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Abstract— In this paper we propose a constrained optimal
control architecture to stabilize a vehicle near the limit of
lateral acceleration using the rear axle electric torque vectoring
configuration of an electric vehicle. A nonlinear vehicle and
tyre model is employed to find reference steady-state cornering
conditions as well as to design a linear Model Predictive Control
(MPC) strategy using the rear wheels’ slip ratios as input.
A Sliding Mode Slip Controller then calculates the necessary
motor torques according to the requested wheel slip ratios.
After analysing the relative trade-offs between performance and
computational effort for the MPC strategy, we validate the con-
troller and compare it against a simpler unconstrained optimal
control strategy in a high fidelity simulation environment.

I. INTRODUCTION

In the past few years it has been recognised that active
control of the vehicle’s velocity is a very effective strategy
in cases of terminal understeer behaviour. This observation
is already made by van Zanten et al. [1] who points out
that, especially in J-turns where the turning radius is con-
tinuously reduced along the trajectory (a scenario typical on
highway exits), the ESC’s yaw moment correction alone is
not sufficient and a controlled velocity reduction is necessary.
This remark later resulted in one of the Electronic Stability
Control (ESC) new functions, where correction of terminal
understeer is achieved by superimposing individual braking
of all four wheels on the standard ESC intervention [2]. In
[3] a controller providing decoupled longitudinal force and
yaw moment inputs at the higher level is combined with
a static control allocation scheme to calculate forces and
actuator inputs. In [4] a multivariable control architecture
to address velocity, yaw and sideslip regulation in terminal
understeer is presented. The vehicle model in [4] incorporates
nonlinear tyre characteristics and coupling of the longitudinal
and lateral tyre forces and a scheduled Linear Quadratic
Regulator (LQR) is employed.

In this paper we adopt a multivariable control approach
and propose a constrained optimal control architecture in
order to address the important in limit handing conditions
system constraints. MPC, a control strategy tracing its origins
in the chemical processes industry, has been increasingly
popular both in academia and industry for its ability to
naturally handle multivariable systems constraints. A variety
of solutions for active systems using MPC can be found
in the literature, ranging from simple online solutions to
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complex ones that can be solved only offline. For example, in
[5] we find a Linear Time Varying MPC (LTV-MPC) strategy
for controlling the lateral dynamics of the vehicle using
independent braking of the four wheels. Simulation results
show that the LTV-MPC controller can successfully complete
the sine and dwell test while respecting the constraints but
with a considerable decrease in speed due to the braking
strategy used. It is interesting to note here that, although the
authors recognise that the problem of overspeeding through
a curve is the main reason for failing to follow a reference
yaw rate, the proposed controller does not address velocity
regulation. Another example of an active lateral dynamics
control system using MPC can be found in [6], where a steer-
by-wire system on a Rear Wheel Drive prototype vehicle
is utilized. For the MPC formulation, a bicycle model is
used with the front lateral force as input, and bounds are
imposed on the yaw rate and sideslip angle in a way similar
to the envelope control concept from the aerospace industry.
In [7], a hybrid MPC and a switched MPC formulation for
a yaw stability controller using Active Front Steering (AFS)
and differential wheel braking are presented. Experimental
results using the easier to implement switched MPC strategy
show that it can successfully stabilize the vehicle in a fast
double lane change on a slippery road by enforcing the
tyre slip angles constraints. A different approach can be
found in [8], where a predictive controller for roadway
departure prevention using AFS and braking is presented.
The proposed solution utilizes a driver model and future
road information to check if the current vehicle state can
evolve to a desired future state. For the MPC formulation
the cost function penalizes only the control effort, while the
road boundaries are set as constraints. Simulation tests show
that the controller can successfully keep the vehicle within
the lane boundaries in the case of overspeeding through a
curve.

In this work we propose a combined velocity, yaw and
sideslip regulation strategy for terminal understeer mitiga-
tion that accounts for the important in such cases system
constraints. We consider a nonlinear vehicle model with
nonlinear and coupled tyre forces similar to [4] and design
a linear MPC strategy to achieve the reference vehicle
behaviour subject to state and input constraints.

