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ABSTRACT 

It is estimated that 2.7 billion people worldwide are served by on-site sanitation 

facilities that require faecal sludge management. Anaerobic digestion is a 

treatment mechanism that can provide faecal sludge management, methane 

production and an effluent digestate rich in nutrients. However, there is a 

paucity of information regarding the composition of the input faecal sludge 

which hinders the advancement of anaerobic digestion treatment and 

downstream nutrient recovery together with a lack of knowledge as to how best 

to recover these output nutrients in a simple process.  

Following an initial review to collate composition data for fresh faeces and urine, 

practical studies examined the physical, biological and chemical composition 

and variation of four different types of faecal sludge from on-site sanitation 

facilities. Faecal sludge storage strongly influenced the biodegradability and 

methane production potential in subsequent anaerobic digestion. However, the 

high concentrations of ammonium observed in faecal sludge (520-1853 mg 

NH4-N L-1) were highlighted as a key goal for nutrient recovery and the ability of 

biochar and clinoptilolite as natural adsorbents for ammonium recovery in a 

drying bed application were investigated through batch and dynamic studies 

using synthetic and real digestate. Batch tests observed ammonium uptake of 5 

and 12.2 mg NH4-N/g for biochar and clinoptilolite respectively whilst under 

dynamic experimental conditions the most efficient operation for ammonium 

recovery was at the longest empty bed contact times (354 minutes), ensuring 

the maximum fertiliser value was obtained (60g NH4-N/kg clinoptilolite). 

Nevertheless, clogging occurred rapidly at the surface of the media bed (0.04 – 

0.5 kg TS/m2), consequently a sacrificial sand layer (0.05 m) was included to 

increase the longevity of the nutrient recovery system (15 fold increase in TS 

application rates). It has been demonstrated that clinoptilolite can effectively be 

used as part of a sludge drying bed configuration to recover nutrients from 

digestate and the saturated media can be used directly as a fertiliser product or 

blended with the dried sludge to create a balanced nitrogen, phosphorus and 

potassium fertiliser product (5.9% NH4-N/ 4.2% P/ ≥6.0% K+). 
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CHAPTER 1 

INTRODUCTION 





 

3 

 

1 INTRODUCTION 

1.1 PROJECT BACKGROUND 

An estimated 2.6 billion people in the world lack access to improved sanitation, 

defined as the hygienic separation of human excreta from human contact 

(WHO/UNICEF, 2012). Diseases that are associated with inadequate sanitation 

are particularly associated with poverty and account for 10% of the total disease 

burden worldwide (Prüss-Üstün et al., 2008). Poor sanitation and faecal sludge 

management not only have negative impacts on human health but also affect 

the environment through the contamination of water bodies, soils and food 

sources (Peletz et al., 2011; Ziegelbauer et al., 2012). On-site sanitation (OSS) 

facilities are the predominant form of excreta disposal in urban populations of 

low income areas; for example, in urban areas of Ghana and Tanzania 85% of 

inhabitants are served by OSS facilities and in urban areas of the Philippines 

98% rely on OSS facilities (Montangero and Strauss, 2004). However, when 

these facilities need emptying, there are often inadequate facilities or financial 

disincentives for the proper disposal of faecal sludge meaning that pits remain 

full and unusable or if emptied, sludge is disposed of directly into the 

environment contaminating water resources (Ingallinella et al., 2002). This 

problem has inspired the development of technology that effectively treats 

faecal sludge from existing OSS infrastructure. 

Knowledge of the waste that enters treatment systems is a basic prerequisite 

for the design and development of future technology as well as determining its 

re-use potential. There is information on conventional water borne sewage 

(Henze et al., 2001; Tchobanoglous et al., 2003) but this waste has a different 

composition to that of faecal sludge as the material will have undergone 

different periods of storage under differing storage conditions as well as having 

different levels of dilution through flush water and grey water additions. 

Therefore the generation rate, the chemical, physical and biological composition 

of faeces, urine and different types of faecal sludge are key factors to be 

understood by designers of treatment systems. 
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Anaerobic digestion (AD) can be used as an on-site or decentralised sanitation 

system and has great potential as part of faecal sludge management systems 

that undertake the collection, transportation, treatment and reuse/disposal of 

residual sludge from OSS facilities (Gautam et al., 2009; Bond and Templeton, 

2011; Chen et al., 2012; Song et al., 2014). Anaerobic digestion has great 

potential as a faecal sludge treatment mechanism for low income regions as it 

not only provides biogas generation but also preserves nutrients present (Daisy 

and Kamaraj, 2011), which provides valuable resources for these communities. 

However, AD is not a complete treatment tool in itself; the output products 

require further treatment or storage before being used for agriculture, nutrient 

recovery, energy generation or being discharged to the environment.  

The outputs of AD treating high nitrogen loaded material such as faecal sludge 

contain high concentrations of ammonium-nitrogen (NH4-N) (Parsons et al., 

2001). This NH4-N is frequently not recovered and its value is currently not fully 

utilised. In low income countries unplanted drying beds are a common means of 

secondary treatment for digested sludge (Koné and Strauss, 2004; Cofie et al., 

2006), however, through this nitrogen is volatilised and lost to the atmosphere 

or lost to the environment through the percolate. Existing problems in the use of 

drying beds in a low income context include long drying times, large land use, 

environmental pollution through liquid percolate loss and a final dried solid that 

has low nutrient values limiting its value for agricultural application 

(Tchobanoglous et al., 2003; WSUP, 2014). Most nutrient recovery systems 

require the prior separation of solids/liquids before nutrient recovery processes 

can take place. In a low income context if these timely and costly process of 

solids/liquids separation could be combined with recovery of nutrients this would 

present a significant benefit. This research aims to integrate an adsorption/ion 

exchange zone into the profile of a sludge drying bed in order to recover 

nutrients from the percolate fraction and achieve complete nutrient recovery in 

the sludge drying process. 

The demand for nutrient recovery in the wastewater treatment process is 

important due to many factors. The world demand for fertiliser nutrients is 
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substantial (Table 1.1), with worldwide projected growth in nutrient demand at 

1.4%, 2.2% and 2.6% in N, P2O5 and K2O respectively (FAO, 2015). This rise in 

demand is also predicted to be especially pronounced in Africa, with growth 

rates of 3.2%, 2.7% and 7.8%  in N, P2O5 and K2O respectively (FAO, 2015). 

The input cost of fertilisers in arable food production is therefore significant 

(Table 1.1), vastly increasing the input costs of food production. Yet the 

nutrients required to enable the production of the annual amount of grain 

consumed by one person (250 kg) can be found in the faeces of one person 

(Wolgast, 1993). There are therefore significant economic gains that can be 

achieved if high value fertilising elements can be harnessed from human waste. 

Fertiliser production through nutrient recovery from human waste could 

therefore help to offset the need for mineral fertiliser production and the creation 

of new low cost fertiliser products could help reduce reliance on high-cost 

artificial fertilisers. 

Table 1.1 The cost of the major fertilising elements (N, P and K) as of August 

2015. Prices (FWI, 2015) in the currency of British £ and are quoted delivered. 

Fertiliser Product Price (£/tonne)* 

Potash (MOP) 255 

Phosphate (DAP) 385 

Phosphate (TSP) 300 

34.5% N 230 

Granules Urea (46%N) 234 

Ammonium Nitrate 217 

*Prices as of August 2015 commodity prices (FWI, 2015) 

Table 1.2  World demand for fertiliser nutrients 2014-2018 (FAO, 2015) 

 2014 2015 2016 2017 

N 113 147 115 100 116 514 117 953 

P2O5 42 706 43 803 44 740 45 718 

K2O 31 042 31 829 32 680 33 519 

Total (N + P2O5 + 
K2O) 

186 895 190 732 193 882 197 190 
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Human sewage waste produces 3% of human nitrous oxide emissions 

(Denman et al. 2007), resultantly contributing to global climate change. Excess 

nitrogen pollution to waterways is also of significant global concern, with 

ammonia being one of the major pollutants introduced into receiving natural 

waterways by industrial, domestic and agricultural wastewater discharges 

(Hasanoğlu et al., 2010). This has significance due to the toxic effect of 

ammonia on most aquatic species (Tetreault et al., 2013) as well as the 

biological nitrification of ammonia to nitrite and nitrates which are dangerous to 

human health (Cockburn et al., 2013). The loss of nitrogen from soils occurs 

through leaching, direct run-off, ammonia volatilisation and through 

denitrification. Importantly, extensive amounts of nitrogen are also removed 

from the soils through crop offtake (including residues), especially under 

intensive crop production and accounts for the majority of nitrogen that leaves 

the soil. For instance, an average wheat crop grown with a yield of 10 

tonnes/hectare (15% moisture) will remove approximately 170 kg N/hectare 

from the field, even if the residual straw is returned to the soil, according to UK 

agricultural guidelines (DEFRA, 2010). Consequently, it is the case that most 

agricultural soils do not contain enough naturally occurring plant available 

nitrogen to meet the needs of a crop throughout a growing season and soil 

nitrogen supply must be continually replenished. Resultantly, agricultural 

productivity relies heavily on N fertilisers in order to achieve maximum crop 

production (Xu et al., 2012). Indeed, the world demand for nitrogen fertilisers is 

over double that of phosphate or potash based fertilisers (Table 1.2). 

Ammonium nitrate is the most commonly used compound for chemical nitrogen 

fertiliser production (Fertilizers Europe, 2013), however, its production 

consumes more than 1% of the world’s power production (Kitano et al., 2012). 

Consequently, if the sustained recovery of N from wastewater could be 

achieved, this could help to decrease demand for artificial fertiliser production 

and offset the ecological impact of energy usage through N production (McCarty 

et al., 2011). Despite not being a finite resource, unlike phosphorus; the 

recovery of nitrogen is of significant importance due to its ecological 
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significance and the strong demand present for N fertilisers makes its recovery 

a financially viable alternative to the current energy intensive processes. 

The principle driver for this work is to develop and create a solution to the high 

costs of sanitation by creating a high value agricultural soil amendment or 

fertiliser product from the outputs of anaerobic digestion. This will in turn help to 

reclaim the prior costs of collection and treatment of human waste as well as 

preventing the discharge of human waste to the environment. In creating a high 

value end product the proper treatment and disposal of human excreta will be 

promoted by financial incentives and is likely to subsequently contribute to 

improving human health, environmental conditions and productivity of this large 

sector of population. 

1.2 THESIS AIMS AND OBJECTIVES 

The aim of this thesis was to design a nutrient recovery system and process for 

the capture of nutrients from the effluent of anaerobic digesters. Consequently, 

the following objectives were identified: 

1. To review current knowledge of faeces and urine characteristics in order 

to determine how the physical and chemical composition will impact different 

treatment process types and nutrient recovery potential. 

2. To establish the physical, chemical and biological characteristics of 

different types of faecal sludge from on-site sanitation facilities and evaluate 

how the results will impact anaerobic digestion as a treatment process. 

3. To assess the digestibility of faecal sludge from a range of on-site 

sanitation facilities and establish the ultimate methane potential of each 

substrate. 

4. To determine technically feasible methods in which to recover nutrients 

in a low income context. 

5. To examine the feasibility of using a modified sludge drying bed system 

for the recovery of nutrients from anaerobic digestion effluents. 
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6. To propose design values for the construction and operation of nutrient 

recovering drying beds. 

1.3 CONTRIBUTION TO KNOWLEDGE 

This thesis reports research funded by the Engineering and Physical Sciences 

Research Council (EPSRC) as part of a wider research group of UK universities 

titled “A Global Solution to Water Scarcity and Health by Transforming Waste”.  

Anaerobic digestion has been one of the most widely used methods for sludge 

treatment since the early 1990s in high-income countries. In low income 

countries AD has great potential for treating the residual sludge from on-site 

sanitation facilities that are predominantly used in these regions. However, little 

is known about the physical and chemical composition of these facilities and 

what causes variation both within and between these systems. This PhD has 

determined how the AD processes may be impacted by the measured 

characteristics of OSS facilities from a range of differing types and locations. In 

addition this project has identified where nutrient recovery technology can best 

be adapted and used in a low income context. Nutrient recovery work within this 

project carried out experiments to determine whether NH4-N adsorption 

processes in filter beds can be operated under high solids conditions which 

would potentially negate the need for costly prior solids/liquids separation. The 

final engineering design values for the nutrient recovery system are presented 

in the thesis and justified through experimental work. 

1.4 Case Study Locations 

This thesis undertook field work at two different case study sites: an 

undisclosed location refered to as location x and Kumasi, Ghana. Links to local 

water utility companies, community organisations and universities were made in 

order to enable the field work to take place in respective communities. Field 

work involved the sampling and analysis of faecal sludge at multiple locations. 

