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Abstract
Gas turbine diagnostics has a history almost as long as gas turbine development itself. Early engine fault
diagnosis was carried out based on manufacturer information supplied in a technical manual combined with
maintenance experience. In the late 1960’s when Urban introduced Gas Path Analysis, gas turbine
diagnostics made a big breakthrough. Since then different methods have been developed and used in both
aero and industrial applications. Until now a substantial number of papers have been published in this area.

This paper intends to give a comprehensive review of performance analysis based methods available thus

far for gas turbine fault diagnosis on open literature.
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NOTATION

e Difference between z and Z
F Function

H Influence coefficient matrix
v Measurement noise vector



X Engine independent (component) parameter vector
zZ Engine dependent parameter vector

@ Function

A Variation

Superscripts

-1 matrix inverse

A estimated

ABBREVIATIONS

AANN Auto-Associative Neural Network

APNN Adaptive Probabilistic Neural Network

ART Adaptive Resonance Theory

BBN Bayesian Belief Network

BPNN Back Propagation Neural Network

CPN Counter Propagation Network

DOCGPA Discrete Operating Condition Gas Path Analysis
EHM Engine Health Monitoring

EMD Engine condition Monitoring and fault Diagnosis
FCM Fault Coefficient Matrix

FIR Finite Impulse Response filter

FPN Fuzzy Petri Net

GA Genetic Algorithm



GPA Gas Path Analysis

ICM Influence Coefficient Matrix

KB Knowledge Base

LRF Learning Rate Factor

LSE Least Square Estimate

LVQ Learning Vector Quantisation

MF Modification Factor

MLE Maximum Likelihood Estimate

PDF Probability Density Function

PNN Probabilistic Neural Network

RAN Resource Allocating Network

RBF Radial Basis Function neural network
RCC Recurrent Cascade Correlation neural network
SOM Self-Organizing Map

SVM State Variable engine Model

1 INTRODUCTION

Gas turbine performance deteriorates during operation due to degradation of gas path components. The most
common causes of the degradation are compressor fouling, blade tip clearance increase due to wearing and
erosion, labyrinth seal damage, foreign and domestic object damage, hot end component damage, corrosion,
etc. [102]. These physical faults result in changes in gas turbine thermodynamic performance measured by
efficiencies and flow capacities of components, which in turn produce changes in observable engine

parameters such as temperature, pressure, rotational speeds and fuel flow rate. The degraded performance



reflected from these measurements can be used to detect, isolate and accommodate component faults; such
relationships were described by Urban [134] and shown in Figure 1. In order to keep high level of
availability and reliability of gas turbines, effective maintenance are essential. With the development of gas
turbine diagnostic technologies, gas turbine maintenance has been shifting from preventative type to
reliability centred maintenance based engine health monitoring and fault diagnostics.

There are many approaches for gas turbine condition monitoring and fault diagnostics, such as
performance analysis, oil analysis, visual inspection, borescope inspection, X-ray checks, eddy current
checks, vibration monitoring, debris monitoring, noise monitoring, turbine exit spread monitoring, etc.
[146]. Performance analysis based diagnostics is one of the most powerful tools among them, where the
analysis of gas turbine gas path parameters provides the information of degradation severity of gas path
components.

Gas path analysis (GPA), a linear model based method, was introduced for the first time in 1967 by
Urban [132] and then followed by different derivatives such as optimal estimate based methods. In order to
take into account the non-linearity of engine behavior, a non-linear model based method combined with
conventional optimization was first introduced in 1990 by Stamatis et al. [118]. Unfortunately, conventional
optimization may stop at a local minimum. This disadvantage of non-linear model based methods has been
overcome by using genetic algorithms in recent years, firstly by Zedda and Singh [146-147|. Neural
networks were first introduced to gas turbine diagnostic applications in 1965 by Denny [17] and have been
widely used since 1989; they have the advantage that only engine experimental knowledge is required for
the training of neural nets and the computation time for diagnosis is very short once the neural nets are
trained. Application of expert systems to gas turbine diagnosis can be traced back to early 1980’s. Expert
systems are still one of the best types of methods for gas turbine diagnosis and are still under development.

More recent advances of expert systems to gas turbine diagnostics is rule-based fuzzy expert systems, such



as those introduced in 1997 by Fuster et al. [37] and Siu et al. [115]. Most diagnostic approaches are based
on gas turbine steady state measurements. Some diagnostic information has been analyzed with engine
transient measurements since late 1980°s, but diagnostic approaches based on transient data have not been
well developed.

Data uncertainty, the measurement noise causing data scattering around their true values, is another
source of inaccurate fault diagnosis. Data averaging and filtering using different technologies are effective
ways of reducing the impact of measurement noise and improving diagnostic accuracy.

In this paper, technologies relevant to gas turbine performance analysis-based diagnostics developed so
far and published in the open literature are reviewed, including data validation and different approaches of
gas turbine fault diagnostics. Major approaches for gas turbine diagnostic are included, i.e. linear model-
based methods, non-linear model-based methods, artificial intelligence (neural networks, genetic algorithms
and expert systems) based methods, fuzzy logic based methods, and fault diagnostics with transient

measurement data.

2 DATA VALIDATION
Gas turbine fault diagnostics is based on the analysis of deviations of component parameters from their
nominal conditions. Such information can only be obtained from measurement. The accuracy of all
diagnostic systems is partially determined by the quality of the measurement. Unfortunately, measured data
are usually contaminated by sensor noise, disturbances, instrument degradation and human errors. In order
to improve the reliability of diagnostic results, it is very important to clean or rectify the measured data
before they are input into diagnostic systems.

Usually, a measured parameter changes around its actual value and may be expressed statistically with a

probability density function. The true value of a parameter can be approximated by its averaged



measurement which is normally obtained with rolling average method where an average value is obtained
with numerical average of certain preceding points. The disadvantage of rolling average is that it wastes the
initial data points and is slow in responding to trend changes [18]. An exponential average equivalent of a
ge was introduced by DePold and Gass [18] to reduce the measurement noise, where
with each new data point 15% of the remembered average is replaced by new data. It was proved that the
noise reduction with an exponential average is significant and the exponential average is better than the
rolling average in terms of response to data variation. More recently, different data filtering methods were
explored by Ganguli [39] for removing noise from data while preserving sharp edges that may indicate a
trend shift in gas turbine measurements. Compared with linear filtering, a non-linear filter, FIR median
hybrid filter, was found to be far more superior in accurately reproducing the root signal from noisy data. A
health residual, a scalar norm of the gas path measurement deltas, was used to partition the faulty engine
from the health engine.

Auto-Associative Neural Network (AANN) can also be used to filter measurement noise to improve
input data quality and was introduced by Roemer [103] and Mattern et al. [79-80]. A two-step neural
network algorithm was developed for gas turbine sensor validation by Lu et al. [73], where the first step is
the construction of a noise-filtering and self-mapping Auto-Associative Neural Network based on the back-
propagation algorithm, the second step uses an optimization procedure built on top of these noise-filtering
and self-mapping nets to perform bias detection and correction. It is shown that AANN is an effective noise
filter for raw data and is of paramount importance to improve the accuracy of diagnostic systems.

For those gas turbines that work in an environment with high absolute humidity, the impact of air
humidity on component parameter deviation may be of magnitude similar to the magnitude of the deviations
caused by faults, and the accuracy of diagnostics may be reduced. A correction method to reduce the impact

of air humidity on measurement data was suggested by Mathioudakis and Tsalavoutas [78].



3 LINEAR MODEL-BASED METHODS

The relationship between gas turbine dependent parameters (such as gas path pressures and temperatures,
thrust, mass flow rate, etc.) and independent parameters (such as pressure ratio, flow capacity and efficiency
at each component) is highly non-linear. To simplify the description of such a relationship, a linear

approximation at certain operating point (such as maximum power or cruise) was introduced as follow:

Z — H * )? (1)
With this assumption, a first Gas Path Analysis (GPA) method was introduced by Urban in 1967 [132] and
its application to gas turbine condition monitoring and multiple fault diagnosis was described in more
details by Urban [133-134]. A review of Gas Path Analysis was given by Smetana [116]. This GPA method
has been widely used in applications, such as those of Passalacque [90], Staples and Saravanamuttoo [122],
Saravanamuttoo [112], Danielsson [16], Lazalier et al. [71], Grewal [45], Escher [27, 28], Nieden and
Fiedler [88] and Simani et al. [113]. In this method, the relationship between various engine measurable
parameter deltas and unmeasurable component parameter deltas at certain engine operating condition is

expressed with a linear influence coefficient matrix (ICM):
Az = H-Ax 2)
The deviation of engine component parameters can be calculated with a fault coefficient matrix (FCM) (or

diagnostic matrix) which is the inverse of the influence coefficient matrix:

- -1 —
Ax=H  -Az 3)
The generation of the fault coefficients relies on the implantation of known degraded components. This

method is idealistically simple and provides quick solutions to gas turbine diagnostics. It also has

advantages of fault isolation, quantification and multiple fault diagnostics. Unfortunately, it requires several



conditions that are difficult to satisfy: accurate influence coefficient matrix to describe the engine
performance, fault and noise free sensors, the same number of uncorrelated measurements as that of engine
component parameters and correct choice of measurement locations. In addition, “smearing” effect may
reduce the accuracy of the diagnostic results.

