2 i’% ?:w (t tx g 2,— 32‘é Olt‘
>3 3) = L (B.22)

Por similarity flow this reduces ‘to
ém-2  _4 )a') /

3 t
?a?.), L= 3 NJ( )L e dt, | (3.23)

VW "0

where -( 33234 m-2. o+ F=(2 and.
3 )/u() r‘gm-&ﬁ (/“-f) 3(m-H)

K fW(O/u- c? ’@WOC(M)

2.
The integral in equation (B.23) is a Riemamm-Liouville integral (Erdélyi
195 b) and may be written as the sum of Two hypergeome’brlc series:

B2), oy - MR At

Vg =0
~anHEE (B F (250} b

Tn certain cases this equation reduces to simple forms, as for example

when M=

-

(g V=M =0 <-L> N<3> &*3 e‘ (B.25)

--~...

The exponential term, £ k , ensures that %2 — (O a8 &) e o and

o berm of this type will now be included in the series for 32 .
>

B.3 A similarity solution for the skin friction
2=
2

The approximate series used for in section (B.1) is

L 3
22 --zkan(mr g8 RETOLE) e
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In order to satisfy the boundary condition at infinity the series is

written
i (COR {D) { T (s )T Pé} voled )

For sinilarity flow the momentum equation (B 1)

-
d: _ Fiaw _ 22 5) ) c |
28* * at 3% ( (8.28) |

After substituting equation (B,27) into (B.28), ‘
m—3a 4m ~ <4 N AIm-5 }

2 -5 -2 -r*'—L A3 2
°Z _ H 2% _T-2 ‘={Ag?"t:“'"+ +BEIYE,c gt 3m AL

2%* T 2t T (8.29)
L
where A==2"KG , B=2¢6 (rn c? MQ\
/‘f>7 m- {Z/* K /"’7 \(—z,.m+3

and C = 2’2(/«[3) G mc* KG)

K 5m +3

The Laplace transform of l’; ,g, 7—‘7 is 2 ( PY/Q ){\) QLQ‘ Q.Io )
(Erdélyi 195L a), and therefore the ’cransfom of L is

Im -t

Taghys " e ) v —‘f‘—*‘“‘“’“vm— ) -
c§ Q(oa)ame Kimea (@ (8.30)

aAm T3
The method is now the same as that in section (B.1).  The method of

Variation of Parameters is used: an equation for ¥ is obtained: the
boundary condition at infinity is satisfied and hence the following
equation for -&Z‘“ is derived:-

Z 4 A S — ” t
BEOFT OO () - 1[18 g 0e




13

It remains to evaluate the integral, vhich is, from equation (B.29),

é‘,’;ﬁ;"‘
CaE f P ()G
LB, 23m+3 ) f 3,':‘:; K%ﬁ) s @) &

2‘6M

+C.2. 23m+3(~—> f 5m+3 Ké%aga(?/) H%@/)J—?}

fxas Ka(9)dd = b

(B.32)

But Zhe integral, f I/M/a(;y) Ky (7)0&7/ , is equal 4o
ZF r l_tﬁ_*_\):’é) (urdely:x_ 1954 ¢), and so

P(’*f) 3m-5 3
mvs (g2 ) rRmes! >
.3m-f3 K’m () K(?/)d% 23 3 3m D Zme3
[V s, =

and 'l:he other two integrals in equation (B,32) are

» -2

2;‘,':+5 rGESM(HNDI(E2:) g_?lw (3 (D (et
{3m 13m+ 53 ]4m+ )
B3m+3 3"""“3

respectively.

The equation for W% is therefore
Hm + 3N

(W7D FEE) P e e

2
t

where

+ ( 3)3 [ ( 3) + C (2_)-‘3_ P(g-> . (B.3L)

F(‘?‘;l: :Z rl(lam +5> P<~;‘5—) p(lum+é

B+ 3 Im+D
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When equation (3.33) is inverted

8m,
-3 _TOTER) gf SRR,
3% (m+ )3 M(%) P(Ume2) C“

M
or, in terms of the dimensionless parameters CFW and :f W

- e a3
K %] Hm4
38 (me ) M) (4225

(zne)(35aby - 25, (> i e )(mi&)’a
A2m+3 I’Z‘mj: 35/35";:-3} . ‘3”\45

3M+3

M%) ’fif“; (m—w)3 (m *5£§w(m+b\\g
(_) P(IZm':z)g“—— 3 . /
(B.36)

This equation first occurs in section 9.
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APPENDIZX ¢

4 Dimensional Derivation of the Law of the Outer Region

The method follows that of Millikan (1938) but now includes
Q may
be a pressure gradient parameter, a transpitation velocity parameter, a
relaxation parameter ....... etc.

In the region near the wall, the mean velocity distribution
is assumed independent of :g but dependent on the viscosity, v . In
the outer region the mean valocity, measured velative to the free stream
velocity, is assumed to depend on the boundary layer thickness, 8 , but

a dimensionless parameter, (. , which is independent of \y .

not on the viscosity. The dimensional equations for the irmmer and

outer regions are written in the form:

Inner region: j, (“‘f;t > @.) = 3’(3:1:) (c.1)

Outer region: E _EL.LL.&:._, L, yQ) = G(B/S) (c.2)
U W

or F{uw 5 W, » Q) . G(J/§> (c.3)

2
L 2 Lin
The equations are more general than those used by Millikan vwho assumed

a priori that 5\1 and F}; were of a certain form.