II. VEHICLE MODEL AND REFERENCE GENERATION

In this section we introduce the vehicle and tyre models
used later in this paper. The formulation is similar to the one
found in [9], [4], where the interested reader can refer to for
more details.
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A. Four-Wheel Vehicle Model
The Equations Of Motion (EOM) for the four-wheel

vehicle model with front wheel steering (Fig. 1) are

mV̇ = (fFLx + fFRx) cos(δ − β)
− (fFLy + fFRy) sin(δ − β)
+ (fRLx + fRRx) cosβ

+ (fRLy + fRRy) sinβ, (1a)

β̇ =
1

mV
[(fFLx + fFRx) sin(δ − β)

+ (fFLy + fFRy) cos(δ − β)
− (fRLx + fRRx) sinβ

+ (fRLy + fRRy) cosβ]− ψ̇, (1b)

Izψ̈ = `F [(fFLy + fFRy) cos δ

+ (fFLx + fFRx) sin δ]− `R (fRLy + fRRy)

+ wL (fFLy sin δ − fFLx cos δ − fRLx)

+ wR (fFRx cos δ − fFRy sin δ + fRRx) (1c)
Iwω̇ij = Tij − fijxr, i = F,R, j = L,R. (1d)

In the above equations m is the vehicle’s mass, V is the
vehicle velocity at its Center of Mass (CM), β is the sideslip
angle at the CM, ψ̇ is the yaw rate and Iz is the vehicle’s
moment of inertia about the vertical axis. The moment of
inertia of each wheel about its axis of rotation is Iw, the
angular rate of each wheel is ωij (i = F (front), R (rear),
j = L (left), R (right)) and the radius of each wheel is r.
The steering angle on both the front wheels is denoted by δ,
and the torque applied on each wheel is Tij . The longitudinal
and lateral tyre forces are denoted by fijk (i = F,R, j =
L,R and k = x, y), while the rolling resistances and self-
aligning moments at the tyres have been neglected. Finally,
`F , `R, wL and wR determine the location of the center of
each wheel with respect to the CM.
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Fig. 1. Four-wheel vehicle model.Fig. 1. Four-wheel vehicle model.

B. Tyre Model
The tyre forces fijx and fijy in the above EOM are found

as functions of the tyre slip using Pacejka’s Magic Formula
(MF) [10]. In particular, we obtain the resultant tyre force
coefficient as a function of the resultant slip at each tyre
from the MF:

µij(sij) = MF(sij) = D sin(Catan(Bsij)),

where sij =
√
s2ijx + s2ijy is the resultant tyre slip, with sijx

and sijy the theoretical longitudinal and lateral slip quantities
respectively [10], and D = µmax is the tyre/road friction
coefficient. Then using the friction circle equations

µijx = −sijx
sij

µij(sij), µijy = −sijy
sij

µij(sij),

we obtain the tyre force coefficients in the longitudinal and
lateral direction. Neglecting the pitch and roll rotation along
with the vertical motion of the sprung mass of the vehicle,
the vertical force fijz on each of the four wheels can be
calculated using the static load distribution and the lon-
gitudinal/lateral weight transfers under longitudinal/lateral
acceleration [9]. The longitudinal and lateral forces are then
given by

fijx = µijxfijz, fijy = µijyfijz.

C. Steady-State Cornering Analysis

In order to derive feasible targets for the controller to
follow, steady-state cornering analysis of the four-wheel
vehicle model (1) is used. We will neglect for now the wheel
speed dynamics and assume actuation of the rear wheels only
according to the vehicle topology. Then considering the steer-
ing angle and rear wheels longitudinal slip (δ, sRLx, sRRx)
to be the input of the system (1a)-(1c) and enforcing the
steady-state cornering conditions

V̇ = 0, β̇ = 0, ψ̈ = 0,

we can obtain the equilibrium state (V ss, βss, Rss =
V ss/ψ̇ss) and input (δss, sssRLx, s

ss
RRx) by providing three

of the six unknown variables. In this work we provide the
triplet (V ss, Rss, δss) to complete the calculation. Note that
using the calculated longitudinal slip values we can find the
steady-state wheel speeds ωss

RL and ωss
RR, and the steady-state

torques T ss
RL and T ss

RR through the wheel speed dynamics
equation (1d) under steady-state conditions.