Improvements were made to the estimate of AX by using optimal estimation theory [9, 41] such as the
minimum error (or maximum likelihood) estimation |74, 135-136], weighted-least-squares [22-24, 74, 140],
maximum a-posteriori [140], and Kalman Filter |4, 76, 100, 137]. A detailed analysis of optimal estimation
for gas turbine applications was made by Grewal [45]. Measurement noises were taken into account in these
methods. A comparison between Kalman Filter and Neural Network models for single fault diagnosis [141]
shows that neural networks have very slight advantage to the Kalman Filter approach. Another problem of
Kalman Filter approach is that the effects of genuine changes in a small number of component changes
and/or sensor biases over the whole set of changes and biases being considered may be “smeared”. An
enhanced Kalman Filter (the so-called “Concentrator”) was introduced by Provost [101] to overcome the
problem. An analysis of measurement parameter selection for linear and non-linear GPA based on Kalman
Filter estimate was given by Kong and Ki [67] with the conclusion that with an increase of number and
kinds of measurement and proper selection of the measurement parameters the reliability of diagnostics can
be improved.

In order to make all differential gas path analysis methods valid, the number of measured performance
variables must be greater than or at least equal to the number of diagnostic parameters that have to be
estimated. This requirement sometimes is difficult to meet due to the limited number of measurements
available. To overcome this problem, a Discrete Operating Conditions Gas Path Analysis (DOCGPA)

scheme was developed by Stamatis and Papailiou [121] and Stamatis et al. [120].



The Kalman Filter algorithm has also been used in diagnostics of gas turbine with transient data. Details

of the development in this area will be described in a following section.

4 NON-LINEAR MODEL-BASED METHODS

Linear model based methods assume that gas turbine engines behave linearly at the operation conditions
where diagnosis is carried out, which is not true. In order to take into account the high linearity of engine
behavior, non-linear model based diagnostic methods were introduced. This type of diagnostic methods is
based on accurate modelling of non-linear steady state gas turbine performance developed during the past
50 years. Gas turbine modelling techniques have been reviewed by many researchers, such as Bird and
Shwartz [7] and Sanghi et al. [110]. At steady state conditions, the dependent and independent parameters of

gas turbines can be expressed with a non-linear relationship

The idea of the non-linear model-based methods is shown in Figure 1. The real engine component

parameter vector X determines engine performance represented by the measurement vector z. With an
initial guessed parameter vector X, the engine model provides a predicted performance measurement vector

Z.An optimization approach is applied to minimize an objective function as follows:

Objection Function = Z ¢q ) (%)
i

which is the function of the difference e between the real measurement vector z and the predicted

Z;, —Z;

measurement vector z. A minimisation of the objective function is carried out iteratively until the best

predicted engine component parameter vector X for real X is obtained.



An iterative non-linear GPA approach based on Urban’s method [132-134] for non-linear fault
diagnostics was explored by House [S7] for a single shaft gas turbine for helicopters, Further development
of the non-linear method was done by Escher [27-28] with a Newton-Raphson technique and a computer
code, PYTHIA, was developed.

An adaptive model for accurate simulation of gas turbine performance with the possibility of adapting to
engine particularities was developed and described for the first time by Stamatis et al. [117]. In this method,
modification factors (MF) which are the ratio of parameter values of reference performance maps and the
values of the actual maps were introduced. The modification factors for every component was obtained
through a Non-linear Generalized Minimum Residual method [117]. Observation of the changes of
modification factors between nominal and deteriorated engine can lead to detection of the location and the
kind of fault of the engine [118]. Proper selection of modification factors with optimization can also be used
for fault detection of gas turbine components and sensors. Lambiris et al. [70] introduced a weighted error
function and used a polytope algorithm (downhill simplex method [87]) in their optimization. Stamatis et al.
[119] introduced a sensitivity measure and a fast selection procedure based on the method of singular value
decomposition for the optimization; a similar method was used by Tsalavoutas et al. [131] to produce
diagnostic information and analyze faults of a two-shaft gas turbine engine. A direct adaptation of engine

thermodynamic parameters, combined with a least square method, was described by Santa [111] for
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diagnostic purpose, where the changes of the parameters help to loc

A statistical (Bayesian) inference based on the Maximum Likelihood Estimate (MLE) method for
monitoring the condition of gas turbine engines was presented by Consumi and d’Agostino [14-15], where a
Gaussian a priori PDF is initially assumed for the uncertain parameters. The deviation of engine component
parameters was obtained which maximizes the likelihood of the observed data with respect to the

corresponding engine nominal data by equivalently minimizing a cost function that is the sum of squared

10



residuals. Different methods were used in the optimization, such as a Davidon-Fletcher-Power method [99]
by Consumi and d’Agostino [14-15], a second order algorithm of performance comparable to the Newton-
Raphson method, and a Levenbery-Marquardt method [99] by Biagioni and Cinotti [6]. Sensor noise was
proved to be sensitive to the accuracy of the diagnostics [15].

Bettocchi and Spina [5] used the sum of the squared residuals between the computed and measured
values of the same parameters as an objective function in their fault diagnosis. The deviations of engine
component parameters were obtained by minimizing the objective function with the IMSL math library
[138]. A weighted least squares estimation was used by Chen and Zhu [11] to identify single or multiple
faults of jet engines with noisy measurements. An adjusting technique was introduced to minimizing the
sum of squared weighted errors when the number of measurements is greater than the number of adjustable
parameters. Another non-linear model-based method is the parameter identification/estimation approach
developed by Grodent and Navez [46]. It includes two parts: the first part deals with the parameter
estimation which allows to generate the residuals and then statistical tests are then built in the second part in
order to distinguish between healthy and faulty parameters. The minimisation of an appropriate objective
function with a Bayesian approach was used in the estimation process.
gas turbine diagnostics can also be performed by minimizing the cost

(objective) function with Genetic Algorithm (GA). This will be described in more details in the next section.
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TIFICIAL INTELLIGENCE BASED METHODS
5.1 Artificial Neural Networks
A neural network is a massively parallel distributed processor made up of simple processing units, which

has a natural propensity for storing experimental knowledge and making it available for use [53]. Early

applications of neural network to aircraft engine diagnostics were carried out by Denny [17] and Dietz et al.
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[20], and to the Space Main Engine by Whitehead et al. [142-143]. Different neural networks have been
used in gas turbine engine fault detection, diagnosis and accommodation since then.

The most popularly used artificial neural network in gas turbine diagnostics is the Feed-Forward Back-
Propagation Networks where the configuration of a typical one of them is shown in Figure 3, a supervised
network, where sensed information is propagated forward from input to output layers while calculated errors
are propagated backward and used to adjust synaptic weights of neurons for better performance. Typically,
such a network is made of an input layer where input values are received through input neurons, one or
more hidden layers whereby functional relationship are expressed with a set of weights connecting
succeeding neurons, and an output layer where output neurons receive output values. ‘1raining of the net is
through a learning algorithm named back-propagation where the weights are modified based on the input-
output patterns. Application of Feed-Forward Back-Propagation neural networks to gas turbine diagnosis
have been performed by many researchers, such as Eustace [29], lorella and Lombardo [127-128],
Kanelopoulos et al. [61], Torella [126], Roemer [103], Tang et al. [124], Cifaldi and Chokani [12], Zedda
and Singh [147], Volponi et al. [141], Sun et al. [123], Lu et al. [73], Kobayashi and Simon [64] and so on.
lorella and Lombardo [128] described a calculation for learning rate factor (LRF), for improving the
learning rate BPNN. Kanelopoulos et al. [61] presented a partial network architecture to perform sensor and
component fault diagnosis step by step. Zedda and Singh [145] introduced a modular neural network system
to tackle large-scale diagnostic problem and applied it to Garrett TFE 1042 engine, with the unfortunate
drawbacks of a large number of nets and long training time. Comparison between the Feed-Forward Back-
Propagation Neural Network and the model based Kalman Filter method for gas turbine engine single fault
linear diagnostic problems [141] shows that such a network has slightly poorer performance than Kalman
Filter approach in terms of accuracy. Volponi et al. [141] introduced a hybrid neural network where part of

the network model was replaced by influence coefficients and the accuracy of such a network was favorable
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compared to back-propagation net and Kalman Filter approach. Sun et al. [123] employed a hybrid training
rule to improve its convergence. Lu et al. [73] compared two feed-forward back-propagation neural
networks with a similar configuration, one with four inputs and another with eight inputs, and found that
both achieved high success rates. Kobayashi and Simon [64] applied a feed forward network in their hybrid
diagnostic technique, where the neural networks were used to estimate engine health parameters, and a
Genetic Algorithm was used for sensor bias detection and estimation.

Different unsupervised competitive learning neural networks are used in fault diagnostics. Common to
them all is a layer that selects a single winner unit. The competitive learning consists of two phases, one for
selecting the winner unit and the other for the updating of connection weights to the winner unit. The
following is a description of the competitive neural networks used in engine diagnostics.