In location x analysis took place of pit latrine and public toilet faecal sludge. In 

Kumasi, sampling and analysis of portable toilet waste was carried out. Mobile 
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laboratories were set up within the respective locations in order to undertake 

analysis that was necessary to be carried out immediately on-site. Where 

possible samples were then preserved and transported to the UK for advanced 

analysis. 

1.5 THESIS PLAN 

This thesis is presented as a series of chapters formatted as papers for 

publication which have either been published, submitted or are in preparation. 

All papers were written by the lead author, Chris Rose, and co-authored and 

edited by Dr. Alison Parker, Prof. Elise Cartmell and selected others. All 

sampling and laboratory work was undertaken by the lead author, Chris Rose, 

with the exception of Chapter 3 where sample collection in the Ghana case 

study site was carried out by the third author, DNA sequencing analysis was 

carried out by the fourth author and finally in Chapter 6 where there was 

laboratory support in batch adsorption isotherm studies from another co-author. 

The thesis outline is presented in a flow diagram in Figure 1.1. 

Initially a literature review was undertaken to explore the current knowledge 

regarding fresh faeces and urine characteristics in order to aid on-site treatment 

of fresh waste material. In this review, data were extracted from the medical 

literature and a statistical assessment of the data were undertaken. The 

discussion section placed an emphasis on assessing the impact of variation on 

advanced treatment processes that are currently being developed (Chapter 2, 

Paper 1, was published in Critical Reviews in Environmental Science and 

Technology-. Rose, C., Parker, A., Jefferson, B., Cartmell, E., The 

Characterisation of faeces and urine; a review of the literature to inform 

advanced treatment technology", Critical Reviews in Environmental Science 

and Technology, vol. 45, no. 17, pp. 1827-1879. 

In Chapter 3 the physico-chemical characteristics of faecal sludge from four 

different types of on-site sanitation treatment system was assessed. Two 

separate field sites were investigated and a set of techniques developed for the 

physico-chemical characterisation of faecal sludge. The results give a full 
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characterisation of the sludge spanning its physical composition, organic 

content, nutrient value, potential toxicity and digestability. The discussion 

section addresses how the composition of faecal sludge from these instalments 

may impact anaerobic treatment and points to potential problems and benefits 

of anaerobic treatment in this context. (Chapter 3, Paper 2, submitted to Journal 

of Hazardous Materials-: Rose, C., Parker, A., Santi, M., Ijaz, U., Cruddas, P., 

Collins, G., Cartmell, E. The characterisation of faecal sludge from on-site 

sanitation systems and application to anaerobic treatment technologies in low 

income countries. 

Chapter 4 determines the digestibility and biochemical methane potential of 

faecal sludge from differing types of on-site sanitation facilities (Chapter 4, 

Paper 3, under review in Environmental Technology–Rose, C., Parker A., 

Buamah, R., Kabika, J., Collins, G., Cartmell, E., The biochemical methane 

potential of faecal sludge from on-site sanitation facilities in low income 

countries). The results outline the biochemical methane potential of different 

substrates and examine the effect of retention time of the on-site sanitation 

facility as well as the impact of sampling depths within the on-site sanitation 

facility. 

Chapter 5 utilises faecal sludge characterisation data from Chapter 3 in order to 

provide predictions of the composition of anaerobic digestate and explores 

technically feasible options and opportunities for nutrient recovery (Chapter 5, 

Paper 4, Submitted to Journal of Water, Sanitation and Hygiene for 

Development - Rose, C., Parker A., Cartmell, E., The recovery of nutrients from 

faecal sludge: appropriate selection and advancement of technology - and it is 

under review. In this chapter NH4-N is recognised as the prime target for 

nutrient recovery with the combination of secondary treatment process, such as 

sludge drying beds, with adsorption and ion exchange processes identified as 

the most suitable option for NH4-N recovery. In addition potential adsorption and 

ion exchange media are explored and identified as appropriate for application 

and further testing. 
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Chapter 6 focusses on nutrient recovery, in particular NH4-N capture from high 

strength waste water streams through the use of non-regenerative media in 

passive treatment systems. Experimental work established the most suitable 

media, factors that affect NH4-N uptake and the most efficient operational 

configuration in regards to bed depth, hydraulic flow rate and influent 

concentration for recovering NH4-N. This was done using a down-flow fixed 

media filter bed. (Chapter 6, Paper 5, in preparation to be submitted to Journal 

of Separation and Purification Technology – Rose, C., Parker A., Ezbakhe, F., 

Jefferson, B., Collins, G., Cartmell, E. Passive ammonium recovery through the 

use of low-cost media without regeneration). In this chapter clinoptilolite is 

highlighted as the most efficient media for ammonium recovery in a synthetic 

wastewater effluent constructed to simulate digestate without the interference of 

solid matter. The operation of a fixed clinoptilolite bed at long empty bed contact 

times (EBCT) is identified as the main factor influencing media capacity with a 

12 fold increase in media capacity reported with an increase in EBCT from 20-

354 minutes. This increase was attributed to greater contact time between the 

media and solution, allowing increased intra-particle diffusion to take place. 

Numerous applications for a passive NH4-N recovery system are identified; 

however, the need to further understand how the presence of solids in 

wastewater could impact the performance of the media was identified.  

Chapter 7 presents a process to recover nutrients from digestate through the 

integration of an adsorption/ion exchange zone into a sludge drying bed, 

allowing the simultaneous dewatering and recovery of nutrients from the 

percolate stream. The use of a sand filter to act as a solids barrier to prolong 

the media bed life is explored and final engineering design values for the 

construction, operation and nutrient recovery products created by the system 

are presented. (Chapter 7, Paper 6, in preparation to be submitted to Water 

Research – Rose, C., Parker A., Ezbakhe, F., Jefferson, B., Collins, G., 

Cartmell, E. Integrated sludge drying beds and nutrient recovery utilising non-

regenerative media and a sacrificial sand barrier). In this chapter clinoptilolite 

demonstrated favourable performance as part of the integrated system with 
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high levels of NH4-N recovery (62-99% recovery) despite high levels of solids in 

the percolate. This indicates the ion exchange process is not adversely 

impacted by the high solids nature of drying bed percolate streams. The 

dewatering mechanisms of a sacrificial sand barrier are investigated and 

applied to blocking and sludge cake filtration theory. A design utilising the 

scraping of dewatered solids is recommended to intensify sludge drying beds 

and allow complete nutrient recovery to be achieved through the blending of 

dewatered biosolids rich in phosphorus with the nitrogen and potassium 

captured by the media layers beneath. 

Chapter 8 is the overall discussion of the thesis and the key findings of the 

study are discussed alongside implications and practicalities for the sector. 

Chapter 9 is the final conclusions of the research. 
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ABSTRACT 

The safe disposal of human excreta is of paramount importance for the health 

and welfare of populations living in low income countries as well as the 

prevention of pollution to the surrounding environment. On site sanitation 

(OSS) systems are the most numerous means of treating excreta in low 

income countries, these facilities aim at treating human waste at source and 

can provide a hygienic and affordable method of waste disposal. However, 

current OSS systems need improvement and require further research and 

development. Development of OSS facilities that treat excreta at, or close to, 

its source require knowledge of the waste stream entering the system. Data 

regarding the generation rate and the chemical and physical composition of 

fresh faeces and urine was collected from the medical literature as well as the 

treatability sector. The data were summarised and statistical analysis was 

used to quantify the major factors that were a significant cause of variability. 

The impact of this data on biological processes, thermal processes, physical 

separators and chemical processes was then assessed. Results showed that 

the median faecal wet mass production was 128 g/cap/day, with a median dry 

mass of 29 g/cap/day. Faecal output in healthy individuals was 1.20 

defecations per 24 hour period and the main factor affecting faecal mass was 

the fibre intake of the population. Faecal wet mass values were increased by 

a factor of 2 in low income countries (high fibre intakes) in comparison to 
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values found in high income countries (low fibre intakes). Faeces had a 

median pH of 6.64 and were composed of 74.6% water. Bacterial biomass is 

the major component (25-54% of dry solids) of the organic fraction of the 

faeces. Undigested carbohydrate, fibre, protein and fat comprise the 

remainder and the amounts depend on diet and diarrhoea prevalence in the 

population. The inorganic component of the faeces is primarily undigested 

dietary elements that also depend on dietary supply. Median urine generation 

rates were 1.42 litres/cap/day with a dry solids content of 59 g/cap/day. 

Variation in the volume and composition of urine is caused by differences in 

physical exertion, environmental conditions as well as water, salt and high 

protein intakes. Urine has a pH 6.2 and contains the largest fractions of 

nitrogen, phosphorus and potassium released from the body. The urinary 

excretion of nitrogen was significant (10.98 g/cap/day) with urea the most 

predominant constituent making up over 50% of total organic solids. The 

dietary intake of food and fluid is the major cause of variation in both the 

faecal and urine composition and these variables should always be 

considered if the generation rate, physical and chemical composition of faeces 

and urine is to be accurately predicted. 

 

KEYWORDS 

Faeces, urine, human excreta, faecal characteristics, urine characteristics, 

faeces treatment. 

 

2.1 INTRODUCTION 

An estimated 2.6 billion people in the world lack access to improved 

sanitation, defined as the hygienic separation of human excreta from human 

contact (WHO/UNICEF, 2012). Diseases that are associated with inadequate 

sanitation are particularly associated with poverty and account for 10% of the 

total disease burden worldwide (Prüss-Üstün et al., 2008). Poor sanitation and 

faecal sludge management not only have negative impacts on human health 
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but also affect the environment through the contamination of water bodies, 

soils and food sources (Peletz et al., 2011; Ziegelbauer et al., 2012). In 2010, 

72% of sanitation facilities in Sub-Saharan Africa and 59% in Southern Asia 

were classified as ‘unimproved’ (WHO/UNICEF, 2012). On-site sanitation 

(OSS) facilities are the predominant form of excreta disposal in urban 

populations of low income areas; for example in urban areas of Ghana and 

Tanzania 85% of inhabitants are served by OSS facilities and in urban areas 

of the Philippines 98% rely on OSS facilities (Montangero and Strauss, 2004). 

However, when these facilities need emptying, there are often inadequate 

facilities or financial disincentives for the proper disposal of faecal sludge  

meaning that pits remain full and unusable or if emptied, sludge is disposed of 

directly into the environment contaminating water resources (Ingallinella et al., 

2002). This problem has inspired the development of OSS technologies that 

treat excreta directly at or close to its source, producing safe and beneficial 

products with no need for further transport. This factor is illustrated by a rapid 

rise in research and development in OSS technology, with the Bill and 

Melinda Gates Foundation (BMGF) funding 16 ‘Reinvent the Toilet Challenge’ 

(RTTC) research projects worldwide since 2011, with the second round of 

grants totalling nearly US$3.4 million in 2012 (Global Development 

Programme, 2014). This trend is continuing with the BMGF investing in 

regional programmes, for example US$5 million has been awarded to 

Chinese research institutes to drive research and development into new OSS 

systems (Global Development Programme, 2014). 

Knowledge of the waste that enters treatment systems is a basic prerequisite 

for the design and development of future technology. There is information on 

conventional sanitary sewage (Henze et al., 2001; Tchobanoglous et al., 

2003) but this material has a different composition to fresh faeces and urine 

which has not undergone any degradation processes and will have 

substantially less water or greywater addition. Instead generation rates and 

the chemical composition of faeces and urine in the human population are key 

factors to be understood by OSS technology developers. A number of medical 

studies have determined the faecal and urine output of human populations, 
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however the data were specific to distinct populations defined by geography, 

age, ethnicity, disease and diet. There have so far been no attempts to 

summarise these data and understand the major causes of variation. The aim 

of this study is to review the variation, generation rate and chemical and 

physical composition of the solid and liquid fractions of human excreta that 

would supply OSS technologies in developing countries. An assessment will 

then be made on how the results and any variation found will impact on 

potential treatment technology.  

2.2 METHODS 

Generation rate, composition, physical and chemical nature of both faeces 

and urine were recorded as of Table 2.1. Each recorded datum was the mean 

of the data from the reported study. Some published papers reported two or 

more independent studies so these papers contributed more than one value 

to the data set. The mean and median of each variable were both calculated 

as measures of central tendency and data were checked for normality by 

calculating a coefficient of skewness (Young, 1962); 

Skewness = n*M3 /[(n-1)*(n-2)*3
]        (1) 

M3 = (xi-Meanx)
3
         (2) 

Standard deviation 

n = Valid number of cases 

 

Table 2.1 Measured variables for faeces and urine. 