!
Overlap ! f Overlap f l
3 region t ! region |
- |
g
‘T | Lo * |
ﬁ& 3 J 3 i '
313 | L |
~— 3= '
\h i N ' l
o _ |
— l
o] YU _ | Io} \y / R O
IS &

Immer region Outer region
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Equations (C.1) and (C.3) are differentiated with respect to Y

25, (5.9) - 2w 26(,Q@) = %zy,’(i‘ﬁ"f; 0.1
3y %J ou
9)‘ N 3)/ BLL
) b, g ’ .
where } is B(\‘/"& and &' is %_(GWE) . ;1

If an overlq.p region is to exist in which equations (C. 1) and ‘
(C.3) are valid, the velocity gradient, % , given by the two equations
must be the same in this region. Ir j ,  and F2 are simply related,
i.e, the form for W in both the functions is the same , then the
gradients of the curves with respect to J » in the above figures, will

be the same in the overlap region,

Thus 2f - °2F (c.6)
2y (N
and integrating with respect to J
CDRACIDRSAC S 22 .2
Fron equations (C..), (C.5) amd (C.6),
yo&i o yofh _ yux, ’(JM) =Y ¢ - (c.8)
J 2y J - 3 g v S G(yé‘)
but JUxr  and Y are formally independent, therefore
Ay S
Uy Jur )l W\ = L :
iz J( iy @( ) (c.9

vhere K is a constant, Thus

35D - g roa ks

(c.10)
K v :
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ana G(Ys) = 7‘2 LOGQ% +C, (c.11)

The equations for the overlap region are therefore

&(&z,@) = t LoG, 3_%:5 + G, - (c.12)
o K («{; (ﬁ_ ,G}) - c,) - Log, %‘f_’: = LOG@% (c.13)
and T, '&z th'c ®) = J.. Lo%% + C, (C.1y) r
- K(F(wc u.fc CQ) ) K(f(fi ’Q) 5 “‘”’@ C) ©.5)
= LO & /S,

In view of equation (C.3), the outer region equation is

K{(09- Al 9- )= k(o) -<.) ~ s(¥), (©.19
or k(ﬁ,(&;:&)-— 5.(?&1) @))-“-‘S(f)"s(y/g) = F(¥y), (c.17)

where S('\J/g*) =L0Gg, y/ S in the overlap region,

Equations (C.16) and (C.17) will be called the equations for the outer

region.
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TABLE 1, Comparison of Skin Friction Results
\ From momentunm Using Black and | From the ’law‘of
— traverses Sarnecki's theory the wall' equation
w, Cee ce C;
0 0.0037 * 10% 0.0040
0.0036 - 0,0038
0.0035 - 0.0037
0.0013 | 0.0028 * 0,0003 : 0.0026
0.0026 0.0023 * 15% 0.0025
0.002 0,0021 - 0.0023
0.002 0.0016 - 0.0020
0.0029 | 0.0019 0.0016
0. 0014, 0.0015 - 0.0015
{ 0.00k 0.0013 0.0011
0,0010 0.0009 10,0009
0.0057 ——— 0.00046
——— 0.0006 0.00032




TABLE 2,

Mickley and Davis' Results

Ce Including +the Cg'*
Vw Station | 28 evaluated Pressure from the ‘'law
‘d‘ ) by Mickley and | Gradient Terr% of the wall!
Davis Cop l C; 5 equation
0.003 E 0.,00136 0,0019
G 0.00057 0,00175 0.001L7
H 0.00087 0.00165 0. 00LL
I 0.00068 0.0008 |0,0016 0.00L3
J 0.00066 0.000%.| 0. 0014, 0,0011
K 0. 0005 0.00087] 0.0013 0.00105
L 0,00058 0.00098| 0. 001 0.0009
M 0.0005 0.0005 | 0,0013 0.0009
N 0.0005 0.0005 0.00085
0 J 0.00349 0,00318
Only a
K 0.00329 very small 0.00311
L 0,00332 correction 0.00292
i d.o
M 0.00307 require 0.00295

Cf A and curve B to evaluate

C;’Bo

Fig, 33 shows the distribution of U, along the

working section. Curve A was used %o evaluate




Congtants for the Preston Tube

€ I k log k t I1 Io Iz
0 |1.5706 | 0.042L | 2.627), 0 |1.5706 |1.5706 | 1.5706
0.5 |[1.5603 | 0,04,26 | 3.6298 0,68 {1.54 (1.5% |1.53
1.0 |1.5161 | 0,0437 | 2.6L05 1.0 |1.5161 |1.51 1.50
TABLE 5, Constants used by Different Authors
Schultz- Clauser Present Coles
' Grunow (1947) (1954.) Values (1954.)
K 0.39 0.41 0.418 0.42
B 5.93 5.6 5.8 5,10
41(;) 8.2 7.90
C, 33k 3.60 3.56 L., 05
C, 22,0 26.1; 29,0
Cs 189.5
C4 1792




TABLE 6. The universal function S(‘%’S)

S(¥s) A S(s) | Vs
- 4.0k 0. 0172 -1.62 0.19
- 3,68 0.0251 - 1.35 0.23
- 3.22 0.0398 - 0.7 0.35
- 2.87 0.0575 - 0.32 0.43
- 2.58 0.079L + 0.175 0.55
- 2,30 0.105 0.57 0.67
- 2,03 0.138 0.875 0.80
- 2,0 0.140 1.05 1.0
TABIE 7.  Values for K apg B
K B KB
Schultz-Grunow (194.7) 0,39 4.1 1.6
Klebanoff and Diehl (1951) 0,43 .8 2.0
Clauser 0.41 L.9 2.0
Coles 0,40 5.1 2.0
Dutton 0.42 5.8 2.4
Tudwieg and Tillmann (1949) 0.4y 6.0 2.7
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