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Abstract7

Due to the inherent environmental benefits of using renewable materials, mimosa tannin resin (a natural8

phenolic resin) reinforced by flax fibres could offer desirable characteristics aiming at reducing carbon footprint9

of superlight electric vehicles. The non-woven flax mats were chemically treated (alkali, acetylation, silane and10

enzymatic treatment) to prepare tannin composites through compression moulding (130°C/35min/1.5MPa). The11

change in fibre morphology was seen in SEM (scanning electronic images). The treatments showed significant12

improvement in tensile properties, along with enhancement in flexural properties, but little effect on impact13

resistance. APS treated composites showed highest tensile strength of 60 MPa and modulus of 7.5 GPa. BTCA14

treatment led to the highest flexural strength of up to 70 MPa. NaOH treatment retained the impact failure force15

of about 0.5 KN and sustained the saturation energy (4.86 J) compared to untreated composites (4.80 J).16

Key words: Flax Bio-composites, tannin, mechanical performances and surface treatments17

1 Introduction18

To date, crude oil-derived composites (glass/PP, glass/epoxy etc.) have been commercially used to produce19

lightweight parts, such as doors, panels, chassis pillars etc., for vehicles and other means of transportation (Fan20

et al., 2011). However, the interest in renewable raw material based composites has been increasing on account21

of their eco-credentials and the foreseen future scarcity of oil and oil-derived products (Tomas, 2012)(Mohanty22

et al., 2000). Natural fibres (e.g. bast, leaf and seed) are employed as reinforcement because of their competitive23

specific properties to synthetic fibres like glass fibres. They also give a nice ‘natural’ look, warmth and grip to24

composites along with reduced environmental impact. In addition, the use of bio-matrices derived from25

renewable sources (e.g. soybean oil, pine oil waste, castor oil, cellulose and proteins etc.) to replace synthetic26

plastics could further develop the ecological and sustainability credentials of the final product (Mohanty et al.,27

2000).28
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Among the bast fibres, flax has relatively high tensile strength in the range of 345-1100 MPa due to the high29

cellulose content and the low microfibril angle. The high tensile strength, high specific strength, low cost and30

renewability of flax composites become the reasons for its wide use in natural composites (Rosa et al., 2009;31

Xie et al., 2010). The mechanical properties of flax fibre reinforced polymer composites depend on the nature32

and orientation of the fibres, the nature of the matrix and the fibre/matrix adhesion (Mishra et al., 2004).33

Tannin has lots of phenolic rings with molecular range between 500 to 2000 and is mainly extracted from plants34

such as wattle, pine, and myrtle. It could be chemically grouped into hydrolysable and condensed tannin. The35

latter is more stable for resin and composite preparation as the di-substitute hydroxyl groups make the phenolic36

rings more active to suitable agent like formaldehyde (Pizzi and Mittal, 2003). Theoretically, it can partially or37

fully substitute phenol to form resins and the associated composites. Barbosa et al. (Barbosa Jr. et al., 2010)38

reported that the impact strength was found very low for coir/tannin-phenolic composites as a result of poor39

mechanical properties of coir fibres. Optimised 50wt% sisal fibre content in tannin-phenolic composites was40

observed by Ramires et al.(Ramires and Frollini, 2012) to present the highest stiffness and impact strength. The41

100% use of tannin instead of phenol as matrix was initially investigated by Ndazi and his co-workers (Ndazi et42

al., 2006) who successfully manufactured composite panel boards from rice husks and mimosa tannins. Pizzi et43

al. (Pizzi et al., 2009) firstly used flax fibres to produce mimosa tannin based composites. 5% hexamine was44

applied as hardeners for tannin resins to eliminate formaldehyde emission.45

The mechanical performance of natural fibre composites is limited by the poor interface quality between the46

hydrophilic fibre and the hydrophobic polymer matrix (Zhu et al., 2013b). The hydroxyl groups from its47

components could be modified for hydrogen bonding with cellulose groups or to introduce new moieties that48

form effective interlocks within the system (Summerscales et al., 2010). The hydroxyl groups could be modified49

for hydrogen bonding with cellulose groups or to introduce new moieties that form effective interlocks within50

the system. Mercerization, acetylation, silane treatment, and other fibre pre-treatments are commonly used for51

flax modifications to improve the composite performances (Van de Weyenberg et al., 2003). Some example52

results are summarized in Table 1. Alkali treatment of natural fibres, also called mercerization, is used to53

produce high-quality fibres (Bledzki et al., 2004). Alkali treatment of flax fibre in 5wt% NaOH for 30 min54

resulted in a 21.9% and 16.1% improvement of tensile strength and flexural strength of flax/epoxy composites55