Based on the above steady-state analysis, we next examine
the feasibility of the vehicle path radius as requested by the
driver. Similar to common practice in vehicle stability control
[11], we obtain an estimate of the driver’s intended path
using a neutral steer linear bicycle model under steady-state
cornering. The desired path radius is therefore expressed as
a function of the driver’s steering input by the kinematic
relationship Rkin = (`F + `R)/δ

ss.
The desired path radius may or may not be feasible

depending on the vehicle’s velocity. Consider for example
the steady-state conditions for a fixed δss and a range of V ss

in Fig. 2. In all three cases the desired Rss = Rkin is around
14m, according to the steering command of δss = 10deg.
Then, for a vehicle velocity of V ss = 10.75m/s (green
curve) the vertical red dashed line corresponding to Rkin

intersects the curve of the calculated steady-state conditions,
hence the requested Rkin is feasible. On the other hand, if
the vehicle velocity is V ss = 11.25m/s (purple curve) the
Rkin is smaller than the minimum achievable Rss and not
longer feasible. In this case the controller will select a steady-
state condition such that the desired Rkin becomes feasible
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Fig. 2. Selection of target steady-state according to the driver’s steering
angle command: (a) Rkin feasible at V ss = 10.75m/s; (b) Rkin not
feasible at V ss = 11.25m/s; (c) Rkin coincides with the minimum
calculated Rss at V ss = 11m/s.

by reducing the vehicle velocity. Taking into consideration
the driver’s intention, this velocity reduction will have to
be minimal. To this end we select a steady-state velocity
such that Rkin coincides with the minimum Rss, which
in the above example corresponds to a vehicle velocity of
V ss = 11m/s (blue line).

In summary, the target steady-state condition for the
controller to follow is determined using the current steering
command from the driver (δss), the corresponding kinematic
radius (Rss = Rkin), and either the current or maximum
vehicle velocity (V ss) as discussed above.

III. MPC FORMULATION

The MPC design is cast in the sampled-data framework
by discretizing the continuous-time plant and the associated
quadratic cost function. For the linearized continuous-time
system about the equilibrium point (xss, uss)

ẋ = Ass
c x+Bss

c u, y = Css
c x+Dss

c u,

with associated cost function state and input weightings Qc

and Rc respectively, the discrete-time model using an exact
discretization [12] and sampling time Ts is

xk+1 = Adxk +Bduk, yk = Cdxk +Dduk.

Then, assuming Dd = Dc = 0 (no feedthrough term) and
Cd = In (full state feedback), the MPC regulation problem
with horizon N is

minimize
N−1∑
i=0

(xi
TQxi + ui

TRui + 2xi
TMui)

+ xN
TPxN , (2a)

subject to x0 = xcur, (2b)
xi+1 = Adxi +Bdui, i = 0, 1, ..., N − 1

(2c)

uli ≤ ui ≤ uhi , i = 0, 1, ..., N − 1 (2d)

xli ≤ xi ≤ xhi , i = 1, 2, ..., N (2e)

where (2a) is the discretized cost function [12], (2b) sets
the initial state x0 equal to the current one xcur, (2c) are
the discretized system dynamics and (2d)-(2e) are the state

and input inequality constraints respectively. The positive
(semi-)definite matrix Q and positive definite matrix R are
the weighting matrices on the state error and control effort
respectively, and the positive definite matrix M is the cross-
weighting matrix. The inclusion of the terminal penalty
xN

TPxN in (2a) ensures closed-loop stability [13], with
the matrix P found using the Discrete Algebraic Riccati
Equation

P = (BT
d PAd +MT )T (R+BT

d PBd)
−1(BT

d PAd +

+ MT ) +AT
d PAd +Q.

Based on the above standard MPC problem, a dense MPC
problem using soft constraining on the state [13] is formu-
lated for application in this paper. The necessary Ac, Bc, Cc

and Dc matrices are updated at each time step according to
the current steering command from the driver and the current
vehicle velocity, using the analysis of section II-C.

Neglecting the fast wheel speed dynamics, we set x =
[V β ψ̇]T and u = [sRLx sRRx]

T for the internal model.
Then a Sliding Mode Slip Controller computes the necessary
torques on the rear wheels based on the requested longitudi-
nal slips, in a way similar to [14].

1) State Constraints: In order to avoid large yaw rate
values, a yaw rate constraint according to the current velocity
Vcur is imposed at the beginning of the optimization and
fixed throughout the horizon. This constraint is based on
the lateral acceleration limit for the current velocity and is
coupled to the tyre/road friction coefficient µmax [11]:

|ψ̇| ≤ µmaxg/Vcur (3)

Following [5], [15], a constraint on the maximum sideslip
angle is also set according to the current velocity:

|β̇| =

 2
k1 − k2
V 3
ch

V 3
cur − 3

k1 − k2
V 2
ch

V 2
cur + k1, Vcur < Vch

k2, Vcur ≥ Vch
where Vch is the characteristic velocity of the vehicle [16],
and k1 and k2 are chosen at 10π/180 and 3π/180 respec-
tively. No constraint on the velocity is imposed.

