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ABSTRACT 

Approximate integral equations are derived for the 

compressible laminar boundary layer with arbitrary pressure 

gradient and arbitrary suction or injection velocity through a 

porous wall, Reasonable agreement is obtained when particular 

solutions to the integral equations are compared with solutions 

by previous authors. 

Experiments in an incompressible turbulent boundary 

layer over a porous surface reveal two laws for the inner and 

cuter regions; laws which correlate previous experimental results. 

The lams are used to calculate shear distributions and variations 

of skin friction with Reynolds number and enable Preston tubes to 

be used to estimate skin friction over a porous surface. 

The outer region theory is extended to boundary layers 

in small pressure gradients and at separation. The only universal 

functions required are obtained from zero pressure gradient flow. 

No other constants are used to calculate the mean velocity profiles 

for boundary layers in small pressure gradients, with suction or 

injection and at separation or reattachment. The theory agrees 

with the available experimental results for turbulent boundary 

layers in energy equilibrium. 

Experiments in folly developed pipe flow show haw the 

mean flow is altered when there is suction through a porous 

section of the pipe. An approximate theory for the inner region 

compares reasonably well with the experiments for small suction 

velocities. 
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SYMBOLS 

Genera.' 

H 	form parameter, 610 02  

LL  velocity in =arection 

V 	velocity in j*direction 

co-ordinate along the surface 

co-ordinate normal to the surface 

boundary layer thickness 

displacement thickness 

momentum thickness 

viscosity 

kinematic viscosity 

density 

skin friction 

wall conditions 

free stream conditions 

PART  

aI 6% 
Q. 63 

a4 

A, B 

C 

Cp 

speed of sound 

function of I, in equ. (7.15) 

coefficients in equ.(8.21) 

coefficient in equ. (8.29) 

functions of 17 equ. (7.26) 

constant ( B1 	 Tw(x)) 

constant 	C oCt"  2= U. ).) 

ratio of specific heats 
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SYMBOLS 
(Continued) 

PART I - Cont. 

C) 	 and 4:1 == 

t) 	defined by equ. (8.15) 

16). 6-,15. 277  5 3  

 

Cr 

 

 

a stream function co-ordinate 

blowing velocity parameters defined by 
equ. (8.9) and (10.3) respectively 

skin friction parateters defined by 
equ. (8.10) and (10.5) respectively 

FT 	defined by equ. (7.12) 

constant ( G .)C = W (70) 

G64, eD) defined by equ. (6.10) 
(4.1  

total enthalpy ((. 	2.  ) 
• 
L 	enthalpy 

In ( ) 	modified Bessel function 

thermal conductivity 

Stanton number or Stanton heat transfer 
coefficient, equ, (10.19) 

5m - 
constant ( ex• 	V, (z)) •1 

defined by (equ. (8.28) 

144( ). 	modified Bessel function of second kind 

m  MI 	pressure gradient parameter (L14,0-.-- cx: 

rn 	function of Mach number, equ. (10.2) 

M 	Mach number 
lyv .4,  

Constant (NI ix 

TILL Nusselt number, equ. (8.7) 
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static pressure and also Laplace transform 
notation 

P 	function of 6 , equ. (7.16) 

122. P3 coefficients in a series facto;, equ. 

Gfr 	

4e4 	
(9.1) 

a 	function of 	, equ. (7.16) 

heat transfer per unit area to the wall:  

(x) 	heat transfer parameter, b  ( ..% 
aT 

Q, Q, 	defined by equ. (8.20) and (8.30) respectively 

Pv•
oat...t Reynolds number, 	„Ip  

R.(x,..1) defined by equ. (6.i.) 
5 .11 - 17- 

S 0 	solution of equ. (7.2) when there is zero 
heat transfer 

5, 	- 

S2, .% 	defined by equ. (7.17) and (7.18) respectively 

defined by equ.. (6.25) in section 6 and by 
equ. (7.11) in section 7. 

temperature 

a temperature ratio parameter, equ. (3.6) 

I) 	A 0  equ. (5.14) 

equ. (5.15) 
73)( 

X, y 	defined by equ. ( 5 . 6 ) 
61t ) iL 00 (14- 	and (. 1 -,- 02) 	respectively 

2f 
	

ratio of specific heats 
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S() 	a Delta function, an impulse function 

temperature gradient parameter (E3'Dc =';1-044 

transformed co-ordinate, equ. (3.6) 

Y 

Prandtl number 

a skin friction parameter, 

modified stream function 

stream function 

viscosity - temperature index 	
= `Jart 

Laplace transform notation, equ. (6.23) 

Subscripts: 	 stagnation conditions in isentropic 
flow outside the boundary layer 

06, 	constant reference conditions outside 
the boundary layer 

FARTS 11 and III 

2a. 	in. Part II inside diameter of Preston tube 

in. Part III: inside diameter of the pipe 

outside diameterdiameter of Preston tube 

1K 

constants of integration with respect to 
,y in equations (19.2),(28.6),(28.7), 

(28.8), and (28.10) respectively 

skin friction coefficient, 

C 	constant in equ. (23.2) 

Cn 	profile parameters, 	 ) drz 
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value of (2n  when 7,==.1 

outside diameter of Preston tube ' 
91.4k, 

pressure gradient parameter 	
8

/  iit  01 =  

DApp 	apparent value of D , defined in section 31.4 
value of C)at the outer edge of the boundary 

layer 

x4S(Yis) + I') 0*8"I'S (I) + 01-  
FRO)  F.:  universal function of tr equ. (25.6) 

defined by equ. (31.22) 

1 (e) 	integrals defined by equ. (23.10) 

J1 ,J2 	integrals defined by equ. (31.13) 

;,:c 	integrals defined by equ. (34410) 

von Kk.mcf‘nts constant 

defined by equ. (26.10) 

T1. 	constant in equ. (23.2) 

d'at 
GIFT. 

R 	(in Part II this is equal to 
LL CILL 
CtiL  dx 

I? 	ratio of static pressure to density 

(P-12 	
pressure recorded by the Preston tube 

relative to the static pressure 

cylindrical co-ordinate measured from the 
centre line of the pipe 
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=Lk. Reynolds number, 	,  

Reynolds number., 82x LL  

(1 
	VAN 0-) 2 

universal function of 3/41 

11 

41) , S. value of 5  when . 	=17.1 
c, 
6 in section 23 

friction velocity)  

Lej  VI 	components of the velocity fluctuations 

U.0  . 	value of LC when j=42...  

velocity in the r- direction 

010) defined by equ. (33.3) and (33.10) 
respectively 

defined by equ. (13.17) 

defined after equ. (23.16) 

value aV sy at which 

defined by equ. (31.23) 

Lt.t. 

defined by equ. (20.2) 

function of= only, equ. (32.7), (33.1) 
and (324-.3) 

area of Preston tube opening 

total shear stress IP.= the sum of the 
viscous stress au., and the Reynolds 
stress).- r4"7. 

function of %N only, equ. (25.1) 
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0 
() 

values which were obtained from the 'law 

time averaged mean value 

of the wall equation' as described 
in section 21 

Subscripts: 	ca 	conditions at a 'transition point' 
between the logarithmic region 
and the sublayer region. 

conditions when the blowing velocity 
is zero at the same Rx  

value determined from the experiments 
(from momentum traverses) 
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1. Introduction 

In. order to predict the skin friction or the heat transfer 

at the surface of a body moving through the atmosphere, it is essential 

to know the behaviour of the boundary layer over the body. The growth 

of a laminar boundary layer may be controlled by applying suction 

through a permeable surface or through discrete slots in the surface 

in order to prevent separation or delay transition to turbulent flow 

with its associated high skin friction. It may be necessary to heat 

a surface to prevent icing or alternatively to cool the surface to 

prevent it from reaching high temperatures. The high temperatures at 

high Mach numbers are due to the conversion of kinetic energy into heat 

energy by the shear stresses in the boundary layer. An effective 

method of cooling heated bodies is to inject a gas through a porous 

wall into the boundary layer, thus modifying the velocity and temperature 

profiles at the surface. A very small velocity through a porous surface 

has a significant effect on the boundary layer skin friction and heat 

transfer rates. Velocities of the order of 0.001 of the free stream 

velocity, injected into a laminar boundary layer can reduce the heat 

transfer rates by as much as 0. 

The present work falls easily into three parts. In Part I 

the laminar boundary layer is discussed and an approximate solution to 

the compressible laminar boundary layer equations with suction or 

injection is obtained. Part II deals with the incompressible turbulent 

boundary layer over porous surfaces through which there is a small 

suction or injection velocity. An experiment on a porous cylinder in 

axisymmetric flow reveals two laws for the inner and outer regions of 

turbulent boundary layers; laws which are shown to correlate the mean 

flow and the shear stress distributions in turbulent boundary layers in 

small pressure gradients, at separation or reattachment, and with suction 

or injection. The laws reduce to the well known 'law of the wall' and 

'velocity defect law' when the suction or injection velocity and the 

pressure gradient are zero. In Part III an experiment in fully 



developed turbulent pipe flu, when there is suction through a porous 

section of the pipe, is described and the results are compared with 

theory. 

No attempt is made to evaluate the overall effect on aircraft 

performance and nowhere in the analysis has any account been taken of 

the pump power rev:h.-ea and the duct losses associated with suction or 

injection installations. The stability of the laminar boundary layer 

is not considered although it is to be expected that injection will 

cause an earlier transition to turbulent flaw. 
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PART  I 

LAMINAR. BOUIDARY LAYERS OVER POROUS 

SURFACES WITH SUCTION OR 1NJECTION 

2. Introduction. 

There are feu exact solutions to the partial differential 

equations describing the laminar boundary layer over a porous surface, 

and these are for special cases such as the flow far from the leading 

edge of a flat plate with uniform suction. A few approximate analytical 

solutions have been published and several numerical solutions. However, 

in the solutions the normal velocity distributions at the wall have been 
severely limited by the transformations used. In the present theory, 

an extension of Lilley's method (1959) is used to obtain approximate 

solutions when there are arbitrary distributions of the normal velocity 

at the wall, the free stream velocity, and the wall temperature, Lilley 

considers boundary layers over solid surfaces and uses the Stewartson 

(1949) and Illinguorth (194.9) transformation together with the method 

of Lighthill (1950). Lighthill replaces a velocity in the boundary 

layer equations by its form near to the wall and quite accurate solutions 

for the skin friction and rusll heat transfer rates are obtained, thus 

showing that the skin friction and heat transfer depend to a large 

extent on the local conditions near to the nail. 

Illingwerth (1954) has extended Lighthill's method to deal 
with variable freestream and wall temperature distributions in a 

compressible flowwhen. both the Prandtl number, 0, , and the viscosity-

temperature index,w , are equal to unity. Lilley assumes the viscosity 

to be proportional to the temperature across the boundary layer, but 

introduces a more accurate wall viscosity-temperature relationship and 

is able to include an arbitrary Prandtl number, which is, however, not 

too small compared with unity. 

The present theory gives two integral equations, one for the 

skin friction and one for the heat transfer rate. In order to estimate 
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the accuracy of these equations, solutions are obtained and compared 

with those of Donoughe and Livingood (1954), Iglisch (1949), Lew and 

Fanucci (1955) and Low (1955). The accuracy of the integral equations 

is of the same order as that of Lighthillls equations which were for an 

impermeable wall. 

In the following sections the methods for calculating 

incompressible and compressible laminar boundary layers with suction 

or injection through a permeable wall will be summarised before the 

new theory is outlined. 

ChApter  

A Review of Presioupjforlr 

3. The  

The normal velocity at the wall, Vw  , is considered to be 

very small so that the Navies-Stokes equations reduce to the usual 

boundary layer equations. For a perfect gas the equations of continuity, 

momentum, and energy for a steady laminar incompressible boundary layer 

flaw in two dimensions, using the coordinate system shown in figure 1, 

are av  
Zy 

	

t, au. 	_ 

	

ax 	ay 	F) a.Y 2  

0 

ark 	u- 	v -6-1" )2  (3.3) Pa% 8y1  
u. is the velocity in the 'oo -direction which is in the direction of the 
free stream, v is the velocity in the j -direction normal to the surface, 

is the specific heat at constant pressure, 	is the density, /4 is 

the viscosity, ib is the static pressure and T is the temperature. 

The subscripts 	and w will be used to denote free stream and wall 

conditions respectively. The boundary conditions are 
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U. = CD 	 Nit = Uod (X) when a = 0 , 

and 	U t  as y 	C>C; 

The simplest example of viscous flow aver a porous surface 

with suction is that of a uniform stream over a semi-infinite flat 

plate far downstream of the leading edge. The velocity component, V , 

is everywhere constant and the 'asymptotic suction velocity profile' is 

given by 

(3.4-) 

(A. suction velocity corresponds to a negative value of ply,, .) 	The 

solution (Griffith and Meredith 1936) is an exact solution of the Navier-

Stokes equations. The corresponding axisymmetric solution for flow 

along an infinite circular cylinder has been fauna. by Wuest (1955). 

The boundary layer partial differential equations may be 

transformed to ordinary differential equations for flow over infinite 

wedges, that is flow in which the free-stream velocity and the difference 

between the wall and the stream temperatures are proportional to powers 

of the distance from the leading edge, i.e. 

u 	C "iC 	and 
	

(3.5) 

where C , nn, 13, and e are constants. Flaw satisfying these conditions 

is generally termed 'wedge type flag' or 'similarity flag'. The 

following transformations (Donoughe and Livingood 1954) are introduced 

T T, and (3.6) 

 

where t is the independent variable of Blasius and g and f are 

dependent variables representing the temperature and the stream function, 

for which 	dand 	 The momentum and energy 

Crx, 
equations now reduce to the ordinary differential equations 

N 	m (f 1)
2 	M + I 	f 0 

2 

and c.f 
_fly)  e. 6•51. 