(Yan et al., 2012). Acetylation is a well-known esterification method originally applied to wood cellulose to56

stabilize the cell walls against moisture, improving dimensional stability and environmental degradation. Tensile57

and flexural strengths of flax/PP composites were found to increase with increasing degree of acetylation up to58
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18% and then decreased (Van de Velde and Kiekens, 2001). Proper treatment of fibres with silane can increase59

the interfacial adhesion to the target polymer matrices and improve the mechanical performances of the60

composites. The suitable silane modification for fibres in epoxy composites was aminopropyl triethoxy siloxane61

(APS) and for methacryloxypropyl trimethoxysilane (MPS). 3% APS solution combined with alkali treatment62

was found to provide better moisture resistance (Singha and Rana, 2012). Enzymes such as laccases or63

peroxidases are an increasingly interesting option and are often combined with hydrophobic compounds for64

modification and processing of biomaterials. (Grönqvist et al., 2003). The grafting of lauryl gallate after enzyme65

treatment showed significant reduction of water penetration for flax composites (Garcia-Ubasart et al., 2011;66

Garcia-Ubasart et al., 2012).67

In the previous work, the effects of production parameters and fibre configurations on properties of flax/tannin68

composites have been studied by Sauget et al. (Sauget et al., 2013) and Zhu et al. (Zhu et al., 2012; Zhu et al.,69

2013a), respectively. With respect to the investigation of manufacturing techniques for nonwoven flax/tannin70

composites, the best mechanical result was obtained by curing at 130°C for 35 min. The 12 unidirectional (UD)71

flax layers/tannin composites showed very good tensile strength of up to 140 MPa while non-woven flax/tannin72

composites exhibited good damage resistance as reported by Zhu et al. (Zhu et al., 2013a). The SEM images of73

the fractured surface suggested that an improvement in flax/tannin adhesion could potentially increase the74

mechanical properties.75

However there is little to no work done on suitable fibre modifications to boost the performance of flax/tannin76

composites. The current paper reports the research pertaining to the fibre treatments done by authors to fill this77

gap in the literature. Four treatments, including alkali, acetylation, silane and enzymatic methods, were adopted78

for non-woven flax mats to prepare flax/tannin composites through compression moulding. The effect of fibre79

treatments on mechanical properties was obtained through tension testing incorporated with digital image80

correlation (DIC) method, three point bending tests and low velocity impact tests.81

2 Methodology82

2.1 Materials83

The Retan MD® mimosa tannin (0.4 g/cm3) mainly extracted from black wattle was purchased from the SCRD,84

France. The hexamethylenetetramine (hexamine, >99.0%) was purchased from Sigma-Aldrich. The flax fibres85

used as reinforcement in tannin composites were provided by Ecotechnilin Ltd in the form of non-woven fibre86

mats with areal weight of 600 g/mm2 and average thickness of 3 mm. The same fibre mats with different87
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treatments (NaOH, NaOH-BTCA, NaOH-APS, LD) were supplied by VTT, Finland (Table 2). The NaOH88

treatment was made by immersing the flax mats into 5 wt% NaOH solution for one hour, washing them two89

times thoroughly with water and drying in 50°C for 12 h. This NaOH treatment was used as pre-treatment also90

for butanetetracarboxylic acid (BTCA) and amiopropyltriethoxysilane (APS) treated mats. The BTCA treatment91

was done by spraying 10 2,5 wt% BTCA-water solution on both mat surfaces to contain 5% of BTCA, followed92

by heating at 80°C for 20 min and drying at 50°C for overnight (to 24h). APS treatment was done with ethanol93

