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ABSTRACT

Noise and vibration are important design issues for many types of

vehicles such as ships, cars, and aeroplanes. Structure borne sound,

which may be of relatively high frequency, usually emanates from an

engine or some other type of localised source and propagates through the

vehicle. Excessive vibration levels, and thus structural damage, may

occur while structural acoustic interactions may lead to unacceptable
interior noise.

In the analysis of energy transmission between plate structures, it is

common practice to consider only bending modes (or waves) of the

structure. However if the concern is with high frequency vibration
analysis, then due allowance may need to be made for the presence of in-

plane shear and longitudinal modes.

Due to the infeasibility of the industry standard technique, the Finite
Element Method, at high frequencies, almost all of the studies that have

investigated the importance of in-plane energy transmission have used

Statistical Energy Analysis (SEA).

In this study an existing dynamic stiffness method is extended to include

in-plane effects, and used as a benchmark against which SEA is assessed.

Additionally the Wave Intensity Analysis (WIA) technique, which is an

improved form of SEA, is extended to in-plane vibrations, and used to

identify some of the reasons for the poor performance of SEA in certain
applications. All three methods are applied to a wide range of plate

structures within the frequency range of 600 Hz to 20 kHz. While the
response levels as predicted by the WIA are generally quite close to

exact results, it has been found that although all of the requirements

which are usually postulated for the successful application of SEA are

fulfilled, SEA severely underpredicts the energy transmission in large

structures because of the diffuse wave field assumption. It is also shown
that the exclusion of in-plane modes may lead to sizeable errors in
energy predictions unless the structure is very simple.
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NOTATION

The notation used in this Thesis is as defined in the main text.
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1 INTRODUCTION.

1.1 GENERAL INTRODUCTION.

Noise and vibration are important design issues for many types of vehi-

cles, such as ships, cars, and aeroplanes. Structure borne sound, which

may be of relatively high frequency, usually emanates from an engine or

some other type of localised source and propagates through the vehicle.

Excessive vibration levels, and thus structural damage, may occur, while

structural acoustic interactions may lead to unacceptable interior noise

levels.

The exact analysis of the vibration of a system with many degrees of

freedom is generally difficult, and the associated calculations are labori-

ous. Broadly speaking, conventional vibration analysis of structures has

centred on the low frequency range encompassing the first few natural

frequencies. Much literature exists on the standard analytical and nu-

merical techniques, such as Finite Element Method (FEM), and the

Boundary Element Method (BEM). These methods are concerned with
determining the first few natural frequencies, and the associated mode

shapes. For low frequency excitation these modes tend to dominate the

displacements and stress levels within the structure.

The most commonly used vibration analysis technique is perhaps the

finite element method. The method is dependent for its success on skilful

modelling procedures and efficient numerical techniques [1]. There are

two basic steps in the finite element modelling of a structure:

(i). A built-up structure which is composed of various inter-con-

nected structural members, such as beams, shells and plates of dif-
ferent geometry, needs to be broken down into components or

"elements" whose behaviour may readily be obtainable. The prop-
erties of such elements are normally derived approximately on the

basis of variational principles.
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(ii). The original system is rebuilt or "assembled" from the con-

stituent elements so that its global behaviour may be analysed.

The ability of FEM to model a wide range of structures makes it an

attractive design tool for the approximate vibration analysis of complex
systems in the low frequency regimes.

However, if the concern is the vibration analysis of structures at high

frequencies, then the analysis becomes rather complicated because of the

following characteristics of high frequency vibration:-

(i). The structural wave length is rather short which causes the

modes to become more sensitive to design and fabrication details

of the structure [2]: the mode shapes will generally display a rapid

spatial variation.

(ii). A large number of modes will contribute to the vibrational

response of the structure as the higher resonant frequencies tend to

be relatively closely spaced on the frequency axis.

Even though in principle the FEM may be used at high frequencies, be-

cause of the following reasons it often becomes impracticable, if not

impossible, to apply FEM successfully:-

(i). In order to obtain accurate results the system needs to be dis-

critized into elements of smaller and smaller size. This process in-

volves substantial data preparation and large systems of simulta-
neous equations [3].

(ii). Even if the previous problem is overcome successfully, the

output information will reach to such an extent that may prohibit

the interpretation of the results [4]: in a complicated model there
would be many parameters. The sensitivity studies of these pa-

rameters will yield enormous computer output.

(iii). The calculation of a large number of resonant modes can be
costly or even computationally infeasible.
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(iv). During the modelling and discretization process slight differ-
ences between the real and idealised material properties, boundary

conditions and structural dimensions may occur. Due to these dif-

ferences, the theoretical mode shapes and natural frequencies may

be shifted relative to the real mode shapes and natural frequencies;

these two factors may lead to errors in displacements at discrete

positions and frequencies [5,6].

In order to resolve the problems which are encountered by deterministic

methods at high frequencies, a vibration engineer often resorts to statis-

tical techniques. These methods relinquish the detailed knowledge of the

modal behaviour in favour of the spatial mean square response which is

averaged over broad frequency bands to include many resonant modes of

the structure so that the effects of the system details on the model disap-

pear [4].

The classical example of this type of method is the Statistical Energy
Analysis (SEA) which is said to be an ad hoc extension of the exact

results of two coupled single degree of freedom oscillators under broad

band excitation. A more detailed discussion of SEA will be given in later
sections; therefore no further comments will be made here.

One particular case in which high frequency vibration can and does oc-

cur, is the jet airliner. Here the vibration tends to be lowest at the nose

of the aircraft and is progressively more severe moving towards the tail.

The major source of the excitation is the turbulent boundary layer, which

can contain frequency components up to 10 kHz [7]. The fuselage struc-

ture typically consists of stiffened panels, which, to a first approxima-
tion may be considered to be locally flat, as shown in Fig. 1.1.

Marine structures may also be subjected to high frequency excitation
arising from turbulent wakes or engine vibrations. Again, to a first ap-

proximation the structure may be represented by an assembly of flat
panels as shown in Fig. 1.2 [8,9].
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The aim of the present work is to study in detail various aspects of the

high frequency vibration of structures which are composed of flat plate

elements. An understanding of this type of structure should allow a

range of real engineering structures to be analysed and also serve as a

basis for the study of more advanced structural configurations. Before

outlining the full scope of the present work, previous work on the
analysis of plate structures is reviewed in the following sections.

1.2 PREVIOUS WORK ON VIBRATION OF PLATE
STRUCTURES: RIGOROUS METHODS.

1.2.1 FINITE ELEMENT METHOD.

The reasons why the FEM is hard to implement at high frequencies are
given in the previous section. To eliminate at least some the shortcom-

ings, especially the necessity for massive spatial discretization, several

researchers proposed improved versions of FEM.

A recent work in this vein is that of Cuschieri [10]. In this method,
which is referred as Mobility Power Flow (MPF) analysis, the structure

is modelled by a set of coupled substructures, and forces and moments

are introduced at the junctions between the substructures. At every junc-

tion forces and moments are treated as structural mobility functions. The

input energy and coupling power to and from the excited structure to the
other connected substructures are expressed in terms of input and struc-

tural transfer mobilities, and expressions are then written for the energy

flowing between the elements of a structure in terms these mobilities.

Thus, the method uses coupling power as the linking parameter between
the substructures. In this respect the MPF method resembles SEA in

which energy flow is written in terms of a parameter known as the cou-

pling loss factor (see section 3.2.1).

Using the MPF technique Cuschieri [10] has obtained improved results

in comparison to FEM and SEA for flexural vibrations of two finite

plates joined along a common edge forming an L-shape, within the fre-

quency range of 0 to 1000 Hz.
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However, since the method is still based on the FEM, it suffers from

being dependent upon the details and model, and therefore the use of
MPF method is confined to mid range frequencies [11]. Moreover, the
necessity of calculating the mobility functions may make the method

difficult to apply on some types of structure [12].

1.2.2 DYNAMIC STIFFNESS METHOD.

The dynamic stiffness method is similar to FEM with the exception that
the properties of each element are derived exactly.

In the case of plate-like structures, the method allows for arbitrary

boundary conditions at the plate edges parallel to y axis (see Fig. 2.1),

and to put it in a form amenable to "exact" analysis, it assumes that two

opposite edges (x direction of Fig. 2.1) of the plate are simply supported.
Having two opposite edges simply supported enables an individual plate

to be reduced from a two-dimensional to a one dimensional element
characterised by a stiffness matrix. It is well known [13] that if the

boundary conditions at two opposite edges of the plate correspond to
simple supports then the mode shapes of vibration in the y direction of
Fig. 2.1 are proportional to sin(n7ry/b).

Rather than modelling a structure as a global system, the methods treats

each component of the structure individually in its local co-ordinates and

assembles stiffness matrices for each plate to form the complete dynamic

stiffness matrix of the structure. Treating the elements separately makes

it possible to analyse a structure that consists of arbitrary number of

elements, and transformation from local to global co-ordinates allows the
plates to be connected at any orientation.

Hence the basic problem is then to determine the stiffness matrix which
relates the amplitudes of the edge forces and moments to the amplitudes

of the corresponding edge displacements and rotations for a single plate.

Once this stiffness matrix is known, the equations of equilibrium of a

junction enable a series of simultaneous equations relating the displace-

ments and rotations of all plate junctions to be constructed.
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Indeed, the dynamic stiffness method is very similar conceptually to the

FEM. It does however have the following advantages:-

(i). The dynamic stiffness method requires less discretization, as
the structure is broken down into its substructures at the natural

boundaries and no further substructuring is needed to model the

system.

(ii). In the dynamic stiffness method there are only eight degrees

of freedom for a plate; four for each edge: out-of-plane, rotation,

and two for the in-plane displacements. Note that these degrees of

freedom relate to a specific lateral shape function sin(nny/b).

(iii). Related to the two previous points, the dynamic stiffness

method has the advantage of requiring a much smaller assembled

stiffness matrix when compared with the FEM. Thus, it is possible

to carry out calculations on a small computer.

(iv). The difficulties that restrict the use of the FEM at high fre-

quencies do not create any problem for the dynamic stiffness
method, since the accuracy of the results is not dependent on mesh

refinement.

(v). The results of the dynamic stiffness method are strictly

"exact" for the class of problems described above. This is a very

useful feature as it allows the method to be employed as a

"bench-mark" to compare the accuracy of approximate methods.

It may be argued that having boundary conditions at the two opposite

edges of the plate as simply supported prohibits the applicability of this

method; however it has been shown [6] that the type of constraint at the
transverse edges of the plate have little influence on the energy trans-
mission at high frequencies when there are many resonant modes.

Early applications of the dynamic stiffness method is due to Wittrick and
Williams [14-16]. They applied the method for buckling and flexural



7

vibration analysis of stiffened plates. Another example of literature
within this group is the work of Langley [17].

Langley [17] investigated the free and forced out-of-plane response of a

row of connected rectangular plates, and derived expressions for the

mean energy flow and mean energy stored in the individual panels.

Although the method is well established for flexural vibrations, no litera-

ture has been found concerning the in-plane of modes a plate structure.

1.2.3 OTHER METHODS.

In addition to the foregoing methods, several other techniques have been

successfully applied to obtain the natural frequencies and mode shapes

of stiffened/unstiffened plates. These include the Rayleigh-Ritz method

[18], the transfer matrix method [19,20], the finite difference method
[21], and the finite strip method [22]. Although these methods are within

the field of interest of this study, because of the limitation of the range

of structures that can be modelled (for example in the transfer matrix

method only a linear array of plates can be modelled), or unsuitability

for high frequency vibration, they are not considered here in any detail.

In what follows two other methods, namely statistical energy analysis
and wave intensity analysis, that are well suited for the class of problems

considered here, yet different in the method of approaches of previous

two methods will be briefly reviewed. A more detailed description of

these methods may be found in chapters 3 and 4 respectively.

1.3 PREVIOUS WORK ON VIBRATION OF PLATE
STRUCTURES: ENERGY FLOW METHODS.

1.3.1 STATISTICAL ENERGY ANALYSIS.

Statistical Energy Analysis (SEA) is a technique for estimating the vi-

brational and acoustic response of complex dynamic systems. SEA was
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first applied to a structural vibration problem by Lyon and Maidanik
[23].

SEA generally considers the response of structures which have many

modes excited in a certain frequency band. The approach is thus usually
applied to high frequency vibrations. The approach has two distinctive

features when compared to deterministic analysis methods, such as the

FEM. Firstly, the use of energy and power as the system variables, and

secondly the statistical description of the system itself. In order to ex-
press the analysis in a form which is amenable for engineering applica-

tions several assumptions are made in the derivation of the SEA equa-

tions. These assumptions and the parameters involved in the SEA ap-
proach are described briefly in chapter three and will not be detailed

here.

Various authors have considered the underlying basis for SEA and tried

to improve the accuracy of the method. Broadly speaking previous stud-
ies are directed towards four key issues: coupling loss factors, coupling

strength, accuracy and limitations, and in-plane energy transmission.

In the following sections, the studies on these issues which are related to

plate structures (directly or indirectly) will be reviewed.

Coupling Loss Factor.

The "coupling loss factor" governs the energy which flows between two

components (or more generally "subsystems") of an engineering struc-
ture. This is a key parameter, which must be determined for each
"junction" before SEA can be applied to a given problem. Existing work

on coupling loss factors for plate structures is reviewed in what follows.

The coupling loss factor may generally be expressed in terms of the
elastic wave transmission coefficients of a structural joint. Lyon and

Eichler [24] and Hwang and Pi [25] studying the same system have ob-

tained the transmission coefficients for a plate junction formed by rig-
idly attaching a semi infinite plate to an infinite plate. In the calculations

only bending waves were considered. The latter assumed that the flex-
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ural wave length may reach the order of the plate thickness: Mindlin's

thick plate theory was applied, thus accounting for the effects of trans-
verse shear deformation and rotatory inertia.

Gibbs and Gilford [26] calculated theoretically the coupling loss factors

of cross, T, and L junctions of plates considering transmission between
bending, longitudinal, and transverse waves and verified their results

experimentally within the frequency range of 400 Hz. to 12.5 kHz.

Wohle et al. [27] studied similar types of junctions for a diffuse wave

field and determined coupling loss factors for a junction with flexible
coupling.

Using the FEM Simmons [6] calculated the coupling loss factors for
various types of junction, and suggested that if the coupling loss factors

are calculated by the FEM, then this parameter may be used in the sta-

tistical energy analysis of systems with junctions of the same type. This

leads to the possibility of analysing systems which are difficult to ana-

lyse with either the FEM or SEA.

For the case of a junction formed by plates which meet at a beam Cremer

et al. [28] have presented the flexural wave transmission coefficients for

a rectangular stiffener attached symmetrically to two plates. For the
more general case of a junction composed of an arbitrary number of

plates which are coupled directly or via a beam of any cross section, the

transmission coefficients have been calculated by Langley and Heron

[29]. In this analysis it is possible to take into consideration shear de-

formation, rotary inertia and warping effects as well as the offsets be-
tween the plate attachment lines and the shear axis of the stiffener.

Several attempts to obtain the coupling loss factors experimentally have
also been made. Bies and Hamid [30] calculated coupling loss factor and

plate loss factor under broad band random excitation, and using a matrix

iteration procedure to predict loss factors, obtained good theoretical

results compared to experimental ones.
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Coupling Strength.

Standard SEA power flow relationships are generally thought to be valid

under the assumption that the subsystems are weakly coupled. When the

coupling strength is increased, alterations are needed to the fundamental

SEA equations [31]. Therefore, a number of authors have tried to obtain

more general relationships which are valid for any arbitrary coupling

strength.

Smith [32] examined the effect of the strength of the coupling between

the subsystems and, using the reciprocity principle, obtained the symme-

try relations that need to be satisfied by the coupling loss factors. Keane

and Price [31] investigated the response of two multi modal subsystems

which are coupled at a single point, and showed that provided such a

system is excited by rain-on-the roof type of forces, the standard SEA

power flow relations holds regardless of the coupling strength. However

the proportionality constants of power flow equations should be rede-

fined. Similar work in this vein is that of Langley [33] who obtained a

general form of the fundamental SEA equation for conservative coupling

of any type. It is also shown that the results are not only applicable for

rain-on-the roof type of excitation, but also point loading. In a later work

by the same author [34] these results are used to obtain the coupling loss

factors in terms of the system Green functions. A similar method which

uses system Green functions is proposed by Keane [35]: the method was

employed in calculating exactly the energy flows between many multi-

coupled, multi-modal subsystems.

Dimitriadis and Pierce [36] derived power flow equations for two

strongly coupled plates under the assumption that the driving forces are

spatially uncorrelated and that power transmitted by the in-plane waves

is negligible; thus they considered only flexural waves.

Mace [37] has investigated the energy flow between point coupled sub-

systems by using a wave approach. He has shown that due to the re-

radiation of power by the finite subsystems the mean energy flow from

an infinite to a finite subsystem is less than SEA; yet the mean energy

flow from a finite to an infinite subsystem is greater than two infinite
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subsystems because of the re-injection of the power by the finite subsys-
tem. It has seen that while re-radiation effects are largest for strong
coupling, re-injection effects are bigger for weak coupling.

Accuracy and Limitations.

In the study by Keane and Price [38] of two axially vibrating coupled

rods, it was shown that the energy flow approaches to a steady value
when there are around seven resonant modes in each rod and thus it can

be concluded that this is the minimum number of resonant modes needed

to obtain a reliable response estimate from SEA.

Guyader et al. [39] have shown that in general SEA overpredicts the

energy transmission between two concrete plates forming an L-shaped

structure. The method used to yield a reliable response estimate was
referred to as the energy influence coefficient method. In this method the
coupling of the substructures is represented in terms of generalised in-
fluence coefficients which relate one of the substructures average energy
to the spectral density of the force applied on another substructure. They

compared the amount of energy transmitted (due to flexural waves only)

to the indirectly excited plate, and found that even though at low fre-

quencies SEA predicts the energy transmission reasonably well when the
plates are identical, it overpredicts by as much as 5 dB if the plates are

different. At high frequencies the SEA results get progressively better;

yet it still overestimates by around 2.5 dB.

The modal overlap factor, M . riam(co), (see chapter 3 for the definition

of the variables) is a measure of the average separation between fre-

quencies in relation to the average modal bandwidth. By considering

randomly excited coupled beams, Davies and Wahab [40] showed that

semi-infinite theory results are in better agreement with the practical
case of finite beams if the modal overlap is above a certain value. They
concluded that if the modal overlap factor, M, is greater than unity then

the semi-infinite results would give reasonable approximations to the

finite case. However if this parameter is less than one, semi-infinite
theory overestimates the coupling loss factor.
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Fahy and Mohammed [41] in their recent work on the uncertainty of

SEA predictions of various structures, as a result of predictions based on
the diffuse wave field assumption concluded that, for the case of coupled

plates, to get unbiased results the plates should not be excited close to

the junction as it leads to sizeable error in the average power flow and

coupling loss factor, and also confirmed the view of Davies and Wahab
[40] on the modal overlap factor.

Mace [42] studied the statistics of energy flow between two subsystems,

and showed that for weak coupling the energy flow is the largest for the

ensemble members that are resonant when they are uncoupled.

Coupling that occurs through the modes of the subsystems with natural

frequencies outside the current frequency band of interest is termed as

non-resonant coupling. In the majority of the practical cases, the contri-

bution of non-resonant modes of the subsystems in the energy transmis-
sion is negligible compared to the resonant modes. On the other hand, if
the coupling modes are widely spaced in frequency, are highly damped

or are weakly excited by the power source, due allowance must be made
for the non-resonant coupling path [43]. Craik et al. [44] have shown

that at low frequencies when there are few modes; only the modal prop-
erties of the receiving subsystem affect the coupling between two sub-

systems. They have used the statistics of mobility to give the limits to
the coupling loss factor, and obtained expressions for the errors that may

occur at low frequencies.

In-Plane Energy Transmission.

It is well known that a vibrating flat plate may exhibit three types of

mode (or wave), namely bending, longitudinal, and shear. Of these three

modes, bending is referred to as the out-of-plane mode and longitudinal

and shear, when grouped together, as the in-plane modes.

Even though it is usually the out-of-plane modes of a structure that are
more strongly excited by a source of vibrational energy, a pure bending

wave impinging at a junction induces in-plane longitudinal and shear
waves as well as other flexural waves in the connected plates. The
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in-plane waves are partly transformed into flexural waves at the other

junctions, and less attenuated with distance in comparison with flexural
waves since they have high wave speed [43]. Thus the in-plane waves,
acting as energy carriers over long distances, contribute significantly to

the energy levels at remote parts of the structure.

Until recently, the majority of the SEA (or deterministic) studies of
energy transmission in plate type structures were based on the assump-

tion that the main component of the energy transfer is due to flexural

waves and the contribution of in-plane waves may be neglected. A typi-

cal example of the application of the deterministic method considering

out-of-plane motion only is that of Nilsson [8]. The case studied was a
scale model of a ship structure. As the calculations agreed with experi-
ment, inclusion of in-plane modes did not seem to be necessary.

A similar conclusion is also reached by Gibbs and Gilford [26]. In their

analysis of a T-junction they have shown that neglecting the in-plane
modes makes only 2 dB difference to the response. However, they cau-

tioned that the results of SEA at low frequencies are unreliable, as the
modal density of the components are quite low. Similar work along the
same line of thought is due to Landmann et al. [45]. In their study of low
frequency vibration analysis of an aircraft fuselage, they considered

bending and in-plane coupling of a frame and stringer stiffened struc-

ture. Although the SEA model indicated good agreement near the source

of excitation, it over predicted at the points away from the drive point

within the frequency range of 100 to 400 Hz. Thus they concluded that

the inclusion of in-plane modes leads to overcoupling between the sub-
systems, and therefore they should not be included.

The main justification for not including in-plane motion in an SEA

analysis has generally been that "bending only" theoretical results

yielded satisfactory agreement with experimental results [46]. Further-

more, in an experiment usually one can only measure the vibration am-

plitudes of the out-of plane modes directly and the observation of
in-plane motion is quite difficult since the local strains and accelerations
of bending modes are generally higher than that of in-plane modes [43].
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Besides, consideration of only bending vibrations vastly simplifies the
analysis, especially if the structure is rather complicated.

Even though this simplification is justified in many instances, it may not
always be so. In the literature examples of works which are in favour of

the inclusion of in-plane modes also exist. For instance in the investiga-

tion of Gibbs and Craven [47] on the performance of a T junction, it has

been shown that once a flexural wave impinging on a junction is con-
verted into an in-plane wave it can travel through several junctions be-
fore converting back to a bending wave. Thus it may not be appropriate

to neglect the contribution of in-plane waves in an SEA model. In the

work performed by Tratch [9], in which the case was similar to that of

Nilsson [8], a ship foundation and hull were modelled as an assembly of
flat plates. Experiments were carried out on a scaled model structure

(see Fig. 1.3.a) and the results were compared with SEA predictions
including and excluding the in-plane modes. As can be seen in Fig. 1.3.b

the bending only model underestimates the vibration transmission from

plate number 1 to 7 by as much as 10 dB at the highest frequency of
20 kHz; yet the inclusion of in-plane modes improves the agreement

significantly.

Powell and Manning [43] studied three coupled beams forming an
H-shape with unequal leg lengths and showed that SEA predicts an en-
ergy level 20 dB less than that of an exact analysis at 10 kHz. They

concluded that since in-plane modes are less subject to transmission,

dissipation, radiation and reflection losses than are bending mode types,

they become the dominant path of energy transmission. They have also

noticed that the addition of in-plane modes may result in an overpredic-
tion in the transmitted energy. The suspected cause was overcoupling

between the modes in the low frequency regime where the in-plane mo-
dal density is low, in line with the conclusion of Landmann et al. [45].