The first type is a Probabilistic Neural Network (PNN), a derivative of the Radial Basis Function neural
network, used by Eustace and Merrington [30], Patel et al. [93], Sun et al. [123], Eustace and Frith [31] and
Romessis et at. [108] The training of the networks is a supervised learning procedure, where PNN classify
the training patterns to classes. PNN is a network implementation of Bayesian statistics where the previous
case studies are directly stored in the network as mathematical coefficients while no training is required.
When an unknown pattern is input to the network, the Euclidean distances between the input pattern and
stored case centres are calculated. The distances are then converted to probabilities via a density function;
the smaller distance has the higher probability and vice verse. The fit for each case is compared and the case
with highest probability indicates the most possibility. Application of the method to a fleet of engines [30]
showed that it is capable of diagnosing faults even when the parameter changes due to fault are less than the
no-fault engine-to-engine variation. An Adaptive Probabilistic Neural Network (APNN) was presented by
Sun et al. [123] where the Maximum Likelihood Estimation Method was used to obtain the optimal

Bayesian estimation and was more adaptive and fit better to quantitative diagnosis for multiple faults.
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The second type is a Self-Organizing Map (SOM) (Figure 4) developed by Kohonen [65], where the
neurons are placed at the nodes of a lattice that is usually one- or two-dimensional. The neurons are
selectively tuned to various patterns in the course of competition learning. The self-organizing map is
characterized by the formation of a topographic map of the input patterns in which the spatial location of the
neurons in the lattice are indicative of intrinsic statistical features contained in the input patterns [53]. A
real-time engine health monitoring (EHM) and diagnostic system were described by Roemer [103], where
both self organizing neural network maps and trained network classifiers were utilized in diagnostic module.
The self organizing neural network map (Kononen network [66]) was used for initial pattern clustering to
identify similar patterns and a trained back-propagation network classified the coordinate location on the
map into a specific diagnosis.

The third type is a Learning Vector Quantisation (LVQ) network designed by Kohonen [66] is a
competitive neural network where the Voronoi cells are defined to partition the input space and a
corresponding set of Voronoi vectors are defined to point to the cells. During the learning process, an input
vector is picked at random from the input space. If the vector and a Voronoi vector agree, the Voronoi
vector is moved toward the input vector; otherwise the Voronoi vector is moved away from the vector. Such
a network was introduced by Eustace [29] and was applied to F404 turbofan engine. It has an input layer,
one hidden layer and an output layer. The input layer receives the input pattern and each of the hidden layer
is directly connected to an output neuron. Each of the hidden neurons, with weights connected to input
neurons, represents one of the faults or no-fault condition. The network is trained with sample faults and no-
fault patterns. When unknown data are input into the net, each of the hidden neurons compares the input
engine parameters with the weights associated with the neuron. One of the neurons wins the comparison
with a closest match and passes a value of unity to the corresponding output neuron as a diagnostic result,

while other output neurons pass a value of zero. Comparison between the LVQ network and back-
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propagation network showed that both of them achieved high accuracy. The advantage of LVQ network is
that of being quick to train, while the back-propagation network gives an indication of the confidence of its
diagnosis.

A hybrid scheme combining supervised and unsupervised learning is a Counter Propagation Network
(CPN), a competitive feed-forward network, developed by Hecht-Hielsen [54]. Its application to engine
diagnostics was mentioned by Torella [127-128]. This type of neural network is based on a combination of
input, clustering and output layers and they are particularly suitable for pattern recognition [126]. The
training of such nets requires two steps. In the first step, an unsupervised competitive learning process, the
presented patterns are clustered; only a neuron of clustering hidden layer wins and learns and is active for a
given input. In the second step, a supervised learning process, the weights among cluster layer and output
layer units are adjusted to obtain the desired output corresponding to the presented input pattern [126].
Torella [126] successfully applied the CPN to the fault diagnosis of a single spool turboprop engine and
proved it to be robust.

Adaptive Resonance Theory networks (ART) introduced by Grossbery [48] are capable of stable
categorization of an arbitrary sequence of unlabeled input patterns in real time. It was applied by Torella and
Lombardo [127] and Torella [126] to gas turbine trouble shooting and diagnostics. Such architecture has the
capability of stable categorization of an arbitrary sequence of unlabeled input patterns in real time. Three
different groups of neurons usually form the networks and are arranged in two layers where the nodes on
each layer are fully interconnected to the nodes of the other layer. The first layer manages the input
information and the second layer clusters the information by grouping similar information. The networks are
of the competitive type. A stable oscillation starts among the input layer and the winner cluster when a
proper cluster has been chosen. There are two different types of ARTs: ART1, with binary (0-1) input by

which trouble-shooting and trend analysis of gas turbines can be performed, and ART2 with information in
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the form of real numbers allowing engine diagnostics to be performed. ARTs have the capability of learning
new patterns without repeating all of the training procedure, however they also have the limitation of being
unable to store each pattern in each cluster, because similar patterns linked to different faults may be stored
in the same units.

Opposite to fixed architecture neural networks are the Resource Allocating Networks (RAN) which have
the capability to allocate new neurons, as needed, as more patterns are learned. One of RANs is a self-
learning Radial Basis Function (RBF) network and was applied to gas turbine diagnostics by Patel et al.
[95]., Patel et al. [92, 94], Patel and Kadirkamanathan [91], Patel et al. [93] and Arkov et al. [3]. The
network can grow by itself by adding new hidden neurons and output neurons when new fault patterns are
presented to it and also can improve its generalising qualities by adapting itself when presented with similar
faults to those previously encountered. The novelty of a pattern is determined by comparison between the
response of each hidden node and a pre-defined threshold.

Another Resource Allocating Network applied to gas turbine diagnostics is the Recurrent Cascade
Correlation (RCC) Neural Network (Figure 5), a supervised neural network, developed by Fahlman and
Lebiere [33]. It was introduced and compared with Back-Propagation Neural Network by Tang et al. [124-
125] for jet engine fault diagnosis. The architecture and characteristics of RCC are different from BPNN
and show many advantages compared to the BPNN. The non-neighbouring layers in the RCC are connected
with each other and the RCC has only one neuron in each hidden layer. The RCC network does not have the
non-convergence problem that may occur for the BP network. The initial values of the weights of the RCC
network are determined automatically so that a different number of hidden layers will be produced for
different training processes and therefore the convergence rate of the RCC is improved. In the RCC
network, the weights of only one layer are permitted to change, while those of the others are kept constant,

which provide higher learning rates and convergence rates than the BP networks. It was concluded that the
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RCC network performs fault diagnosis as well as the BP network and does not become bogged down by
slow learning. Therefore the RCC network can be substitute for the BP network in practical application of
engine fault diagnosis and simultaneously satisfy the strict requirements of quick speed and high accuracy.

However, the BP network is more robust than the RCC network.

5.2 Genetic Algorithms
Genetic Algorithm (GA) based diagnostics is a model based approach, which is theoretically similar to those
of non-linear model-based methods described in a previous section. In other words, GA are applied as an
effective optimization tool to obtain a set of engine component parameters that are used to produce a set of
predicted engine dependent component parameters through a non-linear gas turbine model that best matches
the measurement. The solution is obtained when an objective function (or cost function), which is a measure
of difference between predicted and measured engine dependent parameters, achieves its minimum value.
Genetic Algorithms are a searching and optimization technique. Compared with typical calculus-based
optimization methods, GA have several distinctive features [146]: no derivatives are needed so any non-
smooth function can be optimized; constraints can be dealt with in a very different way, such as by means of
penalty functions or design of specific operations; global search 1s used to avoid getting stuck in a local
minimum; and probabilistic rather than deterministic transition rules are used to create the next generation
of strings from the current one. Three operations are typically used in Genetic Algorithms; they are first a
selection operation which chooses the strings for the next generation according to a “survival of the fittest”
criterion, second a crossover operation which allows information exchange between strings in the form of
swapping of parts of the parameter vector in an attempt to get fitter strings, and third a mutation operation
which introduces new or prematurely lost information in the form of random changes applied to randomly

chosen vector components.
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A gas turbine engine and sensor fault diagnostic system in the presence of measurement noise and biases
was presented by Zedda and Singh [146-147]. Estimation is performed through optimization of an objective
function by means of a real coded Genetic Algorithm (GA) [1]. The only statistical assumption required by
the technique concerns the measurement noise and the maximum allowed number of faulty sensors and
engine components. The method is suitable for development engines where a relatively large number of
measurements are available. It was applied to a three spool military turbofan engine RB199 [146] and two
spool low bypass military turbofan engine EJ200 [147] and showed a high level of accuracy.

Gulati, Zedda and Singh [50] and Gulati, Taylor and Singh [49] combined a multiple point diagnostic
approach [120] and Genetic Algorithm approach [146-147] and produced a GA, model-based multiple
operation point analysis method for gas turbine fault diagnostics. This approach is suitable for diagnostic
problems where limited instrumentation is available. It was applied to RB199 engine and showed good
results. Similar method was also applied to a PW100 engine by Gronstedt [47], where a gradient method

was implemented to refine the estimate.