(98%): water-solution (80:20) containing 1% APS. Mats were sprayed ‘full’ on both sides with solutions94

containing 1% of APS. Then the mats were placed in heat oven at 100 80°C for 4h followed by washing with95

ethanol-water solution and drying in heat oven in 50°C for overnight. The laccase Doga (LD) treatments were96

carried out as following steps: a) wetting of the samples with distilled water, b) activation with laccase, c)97

treatment with DOGA, d) rinsing with water and d) drying.98

2.2 Resin preparation99

The tannin resins prior to composite manufacturing were prepared using aqueous tannin and 33wt%100

hexamine/water solution (12:1, w/w). First, the tannin powder was dissolved in water with weight ratio of 5:7 by101

using a magnetic stirrer. About 0.2wt% de-foaming agent on resin mass was added into water before mixing.102

Tannin was added in a few steps to minimize the solid precipitation. The stirring was maintained for 20-30103

minutes to ensure the complete dissolution and homogenous distribution. After that, the weighted hexamine104

solution was added, and the temperature was adjusted to 40°C with continuously stirring for 10 minutes. The105

final tannin resin solution had a solid content of about 41%, combining tannin and hexamine.106

2.3 Composite manufacturing107

Non-woven flax mats (200*300 mm) were manually impregnated using an impregnation tool pack (from108

Easycomposite Ltd), including a 100 mg digital scale, laminating brushes and a plastic finned roller designed for109

chopped strand matting etc. The applied resin was calculated to give a 50wt% fibre ratio in the final composites.110

Three fibre mats were stacked between two aluminium mould plates (300*300 mm) to form composites by111

compression moulding. The compression moulding was done by a Jbt 40 Ton Press with the moulding cycle: (1)112

pre-heating of mould at 130°C; (2) maturation time before applying pressure:15s; (3) 15 ton for 30s and then 9113

ton for 34 min. The moulding cycle was determined to get a fibre mass fraction between 50% and 55% while114

respecting the 2.5mm thickness.115
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2.4 Characterizations116

2.4.1 Scanning electronic microscope117

Single fibres were extracted from the treated and untreated flax mats, and then were examined using a XL30118

SFEG analytical high resolution scanning electron microscopy (SEM), supplied by FEI.119

2.4.2 Quasi-static tensile tests120

The flat coupon tensile test (250*25*2.5 mm) was carried out on the Instron 50/100 kN machine according to121

ASTM D3039 at the cross head speed of 2 mm/min. Aluminium tabs were glued to the samples to avoid stress122

concentration and premature failure. For accurate micro-scale strain measurement, A Q-400 system from123

Dyantec Dynamics (digital image correlation –DIC (Zhu et al., 2013a)) was used and the principle strain for the124

selected area with gauge length of 50 mm was analyzed (see Figure 1).125

2.4.3 Quasi-static three-point bending tests126

The three point bending tests were performed according to ASTM D7264, on the Instron 50/100kN machine at 1127

mm/min rate of loading. The specimen (154*13*2.5 mm) was placed using a standard span to thickness ratio of128

32:1. At least four specimens were tested for each composite type.129

2.4.4 Low velocity impact testing130

The drop-tower tests were performed using an Instrumented Falling Weight Impact Tester, Type 5, according to131

ASTM D7136. The total input energy was determined by the impactor mass and the nominal impact velocity of132

3m/s. Three 100×150 mm specimens were used for every test.133

3 Results and discussion134

3.1 Fibre morphology analysis135

Figure 2 shows the original surface topography of the supplied flax fibres from the untreated and treated flax136

mats. The neat fibre structure was covered by fibre waxes and fats. Alkalization using NaOH is a very effective137

procedure to purify the flax fibres, resulting in the removal of wax, the primary cell wall and other additives138

(Van de Weyenberg et al., 2006). It can be seen from Figure 2(b) that the resulting fibre surfaces became more139

structured with obvious striations. This is due to the dissolution of lignin, hemicellulose, and waxy materials140

which increases the inter-fibrillar region and imparts a rough texture to surface. The surface features of fibres141

are also clearly visible for other two modifications (BTCA and APS). More structure of raw fibre cell wall on142

the two treatments was exposed on the fibre surface than that of the NaOH-treated flax fibre to increase the143
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roughness, revealing potential for fibre/matrix adhesion improvement. Another thing noted for LD fibre was the144

thin layer with many small protrusions, which were considered as the grafted hydrophobic Doga compounds.145