2 
( 3 . 8) 

  

   

       

       

       

       

       

144( v) 

(3.7) 
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which were solved numerically for the skin friction and the heat transfer 

rates by Donoughe and Livingood when there is a blowing velocity through 

the wall and by Koh and Hartnett (1961) when there is suction. A 

summary of the earlier solutions for wedge type flow is given by 

Livingood and Donoughe (1955). 

Solutions for wedge-type flaw have been used as a first 

approximation in calculations of local heat transfer coefficients to 

bodies of arbitrary cross section (Eckert and Livingood 1953 and 

Staniforth 1951). In wedge-type flow the distribution of the blowing 

velocity, Vw  , is limited to one of the form, V, oc-x,1172  , which 

implies an infinite value of Vw  at the leading edge of a flat plate 

(where rn = a ), which is contrary to the boundary layer approximations. 

Iglisch (1949) Obtained an exact solution for a uniform free-

stream over a flat plate through which there is a constant suction 

velocity. The boundary layer equations were transformed to a non-

linear second order parabolic equation which reduces to the Blasius 

form at the leading edge of the plate. Iglisch used an iterative 

process to calculate the velocity profiles along the plate and showed 

that the profiles approach the asymptotic form (equation 3.4) as 

Approximate solutions to the same problem have been given by Schlichting 

(1942), Thwaites (1952) and Curie (1960), The experimental results of 

Kay (1952) and Head (1955) for a boundary layer over a flat plate with 

distributed suction are in agreement with Iglisohes theory. 

Integral methods have been used in which a velocity profile, 

satisfying certain boundary conditions, is substituted into the momentum 

or energy integral equations, which may be derived as follows: the 

continuity equation (3.1) is multiplied by  II" 	and added to the 
momentum equation (3.2) multiplied by f , and the resulting equation 
is integrated from the mull to the outer edge of the boundary layer. 

Thus (bluest 1961) 

(3.9) (11:42 	317 	Vw 
LL, 	etz 	 clX• — ILI 



19 

(3.10) 

(3.11) 

(3.12) 

(3.13 

where 

axed 

r+ I 

	

1)S .1;1, 
"
(t 	\r" ctiy 

0 

	

- 	C 2
L) dy • 

	

0 ti" 	et1-1 
Nben r=0 , equation (3.9) reduces to von Kgrma-nls momentum integral 

equation., 

I d g2) 
ct 	 2 

ea, 
where S=rf, is the momentum thickness and .3 4, is the 

displacement thickness. When I., 	equation (3.9) reduces to the 

energy integral equation 
ci # 1  Vw 2 d 

Lei 	 2, (3.J4) 

where = 5, is the energy thickness and 
	d is a dissipation 

term. 

The integral methods which have been developed usually depend 

upon satisfying one or more of the integral equations (3.9) and a limited 

number of boundary conditions. The boundary conditions at the outer 

edge of the boundary layer are 

and 
,yn  

and the so-called compatibility conditions at the wall, where 

0,.=. 0 j 	y zr, vw 	and 	0_,u) 	are 
y 

	

—v (14 	 I_ 	+ 

	

ay 	? d 	ay 

and 	Vw yFel!) 
w 	

( 	V w  • 

Further compatibility equations may be derived by differentiating the 

momentum equation and finding the limit asj----() 

For flow over a solid surface it is possible to choose a 

polynomiAl in 1E and evaluate the coefficients by satisfying certain 

boundary conditions. In this way a singly infinite set of velocity 

(3.15) 

(3.16) 
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profiles is obtained (Pohihausen 1921), so that for a particular value 

of, for example, the form parameter, 4 1P , only one profile will 

exist. Unfortunately this is not possible for flaw over a porous 

surface because the same value of the form parameter can correspond to 

any number of combinations of the pressure gradient and the blowing or 

suction velocity. In other words a doubly infinite set of velocity 

profiles is really required. 

Head (1961) discusses the various ways in which sets of 

velocity profiles may be built up by using either polynomials or sets 

of profiles from knaan exact solutions. The accuracy of the solution 

to a particular problem will depend largely on the set of velocity 

profiles which forms the basis of the method. A doubly infinite set 
of profiles will usually have a wider application than a singly infinite 

set. 

Head concludes that the prediction of separation, with suction, 

using methods which depend on a singly infinite Pimily  of profiles 

satisfying the momentum equation and the first compatibility condition 

(Sohlichting 1949, Breslow et al 1951) are not very satisfactory. The 
doubly infinite family of profiles which satisfy the momentum equation 

and the first and second compatibility conditions (Jorda 1952, van Ingen 

1958) are better than the singly infinite methods but are not as 

accurate as the methods which satisfy the momentum and energy equations 

and the first or second compatibility conditions (Head 1957, 1961). 
It would be interesting to know the solution to the boundary 

layer equations when suction is applied through slots in the surface 

rather than through a porous surface. Rheinboldt (1955) has considered 

two cases of discontinuous suction on a flat plate, (i) a solid surface 

followed by a porous section and (ii) one slot some distance after the 

leading edge. Rheinboldt uses a series expansion for the stream function 

near the wall which is matched to an asymptotic expansion further from 

the wall. Rheinboldt has also extended his method to flaw around a 

cylinder with suction after a certain angle. 
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Finite difference methods have been used by Gortler (1948) 
and SchrOder (1951) and more recently by Smith and Clutter (1963). The 

fundamental idea of finite difference methods is that of replacing the 

-derivatives by finite differences, in order to approximate the 
partial differential equation by an ordinary differential equation. 

Care is required to ensure the stability of the numerical methods. 

The method of Smith and clutter which is based on the method of Hartree 
and. Womersley (1937), appears to be very powerful and has been used 

successfully for the case of discontinuous suction considered by 

Rheinboldt, 

4- The com•ressible laminar boundary layat. 

If certain simplifying assumptions are introduced regarding 

ia,f) and the Pranatl number 6-, the compressible equations maybe 
reduced to the incompressible form. If 	I and/i. ac -" so that 

the compressible form of the momentum equation becomes 

independent of the energy equation and the skin friction is then 

independent of the compressibility effects and of the thermal conditions 

at the wall, just as in the case of the incompressible boundary layer. 

Thus the ways in which heat transfer and dissipation modify the skin 

friction, i.e. by thickening the boundary layer and changing the 

viscosity, exactly cancel. Levy and Fanucci (1955) consider the 

boundary layer over a flat plate with constant suction under these 

conditions and reduce the problem to that solved by Iglisch. 

Low (1955) has obtained numerical solutions to the momentum 

and energy equations when the pressure gradient is zero, the Pranatl 

number is 0472 and the linear viscosity law holds. The momentum 

equation reduces to the Blasius form and the energy equation is solved 

by a method similar to that used by Poihausen (1921) for the compressible 

energy equation with zero transpiration. Low's solution is for 

similarity flow in which the normal velocity at the wall is proportional 

to X 



(5.4) 

= 3 ( 
dry k/ ft 
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Young (1948) obtained an exact solution to the compressible 

boundary layer equations far downstream from the leading edge of a flat 

plate with uniform suction and with zero heat transfer. Velocity and 

temperature profiles were evaluated with nM 0.76, u) = 0.76 and 1.0, 

and for various Mach numbers. On is defined by,tjat  =(-71:r 
The extension of compressible boundary layer methods of 

solution, to flow over permeable surfaces, is complicated if the wall 

temperature is not known, because the transformations which have been 

used do not transform v in a simple way: the product of the density 

and the suction or injection velocity is often an essential part of the 

transformation. However, solutions could probably be obtained if the 

suction or injection velocity were allowed to change so that wVw 

were of a certain form, implied by the transformation. 

aru afw  0  
ay 

Zy 

and. pa2b 

where h is the total enthal 
uy 

2 

L is the enthalpy. 

defined by the equation 

chanter 2 

lira .4,ppro;cinate Theory_for the Compressible Laminar 
Boup.d.a.....Lit11242tion_ or 14,19oA91:14  

5. 	pat 22E21 	e uatiox:Is 

For a perfect gas the equations of continuity, momentum and 

energy for a steady laminar compressible boundary layer flow in two-

dimensions are (Lilley 1959) 



shear stress at the wall. 

A stream function, 

is defined 

, -which satisfies the continuity equation 

? = 
?() 

where the subscript 0  refers 

and 

and 

where CI. is the speed of sound, iS is the ratio of the specific 

-a% 
During the transformation the following relations were used: 

‘1,2  + 	IL, 1= Ct. 2  

23 

(a) at y 0 

(b) at y-..... ocn , 	U., U. t() 7 	-1-,(x) and eth  = -.1-  — 
— 

where k is the thermal conductivity, C1-44 ) is the rate of 

heat transfer per unit area to the mall and iripi00 is the 

(I(  " T) dy J 
and ( 

The boundary conditions to be applied are: 

vw  (39 , 	— Tp.,(0c), 

) y/ 	Tv( ) . a w 

NI) 

to the stagnation conditions in the 

(5.5) 

isentropic flow external to the boundary layer. 

If the Stem son (192+9) and "0 1  ingworth (194.9) transformation 

is used to change the (t'c,y) 
2: 	--1 

fkaio) X 	fat)77IF 
'3C 

coordinates to (X :Y ) coordinates where 

and j:  vo  
Po  ctYi (5.6) 

the equations of momentum and 

)1.1 + V 	tj cith 

and 	U ak 	= 1)42V0 
77( Fas. 

energy become 

(f.7e au) 
a y ftoi.4.6  aY 

efk, 	 2 0.1  0 

(5.7) 

(5.8) 

heats, 

(5.9) 

(5.10) 

. . 	. . 	. . 	. _ 	. 	. 	. 

(5.u) 
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2. 

(5.12) CpT 

2. 
and h, 	 (5.13) 

w-i 

The relations between ta.(x) and CO) , ?w (c) and itvoN , 
and Vak) and between Q,„;(;az) and 	(X) which are implied by the 
transformation are: 

0  

vwfx) = v w 00 (7t r 
111 

(5.15) 

Tb.,(3d) 	04)44, (a4 where ;U 
° 

i
TW IN a 	(5,16) 

IA. 	\ Gto 

arid Qw,  (X) (L.(X)1.4t,  (f-L) where (440 ko  (a) • 	(5.17) 
k 0  e 	0 

In the present theory, which follows that of Lilley (1959) but 
now includes the transpiration velocity, Vw , it is possible to consider 
a value for 0-,  other than unity but it is not possible to include an 
arbitrary viscosity-temperature index. However a more accurate wall 
viscosity-temperature relationship will be included in the analysis. 

The method is basically the same as that used by Lighthill (1950); the 
argument being that the skin friction and the heat transfer rate at the 
wall are determined primarily by the local conditions near the wall, and 
consequently some of the terms in the equations will be replaced by their 
values at, or near to the wall. The theory is virtually the first 
stage of an iterative method in which a first approximation for certain 
terms is substituted into the equations which are then solved to obtain 
a more accurate second approximation. 

Equations (5.7)  and (5.8) can be Nrri tten. 

(5,18) 

and U 	+ 
ZY 

 

Oa, )1 
h, (5.19) 
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where 	— /14 	C( 
liar° 151 ficT 

and 	5 = 	6/11, • 

Following the above discussion it will be assumed that C takes its wall 

value and is therefore a function of X but not of . 

The momentum and energy equations, which are in terms of the 

independent variables (X,Y ), are transformed to the (X, ) coordinates: 

5 dut2 u a_ (o(x) .11) 
dX 	 Btp 

and zs :? WC) Ut3 + 	u:17112,  

where 	v,
2 U 

These equations which are in Von Mises' form, are for a 

pseudo-incompressible flow with a density and kinematic viscosity cf(30  

and 's)0  respectively. 

6. 	The transformed momentum e cation 

In this section certain approximations will be made to the 

transformed momentum equation (5.22). The Laplace transform of the 

resulting equation reduces to a modified Bessel equation which is then 

solved, and an integral equation for the skin friction is obtained. 

A stream function, 	, is introduced such that 

()) 

 

— tpw 

where 1Pw 	(4)),r,... 0  

(Pw  is a function of 
and 	(

'p?
) =-11 	

d (I)  w 
( o w  

X but is independent of'Y 

W 4""t 

ti-0) 
	

(5.20 

(5.21) 

104  Z 
.6 X Ati 

(5.22) 

(5.23) 

( 5. 214-) 

(6.1) 

(6.2) 

Hence, using the independent variables (X ,t), equation (5.22) may be 

written 

(6.3) ZtX/ 	k a ix 	x 



as 	G(X,) 

where G(X,I)) 	(X, 

9 VC2- G(x, 
31, 

0)61x' , 

-50111.V.  
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) 	.... s .L..).. 	(x, 0 
- 
	 iz (x , 

J. 

.. x ty 	ci x 	 x 
x 	 x 	0 

0 „ 	r  k(gi,  ) dx' -- f Q (x', o) co:' 
_lc, 	 0 x 

and, at § .=..: o , 	31 	IZ(X ) C ci Xi = 0 
x 	 al5 „ 

and 	i iz(x;ocix,  = 0 , 
Jo 

since R (X, 0.0)--= 0 . 