5.3 Expert Systems

An expert system is a computer program that represents and reasons with knowledge regarding some
specialist subject with a view to solving problems or giving advice. It is usually built by assembling a
knowledge base which is then interpreted by an inference engine. An empty knowledge base comes from
program called a shell. The end user of the application interacts with the shell via the inference engine,
which uses the knowledge put in the knowledge base to answer questions, solve problems, or offer advice
[59]. The configuration of a typical expert system is shown in Figure 6. Different expert systems have been
developed so far, such as rule-based, model-based and case-based systems. Reviews on expert systems

applications in gas turbine diagnostics were given by Doel and LaPierre [25] and Doel [21]. Doel [21]
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t the expert systems technologies were not going to make jet engine diagnostic and
maintenance procedures “smart” but they could add a lot of new capability that will make them more
effective and more convenient.

Earlier gas turbine fault diagnostics were carried out by gas turbine users by comparing the
measurement parameter deviation patterns with fault signatures supplied by manufacturers. This is actually
a pattern recognition/matching, one of the methods of expert systems. Further development and application
of pattern recognition/matching methods were presented by Winston et al. [144], Dundas et al. [26] and
more recently by Lee and Singh [72] and Siu et al. [115].

The most popular type of expert systems used in gas turbine fault diagnostics is knowledge and rule
based expert systems. Typical examples of such type of expert systems are ENGDOC [44], TEXMAS [13]
for the Lycoming T53 engine, HELIX [52, 114] for a twin-engine gas turbine helicopter engines, XMAN
[60] for T'F-34 engine, TIGER [129], IFDIS for the TF30 engine [35-36], SHERLOCK for helicopter
engines [144], etc. More recently, this type of methods has been further developed and applied to gas
turbine diagnostics by Vivian and Singh [139], Torella [126], Charchalis and Korczewski [10], DePold and
Gass [18], Diao and Passino [19], Forsyth and Delaney [34] and Pettigrew [98]. Hamilton [52] and Winston
et al. [144] applied qualitative reasoning of de Kleer and Brown [63] in their expert systems. Meher-Homji
et al. [82] described a hybrid expert system where both expert systems and algorithm approaches were
utilized for gas turbine condition monitoring and diagnostics. The declaration of a fault by the inference
engine is normally done by comparing engine component deviations with predefined thresholds. Pettigrew
[98] introduced a six sigma method where the variation of observed engine data fits a normal probability
function, a threshold of six sigma (sigma is standard deviation for the normal distribution) is applied for

accepting the engine for operation and another six sigma is used as the criterion for declaring high risk.
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Expert system can also deal with problems with uncertainty by using probability theory, fuzzy logic and
belief functions. An expert system combining a Bayesian belief network [96] with model based
thermodynamic analysis applied to two GE-Model MS7001 Industrial Gas Turbine engines was described
by Breese et al. [8]. A Bayesian belief network knowledge base (KB) [56, 96] in a diagnostic system for the
CF6 family of engines was described by Palmer [89]. This is a graphical representation of a probability
distribution that represents the cause and effect relationship among predisposing factors, faults, and
symptoms. The advantages and disadvantages of using the Bayesian belief network were presented. A
Bayesian type statistical evidence approach was used by DePold and Gass [18] in their expert system to
reflect the uncertainty of gas turbine parameters. Mast et al. [77] applied different Bayesian Beliet Networks
to different operating space of GE CFM56-7 engines in order to obtain the desired level of diagnostic
accuracy. More detailed analysis of Bayesian Belief Network (BBN) for turbofan engine diagnostics was
given by Romessis et al. [107].

A static pattern analysis approach was proposed by Patel et al. [93] and Arkov et al. [3], where the
observation of gas turbine status was expressed by a probability density or histogram approach and any
deviation of the engine from its normal condition can be indicated by a low likelihood of the observation. A
probabilistic fault diagnostic approach was introduced by Ghiocel and Roemer [43] and Roemer and
Ghiocel [105] and was further described by Ghiocel and Altmann [42] and used by Roemer et al. [106]. In
the method, both the monitored and fault data uncertainties were considered and described with probability
density functions. The detection of faults was carried out by comparing the random distance between the
monitored data point location and the fault point location in a five dimensional parameter space with a
predefined safety margin. When an anomaly is detected, the current measured parameter distribution is
compared with each fault distribution to determine the degree of “overlap” between the measured data and

fault distribution. Faults can be detected by comparing the fault probabilities of the measured data within a
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fault library. The safety degradation of gas turbine was measured with two reliability sensitivity indices: a
cumulative and an evolutionary reliability sensitivity indices.
Another type of consideration for uncertainty in diagnostics is the application of fuzzy logic theory,

where rule based fuzzy expert systems are used. This approach will be discussed in the following section.

6 FUZZY LOGIC BASED METHODS

Fuzzy logic is a method to formalize the human capability of imprecise reasoning. Such reasoning
represents the human ability to reason approximately and judge under uncertainty [109]. It provides a
system of non-linear mapping from input vector into a scalar output [68]. A typical fuzzy logic system
(Figure 7) involves fuzzification, fuzzy inference and defuzzification by using a fuzzifier, an inference
engine and a defuzzifier respectively. A fuzzifier maps crisp input numbers into fuzzy sets characterized by
linguistic variables and membership functions. An inference engine maps fuzzy sets to fuzzy sets and
determines the way in which the fuzzy sets are combined. A defuzzifier is sometimes used when crisp
numbers are needed as an output of the fuzzy logic system. Combined with expert systems, neural networks,
genetic algorithm or other techniques, fuzzy logic can be used for gas turbine diagnostics.

Combined with a knowledge based gas turbine model, AND/OR/NOT causal graphs which is an
extension of abductive model [97] were introduced by Fuster et al. [37] to gas turbine fault diagnostics,
where the uncertainty of component parameters was expressed by fuzzy logic likelihood value and the fault
symptoms were described by True or False.

Tang et al. [125] presented a fuzzy logic reasoning together with a neural network for a jet Engine
condition Monitoring and fault Diagnosis (EMD) system that classifies all possible faults into three
categories: gas path components, instrument sensors, and rotor or oil subsystem. Three operations (AND,

OR and NOT) were used in its inference engine.
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el to represent the fuzzy production rules of a rule-based system was
proposed by Huang et al. [58]. An efficient algorithm of fault diagnostic reasoning for gas turbine fault
diagnostics was described.

A fuzzy rule- and case-based expert system was presented by Siu et al. [115] and applied it to a number
of real cases. A fuzzy logic based expert system for gas turbine engine fault isolation was described by
Ganguli [38]. The system uses four basic engine measurements to detect single fault among five engine
components with over 95% accuracy. Measurement noise was taken into account. Similar approach was
used to automate the reasoning process of an experienced powerplant engineer [40]. Tests with simulated
data show that prediction accuracy can reach over 90% with only four cockpit measurements. If additional
pressure and temperature probes are considered, the fault isolation accuracy rises to as high as 98%. A rule
based fuzzy expert system RSLExpert for gas turbine fault classification was provided by Applebaum |[2],
where the fuzzy filter was used for residual evaluation to transform the quantitative knowledge of the

residual vector of measurement deltas into the qualitative knowledge of faulty characteristics and faults.

7 DIAGNOSIS WITH TRANSIENT DATA

Most gas turbine diagnostics can be carried out with steady state measurement data. But in some cases
good quality steady state data are difficult to obtain or even not available. For example, some combat
aircraft can operate for up to 70% of the total mission time with their engines in non-steady-state conditions
[83]. In addition, some gas turbine faults phenomena only appear during transient processes but could
seriously degrade the operability of the engine especially at altitude, during aircraft maneuvers and
following missile release, such as mis-scheduled nozzle and compressor blade movement due to control
system faults [83-84]. Therefore, gas turbine fault diagnostics may be achieved using transient measurement

data. An overview of transient diagnostics for gas turbine engines was given by Meher-Homji and Bhargava
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[81]. A survey of the methods and applications of gas turbine steady and transient state modeling for fault
diagnosis was provided by Bird and Schwartz [7].

Luppold et al. [76] presented a piece-wise linear state variable engine model (SVM) for the simulation
of engine performance in real-time and a Kalman filter algorithm was used to estimate both the cause and
level of off-nominal engine performance. The method was suitable for diagnosing engine faults caused by
hardware failure, foreign object damage, battle damage, etc. Further development of this method resulted in
the second generation of Kalman Filter algorithm (an Observer Model) for the real time operation of
detection and estimation of gas turbine damages caused by normal wear, mechanical failures, and ingestion
of foreign objects [62]. Lunderstaedt and Junk [75] diagnosed engine high pressure turbine fault with non-
stationary measurement of RB199 engine by applying linear GPA [135] to discrete points on a non-
stationary process for non-linear parameter estimation and neural networks for the calculation of the non-
stationary reference base lines.

Henry [55] analyzed the transient performance shift of F404 engine due to different reasons, such as
throttle overshoot, effect of inlet screen, inlet temperature change and compressor damage. Fault signatures
observed from the transient measurements, which were ditferent from one to another due to different faults,
were used to detect engine faults.