However they did not consider this phenomenon as a disadvantage, as an

overprediction is a conservative result for design purposes.

Indeed, as Lyon [48] notes in his article, in which he summarises the

work of Tratch [9], there exists a situation in which some of the re-
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searchers believe that in-plane motions are important, some say they are
not and a third group is neutral on this issue.

In short, the overall ideas that have been expressed on this issue so far

can be listed as follows:

(i). An analysis based solely on the flexural modes of the structure
is a reasonable approach in most circumstances [8,36,26,45].

(ii). Including the in-plane modes in an SEA model can signifi-

cantly change the results in comparison to those that are obtained
by using only the bending modes [9,48,43].

(iii). Including the in-plane modes in an SEA model can result in

much better agreement between theory and experiment [9,48].

1.3.2 WAVE INTENSITY ANALYSIS.

A fundamental conjecture, which is common in the wave analysis of

room acoustics, is that a wave disturbance impinging on the boundaries
of a structure after many reflections and sufficient time becomes diffuse.

This implies that the wave intensity per unit angle of incidence is con-
stant for all wave heading angles [49]. In the modal point of view a
direct corollary of this diffuse wave field assumption is that there is

" equipartition" of modal energy, which means that all the modes of a

system have the same kinetic energy level.

The meaning of the term " equipartition" can be interpreted in a manner

similar to that used in thermodynamics [4]. In thermodynamics heat
diffuses in the system from hotter to cooler regions until equilibrium is

established in the system. Making the analogy between temperature and

mean modal energy, SEA adopts the vastly simplifying diffuse field
assumption to analyse high frequency structural vibrations. Although it

is a perfectly valid assumption for a system to have the same temperature
at steady state, the validity of SEA's equipartition assumption may be

criticised, as it is known to be not satisfied at all circumstances [5].



16

Recently Langley [50] has developed an extended version of SEA known
as Wave Intensity Analysis (WIA). The method follows closely the steps

of conventional wave approach to SEA save that the wave field is not
assumed to be diffuse. Rather the directional dependence of the wave

field is represented in terms of shape functions. From a modal point of

view, the energy of a mode depends upon the direction of the underlying

wave components. The shape functions of the random wave field are
taken as a finite Fourier series (see chapter 4), and a set of linear equa-

tions which relate the input energies to the dissipated and transmitted

energies of the subsystems are derived. The coefficients of the linear

equations are expressed in terms of wave transmission and reflection

coefficients between the subsystems, and the resulting matrix is solved

to yield the energies of each subsystem.

In reference [50] the method was applied to the flexural vibrations of

three and four plates coupled in a row, and improved results were ob-
tained compared to those of SEA. Although in principle the method is

applicable to the same range of structures as SEA, it has not been ap-

plied to any other case other than those mentioned before. Therefore the

method needs to be further developed and validated by applying it to

different cases.

1.4 SCOPE OF THE PRESENT WORK.

Having reviewed previous work on the high frequency vibration analysis

of plate structures, a number of unresolved questions can be listed as

follows:-

(i). Although it has been shown that the dynamic stiffness method

may be used as a deterministic approach to the high frequency vi-

bration analysis of a certain class of plate structures, in its present
form it is restricted to only flexural vibration analysis. The

method therefore needs to be extended to include in-plane longi-

tudinal and shear degrees of freedom.

(ii). In situations which favour the application of SEA both in

terms of feasibility and usefulness, one has to rely on whatever re-
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suits SEA has yielded. There is generally no other "exact" method

available to validate the SEA results, and the "right" answer is
usually unknown.

(iii). Even though all of the usual requirements for the successful

implementation of SEA have been satisfied, the method is known

to give poor results in some applications. The reasons why SEA
produces such poor results require further investigation.

(iv). As mentioned previously almost all of the studies which

have investigated the importance of in-plane energy transmission

have used SEA without a validating "exact" analysis. This raises

the questions: a) The inclusion of in-plane motion may shift the
SEA results in the "right" direction, but is this a true physical

model of what is really happening? b) How important is in-plane

energy transmission in realistic situations?

The present study is a response to these issues. The three major goals of

the work are:-

(i). The extension of the exact dynamic stiffness technique to in-

clude in-plane effects.

(ii). The extension of the Wave Intensity Analysis (WIA) method

to in-plane vibrations, and use of this method to identify some of

the reasons for the poor performance of SEA in certain applica-

tions.

(iii). A systematic assessment of effect of in-plane vibrations.

1.5 LAYOUT OF THESIS.

In chapter 2 the standard dynamic stiffness method is extended to deal
with the case of in-plane vibrations. This allows exact results for the
high frequency vibrations of a large class of plate structures to be ob-

tained.



18

Chapter 3 contains a brief summary of the SEA approach and details are

given concerning the application of SEA to plate structures. This serves
as a necessary introduction to chapter 4 which concerns the Wave In-

tensity Analysis Method. An existing WIA formulation is extended to

include in-plane vibrations, and the technique is illustrated by applica-

tion to an L-shaped plate structure.

In chapter 5 all three methods are applied to a wide range of plate

structures, such as plate assemblies coupled in a row by either stringers
or simple supports, closed section plate assemblies, and plates coupled

in L, T and cross junctions. The results of SEA and WIA are compared

with exact dynamic stiffness analysis. A thorough investigation of the

importance of in-plane energy transmission is performed.

Finally, in chapter 6 the present study is recapitulated. Conclusions are

drawn and recommendations for future work are made.
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Fig. 1.2 a) General View of a Ship	
b)

b) Simplified Cross Section Through the Ship Structure
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2 DYNAMIC STIFFNESS METHOD.

2.1 INTRODUCTION.

The method of approach of dynamic stiffness technique has been de-

scribed in section 1.2.2. In what follows the expressions for bending

moment, lateral and in-plane shear forces, and in-plane tension force
will be derived from governing differential equations. Then assuming
suitable deflection shapes the displacement expressions which are asso-

ciated with these forces and moment will be obtained so that the differ-

ential equations may be solved to yield the dynamic stiffness matrix of a

particular plate.

2.2 DYNAMIC STIFFNESS MATRICES IN LOCAL

CO-ORDINATES.

A typical structure which consists of several panels and beams is de-

picted in Fig. 2.1. The common edge where the plates and beam meet has
the same length for both plates and the beam. It is assumed that:

a) The plates are homogenous
b) Isotropic
c) Elastic and of uniform thickness.

The analysis can then be based on the standard theory of thin plates
provided that the plate thickness, h, is not comparable to the wave num-
ber [28], k, i.e. kh<1: this is the appropriate condition for negligible

shear deformation and rotational inertia. In the following derivations the

standard theory will be used throughout.

During vibration the edges of the j'th plate are subjected to systems of
edge forces and moment as shown in Fig. 2.2.b, whose magnitudes per

unit length are

M TNS M T N}11 ,	 I)	 ,	 ,	 23 , 2)	 23 (2.1)



F° = P°d°
J	 P

(2.7),(2.8)
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Here S is lateral shear force, M is moment about an edge, T is an

in-plane shear force, and N is an in-plane tension/compression. The suf-

fixes 1 and 2 refer to the transverse edges of the plate, while j identifies
the plate under consideration.

The displacements corresponding respectively to these edge forces are

twif , 011, vlil uli/ w212 92p v2.17112j1

	

(2.2)

where 0 represents a rotation about the edge and w, v, u represent trans-

lational displacements as shown in Fig. 2.2.a.

It is clear that the complete system of edge forces and displacements
shown in Fig. 2.2.b can be divided into two uncoupled systems. The first
S M S and M the second T N T and N which are known as2, ,	2,,	 if	 2j
the out-of-plane and in-plane systems respectively. The first set corre-

spond to the displacements iv 1 , 0 j , w 2 j , 02 j , the latter to v kl , u 1 , v2 j,

One may therefore define the column vectors d; and dji° of the edge dis-

placements by the equations

F° = M S Mlp lp 2p 2 ill

Fin = lp N lp T2j ,N 2j}

d° ={iv 0 ivj	 1j, 1 j	 2./ , 2 j

d in = iv u v . u2}
1./ 

(2.3),(2.4)

(2.5),(2.6)

and introduce 4x4 dynamic stiffness matrices r, and P ii° by the equa-

tions

the superscripts "o" and "in" in the above matrices denote out-of-plane

and in-plane respectively, and j represents the plate number in a struc-

ture. Since out-of-plane and in-plane forces are not coupled, it is con-
venient to establish the dynamic stiffness matrices separately in two

phases and then combine them into a comprehensive matrix.



D— 	
12(1— vf2)

(2.10)

w = 0	 and
2	 2

ow	 iv ,.,
+ v— = ugy 2 	 ox 2 (2.11)
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2.2.1 OUT-OF-PLANE STIFFNESS MATRIX.

Considering an individual panel of length L and width b (Fig. 2.1) and

taking the local co-ordinates, x in the longitudinal direction and y in the

transverse direction, the equation governing the out-of-plane response of

an isotropic thin plate for free vibrations is [13]

Di V4w +pihjW = 0	 j=1,2...	 (2.9)

where, V4 is the biharmonic differential operator (i.e. V4 = V2V2,

V2 = 02/0x2 + 02/Oy2 in rectangular co-ordinates), w is the out-of-plane

displacement, pi is the mass per unit volume, hi is the thickness and Di is
the bending rigidity of plate given by

where E denotes the modulus of elasticity and v the Poisson ratio for
1

the material.

To model the internal losses a material loss factor, rip may be intro-

duced. Then one can replace all the occurrences of Young's modulus in

the analysis by the complex modulus Ej (l+irij ), where i=/'i.

The plates are simply-supported along the longitudinal edges. Hence for

a simply-supported edge, the boundary conditions are: zero out-of-plane

displacement and bending moment, that is at y=0 and y=b (Fig. 2.1):

The out-of-plane deflection can be written as

w(x, y, t)= W„(x, t)sinril
	

n=1, 2, ...	 (2.12)
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where the subscript n is used to denote the fact that for each value of n
there is a different function y that satisfies the differential equation and
the particular boundary conditions, yet it will be omitted later for sim-
plicity.

The deflection function (2.12) exactly satisfies the governing field equa-
tion (2.9) and the simply supported boundary conditions (2.11) along
y=0 and y=b. Substituting expression (2.12) into equation (2.9) yields

[D JW„'" —2kD,W"+ Dik,24W„+ pjhjYfrnisin(kny)= 0 	 (2.13)

where each prime indicates one differentiation with respect to x and
k„= (ng I b). Multiplication of both sides of equation (2.13) by sin(k,,,y)

and integration over y from 0 to b produces

—2kDi Wn"+ Dik„V„+piliffi„. 0	 (2.14)

Here In has been changed to n and use has been made of the orthogonal-
ity relation

— sin'	 sm2 r	
b

. (null . (n Idy =
b	

10 if n

bI If n = tn.
(2.15)

The problem is then essentially one dimensional. Assuming a harmonic
response, the out-of-plane displacement of plate j has an x dependency
in the form:

W(x, t) exp(rx+ /cot)	 (2.16)

TJsing the displacement function (2.16), equation (2.14) may be rewritten
as

r4 —2k 2r2 + k4 
ph

'
d 

= 0
	

(2.17)
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Equation (2.17) is a fourth-order linear, homogeneous, ordinary differ-

ential equation. Its characteristic equation for an exponential function
solution is the biquadratic. The solution of equation (2.17) gives

4

W„(x)= EA„,nexp(rn„,x)
	

(2.18)
nr-1

Here A nm terms are integration constants ' rnm, namely, +rn, —rn , -FF„, and

terms are four roots of equation (2.17), where

rn = ±(kn2 kB2 )ll2

jl = 
+(kn2 ki201/2

and kB is given by

2
P ,h,c° — B =

Note that T,, is imaginary for any given co whenever ñ n, where

b 1/2n = — kB
71"

(2.19)

(2.20)

(2.21)

(2.22)

However, that would not bring any extra difficulty in calculations, as all

the quantities are already complex if the structural damping is intro-

duced.

Using expression (2.18) the out-of-plane response of a plate can be

written as

4

w(x,y,t)=ZAnm exp(rnnex)sin(kny)exp(icot)	 (2.23)
nt 1

The final form of the displacement given by eqn (2.23) may be used to
express the displacement wi and rotation 0f of the plate edge in terms of



c1°. = R A
J	 J J

(2.25)

27

the integration constants. To avoid confusion, first two roots of equation
(2.17) are renamed as r and latter two as r21

eu

w2)
02

—	 —

1

erlb

_	 r 1 e b

1

—11
e ri b

rb—re '1

1

r2

e12"

r2e r2 b

1

—r2

e r2 b

—r	 r
2e 	 b

A,

A2

A,

A4

(2.24)

where w 2j0 and w ' 0 the displacements and rotations at x=0 and x=bif	 j	 2./
respectively, as shown in Fig. 2.2.a. At this stage the suffix n is dropped
for convenience, although it should be noted that all of the following

equations relate to a prescribed value of n.

For the ease of reference in later sections, the above equation is rewrit-
ten in matrix form as

Before proceeding any further, it should be noted that exponential en-

tries of the equation (2.24) may numerically overflow when the matrix is
computed in its original form, because real part of r can, sometimes, be

large and positive. To avoid this numerical difficulty the constant A.

may be replaced by AAm exp(r„,b) in which case the first column of the

above matrix becomes

[e rib rle-ri b 1 r,	 (2.26)

Other entries of the matrix may be modified in a similar manner. To

provide consistency throughout the calculations all occurrences of A

can also be scaled using the above procedure. However this scaling pro-

cedure imposes restriction on the selection of the position of point force:

this issue will be discussed in section 5.3.1.
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The tractions which are shown in Fig. 2.2.b, namely, effective shear
force, Si, and bending moment, MI, per unit length that are related to

out-of-plane displacement are formulated as [13]

33
Oww

S =	 + (2	 ) 

 

Oxdy2OX
(2.27)

	

w	
w

M = L)(

2

--F v —2 )

	

gX 2	 gy2
(2.28)

In equation (2.27) allowance has been made for the Kirchhoff edge ef-

fect. Using equation (2.23), equation (2.27) and (2.28) may be written in
terms of amplitudes A.

Si)

S2j

M2 j

=D

a12	 a13	 a14
a21	 a22	 an	 a33

a31	 a32	 a33	 a34

a41	 a42	 a43	 a44

A2

A3

A4

(2.29)

The above expression may be put in matrix form as

F:	 (2.30)

If equation (2.30) is combined with equation (2.25), the constants Azi
may be eliminated and the edge tractions are then written in terms of
edge displacements as

F: = P:d°,	 (2.31)

where P: is given by

P° it°R 1
J	 J J

(2.32)



Bj= 	
2(1+ vj)

1+ Vi

= 1— V

29

	

and (Fj° )1 ' = (S1 , 	 s m ) 0°)T .(w	 and P° is the 4x4

	

I	 1 i , 2.1 ,	 2 .1 )	 i	 11, o11 7w 21, o 21) 	 J

out-of-plane dynamic stiffness matrix of plate]. Superscript "o" denotes

the out-of-plane.

2.2.2 IN-PLANE STIFFNESS MATRIX.

The in plane field equations along the longitudinal direction, u, and

transverse direction, v, are coupled to each other, hence, they should be

solved simultaneously. The differential equations which govern the in-

plane deflections of the j'th plate for free vibration can be expressed as
[13]

2u	 2v	 2v

Bi (l+r) ) ex	 2 + ey2 +	 ey	 = 0 (2.33)

(2.34)

	

0 2v	 e 2u	 2u

Bi (1+ y j ) 	 2 +B—+By ex ey i3= 0
Oy

where B. and 7.  are given by

As the plate is simply-supported at y=0 and y=b, there is no displace-
ment along the longitudinal direction at these two edges; therefore it can

be expanded as a Fourier sine series. However the plate is free to move
in the transverse direction at the simply-supported edges; thus v can be
expanded as a Fourier cosine series. That is to say:

u(x,y,t)=ZU„(x,t)sin( n7r1	 n=1,2,...	 (2.35)



U n0 = [01 (2 41)
[Bi (1+rj )A,2 — Bi k,72 +pi co2 	 —13,y,1%

13 i y /1	 —k„2B)(1+ yj )+B/12 + pj a)2 1[V,, 0 1 	 0	 * -
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v(x, y,t)= E Vn(x,t)cos(  
b

"1	 n-1,2,...	 (2.36)

Substituting equations (2.35) and (2.36) into (2.33) and (2.34), reduces

the field equations, related to the in-plane motion of plate j, to one di-

mensional differential equations in terms of spatial variable x, in the
form

ppn= 0	 (2.37)

and

—kn2.13j (1+ y j )Vn +13,17,2"+Bi yi k„U,1,— p j 17„= 0	 (2.38)

It is now assumed that the in-plane displacements have exponential x de-
pendency in the form

U„(x,t)=Uno exp(Ax +tan)	 (2.39)

V„(x,t)= Vno exp(Ax+icot)	 (2.40)

Inserting equations (2.39) and (2.40) into expressions (2.37) and (2.38)

leads to the simultaneous equations in terms Uno and Vno

When the above equation is solved for A the four roots are:

12 = kn2  kz2,	 212 = ±likn2 _ icL2	 (2.42)

22 = kn2 _ k27.	 23,4 = ±Vkn2 _ k?,	 (2.43)

where kL and kT are given by



2/ 1 	2
k2 = Pico 

L	 E
(2.44)
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lc2 =
2p

J
co2(1 + v 	

(2.45)

Equations (2.42) and (2.43) each yield two roots which are either real or
complex. Renaming first and latter two roots that are obtained from

equations (2.42) and (2.43) as Al , —21 , and 22, —22 respectively, then Vn

and Un may be rewritten as

[ Vni—[kUn	21

irCie21x 1,1- 
k

22 — 
k 

221[C,

—A 	

e22x

iLC2e Alx L n	 n RC4e 22x
(2.46)

where C, m=1,...,4 are the amplitudes.

The general solution for the in-plane displacements can be written as

C3e12x

v(x, y,t)={[kn kn]	 +[22 —221	 cos(kny)exp(icot) (2.47)
C2e A'	 C1e-22x

{	
Cie2lx I	 C3e22x

u(x,y,t)= [A, —2,][ +Pcn kn ]	 sin(kny)exp(icot) (2.48)
C2e-2'	 Cle 2'

The in-plane edge displacements v, and u (see Fig. 2.2.a) can be ex-

pressed in terms of the amplitudes C. , using the general form of in-plane

displacements given by equations (2.47) and (2.48) as
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V1 k,,

2,1

2 —2 2	 -

kn

Cl

C2

V2 kneA'b kne 2 2 e 221' —112 e 22b C3
„b

-A. l
A l

e —21e2'b kneA2b kn ea2b _ C 4

Equation (2.49) may be rewritten in the matrix form as

(2.49)

= V./	 (2.50)

The forces, N , and T, which are related

given by the formulae

Du
0x±N j=i3j(1+y,)(—

to in-plane displacements

,av

are

(2.51)
gy)

D
Tj=

du	 Dv
(2.52)

dy	 Ox

Using the final form of in-plane displacement expressions (2.47) and

(2.48) and traction equations (2.51) and (2.52), the in-plane edge trac-

tions of panel j may be represented in terms of Cm , after necessary ma-

nipulations, in the form

-	 _

7 J

N,,

723
=E

1

ell	 c12	 Co	 c,4

c21	 e22	 e23	 e24

C31	 C32	 C33	 C34

C,

c 2

C3
(2.53)

N2 - _ C41e41	 e42	 e43	 e44 4

Equation (2.53) may be rewritten in matrix form as

= (57C,	 (2.54)
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In order to eliminate constants C from equation (2.54) the in-plane dis-

placement matrix which is given by equation (2.50) may be inverted and

when the result is substituted into equation (2.54), an expression which

relates the edge tractions Nj, and T, to the deflections u, and v, can be

obtained.

=	 fin	 (2.55)

P is given by

= 47Q--;
	

(2.56)

where (F T) = (Tip Nip T2 j , N2 j ), (d fin • T
) = (vif , u1j' 

v
2j) 

u2j ) and P"' is the 4x4 J

in-plane dynamic stiffness matrix of the plate j, superscript "in" means

the variables are in the in-plane direction.

2.2.3 COMPLETE STIFFNESS MATRIX OF A SINGLE PLATE.

Having determined the out-of-plane and in-plane dynamic stiffness ma-
trices of a plate, it is a simple matter to construct the complete stiffness

matrix, K, of a single plate in local co-ordinates. To achieve this, all

one needs is to get the appropriate out-of-plane and in-plane stiffness
terms, given in the previous two sections, and insert them into the rele-

vant places of complete dynamic stiffness matrix. Before forming the
complete stiffness matrix of a single plate, to avoid confusion in this

process and to show clearly which entry of in-plane and out-of-plane
stiffness matrices fits into which part of complete stiffness matrix, each

four by four matrix Pi ' and Pi° of equations (2.55) and (2.31), respec-
tively, is partitioned into two by two sub matrices, leading to the ex-
pressions

-7'1,

T2j

N2j_	 _

pin

Pm

13in11 3j

Vlj

Ulj

V2j

1,12

(2.57)



MI;

M2j

2j

Hence, the relationship between

for plate j can be written as

-
ij

(2.58)
Po

tractions and edge displacements

po
iJ

pz

edge

P2°./

(2.59)

_J

0

0

3j

lj

PI j

M21

0

po

0

po

V13

Ulf

wlj

elj

V23

W2 j

021

0

P2j

0

P4,

Pin2j

0

p,r;

0
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and

an eight by eight matrix composed of two by two sub-matrices. The lo-

cation of zeros in the above matrix is a consequence of the fact that there
is no coupling between in-plane edge forces and out-plane displace-

ments, and vice versa. It follows from the theory of reciprocity [28] that

the matrix of equation (2.59) is symmetric. Therefore

	

P in = P in	 and3j	 2j	 3j	 2j

In abbreviated form equation (2.59) may be rewritten as

Fcj =Kcidci

(2.60)

(2.61)

where F is the complete force vector, K is the complete dynamic stiff-c,	 c,
ness matrix, ci ci is the complete set of displacements for plate j. The term
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complete" is used here to show that the vectors and stiffness matrix

contain a complete set of degrees of freedom of the sub-system. It is em-
phasised that equation (2.61) relates to a specific value of n. Considering

the total number of Fourier terms, n, the equation (2.61) will take the

form:-

= EK„,dgn	 (2.61.a)

2.2.4 DYNAMIC STIFFNESS MATRIX OF A STRINGER.

The previous section has considered the dynamic stiffness matrix of a
single plate (labelled j). In what follows the dynamic stiffness matrix of

a stringer is developed; this allows the situation in which two plates are

coupled via a stringer to be modelled, as explained in section 2.4.

The stiffeners which are often used in aircraft structures may be consid-

ered as open "thin-walled" beams. Assuming the stiffener is attached to

the panel along a line in the transverse direction, and simply-supported

at both ends, the dynamic stiffness matrix of a stringer of any cross sec-
tion may be derived using a method developed by Langley [51]. In this
approach cross sectional distortion of stiffeners during vibration is ne-

glected for simplicity. However it is stated [52] that internal degrees of

freedom of the beam should be taken into account in dynamic modelling

as the resonance frequency of internal vibration is directly proportional
to n.