2) Input Constraints: Constraints are also set for the input
u = [sRLx sRRx]

T so that the longitudinal slips on the rear
wheels never exceed the maximum allowable slip for safe
operation of the vehicle. Using the tyre parameters, as found
in Table I, in the simplified MF [10] we find that this limit
occurs at around 0.07 so that we set the constraint

|sRjx| ≤ 0.07. (4)

3) Torque Constraints: Since we can not directly account
for the motor limits in the form of its static torque map
(Fig. 3), in the following section we construct an additional
constraint on the state and input in order to avoid excessive
torque requests from the two motors. Neglecting the wheel
speed dynamics, the longitudinal tyre force on each of the
rear wheels can be bounded by the maximum and minimum
allowable torques

T l ≤ fRjxr ≤ Th, (5)



where T l and Th are calculated as a function of the
current wheel speed according to the static torque map at
the beginning of each time step and fixed throughout the
horizon. Then, linearizing the longitudinal tyre forces fRjx

about the equilibrium point, the above double inequality can
be expressed in terms of the state [V β ψ̇]T and input
[sRLx sRRx]

T and used as an additional constraint in the
MPC problem (2).

Jx

 Ṽ

β̃
˙̃
ψ

+ Ju

[
s̃RLx

s̃RRx

]
≤ G

where

Jx =


ϑfRLx

ϑV

ϑfRLx

ϑβ

ϑfRLx

ϑψ̇
ϑfRRx

ϑV

ϑfRRx

ϑβ

ϑfRRx

ϑψ̇

 ,

Ju =


ϑfRLx

ϑsRLx

ϑfRLx

ϑsRRx

ϑfRRx

ϑsRLx

ϑfRRx

ϑsRRx

 , G =


Th
RL

r
− f ssRLx

Th
RR

r
− f ssRRx

 .
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Fig. 3. Motor torque map.

TABLE I
VEHICLE AND TYRE PARAMETERS.

Parameter Value Parameter Value
m (kg) 1420 `F (m) 1.01

Iz (kgm2) 1027.8 `R (m) 1.452
Iw (kgm2) 0.6 r (m) 0.3
wL (m) 0.81 B 24
wR (m) 0.81 C 1.5
h (m) 0.55 D 0.9

IV. TUNING OF THE MPC STRATEGY

After choosing the internal model for the MPC problem
(2), two are the most important parameters affecting both the
performance and computational burden for a MPC formula-
tion: the sampling time Ts and the horizon N . The effect of
varying the sampling time and horizon on the performance

and computational effort of the MPC is therefore analysed
next. For the evaluation of the performance the closed-loop
cost

Jcl =

dTsim−Ts
Ts

e∑
k

(xk
TQxk + uk

TRuk + 2xk
TMuk),

is used, where Tsim is the chosen simulation time. For
the evaluation of the computational effort, the mean time
Tcomp required from the quadprog solver in MATLAB to
construct and solve the MPC problem (2) is used.

A. Impact of Varying the Sampling Time

First we study the effect of varying the sampling time by
comparing the MPC with the unconstrained continuous LQR
[4] for a range of sampling times and a horizon equal to the
simulation time of Tsim = 10s. A set of simple simulation
scenarios is used, whereas the vehicle is going straight and
a step steer input is applied after 2s. It is assumed at this
point that there are no acceleration or braking requests from
the driver. For each simulation, the initial vehicle velocity is
chosen so that it is 1m/s higher than the maximum velocity
allowable for the applied step steering input hence the MPC
will regulate the velocity, sideslip angle and yaw rate of the
vehicle according to the reference values, as discussed in
section II-C. Note that for this set of test scenarios we choose
not to constrain the state and input for the MPC, so that we
can directly compare it to the LQR as mentioned above.
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Fig. 4. (a) Closed-loop cost variation with sampling time for a range of
step steering inputs δ; (b)-(c) Computational time results and pareto frontier
for a step steering input of δ = 6deg.

Fig. 4(a) shows the variation of the closed-loop cost with
sampling time for a range of step steer inputs for the MPC.
No considerable changes in performance for sampling times
below 0.07s can be noticed. Focusing on the simulation
results for a step steering input of 6deg, Fig. 4(b)-4(c) show



the computational time changes with sampling time and the
pareto frontier of Tcomp and Jcl for this step steering input.
We can see that the computational time increases rapidly
for sampling times below 0.05s, so there is a clear trade-
off between closed-loop cost and computational time with
changes in the sampling time. This is also evidenced in
the pareto frontier of Fig. 4(c), where small reductions in
the closed-loop cost below 1 result in large increases in
computational time.