A parameter estimator using a matrix method [84] and a Least Square Estimate (LSE) [83] were
described to simulate a gas turbine engine transient process from consistent non-linear idle/max or max/idle
transient data and were used as an estimator for fault diagnosis, where two fault cases were discussed: one
was a biased exhaust gas temperature sensor error and the other was a changed final nozzle schedule. In
addition, the influence of the sampling rate and the measurement noise on the sensitivity of the technique
was discussed. Further study on this method was done by Merrington et al. [85] and a model based method

for gas turbine engine fault detection based on transient measurements (typically on take-off processes) and
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ordinary least square estimate was presented. The key feature of the method is that it accounts for the effects
of measurement noise, model mismatch, and linearization errors. Eustace et al. [32] presented fault
signatures for an F404 engine based on fault implant tests in a sea-level-static from take-off transient data.
Their research showed that both transient and steady-state data contain the same essential fault information
but the effect of a fault is more easily detected from transient data because the transient records are more
sensitive to the implanted faults.

A knowledge and model based expert system, TIGER, for gas turbine fault detection and diagnosis
based on dynamic system analysis was described by Trave-Massuyes [129]. Three diagnostic modules using
a limit checking model, an explicit temporal model and an implicit model-based approach respectively were
used in parallel and a fault manager coordinated the conclusions from the three modules and gave a higher
level of conclusion. Diao and Passino [19] used Takagi-Sugeno fuzzy systems to model a turbine engine and
a bank of multiple models for residual generation. An expert supervisory scheme was applied to determine
the proper model bank and detect engine faults. A time delay for fault isolation was used to improve the
robustness of the system.

Santa [111] used an adaptation method to model transient and steady operational modes of gas turbine
engines and use the information of adapted thermodynamic parameters to determine the cause of engine
component damage.

Some physical processes, such as the influence of bulk metal temperature, may bias the measured engine
parameters and reduce the accuracy of fault diagnostics. A model-based technique [83] was applied by
Merrington [86] to the problem of detecting degraded performance in a military turbofan engine from take-
off acceleration-type transients by taking into account the impact of bulk metal temperature. A simple and
convenient way of separating the influence of bulk temperature effect on the measured engine parameters

from fast dynamic components was provided.
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8 DISCUSSIONS

Difference diagnostic methods have their advantages and disadvantages and they are discussed as follows.
Firstly, the linear and non-linear model based methods, such as the linear and non-linear GPA, the optimal
estimates and the optimization based methods, have clear physical meanings while the non-model based
methods, such as neural networks and rule-based expert systems, are generated with experimental
knowledge. Secondly, the artificial intelligence based methods are more complicated than the model based
methods. Thirdly, the linear and non-linear GPA, the neural networks (once trained) and the rule-based
expert systems (once the rule library is created) are much faster in diagnostic processes than the non-linear
model based methods with either conventional optimization or genetic algorithms. Fourthly, all the methods
except the linear and non-linear GPA can dealt with measurement noises and biases. To have clear view of
the advantages and disadvantages of different diagnostic methods, a comparison of major features of
different diagnostic methods is illustrated in Table 1. More specifically, a comparison of models’

complexity and computation speed required for diagnosis is shown in Figure 8.

9 CONCLUSIONS
A comprehensive review of gas turbine fault diagnostic technologies developed so far based on gas turbine
performance analysis has been presented, from Urban's work at its beginning until the most recent state-of-
the-art technologies. Such technologies include earlier linear model-based methods, nonlinear model-based
methods, to more advanced artificial intelligence based methods, and fuzzy logic based approaches, for gas
turbine component fault diagnostics on both steady state and transient measurement data.

Research in recent years shows that current research efforts on gas turbine diagnostics have focused on

the improvement of reliability, accuracy, computational efficiency of the diagnostic systems, online
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application and inclusion of more practical considerations such as data preprocessing and validation,

measurement noise reduction, multiple component faults, sensor faults, and data uncertainty, etc. Hybrid

schemes would be better solutions for future gas turbine diagnostic systems.

AKNOWLEDGEMENT

The present research is supported by a Platform Grant of the Engineering and Physical Sciences Research

Council (EPSRC), United Kingdom.

REFERENCES

1.

Antonisse, J., “A New Interpretation of Schema Notation That Overturns the Binary Encoding
Constrain”, Proceedings of the Third International Conference on Genetic Algorithms, 1989.
Applebaum, E., “Fuzzy Classification for Fault Isolation in Gas Turbine Engines”, Joint 9" TFSA
World Congress and 20"™ NAFIPS International Conference, Vol.1, pp.292-297, 2001.

Arkov, V. Y., Patel, V. C., Kulikov, G. G. and Breikin, T. V., “Aircraft Engine Condition
Monitoring: Stochastic Identification and Neural Networks”, 15" International Conference on
Artificial Neural Networks, No.440, pp.295-299, 1997.

Barwell, M. J., “Compass — Ground Based Engine Monitoring Program for General Application”,
SAE Technical Paper Series, 871734, Aerospace Technology Conference and Exposition, Long
Beach, California, October 1987.

Bettocchi, R. and Spina, P. R., “Diagnosis of Gas Turbine Operations by Means of the Inverse Cycle
Calculation”, ASME Paper 99-GT-185, 1999.

Biagioni, L. and Cinotti, R., “Turboshaft Engine Condition Monitoring by Bayesian Identification”,

ISABE 2001-1034, 15" ISABE, 2001.

26



10.

11.

12.

13.

14.

15.

16.

17.

Bird, J. W. and Schwartz, H. M., “Diagnosis of Turbine Engine Transient Performance with Model-
Based Parameter Estimation Techniques”, ASME 94-GT-317, 1994.

Breese, J. S., Gay, R. and Quentin, G. H., “Automated Decision-Analytic Diagnosis of Thermal
Performance in Gas Turbines”, ASME 92-GT-399, 1992.

Bryson, A. E. and Ho, Y.-C., “Applied Optimal Control-Optimization, Estimation, and Control”,
Hemisphere Publishing Corporation, 1975.

Charchalis, A and Korczewski, Z., “Naval Gas Turbine Diagnostics”, The 2" International
Conference on Marine Technology, ODRA’97, Szczecin, Poland, Sept. 1997.

Chen, D.-G. and Zhu, Z.-L., “Model Identification-Based Fault Analysis Method Applied to Jet
Engines”, ISABE-2001-1111, 15™ ISABE, Bangalore, India, Sept. 2001.

Cifaldi, M. L. and Chokani, N., “Engine Monitoring Using Neural Networks”, AIAA-98-3548, 1998.
Collinge, K. and Schoff, K., “TEXMAS — An Expert System for Gas Turbine Engine Diagnosis and
More”, Aircraft Gas Turbine Engine Monitoring: An Update, SAE 871737, pp.121-127, 1988.
Consumi, M. and d’Agostino, L., “Monitoring and Fault Diagnosis of a Turbojet by Bayesian
Inference”, ISABE 97-7148, 13 ISABE, Chattanooga, Tennessee, USA, Sept. 1997.

Consumi, M. and d’Agostino, L., “A Statistical Inference Approach to Gas Path Analysis of a

Turbofan”, AIAA 98-3551, 1998.

1

b 2
b

Danielsson, S.-G., “Gas Path Analysis to Pre and Post Overhaul Testing of JT9D Turbofan Engine
SAE Paper 770993, Aerospace Meeting, Los Angeles, Nov. 14-17, 1977.
Denny, G., “F-16 Jet Engine Trending and Diagnostics with Neural Networks”, Applications of

Neural Networks, Vol.4, 1965.

27



18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

DePold, H. R. and Gass, F. D., “The Application of Expert Systems and Neural Networks to Gas
Turbine Prognostics and Diagnostics”, ASME Paper 98-GT-101, or Journal of Engineering for Gas
Turbines and Power, Vol.121, Oct. 1999.

Diao, Y. and Passino, K. M., “Fault Diagnosis for a Turbine Engine”, 2000 American Control
Conference, Vol.4, pp.2393-2397, Chicago, IL, USA, 28-30 June 2000.

Dietz, W. E., Kiech, E. L. and Ali, M., “Jet and Rocket Engine Fault Diagnosis in Real Time”,
Journal of Neural Network Computing, Vol.1, No.1, pp.5-18, 1989.

Doel, D. L., “The Role for Expert Systems in Commercial Gas Turbine Engine Monitoring”, ASME
Paper 90-GT-374, The Gas Turbine and Aeroengine Congress and Exposition, Brussels, Belgium,
June 1990.

Deol, D. L., “Gas Path Analysis — Problems and Solutions”, Symposium of Aircraft Integrated
Monitoring Systems, Bonn, Germany, 21-23 Sept. 1993.

Doel, D. L., “TEMPER — A Gas-Path Analysis Tool for Commercial Jet Engines”, Journal of
Engineering for Gas Turbines and Power, Vol.116, pp.82-89, January 1994.

Doel, D. L., “An Assessment of Weighted-Least-Squares-Based Gas Path Analysis”, Journal of
Engineering for Gas Turbine and Power, Vol.116, pp.365-373, April 1994.

Doel, D. L. and LaPierre, L. R., “Diagnostic Expert Systems for Gas Turbine Engines — Status &
Prospects”, AIAA-89-2585, 1989.