The cross section of a typical stringer is depicted in Fig. 2.3, where

point S is the shear centre, P is the attachment point to the panel and is
taken to lie in the same vertical plane as S, and C is the centroid of the

beam. The offsets c o , c l , c 2 between S, P and C are the various distances

as shown in the figure. The rotation of the stiffener is represented by 0,

and the translational displacements of shear centre, attachment point,
and centroid are (uo , vo , w0), (u, v, 11), (u, v, wc) respectively.
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The forces and moments developed at the points S and C are shown in
Fig. 2.4, where E and G are the moduli of elasticity and rigidity, p is the

density per unit length, A is the cross sectional area of the beam, i i , /2,

are second moments of area, with respect to neutral axes, along the z and

y directions respectively, /12 is the product moment of inertia, I; and J

are the torsional constants. Finally, a dash represents derivative with re-

spect to the x co-ordinate.

Normally, the area of contact between the plate and stiffener is small in

comparison to the area of panel. The stiffener acts along the width of the

panel, effectively as a discontinuity in the plate moment and force distri-

butions. The forces and moments acting on the stringer are exactly the

same in magnitude as the forces and moments acting on the plate, yet in
opposite direction to those of the plate.

An exaggerated view of the supporting stiffener in both undisplaced and

displaced position is shown in Fig. 2.3. In order to facilitate later com-

parisons between the stiffener and plate deflections, the beam equations

will be expressed only at the point of attachment, P. Since P is the point
of contact between the stringer and the plate, the displacement and slope
of the point P are the same as denoted by the plate deflection, w, and

slope O. Also the deflections u and v of the stringer in the x and y direc-

tion respectively would be the same as that of the plate at the contact
point.

Referring to Fig. 2.3, the motions at the points S and C are generally dif-
ferent from those at P. However, by using subscripts "o" and "c" for

motions at the points S and C respectively and unscripted variables for
point P, the following linear relations may be derived when the slope 0

is assumed to be small.

Wo = IV,	 Uc = U,	 Vo = V ± Co O
	

(2.62),(2.63),(2.64)

= w -I- C20,	 Vc = V — CI O
	

(2.65),(2.66)

When the stringer is deformed, the elastic forces of the stringer may be
combined into resultant vertical and horizontal forces through the shear
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centre, S, of the cross section and a resultant moment about S. The iner-
tial forces of the stringer, however, are more conveniently summed into

similar resultants through and about the centroid, C. In addition, there
are forces and moments transmitted from the panel to the stiffener at the

attachment point, P, which is immediately beneath the shear centre. This
location is the line of action of the stringer forces and moments.

Considering the equilibrium of forces and moments, the foregoing forces
and moment may be expressed as

EAc 2vm + EAc	 — EA u" + pAfi— pAc 10' — pAc	 = G (2.67)

E12 (v +	 + EInwh' + pA(i3 — ci O)= H (2.68)

+ Eldv + co Or + pA(it)+ c2 0)= Q (2.69)

Ereiv - GJO" + pi,	 coH — pA(co + 	 +pAc2i1), = M (2.70)

By substituting equation (2.68) into (2.70) H may be eliminated.

Since the stringer is simply-supported at the ends, the displacements u,

v, w may be expanded in a Fourier series using the same approach as in

section 2.2.1 and 2.2.2. Hence, for the present co-ordinate system shown

in Fig. 2.4 displacements can be expressed as

u(x,y,t)=U n(y)cos(lcx)exp(icot)
	

(2.71)

v(x,y,t)=Vn(y)sin(k„x)exp(icot)
	

(2.72)

w(x ,y ,t) = Wn(y)sin(knx)exp(icot)
	

(2.73)

Differentiating the above equations with respect to x and inserting into
equations (2.67), (2.68), (2.69), and (2.70), the forces and moment
which act at the attachment point of the stiffener may be written in terms

of the displacements in the form
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_	 -
G

- -
d11	 d12	 d13	 d14

-
U

H d22 	 d23	 d24 V
(2.74)

Q
sym.	

d33	 d34 Tv

M d44 0-

where,

dii = EAlc n2 — pAco2 ,	 da = —EAc 2k3 + pAco2k„,	 (2.75),(2.76)

d13 = —EAc 1ic„3 + pAcilcco2 ,	 dm = 0,	 (2.77),(2.78)

d22 = (EI2 + EAc 22 )k„4 — pA(1+41c2 )co2 ,	 (2.79)

d23 = (E/12 + EA c ic2 )1c4 — pAcic2k2o2 ,	 (2.80)

d24 = El2c0k„4 + pAci co2	 (2.81)

d33 = (Eli + EAc i2 )k„4 — pA(1+ cl2k)co2	 (2.82)

d34 = EI12co k,74 — pAc2 co2	 (2.83)

du = (Er+ EI24)k,47 +G.Ik,—(pIp + pAci2 + pAc22 )co2	 (2.84)

The symmetric matrix given in equation (2.74) constitutes the dynamic
stiffness matrix of a stiffener. When the plates are elastically supported,

this matrix may be used to implement the effect of stringers.

2.3 TRANSFORMATION TO GLOBAL CO-ORDINATES.

The stiffness matrices derived in the previous sections used a system of
local co-ordinates as the in-plane, and bending components originally
chosen for this system. A different co-ordinate system is used for every

element to ease computation. In fact it is a simple matter to transform
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the co-ordinates of the displacement and force components to any other

co-ordinate system. Clearly it is necessary to do so before an assembly
of the structure can be attempted, because the axes to which the dis-

placement and force vectors at the two ends of an element are related
should be chosen in such a way that when the two elements are con-

nected together during the process of assembling, the displacement and

the force at node-2 of left-hand element in Fig. 2.5.b are related to the
same axes as the displacement and force vectors at node-1 of the

right-hand element in the same figure.

In the case of structures having junctions lying on a straight line, as in

Fig. 2.7.b and 2.7.c, this requirement amounts simply to the fact that the

traction and deflection vectors at both ends of the sub-structure must be
related to the same global axes. In the case of orthogonally (or at any

angle) connected elements (see Fig. 2.7.a) it may be considered that the

element makes an angle 0 from the junction as shown in Fig. 2.5.a; the
requirement means that the reference axes of the element are obtained by

rotating the global axes by an angle O.

The common global axes system will be denoted by xg, yg, zg, and local

system x, y, z as before. Initially, it will be more convenient to specify

the element nodes by their global co-ordinates and to establish from

these the local co-ordinates, thus requiring an inverse transformation.

The two systems of co-ordinates are shown in Fig. 2.6. By assuming that
the local co-ordinate system (x, y, z) can be obtained by rotating (xg , yg,

zg) system about yg axis by an angle 0 as shown in Fig. 2.6.a, the trans-

formation of the displacements and forces of a node from the global to
local is accomplished by a matrix A giving

V e j

lie)

IV ej

0 ....

= A,

—	 —vgV

ligej

Wgej

._ ( .1 ....

T,
Nei

S ej

Me
_ 	 J

=A 

Te,—

Negi

S:

Mg_	 el_

(2.85),(2.86)
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where subscript e denotes the edge of the plate j and it is either 1 or 2,
and superscript g represents the global nature of the variable.

Using Fig. 2.6.b the entries of A3 may be written as

A=

1

0

0

0

0	 0

cos°	 sin 0
—sin 0	 cos 0

0	 0

0-

0

0

1

(2.87)

For the whole set of forces on the edges of an element, one may there-

fore write

By the rules of orthogonal transformation the stiffness matrix of an ele-

ment in the global co-ordinates becomes

Kg= TTK T
	

(2.89)

where K1 represents 8x8 dynamic stiffness matrix of the plate j, and T is

the transformation matrix. In both of the above equations, (2.88) and

(2.89), T is given by

T=i
A

[OA

01
(2.90)

a diagonal matrix built up of A matrices.

Finally, the tractions of the plate j in global co-ordinates may be ex-

pressed as

Fg = Kg dg9	 9 9 (2.91)
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2.4 ASSEMBLY AND SOLUTION OF EQUATIONS.

Once the element characteristics, namely, the element stiffness matrices

and element vectors are found in a common global co-ordinate system,

the next step is to construct the overall system equations for the structure
under consideration.

The procedure of assembling the element matrices and vectors is based

on the requirement of " compatibility" at the element nodes. This means

that at the nodes where elements are connected, the values of the un-

known nodal degrees of freedom, v, u, w, 0, are the same for all the ele-

ments joining at that node. As the conditions of overall equilibrium have

already been satisfied within an element all that is necessary is to estab-

lish equilibrium conditions at the nodes of the structure. The resulting

equations will contain the displacements as unknowns, and once these
have been solved the structural problem is determined.

Representing the nodal displacement, d, and forces, F, as

d l i	 F11

d =[ :	 F= (2.92),(2.93)

for the whole structure in which all elements participate, standard finite

element techniques [1] may be used to analyse a structure which consists

of any number of plate and stiffener elements. It should be noted that

from this section onwards even though the subscript "g" is omitted for

simplicity, all the variables correspond to global co-ordinates unless oth-

erwise stated.

If now the equilibrium conditions of a typical node, i, are to be estab-

lished, each component of F. has, in turn, to be equated to the sum of the

component forces contributed by the elements meeting at the node. In

this analysis node (junction) is defined as a x=constant line as shown in

Fig. 2.5, rather than a point contrary to the definition of node in standard
finite element literature, where two plates and a stringer meet.
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In this respect, there are three types of junctions considered throughout

this research. These are:

(i). Two directly coupled plate elements at an angle as illustrated
in Fig. 2.7.a, in which case force components which contains the element

forces and discrete forces acting on the particular junction may be writ-
ten in the form

2

F,=IF,5=F,H-F,2+f,	 (2.94)
s-i

where	 is the force contributing to node i by element 1 of node i, Fi2 by

element 2 of node i, and fi is the nodal force vector which contains the

details of the external forces applied in a particular direction. The de-
tailed derivation of the force vector is given in section 2.6.

Substituting from the definition (2.93) the forces contributing to node i

are

F, =	 +10d, + f,	 (2.95)

For the sake of simplicity subscript j is also removed, because a node

replaces an edge, and displacements are the same for both of the adja-

cent plates at a node i.

(ii). Two directly coupled coplanar plates via a simple support

(see Fig. 2.7.b). Simple supports restrain any movement in u, v, w direc-

tion, yet allow rotation, O. In this sense, two orthogonally directly cou-
pled plates are akin to two coplanar simply supported plates, provide

that in-plane effects are neglected. Therefore, the force vector may be

obtained from equation (2.95) by making necessary alterations, for any
constraints that are imposed, on the vector d i which contains the degrees

of freedom of each node.

(iii). Elastically supported plates, that is to say, row of flat plates

that are connected together over a beam, rather than a simple support, as
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shown in Fig. 2.7.c. The stiffener allows for translational as well as rota-

tional motions of coupled plates.

For this case assembly of forces at the junctions becomes

F, = (1(!+1( +1(,)d, +f,	 (2.96)

where K, is the stiffness matrix of stringer, formed by using the appro-

priate values of equations (2.75)-(2.84).

In determining the structure dynamic stiffness matrix for this case, use is
made of the fact that corresponding element displacement components at

a common structure node must be equal. Clearly the process of writing

equilibrium equations (or, more correctly, equations of motions) for each

node is equivalent to adding corresponding element (plate and beam)

stiffness components to yield the structure dynamic stiffness component.

Equations (2.95) and (2.96) may be solved using the standard finite ele-
ment techniques to obtain the response vector d, which contains the

relevant information about the displacements of all the nodes of the

structure considered.

2.5 PLATE VIBRATIONAL ENERGIES.

After determining the response of the structure at each node, suitable

expressions for the average plate vibrational energies need to be derived

with the aim of relating them to the transmitted vibration energy
throughout the structure. In order to compare the results of dynamic

stiffness method with the predictions of Statistical Energy Analysis

(SEA) temporal and spatial averages of plate vibrational energies need to

be calculated as the examination of such relations are central to SEA,

(see chapter 3). In what follows the kinetic energy of plate j is derived

for a prescribed value of n.

In SEA it is assumed that the response of a dynamic system is mainly

due to the responses of the modes which are resonant in a particular fre-

quency band and interactions of non-resonant modes are negligible (see
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section 3.2.2); it then follows that computation of the kinetic energy of

each sub-structure would be enough to determine the vibrational energies
of the complete structure, since for the resonant condition kinetic and

potential energies may be assumed equal when time averaged. Thus the
total energy of subsystem j may be expressed as

(Er') = 2(7j)
	

(2.97)

The time average kinetic energy per unit area of the plate j due to the
out-of-plane component of displacement is given by the expression

,	 b(
f f

dy dx
2,4j 	 Jo	 Ot

(2.98)

where T is the kinetic energy, A is the area of the plate j, and angle

brackets represents the temporal average.

By substituting the assumed harmonic displacement function (2.23) with
equation (2.25) into equation (2.98) it is possible, after differentiating

with respect to time, to express bending component of kinetic energy in

the following form

2

(T o ) = co-[R id ° 1 MIR do]
2A	 J Jj	 J	 J J

(2.99)

where an asterix denotes complex conjugate and m°, is the bending mass

matrix given as

Lb

m° =ph f (p°)
T(

p°
)•

dy cicL
J	 J J	 J	 1 )

0 0

(2.100)

is given by the vector

= [erix e rix er2x e r2x	
(2.101)



2A j	 00 Ot	 Otp f[(1+(lidy dx
L b

1

2	 2

(2.102)
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In the same fashion, the time average kinetic energy per unit area of the

in-plane displacement may be expressed as

Inserting the in-plane displacement functions (2.47) and (2.48) together

with equation (2.50) into equation (2.102) in-plane kinetic energy ex-

pression may be put into the form

(Ti") '' -'21 [Q idi
]
Train [() d]*

where m iin is the in-plane mass matrix given as

mm== i7/1 111(P m )T (P m i f (Pm )T (P m )* 14Y dxj	 j j	 lj	 2j	 2j

00

(2.103)

(2.104)

p lini and p 2inj are the matrix forms of equations (2.47) and (2.48) respec-

tively rewritten in the form,

= [ kne,t, kne A lx 22eA2x 22e Al	 (2.105)

in
P2j = kleix —21e-21x kn e22x —Ice Al	 (2.106)

Finally, if col and co2 are the first and last frequency of the frequency

range of interest, which is wide enough to contain a few resonant modes,
the mean value of out-of-plane and in-plane kinetic energies may be ob-

tained by integrating over the frequency band.

M 1a,/ = 	
,T(r)dco

0)2 — coi) „,,
(2.107)
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(

Tin

 lay
= 	 1 	 7(T/in ) d o

I ' 	(c02— co) 0,,
(2.108)

In obtaining the kinetic energies of the section 5.2 by using the expres-
sions (2.107) and (2.108), the convergence checks revealed that around

25 increments in a given one-third octave frequency band suffice to yield

converged results. The technique used for doing these numerical inte-

grations in the computer program is the Simpson's Rule.

2.6 IMPLEMENTATION OF FORCED VIBRATION.

In almost all practical situations it is the force which is perpendicular to

the plate that causes the vibration, therefore in this section only the re-
sponse due to a force in the out-of-plane direction will be considered.

The spatial dependence of the response of a finite plate to a concentrated

force that varies harmonically in time, and is applied at some arbitrary
location x=x and y=y, , where 0<x <L and 0<y <b as shown in Fig. 2.8.a,

P	 P	 P	 P

is determined by modifying the governing homogenous equation (2.9) of

flexural vibrations

D V4w + p h 11) = F 8(x — x )8(y — yp)
J	 J J	 JP	 P

(2.109)

where F is the magnitude of the applied force on plate j. The force acts
JP

in the same direction as the positive displacement.

Multiplying the right-hand side of equation (2.109), as was done for the
left-hand side during the derivation of necessary equations in section
2.2, and integrating along y yields

[sin(knyp )1Fjp ,5(x —x)
	

(2.110)

With the solution of the free vibration available, the response due to any

prescribed excitation can be readily found. The effect of this discrete

loading is to produce a discontinuity in the out-of-plane shear at the line
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of application. Therefore, in order to implement the x dependency of

excitation, the plate, on which the concentrated force is applied, can be

artificially split into two plates with length x p and (L xp) as illustrated in

Fig. 2.8.b. Now, at distance x p from the edge of the plate another node
has been introduced into the structure, this means that the effect of the

point force may be directly taken into account during the assembly pro-

cedure of the stiffness matrix via the vector fi of equations (2.95) and
(2.96).

2.6.1 AVERAGING POINT FORCES.

SEA is generally concerned with "rain-on-the roof' type excitation, this

type of loading is known to excite all the modes of the system equally,

thus leading to the equipartition of energy between the modes of a com-
ponent [5]. Even though the dynamic stiffness method of this section can

not incorporate rain-on-the roof type of excitation directly, the response

to such loading can be simulated in this analysis by exciting the compo-
nent with point loads over various locations. It is shown [33] that when

these point loads are averaged over point load locations a response

similar to that of rain-on-the roof excitation may be obtained. Energy

transmission between the subsystems is weakly dependent, especially at

high frequencies, on the position of point load locations as the multi

point excitation has an averaging effect [53].

A resonance occurs whenever the excitation frequency, co, equals one of

the corresponding natural frequencies, unless the location of the point of

excitation is such that the corresponding sin(wry p/b) also vanishes.

Therefore, bearing in mind that from some of the point load locations

there will not be any contribution to the excitation, the number of exci-

tation points needs to be carefully decided within the capacity of the
computer.

Consequently, when the total energies are averaged over all the point

load locations it would give a fair representation of the mean energy

over each plate at a discrete frequency. By repeating the above calcula-

tions over a number of frequencies within a frequency range, a quantity

which is directly comparable with SEA may be attained. Hence, corn-
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parison of this quantity with standard SEA computations for energy ratio
will check the appropriateness of the SEA model and predictions.

It is, once again, emphasised that previously given energy expressions

correspond to nth lateral shape function. The complete response is ob-
tained by summing the results over n: the way of determining maximum

number of n is explained in section 5.1.

2.7 EXTENSION TO THE CASES OF A "T" OR CROSS JUNCTION.

With the solution of the two plate junction available, the solutions to

"T" and cross junction problems can be obtained in the same manner as

in section 2.2. When considering the case of "T" or cross junction (see

Fig. 2.9.a and 2.9.b) all one needs to do is transfer all the plate elements

to the same common global co-ordinates, then add the dynamic stiffness

matrices together at this particular junction.

Assuming the plates are transferred to the same axis system equation

(2.95), which accomplishes the assembly of stiffness matrices, these may

be rewritten as follows:

F, = (K; +W +K)d,

F, =(K; +W +K3, +K:1)cl,

for "T" and cross junction respectively.

As a matter of fact, at a junction there could be as many plates as neces-

sary, since this analysis considers elements of a built up structure indi-

vidually. However, in the later sections, for practical purposes, a maxi-

mum of four plates at a junction will be analysed.
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Fig. 2.1 Atypical row of flat plates.

Fig. 2.2 Free body diagram of a plate;
(a) Deflections and rotations,
(b) Forces and moments.

Plate j

T2
-

m,

SS

(a)

SS SS
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Fig. 2.3 Stringer cross section showing undisplaced and displaced positions
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Fig. 2.4 Free body diagram of a stiffener.
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Fig. 2.5
a) Local and global axes system
b) Local and global node numbers
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zg

b)

Fig. 2.6
a) View of global and local axes as seen from +y direction
b) Translation from local to global co-ordinates.
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c)

Fig. 2.7 Junction Types

a) Two rectangular plates joined at right angles,
b) Two simply supported flat plates,
c) Two plates connected over a beam.
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Fig. 2.8 a) Concentrated force acting on the plate
b) Equivalent three plate structure.
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Fig. 2.9 Schematic of a
a) T junction
b) Cross junction
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3 STATISTICAL ENERGY ANALYSIS.

In this chapter the aim is to describe briefly, rather than to derive, the
relationships on which statistical energy analysis is based; for full deri-

vations and details the reader is referred to the books by Lyon [55] and
Cremer et al. [28] and the articles by Fahy [56], and Hodges and Wood-

house [5]. The present summary is provided for two reasons:

1. Results obtained by using the dynamic stiffness method of

chapter two will be used as a bench-mark against which SEA will

be assessed for a range of plate structures.

2. Wave Intensity Analysis (WIA), which is described in chapter

four, is an extended form of SEA. It was therefore felt necessary
to review the basics of SEA as the fundamental groundwork for

WIA.

3.1 METHOD OF APPROACH.

Statistical Energy Analysis (SEA), which is one of the most commonly

used approaches in the high frequency vibration analysis of complex

structures, is described by its originator [55] as follows

"Statistical emphasises that the systems being studied are presumed to

be drawn from statistical populations having known distributions of their

dynamical parameters. Energy denotes the primary variable of interest.

Other dynamical variables are found from the energy of vibration. The

term Analysis is used to emphasise that SEA is an approach to problems

rather than a particular technique."

The method is generally applied to situations where either an exact solu-

tion is quite cumbersome or impossible or at an early design stage where

the details of the structure are not known clearly. Because of the lack of

detailed knowledge of the structural properties (physical or geometric),

SEA tries to describe the average dynamics of the system through the

ensemble of the possible systems, having random parameters, excited
over broad frequency bands.
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The philosophy behind the SEA approach to the vibration analysis of a

structure can be briefly outlined as follows:

(i). The analysis starts with the identification of a number of

"subsystems" into which the system (structure) is divided.

(ii). The subsystems can be not only finite linear elastic structural

components, but also wave types within a component, as in the
case of flexural, longitudinal, and shear waves of a plate.

(iii). SEA uses vibrational energy to describe the state of a system,

and thus the "unknown" in each subsystem is the energy level of

that particular subsystem. Other response variables, such as dis-

placement, stress, and acceleration may be estimated from the en-

ergy. The method assumes that the response of the system is

mainly dominated by resonant modes, and thus the time averaged

potential and kinetic energies are equal.

(iv). The energy dissipated by a subsystem is characterised by the

dissipative loss factor (see equation 3.3), and that transferred to

the connected subsystems by the coupling loss factor as described

in section 3.2.1.

(v). SEA aims to derive a set of linear equations for subsystem en-

ergy levels by considering energy flow. The use of energy vari-

ables allows the use of simple power balance equations to describe

the interaction between coupled subsystems.

The linear equations can be derived by "modal" or "wave" methods,

which can be generally expected to lead to the same results [5], as dis-

cussed in the following sections.

3.1.1 MODAL APPROACH.

After dividing a complex system into several subsystems, each subsys-
tem is described as a set of modes or "oscillators", and energy flow
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relationships are established between the subsystems by considering
modal coupling. The energy flow from one subsystem to another can be
expected to be maximum when the uncoupled natural frequencies of the

modes in the subsystems are near to each other.

If it is assumed that each mode in a subsystem has the same energy [56],

(this assumption is known as the equipartition of modal energy hypothe-

sis in SEA), and that the power exchange between two modes in differ-

ent subsystems is proportional to their energy difference and is not af-
fected by the presence of other modes, then the energy flow between two

subsystems may be found by adding the power between all modes. This

type of analysis is actually an extension of the analysis of two coupled

simple oscillators in which energy flow is modelled akin to that of heat

flow between coupled conductors [5]. Thus, the study of two coupled

oscillators may be considered as the fundamental element in the modal
approach of SEA equations [23].

The main advantage of the modal approach is that in principle it enables

one to formulate systems possessing any kind of arbitrary complexity
and dimensionality [57].