B. Impact of Varying the Horizon

The horizon length of 10s used in the above section IV-B
resulted in long computational times, a large portion of which
was spent in constructing the matrices for the dense MPC
problem. Using the same test scenario of 6deg of steering
input as above, Fig. 5 shows the increase in construction
time with longer horizons. As we can see, the construction
time increases exponentially for longer horizons but drops to
values as low as 0.005s for horizons less than 1s.
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Fig. 5. Construction time needed for a step steering input of δ = 6deg, a
fixed sampling time of Ts = 0.05s and a range of horizons N from 0.5s
to 5s.

V. SIMULATION RESULTS

In the following section we compare the MPC strategy
against the LQR and a vehicle without torque vectoring
intervention using the high fidelity vehicle model and the
driver model available in CarSim. Two are the scenarios
under consideration: the first one assesses the understeer
mitigation capabilities of the MPC, while the second one
assesses its ability to keep the vehicle stable under quick
steering input changes. For the MPC we set Ts = 0.05s,
a prediction horizon of Np = 1s and a control horizon of
Nu = 0.5s according to the analysis of section IV, while
we assume again that no acceleration or braking commands
come from the driver.

A. U-turn Scenario

For the U-turn scenario, we use the driver model in CarSim
to steer the vehicle through a turn of 56m radius. The road
is 5.6m wide and dry (µ = 0.9), while the entry speed is
85km/h (23.6m/s). In Fig. 6(a) we see the trajectory of the
vehicle using the MPC in blue, the vehicle using the LQR
in green and the uncontrolled vehicle in red. Both the MPC
and the LQR keep the vehicle within the road limits while

the uncontrolled vehicle exits the road due to the excessive
entry speed.

In Fig. 6(b)-6(e) we see the wheel steering commands
from the driver model (assuming a steering ratio of 16:1)
along with the velocity, sideslip angle and yaw rate time
histories for the three vehicles. Apart from keeping the
vehicle within the road limits, the early velocity drop from
the MPC and LQR (Fig. 6(c)) allows for smaller wheel
steering inputs from the driver model (Fig. 6(b)). In Fig. 6(d)
we observe that, while the MPC keeps the sideslip angle
values to levels comparable to the ones experienced by the
uncontrolled vehicle, the vehicle using the LQR shows much
larger values. Finally from Fig. 6(f)-6(g) we observe that
the MPC largely keeps the torque requests within the static
torque map according to the torque constraint presented in
section III-.3.

B. Double-Lane Change Scenario
For the double-lane change scenario we use again the

driver model in CarSim, but this time to follow a predefined
path corresponding to a double-lane change manoeuver. The
road is assumed to be wet (µ = 0.4) and the entry speed is
set to 60km/h (16.67m/s). In Fig. 7(a) we see the trajectory
of the vehicle using the MPC in blue, the vehicle using the
LQR in green and the uncontrolled vehicle in red. Both the
uncontrolled vehicle and the vehicle with the LQR become
unstable towards the end of the manoeuvre and spin out of
control.

In Fig. 7(b)-7(c) we see the velocity and sideslip angle
time histories for the three vehicles. While the velocity time
histories for the MPC and the LQR look similar for the first
5s, the large sideslip angle values in the case of the LQR
result in an unstable condition from which the vehicle cannot
recover towards the end of the manoeuvre. In Fig. 7(d)-7(e)
we see that the MPC keeps the longitudinal slips within the
bound (4). The high frequency oscillations noticed especially
in the first half of the simulation for the LQR are the result of
a switching strategy used in this case to keep the controller
active only within the maximum longitudinal slip threshold
[4].

VI. CONCLUSIONS

In this paper we presented a constrained optimal control
architecture to stabilize the vehicle near the limit of lateral
acceleration using its rear axle electric torque vectoring
configuration. The proposed methodology uses combined ve-
locity, yaw and sideslip regulation to ensure that the reference
path, as commanded by the driver, is feasible. Simulations
using a high fidelity vehicle model and a driver model
in CarSim confirm the effectiveness of the controller in
correcting terminal understeer behaviour and the importance
of constraining both the state and the input of the system in
a fast double-lane manoeuvre.
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Fig. 6. U-turn scenario results (vehicle using the MPC in blue, vehicle
using the LQR in green and uncontrolled vehicle in red).
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