3.2 Effect of fibre treatment on quasi-static tension properties146

The effects of fibre pre-treatments on tensile properties (e.g tensile strength and tensile modulus) of nonwoven147

flax/tannin composites are shown in Figure 3. The untreated composites had tensile strength around 41.9 MPa,148

which is similar to the previous tensile test results of flax/tannin composites reported by Sauget and his co-149

workers (Sauget et al., 2013). It is clear that every fibre modification had a positive effect on tensile strength at150

certain level. The tensile strength of pure NaOH treated composites increased by 24.1% (to52.0 MPa) in the151

comparison with untreated composites. The improvement in the toughness of the fibre surface by alkaline152

treatment gives rise to the better flax/tannin wettability, interfacial adhesion and consequently the stress transfer.153

The introduction of silane coupling agent (APS) after NaOH purification enhanced the tensile strength to 58.1154

MPa, a 38.6% improvement. When the fibres were impregnated with resins, silane linkages were formed155

between fibre surface and resin at elevated temperature so as to further improve the interfacial adhesion strength.156

Based on the results of Young’s modulus (Table 3), it can be seen that APS treated composites, which showed157

the best results in tensile strength, exhibited the highest tensile modulus of 7.5 GPa among all the samples.158

Similarly, untreated composites had the lowest modulus values of 6.1 GPa.159

The advantage of using DIC method not only gave accurate micro-scale strain through full-field analysis, but160

also reflected precise progress of strain change all through the testing to failure (Laustsen et al., 2014). Figure 4161

shows the principle strain distribution from 13s to 40s for flax/tannin composite with different treatment. The162

principle strain in the area for untreated composites changed from 0.001 and 0.003, which was used to calculate163

the chord elastic modulus. In the same time-scale of 27s, lower degrees of strain increase was observed for all164

treated samples, which means that the composite microstructure had a superior strain resistance to untreated165

ones as a result of less adhesive strength at interface between untreated fibres and tannin resins. It can be seen in166

the form of less ‘yellow’ area of treated composite at 40s according to Figure 4. The uneven strain distribution167

indicated strain localisation, attributed to the inhomogeneous composite with high fibre weight content over 50%168

as investigated by Ramire et al. (Ramires and Frollini, 2012).169

Traditionally for engineering composites, it is assumed that only linear elastic behaviour occurs before the170

micro-cracks initiation, which causes non-linear transition. However, the plasticity of matrix or fibres could also171

contribute to the non-linear stress-strain response. For laminates like multi-axis layers with homogenised172
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properties, Lausten et al. (Laustsen et al., 2014) and Leong et al. (Leong et al., 2013) recently provided an173

alternative way to simplify the failure analysis to derive failure initiation strength. However, the plasticity of174

matrix or fibres may also lead to nonlinear behaviour in practical problems. Contributed from elastic (εe) and175

plastic (εp) deformation, the strain (ε) could be expressed as: 176

ε =
σ

E
+ a × ln�൤1 − (

σ

σ଴
)୫ ൨

Where εe is derived simply using applied stress (σ) and elastic modulus (E); εp is a function of three parameters,177

a (the scale parameter), σ0 (the horizontal asymptote value) and m (strain-hardening parameter). When the third178

derivative of a stress-strain curve reaches zero, referring to the peak of 2nd derivative value, the onset of failure179

strength (Si) are obtained accordingly.180

Due to the quasi-homogeneity of non-woven flax composites, the above theory and calculation could be applied.181

Curve fitting was based on the RSS (residual of sum of square) method by 1stOpt software. Figure 6 shows the182

stress-strain curves, together with the failure initiation strength and corresponding parameters for flax/tannin183

composites with different treatments. This approach takes this effect of damage and plasticity interactions and is184

based on the numerical differentiation of stress-strain curves with smoothly declining tangent. Non-linear185

relationships were observed for all composites almost from the beginning of the curves, without any visible186

transition point. It is apparent that the plasticity of the short fibre mats and the tannin micro-cracks have to be187

considered. It has to be noted that this prediction method is conservative due to lack of verification, but this188

value can still present the effect of treatments on the initial failure. The NaOH treated composites had the189

highest initial failure strength of 24 MPa among the composites. The APS treated composites showed the same190

initial failure strength of 19 MPa as untreated composites in spite of the significant improvement (36%) in the191

tensile strength by. The engineering chord modulus differs greatly from predicted modulus, which is based on192

curve tangent changing significantly in the strain range (0.0015-0.0035) for chord modulus calculation.193