3.1.2 WAVE APPROACH.

This approach is based on the consideration of two continuous subsys-

tems, rather than the two coupled oscillators of modal analysis [55,58].

In this approach the power exchange is considered to be due to the

transmission of waves incident upon a subsystem boundary. The energy

flow between the subsystems is modelled by a wave transmission process
which uses the transmission coefficients to calculate the coupling loss
factors, as described in section 3.3.

Central to this procedure is the assumption that the wave field is

"diffuse", which means that the wave intensity per unit angle of inci-

dence is constant for all incidence angles [49]. This is the analogy of the

" equipartition" assumption of the modal approach.
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3.2 FUNDAMENTAL SEA EQUATIONS.

The statistical energy analysis of a system starts with writing the power

balance equation of any arbitrary subsystem], regardless of which one of

the aforementioned approaches is used. Considering some kind of exter-

nal source that delivers power into subsystem], this power input is either
dissipated in the subsystem or transferred to other coupled subsystems.

Conservation of energy implies that the sum of dissipated power and

transferred power should be equal to the input power to the subsystem.

In mathematical terms this can be expressed as

where Fr and rid i ss are the input and dissipated powers, and f1 c°uP is the

energy flowing from subsystem j to all other subsystems to which sub-

system] is coupled. The main concern of SEA is with the temporal aver-

ages of the energy flow, and hence by averaging all energy flows over

time, equation (3.1) may be rewritten as

k

(n1m ) = (ridiss ) + E(ric°uP )1	 II
il

(3.2)

where the angle brackets represent time averages. The dissipated power

in subsystem] may be written as

where the constant ri is the average internal loss factor, and <Et is the
temporal average of the total stored energy, which is equivalent to twice

the mean kinetic energy.

Assuming that the input power in the subsystem is known or can be es-

timated, the unknowns in equation (3.2) are the coupling powers and the
averaged response energies. SEA aims to write the average coupling

power from subsystem] to i in terms of the energy variables F, so that
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equation (3.2) becomes a set of linear equations in these variables [55].
The way of doing this constitutes the topic of the next section.

3.2.1 TWO COUPLED OSCILLATORS

Fig. 3.1.a depicts the most general system of two linearly coupled oscil-

lators [58], in which inertia, gyrostatic, and stiffness coupling are all

included. It is assumed that the coupling through the spring of modulus

k is light and the forces f1 (t) and f2(t) are weakly stationary, randomc 
processes. Fig. 3.1.b represents the equivalent SEA model of the oscilla-

tor set schematically. Using equation (3.3) and introducing a coupling

loss factor, rip, it can be shown [55] that the power balance equation

between the oscillator set may be expressed as

( 111:)= 7hco(E1)+07712((E1)—(E2))

	
(3.4)

( r11;)= 772c0(E2)+ (0771(E2) — (El))

	
(3.5)

where El and F2 are the total energies of the oscillators 1 and 2 respec-

tively, and the coupling loss factor, lip , is a parameter which relates the

transmission of energy from one oscillator to the other. These results

have been shown to be valid [58] for any arbitrary coupling strength,

provided that the oscillator energies are suitably defined.

Equation (3.4) and (3.5) constitute the basis of the SEA approach, which

states that energy flow is proportional to the difference in the modal

energy levels of two coupled subsystems. This is similar to heat flow in

thermodynamics, the modal energies of the subsystems being analogous

to temperature [55].

3.2.2. MULTI MODAL SUBSYSTEMS.

Having obtained the two oscillator result, at the second stage SEA tries

to extend these results to the case of two coupled subsystems which each

contain many modes or oscillators; unfortunately the foregoing results
are no longer valid for the power exchange between any two oscillators
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[58]. However, it has been shown that the results hold provided that the
coupling of one subsystem to all the oscillators of the second subsystem
is weak [23] and that the external generalised forces are statistically
independent [59].

If the energy produced by the excitation source in the directly excited

subsystem is greater than the energy transferred to the indirectly driven

subsystem, per unit time, then the subsystems are said to be "weakly

coupled" [59], although this is not the only definition of weak coupling.

A more comprehensive definition and discussion of weak coupling is

given by Langley [34]. If the coupling is strong, the power flow relation-

ships need to be modified, leading to a much more complex form than
those of weak coupling relationships [31].

The requirement for statistically independent generalised forces arises

from the need for the modal responses to be uncorrelated. To this end, it
is normally assumed that the excitation has uniform power spectral

density, and that the spatial cross correlation is zero [5]. Such an excita-

tion is termed as "rain-on-the roof'. This type of excitation also excites

all modes equally, leading to the equipartition of modal energy in a

uniform structure, as well as satisfying the modal incoherence assump-

tion because of the orthogonality of the modes [5]. Even though most of

the studies on SEA are generally concerned with rain-on-the roof type of

excitation, it has been shown [33] that the usual SEA energy flow and

energy expressions may be derived if the system is excited by random

point loads, provided that energy flow and energy variables are averaged

over the range of point load locations.

From a wave point of view, the modal incoherence assumption is analo-

gous to requiring the system to be reverberant. This means that a wave

that is incident on the boundary reflects many times before it eventually

dies out after building up a reverberant field in which distribution of

energy is uniform [5]. One criterion as to whether the system is rever-
berant is that if the reverberant stored energy is greater than the direct
stored energy, the system is said to be reverberant [60]. A more direct

method of measuring the reverberance is discussed in section 5.5.
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If the necessary conditions are met then the power balance equations for
two multi-modal subsystems are found to be [56]:

((E1 ) (E2))(ITin ) = 7001 ) ± Will 7112
n2

(3.6)

(H ) = 772 60(E2)+ wn21721
r2) (E1))

ni )
(3.7)

where n 1 and n
2 

are modal densities (the average number of natural fre-

quencies of the structure per unit of frequency in a specified excitation

band [28]) of subsystem 1 and 2 respectively, and co is the central fre-

quency of the frequency band. This band is assumed to be wide enough

to contain several resonant frequencies to get a reliable estimate of the
energy levels within the subsystems. <E 1 > and <E2> represent the total

energies of the two subsystems; equations (3.6) and (3.7) thus state that

the energy flow is proportional to the difference in the average modal

energy.

The choice of the frequency bandwidth plays an important role in SEA,
since it is assumed that the response of each subsystem is controlled by
the response of modes whose resonance frequencies lie within the par-

ticular frequency band, Aca, and that contribution of non-resonant modes

is negligible [56]. However in some cases the contribution of

non-resonant modes needs to be considered [43]. It has been shown that

to represent a subsystem accurately, the width of frequency band should

be enough to ensure a minimum of five to seven resonant frequencies
within the frequency band [31,41], and yet the ratio of bandwidth to the

centre frequency should be substantially less than unity [61], i.e.

Act)/ co «1.

Finally, equations (3.6) and (3.7) may be conveniently written in matrix

form



Au = co(ri j +Irifi jni ,	 j � i	 (3.11),(3.12)
k

Asp = —cot v.,

1-Ff

c L
ri = g < T >

ji	 7CCOAJ

(3.13)

65

r

" )] _ - ( 77. + 1112) n	—1712ni 1[(E1)/1

( 1112") — c° 	 — 7721 n2 	( 772 ± 7121) n2 (E2)/n2

(3.8)

The coupling loss factors corresponding to the power flow in each direc-

tion are related by the reciprocity principle, which may be stated as [32]

ni r/i2 n27121
	

(3.9)

Thus the square matrix which appears in equation (3.8) is symmetric.

Expression (3.8) relates to only two multi modal subsystems, although it

can be easily extended for many multi-modal subsystems. For such a

system the power flow expressions can be written in matrix form as

(fin),- A(E)
	

(3.10)

where (E
.1 
)= (E.

.1 )In and the entries of matrix A may be expressed as J

where k is the total number of subsystems.

3.3 SEA PARAMETERS RELATED TO PLATES.

In the foregoing section a parameter uniquely associated with SEA

known as the coupling loss factor was defined. For plate substructures

this parameter may be expressed as [28]

where cg is the group velocity of the incident wave, L is the junction

length, Ai is the area of the source plate, and < rj, > is the diffuse wave

field transmission coefficient.
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The angular dependent transmission coefficient 1-(0) can be derived from

a wave analysis of corresponding semi-infinite plates [56]. It is defined

as the ratio of the transmitted wave intensity to the incident wave in-

tensity for any of the wave types generated in the source or receiver

plate [49]. If this transmission coefficient is known, by assuming that the

waves are incident to the junction with equal probability from all the

angles between —42 and 42 then by integrating r(0) multiplied by an

appropriate weighting factor, over all angles of incidence in the range

—42 to 42, the diffuse wave field transmission coefficient may be ob-

tained: that is to say;

7r/2

< .1- >= —
1 

f 1-(0) cos Od 0
'	 2 ,r2

(3.14)

In the present work the wave transmission coefficients have been found

by using the analysis of reference [29].

The modal density, n, which appears in equation (3.11), may be found
_I

by considering the natural frequencies which lie within the quarter circle
of the modal lattice (see Fig. 3.2) that corresponds to a simply supported

rectangular plate of dimensions L 1 and L2 [28]. As can be seen from

Fig. 3.2, lc may be written as

k2 = ( 7112 1-( 1712712	 (3.15)
'	 4	 4

As the portion of area that corresponds to each mode of the plate is

(iV/14), the number of modes below the wave number k c=k becomes

Then the modal density as a function of wave number may be expressed

as



co d c
c =—	 and c =

k	 d k
(3.20)

EB	 2h

(12p(1– V)  r A
n = (3.21)
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ni (k)=
dN(k) kI1L2 

dk	 2,r

The modal density as a function of frequency may be written as

kL,L, dk

ni`c°)	 271- d co

Equation (3.18) can be recast into the form

= 1-1n(co)	 40)
2Kcjcgi

(3.17)

(3.18)

(3.19)

where c/ and c are phase velocity and group velocity of the wave re-
spectively and related to wave number k and frequency co in the form

The modal density of bending waves can be shown to be [28]:

where p is the density of the plate, E is modulus of elasticity, v is the

Poisson ratio and A and h represent area and thickness respectively. The

longitudinal, n L, and shear, n s , modal densities can be similarly ex-

pressed in the forms

-
 p(1– V)A
 f, and	 ns= 

2p(1+ v)A 
f
	

(3.22),(3.23)

where f is the frequency in Hertz. It should be noted that the units of

modal densities in equations (3.21)–(3.23) are modes/Hz.

Finally, for most of the theoretical analysis it is common practice to take

the loss factor, 77j , between 0.01 and 0.02 [28].
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The foregoing analysis is applied to a range of plate structures in chap-
ter 5.
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Fig. 3.1.a Schematic of two coupled oscillators

Fig. 3.1.b SEA model of two oscillators
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4. WAVE INTENSITY ANALYSIS.

4.1 SYSTEM MODELLING FOR WIA.

As mentioned in section 1.3.2 WIA is an extended form of SEA. There-

fore the method follows almost the same procedure as SEA with regard

to system modelling. In this respect, the initial step in the application of

WIA to any system is the determination of subsystems.

In SEA the subsystems, as explained in section 3.1, can be not only the

structural components, but also different wave types in a component.

Unless each structural component bears just one wave type, subsystem j

will not refer to wave type j in component j. Therefore to avoid confu-

sion between the structural components and the various wave types, here

only the different wave types in a component will be referred to as sub-
systems, in which case a structure composed of two plates will support

six subsystems. The first three subsystems will belong to the first com-

ponent, and the latter three to the second component, corresponding to

out-of-plane bending, in-plane longitudinal and in-plane shear wave

types.

The main difference between the SEA and WIA system descriptions is in

the construction and size of the energy coefficient matrix, which occurs

in the linear equations for the subsystem energy levels. In SEA, accord-

ing to the diffuse wave field assumption, the energy is taken to be con-

stant per unit incidence angle, whereas in WIA the angular dependence

of the wave energy in each subsystem is represented in terms of shape

functions the number of which vary depending on the accuracy required.

A particular Fourier component of the subsystem energy will be referred

to here as a "subset" to avoid confusion with the term subsystem.

In WIA the unknowns are taken to be the subsets for each wave subsys-

tem. Considering the plate example described above: if the directional

dependence of each wave type is represented by, say, two shape func-

tions, then in the system there are; 2 components, 6 subsystems and a
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total of 12 subsets. Thus the size of the WIA energy matrix for this par-

ticular case is 12x12, whereas the SEA matrix is 6x6.

In general, considering all three wave types that a plate may carry, if

there are Y components in a structure and the same number of shape

functions, Z, for each wave type, then the dimension of energy matrix

would be, (3YZ)x(3YZ). However, it should be noted that each subsystem
may not necessarily be expanded by the same number of shape functions.

The system modelling technique of WIA will be explained in some detail
in section 4.3 by an illustrative example. In the following section the

energy flow equations, which are necessary to derive a set of linear

equations, will be obtained for a particular wave type.

4.2 ENERGY FLOW EQUATIONS.

If it is assumed that the wave field is not diffuse, but rather the intensity
is dependent on the wave incidence angle, 0, then equation (3.1) which

expresses the conservation of energy principle in a subsystem will take a

slightly different form. This new form of the energy flow equilibrium

expression for heading 0 of subsystem j may be written as

ri7(e, co) = ri,diss (o, co) + ri,c-d 03, co— nicin (0, co)	 (4.1)

where 117 represents the power input to wave heading 0 of wave type j

via the external forcing (this can be estimated by assuming that the plate

is infinite in which case it takes a form independent of heading angle for

an isotropic plate), 117 is the power input due to coupling with other

wave types at the plate boundaries, 117" is the output energy flow from

subsystem/ to other wave types at the boundary, and 1-1,dis' represents the

power dissipated, which can be expressed as [28]

11,th"(0,co)= corbE,(0,co)= co77,Aj e1 (0, co)	 (4.2)
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Here 77 j is the loss factor, E 	 the mean stored total energy, il„

is the area of substructure to which subsystem] belongs, and e 3 (0, co) is

the energy density of wave type j at a specific frequency co, propagating
in the direction of incidence angle 0. The intensity, or energy flow vec-

tor, related to this wave may be expressed as

I,(0, co) = ej (0, co)c , j (0 , co)r(0)	 (4.3)

where r is a unit vector in the 0 direction, and c
v
 is the group velocity of

wave type], as defined in section 3.3

Then the power output at a plate boundary may be expressed in terms of

intensity in the form [63]

117 (0, co) = LI, ( 0, co). s 	 (4.4)

where L is the length of the boundary and s is the outward pointing unit

normal. Substituting I from equation (4.3) equation (4.4) may be written

in the form

Fr (0, co) = Le ,(0 , co)c g j (0 , co)r(0).s	 (4.5.a)

or

117 (0, co) = Le ,(0, co)c g ,(0, co) cos a	 (4.5.b)

where a is the angle between unit vectors r and s as illustrated in

Fig. 4.1, and may be termed as the total incidence angle. Power output

takes place when the scalar product in equation (4.5.a) is positive, or

rather cos a of equation (4.5.b) is non-negative. As can be seen in
Fig. 4.1, a may be written in terms of the wave heading angle, 0, and the
orientation of the boundary, yt, in the form

7z-
a= 0 + — — v

2
(4.6)



n= 	
2R-c, cg j

(4.8)
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The output boundary can be any of the four boundaries of the plate de-

pending entirely on the wave heading angle 0 (see the discussion at the
end of this section). To obtain the total power output from wave type j, a
summation over all output boundaries needs to be introduced into equa-

tion (4.5), which expresses the power output at a single boundary. Hence

the total output power takes the form

nicout " co,	
)(b. = e(&,CO )C 8, j ( 0, W)E p cos 0+ 1 —

2	 P

(4.7)

The modal density which is given by equation (3.19), in the present

notation may be written in the form

Making use of the definition of modal density equation (4.7) may be
rewritten as

"CL)  j[E j(0,03)]ELpcos(o+i-- y/
p )	 (4.9)ri7 (6), a)) =	

P

Finally, the expression for the energy flow transmitted to heading 0 of

subsystem j needs to be derived. Assuming this power is provided by
heading + of subsystem m then an appropriate form of input power is

1-17(0, co)d 0 = I m (4), w).sL r„,(4), ․ )d (I)	 (4.10)

where rny is the transmission coefficient from wave type m to j for the

boundary, and d0 and ch4:. are direction bands.

It should be noted that if a wave encounters a boundary or line support,

it will be partially or wholly reflected as well as transmitted depending

on the incidence angle. Thus there is a possibility of subsystem] input-

ting power to itself in which case subsystems m and j are identical and
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the energy transmission coefficient is replaced by a reflection coeffi-

cient.

Using equation (4.3), equation (4.10) may be rearranged in the form

f171 ( 9, co)d 0= e(0, co)c(0, co)cos(9 3 + 121: — 1,11)Lr..,(0+ — Od 0 (4.11)

The incidence angles 0 and 0 may be related by using Snell's Law

which enables 0 to be written as a single valued function of 0, and d 0 to

be determined in terms of d 0. For incidence angles 0 and 0 the statement

of Snell's Law may be made with reference to Fig. 4.2 in which tangen-

tial trace wavelengths (the component of wave lengths in y direction)

should be equal to each other [28], thus

sin(0+ R-12— 'iv) = sin(0+ n- 2— 0	
(4.12)

Cm	C,

Using equation (4.12), d 0 and dØ may be eliminated from equation

(4.11) giving rise to

i  w  iEnocoiLcosio+Lr_v) 0 )nicin(aco)= ( 27z-c, I nn, i	 2
(4.13)

As in the case of power output, this expression gives the power input by

subsystem m at a single boundary, the total power transferred into the

wave type j may be acquired by summing over not only all input

boundaries, but also wave types. The latter summation is due to the

contribution of wave types that can make an input to the wave type j,

thus total power input may be written as

ric,rn (0, co). (  27or)j	 [  Ern( Ønqm-' 61/, cos( 61 + — 1,v, ) r:y ( 0q. + 	 K )2

(4.14)
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where the indices q and in represent all the input boundaries and wave
types respectively.

At this stage directional dependence of each wave type may be intro-

duced in terms of a set of shape functions into the energy terms, E ) (9, co)

and E ,,,(Ø, co) of previous power flow expressions, leading to

E J (0, c)) =EE Ja (co)N(0)	 (4.15)

Em (75,0,	 =	 ( co) N: (0)
	

(4.16)

Equations (4.15) and (4.16) may represent a Fourier series expansion of

wave energy. Then they will take the form

(0, co) = Ej0 1/27r+ Ell cos( 6)+ F32 cos(29)+ . • .+E cos(a0)	 (4.17)

where a represents the number of shape functions in the series, and Eio,

F. 1 ,	 are the subsets of the subsystem j . A similar expression may bej

written for wave type m by substituting] for m.

So far all the unknowns of the general power expression (4.1) have been

identified. After application of the following three procedures, a power

balance expression, which involves not only wave type j, but also the

other wave types via the power input terms, may be obtained. These
steps are:-

(I). Substitute equations (4.2), (4.7) and (4.13) together with

equations (4.15) and (4.16) into the general power expression
(4.1).

(ii). Multiply by shape function N(0) where

(iii). Integrate over the range of incidence angle O.

Then the form of power balance expression of subsystem] becomes
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2 tr	 2

117(0, co)Nj( 0) d 0= on J EE ja (co) 1\1-'09)Nj (0)d 0
0	 a	 0

7rE HELp 1\l" (9)Ncos(0+- i — vp)d 0
(27r	 c 

J	
na	 P	 fip

JEZELE.  mc\ L, SN: (0 c„,)N ;',(0) cos(0 + LT — vje j (0,	 K)d 9
27rc	 n„	 flq	 2	 2

(4.18)

where	 and ,g respectively are the range of wave heading angles for

which the boundary under consideration is output and input boundary.

The input and output boundaries are determined by the incidence angle

of the wave and an edge of the plate is identified as an output boundary
when the scalar product of equation (4.5.a) is positive. As the wave

heading angle changes, so the input and output boundaries of the plate

change as well and an edge which is an input boundary for a specific

heading angle may become output boundary for a different incidence

angle. The range of incidence angles for which an edge of the plate is an

output boundary is depicted in Fig. 4.3, and overall input and output

boundaries for the whole range of incidence angles are tabulated in Ta-
ble 4.1.
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Table 4.1

Input and output boundaries for the whole range of incidence angles

Range of 0 Output Boundary Input Boundary

0 < 0< 42 1,2 3,4

7r12<0<7r 2,3 4,1

7r< 0<342 3,4 1,2

342 < 0<27r 4,1 2,3

Repeating these three steps for each wave type in the system, a set of

linear equations may be obtained. These linear equations may be ex-

pressed in matrix form as

11 = QE	 (4.19)

where the vector E contains the coefficients Eid inj in which index j

spans over the wave types in the structure ( j=1,2,...) index d represents

the shape functions ( d=0,1,2,...), the elements of matrix Q and input

vector 11 may be expressed as

{2 a

Q id ,mc = g jm coil i n j fAl:,(0)N: (0)d 0
0

( 
co 

+ 27rc	 Lp f N-d1 (ON:(0)cos(0+ LT —
7

J P	 fl p

(co	 7r	 71"EL, ' N-,;(0)N:(0,) cos(0+ -2- — lif q ) eny (o0 qm + —2- — vq )d 0 (4.20)
27rc)

J	 q	 fig

2 1r

rl =-- film (9 co)N
d
J (0)d 0

id	 i	 5 

0

(4.21)
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4.3 AN EXAMPLE APPLICATION: L-SHAPED PLATES.

In this section the intent is to illustrate the way of constructing the en-

ergy flow equilibrium equations of the previous section by applying the

method to the simplest case of two plates connected at a right angle. As

depicted in Fig. 4.4 a wave impinging on the junction with an incidence
angle 0 is partly transmitted to the other plate and partly reflected back

to the same plate losing all of the power it carries either to a reflected

wave or to a transmitted wave.

Attaching a unique identification number (i.e. 1,2,3 for bending, longi-
tudinal and shear waves of first plate respectively and 4,5,6 for the

waves in the second plate) to each wave type, one would end up having

six subsystems ( j=6) for the two coupled plates. Assuming, for the sake
of simplicity, that the Fourier series expansion of each subsystem has

been truncated after the third term in the series, then there exist a total

of 18 subsets in the system. The three shape functions would take the

form

1
N' =

°	 -c,27
AT,' = cos 0, and N 2j = cos 20	 (4.22)

A schematic energy flow diagram for this case is shown in Fig. 4.5. The

figure shows each subsystem coupled to every other subsystem and the

energy of each subsystem consists of directional dependent components.

Even though external power may be injected into any wave type that may

be considered to be appropriate, the majority of energy transmission

analyses of this type generally consider the external power input to be

via the flexural modes of the first plate and the response of all the other

subsystems is investigated [62]. Thus the constant term of Fourier repre-

sentation of flexural wave energy in plate 1 is attributed to an external

input power.

The calculation of the transmission and reflection coefficients for each

wave heading angle at a junction is central to this approach, as equation
(4.10) expresses the power transfer between wave types in terms of the

energy transmission coefficients. In the present work the wave transmis-
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sion coefficients have been found by using the analysis of reference

[29].