Therefore, rear 	, equation (6.3) may be written approximately 

If ( 

then, at 

(6.4) 

(6.5) 

(6.6) 

(6.7) 

(6.8) 

(6.9) 

whilst for large values of t G6<, 	has a similar form with 

G; (x, 1). (x, 	 (x 	d 

such that G (x, oc) 

The boundary conditions for G(X,Dare 

(6.10) 

(6.11) 

and as 

G 	) 	0, 	 (6.12) 

G(x.41) ---,- 0 , 	 (6.13) 

G(X, 1)) = 	 + f  ai5) v, 	 cix' (6.10 

as 

as 

From the definition of S ,(equation (5.21), S , 	I 	/2-ri 
11' 

therefore 	
4 

 

(, 	u,2(0) 	 Gke clx" 

§ —0 	 a h ..axe 	0 

(6.15) 

(6.16) 

Expressions for U and 	which are accurate near the wall are now 

substituted into this equation. Following Page and Faakner (1931), the 



x 
and the boundary condition at 4H-0 is 

2 
0, 	=1 U

2 
 CO) 	ClUt  CDC 

Jo  h i  

Using the Laplace transform notation 

2 Zw(x) 	221m(Xr4A1 	(6.22) 
12c o /4* 

17-  ( 1)  §) ‘-= 	12. tqt 	
°it (6.23) 

0 
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expression for the velocity, U, near the vall is 

U 	few (x) Y 
/64  

4' 	Uoir . t'„,,(x)Yz  + (Pax) 
0 	 2/L. 
	 §)t 

/ 140 
and , 	- 2 vw(x) 

Thus, equation (6.8) is 

or since 

then 

/.4  0 

(6.17) 

(6.18) 

(6.19) 

(6.2o) 

   

17- 2%1 G(x,(1.) 

 

 

G(x
) 	

=o tl,./(x).c (6.21 

 

equation (6.21) may be -crritten and the condition (;==C) when it.= 0 

4,2  
where 	t 	

• 
	 2'w  (x) c2) 

a 
	o 	

2  d 1  . 
2  

Equation (66) of Lighthill's paper (1950) is similar to the Bessel 

equation (6.24) and both satisfy similar boundary conditions. The 

solution of equation (6.2L.) is thus 

atii-pra , 

4)  • 2 	I a (-1: Ft  
.0- 0 	3 3 

(6.24) 

(6.25) 

(6.26) 

where ( 	— 0,2(0) + 	w 	_ 2 Ivi(V);)  d  Vvi(X 	, (6.27) 
k 	 /a° 
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and 	and. I 	are modified Bessel functions of the first 

kind. 3Naw 	 6-0-00 , therefore, from the properties of 

Bessel functions, the coefficients of I s and 1:% must be eve,  

and opposite. Hence 

33 r(-50 zw0 
1=0 	2* r(t)p 

This equation is inverted by the Convolution Theorem to give 

(6.28) 

i ji(0) + hot(c‘), cit“x/id 	a 	2-woe) .v, (w). the  r ' x 

Jo II, 	cix' 

3  2 

	

	
3/2 ..10,X rx 

r(t)q,att-0)-1.1  0 	x' 
 This is the integral equation for the skin friction in the pseudo-

incompressible flow. 

(6,29) 

7. 	The transformed energy equation 

If the expression for Li in equation (5.14)  is substituted 

into the equation for the total enthalpy (equ. 5,12) then 

.=." 	± 6:72-- U 2 ) a2  
2  ato 	6"--1 

Therefore the transformed energy equation (5,23) can be written 

(7.3.) 

,40N W 	1- _LA u'll/ -a if 	tP 
2cx„ 

Mena" t the right hand side of this equation is zero. For other 

values of 	the expressions for U and 	from the solution of the 

momentum equation could be substituted into the right hand side and the 

method of variation of parameters could be used to find the complete 

solution of the equation. Bernard Le Fur (1959) solved the equation 

in this way for incompressible flay and thus found the heat transfer 

correction term to allow for the recovery enthalpy. However for 

incompressible flow the right hand side, which represents the frictional 

heating term, is usually neglected. 

5iz tr ati) 
(7.2) 



For simplicity, the full solution will not be found in this 

way. As a first approximation it will be assumed that the changes in 

and. C. between the cases of heat transfer and zero heat transfer are 

negligible. This is the method used by Wley (1959), and quite 

satisfactory solutions were obtained. 

The boundary conditions for S are *1 00)=0 and 

as 	Near to the wall, 9 has the form 

	

S 0 	-- 	Qw(x)  

	

40-0 	k. 	h, 	Ace:rvv(x) 
where q,,m(X) is the rate of heat transfer to the wall a  

(7.3) 

Equation (7.3) is derived by writing the 

total enthalpy in the facia 

 

(7.4) 

and substituting the expression for V from equation (618). 

If s6(K,tp) is the complete solution of equation (7.2) when 

there is zero heat transfer, and S(X41) is the solution with heat 
transfer, then .s,(4,tp) 	(rhich is defined Zi,== S-50  ) is the 
solution of the equation 

ax cr, ads ay 
	 (7.5) 

3, satisfies the boundary conditions 

Ek 	C) 	as y 	0,7 and as 	0 

and 	si  — Lk) - 11„ 00  i.  0- Q w(x)  fr4,—  
II, 	 h, 	4/4  „ Z.,100 

as 	
1  6 q(PW) 	

. 	1110/0  is the mall enthalpy with zero heat 

transfer. 

Equation (7.5) in terms of the coordinates ( D 	is 

( 7. 6) 

P)(  
c60, 

tr, 	 dad 
(7.7) 

.. 	. 	. 	. 	, 
i,Tiz'sir-7,:e.c.:z•;.:T.:',.: 	 oziZolg..WxJeNuBgttgfa.i.ftg 
ii..; --; 	..'.i.;. -;i 	 kTy 	 — 

MO 
,... 



(7.10) 

and F (x) 
2, 

V w 	w  (),z, 
1-1 C al)-0  

then equation (7.10) simplifies to 

30 

which will be solved by a similar method to that used for the momentum 

equation: the forms for tJ and 	, which are accurate near the 

wall, will be substituted into equ
ei
at
lD  
ion (7.7). Now equation (6.19) is 

/22'; (x) 	o[fl 
/40  

and from equation (7.6), 

o (7.8) 

„,„ k, /2015w(g) 

therefore equation (7.7) may be written 
2. 
2. ,-6S, 

2  
2. (7.9) 

V 

If 	 2/44:44(4) 	 (7,11) 

(7.12) 

or in the Laplace transform notation (equ, 6,23) 

The homogeneous form of this Bessel equation is equivalent to equation 

(21) in Lighthill's paper and has the solution 
I 	3 1. 

Tr- 	O. 4' I -!. 	(B* 	6 64 	(~ 1)1  2 4. 	3  3 	 (7.15) 

where ct,2  and a2 must be determined from the boundary conditions, 

The complete solution of equation (7.14.) will now be found by 
the method of variation of parameters (see for example Piaggo 1952). 

(7.13) 

(7.14) 

aSi  
o ZI 	of  



(7.24) 
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A solution is assumed to be 

51  

where 

.)03 

and 

The equations to determine P and a are 
-- dP 	1 

 

and  d 	s F.;  

where the prime indicates a differential with respect to 4 	From 

equations (7.17) and (7.18) 

(7.20) 

(7.2i) 

5z S3` 53 S = ,a):"  { I (CP I :§ 	r- AN • It'  (CP) 	 (7.22) 

Now the TTronsld.an, W at( .1.1( ) 	011...§(D -i i(e 	(0 

P 	f '('I 2nlit.(9,). 1.4cttl 
3 Sin 11/3  

21T 	Lag) tti (PI 
3 Sin Tri3) 3  

is equal to L -- 54n 11 (Erdayi 1953),  and therefore 
TT 	a' 

3 X  2111 3 

Equations (7.20) and (7.21) may now be written 

and 

(7.16) 

(7.17) 

(7.18) 

(7.19) 

(7.23) 

(7.25) 
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The complete solution of equation (7.14) is obtained by substituting 

(7.17), (7.18) , (7024) and (7.25) into equation (7.16). 	Thus 
r-* 

( 	,i)) .(Tv. 41.-±(i)(2.3T1:;w3) 	 ec I t(3)
•
5(6 - 

(2. Tr FT (k 	. . ~ S rh  
+T---1( 	4441 	LIN ACO (7.26) 

where A(t) and e)(1:3) are to be found from the boundary conditions. 

As 	 then 	0 	therefore from the properties of modified. 

Bessel functions, the coefficients of It and I3 must be equAl and 

opposite. Hence 

ITT'FT 	f 

3 S ;fl 	( I t(1) I_()//) cick t A + B 
0 

Do 
or 	 f k' q/ 	A 	6 	

(7.27) 

%there te.4,.(0. is a modified Bessel function of the second. kind. From 

ErdLyi 01954 c) the integral, 
00 

v(ic) cek- 44c 	.24— 2. 	
))) r( 	) 

providing (c.f.- 	>.C> and 3>o , and. therefore equation (7.27) 

reduces to 

— 	r(11,-
) 	)l:1 	+ A + 6 -= 0 

3 
The boundary conaitions at the uall are: 

(7.29) 

(7.28 

4, 
and 15 2 ac.5 t 

4 	h. 	-/u..irwoo 
( Fe, and F3 are defined by these equations). As 	C> equation 

(7,26)reduces to 

F3 * 
(7.30) 
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A(  

and its differential with respect to c  reduces to 
-I-— 	 2. 1. 4- 

r(--1-) 
and therefore from the boundary conditions (7.29) and (7.30) 

3 	
# 

and 8= I' 6  r().(t) F 

The expressions for A and B are substituted into equation 
which is rearranged to give 

F 	(-1)-k  r() 	-F; 	(t)* )4.)  
, 

re  s) 

(7.28) 

(7.31) 

By the Convolution Theorem the inverse transform of , 	is 

f 	aF2N 8(tY2,(t,))jt. 
•••••• 

t-31  0  
where .8 is the Delta function (an impulse function). Equation 
(7.11) is used to transform from the t to the X.- coordinate, Thus 

174-3F:  ft1)(c)°$)3  (2/40)1(1C0Yrwili)clz.) oi (Iwo—  k  
ctx, 

where the expression is written in Stieltjes form for shortness. 

Similarly, 	 x x 
W5 '24 	t 

— 2  f(IC law of Z) VviQw  

r`{) 2/x)/3 Cl 	 hs 
and therefore the inverse transform of equation (3.21) is 

Qax) 	qv)  0, 3-4(4 c (7) zw2(i) 4312) 4  VotQw e  C x, 
oroi4013 , 

3  
1- 1. 	 X X 	 1. 

3  T. w P 	° 	 f * 3  
r(3) 64 	 oT;(,\ x, 
	) (7.32) 
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This is the integral equation for the heat transfer rate to the van 

in the pseudo-incompressible flow, and it will be discussed in 

section 10. 

8. The 141coqpressibleboundarylaxpir, 

When the flow is incompressible the integral equations for 

the skin friction (6.29) and. the heat transfer rate (7.32) reduce to 

rl ,„1 	 72 I Nt 	 Jel r 

	

V% 	
.1CA 	 i 	Ay 

% 	'ttiv 	Viv cl•xt 	vw ftw ate k  (8.1) 

(irr) 	 P.10 
X 

and k 	t  /3 	( 	 )41$  Tw (tx — w  (x) 	( a 	 to/  a 
3c 
	( ) 3 ayii i Xi 	a  

a 	r613)  *f to/2 01.1) 3  yyySvi. 

	

0 	x t 	 rev/ h  
where ir is the temperature (on a temperature scale with the free 

stream zero). In obtaining the incompressible equations, it is 

assumed that p and p are constant, and that the frictional heating 

term",ta‘L V , in the energy equation (3.3) is negligible. 

PCP k. ay 
8°1 	 flow  

Equations (8.1) and (8.2) will now be compared with the 

known exact solutions for wedge type flow (Donoughe and Livingood 3.954). 

For similarity or wedge type flow, the free stream velocity, ti..4bc), 

the skin friction/ 4,6C) , the blowing velocity, vw(x) , and the 

local Nusselt number, 1,1,4(x), may be expressed as powers of '"X, as 
follows: 

T
rn 

	

U.4(x) 	 (8.3) 

(8.2-0 

vv(x) = G 
	

2 	 (8.5) 

(8.2) 



Vw(3C) 
fri i 

fw = (x) 
?t)/ 

and 

rn 	t 4- ze 
and riA11.(c) Noc. 

where the local Nusselt number is defined 

) Q  
k Tw  

and rn is the pressure gradient parameter and 	is the wall 

temperature gradient parameter: 

(8.7) 

= 	Tax)  
Tw x 

(c, K 	 and. a, 
T (lc) 	2,, =• 	 (8.8) 

are constants.) 

These conditions are the same as those used by Brown and Donoughe (1952), 

Emmons and Leigh (1953) and Donoughe and Livingood (1954). They are 

the conditions for similarity between the velocity and temperature 

profiles when the Prandtl number, Cr", t1.1 

It is convenient to write the equations in terms of the blowing velocity 

parameter, 	, the skin friction parameter, 	, and the Reynolds 

number, 	, where 

Equations (8.3) to (8.7) are substituted into the integral 

equations (8.1) and 8.2), an after evaluating the 'Beta type' integrals 

(Dwight 1960), the equations reduce to 
ls  

7 	\
oo 

(rn+0 	_ i,
— 

2
6 

(f,„,) r\3)1 k 311 +  
Vif filke 	t 	 (8 .12) 2rr% 	— 	3la er+ 0 13 	 4-  

3n1 + :3 

and 	 1/3 	 (8.13) 

  

w=0 	D fw  
Sv: 

11 



;C  
'Where 	V 2 o'N ivy (m  

3Y3  r(-1.7) 

and 	 (111 + 	)G) P(3 rn+s h f)  • 
2 	E 

Men VIA/ 7-`0 	these equations are identical to those obtained by 

Lighthill (1950). 