However, the predicted modulus trend is in line with the trend of engineering modulus194

(APS>LD>BTCA>NaOH>untreated).195

3.3 Effect of fibre treatment on quasi-static flexural properties196

The flexural properties (flexural strength and modulus) with static analysis are displayed in Table 3. Flexural197

stress (σ) is calculated from the load (F), span length (L), specimen wide (w) and thickness (d): 198

σ =
3FL

2wdଶ
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The flexural strain (ε) is obtained from: 199

ε =
6δdଷ

Lଶ

Where δ is the mid-span deflection. The flexural strength was determined at the maximum stress.  200

According to the results, the application of NaOH-BTCA treatment on flax fibres significantly improved the201

flexural strength by 14.6% and flexural modulus by 6.3% of the untreated flax tannin composites. NaOH and202

APS treated composites also showed an increase in flexural properties. However, the flexural strength and203

modulus of LD treated samples was lower by about 18.2% and 11.7% respectively, compared to that of204

untreated composites. The decrease of fibre strength may be caused by the severe dissolution of hemicellulose205

as interfibrillar matrix after LD modifications. It has been reported that tensile properties of flax fibre mats were206

reduced after LD modifications (Zhu et al., 2014). This may account for the reduced the reinforcing effect of207

flax fibres for flexural properties, although the improved fibre/matrix adhesion sustained the tensile properties.208

Li and his colleagues (Anonymous 2011) also observed the increase in tensile strength (6.7%) and decrease in209

flexural modulus (-6.1%) for treated sisal/PLA composites in comparison to the untreated composites. The210

difference in property trend (tensile and flexural) of alkaline and silane treated henequen fibre/HDPE211

composites were found by Herrera-Franco (Herrera-Franco and Valadez-González, 2005) as well.212

Typical predictions of flexural failure initiation strength by stress-strain curves of flax/tannin composite with213

each treatment are shown in Table 4. The highest failure initiation stress of 33 MPa was obtained for BTCA214

treated composites, which also exhibited the best flexural properties. Compared to the untreated composites with215

21 MPa as initial failure strength, LD treatments lead to over 50% decrease, showing strong agreement with its216

reduced flexural strength and modulus. NaOH and APS treated composites showed similar improvement of217

around 20% in failure initiation strength. The predicted modulus for all composites was relatively close to the218

chord flexural modulus, indicating good material stiffness under bending condition. The composites showed219

gradual fall-off in load capacity after their ultimate flexural strength. This is due to that the pulled-out flax fibres220

bridge the sample to carry the load and slow the crack propagation.221

3.4 Effect of treatments on falling-weight impact properties222

The low velocity impact tests can simulate the loading issues that the composites are likely to experience in223

service life. The input energy (Le) introduced by dart falling action is equal to the energy dissipated by the224

whole system (Lw) as seen in the energy balance equation below (Belingardi and Vadori, 2002):225
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݉ ݃ℎ = ௘ܮ =
1

2
݉ ଶݒ = ௪ܮ = ௪௘ܮ + ௪௜ܮ

Where m the dart weight, v the contacting velocity, h the height, g the standard gravity (9.8 m/s2), Le the input226

energy equal to kinetic energy (
ଵ

ଶ
݉ ଶ)andݒ gravitational potential energy (݉ ݃ℎ), Lwe is the external energy227

dissipation, such as friction etc., Lwi refers to the internally dissipated energy by material elastic/plastic228

deformation or fragmentation.229

Figure 7 shows the typical load versus displacement curves average-smoothed (Savitzky-Golay method) by230

Origin software to minimize sample oscillation effect. The load increased with increasing displacement towards231

the peak force after which visible failure occurred. Then the load capability reduced dramatically to saturation232

point, followed by a force plateau (around 100 N) with continuous growth of displacement, indicating233

perforation situation during the impact testing. The other evidence is the velocity-displacement relationship234