Dundas, R. E., Sullivan, D. A. and Abegg, F., “Performance Monitoring of Gas Turbines for Failure
Prevention”, ASME 92-GT-267, 1992.

Escher, P. C., “Pythia: An Objective-Oriented Gas Turbine Path Analysis Computer Program for

General Applications”, Ph.D. Thesis, Cranfield University, UK, 1995.

28



28.

29.

30.

31.

32.

33.

34.

35.

36.

Escher, P. C. and Singh, R., “An Object- Oriented Diagnostics Computer Programme Suitable for
Industrial Gas Turbines”, 21°' (CIMAC) International Congress of Combustion Engines, Switzerland,
15-18 May 1995.

Eustace, R., “Neural Network Fault Diagnosis of a Turbofan Engine”, XI ISABE 93-7091, Tokyo,
Japan, Sept. 1993.

Eustace, R. and Merrington, G., “Fault Diagnosis of Fleet Engines Using Neural Networks”, XII
ISABE 95-7085, 1995.

Eustace, R. and Frith, P. C. W., “Utilising Repair and Overhaul Experience in a Probabilistic Neural
Network for Diagnosing Gas-Path Faults”, ISABE-2001-1050, 15" ISABE, Bangalore, India, Sept.
2001.

Eustace, R. W., Woodyatt, B. A., Merrington, G. L. and Runacres, A., “Fault Signatures Obtained
from Fault Implant Tests on an F404 Engine”, Journal of Engineering for Gas Turbines and Power,
Vol.116, pp.178-183, January 1994.

Fahlman, S. E. and Lebiere, C., “The Cascade Correlation Learning Architecture”, Neural
Information Processing System, Vol.3, pp.524-532, 1990.

Forsyth, G. and Delaney, J., “Designing Diagnostic Expert Systems for Long-Term Supportability”,
ASME 2000-GT-0031, ASME TURBO EXPO 2000, Munich, Germany, May 2000.

Forsyth, G. and Larkin, M., “Concept Demonstration of the Use of Interactive Fault Diagnosis and
Isolation for the TF30 Engine”, Proceedings of the Second International Conference on Industrial &
Engineering Applications of Artificial Intelligence & Expert Systems, IEA/AIE —89, University of
Tennessee Space Institute, June 1989.

Frith, D. A., “Engine Diagnostics — An Application for Expert System Concepts”, 9" ISABE, Vol.2,

pp-1235-1243, Athens, Greece, 1989.

29



37.

38.

39.

40.

41.

42.

43.

44,

45.

Fuster, P., Ligeza, A. and Aguilar Martin, J., “Abductive Diagnostic Procedure Based on an
AND/OR/NOT Graph for Expected Behaviour: Application to a Gas Turbine”, 10" International
Congress and Exhibition on Condition Monitoring and Diagnostic Engineering Management, Espoo,
Finland, COMADEM’97, Vol.171, pp.511-520, June 1997.

Ganguli, R., “Application of Fuzzy Logic for Fault Isolation of Jet Engines”, ASME 2001-GT-0013,
ASME TURBO EXPO 2001, New Orleans, Louisiana, June 2001.

Ganguli, R., “Data Rectification and Detection of Trend Shifts in Jet Engine Gas Path Measurements
ilters and Fuzzy Logic”, ASME 2001-GT-0014, ASME TURBO EXPO 2001, New
Orleans, Louisiana, June 2001.

Ganguli, R., “A Fuzzy Logic Intelligent System for Gas Turbine Module and System Fault Isolation”,
ISABE-2001-1112, 15" ISABE, Bangalore, India, Sept. 2001.

Gelb, A., “Applied Optimal Estimate”, The MIT Press, 1974.

Ghiocel, D. M. and Altmann, J., “Critical Modeling Issues for Prediction of Turbine Performance
Degradation: Use of A Stochastic-Neural-Fuzzy Inference System”, AIAA-2001-1452, 42"
ATAA/ASME/ASCE/AHS/ASC  Structures, Structure Dynamics, and Materials Conference and
Exhibit, Seatle, WA, 16-19 April 2001.

Ghiocel, D. M. and Roemer, M. J., “A New Probabilistic Risk-Based Fault Diagnosis Procedure for
Gas Turbine Engine Performance”, AIAA-99-1572, AIAA/ASME/ASCE/AHS/ASC Structure,
Structure Dynamics, and Materials Conference and Exhibit, St. Louis, MO, 12-15 April, 1999.

Gibbs, S. L., “An Expert System for Gas Turbine Fault Diagnosis”, MSc thesis, Cranfield Institute of
Technology, England, 1984.

Grewal, M. S., “Gas Turbine Engine Performance Deterioration Modelling and Analysis”, PhD thesis,

Cranfield University, England, 1988.

30



46.

47.

48.

49.

50.

5.

52.

53.

54.

55.

56.

Grodent, M. and Navez, A., “Engine Physical Diagnosis Using a Robust Parameter Estimation
Method”, AIAA-2001-3768, 2001.

Gronstedt, T. U. J., “A Multi-Point Gas Path Analysis Tool for Gas Turbine Engines with a Moderate
Level of Instrumentation”, ISABE-2001-1051, 15% ISABE, Bangalore, India, Sept. 2001.

Grossbery, S., “Adaptive Pattern Classification and Universal Recoding”, Biological Cybernetics,
1976.

Gulati, A., Taylor, D. and Singh, R., “Multiple Operating Point Analysis Using Genetic Algorithm
Optimisation for Gas Turbine Diagnostics”, ISABE-2001-1139, 15 ISABE, Bangalore, India, Sept.
2001.

Gulati, A., Zedda, M. and Singh, R., “Gas Turbine Engine and Sensor Multiple Operating Point
Analysis Using Optimization Techniques”, AIAA-2000-3716, 2000.

Guo, T.-H., Saus, J., Lin, C.-F. and Ge, J.-H., “Sensor Validation for Turbofan Engines Using an
Autoassociation Neural Network”, AIAA-96-3926, 1996.

Hamilton, T. P., “HELIX: A Helicopter Diagnostic System Based on Qualitative Physics”, Artificial
Intelligence in Engineering, Vol.3, No.3, pp.141-150, 1988.

HayKkin, S., “Neural Networks”, Second Edition, Prentice Hall, 1999.

Hecht-Hielsen, R., “Nearest Matched Filter Classification of Spatiotemporal Patterns”, Applied
Optics, Vol.26, pp.1892-1899, 1987.

Henry, J. R., “CF-18/F404 Transient Performance Trending”, AGARD-CP-448, Engine Condition
Monitoring — Technology and Experience, Oct. 1988.

Horowitz, E. J., Breese, J. S. and Henrion, M., “Decision Theory in Expert Systems and Artificial
Intelligence”, International Journal of Approximate Reasoning — Special Issue on Uncertainty and

Artificial Intelligence, Vol.2, pp.247-302, 1988.

31



57.

38.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

House, P., “Gas Path Analysis Techniques Applied to Turboshaft Engines”, MSc thesis, Cranfield
University, England, 1992.

Huang, X, Gao, M., Wang, Y. and Weng, S., “Application of Fuzzy Petri Net in Fault Diagnosis of
Gas Turbine™, Journal of Aerospace Power, Vol.15, No.3, pp.311-313, July 2000.

Jackson, P., “Introduction to Expert Systems”, Third Edition, Addison-Wesley, 1999.

Jellison, T. G., Frenster, J. A., Pratt, N. S. and De Hoff, R. L., “XMAN — A Tool for Automated Jet
Engine Diagnostics”, AIAA-87-1931, 1987.

Kanelopoulos, K., Stamatis, A. and Mathioudakis, K., “Incorporating Neural Networks into Gas
Turbine Performance Diagnostics”, ASME 97-GT-35, International Gas Turbine & Aeroengine
Congress & Exhibition, Orlando, Florida, US, June 1997.

Kerr, L. J., Nemec, T. S. and Gallops, G. W., “Real-Time Estimation of Gas Turbine Engine
Damage Using a Control-Based Kalman Filter Algorithm™, Journal of Engineering for Gas Turbines
and Power, Vol.114, pp.187-195, April 1992.

De Kleer, J. and Brown, J. S., “A Qualitative Physics Based on Confluences”, Artificial Intelligence,
Vol.24, Dec. 1984.

Kobayashi, T. and Simon, D. L., “A Hybrid Neural Network-Genetic Algorithm Technique for
Aircraft Engine Performance Diagnostics”, AIAA-2001-3763, 2001.

Kohonen, T., “Self-Organizing Formation of Topotogically Correct Feature Maps”, Biological
Cybernetics, Vol.43, pp.59-69, 1982.

Kohonen, T., “Self Organizing and Associative Memory”, New York, Springer-Verlag, 1987.

Kong, C. and Ki, J., “Optimal Measurement Parameter Selection of Turboprop Engine for Basic
Trainer Using GPA Approach”, ISABE 2001-1036, 15™ ISABE, 2001.

Kosko, B., “Fuzzy Engineering”, Prentice Hall, 1997.

32



69.

70.

71.

72.

73.

74.

75.

76.

77.

Kramer, M. A., “Non-Linear Principal Component Analysis Using Autoassociative Networks”,
AIChE Journal, Vol.37, No.2, pp.233-243, 1991.