Although at a junction (the boundary where two or more plates meet)
there may be transmission and reflection to flexural, longitudinal, and

shear wave types of the two components (see Fig. 4.5) regardless of the

type of incident wave, at a free edge (the boundary of a plate which is

not connected to other plates) there will be only reflection and transmis-

sion between waves of the same component, and the nature of the re-

flection and transmission is determined by the type of the impinging

wave. If it is a bending wave, then it will be completely reflected back

and there will be no transmission to in-plane waves. Such an edge may

be termed as a purely reflecting boundary for flexural waves. However,

if the wave is either of longitudinal or shear type, it may be reflected and
transmitted to the other in-plane wave, but not to a flexural wave as

illustrated in Fig. 4.6. The figure shows the transmission coefficients

from subsystem j to other subsystems as a function of incident angle at

boundary 1. At all other boundaries there is no transmission from flex-

ural to other subsystems, but a pure reflection from bending to bending,

and reflection and transmission between in-plane subsystems.

The effect of pure reflection should be embodied into the assumed angu-

lar distribution of wave energy of the flexural subsystems. This can be

achieved by ensuring that incident wave energy is equal to the reflected

wave energy, that is

E j (2 v— 0, co) = E J (8, co)	 (4.23)

where 2i'- 9 is the heading angle of the reflected wave. The above

equality may be satisfied by ensuring that the requirement is fulfilled by

each shape function.

As mentioned before, the dimension of the matrix Q entirely depends on

the number of subsystems in the model and shape functions which are
used in the Fourier series expansion of the wave energy; for the present

example considering the six subsystems and three shape functions for
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each subsystem, the dimension of matrix Q will be 18x18. Several repre-

sentative elements of matrix Q are given below

A diagonal element, Q
12,12

, (the energy coefficient for the subset 2 of the

subsystem 1) will take the form

a2,,2 = 077, f N,I N2id 0-E(  
2, 

jZ L„, f N21 N21 cos( 0+ —
2

— v
'
)d 0

Irc

co	 It

0	 P	 )3 p

A
	

B

(

CO if	 7rELq f MINT; cos(0+-2-- yfq /1 tin (0 0 ±-i — titdd 0 (4.24)( Co .,'

 q flq

C

Substituting the shape functions from expression (4.22) the terms la-

belled as A, B and C may be written as

2 ir

A = ani, f cos 2 0 d 0
	

(4.25)
0

As can be seen from Fig. 4.5 the orientation angle, vt, of boundaries

1,2,3, and 4 are, respectively

2 ,r

VI2 = 7r ,

37r
V3 2

///4 = 27r	 (4.26)

Substituting those values into expression (4.24), using appropriate angu-

lar range of output boundaries from Table 4.1, term B may then be re-
written as

,r 2	 0

(  co  j{
L, f cos 2 0cos Od 0+ L2 SCOS 2 9COS(0 -1—)d 0

2 7rci	 2
B=

1r 2	 x
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+L3 f342

42

cos 2 Ocos( 0— 7r) d 0+ L4 f

2r

COS 2 Ocos( 0— —37r)d 0
2

r

(4.27)

Assuming that the transmission coefficient for each wave heading angle

is already known, term C, which is the expression for input wave energy,

would take the form

3ff 2	 2r

(-27—: J{LI 5 cos2 Ocos 0 41(011)d 0+ L2 f cos2 0cos(0— i-z- )d 0
1	 r 2	 sr

5r 2	 r

+4 f cos 2 Ocos( 0— 7r)d 0+ L4 5 cos' cos( 0— —
37c

) d 0
2

3r 2	 0

(4.28)

As another example, the coupling entry, Q1352, (coupling energy coeffi-

cient between subset 3 of subsystem 1 and subset 2 of subsystem 5) may

be expressed as

a 3,52 = HiE Lq i 1\11‘1;cos(0+ Lc_ V 
q) 4(0 + Lr — V )d 9 (4.29)

2 irc	 2	 '6 2	 " q
1 q	 fig

By inserting the shape functions and integration range for the boundaries

the above expression may be recast into the form

3r 2co
Q13,52 = (	 j{L, f cos Ocos 20cos 0 rdcbis )d 0

,,27rci 	 2

(4.30)

It is emphasised that 0 is written in terms of 0 by using Snell's Law (see

equation (4.12)) before carrying out the integration.

In a similar fashion all elements of matrix Q may be constructed. By

using the standard matrix inversion techniques expression (4.19) may be

solved to yield subset energies. Considering that there are three subsets,
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Ej(co)
E j (0, co) = (4.31)

rP,( Op +-2-ff„, 	-Vp) = 1-11m0 ± 21C — Y i p)

Then the expression (4.32) may be rewritten as
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in this example, for each subsystem, the sum of these three subsets gives
the energy of the subsystem to which they belong.

4.4 TIIE DIFFUSE WAVE FIELD VERSION OF WIA.

If it is assumed that the wave field is diffuse, it will be no longer neces-

sary to consider the angular dependence of wave energy, as the energy
per unit angle of incidence will be constant. In this case equation (4.15),

which expresses directional dependence of each wave type would take

the form

If this result is substituted into equations (4.19)-(4.21) a diffuse wave

field version of the power balance equations may obtained. For the gen-

eralised input power, which is given by the left side of equation (4.19),

to correspond to the actual input power, it will be appropriate to multi-

ply both sides of equation (4.19) by 2n. Then a typical coupling element

in matrix Q may be written as

	

1 r	 g	 ir
Qii,m, =I 	 )2_, Lp 

27z

—jcos(0+ —
2
 - c I / p )z-:,(0

'

+ —
2 
- V

P

) d 0	 (4.32)
c

J P
2ff 	-fip

The reciprocity principle implies that

(4.33)

Q il,m1 = — "I illifint

P

L c < TP >
711im = 

p g i	 fin 

gcoA j
(4.34),(4.35)

where < r";„ > is the diffuse wave field transmission coefficient as giN en

by equation (3.14). In the present notation this takes the form
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<	 cos( 0+ — 1/1 p )	 - - — i/fp )d	 (4.36)

L pp

In the same way, a diagonal entry of matrix Q may be written as

1	 n.--a 1EL —Scos(B + — —= c° 11./1.1 ± e
7

l	 q 2 7z-(.z. Z" C
J q	 ilq	

2 
vq )d 0

7Z"	 7z-cos(e9+--	 )r P
2	 "	 2 P 

)de (4.37)(	 JEL	 f
2 71-ci	 p	 2 7r/j,

In this case the indices p and q span over the boundaries of the plate that

carries wave type j. If the subsystem j is a flexural wave, at a free

boundary the transmission, rather reflection coefficient from subsystem j

to j is unity, then the last two terms of equation (4.37) cancel. If there is

another plate connected to a particular boundary of the plate, z. is the

internal reflection coefficient. Assuming that the coupling at the bound-

ary is non-dissipative, it can be expressed as

TP.u(0+i— Vp ) = 1 — IrC(0 + — Vp)

J

Then equation (4.37) may be rewritten as

Qfiv , =	 + con J IZ rii„,
p

(4.38)

(4.39)

As can be seen equations (4.19), (4.34), and (4.39) are exactly the same

as the SEA expressions as given by equations (3.10), (3.11) and (3.12)

respectively. This shows that the diffuse wave field version of WIA is

the same as SEA; therefore WIA can be considered as an extended form

of SEA.
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Fig. 4.1 Wave incidence at a boundary with arbitrary orientation.

4

x 4

Fig. 4.2 Reflection of all three wave types at a junction.
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Fig. 4.3 Angular range of output boundaries with respect to incidence angles.
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Fig 4.4 Wave transmission through the junction between two plates.
0: Angle of incidence of j 'th type wave.

Fig 4.5 Energy flow diagram for the two plate model.



Fig. 4.6 Schen-utic represenation of the transmission coefficients
at boundaries of the two plate n-odd.
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5 RESULTS AND COMPARISONS.

5.1 PRELIMINARIES.

It was stated in chapter 2 that the formulation (equations 2.12, 2.35,

2.36, 2.61, 2.98) of the dynamic stiffness method relates to a prescribed

value of the Fourier term number, n. Therefore the set of equations has

to be solved for as many "n" values as needed for the series to
converge. However only a finite number of modes contribute
significantly to the energy flow at any particular frequency: the series

may be truncated by considering the well known formula for the natural

frequencies of a simply supported plate of length L and width b:-

= I	 D [( n 7 71-)2 + (fir)21

V ph L )	 b )
(5.1)

The maximum number of Fourier terms ' n max' that contribute to the

overall response of the structure in a particular frequency band may be
found from this formula by taking m=0; thus n=nmax. becomes

= _b 0)12 ( ph.)1 4

7-c m

. 

D )

where comax is the maximum frequency of the band, and h max is the maxi-

mum plate thickness in the structure. Then the total energy of a plate

may be obtained by adding the energies due to each n between 1 to n max.

Although there are infinite number of modes contributing to the overall

response of a plate, clearly the loop can not be extended to the infinity,

hence the truncation procedure is dictated by the physics. Although n .

limit the frequency summation to those modes whose natural frequencies

lie in the band or below it, and does not consider the modes whose natu-

ral frequencies are above the band, these modes are known to be non-

resonant modes and neglecting their contribution does not greatly alter
the results.

n.
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As mentioned in section 4.4 the use of a single component in the Fourier

series expansion of the wave energy reduces the WIA method to conven-

tional SEA, in which case the results of WIA become exactly the same as

those of SEA. However, so as to provide an unbiased set of results from

an independent source, the SEA results which will be presented in this

chapter were acquired by running the SEA program of McWilliam [64].

In order to implement the dynamic stiffness method and WIA, two sepa-

rate FORTRAN-77 programs were developed. Brief descriptions of these

programs may be found in Appendix A.

The plate structures that are analysed in this section can be divided into

four broad groups. These are:

(i). Plate assemblies that consist of several plates either connected

in a row over a simple support or joined rigidly at a right angle.

(See, for example, Fig. 5.1).

(ii). A closed section formed by four plates as depicted in
Fig. 5.53.

(iii). Complex-junction plate structures, i.e. structures which have

a junction that contains more than two plates as illustrated in
Fig. 5.62

(iv). Symmetrically or asymmetrically stiffened plate rows (see

Figs. 5.72 and 5.83).

The plates of group (i), (ii), and (iii) were considered to be made of steel

and those of group (iv) made of aluminium with the material properties

given in Table 5.1.
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Table 5.1

The material properties of the plates considered.

Material Mod. of Elas. Density Poisson Rat. Loss Factor

E (N/m2 ) p (kg/m3 ) v 77

Steel 2x10" 7800 0.3 0.01

Aluminium 7.3x10 2800 0.33 0.01

In the dynamic stiffness method it is assumed that the external distur-

bance is due to a point force acting perpendicular to the plate surface

(the locations of the point forces with which the exact results of the next

section are obtained are given in section 5.3.1); in WIA and SEA this is

equivalent to injecting power into the flexural modes of the plate. In all

of the cases considered the external input is via the first plate (the rea-

soning behind this approach was explained in section 4.3) and the energy
level of the other plates in the structure with respect to the excited plate

is expressed in terms of dB (decibels) i.e. 10Log 10 (Ep/E 1 ), where the

suffix "p" refers to a particular plate in the system.

In what follows the specifications of the plates within the four afore-
mentioned groups of structures are given, and the results of all three

methods are presented without elaborating on any specific point, as a

detailed analysis of the results will be performed in later sections.

Almost all of the graphs referred to in the following sections relate to

logarithmic flexural mean energy ratios in sixteen one-third octave fre-

quency bands ranging between 600 Hz to 20 kHz as tabulated in Ta-
ble 5.2.
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Table 5.2

One-third octave central frequencies and bandwidths.

Band	 Central Freq

(Hz)

Min. Freq.

(Hz)

Max. Freq.

(Hz)

Band Width

(Hz)

1 630.0 561.3 701.1 145.8
2 793.8 707.1 890.9 183.8
3 1000.6 890.9 1122.5 231.6

4 1260.0 1122.5 1414.3 291.8

5 1587.5 1414.3 1781.9 367.6

6 2000.1 1781.9 2245.0 463.1

7 2520.0 2245.0 2828.6 583.6

8 3175.0 2828.6 3563.8 735.2
9 4000.3 3563.8 4490.1 926.3

10 5040.0 4490.1 5657.2 1167.1

11 6350.0 5657.2 7127.6 1470.4
12 8000.5 7127.6 8980.3 1852.7

13 10080.0 8980.3 11314.4 2332.1

14 12700.0 11314.4 14255.2 2940.8

15 16001.0 14255.2 17960.5 3705.3

16 20160.0 17960.5 22628.8 4668.3

5.2 PRESENTATION OF RESULTS.

5.2.1 PLATE ASSEMBLIES.

Plate assemblies which consist of 3, 4, 8, and 15 plates were considered

in this group, and for each of them there are bending and in-plane mod-

els. The bending model is basically a row of plates in which only

out-of-plane motion occurs; in the in-plane model the plates are con-

nected at a right angle; therefore due allowance needs to be made for the

in-plane longitudinal and shear modes (or waves) during energy trans-
mission calculations.
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Three Plate Assembly.

The bending and in-plane models of the three plate assembly are shown

in Figs. 5.1.a and b respectively. The dimensions of the structure and the
bending, n 13 , longitudinal, nL, and shear, ns, modal densities, which were
calculated using the equations 3.21 to 3.23, are given in Tables 5.3-5.5

for three different cases. The main difference between these three cases

is the thicknesses of the plates in the structure. In case 1 all the plates

have the same thickness, in case 2 there is a gradual reduction in the
thickness moving from plate 1 to 3, and in case 3 the thickness first

decreases from plate 1 to 2 then increases from plate 2 to 3. Addition-

ally, the plates of case 3 are larger in comparison to the other two cases.

As can be seen in Figs. 5.2 and 5.3 which relate to case 1, there are two
separate graphs for each plate under consideration. Figs. 5.2.a and 5.2.b

present respectively the results of the bending and in-plane models for

plate 2 across the range of frequencies. In these figures the term "exact"

refers to the predictions of the dynamic stiffness method, while the term

"full" shows the results of in -plane model in which the contribution of

the in-plane modes in the energy transmission has been fully taken into

account.

Similar energy distribution curves are presented for cases 2 and 3 in

Figs. 5.4 to 5.7.

Table 5.3

Dimensions and modal densities of the three plate assembly

Case 1

Plate h (mm) L (m) nBx10
2 8

nLx10 If nsx108/f

1 4 0.90 6.24 2.71 7.75

2 4 0.80 5.54 2.41 6.89

3 4 0.65 4.50 1.96 5.60
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Table 5.4

Dimensions and modal densities of the three plate assembly

Case 2
2

Plate	 h (mm)	 L (m)	 n Bx10	 nLx10
8 
If	 nsx10

8
If

1 10 0.90 2.49 2.71 7.75

2 7.4 0.80 2.99 2.41 6.89

3 4.8 0.65 3.75 1.96 5.60

Table 5.5

Dimensions and modal densities of the three plate assembly

Case 3

Plate h (mm) L (m) n BX102 n LX108 if n 5X10
8 
If

1 9.5 0.90 2.62 2.71 7.76

2 3.2 1.30 11.3 3.92 11.2

3 5.5 1.10 5.54 3.32 9.48

In all cases width of the plates: b=0.85 m

Four Plate Assembly.

Three different four plate assemblies have been studied which are quite

similar to the foregoing three plate assemblies. The dimensions and

modal densities of these cases are tabulated in Tables 5.6-5.8.

The plate energy ratios for case 1 are plotted in Figs. 5.8-5.10, and

Figs. 5.11-5.16 present these ratios for cases 2 and 3.
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Table 5.6

Dimensions and modal densities of the four plate assembly

Case 1

Plate h (mm) L (m)
2

nBX 1 0 nLx108/f nsx108/f

1 4 0.90 6.24 2.71 7.76

2 4 1.37 9.49 4.13 11.8
3 4 1.45 10.1 4.37 12.4

4 4 1.10 7.62 3.32 9.48

Table 5.7

Dimensions and modal densities of the four plate assembly

Case 2

Plate h (mm) L (m) nBx10
2

nLx108 If nsx108/f

1 10 0.90 2.49 2.71 7.76
2 7.4 1.37 5.13 4.13 11.8

3 4.8 1.45 8.37 4.37 12.4

4 2.2 1.10 13.8 3.32 9.48

Table 5.8

Dimensions and modal densities of the four plate assembly

Case 3

Plate h (mm) L (m)
2

nBx10 nLx1 0 8 If nsx108/f

1 10 0.90 2.49 2.71 7.76

2 6.5 1.37 5.84 4.13 11.8

3 8.4 1.45 4.78 4.37 12.4

4 3.6 1.10 8.47 3.32 9.48

In all cases width of the plates: b 0.85 m

Eight Plate Assembly.

The bending and in-plane models of the eight plate assembly is depicted

in Fig. 5.17. The structures are obtained by adding four more plates to
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case 2 of the four plate assembly. The specifications of the last four

plates are listed in Table 5.9.

The graphs which show 1/3rd octave frequency bands energy distribution

in sixteen frequency bands for plates 2 to 8 may be found in Figs. 5.18-

5.24.

Table 5.9

Dimensions and modal densities of the eight plate assembly

Plate h (mm) L (m)
2

nBX10
8

nL x10 If nsx10
8 
If

5 4.5 0.70 4.31 2.11 6.03

6 6.3 1.10 4.84 3.32 9.48

7 5.5 0.90 4.54 2.72 7.76

8 3.0 0.55 5.08 1.66 4.74

Width of the plates: b-0.85 m

Fifteen Plate Assembly.

Two cases are considered for the fifteen plate assembly. Case 1 is

formed by attaching seven more plates to the eight plate assembly; the

details of these plates are shown in Table 5.10. Although in practice it is

unlikely for the plates of different thickness couple together in a struc-

ture, here the plate thicknesses are varied to encourage bending to in-

plane conversion or vice versa. Whereas case 2 corresponds to a practi-

cal structure: all fifteen plates have the same thickness h=5 mm, length

L 0.9 m, and width b=1.1 m.

Figs. 5.25-5.38 show the energy levels across the range of plates for

case 1, while the results for case 2 are shown in Figs. 5.39-5.52.



97

Table 5.10

Dimensions and modal densities of the fifteen plate assembly

Case 1

Plate h (mm) L (m)
2

n BX 1 0 nLx108/f nsx108/f

9 4.4 0.75 4.72 2.26 6.46

10 5.6 1.10 5.45 3.32 9.48

11 6.0 0.70 3.23 2.11 6.03

12 4.0 0.65 4.51 1.96 5.60

13 3.5 0.95 7.53 2.87 8.19

14 5.2 0.78 4.16 2.35 6.72

15 6.5 1.15 4.91 3.47 9.91

5.2.2 CLOSED SECTIONS.

The closed section structure is illustrated in Fig. 5.53, and two distinct

cases are considered. For case 2 the various parameters are listed in

Table 5.11, while for case 1 the plates have the same length as in case 2,
but the thickness of all the plates is 10 mm.

Table 5.11

Dimensions and modal densities of the four plate box assembly

Case 2

Plate h (mm) L (m)
2

nBx10
8

nLx10 If nsx10
8 
If

1 10 0.90 2.49 2.71 7.76

2 7.4 1.37 5.13 4.13 11.8

3 4.8 0.90 5.20 2.71 7.76

4 2.2 1.37 1.73 4.13 11.8

Width of the plates: b=0.85 m

It should be noted that the bending models of the previous structures

were obtained essentially by flattening the in-plane model. However this
approach cannot be used in the case of the box structure; here the bend-
ing results which are shown in Figs. 5.54-5.59 are yielded by restraining
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the in-plane degrees of freedom of the structure in the exact method, and

by using the flexural energy transmission coefficients in SEA and WIA.

5.2.3 COMPLEX-JUNCTION PLATE ASSEMBLIES.

In all of the previous structures there are only two plates at a junction.

Two more complex geometries are shown in Figs. 5.61 and 5.62. Ta-

ble 5.12 shows the dimensions of the plates for case 2 (Fig. 5.62), and

case 1 (Fig. 5.61) is constructed by using only the first four plates of

case 2.

The plate energy ratios for these cases are presented in Figs. 5.63-5.71.

Table 5.12

Dimensions and modal densities of the complex-junction plate model

Case 2

Plate h (mm) L (m) nBx10
2

nLx108/f nsx108/f

1 9.0 0.9 2.77 2.71 7.76

2 6.0 0.7 3.24 2.11 6.03

3 5.0 0.5 2.77 1.51 4.31

4 3.0 0.4 3.69 1.21 3.45

5 2.0 0.55 7.63 1.66 4.74

6 4.5 0.4 2.47 1.21 3.45

7 1.5 0.8 14.8 2.41 6.90

Width of the plates: b 0.85 m

5.2.4 STIFFENED PLATES.

Figure 5.72 illustrates a symmetrically stiffened row of six plates. Two

cases are considered: the dimensions and modal densities of the plates

for case 1 are given in Table 5.13. In case 2 every plate has the dimen-

sions of plate 1 of case 1. In both cases the stringers are taken to have
thickness 1=3 mm and height H=20 mm.
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Table 5.13

Dimensions and modal densities of six plates with stringers

Case 1

Plate h (mm) L (m)
2

nBx10 nLX10
8
If n Sx10

8 
If

1 2 0.30 2.40 0.51 1.53
2 2 0.26 2.08 0.44 1.32

3 2 0.33 2.64 0.56 1.68

4 2 0.28 2.24 0.47 1.42

5 2 0.24 1.92 0.41 1.22

6 2 0.36 2.88 0.62 1.83

Width of the plates: b-0.5 m

The plate energy ratios are shown in Figs. 5.73-5.82. Since the stringers

are symmetric there is no in-plane motion, and therefore these cases are

analogous to the bending model of the previous cases.

An asymmetrically stiffened panel has also been considered (see

Fig. 5.83). This is identical to the previous panel apart from the attach-

ment configuration of the stringers. Again, two cases were considered,

and the results are shown in Figs. 5.84-5.93.

5.3 FACTORS INFLUENCING THE EXACT RESULTS.

5.3.1 EFFECT OF POINT LOAD LOCATIONS.

As pointed out in section 2.6.1, the dynamic stiffness method calculates

the energy transmission by exciting the structure by point loads, whereas

in SEA it is often assumed that the excitation is of "rain-on-the roof'

type. It is shown [33] that a response similar to that arising from rain-on-

the roof excitation may be achieved if the plate is excited by several

point loads and the resulting response is averaged over the point load

locations. This procedure has been implemented to yield the "exact"

energy ratios which are presented in the previous section. The sensitivity
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of the response, especially when the in plane motion is present, to the
selection of the point load locations requires further investigation.

To this end two sets of force positions have been chosen, as shown in

Fig. 5.94. The figure shows the plan view of a typical excited plate and

the accompanying table gives the co-ordinates of the force positions for

force sets 1 and 2. Each set consists of nine excitation points which are

randomly distributed over the plate. Although there is no general crite-

rion for the selection of the force positions, the dynamic stiffness pro-

gram encounters numerical problems in the calculation of the stiffness
matrix if the excitation point is too close to the edge of the plate. This

happens because of the scaling procedure which was performed in sec-

tion 2.2.1 while trying to avoid numerical overflow at the higher fre-

quencies in the exponential terms of the dynamic stiffness matrix, they
became too small when the point force is near to the edge of the plate.
Since an averaging over the point load locations is performed, provided

that the force which quite near to the edge of the plate does not yield

very different response the average response of the plate would not be

greatly affected. However this shortcoming does not restrict the com-

parison between the results of the dynamic stiffness method and SEA or

WIA, as the latter two method do not favour large deviations from the

mean response level. Besides, it has been suggested [41] that in this type

of analysis, exciting the plate too near to the junction should be avoided

as this would lead to biased results due to the existence of nearfield
waves near the junction.