If the skin friction parameter, fw  , is evaluated from 

equation (8.12) for particular values of J 	and on , and compared with 
the exact results of Donoughe and Livingood,then quite large errors are 

apparent ranging from at. to 24%. One reason for the large error is 
that it contains the combined errors of the blowing tern and the zero 

blowing term. However an improved solution for 5. 0, 	is obtained if t 
we assume that equation (8.12) is only used to determine .63-w  , the 

difference between the skin frictimawith blowing and that without 

blowing, i.e. 

The variation of the skin friction parameter with pressure gradient and 

injection parameter, fw   , evaluated in this way, is shown in fig.2. 

The above correction has been used for these calculations only. It is 

not used for any of the other solutions. The solution tends to diverge 

as/11-0-0. This is due to the similarity condition imposed on Vwf  , 

i.e.Vvi*tGX 	, which implies an infinite blowing or suction 

velocity at the leading edge when the free stream pressure gradient 

parameter is less than one. The present theory is perfectly well 

behaved when there are realistic blowing or suction velocity distributions. 

(This is shown later in this section.) 

Amore accurate and more satisfactory similarity solution 

which uses a better approximation for the blowing velocity term in the 

momentum equation is presented in section 9. 

k w) FROM ate. wt9E.eu. 832 WHEN 'yvv200 • — 
„ 
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The Nusselt number has been evaluated using equation (8.13) 
and its variations with different pressure gradients, wall temperature 

gradients and blowing velocities are shown in figures 3, L;. and 5 

During the calculations the exact values obtained by Donoughe and 

Livingood were used for hai) P 	%,iit:0=0  and for Iv:  
Injection through a porous wall modifies the velocity profile 

by reducing the velocity gradients and the shear stresses. The 
temperature is coupled to the velocity profile through the convective 

terms (and the frictional heating term) in the energy equation. 
Injection reduces the temperature gradients so that the flow near the 
wall is closer to the wall temperature and the heat transfer rates are 
reduced, The smaller shear stresses near the wall result in a 
reduction of the viscous dissipation or the frictional heating and 

therefore the heat transfer rate to a cool wall would be reduced. 

8,2 Uniform free stream and  constant  

If the momentum equation (8,i) is partially inverted (see 

.„„% Appendix A) then 	'At 	oc 

t (lc) 
ra) 

vt 
d 

3C, 
where the last term is a Stieltjes integral and therefore has a value 
when the free stream velocity, 	, is constant. 

When the blowing velocity, Now  , is zero and there is a 
uniform free stream, then from equation (8.1) the skin friction is 

( 	
2xt 

 

and 	 U,1 	 (8.18) 

4/244. 3 	lev,/  C6C 

10(  

( 8.16) 

(8.17) 



Equation (8.17) will be used as a first approximation to 

On substituting (8.17) into the right hand side of equation 

b (8.21) )1e 	4.1  
26.w(o-4.) of the form 

00) 	142  2 (, — 

mhere 
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(8.16) and integrating, the second approximation for 2:1404c) becomes 

(vInd. 	v K vs(41)'/3  Nr( 
frit*PROX. 

14, r 
(8.19) 

Now the dimensionless form of the flaw through the wall is 

defined by equation (8.9) as 
1/12. 2 vw  

vte 
Cif  

and therefore equation (8.19) may be written 

(Tto;) 
rtd.  

Vie% 2 41. 
(8.20) 

r.„ 
where P‹ 	2 	)r )  f 	(2 is not a function of 3c ) 

If equation (8.20) were substituted into the right hand side 

of equation (8.16) and integrated, a third approximation for Z1006i) 

would be found; and if this procedure were continued, an equation for 

could be obtained. 

The first two terms will now be considered and this implies 

that P.02i  is small, i.e. the velocity through the mall is small. 

The equation for re  4.30 thus obtained will be compared with the 

calclantions of Iglisch (1949) and Curie (1960). 

In order to find the value of 0,a in equation (8.21), the 

expression for `2,-,43c) will  be substituted into the terms on the 

right hand side of equation (8.16). Three different appro 

methods will be used. 



3/1- Therefore from (8.21) and (8.24) O. and so 
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First Method 

X. va  
1 ,,!/2 14( 3/4 	%) Zw  az  vim be put equal to reviknc t) Oc t  voc 

Ithich is correct only when Vvv =m0 . On substituting 
0).de3J0-.0.11) 

 
into the integrals of equation (8.16): 

fI ( Vw'aoll) Vvv wdz, = V 0--) K 1(t)r( 

and W + 

- -- 2 

) -1  a Rxt/2  rta) 
Po-) 

8.22) 

(8.23) 

Hence on substituting (8.22) and (8.23) into (8.16) then 

\PZ Y2  

z'w(x) K2ac z (i - 	R xY2 

(8.20 

(8.25) 

Second Method 

If the approximation. which Lighthill (1950) suggested is used, 
ix. • .L. 1 	,

id w CA, 
 _ i 	 2 

1 	 C.--‘1'-'. 	.2C.. --.. 	:;) eew  . . . 
jws 	 (8.26) 

then from equation (8.16), the value of 211.041C)lhiela 
modified to 

i.e. 

Vw 	is 

where 

/ (PH 
	 2- VS 

4 I 
and equation (8.21) is modified to 

2.  
2(1— 

(8.27) 

(8.28) 

(8.29) 



fvy 

• I  

where 	 r f) 	r, 
itet,, 2 3 

Equation (8.29) is substituted into evntion (8.16). Thus 

ret0  i 	( 	*(cL4 -I) R, 
/2 

t'iov 
(8.31) 

1- R '4  I 

(8.32) 
.S...

2
( 

2 
oc, 

and the final equation for re (x) is given by 

(X.,)= 1‹.."711 —  5  Q.ccr 	 (8.33) 

and so from equation (8.29) 

11.0 

(8.30) 

Third Method 

In the first and second methods the approximations were used 

to evaluate both terms on the right hand side of equation (8.16). The 

second term can htlorever be evaluated without using an approximation. 

The expression which is Obtained in place of (8.23) is 

In order to compare equations (8.25), (8.31) and (8.33) with 
previous work, the function 	is introduced such that 

Vy,i0C 	
(8.34 U., V 

m From equation (8.20) K 	3 49:7  , and from equation (8.30) 
2, ocif2  = 2.62 /2 	Therefore equation (8.25) is 

(8.35) 

1+-0. 992.fw 	(8.36) 

<. 0.3`8 

1 4-  2.2 

oc t.  
equation (8.31) is 	240 	= I + 1.9c; 

OC 



and equation (8.21) is tAi(041) 	1+2-5 + 1.25f . 
(8.37) 

These skin friction solutions are presented in figure 6 and compare quite 
well with the theories of'Curle and Iglisdh. 

9. 	A more accurate similarity solution 
al_  

	

The approximation for 	which vas used in section 6 gives 
reasonable solutions when there is a realistic blowing distribution. 

However, in similarity flow, the blowing or suction distribution of the 
prl-g 

form Vcc oc. 	, which implies infinite velocities at the leading ritv 
edge, mathematically requires a better approximation for 	in order 

09e 
that the skin friction solution does not diverge as m-000 

In this section a more accurate similarity solution of the 

momentum equation for incompressible flow is outlined. More terms are 
Zit considered in the series for 	, and the boundary condition 

as 	C) 	is satisfied, 
4. 	 WE The solution for ---- when Ni1104=0 is derived in. Appendix B 240 

and it is shown that an exponents a1. term, 4440Y6' 	, ensures 

that De -4-0 as 1:72-0.- CYO . This exponentiAl term is then used 

in the approximate series for 	when there is suction or injection. 
244,  

The details of the method, which is very similar to that used 

in solving the energy equation (section 7), are given in Appendix B3. 
A series for 1)2 	of the form 

a 

•.. = 	-1- 	4- ,...._ 	 . 	4/2.3y. el-) 	(9.1) cp.  	f> 

Zw  
is used in place of 2 	which was used in the original analysis in 

section 6. The Lapl A  Transform of the momentum equation is again 

reduced to a modified Bessel equation and the method of Variation of 

Parameters is used to find the particular integral, Finally, after 

".; 	 • • ay.,  
-• 71•71 •""•` 	 .71 	• „ 	 ..4 • 



taking the inverse transform, the following equation for the skin 

friction is obtnlned: 

== 2 	 rif )44 

6611  +. if/3 	rolm 4- 3 

Sm \ 
\ 3m + 35, 

2 ,s 	(m +5%,:fw(rn+ 

as/ 
 

1(111 	4-  5  NI 	t  
3rn+ 3 )• Vr111-6/3  

(-1  

4,2 

FQ.  
,y3 	

'2 	 V5 

(rn 	+ 
(  14 m + 	I, 2/3  4/3  
\ 3m +Si iw 

H fw  t2,4 	- 

(9,2) 

The skin friction parameter, f , has been evaluated from 

this equation (by a 'trial and error' method) and is presented in 

figure 8 showing the variations with the pressure gradient parameter, 
rn , and the blowing velocity parameter, Slow  . The solution for to, 
when S is zero is the solution obtained by Lighthill (1950). The 
curves compare reasonably well with the exact solutions obtained by 

Donoughe and Livingood (1954) and Koh and Hartnett (1960). 

10. Solutions to the compressible equations 

Equations (5.14) to (5,7), which express the pseudo-

incompressible forms of velocity, wall shear stress and heat transfer 

rate in terms of the original compressible forms, are used to change 

the integral momentum and energy equations (6.29 and 7.32) into their 

compressible forms. Thus 
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equationsare 
a skin friction 

S( 	which are 

Convenient dimensionless forms of these 

obtained by introducing a blowing parameter, F 
r- 4 parameter, rvi  , and a heat transfer parameter, 
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e 
where L is the enthalpy = 	u2-142. ) and the subscript ct. 

denotes a constant reference condition in the isentropic flow outside 

few  ,-
P  cw t  rew  

X  mj  

t  
VWPW C1042  Ct 

/ w 
M 



44 

the boundary layer. It is assumed that the viscosity-temperature 

relationship is C4t4Tw 	uhere 	is a constant, and that Zi , 
the ratio: of the specific  heats, is 1.4- Equations (9.3), (9.4) and 
(9.5) together vrith the relations, 

C = yvTo (T 
TW 	1 

J-w 

iow) 
(10.6) 

To 	( I + M ) 

5 (10.7) 

and. (10.8) 

from equation (5.20), and for isentropic flay 

0.06 

)5/2, 

5 
are used to 

forms: 
34 

mi 

change equations (9,1) and (9.2) into the dimensionless 

18 

Mr(i) 	
w 

— 	F (WI I 
M., 

(10.9) 

and. 
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rek) 	as  1»Vi 
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These equations maybe solved by methods similar to those 

used by Lilley (1959). However at present only the simple solutions 

for flow over a flat plate will be considered. 

When there is a uniform free stream and constant wall enthalpy, 

equations(10.9) and(10.10) reduce to 
X. A, 

	

r• 	 f/ 

oc 	4_  39  2 	Fes 2 	Fw 2 

	

r(1-)-0 	e.* 

and S('-') -- 3 3  Fw" ix"( 
0 

(Fwii) 2012) 3  
E 4  

1= - 

Fw 	 . 
r oc` 	(10.12) 

These are equivalent to the incompressible equations and. they 
similar solutions providing that 

S 
 , f' 
W W 

will have 

anithAtRirk in the 
Fw 	F " 	) incompressible solutions are replaced by 	 and Nk for the  

compressible solutions. 

When the suction or injection velocity through the porous 

surface is constants  the solution to equation (10.11), by comparison 

with equations (8.36) and (8.37), is approximately 

vw00  =  Fw 
	

1 + • 92 F 
Zivv(z)vw=o Fw ivw- 

or 
	 14-1.25 F 

Lew and. Fanucci (1955) present a curve for the skin friction with 

uniform suction for the compressible boundary layer. 	 
is plotted against ftwvw d • 
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where 	 an.d. At, Tw Er are related. to Fw  and rw  
tLI) (ti- ).'c: 
by the equations: 

These terms 

Vw 	2F-1.4 
t w vw 	Fw  tu+i 

and 	2 	2 	T.) 2. 	2  . Fw  
G , 	Tv,/ 	 Tw 	2. 

In figure 7 it is shown that equations (10.13) and (10.14) agree 

reasonably well with Lew and Fanucci's curve. 

The similarity solutions of the compressible boundary layer 

equations for a uniform free stream and constant wall enthalpy, by 

comparison with equations (9.2) and (8.14), are 

(10.18) 

where 

*.• 

	 <a.vd OC)  

The variation of the skin friction parameter, calculated from 
e4t1"-(11  

equation (10.17), is compared with those presented by Lou 

(1955) and Brown and Livingood (1952) in figures 9 and 10, (In Low's 

paper (fw)10,0 .ra 4 Fw 	and w) Low 	Fw 	.) The 
reduction in the Stanton heat transfer coefficient with injection is 
shown in figure 11. 

11. ?.esume.  