Variable Faeces Unit of 

Measure 

Urine Unit of 

Measure 

   

Generation g/cap/day L/cap/day 

Frequency of defecation motions/24hours urinations/24hours 

Water Content % total mass % total mass 

Organic composition % total mass % dry mass 

Components of solids % total mass % total mass 

Inorganic composition % dry mass % dry mass 

Daily excretion of elements g/cap/day g/cap/day, mg/L 

Chemical Nature   

pH pH pH 

COD and BOD mg/g wet mass mg/L 
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Physical Form   

Bristol Stool Form Linear scale (1-7)  

Diarrhoea prevalence % of population  

 

Box and whisker plots were created using Statistica 11 software (Statsoft Inc., 

2011). Outliers of each data set were defined using a standard default outlier 

coefficient value (Burns et al., 2005). 

Outliers = Upper value of the 75
th

 percentile * outlier coefficient of 1.5  (3) 

Extreme values = Upper value of 75
th

 percentile *2 outlier coefficient.  

No outliers were removed from the data set but were identified in the graphical 

output. Full statistical calculations were only conducted on variables that had at 

least 7 values but a median value is given for data when there were less than 7 

values. 

A summary of studies used in the statistical analysis are outlined in Table 2.2, 

including the location and number of studies. A large proportion (80%) of the 

data set was from studies conducted in Europe and North America. A distinction 

was therefore made between low and high income countries by the measure of 

development; using the Human Development Index (HDI), a composite index 

measuring average achievement in three basic dimensions of human 

development; life expectancy, education and income (UNDP, 2011).  

Preliminary data analysis indicated that fibre intake was a major cause of 

variation in faecal generation and composition. There were a sufficient number 

of studies that had examined the effects of fibre intake on faecal output to 

enable further analysis to be undertaken on these data. The total dietary fibre 

intake was related to the generation of faeces in linear and non-linear 

regression analyses.  
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Table 2.2 The geographical location and Human Development Index ranking of 

studies used in statistical analysis 

Country n HDI* References 

Africa 2 3/4
a
 Cranston and Burkitt (1975), Burkitt et al. (1980) 

Australia 2 1 Birkitt, et al. (1996), Hovey et al. (2003) 

Burma 1 4 Myo-Kin et al. (1994) 

Canada 3 1 Habbick et al. (1978), Burkitt et al. (1980), Vuksan et al. (1999) 

China 3 2 Jie et al. (2000), Chen et al. (2008), Bai and Wang (2010) 

Denmark 2 1 Maclennan (1977), Jensen et al. (1982) 

Developing 

countries 

2 3/4
a
 Feacham (1978) 

Europe and 

North 

America 

1 1/2
b
 Feacham (1978) 

European 1 1
b
 Mykkanen et al. (1998) 

Finland 4 1 Reddy et al (1975), Reddy et al. (1978), Jensen et al. (1982), Mykkanen et al. 

(1998) 

Germany 1 1 Erhardt et al. (1997) 

Guatemala 1 3 Calloway and Kretsch (1978) 

Holland 4 1 Stasse-Wolthius et al (1980), Van Faassen et al. (1993), Gaillard (2002), 

Wierdsma et al. (2011) 

India 1 3 Shetty and Kurpad (1986) 

Iran 1 2 Adibi et al. (2007) 

Japan 7 1 Glober et al. (1977), Polprasert et al (1981), Tarida (1984), Saitoh et al. 

(1999), Danjo et al. (2008), Shinohara et al. (2010), Hotta and Funamizu 

(2009) 

Kenya 1 4 Cranston and Burkitt (1975) 

New Zealand 1 1 Pomare et al. (1981) 

North 

America 

1 1
b
 Vuksan (2008) 

Peru 1 2 Crofts (1975) 

Singapore 1 1 Chen et al. (2000) 

South Africa 2 3 Burkit et al. (1972), Walker et al. (1975) 

Spain 1 1 Roig Villa et al. (1993) 

Sweden 4 1 Ellström et al. (1977), Reddy et al. (1978), Vineras (2002), Vineras et al. 

(2006) 

Thailand 2 2 Danivat et al.(1988), Schouw et al (2002) 

Tonga 1 2 Pomare et al. (1981) 

UK 26 1 Olmsted et al. (1934), Connell et al (1965), Southgate and Durnin  (1970), 

Burkitt et al. (1972), Goy et al. (1976), Wyman et al. (1978), Prynne and 

Southgate (1979), Stephen et al. (1980), Eastwood et al. (1984), Eastwood et 

al. (1986), Davies et al. (1986), Cummings et al. (1987), Sandler and 

Drossman (1987), Cummings et al. (1992), Murphy et al. (1993), Cummings 

et al. (1996), Lewis et al  (1997), Chen et al. (1998), Reddy et al. (1998), 

Rivero-Marcotegui et al. (1998), Aichbichler et al. (1998), Almeida et al. 

(1999),Magee et al. (2000), Chaplin et al (2000), Woodmansey et al. (2004), 

Silvester et al. (2011). 

USA 18 1 Canfield et al. (1963), Watts et al. (1963), Diem and Lentner (1970), 

Goldsmith and Burkitt (1975), Cummings et al. (1978), Glober et al. (1977),  

Goldberg et al (1977), Beyer and Flynn (1978), Reddy et al. (1978),Calloway 

and Kretsch (1978), Kien et al. (1981), Polprasert et al (1981),Tucker et al 

(1981),Schubert et al. (1984),Parker and Gallagher (1988), Zuckerman, et al. 

(1995), Aichbichler et al. (1998), McRorle et al. (2000). 
*Human Development Index Classifications (UNDP, 2011): 1. Very high, 2. High, 3. Medium, 4.Low 
aClassification not available, presumed to be ranking 3 or 4 and bClassification not available, presumed to be ranking 1 or 2. 
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2.3 RESULTS 

2.3.1 Faeces generation 

Faecal wet mass values have a median figure of 128 g/cap/day. This is from a 

distribution of 116 mean values from studies reporting healthy individuals, with a 

large minimum and maximum range of 51-796 g/cap/day (Figure 2.1). However, 

as mean values for each study were recorded, individual variation within these 

studies is not accounted for; if all values are recorded the range extends to 15-

1505 g/cap/day. The data set for mean wet faecal generation had a positive 

skew, hence the mean was greater than the median. The low income countries 

data set was not as skewed as the high income countries (Table 2.3). This is 

likely a result of the wider range of diets that can be consumed by populations 

in richer countries. A statistically significant difference (t= 2.87, P<0.05) 

between mean values of high income countries and low income countries was 

found in regards to wet faecal weight. As a collective group high income 

countries had relatively small per capita wet faecal weights in comparison to low 

income countries. However, between individual studies there was a large 

variation of 51-796 g/cap/day, despite all studies reporting healthy individuals. 

For low income countries the median value of 250 g/cap/day was larger in 

comparison to the median value of 126 g/cap/day in high income countries. 
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Table 2.3 Daily wet and dry mass produced by humans from low and high 

income populations. 

 Wet weight 

(g/cap/day) 

High Income* 

Wet weight 

(g/cap/day) 

Low Income* 

Dry weight 

(g/cap/day) 

High Income* 

Dry weight 

(g/cap/day) 

Low Income* 

 

Median 126 250 28 38 

n 95 17 57 8 

Minimum 51 75 12 18 

Maximum 796 520 81 62 

Skewness 4.178 0.598 2.378 0.098 

Std. Error of 

Skewness 

0.248 0.550 0.327 0.752 

Mean 149 243 30 39 

St Dev 95.0 130.2 11.7 14.1 

Variance 9024 16960 136 201 
 

* Classifications acquired from the 2011 HDI report (UNDP, 2011) where the four tiers were split into 

two sections with “very high” and “high” comprising the high income classification and “medium” and 

“low” comprising the low income classification. 
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Outliers represent the upper value of the 75

th
 percentile multiplied by the outlier coefficient (1.5), 

(extreme values = upper value of 75
th

 percentile *2 outlier coefficient). Faecal wet mass generation 

(n=112) has a large range and was an abnormal data set. Faecal dry mass (n=61) showed a smaller range 

with fewer outliers and extreme values. 

Figure 2.1 Daily wet and dry mass of faeces produced by human populations 

(g/cap/day) 

 

The mean weight of children’s faeces (3-18 years) has been recorded between 

75-374 g/cap/day (Burkitt et al., 1972; Tandon and Tandon, 1975; Burkitt et al., 

1980; Almeida et al., 1999; Schouw et al., 2002). Infants (1-4 years) were 

shown to have a mean stool weight of 85 g/cap/day with no significant 

difference found between the age of children in years, however, a weak 

correlation was found between the infants age in months and total stool weight 

(r=0.125, p<0.029) (Myo-Khin et al., 1994). Mean values for elderly subjects 
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(aged 65 years or more) were reported at 158 g/cap/day by Mykkanen et al., 

(1998) and 70 g/cap/day by Woodmansey et al., (2004). 

 

Table 2.4 The effect of diet type on faecal characteristics. 

Diet type 

* 

Fibre 

Intake 

(g/d) 

Number 

of 

subjects 

in study 

Faecal 

Mass 

wet 

(g/d) 

Faecal 

Mass 

dry 

(g/d) 

Stool 

Frequency 

(motions 

per 

24hours) 

Moisture 

(%) 

Faecal 

pH 

Reference 

Omnivore 23 17 153  1   (Davies et al., 

1986) 

Vegetarian 37 17 168  1.2   (Davies et al., 

1986) 

Vegan 47 17 225  1.7   (Davies et al., 

1986) 

Omnivore  14   1.4 73.5  (Goldberg et al., 

1977) 

Vegetarian  14   1.8 73.3  (Goldberg et al., 

1977) 

Omnivore  66 131.9     (Lewis and 

Heaton, 1997) 

Omnivore 16.6 22 117 30.8  72.6 6.65 (Reddy et al., 

1998) 

Vegetarian 16.2 22 186 36  78.9 6.18 (Reddy et al., 

1998) 

Vegetarian 29.3 18 160 38.4  74.6 6.55 (Reddy et al., 

1998) 

Omnivore
1
 12 8 129 32.8  74 7 (Silvester et al., 

1997) 

Omnivore
2
 11 8 118 32  70.7 7.2 (Silvester et al., 

1997) 

Omnivore 27.3 149 119 27.1 0.9  6.8 (Van Faassen et 

al., 1993) 

Vegetarian 40.8 11 189 27.9 1.5  6.8 (Van Faassen et 

al., 1993) 

*O: Omnivore, V: Vegetarian, VN: Vegan. 
1 
Low meat diet (68g/d protein).

 
 

2 
High meat diet (192 g/d protein).

 

 

Median dry stool weight was 29 g/cap/day which were recorded from the mean 

values of 60 studies, with a range of means of 12-81 g/cap/day (Figure 2.1). 

Again, individual variation within these studies was not accounted for as mean 

values of these populations were taken; ranges of minimum and maximum 

values taking into account individual variation within these studies was 

subsequently larger at 4-102 g/cap/day dry solids. The data set was not of a 

normal distribution with a positive skew of 1.8. This was also due to the skewed 
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distribution of values from high income countries (Table 2.3). The median dry 

weight of faeces is 25% of the wet weight of faeces (n=45) with values in the 

range of 11%-34% reported (Figure 2.1) 

2.3.1.1 Factors affecting faecal mass 

The major factors leading to variation in faecal generation rate are total food 

intake, body weight and diet. Parker and Gallagher (1992) found that mean 

daily stool weight was correlated (p <0.001) with calorie intake (energy intake 

can act as a measure of food intake); however, they found that this only 

accounted for 28% of the variation seen in individual stool output. Body weight 

also represents differing energy intake requirements; for example, as a 

guideline a healthy adult requires 20 -25 kcal/per kilogram of body weight 

(Moyes and McKee, 2008). The increasing body weight therefore reflects 

increasing energy intake which in turn can act as a measure of total food intake. 

Food intake and body weight therefore have an influence over faecal weight 

and this accounts for variables such as gender (Stephen et al., 1986; Lampe et 

al., 1993; Poullis et al., 2004) and race (Burkitt et al., 1972; Goldsmith and 

Burkitt, 1975) that have been observed as being significant within the literature. 

Human diet is also a factor that can impact the generation rate and composition 

of faeces. Fibre intake is often cited for causing variation in faeces production, 

for example by Vuksan et al. (2008). Regression analysis of secondary data 

presented in 25 studies where fibre intake was recorded was conducted and 

results show that faecal wet mass was positively correlated with fibre intake (r= 

2.96 ±1.13, p=0.017) (Figure 2.2).  
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Figure 2.2 . Fitted and Observed relationship with 95% confidence limits. Values 

from 22 studies where fibre intake was recorded. Three large outliers were 

recorded, however, no reason could be found to exclude these results from the 

study. There was a significant correlation between dietary fibre intake and faecal 

output (r2 = 21.8, p=0.017) with an intercept 101.3 ± 34.3 and a regression 

coefficient of 2.96 ± 1.13. 