Figs. 5.95-5.97 show the relative ranges (the difference between the
energy ratios of sets 1 and 2 for a particular plate after averaging over

possible load locations) for the bending and in-plane models of case 2 of

the four plate assembly. Generally as the frequency increases the differ-

ence between the two sets decreases. This trend is clear for both bending

and in-plane energy transmission and it can be concluded that the results

are relatively insensitive to the choice of the averaging points.

The scatter over the nine excitation points of set 1 is examined in

Figs. 5.98-5.100. The figures show the dB range (the difference between

maximum and minimum energy levels for the individual point forces at a
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particular one-third octave frequency band) for the same four plate as-
sembly. Although the dependency of the response to the individual point

load locations decreases with increasing frequency, and the bending
curve becomes relatively smooth after 5 kHz, there is still a 2 dB differ-

ence at 10 kHz. When the in-plane modes are included the system is
more sensitive to the force position. This is most marked in plate 4,

where the range is as high as 5 dB at 8 kHz when the actual ratio is -

17 dB. The Fig. 5.100.a shows the full energy ratio of the last plate for

the same case due to each of the nine driving point: as can be observed

while the force locations 5 and 7 respectively yield the maximum and
minimum energies at 600 Hz, thus result in 12 dB scatter; 5 dB scatter

which occurs around 8 kHz is caused by the driving points 6 and 9.

5.3.2 EFFECT OF BOUNDARY CONDITIONS.

The boundary conditions imposed in the dynamic stiffness method are

that the two longitudinal edges of each plate are taken to be simply-sup-
ported so that an exact solution to the governing equations may be de-

rived. Having this limitation does not prevent a direct comparison be-

tween the exact results and the SEA or WIA approach, since the latter

two analyses assume that the energy transmission is "independent" of

the boundary conditions. With regard to transverse edges, all of the exact

results (other than those of the box section) which are presented in sec-

tion 5.2 have been obtained by clamping the extreme transverse edges.

The validity of the SEA assumption concerning the boundary conditions

may be checked with the exact method by changing the boundary condi-

tions at the extreme transverse edges of the plate assembly from clamped

to simply supported. It has been shown previously [50] that if the above

procedure is implemented then the bending energy is redistributed over

the entire frequency range, although the effect diminishes as the fre-

quency increases. However the detailed effect of changing from clamped

to simple support boundary condition has not been considered in the

presence of in-plane motion, and needs to be investigated.

For this purpose the clamped left-hand transverse edge of the four plate

assembly has been changed to a simple support: the results are plotted in
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Figs. 5.101-5.103. It is observed that at low frequencies the energy in

the last plate decreases while it increases in the second plate. On the

other hand at sufficiently high frequencies the simple-support and
clamped curves converge to the same value. This phenomenon is thought

to be a direct consequence of phase effects, which are not considered in

SEA.

From a wave point of view, the effect of the boundary conditions is to

change the phase of the various wave components. Considering a wave

impinging on a boundary, the amplitude of the reflected wave would be

equal in magnitude to that of the incident wave regardless of the type of

support. However the phase of the returning wave, relative to that of the

original incident wave, will depend on the boundary condition. Phase
effects are more marked at low frequencies, as shown in Figs. 5.101-
5.103. The reason for this is that at the higher frequencies the phase

effects tend to fluctuate rapidly with frequency, and they thus tend to

average out over a frequency band.

The consequences of changing the right-hand boundary condition from

clamped to simply-supported have also been investigated. The results are

not reported here, since for the present plate assembly no significant

effect has been observed.

5.4 FACTORS INFLUENCING THE \VIA RESULTS.

5.4.1 EFFECT OF THE NUMBER OF SHAPE FUNCTIONS FOR

PLATE ASSEMBLIES.

Equation (4.15) expresses the directional dependency of the wave energy

in terms of a set of shape functions corresponding to a finite Fourier

series. In the selection of the Fourier components of equation (4.17) care

must be exercised since, equation (4.23) imposes constraints due to the

presence of purely reflecting boundaries for bending waves.

For the plate assemblies which are considered in this study, there are at

least two purely reflecting boundaries: two longitudinal edges of any



103

plate in the assembly, in which case the Fourier terms may take the

form: cos dO, where d-0,1,2,3,.... In addition, in the first and last plate of
all the assemblies considered, save the box section, there is a transverse
purely reflecting boundary. For these plates due to the constraint of

equation (4.23), the shape functions of the bending waves should take

the form: cos de with d=0,2,4,.... However for in-plane waves there are

no purely reflecting boundaries (see section 4.3); therefore in the ex-

treme components the same type of shape functions as in intermediate
plates may be used for these two wave types.

Convergence checks on various plate assemblies were performed and

case 2 of the four plate assembly is reported in detail here. Initially three

and five Fourier terms are used in the extreme and intermediate plates

respectively, and the resulting wave energy distribution with respect to
incidence angle is plotted for each plate in Figs. 5.104 to 5.107. In these

figures an angle of zero radian represents a wave normally incident on

the junction. The centre frequency of the one-third octave excitation
band is taken as 20 kHz. The results correspond to the in-plane model of

the four plate assembly.

As can be seen in these figures there is some negative energy for certain

incident angles in plate 2, and the amount increases moving away from

the excited plate. For physical reasons the presence of negative energy is

not permissible, and the result arises from the truncation of the Fourier

series after just a few terms. To investigate this effect the number of

Fourier terms in the outer plates was increased to five and in the middle

plates to nine. Fig. 5.105 indicates that the negative energy is almost

halved in plate 2, and has virtually disappeared in plate 3, (Fig. 5.106)

although it still appears in plate 4. Finally the number of Fourier compo-

nents was raised to fifteen in plates 2 and 3, and eight in plates 1 and 4.

In this case no negative energy occurred in any of the plates as may be

seen from the curve which corresponds to 15 terms in Figs. 5.105 and
5.106, and 8 terms in Fig. 5.107.

In order to investigate the effect of the number of shape functions on the

energy level of the various plates in the structure, for each set of Fourier



104

terms the wave energies were obtained by integrating E j (0, co) over the

heading 0, as indicated by equation (4.18).

In the WIA program the integration is carried out numerically by using
the "trapezoidal" rule. To increase the accuracy of integration as the

number of Fourier terms is raised, the number of increments within the

angular range of integration has been increased by a suitable amount: in

the three cases considered there were respectively 50, 80, and 120 in-
crements.

For each one-third octave frequency band considered, the mean quanti-

ties are obtained by averaging over the range of the band, starting with
the band minimum frequency which is at 17960.5 Hz and ending with

the band maximum frequency at 22628.8 Hz for band 16 (Table 5.2 ). It

was found that the method is not sensitive to the number of increments

taken between the minimum and maximum frequency of the band; in

fact, two increments were found to be sufficient.

The plate energy ratios obtained by using an increasing number of
Fourier terms are given in Table 5.14.

Table 5.14

Energy ratios (dB)for case 2 offour plate assembly.

Third-octave band results with centre frequency 20 kHz

Terms E,1E1 E3IE1

3, 5 -11.35 -15.37 -21.52

5,9 -11.40 -15.25 -21.72

8, 15 -11.46 -15.36 -21.77

Although the detailed angular energy distribution (and the phenomenon

of negative energy) is affected by the number of Fourier terms, it is clear

that converged estimates of the total energy are obtained with relatively

few terms.
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The reason for this effect is that the energy curves oscillate below and
above the zero line when there are few Fourier terms, but on balance the

positive and negative portions cancel as can be observed most clearly in

Fig. 5.107. On the other hand if there are many components, the oscilla-

tions do not take place, and the curve just follows the zero line for cer-

tain ranges of incidence angles. Therefore in each case almost the same

total level of energy is predicted.

5.4.2 EFFECT OF THE NUMBER OF SHAPE FUNCTIONS FOR
STIFFENED PLATES.

In the convergence checks for the stiffened plates, it was found that the

use of a small number of Fourier terms can lead to not only negative

energy at certain incident angles, but also poor total response predic-

tions.

The results of calculations performed by using five and three Fourier

components in the middle and outer plates respectively are shown in

Fig. 5.77. It is seen that although the WIA results for the symmetrically

stiffened plates are quite close to the exact results up to 12 kHz, at this

frequency the WIA curve (as well as the exact curve) makes a dip but

does not recover afterwards. At 20 kHz the difference between the exact

and WIA results is as high as 7 dB in the last plate. To eliminate the

negative energy from the system, and to improve the response predic-

tions, the number of Fourier terms was raised gradually. Good agreement

with the exact results was obtained for 20 and 41 Fourier terms in the

extreme and intermediate plates respectively. In this case the discrep-

ancy for the final plate at the highest frequency reduced to 0.63 dB, and

the negative energies disappeared entirely, as may be noted from the

Figs. 5.108-5.113.

An explanation of the observed trend can be made by considering the

wave transmission coefficients which are shown in Fig. 5.114. The fig-

ure shows the bending wave transmission coefficient between two stiff-

ened plates at two discrete frequencies, and also the transmission coef-

ficient between plates 1 and 2 in the case 2 four plate model. In the latter

case the plates are coupled across a simple support.
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The transmission coefficients of the simply supported junction are inde-

pendent of frequency and vary smoothly with wave heading angle. How-

ever the transmission coefficients of the stiffened plate junction are

dependent on both the incidence angle and the frequency of excitation.
The coefficient of the stiffened junction has very narrow peaks at

20 kHz, but at 1 kHz the variation of the transmission coefficient with

the incidence angle is relatively smooth. Thus the study of transmission

coefficient leads to the following conclusions:

(i). In simply-supported plates five Fourier components are

enough for convergence, as the transmission coefficients vary
smoothly with the incidence angle.

(ii). In stiffened plates five Fourier terms are still sufficient up to
moderate frequencies because of the reason given in (i), and as

evidenced by the two WIA curves following virtually the same

path up to 12 kHz in Fig. 5.77.

(iii). At higher frequencies the transmission coefficients are char-

acterised by very narrow peaks with small angular range, and thus

many Fourier terms are needed to yield the desired accuracy for

stiffened plates.

5.5 TYPICAL RESULTS AT LOW FREQUENCIES.

Before proceeding to fully analyse the results produced by the approxi-

mate methods, it is worth studying the behaviour of SEA at low fre-

quencies to highlight the various possible reasons which are considered

to lead to "wrong" answers in the SEA model.

To this end an additional set of results was obtained within the fre-

quency range of 25 Hz to 280 Hz for case 2 of the four plate assembly.
One-third octave band mean energy ratios and discrete frequency energy

ratios are plotted in Figs. 5.115-5.117.
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An examination of the one-third octave band mean response graphs for
plates 2 and 3 reveals that SEA and WIA almost give the average of the

exact predictions. However, if desired, these average values may be

corrected to yield the maximum response if they are multiplied by

coth(0.5n-M) (M: modal overlap factor) [65], since an engineer is much

more concerned with the peak response.

Although this correction may in principle be applied to the one-third

octave band energy ratios, the peaks and troughs of the exact curve are

relatively washed out because of the averaging process. Thus the proce-

dure is illustrated here for the discrete frequency energy ratios of the

four plate model. As may be seen in Fig. 5.115.b the corrected SEA

curve goes through the peaks which are exhibited by the exact method.

As stated in section 1.3.1 and chapter 2, the requirements which are put

forward for successful application of SEA are:-

(1). The components should be weakly coupled.

(ii). The modal overlap factor must be greater than unity.

(iii). The frequency band should be wide enough to contain at

least five to seven modes.

(iv). Each component of the structure should be reverberant.

An observation that can be made from Fig. 5.115.a is that the SEA mean

energy ratio of the plate 2 is almost zero across the frequency range.

This implies that the energy in plate 2 is as large as the energy in the

driven plate, meaning that plates are "strongly" coupled. Therefore the

present system does not satisfy the weak coupling requirement.

The modal overlap factors each plate are also tabulated in Figs. 5.115.a

to 5.117.a, as can be seen they increase with frequency. For example for

the one-third octave band with centre frequency 280 Hz, the modal
overlap factors of the individual components are between 0.07-0.38. As

these values are substantially less than unity, it has been shown [40] that



r=exp(-0.5corpcicg)
r << 0.98 non— reverberant

{r z-: 0.98	 reverberant,
(5.2)
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in such a case the coupling loss factors which are obtained by a wave
transmission analysis are far greater than the actual values. Although in
plate 4 (Fig. 5.117.a) the SEA curve is above the exact curve, the pre-

dictions of SEA in the plates 2 and 3 are fair representation of the aver-

age response. Therefore, the results of the present case do not fully

support the conclusion of reference [40] where the case studied was two

coupled beams.

For the same centre frequency the number of modes which are excited in
the plates varies between 1.61-8.83. It should be noted that although the

product of the modal density and the bandwidth usually yields a non-

integer value, in order to perform a modal summation the number of

modes is rounded to the nearest integer value.

Although the number of modes in the final plate is around eight at the

highest frequency, it is less than five at low frequencies. Also, for the

entire frequency range there are just a few modes in the other plates, and

therefore the system does not satisfy condition (iii) completely.

Finally, the structure may be checked for reverberance by using the

following formula [28] which is a measure of the decay in a wave each

time it reflects from the boundaries. Therefore a value which is closer to

unity implies that a wave is reflected many times before it is absorbed:
thus resulting in a reverberant wave field.

where x is the length of the plate, and cg and 77 represent the group ve-

locity and loss factor respectively. For the present model the values of r

at 280 Hz are between 0.94-0.98 which implies that the system is highly

reverberant.

Although in this section it has been seen that the SEA results are an

average of the exact response, particularly in plates 2 and 3, and knowl-

edge of the maximum response may be obtained by introducing a correc-

tion factor, the present system is strongly coupled, has low modal over-
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lap factor and the average number of modes excited is less than five

across the one-third octave frequency bands. In what follows the situ-
ations where the four conditions of SEA are duly satisfied will be inves-

tigated in relation to the results of section 5.2.

5.6 COMPARISON OF RESULTS: BENDING ONLY.

As pointed out earlier there are two distinct graphs for each component
of the structures presented in section 5.2; one for the bending model in

which only flexural motion exists, and one for the in-plane model of the

same structure. Here, the discussions will concern only the bending

energy transmission, and the contribution of the in-plane motion will be

treated separately in section 5.7.

5.6.1 PLATE ASSEMBLIES.

The simplest structure that is considered in this study is the one that

consists of three plates. An examination of the three plate assembly

results reveals that although SEA initially overestimates the energy level

of plate 2, the agreement between SEA and the exact predictions is quite

good at high frequencies: in case 1 SEA starts off high and as the fre-

quency increases the two curves converge to the same value (Fig. 5.2.a);

in case 2 the discrepancy seems to be larger at low frequencies, but it

never exceeds 3 dB after 5 kHz; in case 3 the exact curve is smoother

since the modal density is higher in comparison to other the two cases,

and thus the agreement is extremely good. The difference is around

1.5 dB and 0.01 dB at 500 Hz and 20 kHz, respectively.

In the second plate for case 1, WIA yields a good average of the exact

response up to 5 kHz, although from this frequency onwards it starts to

underpredict the mean response. In case 2 there is some overprediction

of the response, but not as high as in SEA. In case 3 the WIA and exact

results start off almost from the same point, and the exact curve oscil-
lates around the WIA curve up to 6 kHz. Beyond this point the WIA

results diverge slightly from the exact results and the difference reaches

around 0.5 dB at the highest one-third octave band.



110

For plate 3, as may be observed from Fig. 5.3.a, SEA first overestimates
the response and then as the frequency increases it starts to underesti-

mate the response. This effect is better seen in plate 3 of case 3 (Fig.

5.7.a).

For all the cases WIA yields a much improved estimate of the energy in

plate 3, when compared to SEA. For example in case 1 starting from

mid-range frequencies up to the highest frequency the discrepancy never

exceeds 0.5 dB. Even though in case 2 the exact results are erratic, WIA
predicts the energy levels reasonably well. In case 3 the WIA predictions

are still quite good, while the underprediction of SEA reaches as much

as 3 dB.

The main difference between the three plate assemblies is the thick-

nesses of the plates. The results show the influence of this factor on the
energy transmission: there is a greater energy flow between plates of

similar thickness. This tendency is predicted by all three methods.

In the four plate assemblies the plates are relatively larger than in the
three plate models, and thus the exact curve is fairly smooth even at low

frequencies. In the second and third plates SEA and WIA exhibit similar

behaviour as in the three plate models: in the second plate SEA over-

predicts the mean response at all frequencies, and while WIA is quite

close to the exact curve at low frequencies, it slightly underpredicts at

high frequencies.

The reason behind this phenomenon can be better understood if

Fig. 5.118 is examined. The figure shows the wave energy distribution in

the excited plate, as predicted by SEA and WIA for case 2 of the four

plate model. Since it is assumed in SEA that the wave field is diffuse,

the wave energy distribution predicted by this method is constant for all

wave heading angles; this assumption is not made in WIA, and the dis-

tribution depends on the incidence angle. As can be seen in the figure, at

normal incidence where the majority of the transmission takes place, the
amount of wave energy travelling towards the neighbouring plate is 30%

less in WIA than in SEA: as the SEA and WIA curves are scaled by
dividing the maximum energy in the plate a direct comparison between
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them can be made. This phenomenon leads to an overprediction in SEA
and underprediction in WIA in the second plate. Fig. 5.119, which shows

the WIA wave energy distribution in plates 2, 3, and 4, suggests that the

wave field is not diffuse in these components.

In the eight plate assembly, which is an extended form of case 2 of the

four plate assembly, the same characteristics demonstrated by the previ-

ous models also occur for the first three indirectly driven plates, as may

be seen in Figs. 5.18.a to 5.20.a. From plate 5 onwards the error in the

SEA prediction increases with frequency, reaching 18 dB in plate 8 at

20 kHz. However, WIA is still close to the exact results in the final
plate, the disagreement at 20 kHz being 2.7 dB (Fig. 5.24.a).

In case 1 of the fifteen plate assembly, which is an extended form of the

eight plate assembly, the situation is similar. SEA diverges from the

exact results not only as the frequency increases, but also as the plates

become remote from the driven plate. Although WIA starts to underpre-
dict from plate 6 onwards, the discrepancy is weakly dependent on the

frequency and remoteness of the plate.

To highlight the severity of the SEA underprediction, the energy dis-

crepancies for the last eight plates are tabulated in Table 5.15, for the

one-third octave band with centre frequency 20 kHz.

Table 5.15

The discrepancy (dB) between results of the exact and the

approximate methods for case I of the 15 plate assembly;

centre frequency: 20 kHz

Plate

dB range

SEA	 WIA Plate

dB range

SEA	 WIA

8 26.12 5.93 12 43.71 8.62

9 30.07 5.46 13 46.08 7.21
10 37.19 8.60 14 51.31 7.73

11 41.18 8.82 15 54.43 6.77



112

The dimensions of the previous models all have been relatively random.
To investigate the effect of structural regularity, a further fifteen plate
structure has been considered (case 2) in which each plate is identical.

The results appear similar to those of case 1 as shown in Figs. 5.39 to

5.52: in the remote plates SEA severely underestimates the response.

However, in this case it seems that the energy transmission is predicted

incorrectly by the approximate methods: this may be due to periodicity

of the structure which is not modelled neither by the traditional SEA nor

the WIA. However the work of Keane and Price [66] addresses this issue

in SEA: by introducing non-uniform frequency statistics, SEA can be

used in the dynamic analysis of periodic structures.

It is known [28] that periodic structures exhibit alternate "pass bands"

and "stop bands" : if the frequency of a wave impinging on the junction

lies in a pass band, then the wave will travel unattenuated from one

component to another, and there occurs only a phase change between

consecutive plates. However, if the frequency of a wave is within the

range of the stop band, then there will be greatly reduced transmission to
the connecting plate, but the wave will either grow or decay at the

boundaries. To give an indication of the pass bandwidth consider the

case where n-11. Were the plates connected through simple supports

then each pass bands would have a lower bounding frequency which

corresponds to the natural frequency of a single panel with simply sup-

ported transverse edges, and an upper bounding frequency which corre-

sponds to the natural frequency for clamped edges. Considering for

example the 10 kHz one-third octave band, the pass band corresponding

to 23 half wave lengths along the panel has a lower bounding frequency

of 9 kHz and an upper bounding frequency of 9.2 kHz. The next pass

band begins at 9.7 kHz which indicates a pass bandwidth of 200 Hz and

a stop bandwidth of 500 Hz. Obviously the detailed structure of the pass
and stop bands for stiffener connections is complex but these figures

give some indication of the pass and the stop bandwidths.

Thus far the best agreement between the SEA and exact results has been
achieved in case 3 of the three plate assembly, particularly in the second

plate. The worst agreement has arisen in the final plate of fifteen plate
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model. These two cases may be further studied in relation to the four

conditions of section 5.5, which are usually postulated for the successful
application of SEA.

Referring to these two plates as the "best" and "worst" cases; in each

of them, in all the models considered here, the weak coupling

requirement is satisfied as proven by the low values of the energy ratios.
Although there is no clear quantification of coupling strength in the

literature, here a drop of 6 dB in the energy ratios (factor of 4) is

considered to satisfy weak coupling requirement. The values of the other
parameters: the modal overlap factor, M, the number of modes excited,

N, and the reverberation parameter, r, are given for the best and worst

case in Table 5.16 at the highest centre frequency.

Table 5.16

The modal overlap factor, number of modes excited, and

reverberation factor for the best and worst models

with centre frequency 20 kHz.

Case M N r

Best
Worst

22.6
9.82

527
229

0.60

0.73

Although M and N for the best case are quite high, these values for the

worst case are clearly well above the required limit, and both of the

plates may be considered to be reverberant. Hence both the "best" and

"worst" cases satisfy the aforementioned requirements. However the

performance of SEA for the fifteen plate structure is extremely poor,

while the WIA results are relatively accurate. The main reason for the

poor performance of SEA can be put down to the diffuse wave field
assumption, which is relaxed in the WIA approach.

It has already been shown [50] that the diffuse wave field assumption

leads to an overestimate in the component which is next to the excited

plate and an underestimate elsewhere. The present results confirm these

findings: since the transmission coefficients are dependent on the wave
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incidence angle, the wave energy becomes more and more "filtered" as

it passes down the structure. Those waves which have a high
transmission coefficient dominate the wave field, and the resulting

energy flow is much greater than that predicted by SEA.

An additional four plate model in which the wave field is expected to be
reasonably diffuse has also been studied. The structure, which has the

same thicknesses as in case 2 of the box assembly, is depicted in

Fig. 5.120. The dimensions and boundary orientation angles are ran-
domly selected so that a wave will not come to the same point after

travelling through other boundaries, which should result in a much more

diffuse wave field.

Unfortunately, this structure can not be analysed by the exact method,

and therefore only the predictions of WIA and SEA are presented in

Figs. 5.121 to 5.123. In this figures "WIA, rectangular" refers to the

results of an equivalent structure in which the plates are rectangular, but

have the same area as in the irregular model.

The general impression from these figures is that the irregular geometry

does make the wave field more diffuse, leading to closer agreement

between SEA and WIA, particularly for plate 2. This example suggests

that WIA can deal with the irregular geometry, although the lack of a

validating exact analysis is unfortunate.