Approximate integral equations have been derived for the 

compressible laminar boundary layer with injection through a porous 

wall. The equations for the skin friction and the heat transfer to 

(10.15) 

(10.16) 

2,- 	4 
t 	23  PCB Et:  — Fw  F;,,ju  

3 3  t 
and -1‘1, 14.,2  (k e72) 

rks  cr,3 
2s6 '3% 

coefficient given by 

C) 	
W) 3  

and kh, is the Stanton heat transfer 
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the wall reduce to those presented by Lilley (1959) when the transpiration 
velocity is zero, and to those of Lim 

hthill (1950) when the transpiration 
velocity is zero and the flow is incompressible. In order to estimate 

the accuracy of these integral equations, solutions are obtained for 

the special cases which have been solved by previous authors. 

The incompressible forms of the integral equations have been 
solved for similarity flow and 

for flat plate flow with continuous suction 
or injection, and the solutions have been compared with the 

known exact solutions. The uniform suction or 
injection solution is close to the 

exact solution and it is to be expected that other 'realistic' 

distributions of pressure gradient and bloAng velocity will give 

blowing velocity is 'unrealistic' because infinite velocities are implied 

ng edge in most cases, and this causes a singularity in the 
skin friction solution, 

although the energy equation is still well behaved. It 
is shown haw a better approximation for 	removes 

BE 
the singularity and gives a solution close to the exact 

solution. 
Solutions to the compressible integral equations have been 

found for certain cases and these compare 
favourably with the few solutions which have been published. 

If improved velocity and temperature distributions near the 
wall were used, then 

the accuracy of the method would be improved. A 
suitable improved velocity distribution is given by Spalding (1958). 

The present theory (Stevenson 1961) has been extended by 

Craven (1962) to include the effects of foreign gas injection. Injection 

through a porous wall adds mass to the wall region but not momentum 
in the -

direction. The injected gas, which is accelerated in the 

-direction by the viscous forces, results in lower velocity gradients 

adjacent to the wall and consequently lower skin frictions. If a 
certain volume of a light gas is injected then the reduction in skin 
friction is less than with the same volume of air because the mass to 

accelerate is less. Bewover if an equal mass of a light gas is 



injected then the velocity gradients near to the wall and. the resulting 

skin friction are less than with air injection. Some of the curves 

(Craven 1962) showing the reductions in skin friction and heat transfer 

at a Mach number of 4, using helium and hydrogen as the injected gases, 

are compared with those for air in figures 12 and 13. 

A light gas injected through avail diffuses into the boundary 

Layer but its concentration near the mall is high and therefore the 

density is low, and the effect of pressure gradients will be similar 

to those which occur with a hot wall, i.e. near the mall, the effects 

of pressure gradient will be enhanced because the lighter gas mill be 

accelerated or decelerated more easily by the external pressure gradient. 
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PART II 

TURBULENT BOUNDARY LAYERS OVER POROUS SURFACES 

WITH SUCTION OR INJECTION 

12. Introduction 

There is no adequate theory for shear flow turbulence 

and the semi-empirical theories which have been published require 

experimental results to determine whether certain terms are 

constants, and if so, what values these take. There have been many 

experiments in turbulent boundary layers over solid surfaces but 

there are relatively few which include suction or injection and 

these show considerable scatter in the results. 

In chapter 1 there is a review of the experimental results 

and theories which have been published, but the review does not 

include a discussion of the approximations which are used in order 

to solve the boundary layer equations, because it is more convenient 

to discuss these when considering a new theory for turbulent boundary 

layers in chapter 6. 
Hartnett et al (1960) discuss the experimental results of 

Mickley and Davis (1957) for incompressible flow and those of 

Tenderland and Okuno (1956) and Pappas and Okuno (1960) for 

compressible flow, and compare these with the theoretical predictions 

of Dorrance and Dore (1954) and Rubesin (1954). Hartnett suggests 

that the skin friction results of Mickley and Davis are possibly 

low. The present experiments in an axisymmetric incompressible 

boundary layer over a porous cylinder were intended to check those 

of Mickley and Davis. The experiments, which are compared with the 

existing theories, reveal two laws, one for the inner region of the 

turbulent boundary layer and one for the outer region. The laws are 
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valid for both suction and injection providing there is no pressure 

gradient, and they reduce to the 'law of the wall' and the 'velocity 

defect law' when the transpiration velocity is zero. The laws are shown 

to agree with the experimental results of Mickley and Davis (1957), Black 

and Sarnecki (1958) and Dutton (1960). 

The law for the inner region is used to derive an equation 

relating the pressure recorded by a Freston tube on a porous surface to 

the local skin friction. The law for the outer region is used to 

calculate the variations in skin friction with Reynolds number for a 

range of injection velocities. 

The law for the outer region with suction or injection is a 

special case of a more general theory for the outer region of turbulent 

boundary layers which is derived in chapter 6. The new approximate 

theory correlates the mean velocity in the outer region of incompressible 

turbulent boundary layers in small pressure gradients, at separation, and 

with injection or suction through a porous wall. It is probably the 

first theory to correlate equilibrium turbulent boundary layers under all 

these conditions. 

The theory initially uses a dimensional analysis to show that 

the outer region depends on a function of the form 5(.1'1.1  
, 

and not necessarily on a velocity defect term, 	tt)r 	, which has been 

used by Clauser (1954), Mickley and Smith (1963) and Black and Sarnecki 

(1958). ((kis a dimensionless parameter independent ofy 	it could be 

a pressure gradient parameter or injection velocity parameter. 	is the 

mean velocity in the,c-direction and tilis the velocity at the outer 

edge of the boundary layer whereyoS ). An outer region which depends 

on a velocity defect term is a special case of the present theory. 

The theory shows that the outer region equation follows 

immediately from the inner region equation if an overlap region is to 

exist between the inner and outer solutions. Even if there is an unknown 

constant with respect toy in the inner region equation, the constant can 

be eliminated in the outer region solution simply by applying the 
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boundary condition at the edge of the boundary layer. 

The theory is shown to be consistent with the turbulent shear 
stress distributions at separation, and with suction or injection. 

Chapter 1  
13. A Review of Previous Work 

The momentum and continuity equations for the mean flow in a 

two-dimensional turbulent boundary layer with zero pressure gradient are 
Approximately (Townsend 1956a) 

?i•ze 	 ay 

where U and V are the mean velocities in the 	and ,y directions, and 
to and V are the components of the velocity fluctuations. In most cases 

the term 
Ta 
a (u..f2-_v,2) is small, and it is neglected in the following c.  

analyses. It will be assumed that 14; and b. are very small in the , 
inner region (the region close to the wall) and the momentum and 
continuity equations therefore simplify to 

vwDu. aa.u. ay  

or vw 	 cM 
? (13.1 ) 

where le is the total shear stress which is the sum of the viscous shear 
stress, i/L4au , and the Reynolds stress, --puvi . (The Approximations .2W 
are discussed in mare detail in chapter 6). Moat of the theories for 
suction or injection are based on the momentum transfer theory of Prandtl, 
together with the assumption that the mixing length is proportional to 

the distance from the wall. This yields 
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K2  (13.2) 

where 14( is von idrm6nIs constant. This equation is further substantiated 
by Townsend (1956b) who considers regions of turbulent shear flow in which 

there is equilibrium between the local bates of energy production and 
dissipation. 

In the sublayer, the region very close to the wall where the 

Reynolds stresses are assumed to be negligibly small compared with the 

viscous stresses, equation 13.1 may be integrated twice with respect toy. 

After substituting the wall conditions, the solution reduced to 

Ju-r = Lit LaGe  + \l'44-j'L) 
VW 	 (13.3 

where til!  is the friction velocit+ v:,) 

The equation for the inner turbulent region will now be derived, 

and it will be shown how this equation reduces to those obtained by 

various authors by substituting the appropriate boundary conditions. 
If equation 13.2 is substituted into equation13.1, then 

Vw d 	k2,Y 2  ( 3 	oly 

This equation is integrated twice with respect to y to give 

(13,'  

LOGe  	2  u  vw C)1-2  + 
Vv.? 174 

(13.5) 

  

where C and c4 are in general functions of \ivy and tit, but are inde-
pendent of y 

13.1 Kay (1948)  

Kay considers the asymptotic suction case and uses the 

boundary conditions 
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cinLL 	end U. 	at 3= cc' 

If these conditions are used together with equation 13.5 then, 

d 	LOGe  &It 

and therefore equation 13.5 reduces to 	 11- Lost-cr.). LL, 
This is the equation obtained by Kay, but his experimental results for 

suction did not agree with the equation. This is because the mixing 

length hypothesis is not valid in the outer region where the boundary 
conditions were applied. 

141 	0 

Clarke et al write equation 13.5 in the following t 

A + B LOGe (t.1  )+4-1-kz  \-6-4 

When Vwz=Othis equation reduced to the accepted 'law of the wall' equation, 

LL = A + B LOGe. 3") .1> / 	 (13.8) 

However Clarke et al overlook the implicit relation between A  f  Band. V. 
(see section 20 for mare details). 

13.3 Rubesin (1954). Darrance and Dore (1954) and Mickley and Davis (1957)  

Rubesin and Darrance and Dore consider the compressible 

boundary layer„ andobtain integral equations for the sublayer region and 

for the inner turbulent region. Mickley and Davis write the equations in 

incompressible form, assuming that they hold on either side of a transition 
point at.y.yo. . At this point the velocities and shear stresses are 
matched 

At y=24, , 	u..0. and Cr 2Y
.2( t-y-)2 	(13.9 

C = \fin  04., 

(13.6) 

13.2 Clarke. Menkes and iibby (1955).  

(13.7) 

The velocity-shear relationship which is valid in the sublayer, 

and which is assumed to hold in the inner turbulent region, is obtained 
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by integrating equation 13.1 and substituting the wall conditions. Hence 

• 
	

(13,10) 

Equations 13.9 and 1310 are combined at y 	to give 

+ U 	(14.2f(ty  )0.  

If this condition tog4ther with 	jz--ja,_ is used to determine C 

and d in equation 13.5, then 

C 	8,L. ci =_LOG 'Y "V 	2 	Vw tk. 4_ .) 	
(13.12 

Therefore equation 13.5 may be written 

/..06e 	LaGe  li'_NY_.  — 2 K u  (Cv,U- 	_CANUct.  

't> 	Vw 	LLt 	 (13.13) 
This is the equation presented by iviickley and Davis. 

Mickley and Davis have published a very comprehensive set of 

experimental results of the mean flow in a turbulent boundary layer in a 
wind tunnel which had a porous wall 12 feet long and 1 foot wide. Blow-
ing velocity ratios, V1161/1..4.1  , which were constant in a particular experiment, 
ranged between 0 and 0.01 and free stream velocities between 17 and 60 feet 
per second. A small pressure gradient was present in the experiments but 
does not seem to be included in the skin friction calculations. This is 
discussed further in section 21 where it is shown that the effect of the 
small pressure gradient increases the skin friction by as much as 80% 

Vt./ when 7.17,  = 0.003, although it has negligible effect when there is no 
blowing velocity. 

compare their experimental results with 
equation 13.13 by plotting LoG(--tAX) against (I -1 1 /4141t  and they show 
that a straight line of the predicted slope, 244 	,

LLT 
 is obtained and also 

that von Kar m5:rils constant, l< , is independent of Vw . However it was not 

possible to correlate the variations in the conditions at the edge of the 
sublayer whereyrty,:, . It was shown that the velocity defect term, 

Mickley and Davis 



i and equation 13.5 may be written 

2 2 U. + LOG 
K 

LOSI-1,  
V 4K2  

• 13.17 

and hence equation 13.16 becomes 

Y 
13.18) 

13.19) 
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only correlated the velocity profiles in the outer region when 
) 

vw  was zero. 

13.4. Black and Sarnecki (1958)  

If it is assumed that the shear relation of equation 13.10 is 

valid at the same time as the linear mixing length equation 13.2, then 

03.14 

Asva-othenci
Vw 

 e, where 8 is the constant in the no-blowing law of 

the wall equation 13.8). 

If ci is made equal to !Loa k tthen 
K e  

LoGe  
2K 	ici 

where K is the constant of integration. This is the equation which Black 

13.15 

and Sarnecki call the bilogarithmic law. The equation is rewritten 

(13.16 

L OG 42 	 L Ge  
2,141  Li, 

so that the left hand side of the equation contains only the quantities 

which are easily measured, and the right hand side is linear in LOGY-Y2. 
When there is irDection it is convenient to introduce the substitution 
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and  

V1, U.  
(13.20) 

If experimental results are plotted as(
u.  )1  against )( p straight lines are obtained in the inner region where the mixing length 

and the intercept. 	 m 
hypothesis applies and the skin friction may be obtained fro the gradient 

Von F:41.7MA'n's constant„k in the mixing length theory should 

compared with the velocity LL . The experiments of Black and Sarnecki, 

of Vw  
MickIvand Lavis and the present results confirm that 

K is independent 

Black and Sarnecki/s theor 
deter 

	

	 y enables the skin friction to be 
mined from a velocity profile without assuming a form for 

k , the 
possible with 
unknown constant of inte gration with respect to 

	This was not Mickley and .Davis' theory. 

13.5 Turcotte (160 and 1eadon 1 61 

Turcotte assumes that the shear 
stress portion in the fully turbulent 

of the boundary layer is unaffected by injection and su 
similarity parameter

•  	 ggests a 
(The subscript* refers to zero blowing 

conditions.) However in a reply to Turcottels paper, Ieadon shows that 
the shear stress assumption is incorrect. 
similarit 

	

	 Ieadon suggests that a pry parameter should include the 	 oper 
 free stream velocity. 

In the next chapter the present e 
described 

	

	 xperimental results will be 
and compared with the various theories. 

ghat.a."-g, 
eriments on In ection into an Incom ressible Turbulent Boundar 

	er 
24. 122,ZaLUE. 