 

The effect of dietary fibre on faecal weight is highly dependent upon the type of 

fibre consumed (non-degradable or degradable). Non-degradable fibre 

undergoes minimal changes in the digestive tract as it is relatively un-

fermentable and shortens colonic transit time (Bijkerk et al., 2004); wet faecal 

mass has been negatively correlated with transit time, r = -0.22, p<0.05 

(Eastwood et al., 1984). Non-degradable fibre has a high water holding capacity 

which promotes bulk and increased defecation frequency; extensive studies 

with non-degradable cereal fibres have shown this (Cummings et al., 1992; 
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Hughes et al., 2002; Vuksan et al., 2008). In a study on wheat bran by Vuksan 

et al. (2008) a ratio of 2.8 g stool/per g additional fibre on top of a control diet 

was observed. Degradable fibres can also cause an increase in faecal mass. 

Highly degradable types of fibre (such as cabbage fibre or oat bran) are 

fermented in the colon by bacteria much more than non-degradable fibres 

(Bijkerk et al., 2004). However, degradable fibres still increase faecal weights 

due to the proliferation of the bacterial component that is stimulated by the 

presence of a fermentable substrate (Garrow et al., 1993); the resultant 

increase in bacterial mass is soft, bulky and water retaining (FAO/WHO, 1997). 

Any alteration in the bacterial biomass component is significant as it can make 

up to 55% of total faecal solids (Stephen and Cummings, 1980). Therefore, the 

impact of dietary fibre on increasing faecal mass is dependent on the type of 

fibre consumed.  

Polysacharides, such as Resistant Starches (RS) have similar properties to 

fibre and have also been shown to increase faecal wet weight in many studies 

(Shetty and Kurpad, 1986; Cummings et al., 1996; Silvester et al., 1997).  Diets 

high in RS have shown a significant increase in faecal wet and dry weight; 

(Phillips et al., 1995) concluded that for every 1 g RS consumed (mean 

34g/day) there was an increase in the faecal wet weight of 1.8 g. Undigested 

starch, as measured by dietary intake, reaching the colon was found to increase 

faecal output (g wet weight/day) by 42% (Phillips et al., 1995). This correlation 

can be largely attributed to increases in bacterial biomass with fermentation 

(Cummings et al., 1996). 

2.3.1.2 Stool frequency 

Defecation frequency provides an indication for design parameters relating to 

treatability as it provides an indication of how often a facility may be used. Stool 

frequency also provides an indication of the resultant texture and form of the 

faecal matter (see physical form section). Mean stool frequency across studies 

(n=39) ranged from 0.74-1.97 motions per 24 hours with a median value of 1.10 

motions per 24 hour period (Figure 2.3). This represents a guideline figure for a 

population majority, however, within this variability exists. In a study by Parker 
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and Gallagher (1988) of over 25000 days worth of data, individuals had a range 

of means between 0.21-2.54 movements per 24 hours illustrating the variability 

that can occur for individuals in the same population. In a study of a UK 

population defecations were recorded per hour of the day; the majority of 

defecations, 61% and 59% in men and women respectively occurred in the 

morning (06:00-10:00) with peak times in men (20%) occurring between 07:00 

and 08:00 and an hour later in women (21%) (Heaton et al., 1992). Another 

small peak in defecation timing was recorded at 17:00 and 18:00 which is a 

common time for the evening meal and few defecations were recorded during 

the night (01:00 to 05:00) (Heaton et al., 1992). The increase in defecation after 

meal times is primarily due to the resultant increased motor activity of the colon 

(Christensen, 1985). 
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Figure 2.3 Top Left: Mean stool frequency in healthy subjects from a wide range of studies (n=39). Ranges of individuals within these studies 

varied from 0.21-2.54 motions per 24 hours.  Top Right: Mean moisture composition of faeces (n=47). Bottom Left: Mean faecal pH values from a 

range of studies (n=28) consuming a variety of different diets. Bottom Right. Mean volume of total urine excreted (n=14)
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Stool frequency is impacted by an individual’s health (see physical form 

section) as well as their fibre intake which is associated with more rapid transit 

times (Gear et al., 1981). Fibre intake has been positively correlated with stool 

frequency (r = 0.8, p < 0.001 wet weight; r = 0.5, p = 0.008 dry weight) 

(Southgate et al., 1976). The inclusion of fibre from fruit and vegetables in the 

diet has been proven to decrease transit time (P < 0.05) and increase the 

number of defecations (P < 0.001) (Kelsay et al., 1978). For instance, in a 

study by Vuksan et al. (2008) high fibre breakfast cereals induced a shorter 

intestinal transit time and an increased stool frequency. In a meta-analysis of 

5 relevant randomised controlled trials by Yang et al. (2012) dietary fibre was 

proven to increase stool frequency (odds ratio = 1.19; 95% CI: 0.58-1.80, P < 

0.05). 

Amongst adults no consistent relationship between frequency of defecation 

and age was observed (Heaton et al., 1992). Similarly amongst infants there 

was no significant difference in frequency of defecation between different age 

categories (Myo-Khin et al., 1994). A lower defecation frequency has been 

observed in females than in males (Van Faassen et al., 1993; Zuckerman et 

al., 1995; Chen et al., 2000) and this was accounted for by the longer 

intestinal transit time of females (p<0.02) (Gear et al., 1981). However, in 

children no significant difference was observed between the defecation 

frequency of boys (0.99/24 hours) and girls (0.96/24 hours) (Myo-Khin et al., 

1994). A study by Sandler and Drossman (1987) undertaken in the U.S.A, 

indicated that the daily mean number of stools varied by race and by sex; 

whites had more frequent stools than non-whites at 1.3 vs 0.86 defecations/24 

hours respectively and men had more frequent stools than women at 1.31 vs 

0.96 defecations/24 hours respectively. Conversely, in a study of an Iranian 

population by Adibi et al. (2007) men were reported to have fewer bowel 

frequencies per day (1.78 vs 1.97). 
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2.3.2 Composition 

Faeces are composed of water, protein, undigested fats, polysaccharides, 

bacterial biomass, ash and undigested food residues. The major elements in 

faeces as a percentage of wet weight are oxygen 74%, hydrogen 10%, 

carbon 5% and nitrogen 0.7%, including the hydrogen and oxygen present in 

the water fraction of the faeces (Snyder et al., 1975). 

Faeces compose a median value of 75% H2O (n=47) with a range of 63%-

86% across mean values of studies (Figure 2.1), variation can be attributed to 

differences in fibre intake as non-degradable fibre absorbs more water in the 

colon (Eastwood, 1973); therefore, as shown in a study by Reddy et al. (1998) 

those with vegetarian diets will have a higher moisture content of 78.9% 

whereas those who consume less fibre and more protein will have a lower 

moisture content of 72.6% (p=0.001). Fibre intake also affects transit time, 

which has been positively correlated (r=0.4, p=0.03) with % dry matter 

(Silvester et al., 1997), showing the shorter the intestinal transit time the 

higher the water content. Variation in moisture content has been shown to 

vary with age; elderly people were found to excrete the highest amount of 

water in excreta of all age groups by Schouw et al. (2002). Further deviations 

from the median value can be caused by illness (see physical composition 

section). The mean generation rate of faecal water (n=47) is 0.1 L/cap/day. 

Average pH values for faecal water have been recorded at pH 6.9 with a 

range of pH 5.0-8.0 (Mai et al., 2009).  
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Figure 2.4 Daily per capita weights of organic fractions excreted in faeces 

 

2.3.2.1 Organic fraction 

The remaining 25% of faeces is therefore composed of solid material. Of the 

solid fraction organic material makes up between 84-93% (Feachem et al., 

1978; Nwaneri et al., 2008; Bai and Wang, 2011). The organic solids fraction 

can be further broken down to the fractions of 25-54% bacterial biomass 

(Stephen and Cummings, 1980; Guyton and Hall, 2000), 2-25% protein or 

nitrogenous matter (in addition 50% of bacterial biomass is protein) (Canfield 

et al., 1963; Volk and Rummel, 1987)), 25% carbohydrate or any other non 

nitrogenous undigested plant matter (Volk and Rummel, 1987) and 2-15% 

undigested lipids (Kien et al., 1981; Chen et al., 1998; Wierdsma et al., 2011). 

These fractions are highly dependent on dietary intake and its biological 

availability.  

The organic fraction therefore makes up the majority of dried solids. Carbon 

content of faeces is between 44-55% of dried solids (Feachem et al., 1978; 
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Strauss, 1985) or 7 g/cap/day (Snyder et al., 1975). Volatile solids were 

shown to comprise 92% of the total solids fraction of faeces (Fry and Merrill, 

1973). The bulk organic content of faeces can also be measured by COD and 

BOD values (Table 2.5). Per capita daily values for BOD were between 14-

33.5 g/cap/day. Values of COD were measured between 46-96 g/cap/day or 

567-1671 mg/g dry faecal sample. Gas production of human faeces was 

placed at 0.02-0.28 per kg wet faeces (United Nations, 1984). 

Table 2.5 Loading rates and concentration of BOD and COD in faeces 

BOD 

g/cap/day 

COD 

g/cap/day 

COD 

mg/L 

COD 

mg/g dry 

COD mg/g 

wet 

Reference 

1223* 1668*    Vinneras et al. (2006) 

  48900   Takahashi et al. (1989) 

   1450  Zavala et al. (2002) 

   1380  Almeida et al. (1999) 

   1130  Nwaneri et al. (2008) 

45     Heinss et al. (1998) 

14-34 46-55    Kujawa-Roelveld and Zeeman 

(2006) 

   567  Chaggu et al. (2007) 

   1671  Bai and Wang (2010) 

38 96    Choi et al. (2004) 

19.3     Fourie and Ryneveld (1995) 

   1448 354 Buckley et al. (2008) 

32 50    Meinzinger and Oldenburg (2009) 

  46230-78310  Chaggu (2004) 

*includes toilet paper 

 

2.3.2.2 Bacterial composition 

A significant proportion of faecal mass consists of bacteria with estimates of 

combined dead and living bacteria of approximately 25-54% of dry solids 

(Stephen and Cummings, 1980; Guyton and Hall, 2000; Achour et al., 2006). 

The wide variation observed is due to differing methodology used between 

microscopic counting techniques and the separating of bacterial biomass. The 

high nitrogen content of faeces is partly due to undigested protein voided in 

the faeces but is also due to the significant protein content of bacterial 

biomass in the faeces, a figure of 50% protein was proposed by Volk and 

Rummel (1987); however, a more precise figure is not possible to determine 

due to uncertainties in the total bacterial composition of faeces. A detailed 
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break down of the microbial composition of faeces has been compiled by 

Stephen and Cummings (1980). 

2.3.2.3 Nitrogen/protein 

Nitrogen voided in faeces is also recorded as protein. The protein content of 

faeces can be estimated by multiplying the determined nitrogen content by a 

nitrogen-to-protein conversion factor. The Jones’ factor (Jones, 1931) has 

been used extensively, with a standard default conversion factor of 6.25 

(Mariotti et al., 2008), which is based on the average nitrogen content and 

composition of proteins. Data from measured mean values in faeces provides 

a median figure for protein daily loadings of 6.3 g/cap/day with a range of 3.2-

16.2 (n=7) and for nitrogen 1.8 g/cap/day with a range of 0.9-4.9 (n=18) 

(Figure 2.4). Faecal nitrogen is present in the form of undigested dietary 

protein, nucleic acids, protein from bacteria and shed intestinal mucosal cells 

as well as being present in secreted mucus (Canfield et al., 1963; Bender and 

Bender, 1997). Nitrogen can make up 5-7% of the dried solids (Feachem et 

al., 1978) and of the nitrogen voided in the faeces fraction 50% is thought to 

be water-soluble (Montangero and Belevi, 2007).  