5.6.2 CLOSED SECTIONS.

Case 1 of the four plate closed section assembly is basically a symmetric

structure in which each plate has the same thickness . The energy levels

in plates 2 and 4 are the! efote identical, as can be seen in Figs. 5.54 and

5.56. In plate 3 both SEA and WIA underestimate the exact results.

Much better predictions are yielded by the approximate methods for
case 2 of the box assembly, which is formed by closing case 2 of the

four plate row. It can be noted from Fig. 5.57.a that the response of the

second plate is almost the same as for the open model, but the energy
ratio of fourth plate is increased by about 5 dB. This is expected since
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the final component is directly connected to the driven plate. In this

component the discrepancy of SEA has been reduced to 0.05 dB which

compares with the error of 4 dB in the open plate row. The improved
SEA prediction is due to the fact that in a closed structure the wave field

tends to become more diffuse.

5.6.3 COMPLEX-JUNCTION PLATE ASSEMBLIES.

The results for the complex-junction plate assemblies do not differ
greatly from the previous cases. The effect of the number of junctions on

the performance of SEA can be clearly observed in the results of the

seven plate model, Figs. 5.66.a to 5.71.a.

For example, on the seventh plate of the complex-junction model the

discrepancy at 20 kHz is about 4 dB, whereas on the equivalent plate of

the eight plate model it is 16 dB, although the properties of the plates in
both structure are more or less the same. The explanation of this phe-

nomenon rests on the number of junctions that a wave energy travels

through: in the present model a bending wave emanating from the ex-

cited plate encounters only three junctions before it reaches the seventh

plate, but in the eight plate model there are twice as many junctions

between the excited and penultimate plate.

5.6.4 STIFFENED PLATES.

As the main concern of this section is with bending only energy trans-

mission, attention here is focused on the symmetrically stiffened plate

rows.

As can be seen in Fig. 5.73, in plate 2 the SEA prediction lies well above

the exact curve, and the ovet estimation is the highest of all the cases that

have been discussed so far. However, WIA is fairly close to the exact

results and the slight underestimation which were observed for the sec-

ond plates of the other assemblies at the higher frequencies does not take

place here.
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In previous models, plate 3 was the component in which SEA began to
underestimate at mid-range frequencies, but in this case such behaviour

is not exhibited; rather it has been shifted to plate 4. A possible reason
for this effect is that a significant amount of energy is transmitted to the

second plate, and the energy flowing from plate 2 to plate 3 is higher

than in the previous cases.

Throughout the structure at about 12 kHz, there is a dip in the curves

predicted by all three methods, this being more marked towards the last

plate. Up to this frequency the energy level gradually decreases, and
then it starts to increase. Although the WIA results closely follow the

trend of the exact results, the SEA curve does not rise after the dip,

causing a very high discrepancy at 20 kHz. Fig. 5.77 shows that the
underprediction at this frequency is around 16.5 dB. As explained in

section 5.4.2, WIA behaves in a similar way to SEA, if an insufficient

number of shape functions are used.

Figs. 5.124 to 5.129 compare the energy distributions as predicted by

WIA and the exact method for case 1 of the symmetrically stiffened

plates at 20 kHz. As can be more clearly observed from Figs. 5.128 and

5.129 WIA determines the angles of maximum energy transmission very

accurately. The figures are constructed by relating the incidence angles

of WIA to number of half wave lengths the in exact method: considering

a bending wave incident at an angle 0 (when 0 is zero the wave is nor-

mally incident), the component of bending wave number along the junc-

tion may be written as

k = lc, sin 0

where kB is the bending wave number, given by

k (  co2p12(1—B. 	 V )14

Eh2

Then the half-wavelength of the bending waves may take the form

(5.3)
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For a junction with length b, the half-wavelength may be related to the

number of half wave lengths, as

2	 n
	 (5.5)

The energy values due to each n may be readily obtained in the exact

method, and therefore, if desired, they may be converted to the angular

energy distribution by relating n to sine, using the equations (5.4) and
(5.5)

Equation (5.6) was used for plotting the exact energy distribution curves
in Figs. 5.124 to 5.129.

Case 2 for the stiffened panel corresponds to a periodic version of

case 1. There is not much change in the general trend of the curves; there

is about a 2 dB increase in amount of the energy transferred throughout

the structure.

5.6.5 SUMMARY OF MAIN FINDINGS FOR BENDING ONLY

CASES.

SEA and WIA exhibit the following trends for the structures that have

been examined thus far:

(i). In the immediate vicinity of the excited plate, SEA always

overestimates the mean response, while WIA is quite close to the

exact results up to the mid-range frequencies, beyond which it

slightly underpredicts the mean energy.



118

(ii). In the third plate of each structure, other than the closed and
stiffened models, SEA initially overestimates the response, and

then as the frequency increases it starts to underestimate. The

predictions of WIA are rather accurate in this component, and re-

gardless of the number of plates in the structure WIA usually fol-
lows the trend of the exact results. However in the periodic struc-

tures, for example case 2 of the fifteen plate assembly, WIA may

yield quite poor predictions.

(iii). In structures which have many components that are con-

nected in a row, the response is always underpredicted by SEA

from the fourth plate onwards. The discrepancy is maximum at the

highest one-third octave frequency in the furthest plate.

(iv). Since the wave field tends to become diffuse in box struc-

tures, the energy values predicted by SEA are fairly accurate.

(v). In complex-junction structures the predictions of SEA are

more accurate than for flat plate assemblies with the same number

of plates, since the extreme panels are separated by fewer junc-

tions.

(vi). In the second plate of the symmetrically stiffened plate as-

sembly, SEA is initially several decibels above the exact curve,

meaning that the predicted energy flow is much greater than in the

other models. This prevents the underprediction which usually oc-

curs in the third plate. In later components however, the discrep-

ancy is high, and SEA can not model the system accurately. Pro-

vided that enough Fourier components are used, WIA is capable of

representing the true physical model with great accuracy. It can

even determine the regions of maximum energy transmission as

illustrated in Figs. 5.124-5.129.

(vii). Fulfilment of weak coupling, high modal overlap, many

excited modes, and high reverberance does not guarantee the suc-
cessful application of SEA.
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5.7 THE EFFECT OF IN-PLANE VIBRATIONS.

5.7.1 GENERAL EFFECTS.

While the previous sections were concerned with pure bending energy

transmission, in this section an assessment of effect of in-plane motion

will be made. It should be emphasised that the energy ratios which are

referred to as "full" in the graphs of section 5.2 are not the ratio of the

total (sum of bending, longitudinal, and shear) energy of a particular

plate in the system to the total energy of the excited plate; they are

bending energy ratios for which the effects of in-plane motion have been

fully accounted.

An obvious difference between the pure bending and the full graphs is

that there is a reduction to a certain extent in the energy level of the

plate which is next to the driven plate. This phenomenon may be ob-

served in almost all of the cases considered in this study. A physical

explanation of the observed trend is as follows: in the pure bending

calculations it is assumed that a bending wave impinging on the junction
is either partly reflected or transmitted to another bending wave in the

neighbouring plate. On the other hand, if due allowance is made for the

presence of in-plane waves, then some of the incident flexural wave

energy will be converted into in-plane waves in the second plate. There-

fore the amount of transmitted bending wave energy decreases in com-

parison to the pure bending case.

Having observed that there is a definite reduction in the bending energy

level of the plate which is next to the excited one, the following question
arises: "What are the factors that foster bending to in-plane

conversion?" For instance, although the areas of the plates in cases 1

and 2 of the three plate assembly are the same, the difference in the

predictions of the exact method between bending and full is 1.6 dB and
3.5 dB for case 1 and 2 respectively.

This can be explained by considering the bending and in-plane shear

wavelengths: if the ratio of the shear to the bending wavelength (A s AB)
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is much greater than unity, then clearly there will be very little in-plane
motion generated. Snell's Law (see equation (4.12)) implies that for

propagation of a wave from one component into another one, the tan-

gential trace wavelengths of the two waves in these components have to

be equal. Therefore there will be no bending to shear wave conversion at

the junction if

k
sin 0> -.

kB

The bending waves arriving at angles of incidence that satisfy the above
inequality thus are totally reflected, and the angle 0 is known as [28] the

"critical angle" beyond which no transmission occurs. Obviously, as the

ratio kSlkB decreases, the range of incidence angles at which there may

be bending to in-plane transmission decreases as well.

Therefore the condition for significant in-plane conversion becomes

Using the definition of bending wavenumber from equation (5.3), and

shear wavenumber from the following expression

ks = (
2pco2(1+ v)j1/2

,
Eh

neglecting the contributions of [12(1— 1)] 1/4 and [2(1+ v)]"2 , and assuming

that the mass densities of the two plates are almost the same, then equa-

tion (5.7) may be rewritten as

12
k s ,...„ co, 2 ( p.)

14
(A ) � 1.

kB	 E) h2

Here h 1 and h2 are respectively the thicknesses of the plates on which the
bending wave emanates and the in-plane waves are generated. The
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in-plane longitudinal wave is encompassed by this equation, since the

longitudinal wave number ki, is less than ks.

The above result shows that bending to in-plane conversion is directly

proportional to the square root of the frequency of excitation and the

ratio h 1 /h2.
 
This explains why the in-plane effect is greater in case 2: in

case 1 all the plates have the same thickness and there is little in-plane
transmission, while in case 2 there is a reduction in the plate thickness,

leading to the generation of in-plane waves.

An examination of the transmission coefficients shown in Fig. 5.130,
confirms that the degree of conversion of bending waves in the source

plate to in-plane waves in the adjoining component is strongly dependent

on the thickness ratio of these plates. Fig. 5.130.a shows the in-plane

shear wave transmission coefficient from plate 1 to 2 at a corner junction

with respect to incident angle when a bending wave is incident to the

junction. To show the degree of transformation vividly, the coefficients

are presented for three different h i /h 2 ratios at a constant frequency, and

Fig. 5.130.b presents transmission coefficients for longitudinal waves

under similar conditions. The bending wave energy transmission coeffi-
cient is not independent of frequency when the in-plane waves are taken
into account.

5.7.2. PLATE ASSEMBLIES.

Referring to Figs. 5.2.b to 5.7.b, it can be seen that in the second com-

ponent of the three plate models SEA captures the behaviour of the exact

curve: with increasing frequency there is a decrease in the energy flow

from the excited plate. However it still exhibits the same tendency as in

the pure bending case, overestimating across the frequency range, al-
though the amount of overestimation has been reduced fractionally. The

underestimation which is observed at high frequencies in the WIA pre-

dictions has also been reduced. This is particularly evident in plate 2 of

case 2 where there is about 1.2 dB difference between the exact results

and WIA for the pure bending case, while in the full case this reduces to
0.07 dB.
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In the third plate of the first two cases of the three plate model the exact
results for the full model again show a lower energy level than for the

bending only model. This is more marked in case 2 than in case 1, due to
the further reduction in the plate thickness from plate 2 to 3. On the

other hand, in case 3 of the same model the full energy ratio of the last

plate is higher than for pure bending. This is due to the conversion of

plate 2 in-plane waves into bending waves in the thicker plate 3. These

trends are closely followed by the approximate methods.

In the plates two and three of the four plate models, all three methods

exhibit a behaviour similar to that of three plate assemblies, depending

on whether thickness increases or decreases down the structure.

However in the fourth plate, for all three cases the full analysis leads to

an increase in the response regardless of the thickness of the plate. As an

example in case 2, the increase in the results of the exact, SEA, and WIA

at 20 kHz are 2.27, 3.94, and 1.93 dB respectively.

A further comparison between the exact and the WIA results can be

made from Figs. 5.131-5.134 which show the energy distribution as

predicted by two methods for case 2 of the four plate assembly at

20 kHz. As can be seen, WIA does not give the fine details of the peaks

which occur in the exact results, but rather it yields a smooth envelope:

similar curves as in the case of stiffened plates would have been ob-

tained (Figs. 5.124-5.129) if many shape functions have been employed.

The two WIA curves shown in the Figs. 5.132 and 5.133 correspond to

the ranges 0<0< g/2 and R-12<0<7r, which are not distinguished by the

exact method. It can be seen WIA gives a reasonable, smoothed, estimate

of the energy distribution.

An examination of the energy ratios of the eight plate assembly

(Figs. 5.18.b to 5.24.b) reveals that the response of the plates which are
close to the source plate conform to the observations made for previous

assemblies. From the fifth plate onwards, the energy predictions for the

full model are always greater than for the bending only model. The
agreement between the exact and the approximate methods is closer for

the full model. For instance in the final plate at 20 kHz it is already
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known that bending only SEA underestimates by about 18 dB; however
with the inclusion of in-plane waves this discrepancy reduces to 13 dB.

For the same case bending only WIA overpredicts 2.7 dB, yet in the full

case this drops to 1.4 dB.

Similar observations can be made for case 1 of the fifteen plate assem-

bly: moving away from the excited plate the energy increases; by the

time wave types reached to the fifteenth component, they have travelled

through fourteen junctions. On this plate even at mid range frequencies

the increase in the full bending energy level, in comparison to pure

bending energy results, is quite high as illustrated in Fig. 5.135. Figure

shows the difference between the bending only and the full results, as
given by the exact method for the last plate of the various models, as a

function of the average number of in-plane modes per component. The

horizontal axis in this figure is effectively a scaled form of frequency.

As can be seen there are two main factors that lead to an increase in the

energy transmission: the number of junctions in the system, and the

number of in-plane modes excited. Even though the average number of

in-plane modes in the four plate structure is almost three times that in
the fifteen plate structure, the latter structure displays a much greater

change in the energy transmission, due to the increased number of junc-

tions.

If attention is focused on the remote components for case 1 of the fifteen

plate model, it can be observed that both SEA and WIA exhibit similar

trends to the exact results: the effect of the in-plane waves increases as

the plate becomes more remote. Further the difference between the exact
and the approximate methods decreases when in-plane effects are pre-

sent. This is shown in Table 5.17, where the difference between the

energy ratios of the exact and the approximate of the last five plates and

the reduction in the discrepancies relative to pure bending case at the

highest centre frequency are presented.
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Table 5.17

The discrepancy (dB) between the exact and the approximate methods

after the inclusion of in-plane waves, and

reduction relative to pure bending discrepancies.

Case 1

Plate

dB range

SEA WIA

Reduction (dB)

SEA	 WIA

11 23.46 0.40 17.72 8.42
12 26.25 0.94 17.46 7.68

13 32.25 0.53 13.83 6.68

14 35.72 0.07 15.59 7.66

15 40.37 0.51 14.06 6.26

Although in both approximate methods the discrepancies have been re-
duced substantially in comparison to the pure bending case, and the two

curves are shifted towards the exact results, the effect of in-plane energy

transmission on SEA and WIA are not the same: the WIA results come
much closer to the exact results.

An understanding of what is happening can be obtained comparing the

in-plane energies which are predicted by the various methods. These

results are shown in Table 5.18 for 20 kHz; the in-plane energy of a

particular plate due to a particular method has been divided by the

bending energy of the source plate. The differences between the exact

and approximate methods are shown, so that a value which is close to

zero implies good agreement with the exact method.
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Table 5.18

In-plane longitudinal and shear energy ratios (dB) of

WIA and SEA to exact for the last five plate of

case 1 of the fifteen plate assembly.

Plate

Longitudinal

SEA	 WIA

Shear

SEA WIA

11 -34.62 -6.45 -34.15 -4.80

12 -36.19 -4.11 -36.10 -2.91

13 -39.06 -3.06 -39.50 -1.77
14 -46.86 -5.72 -46.71 -4.27
15 -46.21 -2.58 -48.15 -1.44

An important observation which can be made from the table is that as the

plate becomes further from the source plate the deviation of SEA from

the exact results becomes worse. The reason for this phenomenon must

lie in the diffuse wave field assumption, as WIA yields much improved

results. As mentioned in the previous sections, the diffuse wave field

assumption overpredicts the energy flow from the source plate to the

connecting plate, tends to underpredict the energy flow for subsequent

junctions. A similar problem occurs in the presence of in-plane waves: it

is known that the majority of conversion from bending to in-plane waves

takes place when a bending wave is heading towards a junction at normal

or near to normal angles. Since only a small amount of energy is incident

at such angles in SEA, the bending to in-plane conversion is underesti-

mated, and thus in later junctions the in-plane to bending conversion can

not be modelled properly, thus resulting in a large deviation from the

exact results.

5.7.3 CLOSED SECTIONS.

In both cases of the box structure the in-plane energy transmission re-

duces the bending energy in plates 2 and 4 since they are directly con-

nected to the excited plate. As in the previous models, WIA is much
more sensitive to the presence of in-plane waves, and rapidly converges
towards the exact curve.
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In the third plate for the symmetric assembly (case 1, Fig. 5.55) where
the exact curve was much higher than WIA and SEA curves for pure

bending, here there is about 2 to 3 dB reduction in the results of the
exact method, and therefore the predictions of the approximate methods
seem to be improved.

In the third plate of case 2, SEA has improved relative to the pure bend-

ing case: the characteristic underestimation at mid-range frequencies has

disappeared. It predicts a response around 1 dB above the WIA results

across the frequency range.

5.7.4 COMPLEX-JUNCTION PLATE ASSEMBLIES.

When the four plate complex-junction results which are presented in

Figs. 5.63.b to 5.65.b are examined, conclusions akin to the four plate

assembly of section 5.7.2 may be drawn. The only difference is: in the

third plate SEA does not underestimate up to the last two one-third oc-

tave band frequencies, it then slightly underpredicts.

In the seven plate model, the contributions of in-plane vibrations are

highly significant in the last two plate (Figs. 5.70.b and 5.71.b), as can

also be observed from the Fig. 5.135, the difference between the pure

bending and the full results as given by the exact method is as high as

fifteen plate assembly in the last plate. However in the plates which are

close two the excited plate, the effect of in-plane vibrations is similar to

previously studied assemblies.

An explanation of the observed trend is made by Lyon [48] in the con-

text of statistical energy analysis of ship structures. He shows that the

increase in transmissibility caused by in-plane waves becomes more
important as the distance from driven plate is increased in such struc-

tures. The in-plane waves act as "flanking-paths" for flexural wave en-

ergy, and generate more marked effects because of multiple junctions.

As can be seen in Fig. 5.62, in-plane waves in plate 5 may be converted

into bending waves in plates, thus giving a flanking path.
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It is interesting to note that in-plane energy transmission increases the

mean response of the final plate by almost the same amount in all meth-
ods at the highest centre frequency. That is, the differences between the

pure bending results and the full results as yielded by the exact, SEA and

W1A methods are respectively 17.5, 19, and 18 dB.

5.7.5 STIFFENED PLATES.

In the asymmetrically stiffened plates it is found that the energy predic-

tions of all three methods decrease down the structure compared to

case 1 of the symmetrically stiffened plate assembly. This is not thought

to be due to in-plane waves but, rather the high torsional stiffness of the
asymmetric stringer. In both the symmetrical and asymmetrical models

the dimensions of the stringers are the same, but in the latter model the

stringers are attached at the tip, and thus the torsional stiffness with

respect to attachment point is large. This resists bending energy trans-

mission from one plate to another at the junction.

If a comparison is made between the exact and approximate methods,

there is no change in the typical underestimation characteristics of SEA

at the higher frequencies and in remote plates. Although the accuracy of

WIA is very good; as many as forty Fourier terms were required to

achieve these results.

5.7.6 SUMMARY OF MAIN FINDINGS FOR IN-PLANE

INCLUSIVE CASES.

From the foregoing results the following points arise regarding the ef-

fects of in-plane vibrations:

(i). In the component which is directly connected to the excited

plate there is a reduction in the bending energy compared to the

pure bending calculations, since some of the bending waves in the

source plate are transmitted as in-plane waves in the adjoining
plate.
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(ii). Although in the third component of some of the models the
energy ratio may increase or decrease depending on the thickness

of this plate, from the fourth/fifth plate onwards the energies in-

crease regardless of the thickness of the plates.

(iii). There are three main factors which affect the in-plane to

bending wave conversion: (a) the number of in-plane modes ex-

cited, (b) the number of junctions in the structure, (c) the number

of plates at each junction. The last two factors are particularly in-

fluential. Broadly speaking, once bending waves are converted to

in-plane waves, after travelling through a couple of junctions, they
dominate the energy transmission. The further a plate lies from the

source plate, the greater the increase in energy arising from in-
cluding in-plane vibrations.

(iv). In general both SEA and WIA follow the trends of the exact

results in the presence of in-plane waves.

(v). The fact that there are more excited modes in the system

when the in-plane motion is taken into consideration, means that

the WIA predictions are even more accurate for this case than for

the bending only case. The method improves with increasing fre-

quency, where for example the slight underprediction which is

seen in the second components disappears. Regardless of the type

of the structure, the results yielded by WIA tend to be conserva-
tive.
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Fig. 5.1 Three plate assembly
a) Bending model
b) In-plane model
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Four Plate Box Assembly
Third Octave Band Energy Ratio
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Four Plate Box Assembly
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Plate 3, Case 2
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Fig. 5.61 Four plate complex-junction assembly.

Fig. 5.62 Seven plate complex-junction assembly.
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Complex-Junction Plate Assembly
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Complex-Junction Plate Assembly
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Complex-Junction Plate Assembly
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Complex-Junction Plate Assembly
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Symmetrically Stiffened Plate Assembly
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Symmetrically Stiffened Plate Assembly
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Fig. 5.83
a) Six plate assembly with five asymmetric stringers
b) Stringer cross section and dimensions
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Asymmetrically Stiffened Plate Assembly
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Asymmetrically Stiffened Plate Assembly
Third Octave Band Energy Ratio
Plate 4, Case 1
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Asymmetrically Stiffened Plate Assembly
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Asymmetrically Stiffened Plate Assembly
Third Octave Band Energy Ratio
Plate 6, Case 2

10Log (E 6 /E 1)

E\act,

5,000

--- -WIA

Frequency (Hz)

	  SEA

Fig. 5.93



2 1 2

0.85

- X

*
-

0.6 -
X

*
X

* *-
X

-y(m) X * *

0.4 X-
*

X *
-

0.2 X *
-

X
-

0  

I	 'I'	 1	 I	 I I 	1 1 1 1 1 1 1	 I I	 1	 1
0	 0.3	 0.6	 0.9

x (m)

Location

Set 1 * Set 2 X

x (m) y (m) x (m) Y (m)
1 0.595 0.540 0.110 0.605

2 0.595 0.300 0.253 0.456

3 0.415 0.700 0.552 0.701

4 0.630 0.270 0.630 0.115

5 0.752 0.450 0.702 0.615

6 0.233 0.660 0.445 0.308

7 0.242 0.312 0.242 0.212

8 0.450 0.470 0.752 0.417

9 0.318 0.550 0.502 0.525

Fig. 5.94 The selected locations of excitation points.



213

Four Plate Assembly (Case 2)
Relative range in the E 2 /E 1 predictions of excitation set 1&2
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Four Plate Assembly (Case 2)
Relative range in the E4 /E, predictions of excitation set 1&2
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Four Plate Assembly (Case 2)
Scatter in the energy ratio E3 /E 1 over the 9 excitation points
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Four Plate Assembly (Case 2)
Influence of point position on the full energy ratio
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Four Plate Assembly In-plane Model (Case 2)
Influence of boundary conditions on the E2 /E4 ratio
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Four Plate Assembly In-plane Model (Case 2)
Influence of boundary conditions on the E4 /Et ratio
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Four Plate Assembly (Case 2)
Effect of number of shape functions on wave energy distribution
Plate 1, centre frequency: 20 kHz.
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Four Plate Assembly (Case 2)
Effect of number of shape functions on wave energy distribution
Plate 3, centre frequency: 20 kHz
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Four Plate Assembly (Case 2)
Effect of number of shape functions on wave energy distribution
Plate 4, centre frequency: 20 kHz

1
E(0)/E.

0.8

0.6

0.4

0.2

0

-0.2

-0 4
0

„ 
2.8 3.2

---------	 -- 3 Terns

0.4	 0.8	 1.2	 1.6	 2	 2.4

Angle of Incidence, 0 (Rad)

5 Terms 	 8 Terms

Fig. 5.107



22 1

Symmetrically Stiffened Plate Assembly (Case 1)
Effect of number of shape functions on wave energy distribution
Plate 1, centre frequency: 20 kHz
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Effect of number of shape functions on wave energy distribution
Plate 2, centre frequency: 20 kHz

1
E(0)/E

0.8

0.6

0.4

0.2

0

-0.2

-0.4
0	 0.4	 0.8	 1.2	 1.6	 2	 2.4	 2.8

Angle of Incidence, 0 (Rad)

	 5 Terms ----------------- 41 Terms

3.2

Fig. 5.109

E(0)/Ema.