The first model which was used is shown in figure 14. This 
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consisted of an 8" long, Li" diameter porous tube which was mounted as 

part of a long cylinder extending fromthe-lontraction to the working 
section of the College of Aeronautics 3 feet x 3 feet open circuit 
wind. tunnel, which has the fan at the end of the diffuser. Air from the 

compressor flowed along the inside of the cylinder, through an inch 
thick felt filter and then through the porous tube. The rig, without 

the porous tube, had originally been used for base pressure measurements. 

A large aerofoil in the wind tunnel contraction supported the cylinder 

and there was a small vertical support after the working section. 

A material was required, which was smooth as far as the 

boundary layer was concerned, and which was porous so that a uniform 

flow of air, rather than a series of jets, could be forced through it. 

The material, which best suits this specification, is Porosint Grade A 

made by Sintered Products Limited. Porosint is a sintered bronze 

material with quite a smooth surface because the holes are only about 

10 microns in diameter. The material consists of spherical granules 

which are welded together at their points of contact, and through a 

microscope, the holes in the surface have a sort of bell-mouthed appear-

ance. The pressure drop across the porous tube was far higher than the 

kinetic energy (2pv,621) of the air passing through the tube, so that 

turning vanes were not required inside the tube. 

A micrometer screw traversing gear (fig. 14), which was 

oa.librated to 0.001 inch, enabled boundary layer profiles to be taken on 

the top and bottom surfaces of the cylinder at any longitudinal position. 

Mean velocity profiles through the boundary layer were measured with a 

pitot tube which had a rectangular cross section 0.01/4. inch x 0.1 inch 

and the readings were corrected for the transverse total pressure 

gradient by the method of Young and Maas (1936). Hot wire traverses 

using a 0.001 inch diameter platinum wire gave the same velocity 

profiles as those with the pitot tube but hot wires were not used all 

the time because they needed recalibrating too frequently. This was 

probably because of the dust in the laboratorir. Traverses using a 
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static tube 0,064 inch diameter did not detect any change in the static 

pressure through the boundary layer. 

The air flow to the porous tube was measured with an orifice 

plate in the supply pipe. The orifice plate calibration was checked by 

taking momentum traverses across the end of the supply pipe. A thick 

felt filter was positioned in the pipe to simulate the correct pressure 

range across the orifice. The velocity distribution,V440  through the 

porous tube was estimated with a hot wire anemometer when there was no 

flow through the wind tunnel. 

A Betz manometer was used to record the pressure difference 

across the orifice plate and two Chattock gauges were used to measure 

the free stream velocity and the pitot tube pressure. 

The Preston tubes which were used consist of a tube 3 inches 

in length and 0.064" outside diameter soldered onto a 0.004 inch thick 

curved metal strip at the downstream end (see figure 15b). The tubes 

had a very slight curvature so that an elastic band, at the downstream 

end, held the mouth of the tube against the model. 

Pitot and static traverses in the working section showed that 

the velocity outside the boundary layer was constant to within 0.35%. 

Pitot tube traverses in the boundary layer on the cylinder 

Showed that the mean velocity profiles changed slightly from day to day. 

A series of Preston tubes around the cylinder showed variations in 

(0—,..5) of 4140 (fig. 15c). (R 1:0 is the pressure recorded by the 

Preston tube relative to the static pressure. It was thought that the 

variations were due to changes in the position of transition, however, 

using surface flow indicators, moving the position of a roughness strip 

(a strip of course sandpaper around the cylinder), and trying various 

transition wires, still resulted in day to day variations. The trouble 

was eventually traced to the large  aerofoil in the wind tunnel contraction. 

Ailerons were fixed onto the aerofoil and it was found that a fraction 

of a degree change in the angle of the ailerons completely altered the 

flow on the model. The trouble was due to a very slight rotation of 
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the flow in the working section and the day to day variations were due to 

slight changes in the local incidence along the span of the aerofoil due 

to temperature changes. 

The aerofoil section was removed and the cylinder air supply 

was fed from downstream of the working section and at the same time the 

length of porous tube was increased from 8 inches to 24 inches. Porosint 

is only made in 8 inch lengths and three tubes had to be used. The Vim  

distribution along the porous tube is shown in fig. 19. An elliptic nose 

was used on the model, which is shown in figures 16, 17 and 18. The 

supporting wires allowed the model to be aligned with the air flow. 

The distribution of 07$44) around the cylinder was within 

-11% (fig. 15d) and pitot traverses on the top and bottom of the cylinder 

at a particular -=-position were the same. There were no day to day 

variations. 

15. ka.mttylLg_qu?ti.,.._sL....fprpacismmicflo  
The integral momentum equation for a steady incolplessible 

turbulent boundary layer along a cylinder with zero pressure gradient is 

(Young 1939) 

clg2 	Vw 

; 	
== 

;7 Pu 2 (15.1) 
where Ci! 

ness) 	is defined 
is the local skin friction coefficient and the momentum thick- 

(15.2) 

where 21- is the outside diameter of the cylinder and 	is measured from 
the surface of the cylinder. The displacement thickness, 6, , is defined 

(15.3) L-i-L)AY 
0 

The differences between flat plate and axisymnetric flow are discussed in 

section 18. 

AatiiihaVdetilkagT?ik..S.VALeiik.,&&A f  ALT 	aa:Aa..m.t&raa..mjgi,Taa.:A. 
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16. Experimental results  

The mean velocity profiles were measured at severl positions 

along the cylinder and for several values of the blowing velocity, 

with a constant free stream velocity of 50 feet per second. Curves of 

(.1.0" .-* ")(1-1--?kr) 	
againsty were plotted (see figs. 21 and 22) and 

integrated graphically to find the momentum thickness, gl  . The 

variations LIE along the cylinder are shown in figure 20, and it was 
ch54  necessary to estimate cpx1  from these curves in order to evaluate the 

skin friction using the integral momentum equation(154 The estimated 

accuracy of the skin friction measurements is t10% in cf when. ti. = 0 and 

+0.0003 when there is a blowing velocity. 

Some velocity profiles at a particular position on the cylinder 

for different blowing velocities are shown in figure 23. (The 

x-coordinate is measured from the beginning of the porous tube.) 

17. A comparison with the previous theories  

A few of the experimental results in the region near the wall 
swr 	 it  A. 

are plotted as LOG - against0.01 1. in figure 24 and are shown to 
Lt_ 

agree agree with Mickley and Davis' equation -P.1). The straight lines in 

figure 24. have gradients of .'111(1 	where prs.  = 04418, and therefore the 
NFvur 

experimental points confirm that K is independent of 

Some of the velocity profiles are plotted in the way suggested 

by Black and Sarnecki (see section.13,4) in figure 25. The skin friction 

predicted from the slope and intercept of the straight logarithmic part 

of the curves agree with the measured skin friction (see table 1). It is 

only possible to estimate the skin friction from the gradient and inter-

cept with an accuracy of about 1'15%. 

The variation in skin friction with Reynold's number will be 

discussed in section 26. 

18. Axisymmetric flow 

It is necessary to discuss the likely differences between 

axisymmetric and flat plate flow. A few reports on the subject have been 
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published and they indicate that the boundary layer in the present 

experiments is almost the same as that on a flat plate. Tnndweber (192+9) 

and Eckert (1952) assumed that the velocity profiles on a cylinder could 

be represented by a 1/7 power law, and that the relationship between the 

wall shear stress and the boundary layer thickness for the cylinder is 

identical to that on a flat plate, from which they calculated the boundary. 

layer growth using the integral momentum equation. If e., the ratio of 
the boundary layer thickness to the radius of the cylinder, is 0.5 then 

Eckert's theory suggests that the skin friction on the cylinder is 5% 

greater than on a flat plate, 

Ginevskii and Solodkin (1958) and Sparrow et al (1963) consider 

the boundary layer to be composed of a laminar region near the wall and a 

turbulent outer region. Ginevskii and Solodkin follow the analysis of 

Prandtl and assume that the mixing length is proportional to the 

distance from the wall and Sparrow follows the analysis of Deissler and 

Loeffler (1959) and assumes that the logarithmic region extends to the 

outer edge of the boundary layer. The theories suggest that the skin 

friction in the present experiments would be 5 to 1044greater than on 

a flat plate. 

Meny 	the distance from the wall, is small compared with 

the radius of the cylinder very little difference is to be expected 

between flat plate and axisymmetric flow and the velocity profiles are 

close to those predicted by the flaw of the well' equation. Richmond 

(1957) and Yasuhara (1959) measured velocity profiles on cylinders and 

estimated the skin friction by comparing the profiles with the law of 

the wall equation. Their results are roughly in agreement with the 

theories. 

The theories and experiments for axisymmetric flow indicate 

that the skin friction in the present experiments may be slightly higher, 

perhaps 	higher, than that on a flat plate. 
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Chapter 3  

A Tow of the Wall for Turbulent Boundary layers  with Suction or Injection 

19. The law of the wall equation 

The equation for the inner turbulent region, equation 15.14., 

may be written 

d+ 2) (19.1) 

This is similar in form to that given by Townsend (1956b) and reduces to 

the famili sr law of the wall equation when Vvose 0$  i.e. 

at 
	 + 	

(19.2) 

The experimental curves for flow over a permeable or impermeable wall 

may now be compared on one figure if 	1-1-7e  Wavo..- is plotted against 

-1-01  -- and the inner turbulent region should plot 
Vw Ut2  

as aEeries of parallel lines if the mixing length coefficient 14 is 

independent of V1,4  . The present experimental results were plotted in 

this way and it was found that they plotted very close to the accepted 

impermeable wall curve (fig. 25). The experimental results show that the 

term( + 2.• 441)in equation 19,1 varies very little with suction or 
injection. 

There still remains some 

constants k and D in the 'law of 
suction or injection. However the 

(1959) will be used, and therefore 

suction or injection is 

doubt as to the values for the 

the wall' equation when there is no 
values which were found by Dutton 

the 'law of the wall' equation with 

Vw 	i4 
= 5.5 1.0610,Yuv 5.8 (19J) 

In the following sections this equation will be compared with previous 

experimental results. 
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20. A comparison between e uation that su ested 
Black and Sernecki 

Black and Sarnecki wrote their bilogarithmic law in the farm 

U_ 	0.2  b2 LOG_ LL Z 	I Vw ( L. OGe  atJ)  
tit 	 "9 	AI K2' LL 

with a =and 
Vw 
	 and 

1 

LOG 	 
2 k tit 

 

(20.1) 

(20.2) 

Several dimensionless parameters which might provide a possible criterion 

far specifying conditions at the edge of the sublayer (p.,N.) were 

considered. Eight possible equations fork were obtained by considering 
d the sublayer equation (13.3), and .\ was then plotted against VoiALTr and • 

compered, with the experimental results. There is a considerable scatter 
in the experimental results, but Black and Sernecki chose the equation 

far)., which seemed to predict most accurately the actual variation for 

layers on smooth and nearly homogeneous walls. The equation is 

X = 	14F 2rn — 	LOGS 	LoQ (t 2.1Y0i 
NK 	 rrl 

where rn == V1fri  and N3 
2 

 

tY1 

 

(20.3) 

This equation is presented in figure 27 together with some 

experimental results, and is reproduced from Black and Sarnecki)s paper. 

The equivalent variation which is implied by the 'law of the 

wall with suction or injectionll  equation (19.3) is 

= 5.8 \iv,/  ÷ 1 
LI ,k 

and is also shown in figure 27. 

(20.4) 
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21. To estimate the skin friction from a velocity  traverse 

The tlaw of the wall' equation with suction or injection 

(equation 19.3) may be written in the form 

2 	1Lt 	V110.4, UL'o 
0 -1- —1- 5,5 vw 	tkx 

Vw 	 P4.1 
From this equation a set of curves of 	againstLOG N*77- 

evaluattid for particular values of 

(fig. 28). If the value of :k1. LC. 
then figure 28 may be used to plot 

for particular values of C0  . If 

these curves, then the skin fricti 

— 5'6 4,, LOG 
5.  5 	'G U„e (21.1) 

has been 

C 	2(V.--i))at fixed values of 
14.1 

is known for a particular profile, 

curves of-0- against 1.0<;#0. 

the experimental profile is plotted on 

on may be estimated as in figure 29. 

The values of 	which are estimated in this way will be denoted by tit 

and the 

against 

(or the 

experimental values obtained from momentum traverses ITUtt, 
lk u Some velocity profiles are shown plotted as ztvlvwni 
Wy 4 N'LL: LOG,o 	in figure 30. Values for the friction velocity LUt  

skin frictioncf  ) were estimated in this way from the velocity 

profiles and the results are given in table 1. 

The skin friction results which were calculated from the 

momentum traverses as described in Section 16 are also given in table 1. 

The value of C* 
may be estimated from a velocity profile very accurately 

whereas the experimentally measured skin frictions are only accurate to 

±0.0003. The differences between the experimentally determined skin 

friction measurements and those estimated from the law of the wall 

equation 19.3 or 21.1 are within the experimental accuracy. Therefore 

the hypothesis that 'the unknown function of i1;  in equation 19.1 is 

approximately constanti is in agreement with the present experimental 

results. 

The experimental results presented in Black and Sarneckits 

report are plotted in figure 31. Only the straight logarithmic portions 

are plotted for clarity. The positions of the experimental straight 

 

4 
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lines with regard to the straight line of equation 19.3 do not show any 

trend with changes in Ifiryf e The position of the straight line is very 

dependent on the accuracy of Ulkand forVw4=0 0  a t-lay.; error in Cite 
results in equation 19.3 plotting as the chain dotted lines in fig.31. 