Mean endogenous nitrogen excretion in 14 males has been measured at 0.96 

g/cap/day in faeces, or 38 mg/kg body weight by Calloway and Margen 

(1971); this is the minimum nitrogen loading that can be expected. The safe 

rate of nitrogen intake to maintain nitrogen balance is 0.75 g protein/kg body 

weight/day (FAO/WHO/UNU, 1985) and as a guideline figure of nitrogen 

voided in faeces Bender and Bender (1997) concluded that when a healthy 

human is in nitrogen equilibrium, nitrogen excretion will be within 5% of the 

total nitrogen intake. Variation in the protein content of faeces is largely 

dependent on protein intake in the diet; however, the digestion rate of protein 

has been shown to vary from 69%-93% as a result of differing types of protein 

in the diet (Southgate and Durnin, 1970; Calloway and Kretsch, 1978). It 

should be noted that the majority of nitrogen output is in the urine fraction with 

this study showing that only 14% is voided through the faeces (1.8 g/cap/day) 

and the majority is excreted in urine (10.7 g/cap/day). 
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Concentrations of the differing nitrogenous fractions have also been recorded; 

Silvester et al. (1997) recorded faecal ammonia concentrations on low (68 

g/day) and high (192 g/day) protein diets with values of 12mmol/kg (1.4 

mmol/day) and 24mmol/kg (2.9mmol/day) respectively. Faecal nitrite levels 

were also found to be increased two fold on high protein diets, with values of 

1678 µg/kg, in comparison to the lower protein diet with 829 µg/kg (Silvester 

et al., 1997).  

2.3.2.4 Lipids 

Fats contribute between 2.4%-8% of the wet weight of faeces (Canfield et al., 

1963; Kien et al., 1981; Rivero-Marcotegui et al., 1998; Guyton and Hall, 

2000; Wierdsma et al., 2011) or 8.7-16.0% of the dry weight of faeces 

(Calloway and Kretsch, 1978; Tarpila et al., 1978; Stephen et al., 1986). Daily 

loadings of fat in the faecal fraction from the mean values of 8 studies gave a 

median value of 4.1 g/cap/day and a range of 1.9-6.4 g/cap/day (Figure 2.4). 

However, it should be noted that only one out of the 8 studies was from 

outside Europe and North America (Guatemala): with this individual study 

presenting the lowest figure in the range of values (1.9 g/cap/day). Age 

differences have been observed, with infants voiding lower amounts of faecal 

fat 0.8-3.2 (Shmerling et al., 1970) and children aged 1-11 years voiding 0.9-

5.9 (mean 3.0) g/cap/day of fat (Kuo and Huang, 1965). As would be 

expected faecal fat is positively correlated (p<0.001) with faecal wet mass and 

has also been positively correlated with fibre intake (Eastwood et al., 1984). 

Faecal fat excretion is dependent on dietary intake; however, even with no fat 

intake excretion of fat occurs. At high levels of fat intake there is no correlation 

between fat intake and faecal fat excretion (Gades and Stern, 2012). A 

significant positive correlation (r=0.56, P=0.007) between calcium intake and 

faecal fat excretion was found by Jacobsen et al. (2005) with faecal fat 

excretion on a high calcium diet increasing from 7% to 18% of dietary fat 

intake and an increase of 100 mg calcium resulting in an increase of 5.4 g in 

fat excretion. This increase is thought to be due to an interaction between 

calcium and fatty acids, which causes insoluble calcium fatty acids to form 

and resultantly reduces fat absorption and increases fat excretion (Jacobsen 
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et al. 2005). Fat found within faeces comes from bacteria and fat in the 

shredded epithelial cells as well as from the undigested dietary intake of fat 

(Guyton and Hall, 2000). Broadly the fat content includes substances such as 

fatty acids, waxes and phosphoglycerides. 

2.3.2.5 Carbohydrate and energy value 

The carbohydrate fraction is largely made up of undigested cellulose, 

vegetable fibres and pentosan (Canfield et al., 1963). Faeces do not contain 

large quantities of carbohydrates as the majority of what is consumed is 

absorbed; however, undigested and unabsorbed fractions (resistant starch) 

remain. A median value (n=10) of 9 g/cap/day carbohydrate in faeces was 

recorded with a range of 4-24 g/cap/day. The vast majority of studies were 

again conducted in North America and Europe with only one study in Peru 

presenting values in the centre of this range. The calorific content of faeces 

had a median value (n=14) of 132 kcal/cap/day (range: 49-347 kcal/cap/day). 

By using the median value of production (32 g/cap/day) a calorific value of 

4115 kcal/kg dry solids can be used as a design standard for calorific value of 

faeces. All studies were carried out in North America and Europe therefore no 

correlation could be made between income and calorific value. However, the 

largest quantities of faecal energy are shown from diets containing a large 

amount of unavailable carbohydrates (Southgate and Durnin, 1970), defined 

as all polysaccharides not hydrolysed by the intestinal secretions of humans, 

as opposed to available carbohydrates such as starch and sugars which 

result in less faecal energy loss (Southgate, 1973).  

2.3.2.6 Fibre 

Human stools contain approximately 25% undigested plant matter, not 

including any nitrogenous material (Volk and Rummel, 1987). Fibre is present 

in stools due to the large linked polysaccharides that inhibit digestibility (Volk 

and Rummel, 1987), therefore the dietary intake will strongly influence the 

quantity found in faeces. The quantity of fibre found in faeces (n=8) ranged 

from 0.5-24.8 g/cap/day with a median value of 6 g/cap/day (Figure 2.4). Fibre 

consumption has also been shown to have significant effects on other 
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variables. It was found by Beyer and Flynn (1978) that when a high fibre diet 

was consumed and compared to a low fibre diet then measurements of faecal 

fat, protein, carbohydrate, and calories were more than doubled. Similar 

conclusions were made by Kelsay et al. (1978) when a high fibre diet from 

fruit was consumed. It was concluded that this was down to fibre consumption 

having a significant impact on absorption capacity in the gut. 

2.3.2.7 Inorganic composition 

The remaining solids compose the inorganic fraction which is predominantly 

made up of calcium phosphate and iron phosphate, intestinal secretions, 

small amounts of dried constituents of digestive juices such as shredded 

epithelial cells and mucus (Guyton and Hall, 2000; Iyengar et al., 1991). Fixed 

solids were measured at 3.13 g/cap/day by (Cummings et al., 1996) which 

was 2.25% of faecal wet weight and 9.02% of faecal dry weight. Fixed solids 

are in the range of 7.5% -16% of total solids (Feachem et al., 1978; Nwaneri 

et al., 2008; Bai and Wang, 2011); using the assumption of 29 g/cap/day TS 

then this would give a fixed solid value of between 2 g/cap/day and 4 

g/cap/day.  

In a healthy fully grown adult the amount of inorganic elements are in 

equilibrium (Kujawa-Roeleveld and Zeeman, 2006) and are not subject to any 

transformation within the body (Muñoz et al., 2007). Therefore it would be 

expected that the intake of elements would be equal to the output in human 

excreta. The intake of nutrients is therefore of great importance as well as the 

partitioning of these elements between the two excreta streams of faeces and 

urine. Wignarajah et al. (2003) found that the partitioning of elements between 

the urine and faecal fractions could be determined by looking at % absorption 

rates of inorganic elements in the body. Absorption rates were found to be 

predictable and reliable, therefore if the elemental input of the diet is known 

for an individual or population (alternatively it could be predicted from 

recommended daily allowance figures for that population), the partitioning 

between urine and faecal fractions could be predicted. This is because 



 

42 

 

elements that are absorbed by the body will be excreted in the urine fraction 

and the remaining fraction will be voided in the faeces.  

However, absorption rates are not clearly defined at high intake rates; an 

example cited by Wignarajah et al. (2003) is the partitioning of phosphate. 

The phosphate absorption rate at normal intake levels is 60%, however, at 

high rates of phosphate intake the absorption rate is markedly reduced to 

40%. This means that at high levels of phosphate intake the relative amount 

of phosphate voided in faeces can be increased from 40% to 60% as the 

amount absorbed and excreted in urine is reduced.  

Minimum and maximum values of elements (Table 2.6) can be used as an 

estimate of daily loading rates of elements voided in faeces; the variation is 

likely to be due to the differing dietary intakes which were not recorded. The 

intake of elements is therefore the most important variable. Therefore, factors 

that have an effect on this, such as heavy metal contamination of farmland or 

high concentrations of certain elements, such as lead in the air as a result of 

industrial pollution, also bear importance. Increased fibre intake has also been 

shown to lead to an increase in inorganic constituents, particularly Na and P 

(Southgate et al., 1976). Feachem et al. (1978) recorded % concentration of 

P, K and Ca at 3-5.4%, 1-2.5% and 4.5% respectively in the dried solid 

fraction. Levels of P in faeces have been shown to increase with increasing 

protein intake; however, protein intake had no other impact on Mg, K and Ca 

(Calloway and Margen, 1971). The total quantity of faeces voided will also 

have an impact on the quantity of constituents; Na, K, Mg, Ca, Zn were all 

found to be strongly correlated with faecal wet mass (Eastwood et al., 1984).
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Table 2.6 Daily loadings and concentrations of elements in faeces (wet weight) 

 Value (g/cap/day) Value      (g/kg) Reference 

    

Total P  0.35 3.40 (Vinnerås et al., 2006) 

 0.5 1.83 (Czemiel, 2000) 

 0.5 3.59 (Vinneras, 2002) 

 0.51 1.77 (Goldblith and Wick, 1961) 

 0.65-0.87 7.76-8.92 (Calloway and Margen, 1971) 

 0.5 3.8 (Meinzinger and Oldenburg, 2009) 

 0.69-2.5 4.80-9.86 (Chaggu, 2004) 

 0.9-2.7  (Wignarajah et al., 2003) 

Total K  0.20-0.24 1.78-2.14 (Calloway and Margen, 1971) 

 0.47 3.10 (Goldblith and Wick, 1961) 

 0.75-0.88  (Wignarajah et al., 2003) 

 0.8 4.936 (Eastwood et al., 1984) 

 0.8-1.0  (Kujawa-Roeleveld and Zeeman, 2006) 

 0.7 3.3 (Meinzinger and Oldenburg, 2009) 

 0.8-2.1 2.712 (Chaggu, 2004) 

 1.48-2.52 7.16 (Vinnerås et al., 2006) 

Na  0.12 0.80 (Goldblith and Wick, 1961) 

 0.8 (0.3-4.1) 4.94 (Eastwood et al., 1984) 

Ca  0.1-1  (Wignarajah et al., 2003) 

 2.9-3.6  (Chaggu, 2004) 

 0.53  (Kujawa-Roeleveld and Zeeman, 2006) 

 0.61 3.77 (Eastwood et al., 1984) 

 0.64 4.27 (Goldblith and Wick, 1961) 

 0.96-1.12 2.68 (Calloway and Margen, 1971) 

Mg  0.15 0.93 (Eastwood et al., 1984) 

 0.18  (Kujawa-Roeleveld and Zeeman, 2006) 

 0.20 1.33 (Goldblith and Wick, 1961) 

 0.30-0.34 2.86 (Calloway and Margen, 1971) 

Cl  0.09 0.6 (Goldblith and Wick, 1961) 

S  0.13 0.87 (Goldblith and Wick, 1961) 

 0.2  (Meinzinger and Oldenburg, 2009) 

 (mg/cap/day) (mg/kg)  

Cu 1.02 6.8 (Goldblith and Wick, 1961) 

 1.10  (Kujawa-Roeleveld and Zeeman, 2006) 

 1.5-2.1  (Wignarajah et al., 2003) 

Fe 30 200 (Goldblith and Wick, 1961) 

 700-1000  (Wignarajah et al., 2003) 

Pb 0.03-0.07 0.12-0.27 (Schouw et al., 2002) 

 0.02-0.03  (Hansen and Tjell, 1979) 

 1.26 6.38 (Vinnerås et al., 2006) 

Mn 24-90  (Wignarajah et al., 2003) 

Mo 2-4  (Wignarajah et al., 2003) 

Zn 7.85 48.46 (Eastwood et al., 1984) 

 5-10  (Wignarajah et al., 2003) 

 10.68  (Kujawa-Roeleveld and Zeeman, 2006) 

 13.31 67.49 (Vinnerås et al., 2006) 

Ni 0.08-0.09  (Hansen and Tjell, 1979) 

 0.3 1.52 (Vinnerås et al., 2006) 

 0.3 1.15 (Schouw et al., 2002) 

Cr 0.02-0.03  (Hansen and Tjell, 1979) 

 0.08 0.31 (Schouw et al., 2002) 

 0.18 0.91 (Vinnerås et al., 2006) 

Cd 0.07 0.27 (Schouw et al., 2002) 

 1.26 6.39 (Vinnerås et al., 2006) 

Hg 0.007 0.04 (Vinnerås et al., 2006) 
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2.3.3 Chemical nature 

Faecal pH is neutral with a median value of pH 6.6 and a range of mean pH 

values of 5.3-7.5 (n=28) (Figure 2.5). Faecal pH not only varies between 

different populations but has also been proven to differ between individuals 

consuming the same diet and with time (Silvester et al., 1997).Van Dokkum et 

al. (1983) found a difference of 0.25 in the faecal pH between sampling 

separated by two days in the same individual when exactly the same diet was 

consumed.  