Lambiris, B., Mathioudakis, K., Stamatis, A. and Papailiou, K., “Adaptive Modeling of Jet Engine
Performance with Application to Condition Monitoring”, ISABE 91-7058, 1991.

Lazalier, G. R., Renolds, E. C. and Jocox, J. O., “A Gas Path Performance Diagnostic System to
Reduce J75-P-17 Engine Overhaul Costs”, Journal of Engineering for Power, Vol.100, pp.691-697,
October 1978.

Lee, Y. H. and Singh, R., “Health Monitoring of Turbine Engine Gas Path Components and

Lu P.-J., Zhang M.-C., Hsu T.-C. and Zhang J., “An Evaluation of Engine Faults Diagnostics Using
Artificial Neural Networks”, ASME 2000-G'1-0029 or Journal of Engineering for Gas Turbines and
Power, Vol.123, April 2001.

Lunderstadt, R. and Fiedler, K., “Gas Path Modelling, Diagnosis and Sensor lault Detection™,
AGARD-CP-448, Engine Condition Monitoring — Technology and Experience, Oct. 1988.
Lunderstaedt, R. A. and Junk, R. H., “Application of the Gas-Path Analysis (GPA) for the Non-
Stationary Operation of a Jet Engine”, ISABE-97-7062, 13t ISABE, Chattanooga, Tennessee, USA,
Sept. 1997.

Luppold, R. H., Roman, J. R., Gallops, G. W. and Kerr, L. J., “Estimating In-Flight Engine
Performance Variations Using Kalman Filter Concepts”, AIAA-89-2584, 1989.

Mast, T. A., Reed, A. T., Yurkovich, S., Ashby, M. and Adibhatla, S., “Bayesian Belief Networks
for Fault Identification in Aircraft Gas Turbine Engines”, Proceedings of the IEEE International
Conference on Control Applications, Kohala Coast-Island of Hawai’i, Hawai’i, USA, August 22-27,

1999.

33



78.

79.

80.

81.

82.

83.

84.

85.

86.

Mathioudakis, K and Tsalavoutas, A., “Uncertainty Reduction in Gas Turbine Performance
Diagnostics by Accounting for Humidity Effects”, ASME 2001-GT-0010, ASME TURBO EXPO
2001, New Orleans, Louisiana, June 2001.

Mattern, D. L., Jaw, L. C., Guo, T. H., Graham, R. and McCoy, W., “Simulation of an Engine
Sensor Validation Scheme Using an Autoassociation Neural Network”, ATAA-97-2902, 1997.
Mattern, D. L., Jaw, L. C., Guo, T.-H., Graham, R. and McCoy, W., “Using Neural Network for
Sensor Validation”, AIAA-98-3547, 1998.

Meher-Homji, C. B. and Bhargava, R., “Condition Monitoring and Diagnostic Aspects of Gas
Turbine Transient Response”, ASME Paper 92-GT-100, International Gas Turbine and Aeroengine
Congress and Exhibition, Germany, June 1992.

Meher-Homyji, C. B., Boyce, M. P., Lakshminarasimha, A. N., Whitten, J., and Meher-Homji, F.
J., “Condition Monitoring and Diagnostic Approaches for Advanced Gas Turbines”, IGTI Vol.8,
pp-347-354, ASME COGEN-TURBO, Sept. 1993.

Merrington, G. L., “Fault Diagnosis of Gas Turbine Engines From Transient Data”, Journal of
Engineering for Gas Turbines and Power, Vol.111, pp.237-243, April 1989.

Merrington, G. L., “Identification of Dynamic Characteristics for Fault Isolation Purpose in a Gas
Turbine Using Closed-Loop Measurements”, AGARD-CP-448, Engine Condition Monitoring —
Technology and Experience, Oct. 1988.

Merrington, G., Kwon, O.-K., Goodwin, G. and Carlsson, B., “Fault Detection and Diagnosis in
Gas Turbines”, Journal of Engineering for Gas Turbines and Power, Vol.113, pp.276-282, April
1991.

Merrington, G. L., “Fault Diagnosis in Gas Turbines Using a Model-Based Technique”, Journal of

Engineering for Gas Turbines and Power, Vol.116, pp.374-380, April 1994.

34



87.

88.

89.

90.

91.

92.

93.

94.

9s.

96.

Nelder, J. A. and Mead, R., Computer Journal, Vol.7, p.308, 1965.

Nieden, H. Z. and Fiedler, K., “The Influence of Serial Performance Deviation of Military Jet
Engines on the Diagnostic Quality of the Gas Path Analysis”, ISABE 99-7075, 13" ISABE, 1999.
Palmer, C. A., “Combining Bayesian Belief Networks with Gas Path Analysis for Test Cell
Diagnostics and Overhaul”, ASME 98-GT-168, 1998.

Passalacque, J., “Description of Automatic Gas Turbine Engine Trends Diagnostic System”, First
Symposium on Gas Turbine Operation and Maintenance, National Research Council of Canada, 1974.
Patel, V. C. and Kadirkamanathan, V., “Adaptive Self-Learning Fault Detection System for Gas
Turbine Engines”, 9" International Conference: Condition Monitoring and Diagnostic Engineering
Management, Sheffield, UK, July 1996.

Patel, V. C., Kadirkamanathan, V. and Thompson, H. A., “A Novel Self-Learning Fault Detection
System for Gas Turbine Engines”, UKACC International Conference on CONTROL 96, Conference
Publication No.427 @ IEE 1996, pp.867-872, 2-5 September 1996.

Patel, V. C., Kadirkamanathan, V., Kulikov, G. G., Arkov, V. Y. and Breikin, T. V., “Gas lurbine
Engine Condition Monitoring Using Statistical and Neural Network Methods”, Colloquium — IEE,
Leicester, September 1996.

Patel, V. C., Kadirkamanathan, V. and Thompson, H., “An Intelligent Fault Diagnosis System for
Gas Turbine Engines”, .Mech.E. Seminar: Aircraft Health and Usage Monitoring System, 1996.
Patel, V. C., Kadirkamanathan, V., Thompson, H. A. and Fleming, P. J., “Utilising a SIMULINK
Gas Turbine Engine Model for Fault Diagnosis”, 2" IFAC Symposium on Control of Power Plants
and Power Systems, December 1995.

Pear, J., “Probabilistic Reasoning in Intelligence Systems”, Morgan Kaufman, San Mateo, CA, 1988.

35



97.

98.

99.

100.

101.

102.

103.

104.

105.

106.

107.

Peng, Y. and Reggia, J. A., “Abductive Inference Models for Diagnostic Problem-Solving”, Springer-
Verlag, 1990.

Pittigrew, J. L., “Effective Turbine Engine Diagnostics”, AUTOTESTCON Proceedings, 2001 IEEE
System Readiness Technology Conference, Valley Forge, PA, USA, 20-23 Aug. 2001.

Press W. H., et al., “Numerical Recipes: The Art of Scientific Computing”, Cambridge University

Provost, M. J., “COMPASS: A Generalized Ground-Based Monitoring System”, AGARD-CP-449,
Engine Condition Monitoring — Technology and Experience, Oct. 1988.

Provost, M. J., “The Use of Optimal Estimation Techniques in the Analysis of Gas Turbines”, PhD
thesis, Cranfield University, England,1995.

Razak, A. M. Y. and Carlyle, J. S., “An Advanced Model Based Health Monitoring System to
Reduce Gas Turbine Ownership Cost”, ASME Paper 2000-GT-627, 2000.

Roemer, M. J., “Testing of a Real-Time Health Monitoring and Diagnostic System for Gas Turbine
Engines”, AIAA-98-3603, 1998.

Roemer, M. J. and Atkinson, B., “Real-Time Health Monitoring and Diagnostics for Gas Turbine
Engines”, ASME 97-GT-30, 1997.

Roemer, M. J. and Ghiocel, D. M., “A Probabilistic Approach to the Diagnosis of Gas Turbine
Engine Faults”, 53rd Machinery Prevention Technologies (MFPT) Conference, Virginia Beach, VA,
April 1999.

Roemer, M. J., Howe, R. and Friend, S. R., “Advanced Test Cell Diagnostics for Gas Turbine
Engines”, IEEE Proceedings of Aerospace Conference, Vol.6, pp.2915-2926, 2001.

Romessis, C., Stamatis, A. and Mathioudakis, K., “Setting Up a Beliet Network for Turbofan

Diagnosis with the Aid of an Engine Performance Model”, ISABE 2001-1032, 15" ISABE, 2001.

36



108.

109.

110.

111.

112.

113.

114.

115.

116.

Romessis, A., Stamatis, A. and Mathioudakis, K., “A Parametric Investigation of the Diagnostic
Ability of Probabilistic Neural Networks on Turbofan Engines”, ASME 2001-GT-0011, ASME
TURBO EXPO 2001, New Orleans, Louisiana, June 2001.

Ross, T. J., “Fuzzy Logic with Engineering Application”, McGraw-Hill, Inc., 1995.

Sanghi, V., Lakshmanan, B. K. and Sundararajan, V., “Survey of Advancements in Jet-Engine
Thermodynamic Simulation”, Journal of Propulsion and Power, Vol.16, No.5, 2000.