Mickley and Davis do not seem to include the pressure gradient 

term in their skin friction. calculations. Some of their values for S:15 
are given in table 2, together with modified values which include the 

pressure gradient term. These are compared with values of C3 which are 

estimated from the law of the wall equation. Some of Mickley and Davis' 
velocity profiles are compared with equation 19.3 in fig. 32. 

The law of the wall equation with suction or injection shows 

reasonable agreement with the available experimental results. 

Chapter 4. 

The Use of Preston. Tubes to Measure the Skin friction on a Permeable Wall 

22. Measurement of Skin Friction 
It is very difficult to obtain an accurate measurement of the 

local skin friction in turbulent boundary layers. Pitot tube traverses 

may be used together with vonEZramints momentum integral equation to 

relate the local shear stress to the changes in the momentum thickness 
(see section 16), but the method requires the differentiation of experi-
mental results in the stretumvise direction which is rather inaccurate, 

and the method is also very sensitive to three dimensional effects. 

Accurate measurements of the velocity profile very close to the 

wall have been made (Wills 1963) in order to find the velocity gradient 

and hence the skin friction, but large corrections to the instrumentation 

calibrations are required due to the presence of the wall and the method 

is extremely difficult. Dhawan (1952) and Smith and Walker (1958) have 

made successful measurements with skin friction balances which consist 

of an isolated portion of the surface connected to strain gauge 

balances. Lu eg (1950) measured the heat transfer rates to the wall 
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and related, these to the skin friction, and it was shown that the 'law of 

the walls (with zero transpiration) held in pressure gradients just as it 

did in zero pressure gradient. 

Stanton tubes and Preston tubes may be used to estimate the skin 

friction. Stanton tubes (Stanton et al 1920) are very small pitot tubes 

which are used in the linear velocity profile in the sublayer region and 

Preston tubes (Preston 1954.) are pitot tubes which are used in the uni-

versal logarithmic region. Preston tubes were originally calibrated in 

pipe flow on the assumption that the law of the wall was the same in pipe 

and boundary layer flaws)  but there is now some doubt as to the exact 

calibration curve (see the discussion - Head and Rechenberg 1962). 

Further work is continuing to determine the best calibration curve since 

the use of Preston tubes is the easiest method of estimating skin friction. 

The theory presented in this chapter shows how Preston tubes 

may be used to estimate the skin friction in turbulent boundary layers 

over porous walls through which there is a small normal velocity. The 

theory gives an equation which may be used with the Preston tube cali-

bration curve (whichever calibration curve is eventually chosen). The 

theory follows that of Hsu (1955) but the equations now include the 

suction or injection velocity at the wall. The final equation is relatively 

simple to apply and the skin friction results which are obtained in an 

experiment compare favourably with those obtained using the integral 

momentum equation. 

23. Theory 

The law of the wall equation for turbulent boundary layers with 

zero pressure gradient and zero transpiration velocity)  Which is valid in 

the inner turbulent region, is 

LL 1416  

Li. t 	
14  L. 0 	v 	

\), 	
(23.1) 

where K and B are constants. Hsu. (1955) fits a power law profile to 
this region of the form 
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a  
(23.2) 

where C and n are constants which best fit the experimental results. 
(Hou uses the values, C.--2 8* 	and n',= ) 

If there is suction or injection through a porous wall then the 

law of the wall equation is modified to (equ. 19.3) 

2 _\77H-4-, 0 	vw t..s; 	 LOGe 	B 	
(23.3) 

In the last chapter it was shown that K and B  are  approximately inde-
pendent of Vw. and 'kJ-it and therefore take the values for the case of zero 

transpiration. Some of the experimental results are plotted as 
2 	CO -4-%?U-Yi—against LOG 	in fig. 34 and are compared vw 	 10 -.I) 

utv  

with an equation of the form 
sr% 

U.re (( 1 t Vw 0- 	1) 	( LL ) 
VW \ 
	

(23.4) 
The equation shows reasonable agreement in the overlap or logarithmic 

region and it is now rearranged to give the equation for the velocity, Lk: 
C2 

VtAt 	 4- C 	LL'e 	

(23.5) 
It will be assumed that the presence of the pitot tube does not affect the 

flow in the boundary layer and that the pressure re,conded by the pitot 

tube is an average of the integrated pressure over the open portion of 
the tube: 

P-h) 
.7 2 o-2- 

 r 
(23.6) 

where OD-16) is the pressure recorded by the tube relative to the static 
pressure, :70  , ander,  refers to the area of the tube opening. A pitot tube 

which touches the wall and has a circular cross section of inside diameter 
2 a. and outside diameter 2 6 is considered. Equation 23.6 is written 

(3-5)t 	 (23.7) 

  

  

■ 
■ 
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SFJ:2):2L.) 
(23,12) 

(23.14) 
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2 tit  0: co s2 	4) 	
(23.8) 

	

or ,1 •=0 + Sit 0) ; 	= (-2-= 6 The equation for GC 1  equation 23.5„. is substituted into equation 23.8 and 
the aubse-juent equation integrated to give 

4 2 
(P40 	 n  71  I () 	3 	1)) .11( E 16* 	 a 	

3rt ).  
) + 

2. 	\, 

Tr 	 c2 	(------(1" 6)2n  ,(t)̀ 
f-1  / 	\(rev+ C)rt 

I (9 J (14. ES in y) 	C052 41 (44,  
rri.--- 1,2,3 

Equation 23.9 can be vvritten„ 

2+4rt c'17 vo2-(.4 e  4 
16(7-i) ) 14)2-i 	 C  2 

(23.u) 

where 

where (23.9) 

(23.10) 

When Vt,,,7---- 0 this equation reduces to 
2 

re d 
. W. 

-
..... 

 

p4fP2' 
_ 	

42 	) 
or 	l..O 	.evv, 01 1  ------.., LOG .V. + . I 	LOG  

n -3- i 

where 

4? 

flu evaluated .1,(6) for different values of 6 (see table 3) and showed 
that -..-,he value of 4. changes very little with t :providing that t is less 
than about 0.6, i.e. if a thick walled tube is used then 

There is doubt as to the appropriate values for the constants 
) 

 V and B 
in the law of the wall equation and therefore corresponding doubt with 
regard to the values for C and Ii • Hsu used the values, c = 8.61 and 



69 

'f,711! —Lf4-r 
14 

04. LOG. 
10 

nl.mm/7 $ and therefore equation 23.13 reduces to 

0,4= 	6214 + 0- 	5 (.13 

when t= 0 $ and 

6 29s 	o- 

when t = 0 -5 where 

ark. 	LoGio  CP-71)..)  012  

Al pr. 
The onlibration formula which Preston (1951k) obtained for pipe flow is 

(23.15) 

(23.16) 

T. 604 + 0..s15p 
	

(23.17) 

the formula suggested by the Staff of the N.P.L. (1961) is 

I. 6-47 ± O.  bl 5 
	

(23.18 

and that suggested by Smith and Walker (1958) is 

	

oe- = 2.634 + o S71 
	

(23.19) 

If it is assumed that I,() 11(9) then equation 23.13 reduces to 
equation 23.18 when -n. 	and. C 	, and to equation 23.19 when 

and.C7-7`8 • 4-15 	The resulting equations for Ultk-c(frora 

equ. 23.2) are 	 UL 
	

(23,20) 

	

end Lk. 	 (23.21) 
/ 

These are compared with some 'law of the wall' equations in figure 35. 
It is difficult to decide which are the correct values for C and r but 

Hzuls theory gives an equation of the right form and the values of 0 

and r may be adjusted to suit the calibration curve which is eventually 

 

ti4Mit"444tiarit "̂4tt& 
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chosen, 

When there is a normal velocity at the wall, equation 23.11 

must be used, C: and n are independent of Vvy and therefore have the 

values obtained for the case of zero transpiration, and the integrals, 

, 	1.50) 	, may be evaluated for the particular pitot tube 

which is being used in the experiment. Some values for Iti llanqiare 

given in table 4. Equation 23.11 is therefore of the form 

17(7 	 217 
(P-40) 	= Vw 	1.2  ~-V+ i 	4- 1.1-t j14 	 (23.22) 

where ug., 	) g3  and gm  are known. Curves of (p- l' 	against C's may 

be plotted for particular values of %At and U . 

If it is assumed that I(E)= z  (t.) 1.10= 11(0) — 

equation 23.11 reduces to 

[(P —17°) g  11_? 
C

2 
 VW  (iikz(1) 	(ut .-- (23.23) 

1)14 11- 

and this is the equation which will be used to calculate the skin friction 

in the experiment described below. Hsuis values for C. and rl are used 

in the calculations. 

24., Experiment using Freston tubes 
The Preston tube is described in section 114. and was used on the 

second model (fig. 16). The Freston tube was placed at different positions 

on the surface of the cylinder and the pressures, which were recorded for 

different blowing velocities with a constant free stream velocity of 50 

feet per second, are shown in fig. 36. There is a certain length at the 

beginning of the porous surface daring which the boundary layer is adjust-

ing itself to the new conditions. In this region the ac.-derivatives, 

which were assumed to be negligible in the theory, are probably large and 

the inner region equation 19.3 will not be valid. (The Preston tubes would 
probably indicate too high a skin friction in the region) Therefore the 



(25.3) + `.0) 

T

Preston tube results will 'only be compared with the momentum traverses 

over the latter portion of the porous tube. 

The Preston tube, which has an outside diameter of 0.064 inches 

with t equal to 0.68, was always within the overlap region during the 

experiments. Curves of (}',-10) against cf were evaluated for several 
blowing velocities from ecLation 23.23 (fig. 37) and the curves are used 
to estimate the skin friction from the Freston tube readings. The skin 

friction results are shown in fig. 38. 

In section 21 it was shown how the skin friction may be ob-

tained for a particular suction or injection velocity from a velocity 

profile using equation 19.3. The skin friction results estimated in this 

way, and those obtained using the momentum integral method (section 16), 

are compared with the skin friction results using Freston tubes in 

fig. 38 and they agree quite well. 

Chapter 5  

A Modified Velocity Defect Law for Turbulent Boundary Layers with Suction 
or Injection 

25. Th.....2EV11194Le1991-te 
For a turbulent boundary layer with zero pressure gradient over 

an impermeable wall, von KflraL showed that the equation for the mean 
velocity distribution in the inner and outer regions is given by 

I 	LOG 
	t L 

Trr 	" 
where 
	

( *Y4') 
throughout the inner region. It follows that 

	

-TIT- 	IC 

	

Lk 	
1-°C6t-te/s) + )(1) --AD(r -=f(

:

/s)  
S) 

is the equation for the outer region, the velocity defect equation, 

whereas 

(25.2 

(25.1) 

is a function of -Vs only, having the constant value 

egfAnw;terAV:."Sre.tp:StigneK4.1 NtrAtv 
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is the law of the wall equation for the inner region. 
of 3/56 only. 

In the case of a permeable wall, these laws are modified as a 
result of the finite transpiration velocity at the wall. When the 

external pressure gradient is zero, it is found that 'the law of the wall 

with suction or injection', (equation 19.3) is 

	

j.kz 	Vw 

	

Vvy 	U.:11  (25,4) 

where 14 and 	take the same values as for the caseVvv=0 over the range 
of transpiration velocities which result in a measurable skin friction. 
Following von 	it is now postulated that the equation for the inner 
and outer regions is 

f is a function 

2 1./..-c f( 	v 	I 
Vw  

t LoG (Y"-) 	0/s) 
(25.5) 

where B in equation 25,4 is equal to all( C)). It follows that 

Yt;i92 	\/ No4 UL - 	Gei + XV) — 
1.1; / 

=7--  - F(%) 
This is the modified velocity defect law for turbulent boundary layers 
with suction or injection but with zero pressure gradient. In the next 

chapter it will be shown that this equation is a special case of a more 
general 'law for the outer region'. 

Townsend (1956a) plots 

-177 
The present experimental results and those of Mickley 

	

.._ 	 i- 
are plotted as 2  ...._1-4-. 't 	4. V.wti-s)t  	(I  4 \iv-1-1: )2' 

Vw .‘ 	
, 

in figs. 39 and 40, and the results fall close to the 

will be defined as the 
2- 

ValUe Ofj 

against 1VS for various 
/ o 

oftc for the case of zero blowing, an verifies that 500/40 is a 

universal function when there is no pressure gradient. as  is defined as 
the value of 

ay 
 at which u-ru",.= ULT 

jhen there is injection, the term S; 

Yww,)/ .... 	vwki- \r1 	1 

and Davis (1957) 

against %/80  

zero blowing curve 

at which 
Vw.  

values 

(25.6) 

I 
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presented by Townsend (1956a). 	F( Q) therefore the same function 

as ft V in the velocity defect equation (25.2). 

For high blowing velocities 	has negligible effect on the 

outer region and equation 25.6 reduces to 

F-(/.$) 	2  k  vw, 	( 	
\ J.:

) 
 

(25.7) 
The experimental results (fig. 41) again verify that F Pis) is a 

1111 	universal function. 

The logarithmic plot of the velocity defect curve is shown in 

fig, 42. There is some scatter in the value of .?0).  but it is no 

greater than that for the case of zero blowing (Coles 1961). (The scatter 

will be discussed in section 30.1.) 

Equation 25.6 is now written in the form 

	

+vv.itLI1 	F(/)  \iw ).2- 	. 
, Vmst 

	

/ 	 (25.8) 
This equation has been used to evaluate the velocity profiles, 11- 

Lk, 
against 	, for particular values of ±it and some of the profiles are 

4 
presented in figs. 4.3 to 4.6. 