Urine pH Faecal pH
5.6

5.8

6.0

6.2

6.4

6.6

6.8

7.0

7.2

7.4

7.6

 Median 

 25%-75% 

 Min-Max 

 

Figure 2.5 Mean pH values for urine (n=9) and faeces (n=23) 

Faecal pH variation is related to diet (Thornton, 1981; Van Dokkum et al., 

1983). Increased dietary fibre was suggested by Newmark and Lupton (1990) 

to lower faecal pH. However, not all studies have found that high fibre diets 

correlate with lower faecal pH. In a comparison study of omnivorous and 

vegetarian diets by Walker and Walker (1992), no significant difference in pH 

values for the stool or stool water were observed, even though the vegetarian 
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diet provided considerably more fibre. Similarly in a comparative study of 

omnivorous and vegetarian diets by Van Faassen et al. (1993) no difference 

between pH values for the stool or the stool water were observed, even 

though the vegetarian diet again, provided considerably more fibre.  

High levels of resistant starch in diets was also shown by Phillips et al. (1995) 

to lower faecal pH in a controlled experiment of differing resistant starch 

intakes, a significant inverse relationship between resistant starch intake and 

faecal pH was found (r = -0.65, P < 0.01). Interestingly 30% of the variance of 

faecal pH in a study by Van Dokkum et al. (1983) was accounted for by 

calcium intake, showing a significant positive correlation. Evidence of variation 

in faecal pH is not conclusive and variation could be due to a specific dietary 

intake, such as citrus fruit which has been proven to lower faecal pH (Walker 

et al., 1979). 

2.3.4 Physical form 

For the development of on-site treatment technologies an understanding of 

the physical form of faeces is important; this characterisation can be done 

through the use of visual scales or prevalence rates of diarrhoea and 

constipation.  

2.3.4.1 Visual scale 

Within the medical literature a number of linear scales have been used to 

characterise faeces e.g. Davies et al. (1986), however, with different scales in 

use cross comparison of studies is difficult. The most popular scale used is 

that of Lewis and Heaton (1997) who proposed the “Bristol Scale Stool Form” 

(Figure 2.6). This simplified visual scale provides an indication of the form of 

faeces expected and the variation that can be observed across a population. 

Stool form is considered abnormal when type 1, 6 and 7 occurs and this is 

15% of the time within a healthy population (Heaton et al., 1991). The mean 

value for a general population sample of 66 people using the Bristol Stool 

Form scale have been placed at 3.6 by Lewis and Heaton (1997). The 

distribution of the physical form in two populations of differing countries shows 

that stool types 3 and 4 are most commonly reported (Figure 2.6).  Variation 
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occurs between individuals, by age and gender (Heaton et al., 1992), 

although diet and health prove more important variables (Davies et al. 1985; 

Heaton et al. 1991). Dietary fibre is linked to stool texture, as dietary fibre 

increases stools become softer (Davies et al., 1986). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 2.6. Data from two separate studies of healthy subjects (Heaton et al 
(1991); Adibi et al. (2007)) both use the Bristol Stool Form scale. Stool types 3 
and 4 make up the most common stool type in both studies, however all types 
of stool are recorded in both studies. 
 

2.3.4.2 Diarrhoea  

Diarrhoea has an impact on stool production, structure, form and composition. 

In a controlled study by Wierdsma et al. (2011) it was found that patients in an 

intensive care unit with diarrhoea had over 5 times the wet faecal weight 

(796g/cap/day versus 157g/cap/day) compared to those without diarrhoea. 

Increased water losses are the predominant cause of the increase in weight; 

an increase in water content of 5% was shown by Wierdsma et al. (2011) and 

 Stool form description 

1 Separate hard lumps, like nuts 

2 Sausage-shaped but lumpy 

3 Like a sausage but with cracks 

on its surface 
4 Like a sausage or snake-

smooth and soft 

5 Soft blobs with clear cut edges  

6 Fluffy pieces with ragged 
edges, a mushy stool 

7 Watery, no solid pieces.  
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in a study by Goy et al. (1976) faeces of patients with diarrhoea had a 

significantly (p<0.05) greater percentage water content compared to control 

subjects. Faecal water loss of more than 10 ml/kg body weight is often used 

as a definition of chronic diarrhoea (Auth et al., (2012). Those with diarrhoea 

display higher faecal protein losses of 16.2 g/cap/day versus 5.6 g/cap/day 

and higher faecal energy losses were also shown in comparison to patients 

with normal stools (Wierdsma et al., 2011). However, faecal energetic content 

per gram of faeces (kcal/g wet faeces) was not significantly different between 

subjects with and without diarrhoea (Wierdsma et al., 2011). 

Diarrhoea is defined as a minimum of 3 liquid stools per day; it is further sub-

divided into acute diarrhoea (defined as diarrhoea lasting up to 3 weeks) and 

chronic diarrhoea (lasting any longer than 3 weeks) (Patel and 

Thillainayagam, 2009). It has been classified as stool types 6 and 7 on the 

Bristol Stool Form Scale (Figure 2.6). Chronic diarrhoea prevalence rates in 

five studies across the UK, US and Asia show an average of 4.6% (Table 2.7) 

with prevalence more frequent in the elderly at rates of 14.2% (Talley et al., 

1992). Acute (infectious) diarrhoea is caused most commonly by viruses, 

bacteria and protozoa and is commonly transmitted by the faecal-oral route 

through water, food and person to person contact (Farthing and Kelly, 2007). 

Acute diarrhoea prevalence figures have been applied to geographic areas, 

such as in the United States where there is an equivalent of 1.4 episodes per 

person per year (Herikstad et al., 2002) and in the UK with just under 1 

episode per person per year (Feldman and Banatvala, 1994).  

 

 

Table 2.7 Diarrhoea prevalence in a selection of 6 countries 

Study Country n 

Chronic Diarrhoea 

Prevalence % 

Han et al. (2006) Korea 1066 6.6 

Chen et al. (2000) Singapore 271 7 

Danivat et al. (1988) Thailand 1077 2.3 

Danivat et al. (1988) UK 301 4.7 

Sandler and Drossman (1987) UK 1128 3.6 

Danivat et al. (1988) USA 789 4.9 

Tan et al. (2003) Malaysia 84 3 

Average across studies  7 4.6 
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Acute diarrhoea prevalence is higher in low income countries as many of the 

risk factors of contracting diarrhoeal illness are associated with poor 

socioeconomic conditions (Ahs et al., 2010). Factors that increase exposure 

to infectious diarrhoea include lack of access to safe water supplies, 

inadequate sanitation facilities and poor personal hygiene. Added to this 

factors that reduce resistance to infection are also important such as age, 

malnutrition and illnesses such as the human immuno-deficiency virus (HIV) 

(Ahs et al., 2010). Geographically, there is an overlap of areas with a large 

burden of diarrheal illness and those with a large proportion of HIV cases; 

some enteric pathogens have also been shown to occur more frequently in 

HIV-positive individuals than in the general population, including 

Campylobacter, Cryptosporidium and Shigella (Ahs et al., 2010).  Zinc and 

Vitamin A deficiencies have also been shown to increase susceptibility to 

diarrhoea episodes, especially in children (Walker and Black, 2004). 

Diarrhoea disproportionately affects children in low and middle income 

countries due to inadequate water and sanitation facilities and nutritional risk 

factors (Fischer Walker et al., 2012). In a systematic review by Fischer Walker 

et al. (2012) diarrhoea prevalence rates in children were estimated at 2.9 

episodes/child year, with incidence rates the highest among infants aged 6-11 

months. In an overview report by the World Bank, data collected by a 

Demographic and Health Survey (DHS) project between 1990-2005 was 

presented by Gwatkin et al. (2007) with prevalence measured according to the 

% of children under 5 who had diarrhoea in the 2 weeks prior to the survey; 

population averages for the regions of South Asia (15.3%), Sub-Saharan 

Africa (19.7%), East Asia and the Pacific (13%) were recorded (Gwatkin et al., 

2007). Infectious diarrhoea is also more common among elderly populations 

due to increased incidence of immunodeficiency and resultantly an increased 

likelihood of bacteria in the blood (DuPont, 1997). 

Seasonality affects the prevalence rates of diarrhoea. It has been observed 

that acute diarrhoea becomes an epidemic in the rainy season in places such 
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as Kathmandu (Karki and Tiwari, 2007) this is largely due to the problem of 

water supply contamination. However, in a cross sectional study of diarrhoea 

in children under 5, a negative association between rainfall and diarrhoea 

rates was found by Lloyd et al. (2007) with a 4% increase 

in diarrhoea incidence (95 % confidence interval, CI: 1-7 %, p = 0.02) for each 

10 mm month-1 decrease in rainfall, this was thought to be due to the use of 

unprotected water sources during water scarcity.   

2.3.4.3 Constipation 

Constipation has prevalence rates that can range from 1.9%-27.2% in an 

American population (Higgins and Johanson, 2004); however, it is commonly 

found at 6-12% in a general population (Heaton et al., 1992; Talley et al., 

1993; Thompson et al., 2000). Constipation increases with increasing age, 

particularly after the age of 65 (Higgins and Johanson, 2004). Only one 

comparative study (Aichbichler et al., 1998) of faecal characteristics of 

constipated and non-constipated subjects was found; concluding that stool 

weight per week was markedly reduced in constipated subjects due to a 

reduction in stool water and total solids output. There are numerous other 

studies that report faecal weights of constipated subjects, e.g. (Ashraf et al., 

1996; Chen et al., 2008) these studies report daily per capita weights that fall 

within the study range presented (for example in a study of constipated 

subjects by Chen et al. (2008) values of 108.3 g/cap/day were recorded, in 

comparison to the median value of 128 g/cap/day reported in this study); 

however, shorter experimental studies can often be misleading and it is often 

the case that over prolonged study periods of weeks or even months stool 

weights can be considerably decreased (Aichbichler et al., 1998). 

2.3.5 Urine 

In contrast to faeces, the characteristics of urine have been studied 

extensively (Diem and Lentner, 1970; Kirchmann and Pettersson, 1994; Karak 

and Bhattacharyya, 2011). Urine as a potential fertiliser has attracted much 

attention in the treatability sector with a large range of literature exploring the 

agricultural fertiliser potential (Palmquist and Jönsson, 2004; Karak and 
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Bhattacharyya, 2011; AdeOluwa and Cofie, 2012). Urine presents less danger 

to human health in comparison to faeces and contains few enteric 

microorganisms, however, some human pathogen microorganisms such as 

Schistosoma haematobium, Salmonella typhi, Salmonella paratyphi and 

Leptospira interrogans as well as helminth eggs can be found in the urine 

fraction (Feachem et al., 1978; Heinonen-Tanski and van Wijk-Sijbesma, 

2005).  

2.3.5.1 Liquid generation 

Human urine is a liquid that is secreted by the kidneys, collected within the 

bladder and excreted through the urethra. Urine is composed of 91-96% water 

(Drangert, 1998; Höglund et al., 2000; Heinonen-Tanski et al., 2007) and the 

remainder can be broadly characterised into inorganic salts, urea, organic 

compounds and organic ammonium salts (Putnam, 1971). 

Liquid generation from humans is dependent on the water balance of 

individuals. Liquid output is in the form of urine, faecal water, from the skin 

through sweating and from the lungs through respiration. A median volume of 

1.4 litres/cap/day urine is excreted with mean values ranging from 0.6-2.6 

L/cap/day (n=14). In medicine, urine output is used to assess circulatory 

adequacy with inadequate urine output considered at <0.5 mL/kg body 

weight/hour for adults (Suen et al., 1998) and at 1-1.5mL/kg body weight/hour 

in children (Yowler and Fratianne, 2000). This indicates the minimal urine 

output that can be expected.  

Variation in total urine output (Table 2.10) is primarily due to fluid intake and in 

a study by Parker and Gallagher (1992) accounted for 78% of the variation 

observed in a sample of 11748 days’ worth of data. It was noted by Garrow et 

al. (1993) that the volume of water drunk as fluid is generally equal to the 

volume of urine produced. Body size is inevitably important when assessing a 

human’s urinary output; when assigning loading rates in wastewater, Almeida 

et al. (1999) reduced urinary output by 33% for children such that Karak and 

Bhattacharyya (2011) stated that children urinate about half that of the volume 

excreted by adults. Urine output therefore increases with body size. Other 
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factors leading to variation such as excessive exercising or sweating will have 

an effect on the quantity of urine generated as they will impact hydration. 