0.9 7:

0.8 7:

0.7 -7

0.6 I

0.5 -

1.2	 1.6 2	 2.4	 2.80.8 3.20.4
0.4 	

0



2 2 2

Symmetrically Stiffened Plate Assembly (Case 1)
Effect of number of shape functions on wave energy distribution
Plate 3, centre frequency: 20 kHz
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Symmetrically Stiffened Plate Assembly (Case 1)
Effect of number of shape functions on wave energy distribution
Plate 4, centre frequency: 20 kHz
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Symmetrically Stiffened Plate Assembly (Case 1)
Effect of number of shape functions on wave energy distribution
Plate 5, centre frequency: 20 kHz
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Symmetrically Stiffened Plate Assembly (Case 1)
Effect of number of shape functions on wave energy distribution
Plate 6, centre frequency: 20 kHz
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Four Plate Assembly
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Plate 4, Case 2

10Log (E4/E1)
0

-5

- 10

- 15

-20

-25

-30
25 250

Frequency (Hz)
II	 II

3.5 24.2	 38.6

Exact SEA

13.8

Modal overlap factor, Mx 102

WIA 	

Fig. 5.117.a

Four Plate Assembly
Discrete Frequency Energy Ratio
Plate 4, Case 2

0.0001 —	
25 65	 105	 145

- Evict

185	 225	 265

Frequency (Hz)
Corrected SEA	SEA

Fig. 5.117.b



[E(0)/Emax]5in(0)

0.5

0.3

0.8

228

Four Plate Assembly
Wave energy distributions of SEA and WIA
Plate 1, Case 2
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Fig. 5.120 Plan view of simply-supported irregular plate assembly.
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Symmetrically Stiffened Plate Assembly (Case 1)
Energy Distribution in WIA and Exact
Plate 1, centre frequency: 20 kHz
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Symmetrically Stiffened Plate Assembly (Case 1)
Energy Distribution in WIA and Exact
Plate 2, centre frequency: 20kHz
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Symmetrically Stiffened Plate Assembly (Case 1)
Energy Distribution in WIA and Exact
Plate 3, centre frequency: 20kHz
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Symmetrically Stiffened Plate Assembly (Case 1)
Energy Distribution in WIA and Exact
Plate 5, centre frequency: 20kHz
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Symmetrically Stiffened Plate Assembly (Case 1)
Energy Distribution in WIA and Exact
Plate 6, centre frequency: 20 kHz

1

0.8

0.6

E(0)/F,..,

0.4

0.2

0

0 10.1	 0.2 0.3 0.4 0.5 0.6

WIA

0.7 0.8 0.9

Sin9

	 Exact

Fig. 5.129



0.8

0.6

0.4

0.2

0.1
	

0.2
	

0.3
	

0.4

Sin 0

---------- ---- - ---- 	 8
	

4

Fig. 5.130.a

234

Effect of plate thickness ratio, h 1 /h 2 , on coupling of bending waves to

shear waves

Effect of plate thickness ratio, h i /h 2 , on coupling of bending waves to

longitudinal waves
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Four Plate Assembly (Case 2)
Energy Distribution in WIA and Exact
Plate 1, centre frequency: 20 kHz.
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Energy Distribution in WIA and Exact
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Exact method dB difference
between bending only and full in the last component of plate assemblies.
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6 SUMMARY AND CONCLUSIONS.

6.1 A BRIEF SUMMARY.

To obtain exact results for the high frequency vibrations of a large class

of plate structures, the standard dynamic stiffness method has been ex-

tended to deal with the case of in-plane vibrations. This has made it

possible to check the results yielded by the Statistical Energy Analysis

(SEA) technique which is widely used for high frequency vibration

analysis. The Wave Intensity Analysis (WIA) method of reference [50]

has also been extended to the case of in-plane vibrations.

All three methods have been applied to a wide range of plate structures

and detailed comparisons have been made. Due to the restriction im-

posed by the dynamic stiffness method, the example cases considered

here were extending only in one direction: this in sense a special case
which forms wave guide structures. If there are many components ex-

tending in every direction the wave field would be expected to be more

diffuse, then the wave heading angle will be less critical; thus SEA pre-

dictions will improve. However if there is single dominant transmission

path in the structure; as in the case of an aircraft fuselage, the conclu-

sions drawn from this study will be more applicable.

It is hoped that the results presented here will serve as a database for

prospective users of SEA or WIA.

In what follows a summary of main findings of this work are presented.

6.2 CONCLUSIONS.

(i). Due to the influence of phase effects, the exact results are

generally oscillatory at low frequencies, but become smooth as the

modal overlap increases. When the in-plane modes are included

the scatter due to individual point load locations is higher than in

the pure bending case. Even at high frequencies there may be a
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5 dB difference in the energy levels arising from different point
force locations. However SEA and WIA can not detect this scatter
since they are concerned with the "average" response both in

terms of phase effects and point load locations.

(ii). Although the results are sensitive to the point load location

for a single point force, it has been shown (Figs. 5.95-5.97) that

the result obtained by averaging over a number of point force lo-

cations (nine were considered here) is relatively insensitive to the

location of the individual forces, providing a relatively random

distribution is used.

(iii). In WIA, it has been observed that while three to five Fourier

terms are sufficient to represent the directional dependency of a

wave field in the simply-supported and orthogonally coupled plate

assemblies, in stiffened plates the required number is higher. Al-

though up to mid-range frequencies three to five Fourier compo-
nents are sufficient, at higher frequencies as many as forty shape
functions may be needed, due largely to the strong dependence of

the transmission coefficients on the angle of wave incidence at

these frequencies.

(iv). The use of three to five Fourier components in WIA may

lead to the prediction of negative energy in the system at certain

incidence angles, although this effect disappears as the number of

shape functions is increased. Generally the negative energy does

not significantly degrade the overall results, providing the main

part of the energy distribution curve is accurately predicted. In

fact only the first (constant) Fourier component has a non-zero

contribution to the total energy in a subsystem, and thus a negative

total energy is never predicted.

(v). Although at low frequencies SEA may predict a good average

response in some components, in the remote plates SEA overesti-
mates the energy levels due to strong coupling and low modal

density. However a fair knowledge of peaks which are found in

the exact results may be obtained if the results of SEA or WIA are
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multiplied by a correction factor. That might be useful to a design
engineer who is seeking the rapid estimation of maximum re-
sponse.

(vi). Considering the pure bending results: even though the re-
quirements of weak coupling , high modal overlap, many modes

excited, and reverberance are satisfied, SEA overestimates the re-

sponse in the component which is directly connected to the source
plate. In the third plate the SEA predictions are higher than the

exact results at low frequencies, while at high frequencies an un-

derprediction occurs. An underprediction is always observed in

the remaining components of the structure, and the discrepancy is

greatest for the furthest plate at the highest frequency. On the

other hand the WIA predictions are much closer to the exact re-
sults especially at the higher frequencies. The good agreement

between WIA with the exact results sheds some light on the poor
performance of SEA: it has previously been shown [50] that due to

the diffuse wave field assumption, SEA initially overestimates the

energy flowing to the neighbouring plate; however in the subse-

quent plates the energy travelling towards the next component is

underestimated by the diffuse field assumption due to the wave

filtering effects of the structural junctions. The results presented

here confirm these findings.

(vii). As the wave field is more diffuse in box structures, the

SEA predictions are in much closer agreement with the exact re-

sults. The results for the irregular plate structure, in which the

wave field is expected to be more diffuse, indicate that in the limit

of a perfectly diffuse wave field WIA will converge to SEA re-

gardless of the number of shape functions used since the higher

Fourier terms will tend to zero.

(viii). In stiffened structures the diffuse wave field approximation

leads to a significant overestimation of energy flow from the ex-

cited to the adjoining plate. In the other components, while SEA

may show the general trend, it produces large errors in the energy

levels, particularly for the remote plates. In this case it is possible
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to obtain very accurate predictions by using WIA providing an
adequate number of shape functions are employed.

(ix). It has been shown that the angular distribution of energy

predicted by the WIA technique is in close agreement with the ex-

act results (see for example Figs. 5.124-5.129). This indicates that

WIA does capture the true physics of the energy transmission

process.

(x). When the in-plane modes are included it is found that the

bending energy of a plate which is directly connected to the ex-

cited plate decreases in comparison to the pure bending case. The

reason for this is that some of the bending energy in the excited

plate is transmitted to in-plane waves, thus reducing the amount of

the energy transmitted in bending waves. This effect becomes

more apparent with increasing frequency.

(xi). For greater bending to in-plane transmission the critical an-

gle needs to be larger. This angle approaches to 90 0 as the fre-

quency of the excitation increases, and also as the relative thick-

ness of the source plate increases. However, for example, in case

1 of the fifteen plate assembly the in-plane effects begin to appear

at around 2.5 kHz which corresponds to a small critical angle.

Although at this frequency the contribution of in-plane vibrations

on the second plate is negligible, on the last component the differ-

ence between the pure bending and the full results as predicted by

the exact method is as much as 10 dB. This shows that even at

moderate frequencies in the remote plates the in-plane effects may

be important.

(xii). While in the components near to the source plate the inclu-

sion of in-plane effects may either increase or decrease the bend-

ing energy, depending on thickness changes, for remote plates the

effect is always to increase the bending energy. This is due to the

coupling of the in-plane waves back into bending waves at distant

structural locations. There are three main factors that accelerate

this increase in the bending energy: (a) the number of in-plane
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modes excited, which is directly proportional to the frequency and

bandwidth, (b) the number of junctions in the structure, (c) the

number of plates at each junction.

(xiii). The fact that there are more modes excited, and more
transmission paths when the in-plane motion is included, lead to

better agreement between SEA and the exact results for this case.

However SEA can still severely underestimate the response, espe-

cially in larger structures. This is due mainly to the diffuse wave

field approximation, as explained in (vi); the WIA results also im-

prove with the inclusion of in-plane effects, and the error yielded
by WIA can be as low as 0.5 dB for a case in which SEA yields

40 dB underprediction.

(xiv). When it comes to the question of "how important is in-

plane energy transmission in realistic situations?", a generalised

answer is difficult to give, as the effect is dependent on both the
system under consideration and the frequency of the excitation.

Obviously the simplest possible model should be adopted. How-

ever, as may be observed from the exact results for the fifteen

plate assembly, in the sixth plate there is as much as a 4 dB in-

crease in the energy level even at 5 kHz, and the increment at the

same frequency in the last component of the seven plate complex-

junction model is as high as 10 dB even though there are just three

junctions. On the other hand in the three plate assemblies the dif-

ference between bending only and full results does not exceed

2 dB across the whole frequency range. Further the bending en-

ergy level decreases in these structures because of the reasons

given in (xii), and therefore the contribution of the in-plane vibra-

tions may be neglected if the structure is very simple. The major-

ity of engineering structures consist of many interconnecting ele-

ments with a lot of junctions, and in these cases the exclusion of
the in-plane modes may result in a severe underprediction unless

the concern is with low frequencies only. In such structures due

allowance should therefore be made for the presence of in-plane
modes.
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(xv). In general SEA predictions become unreliable, if (a) the fre-
quency of the excitation is high, (b) there are many components in

the structure. Although in the structures which consist of less than

four plates it is possible to obtain reasonable response estimates

for any frequency, for structures which are composed of many

elements the underprediction in the SEA results may reach unac-

ceptable levels with the increase of frequency.

(xvi). In addition to the four requirements (see section 5.5) which

are usually postulated for successful application of SEA, the wave
field should also be diffuse to yield better results.

(xvii). Throughout this study the main concern has been with the

spatial and frequency averaging, rather than ensemble averaging.

In reality, although two structures may be physically similar, they

can not be exactly identical due to inevitable small differences in

fabrication details. In this case the prediction of the vibrational

behaviour of one of the systems is not as meaningful as an average

response which is obtained from a group of similar systems. Even

though ensemble averaging is not performed here, given that exci-
tation frequencies are quite high, it is expected that frequency av-

eraging will yield similar results to ensemble averaging.

(xviii). Based on the observations in this work, the following sug-

gestions can be made to the practising engineer: the relative thick-

ness ratio of the plates should be kept close to unity, so that there

is less bending to in-plane conversion. Having "T" or cross junc-

tions, if possible, should also be avoided to prevent coupling of

in-plane waves back to bending waves. As the SEA results indi-

cate there may be as much as 40 dB reduction in the energy levels

if the wave field is diffuse. This suggests that the structure should

be designed in a way that the resulting wave field becomes more
diffuse.



244

6.3 SUGGESTIONS FOR FUTURE WORK.

It has been shown that WIA provides significant improvements over
standard SEA for a certain class of plate structures. It would therefore be

of great use to extend the method to other engineering structures such as
beams and cylindrical shells. This may be easily accomplished provided

that the energy transmission coefficients are known for the specific types
of junction under consideration.
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A.1

APPENDIX A

FLOW CIIARTS OF EXACT AND WIA PROGRAMS.

The implementations of dynamic stiffness method and Wave Intensity
Analysis have involved the writing and development of rather lengthy

computer programs, and because of their lengths the programs have not
been reproduced in the thesis. The steps taken in the main bodies of the
exact and WIA programs are, however, shown in the flow diagrams of

Figs. A.1 and A.2 respectively.

Fig. A.1 indicates clearly the exact program makes a "do-loop" over a
number of half sine waves, and for the sake of simplicity the flowchart is

constructed for a single force and frequency. The WIA program makes
do-loops over the number of plates, wave types, and shape functions as

depicted in Fig. A.2.
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Fig A I Dynamic Stiffness Method Main Program Flowchart.
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Fig. A.2 Wave Intensity Analysis Method Main Program Flow Chart.


	DX175380_1_0001.tif
	DX175380_1_0003.tif
	DX175380_1_0005.tif
	DX175380_1_0007.tif
	DX175380_1_0009.tif
	DX175380_1_0011.tif
	DX175380_1_0013.tif
	DX175380_1_0015.tif
	DX175380_1_0017.tif
	DX175380_1_0019.tif
	DX175380_1_0021.tif
	DX175380_1_0023.tif
	DX175380_1_0025.tif
	DX175380_1_0027.tif
	DX175380_1_0029.tif
	DX175380_1_0031.tif
	DX175380_1_0033.tif
	DX175380_1_0035.tif
	DX175380_1_0037.tif
	DX175380_1_0039.tif
	DX175380_1_0041.tif
	DX175380_1_0043.tif
	DX175380_1_0045.tif
	DX175380_1_0047.tif
	DX175380_1_0049.tif
	DX175380_1_0051.tif
	DX175380_1_0053.tif
	DX175380_1_0055.tif
	DX175380_1_0057.tif
	DX175380_1_0059.tif
	DX175380_1_0061.tif
	DX175380_1_0063.tif
	DX175380_1_0065.tif
	DX175380_1_0067.tif
	DX175380_1_0069.tif
	DX175380_1_0071.tif
	DX175380_1_0073.tif
	DX175380_1_0075.tif
	DX175380_1_0077.tif
	DX175380_1_0079.tif
	DX175380_1_0081.tif
	DX175380_1_0083.tif
	DX175380_1_0085.tif
	DX175380_1_0087.tif
	DX175380_1_0089.tif
	DX175380_1_0091.tif
	DX175380_1_0093.tif
	DX175380_1_0095.tif
	DX175380_1_0097.tif
	DX175380_1_0099.tif
	DX175380_1_0101.tif
	DX175380_1_0103.tif
	DX175380_1_0105.tif
	DX175380_1_0107.tif
	DX175380_1_0109.tif
	DX175380_1_0111.tif
	DX175380_1_0113.tif
	DX175380_1_0115.tif
	DX175380_1_0117.tif
	DX175380_1_0119.tif
	DX175380_1_0121.tif
	DX175380_1_0123.tif
	DX175380_1_0125.tif
	DX175380_1_0127.tif
	DX175380_1_0129.tif
	DX175380_1_0131.tif
	DX175380_1_0133.tif
	DX175380_1_0135.tif
	DX175380_1_0137.tif
	DX175380_1_0139.tif
	DX175380_1_0141.tif
	DX175380_1_0143.tif
	DX175380_1_0145.tif
	DX175380_1_0147.tif
	DX175380_1_0149.tif
	DX175380_1_0151.tif
	DX175380_1_0153.tif
	DX175380_1_0155.tif
	DX175380_1_0157.tif
	DX175380_1_0159.tif
	DX175380_1_0161.tif
	DX175380_1_0163.tif
	DX175380_1_0165.tif
	DX175380_1_0167.tif
	DX175380_1_0169.tif
	DX175380_1_0171.tif
	DX175380_1_0173.tif
	DX175380_1_0175.tif
	DX175380_1_0177.tif
	DX175380_1_0179.tif
	DX175380_1_0181.tif
	DX175380_1_0183.tif
	DX175380_1_0185.tif
	DX175380_1_0187.tif
	DX175380_1_0189.tif
	DX175380_1_0191.tif
	DX175380_1_0193.tif
	DX175380_1_0195.tif
	DX175380_1_0197.tif
	DX175380_1_0199.tif
	DX175380_1_0201.tif
	DX175380_1_0203.tif
	DX175380_1_0205.tif
	DX175380_1_0207.tif
	DX175380_1_0209.tif
	DX175380_1_0211.tif
	DX175380_1_0213.tif
	DX175380_1_0215.tif
	DX175380_1_0217.tif
	DX175380_1_0219.tif
	DX175380_1_0221.tif
	DX175380_1_0223.tif
	DX175380_1_0225.tif
	DX175380_1_0227.tif
	DX175380_1_0229.tif
	DX175380_1_0231.tif
	DX175380_1_0233.tif
	DX175380_1_0235.tif
	DX175380_1_0237.tif
	DX175380_1_0239.tif
	DX175380_1_0241.tif
	DX175380_1_0243.tif
	DX175380_1_0245.tif
	DX175380_1_0247.tif
	DX175380_1_0249.tif
	DX175380_1_0251.tif
	DX175380_1_0253.tif
	DX175380_1_0255.tif
	DX175380_1_0257.tif
	DX175380_1_0259.tif
	DX175380_1_0261.tif
	DX175380_1_0263.tif
	DX175380_1_0265.tif
	DX175380_1_0267.tif
	DX175380_1_0269.tif
	DX175380_1_0271.tif
	DX175380_1_0273.tif
	DX175380_1_0275.tif
	DX175380_1_0277.tif
	DX175380_1_0279.tif
	DX175380_1_0281.tif
	DX175380_1_0283.tif
	DX175380_1_0285.tif
	DX175380_1_0287.tif
	DX175380_1_0289.tif
	DX175380_1_0291.tif
	DX175380_1_0293.tif
	DX175380_1_0295.tif
	DX175380_1_0297.tif
	DX175380_1_0299.tif
	DX175380_1_0301.tif
	DX175380_1_0303.tif
	DX175380_1_0305.tif
	DX175380_1_0307.tif
	DX175380_1_0309.tif
	DX175380_1_0311.tif
	DX175380_1_0313.tif
	DX175380_1_0315.tif
	DX175380_1_0317.tif
	DX175380_1_0319.tif
	DX175380_1_0321.tif
	DX175380_1_0323.tif
	DX175380_1_0325.tif
	DX175380_1_0327.tif
	DX175380_1_0329.tif
	DX175380_1_0331.tif
	DX175380_1_0333.tif
	DX175380_1_0335.tif
	DX175380_1_0337.tif
	DX175380_1_0339.tif
	DX175380_1_0341.tif
	DX175380_1_0343.tif
	DX175380_1_0345.tif
	DX175380_1_0347.tif
	DX175380_1_0349.tif
	DX175380_1_0351.tif
	DX175380_1_0353.tif
	DX175380_1_0355.tif
	DX175380_1_0357.tif
	DX175380_1_0359.tif
	DX175380_1_0361.tif
	DX175380_1_0363.tif
	DX175380_1_0365.tif
	DX175380_1_0367.tif
	DX175380_1_0369.tif
	DX175380_1_0371.tif
	DX175380_1_0373.tif
	DX175380_1_0375.tif
	DX175380_1_0377.tif
	DX175380_1_0379.tif
	DX175380_1_0381.tif
	DX175380_1_0383.tif
	DX175380_1_0385.tif
	DX175380_1_0387.tif
	DX175380_1_0389.tif
	DX175380_1_0391.tif
	DX175380_1_0393.tif
	DX175380_1_0395.tif
	DX175380_1_0397.tif
	DX175380_1_0399.tif
	DX175380_1_0401.tif
	DX175380_1_0403.tif
	DX175380_1_0405.tif
	DX175380_1_0407.tif
	DX175380_1_0409.tif
	DX175380_1_0411.tif
	DX175380_1_0413.tif
	DX175380_1_0415.tif
	DX175380_1_0417.tif
	DX175380_1_0419.tif
	DX175380_1_0421.tif
	DX175380_1_0423.tif
	DX175380_1_0425.tif
	DX175380_1_0427.tif
	DX175380_1_0429.tif
	DX175380_1_0431.tif
	DX175380_1_0433.tif
	DX175380_1_0435.tif
	DX175380_1_0437.tif
	DX175380_1_0439.tif
	DX175380_1_0441.tif
	DX175380_1_0443.tif
	DX175380_1_0445.tif
	DX175380_1_0447.tif
	DX175380_1_0449.tif
	DX175380_1_0451.tif
	DX175380_1_0453.tif
	DX175380_1_0455.tif
	DX175380_1_0457.tif
	DX175380_1_0459.tif
	DX175380_1_0461.tif
	DX175380_1_0463.tif
	DX175380_1_0465.tif
	DX175380_1_0467.tif
	DX175380_1_0469.tif
	DX175380_1_0471.tif
	DX175380_1_0473.tif
	DX175380_1_0475.tif
	DX175380_1_0477.tif
	DX175380_1_0479.tif
	DX175380_1_0481.tif
	DX175380_1_0483.tif
	DX175380_1_0485.tif
	DX175380_1_0487.tif
	DX175380_1_0489.tif
	DX175380_1_0491.tif
	DX175380_1_0493.tif
	DX175380_1_0495.tif
	DX175380_1_0497.tif
	DX175380_1_0499.tif
	DX175380_1_0501.tif
	DX175380_1_0503.tif
	DX175380_1_0505.tif
	DX175380_1_0507.tif
	DX175380_1_0509.tif
	DX175380_1_0511.tif
	DX175380_1_0513.tif
	DX175380_1_0515.tif
	DX175380_1_0517.tif
	DX175380_1_0519.tif
	DX175380_1_0521.tif
	DX175380_1_0523.tif
	DX175380_1_0525.tif
	DX175380_1_0527.tif
	DX175380_1_0529.tif
	DX175380_1_0531.tif
	DX175380_1_0533.tif