In fig. 47 equation 25.8 is compared with one of the experimental 

injection profiles, and in fig. 48 it is compared with a near asymptotic 

suction profile which was measured by Dutton (1960). There is very good 

agreement. 

Tewfik (1963) did an experiment using a very similar rig to 

that used in the present experiments except that the cylinder was 2 inches 

diameter. The velocity profiles which were measured by Tewfik for a 

particular blowing velocity, collapsed onto one curve which is shown in 

fig. 1+9. The curve is similar in shape to that given by equation 25.8 

and, the skin friction appears to be in the range 0.001 to 0.0015. This 

range is again obtained if the profiles are compared with the 'law of 

the min31  equation with suction or injection' (fig. 59). Tewfik measured 

the skin friction by momentum traverses and obtained values considerably 

higher in the range 0.0015 to 0.002. 
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The modified where the prime denotes differentiation with respect to 

velocity defect equation (25.8) may be written 

26.8 F  
4 

— sr 

"6?) kZ, (with (C:11 

S(x) 
U-1  

where 	is the universal function of 

Thus equation 26.4. reduces to 

(26.6) 

ei 	V U-, 

0 	 0 
or, in a form which includes the momentum defect term, 

26. Variation of skin friction with Reynolds number  

If the continuity and momentum equations for a turbulent 

boundary layer (section 13) are integrated from() to 6 then 

V 47 Vvi 
(26.1 
(26.2 

0 
where the variations with c 	the mean square turbulent velocity compon- 

ents U 2  and W2  have been neglected. Thus when equation 26.1 is sub-

stituted into 26,2, the shear stress at the wall is given by 

26.3 

Vw  U., A. a 
	

ci 

oc 
A more convenient form can be derived if we define the functions 

Cra 	and S2  as 

26.4 

tz) 



The Reynolds number, 

equation 26.7 Thus 
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and equation 25.5, when reduces to 

 

Vw 
for a particular value of 	is therefore 

or 	 M 
t 

where M 	K f 2 Lt."' (s-0 

(26.9) 

(26.10) 

(26,11) 

0 

 

The velocity distribution of equation 26.8 is substituted into the integral 
for the momentum thickness, S and the integral is evaluated. The errors • 2 

involved in assuming that 9A) is universal in the sublayer region are 

negligibly small. Hence 

82  )) 5(C) - V (C 2-)'  S2(C1)/  	(C3 )S - .4)NVW  )-(26,32) 
U-i 	2 	a ,t4,y 	if, 

The profile parametersCI  ,C2.  ,C3ande4, have been evaluated using the 
universal function, FP6), together with equation 26.5 and are shown 
in fig. 50. 

, The equation relating the skin friction to the Reynolds nuMber„ 

R4fr.  
M 

(26.13) 

In order to_ calculate the Reynolds number from this equation, only the 

skin friction and the blowing velocity parameter need be specified - no 

experimental results are required. The variation of skin friction with 
Reynolds number, evaluated from equation 26.13 is presented in figs. 51 
and 52. 

is obtained by integrating 

(26.1)+-) 



This equation. was integrated numerically and the resulting curves of 

againstiZ,care presented in fig. 53. During the calculations the 

values which were used litir 0),C1  and. C2 differ slightly from those 
used by Coles (see table 5) but the final skin friction Reynolds 

number curves when Vy4.--e0 are quite close. 

Mickley and. Davis' experimental results when corrected for 

pressure gradient as described in section 21 agree with the theory 

(see figs. 52 and 53),and the present experimental results (figs. 54. and 
55) are shown to agree reasonably well considering that the measurements 

are in axisymmetric flow, where skin frictions%) higher than those on a 

flat plate are to be expected (see section 18). 

Rubesin (1954) presented a theory for injection and evaluated 

the variations of C3 withi2x.  by assuming that the law of the wall 
region ext4nded to the edge of the boundary layer. The constants in the 

law of the wall are changed from their no-blowing experimental values, 

to values which give the correct Cs 	122,c  variation when voi=c) . 

These constants were then used for the case with blowing, together with 

the assumption that ut  at the edge of the sublayer is independent of 

A0.1 . The curves of csrvf? 	which were obtained by Rubesin are com- 

pared with the present theory in fig. 53. Rubesin's theory (which is 

also fcr compressible flow) gives higher values of skin friction than 

the present theory, the present experiments, and the experiments of 

Mickley and Davis. Rubesin's theory compares very well with the experi-

mental results in compressible flow (Tenderland and. Okuno 1956) and it 

was for this reason that Hartnett et al (1960) suggested that Mickley 

and Davis' results were possibly low (see fig. 57). However, care should 

be taken when comparing experimental results with an equilibrium theory. 

Coles (1961) has shown that an incovressible turbulent boundary layer is 

not in an equilibrium (fully developed, normal, ideal, asymptotic) state 

until the Reynolds number, R 45 	is greater than about 3000. The 

relaxation length, the distance the boundary layer requires to adjust 

itself to an equilibrium state, is probably related to the boundary layer 



thickness, such that flows at a particular Reynolds number have similar 

relaxation lengths, If this is the case, then the Reynolds number at 

which the boundary layer actually attains an equilibrium state will be 

larger for a higher Mach number. (For the higher Mach number at the 

same Reynolds number, .3t.. is smaller.) The incompressible turbulent 

boundary layer in Mickley and Davis' experiments would probably be in 

equilibrium because their porous section was 12 feet in length. On the 

model used in the present experiments -the boundary layer is certainly not 

in an equilibrium state for the first 12 inches of the porous cylinder 

but is probably close to equilibrium when X is greater than 12 inches. 

(This is indicated. by the rapid change in Freston tube readings over the 

first part of the porous cylinder (see fig. 36) ). The experiments in 

compressible flow (Tenderland and Okuno 1956, Pappas and Okuno 1960) were 

on models less than 12 inches in length and the boundary layers were 

possibly along way from a fully developed (or equilibrium)state. 

Squire (1963) discusses available experimental and theoretical 

results and compares them in three figures which are reproduced as 

figs. 56, 57 and 58. 

r„, P\q/Vw 
Cc* 	(a "-tCS" 

refers to conditions 

The figures have axes 3::YL 
t AN 0 

	

and ES.  ,-,... Pw \iv,/ 	where 
C.f... 	4(.),14.1 

when the blowing velocity is 

pVit Ww 

UtO. 
the subscript°  

zero. The present 

theoretical curves are also shown in the figures and it is seen that the 
c 	 9wVw plot of C-,/,',2  against 1 4  is the only one which collapses the f.0 	( 

9.
1)  

theoretical curves onto one curve. 

Chapter 6  
The Outerii.2sion of 'Turbulent 	Layers  

27. Introduction 

• It will be shown that the modified velocity defect law with 

suction or injection is a special case of a mare general law for the 

outer region of turbulent boundary layers. The theory initially uses 

a Amensional analysis to show that the outer region depends on a 



 

,„. 

  

function of the form f( -L312- )6)4(4 	and not necessarily on a 

velocity defect term:61,7LO , which has been used by Clauser (1954))  

Mickley and Smith (1963) and Black and Sarnecki (1958). (Q is a 

dimensionless parameter independent of y ; it could be a blowing velocity 

parameter, or a pressure gradient parameter.) 

Olauser (1954), realising that the past history of the boundary 

layer is very important, managed to adjust the pressure gradient in his 

experiments so that the mean velocity profiles at different positions 

along the flow collapsed onto one curve when 	was plotted against 

. Olauser's experiments are a special case
T 
 of the present theory. 

LL 

Mickley and Smith (1963) found by experiment that the outer 

region of turbulent boundary layers with small injection velocities 

through a porous wall, collapsed onto one curve when 	was plotted 

against L,43 . (U/Om  corresponds to the maximum value otil The shear 

stress which occurs in the particular profile. (For boundary layers with 

injection the maximum shear stress does not occur at the wall.) However 

with suction the maximum shear stress occurs at the wall but the velocity 

profiles do not appear to collapse onto one curve when a velocity defect 

term 

	

	is ied (see Black .and Sarnecki 1958). The equation given 
CL/t 

by the present theory is mace general than that of Mickley and Smith. 

Coles (1956) introduced a wake function, (A( //s) , which 

represents the departure of the mean velocity profile from the 'law of 

the wall' velocity profile. The wake function, which is tabulated by 

Coles, is considered to be independent of the skin friction and pressure 

gradient. The velocity profile is written 

The function, CO 0/0-  , is normalised so that (.41(0) =0 , Co() 

and pa), (31(36), 	 Coles analysed available experimental 

dataaand showed that the wake function represented the velocity profiles 

reasonably well except near separation where the 'law of the wake' 

reduces to LO 07) 
2- 	8 



which is presented in figs 60. The equation does not compare favourab 

with the experimental results at separation. The 'law of the wake' is 

not based on any similarity concept and goes beyond the limits of dimen-

sional analysis. Black and Sornecki (1958) were unsuccessful when they 

tried to use Coles' wake function when there was suction or injection. 

It is well known that the inner region of a turbulent boundary  

layer adjusts itself to the local wall conditions reasonably quickly 

whereas the outer region with its slow rates of energy transfer, takes 

some time to relax to its new form. The present approximate theory will 

not hold during this relaxation period, however it is shown to be quite 

useful when considering nom-equilibrium layers. 

In the following sections the inner region solutions will. be 

reviewed before the new theory is introduced. 

28. The inner region 

The momentum and continuity equations for the mean flow in a 

two-dimensional turbulent boundary layer are approximately (Townsend 

1956a) : 

JP, 	2t.L.. 
(28.1 

aa 

LL, where asi 	 is the pressure gradient. In most cases the 

term 	 is small and it will be neglected in the 

following analysis. we shall assume that are very small in 

the inner region, the region very close to the wall. This assumption will 

be checked once we have the solution for (. in the inner region. The 

momentum and continuity equations therefore simplify to 

2 

(28.2 

V' 
28.3) 
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in the inner region. The equation is integrated with respect to j 

in order to obtain the equation for the shear stress distribution in the 

inner region: 

(28.4) 

(21 is the total shear stress, the sum of the viscous shear stress 
and the Reynolds stress -- ()to) e 

The momentum transfer or the mixing length hypothesis of 

Prandtl, together with the usual assumption that the mixing length is 

proportional to the distance from the wall, yields the relation between 

the shear stress and the velocity gradient; 2 	142" j2-( 4112  y (28.5) 
where 114( is von Karmants constant. This equation will not be valid in 

the region very close to the wall where the viscous shear stress predom-

inates. 

The mixing length hypothesis was used by Rubesin, Dorrance and 

Dore, and Black and Sarnecki to derive the equations for a turbulent 

boundary layer with transpiration through a porous wall (section 13). 

Stratford (1959a) uses the same hypothesis when considering a turbulent 
boundary layer with negligible wall shear stress: however Stratford is able 

to derive the same equation by dimensional arguments.. 
Equation 28,5 is further substantiated by Townsend (1956b) 

who considers regions of turbulent shear flow in which there is equi-
librium between the local rates  of energy production and dissipation. 

Rotta (1962) reviews the inner region approximations in detail 
and shows that the available experimental results verify equation 28,5. 

The total shear stress in equation 28.4 is eliminated by 

using equation 28.5, and the resulting equation is integrated with 

respect toy when (a), the blowing velocity is zero, (b) the pressure 

gradient is zero, (c) the pressure gradient and the skin friction are 

zero, (d) the blowing velocity and the pressure gradient are zero, and 

(e) the blowing velocity and wall shear stress are zero. 



( r  

independent of 

oG yL e 

where 2. 
 is independent of y . This is the law of the wall 

equation with suction or injection which was described in section 19. 

2 B2  

28.9 ) 
t -t 	K 

where e, is a constant. Equation 28.9 is the 'law of the wall' 
equation. Millikan (1938) derived the same equation by dimensional 

analysis. 
(e) When cew = V 

dz. 	 (28.10 

where A  is independent of 
In deriving equations 28.6 to 28.10 it has been assumed that 

the region, in which equation 28.5 is valid, is independent of the 

conditions at the outer edge of the boundary layer,and therefore cc and 
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Li, do not appear in the equations. 
When 	()in equation 28.6 or 

ELI  Yn. 40 in equation 28.7, the 
equations must reduce to the zero pressure gradient equation 28.9. 

Therefore 

+ LOG*  k(?) 

130 2  

ao  Yyj 
Similarly, as the wall shear stress approaches zero, equation 28.6 must 

reduce to 28.10 and equation 28.7 must reduce to 28.8. Hence 

(28.12 

B 
uLt  u.. 

B2 	B 	L Ge  

(28.13 

(28.3J+ 

Stratford (1959a) and Townsend (1960) show that B4  in the separation 

10
6  

equation 28.10 is negligibly small when the Reynolds numb 
Before the momentum equation 28.1 was solved it was assumed that 

and 	were very small in the inner region. At separation for 
IV 

example / Ibis may be checked by using the equation for the velocity dis- 
tribution in the inner region (equ. 28.10) with E341=0 . Thus if the 
terms 	and 	are neglected, we are assuming that ax 

<<. 
3 K2  

4- D 	 28.15 
Odx 

where D 	 is a pressure gradient parameter. The various 

terms in the expression 28.15 have been evaluated using the separation 

experimental results of Schubauer and Klebanoff (1951) and it is found 
that the convective terms, cca.1...1 	DLk 	are only 2% of the 

ax 






































































































































































































































