Variation in urine output according to race has been proven significant with 

the urine volume of black women 0.24 L/day less than white women (p=0.001) 

(Taylor and Curhan, 2007). It was also observed by Clark et al. (2011) that 

higher volumes of urine tended to be from subjects who were older, were 

more likely to be obese or taking medication.  

Information regarding the number of times urination takes place over a 24 

hour period is sparse and is likely to vary greatly due to fluid intake, biological 

factors and health of the individual. Schouw et al. (2003) recorded a figure of 

5.4 urinations per day in a boy’s prison in Thailand and Bael et al. (2007) 

reported a median figure of 6 urinations/24 hours (range of 2-11 urinations/24 

hours) in a study of children aged 6-12 years. A figure of 8 urinations per 24 

hour period was recorded for a population sample in the United States (n=17) 

(Clare et al., 2009). The diurnal variation of urinary output is not commonly 

recorded, however, a control sample of 15 healthy adult subjects showed that 

60% of total urine volume was excreted during the daytime (09:00-21:00) and 

40% was excreted at night time (21:00-09:00) (Hineno et al., 1994). 

2.3.5.2 Composition 

Urine composition varies due to differences in physical exercise, 

environmental conditions as well as water, salt and high protein intakes. Urine 

osmolarity is a measure of the water distribution amongst fluid components. It 

can vary between 50-1200 mOsmol/kg, with the average urinary excretion of 

solute 1000 mOsmol/cap/day (Garrow et al., 1993; Callis et al., 1999; Callis et 

al., 1999). This solute is excreted in a median volume of 1.4 L/cap/day of 

urine. The quantity of solute varies between individuals and with differing 

diets; for example the high consumption of meat leads to larger volumes of 

solutes as meat is a major source of urea (the largest solute fraction) as well 

as potassium and phosphates, whereas vegetarian diets are likely to lead to 

reduced solute production as most energy is derived from carbohydrate 

(Garrow et al., 1993). 
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The median value of mean total urine solids loading rates is 59 g/cap/day 

(n=7) and mean values range from 57-64 g/cap/day. The dry matter of urine 

was measured at 4.7-10.4 g/L by Heinonen-Tanski and van Wijk-Sijbesma 

(2005). The concentration of total suspended solids has been recorded at 21 

mg/L (Almeida et al., 1999) and total dissolved solids have been recorded at 

31.4 mg/g (Putnam, 1971). Organic matter makes up between 65-85% of 

urine dry solids (Strauss, 1985), with volatile solids comprising 75-85% of total 

solids (Fry and Merrill, 1973; House, 1981). Urea is the most predominant 

constituent making up over 50% of total organic solids, and is produced 

through the metabolism of protein. The other major solutes excreted in urine 

are Na and K, which are largely derived from dietary intake. 

2.3.5.3 Chemical composition 

Dry urine solids are composed of 14-18% N, 13% C, 3.7% P and 3.7% K 

(Strauss, 1985). Concentrations of major elements in urine were recorded at 

6.87 g/L carbon, 8.12 g/L nitrogen, 8.25 g/L oxygen and 1.51 g/L hydrogen by 

Putnam (1971). Of the faeces and urine fractions, urine contains the largest 

proportion of N (90%), P (50-65%) and K (50-80%) released from the body 

(Heinonen-Tanski and van Wijk-Sijbesma, 2005). 

Nitrogen is predominantly in the form of organic nitrogen and mostly in the 

form of urea (Beler-Baykal et al., 2011). Median values of total N excretion of 

11 g/cap/day were recorded (n=8) with a range of mean values from 2-35 

g/cap/day. Endogenous total N excretion of 13 men with the absence of 

protein in the diet was 2.41 g/cap/day, with no correlation with body weight 

found (r=0.450) (Calloway and Margen, 1971). This therefore provides a 

minimum figure for N excretion. The dietary intake of protein is the most 

predominant factor effecting N excretion. Urinary N components increase with 

increasing levels of protein in the diet; a positive correlation (r2) between 

urinary N and protein intake (intake ranging from 51-212 g/day) was found to 

be 0.91 (Magee et al., 2004). In a meta-analysis of data by Kipnis et al. (2001) 

it was found that urinary N is 80% of dietary intake on average
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Table 2.8 Per capita generation of components in urine 

Variable  Range (median) 

(g/cap/day) 

Reference 

Total N (n=8) 2-35 (11)  

Urea 10.00-35.00 (Bender and Bender, 1997) 

 1.36-6.77 (Calloway and Margen, 1971) 

Ammonia 0.34-1.2 (Bender and Bender, 1997) 

Creatine   0-0.15 (Dong, 1999) 

 <0.10 (Bender and Bender, 1997) 

Creatinine  0.001-0.002   (Bender and Bender, 1997) 

 1.640 (Dong, 1999) 

 1-1.800 (Harper et al., 1977) 

Uric Acid  0.25-0.75 (Bender and Bender, 1997) 

 0.86 (Dong, 1999) 

 0.50-0.80 (Harper et al., 1977) 

Total P 0.93 (Jönsson et al., 2005) 

 0.62-0.74 (Taylor and Curhan, 2006) 

 0.45-0.71 (Borawski et al., 2008) 

 1.15-1.30 (Calloway and Margen, 1971) 

Total K  0.78-2.50 (Wignarajah et al., 2003) 

 2.5 (Del Porto and Steinfeld, 1999) 

 0.027-0.036 (Borawski et al., 2008) 

 2.51-2.87 (Calloway and Margen, 1971) 

Na 3.45-4.53 (Wignarajah et al., 2003) 

 0.082-0.163 (Borawski et al., 2008) 

SO2−4 1.34-1.63 (Taylor and Curhan, 2006) 

Ca 0.20-0.50  (Wignarajah et al., 2003) 

 0.118-0.113 (Taylor and Curhan, 2006) 

 0.057-0.134 (Borawski et al., 2008) 

 0.14-0.25 (Calloway and Margen, 1971) 

Mg 0.19-0.21  (Calloway and Margen, 1971) 

 

Of the nitrogenous fractions urea is the most predominant, making up 

between 75-90% (Lentner, 1981). Urea concentrations range from 9.3-23.3 

g/L (Putnam, 1971; Otterpohl et al., 2002; Jönsson, 2005), with daily loadings 

of 1.4-35.0 g/cap/day (Calloway and Margen, 1971; Bender and Bender, 

1997). Creatinine is a significant nitrogenous fraction in urine. Endogenous 

creatinine was measured at 1.59 g/cap/day and was correlated with body 

weight (22 ±4 mg/kg, r =0.918) and is also dependent on age and muscle 

mass (Calloway and Margen, 1971). Concentrations can vary according to 

gender with male subjects recording higher (P=0.001) creatinine values than 

female subjects, 1.9 and 1.4  respectively (Newman et al., 2000). 

Concentrations of creatinine in urine also decreases when increasing volumes 

of urine are excreted over a 24 hour period (R2= 0.618, r=0.786, P<0.001) 
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(Newman et al., 2000). If there has been incomplete sampling over 24 hours 

an internal standard against the creatinine value can be used, with standards 

of creatinine excretion set at 1.7 g/d in men and 1.0 g/d in women (Jackson, 

1966). Nitrate concentrations in urine are low, with measured values at 1.07 

mmol/L and 2.06 mmol/day when a high protein diet is consumed (192 g/d) 

and 1.09mmol/L and 2.23mmol/day when a lower protein diet is consumed 

(68g/d) (Silvester et al., 1997).  

Protein intake is the predominant cause for variation in nitrogen 

concentrations of urine. In addition to this, protein intake has also been shown 

to impact other mineral constituents in urine. For example, in very low protein 

diets P and K were shown to be increased, Ca was reduced in very low 

protein diets but protein intake had no effect on Mg concentrations in urine 

(Calloway and Margen, 1971). 

Differences in chemical composition have been observed according to race by 

Taylor and Curhan (2007) with black women (n=146) excreting 65 mg less Ca 

(P<0.001), 351 mg less K (P<0.001), 11 mg less Mg (P<0.001) and 120 mg 

less P (P<0.001) per day than white women (n=330); these observations were 

consistent even after adjustment for age and Body Mass Index (BMI). Animal 

protein in the diet has been shown to lead to increased levels of urinary 

calcium, with calcium excretion at 21% of intake whereas with higher levels of 

vegetable protein calcium excretion is 16% of intake (Taylor and Curhan, 

2007). Positive associations were found between BMI and urinary calcium 

excretion, however, it was concluded that this was due to differences in 

animal protein and sodium intake (Taylor and Curhan, 2006).
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Table 2.9 Concentration of key components in fresh urine 

Variable 

 

Concentration 

Range (mg/L) 

Reference 

Electrical Conductivity 

EC  

160 mS/cm (Jana et al., 2012) 

 270 mS/cm (Jönsson et al., 1997) 

Osmolarity  1025 mosmol/kg (Callis et al., 1999) 

 50-1200 mosmol/kg (Garrow et al., 1993) 

COD 17500 (Putnam, 1971; Almeida et al., 1999) 

 6270-10600 (Putnam, 1971) 

Total N  8000 (Ban and Dave, 2004) 

 5000 (Jönsson et al., 2004) 

 11000-13900 (Jönsson et al., 2004; Southgate and Durnin, 1970) 

 4000 (Jönsson et al., 1997) 

 12000 (Mojtahedi et al., 2002) 

 11700 (Beler-Baykal et al., 2004) 

   

TKN  9220 (Beler-Baykal et al., 2011) 

 5580-7900 (Putnam, 1971) 

Urea  

 

21400 (Jönsson, 2005) 

 9300-23300 (Putnam, 1971) 

 10000 (Otterpohl et al., 2002) 

NH4-N  125 (Jana et al., 2012)  

 600 (Beler-Baykal et al., 2004) 

NH3-N  480 (Tilley et al., 2008a; Diem and Lentner, 1970)  

 200-730 (Putnam, 1971) 

 300 (Tilley et al., 2008c) 

Total P  350 (Jönsson et al., 1997) 

 800-2500 (Wignarajah et al., 2003) 

 1000 (Del Porto and Steinfeld, 1999) 

 1800 (Ban and Dave, 2004) 

PO4-P  205 (Tilley et al., 2008c; Diem and Lentner, 1970; Jana et al., 

2012) 

 450 (Tilley et al., 2008c) 

 760 (Diem and Lentner, 1970) 

K  966-1446 (Beler-Baykal et al., 2004)  

 1200 (Jönsson et al., 1997) 

 750-2610 (Putnam, 1971) 

Ca  230 (Diem and Lentner, 1970) 

 32 (Jana et al., 2012) 

 70 (Tilley et al., 2008c) 

Mg  120 (Diem and Lentner, 1970) 

 70 (Tilley et al., 2008c) 

Creatine  0-890 (Putnam, 1971)  

Creatinine  311-2150 (Putnam, 1971)  

Uric Acid  40 (Putnam, 1971)  

 152-858 (Jen et al., 2002) 

 856 (Dong, 1999) 
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3.6.4 CHEMICAL NATURE 

The pH of fresh urine is largely neutral with a median of pH 6.2, with a range of 

mean pH values of 5.5-7.0 based on a large subject sample size across nine 

individual studies (Figure 2.5). There are numerous factors that can lead to changes 

in urinary pH but diet once again provides a key variable. Urinary pH is reduced by 

high protein intake through meat and dairy produce as well as through alcohol 

consumption (Kanbara et al., 2012). However urine is more alkaline with the 

ingestion of potassium and organic acids which are increased in diets with high 

consumption of vegetables and fruit. Taylor and Curhan (2007) found that black 

women had a higher urinary pH than white women by 0.11 units (p=0.03) even when 

adjusted for differences in diet, BMI and age. Further, an inverse relationship 

between BMI and urine pH (p=0.02) was found by Taylor and Curhan (2006). 

Factors leading to a lower urinary pH include a higher weight, old age and increased 

dietary acid intake (Hesse et al., 1986; Maalouf et al., 2004; Taylor and Curhan, 

2007).  

The specific gravity of urine ranged from 1.002-1.037 in spot samples of 534 

subjects (aged 18-68) with a high correlation (r=0.82, P<0.001) observed between 

creatinine and specific gravity (Carrieri et al., 2000). The COD levels of 8-17 g/L 

found in urine are low (Table 9); this is likely to be because most of the organics 

excreted are small molecules. The mean calorific content of urine was measured at 

100 kcal/day (range: 91-117) by Southgate and Durnin (1970): using the median 

value of urine solids produced daily (59.0 g/cap/day) a design value of 1707 kcal/kg 

can be used. 