Santa, L., “Diagnostics of Gas Turbine Engines Based on Thermodynamic Parameters”, 6" Mini
Conference on Vehicle System Dynamics, Identification and Anomalies, Budapest, 9-11 November
1998.

Saravanamuttoo, H. I. H., “Gas Path Analysis for Pipeline Gas Turbines”, 1* Canadian Symposium
on Gas Turbine Operation and Maintenance, National Research Council of Canada, 1974.

Simani, S, Patton, R. J., Daley, S. and Pike, A., “ldentification and Fault Diagnosis of an Industrial
Gas Turbine Prototype Model”, Proceedings of the 39" IEEE Conference on Decision and Control,
Sydney, Australia, December 2000.

Simmons, D. W., Hamilton, T. P. and Carlson, R. G., “HELIX, A Causal Model-Based Diagnostic
Expert System”, Journal of the American Helicopter Society, Vol.32, No.1, pp.19-25, January 1987.
Siu C., Shen Q. and Milne R., “TMDOCTOR: A Fuzzy Rule- and Case-Based Expert System for
Turbomachinery Diagnosis”, Proceedings of IFAC Fault Detection, Supervision and Safety for
Technical Processes, Vol.2, Kingston Upon Hull, UK, August 1997.

Smetana, F. O., “Turbojet Engine Gas Path Analysis — A Review”, AGARD-CP-165, Diagnostics and

Engine Condition Monitoring, Jun. 1975.

37



117.

118.

119.

120.

121.

122.

123.

124.

125.

Stamatis, A., Mathioudakis, K. and Papailiou, K. D., “Adaptive Simulation of Gas Turbine
Performance”, ASME Paper 90-GT-205, and also Journal of Engineering for Gas Turbines and
Power, Vol.112, April 1990.

Stamatis, A., Mathioudakis, K., Smith, M. and Papailiou, K., “Gas Turbine Component Fault
Identification by Means of Adaptive Performance Modeling”, ASME Paper 90-GT-376, 1990.
Stamatis, A., Mathioudakis, K. and Papailiou, K., “Optimal Measurement and Health Index
Selection for Gas Turbine Performance Status and Fault Diagnosis™, Journal of Engineering for Gas
Turbine and Power, Vol.114, pp.209-216, April 1992.

Stamatis, A., Mathioudakis, K., Berios, G. and Papailiou, K., “Jet Engine Fault Detection with
Discrete Operating Points Gas Path Analysis”, ISABE 89-7133, or Journal of Propulsion, Vol.7, No.6,
Nov.-Dec. 1991.

Stamatis, A. and Papailiou, K. D., “Discrete Operating Condition Gas Path Analysis”, AGARD-CP-
448, Engine Condition Monitoring — Technology and Experience, Oct. 1988.

Staples, L. J. and Saravanamutteo, H. I. H, “An Engine Analyzer Program for Helicopter
Turboshaft Powerplants”, NATO/AGARD Specialists Meeting in Diagnostics and Engine Condition
Monitoring, Liege, Belgium, April 1974.

Sun, B., Zhang, J. and Zhang, S., “An Investigation of Artificial Neural Network (ANN) in
Quantitative Fault Diagnosis for Turbofan Engine”, ASME 2000-GT-32, ASME TURBO EXPO 2000,
Munich, Germany, May, 2000.

Tang, G., Yates, C. L. and Chen, D., “Comparative Study of Two Neural Networks Applied to Jet
Engine Fault Diagnosis”, AIAA-98-3549, 1998.

Tang, G., Yates, C. L., Zhang, J. and Chen, D., “A Practical Intelligent System for Condition

Monitoring and Fault Diagnosis of Jet Engines”, AIAA 99-2533, 1999.

38



126.

127.

128.

129.

130.

131.

132.

133.

134.

135.

Torella, G., “Expert Systems and Neural Networks for Fault Isolation in Gas Turbines”, ISABE 97-
7148, 13h ISABE, Chattanooga, Tennessee, USA, Sept. 1997.

Torella, G. and Lombardo, G., “Utilization of Neural Networks for Gas Turbine Engines”, ISABE
95-7032, XII ISABE, 1995.

Torella G. and Lombardo G., “Neural Networks for the Diagnostics of Gas Turbine Engines”,
ASME 96-TA-39, the ASME Turbo Asia Conference, 1996.

Trave-Massuyes, L. and Milne, R., “Diagnosis of Dynamic Systems Based on Explicit and Implicit
Behavioral Models: An Application to Gas Turbine in Esprit Project TIGER”, Applied Artificial
Intelligence, Vol.10, No.3, pp.257-277, 1996.

Trella, G. and Lombardo, G., “Neural Networks for the Diagnostics of Gas Turbine Engines”,
ASME Paper 96-GT-39, 1996.

Tsalavoutas, A., Pothos, S., Mathioudakis, K. and Stamatis, A., “Monitoring the Performance of a
Twin-Spool Ship Propulsion Turbine By Means of Adaptive Modeling”, the RTO AVT Symposium
on “Gas Turbine Operation and Technology for Land, Sea and Air Propulsion and Power Systems”,
RTO MP-34, Ottawa, Canada, 18-21 October 1999.

Urban, L. A., “Gas Turbine Engine Parameter Interrelationships”, HSD UTC, Windsor Locks, Ct., 1
edition, 1967, 2" edition, 1969.

Urban, L. A., “Gas Path Analysis Applied to Turbine Engine Condition Monitoring”, AIAA-72-1082,
1972.

Urban, L. A., “Parameter Selection for Multiple Fault Diagnostics of Gas Turbine Engines”,
AGARD-CP-165, also ASME Paper 74-GT-62, Journal of Engineering for Power, 1974.

Urban, L. A., “Gas Path Analysis — A Tool for Engine Condition Monitoring”, 33 Annual

International Air Safety Seminar, Flight Safety Foundation Inc., Christchurch, New Zealand, 1980.

39



136.

137.

138.

139.

140.

141.

142.

143.

144.

145.

Urban, L. A., “Gas Path Analysis of Commercial Aircraft Engines”, 11" Symposium Aircraft
Integrated Data Systems”, September 1981.

Urban, L. A. and Volponi, A. J., “Mathematical Methods of Relative Engine Performance
Diagnostics”, SAE 1992 Transactions Journal of Aerospace, Section 1, Vol. 101, SAE Technical
Paper No. 922048, 1992.

Visual Nemerics, Inc., “IMSL MATH/LIBRARY: FORTRAN Subroutines for Mathematical
Application”, Houston, Texas, USA, 1994.

Vivian, B. and Singh, R., “Application of Expert System Technology to Gas Path Analysis of a Single
Shaft Turboprop Engine”, 5™ European Propulsion Forum, Pisa, Italy, 5-7 April 1995.

Volponi, A. J., “Gas Path Analysis: An Approach to Engine Diagnostics”, 35" Symposium
Mechanical Failures Prevention Group, Gaithersbury, MD, April 1982.

Volponi, A. J., DePold, H., Ganguli, R. and Chen, D., “The Use of Kalman Filter and Neural
Network Methodologies in Gas Turbine Performance Diagnostics: A Comparative Study”, ASME
2000-GT-547, ASME TURBO EXPO 2000, Munich, Germany, May 2000.

Whitehead, B., Ferber, H. and Ali, M., “Neural Network Approach to Space Shuttle Main Engine
Health Monitoring”, AIAA-90-2259, 1990a.

Whitehead, B., Kiech, E. and Ali, M., “Rocket Engine Diagnostics Using Neural Networks”, ATAA-
90-1892, AIAA/SAE/ASME/ASEE 26" Joint Propulsion Conference, July 1990b.

Winston, H., Sirag D., Hamilton, T., Smith, H., Simmons, D. and Ma, P., “Integrating Numeric and
Symbolic Processing for Gas Path Maintenance”, AIAA-91-0501, 1991.

Zedda, M. and Singh, R., “Fault Diagnosis of a Turbofan Engine Using Neural Networks: a

Quantitative Approach”, AIAA-98-3602, 1998.

40



146. Zedda, M. and Singh, R., “Gas Turbine Engine and Sensor Fault Diagnosis Using Optimisation
Techniques”, AIAA-99-2530, 1999.
147. Zedda, M. and Singh, R., “Gas Turbine Engine and Sensor Diagnostics”, ISABE 99-7238, 13t

ISABE, 1999.

41



Diagnostic Methods Earliest | Model Model Computation | Coping | Coping
year of | based | complexity speed with with
use noise bias

Linear Linear GPA 1967 Yes Low High No No

model-based | Optimal 1980 Yes Fairly low High Yes Yes

methods estimates

Non-linear Non-linear 1992 Yes Low Fairly high No No

model-based | GPA

methods Conventional 1990 Yes Medium Low Yes Yes

optimization

Neural networks 1965 No Fairly high High Yes Yes

Genetic algorithms 1999 Yes Fairly high Low Yes Yes

Rule-based expert systems Early No High High Yes Yes
1980°s

Rule-based fuzzy expert 1997 No High Fairly high Yes Yes

systems

Table 1. Comparison of diagnostic methods
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