(Figure 8) that the velocity-decrease gradient changed to a lower value after the transition of energy dissipation235

mainly from Lwi by failure to Lwe by friction. The load-displacement trend of flax/tannin composites is very236

similar to that of non-woven hemp/polyester composite found by Thakal et al. (Dhakal et al., 2007) who also237

described the influence of impact load level into four stages. Stage 1 showed sudden load increase without238

damage, followed by matrix cracking in stage 2. The matrix cracking progress in stage 3 lead to interfacial239

debonding, and finally, fibre breakage, delamination and perforation occurred in stage 4. Belingardi and Vadori240

(Belingardi and Vadori, 2002) pointed out that the saturation instant can be defined at the transition time where241

velocity slope decreases. According to Figure 8, the crack initiation and damage failure until saturation took242

place in a very small timescale of 4-5 ms. The longest time elapsed to saturation was 5.1 ms for NaOH treated243

composites while untreated composites had the shortest time of 4.7 ms. This indicated that the saturation time244

was probably influenced by the flax/tannin interfacial adhesion. The displacement at the saturation point was245

approximately 1.2-1.3 mm (Figure 7), even less than the composite average thickness of 2.5 mm. Clearly, the246

cracks propagated very fast through the thickness before the real dart perforation, resulting in total collapse.247

The threshold force for visible damage and the associated failure energy are shown in Table 5. The peak force248

trend (untreated>APS=NaOH>BTCA>LD) did not follow the trend showed by the elastic modulus, which249

normally is proportional to threshold force (Davies et al., 2006). This is possibly down to the influence of250

different degree of surface imperfections for each composite type. The force peak of untreated composites (515251

N) is only 5 N higher than that of APS and NaOH treated composites (510 N), while LD treated composites252

(414N) showed 18% force reduction compared to untreated samples. The composite absorbed energy resulting253
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in crack growth and debonding until the peak force, after which the damage rapidly reduces the load carrying254

capability (Dhakal et al., 2007).255

The 3D time-force energy curves for untreated and treated flax/tannin composites were plotted in Figure 9. The256

time-force curves were similar to displacement-force curves due to the fact that there was no rebound case257

allowing force ‘fold back’. The XZ projection of the 3D curves reflected the effect of fibre treatment on energy258

dissipation progress. It can be seen that the energy had a gradient change at the transition time of around 4-5 ms.259

The energy dissipated by the system before the transition was defined as the impact energy used for crack260

initiation and propagation. The following energy increment is mainly contributed by the friction between the261

dart surface and the sample edge in the perforation hole. The total input energy from the dart was about 10.26 J.262

As seen in Table 5, NaOH treated composites and untreated composites absorbed almost the same energy of263

4.86 and 4.80 J, respectively. The impact energy of LD treated composites is the lowest value of 3.68 J (35.9%264

of the total energy), in line with the lowest flexural properties. The chemical treatments clearly had little265

effect/improvement on impact energy absorption (low input energy), compared to loading bearing properties266

(tension and flexural). This indicates that the use of treatments has a detrimental effect on the dynamic impact267

performances of flax/tannin composites. This impact energy trend could also be observed from the residual268

velocity in Figure 8 at time of 16 ms. The lower the residual velocity, the higher the energy dissipated by269

material fragmentation.270

4 Conclusions271

Mimosa tannin extracted from wattle trees were used with pre-treated flax to prepare flax/tannin composite for272

potential structural and non-structural applications vehicles. These pre-treatments were found to improve the273

mechanical properties of flax/tannin composites.. The most significant influence was seen on the tensile274

properties, where APS treatment resulted in a 36.8% increase in tensile strength, together with a highest tensile275

modulus of 7.5 GPa. A 14.6% and 6.3 % increase in flexural strength and modulus respectively was observed in276

BTCA treated composites. The LD treatment reduced the flexural properties due to the decrease in fibre277

properties. Impact properties of composites were less affected by treatments, however NaOH treatment still278

slightly increased the saturation energy to 4.86 J. Consequently, for applications under different loading279

conditions (tension, flexion or dynamic impact), selection of fibre treatments has to be carefully considered for280

non-woven flax/tannin composites. Considering the overall performance, BTCA treatment seems most281

promising method to maximise the fibre reinforcement effects. A future research on the environmental282
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resistance (e.g. water absorption) of flax tannin composites could be conducted to assess the possibility of283

applications in demanding environments.284
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Figures

Figure 1. DIC technique for tension (1) DIC set-up (2) evaluated and gauge area

(1) (2)
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Figure 2. SEM morphologies of flax fibres: (a) untreated; (b) 5% NaOH treated; (c) BTCA treated; (d) APS

treated; (e) LG-D treated.
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Figure 3. Comparison of tension properties between untreated and treated composites
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Figure 4. Strain distribution and localisation of flax/tannin composite at 13 and 40 ms.
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Figure 5. Representative failure progress monitored by strain change for nonwoven flax mat/tannin composites
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Figure 6. Example of computation of tensile failure initiation for flax/tannin composites.
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Figure 7. Waterfall description of impact force-displacement for flax/tannin composites
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Figure 8. Speed change as a function of time during impact tests
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Figure 9. 3D description of time-force-energy for flax/tannin composites
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Tables

Table 1. Summarised results of some treatments for flax composites.

Fibre/matrix Treatment Conditions Effect on properties Ref

Flax/phenolic Esterification
25wt% MMA,
30min, 210 W

More moisture retardant
(Kaith and Kalia,
2007)

Flax/polyester
Silane

treatment
0.05 wt%, 24hRT Hydric fibre/matrix interface (Alix et al., 2011)

Flax/epoxy
Alkali

treatment
4wt% NaOH,45s

Transvers strength, 30%
increment

(Van de Weyenberg
et al., 2006)

Flax/epoxy
Alkali

treatment
5wt% NaOH,30 min

Tensile strength 21.9%; Flex.
Strength 16.1%

(Yan et al., 2012)

Flax/PP Esterification
MA-PP coupling

agent
Interphase compatibility (Bledzki et al., 2004)

Flax/PP Esterification
10wt% MA, 25h,

50°C
Highest flexural and tensile

strength
(Cantero et al., 2003)

*MMA-methylmethacrylate, MA-maleic-anhydride
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Table 2. Untreated and treated fibre used for tannin based composites

Type Modification Treatment details

Untreatred - -

NaOH Mercerization 5 wt% NaOH purification

BTCA Acetylation Alkali +Butanetetracarboxylic acid

APS Silane treatment Alkali +Amiopropyltriethoxysilane

LD Enzyme treatment Benzenediol+dodecyl gallate
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Table 3. Flexural properties of untreated and treated flax/tannin composites

Material Flexural strength (MPa) Flexural modulus (GPa) Failure strain (%)

Xഥ S CV (%) Xഥ S CV (%) Xഥ S CV(%)

Untreated 61.27 4.1 6.2 6.12 0.3 5.2 2.49 0.2 9.2

NaOH treated 65.53 4.9 7.3 6.60 0.4 6.4 1.87 0.2 11.8

BTCA treated 71.73 4.8 6.9 6.52 0.6 9.1 2.07 0.2 9.3

APS treated 63.47 4.1 6.8 6.16 0.2 4.0 2.31 0.06 2.4

LD treated 51.88 1.1 2.2 5.48 0.3 6.1 1.82 0.1 5.9

* Xഥ-average, S-standard deviation. CV-coefficient of variation.
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Table 4. Computed ‘flexural failure initiation strength’ of flax/tannin composites.

Type Epredic (MPa) a (10-2) σ0 (MPa) m Si (MPa)

Untreated 6423.8 -0.72 65.2 2.9 21

NaOH 8027.6 -0.42 68.3 2.7 25

BTCA 8011.1 -0.63 82.5 3.1 33

APS 6797.1 -0.74 70.0 3.2 26

LD 6695.4 -0.46 53.4 2.4 10
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Table 5. Impact characteristics of untreated and treated flax/tannin composites.

Sample Peak force(N) Failure energy (J) Impact energy (J) Saturation (ms)

Untreated 515±33 2.52±0.1 4.80±0.12 4.7±0.1

NaOH 510±23 2.52±0.1 4.86±0.16 5.1±0.2

BTCA 446±22 1.91±0.2 4.31±0.22 4.9±0.1

APS 510±32 2.23±0.2 4.58±0.25 5.0±0.2

LD 416±30 1.64±0.2 3.68±0.15 4.5±0.1
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