2.3.6 Additional influences on treatment systems 

Both faecal solids (29 g/cap/day) and urine solids (58-64 g/cap/day) are produced 

daily in large quantities. A mixed stream treatment system at source will therefore 

have to deal with a large quantity of solids from both faeces and urine. However, it is 

also the case that faeces and urine are likely not to be the only additions to a 

treatment system. A treatment system may also have to deal with additional material 

from human behavioural practices such as the use of toilet paper or the addition of 

sanitary items (Table 2.10). A similar principle applies to water addition; a large liquid 
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fraction is produced daily through urine and faecal output; however this may be 

further increased by additional water inputs such as pour flush toilet systems or anal 

cleansing practices.  

 

Table 2.10 Components and generation rate of human excreta waste streams and 

possible additional inputs. 

Component of solids 

fraction  

Generation rate 

(g/cap/day) 

Component of liquid fraction 

(L/cap/day) 

Generation rate 

Stool mean (range) 

g/cap/day 

 32 (4-102) Stool water mean (range)  0.101 (0.053-

0.265) 

Urine  61 (50-75) Urine median (range)  1.42 (0.8-2.45) 

Toilet paper use average  11.68-19.4 
bc

 Anal cleansing L/wash 0.35-3 
de

 

Toilet paper use men  6
 
-10.3 

abc
 

 

Pour flush toilet water L/flush 1-3 
f
 

Toilet paper use women  17.9 -36 
abc

   

Menstrual pads and flow  34
 a 

   

Sanitary Items. refuse 

item/cap/day 

0.16
 b
   

a 
(Parker and Gallagher, 1992)

 b 
(Friedler et al., 1996)

 c 
(Almeida et al., 1999)

d 
(Strauss, 1985)

e
(Tilley et al., 

2008a)
 f 

(Cairncross and Feachem, 1993)
 

 

2.4 DISCUSSION 

Existing OSS facilities are often poorly designed, constructed and maintained which 

regularly results in inadequate sanitation facilities in many low income regions. This 

problem has given rise to research  into the on-site treatment and/or resource 

recovery from faeces and urine within a low income context. This trend has 

accelerated with the challenge presented to researchers by the Bill and Melinda 

Gates Foundation to ‘Reinvent the Toilet’ (Global Development Program, 2013). A 

large proportion of this research aims to treat faeces and urine as a fresh waste 

stream on the site of production, giving a need to understand the production, 

composition and any variation around these factors in order to determine how this 

may impact these technologies. In this discussion all types of conventional treatment 

processes were considered alongside recent research funded by the Bill and 

Melinda Gates Foundation (BMGF). These grants (Sustainable Sanitation Alliance, 

2013) were grouped according to their treatment pathways comprising; biological 

processes (17), physical separators (7), chemical processes (3) and thermal 

processes (8) (Table 2.11). The principle aim of this discussion is to understand how 

the production rates, physical and chemical composition of faeces and urine can 
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lead to an improved understanding of potential treatment pathways that are either 

currently in use or under development in the OSS technology sector. 

 

Table 2.11 Classifications of broad treatment pathways in wastewater treatment 

Process Type Examples Resource Recovery 

Biological Anaerobic digestion Biogas 

 Decoupled HRT and SRT Digestate/Biosolids/liquid fraction 

 UASB Biofuel production 

 Wet and dry composting Compost fertiliser 

Thermal Processes Pyrolysis/gasification Energy/Char 

 Incineration Energy/Ash 

Separation Biofiltration Pathogen free water 

 Membrane pervaporation Irrigation water 

Chemical Processes Electrochemical disinfection Pathogen free products 

 Ammonia disinfection NPK irrigation water/fertiliser 

 Struvite Phosphorus 

 Ammonia stripping Fertiliser 

 Biochemical Fuel Cells Electricity 

 

2.4.1 Biological processes  

The predominant factors likely to impact biological processes to the greatest extent 

are solids loading, energy content, protein and fat concentration in the faeces and 

the high urea concentrations in urine. 

The high solids loading rate associated with fresh faeces (~25% wt.) when viewed as 

an individual waste stream presents a potential barrier to the successful 

implementation of high rate anaerobic systems in relation to their solids handling and 

rheological impacts on mixing and pumping (Speece, 2008). Accordingly, high solids 

anaerobic digestion processes (operating with solids concentrations greater than 

15% w/w) represent a more appropriate match due to the significantly lower impact 

associated with mixing. Operation at the higher solids loadings will translate to 

smaller reactor volumes, lower energy requirements and less material handling than 

traditionally encountered with standard anaerobic digestion (Guendouz et al., 2008) 

but would most likely result in a reduced rate and lower biogas yields. For biological 

processes such as aerobic composting the optimum moisture content is 30-60% 

(Liang et al., 2003): the moisture content of faeces was greater than this (75%) 

increasing the potential for anaerobic conditions to develop due to water logging 

(Tiquia et al., 1996). Therefore, incorporation of dewatering pre-treatment or a co-
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composting feedstock should be considered in order to establish resilient conditions 

to maximise the efficacy of the desired aerobic degradation pathways. Importantly, 

the fluctuating levels of moisture content reported in faeces (63-86%) means that 

amendment strategies need to be appropriately flexible and robust and are likely to 

require a degree of bespoke commissioning.  

Based on the COD values collected in this study each 66 g/cap/day COD added and 

removed by a digester could theoretically produce 0.0175m3 of methane at standard 

temperatures and pressures (Grady et al., 1999). Practical delivery of such potential 

is dependent on anaerobic reactor type, retention time and biodegradability such that 

actual conversion of the available organic matter to biogas is expected to range 

between 40-90% (Mang and Li, 2010). For instance, a key variable is associated 

with the fibre content of faeces which was found to vary widely (Figure 2.4); 

especially in populations consuming high fibre diets (such as diets consumed in low 

income countries). The importance of this relates to the relatively lower 

biodegradation rate of the fibrous material resulting in reduced COD conversions. 

Importantly, increased wet mass production rates above the average (128 g/cap/day) 

are commonly associated with increased levels of indigestible fibre in the faeces. 

Accordingly there is a poor correlation between wet mass loading and energy 

production. Whilst this places a risk of overestimation during design for such systems 

the impact can be readily accounted for as the fibre content of faeces is directly 

dependent on the non-degradable fibre intake of the population within the associated 

catchment. Consequently, the fibre composition of faeces for a given population can 

be predicted if diet is known and accounted for in such calculations. 

Potential biogas production from faeces could therefore be significant, however, the 

relatively small quantities of solids produced per cap/day should be noted and may 

mean that in order for significant quantities of methane to be produced a large 

population would be required or an additional co-digestion feedstock. This factor is 

likely to be problematic to small household or community anaerobic digester designs 

that cite methane production as a key driver for gaining energy neutral systems or for 

additional cost recovery.  
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The efficacy of biological processes for the treatment of faeces and urine, in either 

aerobic or anaerobic processes, may be inhibited through imbalances in the macro 

nutrient composition of such streams. For instance, anaerobic digestion proceeds 

optimally when the C: N ratio is around 20:1 to 30:1 (Parkin and Owen, 1986); this is 

not the case in faeces (8:1), urine (0.8:1) or as a combined waste stream (2.3:1). 

Similarly, in aerobic systems the recommended ratio for C:N:P (100:10:1 to 100:5:1) 

(Tchobanoglous et al., 2003) would not be reached. However, imbalances in the 

macro nutrient composition could be rectified through the use of organic waste 

substrates that are frequently locally available and could be a simple means of 

increasing the viability of biological systems. 

Potential chronic toxicity for treatment by anaerobic processes can be assessed 

according to the moderately inhibitory and strongly inhibitory concentration 

classifications according to Parkin and Owen (1986). Faeces as a single waste 

stream showed concentrations of Na+, K+, Ca2+, Mg2+ that were of moderately 

inhibitory concentrations with values of K+ reaching levels defined as strongly 

inhibitory on occasions. Toxic metals such as Cu, Ni, Cr and Pb were not of 

significant concentrations to inhibit anaerobic processes of a faeces waste stream. 

However, the high concentrations of sulphide reported have the potential to exhibit 

toxicity to methanogenic bacteria (Speece, 2008); this will only occur when high 

levels of sulphate are entering digesters along with sulphate reducing bacteria. 

Relatively high levels of sulphate 1.34-1.63 g/cap/day were recorded in urine but with 

very small amounts of elemental Sulphur found (0.16 g/cap/day) in the faeces 

fraction. 

Nitrogen excreted in urine and voided in faeces was shown to vary according to diet 

(primarily levels of protein intake) and combined median daily losses (13 g/cap/day) 

could have the potential to lead to ammonia toxicity problems. Ammonia (NH3-N) 

concentration is a function of ammonium (NH4-N) concentration, temperature and pH 

(Speece, 1996); thresholds in anaerobic systems can be found at concentrations of 

100-500 mg/L depending on adjustment time (Metcalf and Eddy, 2004). 

Measurements of ammonia in faeces are within this range (204-409 mg/kg), 

although a significant proportion of protein (29 g/kg) was found in the faeces fraction 

that will degrade to produce additional ammonia, dependent on storage time and 
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conditions. The addition of urine to this waste stream (urine comprises 80% of total N 

losses) could lead to ammonia threshold limits being exceeded in an undiluted waste 

stream. This is because a large proportion (> 80%) of the nitrogenous fraction of 

urine is in the form of urea, which in turn breaks down into ammonia. Therefore, 

ammonia toxicity (resulting from urea toxicity) is likely to be problematic when faeces 

and urine are treated as a combined waste stream and significant dilution could be 

necessary. Toxicity from the urine fraction could have negative impacts on biological 

systems as relatively large volumes of urine are collected in relation to faeces (daily 

urine: faeces ratio on a weight basis of 11:1). Accordingly it is suggested that smaller 

household systems that treat a combined faeces and urine waste stream need to 

especially consider such issues and may be enhanced through inclusion of source 

separation. Source separation could be carried out through the use of urine diverting 

toilets in which the faeces and urine fractions are collected separately within the 

toilet bowl. 

2.4.2 Physical separators 

There are numerous different types of separating technologies; however, the 

majority are likely to be predominantly influenced by variation in the solids content, 

physical form as well as levels of protein and fat in faeces.  

For technologies based on separation the lack of a standard faeces shape, structure 

and water content may be one of the greatest challenges. This could impact bound 

water removal from different stool types and also the different particle sizes that 

make up faeces. This uncertainty could be problematic when selecting process types 

and optimisation operating conditions. In addition to this faeces show a low 

proportion of fixed to volatile solids which could make dewatering challenging and 

require the addition of increasing amounts of chemicals or conditioning agents in 

order to gain adequate separation without pre-treatment. 

Significant levels of protein in the faeces fraction (29 g/kg) and the potential for 

fluctuations in this value (range of 19 to 122 g/kg) may be unfavourable to separation 

processes such as membrane and other surface filter systems. Layers of protein that 

form on the outside of particles could lead to clogging and its deposition and 

adhesion to membrane surfaces may cause fouling (Chan and Chen, 2004). 
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Similarly fat can be problematic to separation technologies as it can act as a binder 

for particles (Nguyen et al., 2012). Fat content in faeces shows variation across 

studies (Figure 2.4) but remains within a narrow region (5.8 to 49.1 g/kg). The 

concentration of fat in faeces (median of 25 g/kg) is comparatively low in comparison 

to conventional types of wastewater sludge such as primary sludge which has much 

higher levels of fats, oils and greases: this is usually due to the discharge of these 

products in the sewage system. Nevertheless, shock loads due to variation in the fat 

content of faeces may be large enough to cause the clogging of pores and impact 

dewatering properties. 

Information regarding the physical structure immediately after voiding provides an 

indication as to how the structure of faeces may change over short time periods, for 

example in the Bristol Stool Form scale a number of 1 or 2 would suggest a faeces 

structure that holds its shape to a much greater extent than others in the scale. 

Studies were found regarding the settling and thickening of excreta from septage 

and public toilet tanks (Heinss et al., 1999) but in this review no studies were found 

regarding the change in the physical structure of faeces once voided over shorter 

time scales. This lack of data regarding the change in physical structure over time is 

limiting current ability to fully understand technology needs. Importantly, the time 

required to lose the initial consolidated identity of the fresh faecal material is required 

to understand the potential virtue of utilising fast separation processes that could 

benefit from the initial cohesion of the solid material. However, such development 

must also take into account looser faecal material that will also enter such systems 

and is likely to be significantly less effectively removed by physical processes. 

Accordingly, understanding the kinetics of the structural change in faecal material 

during the initial periods after generation remains a critical area for future research 

activity that could inform novel low cost technology development.  

2.4.3 Chemical processes 

Chemical treatment processes can be wide ranging and are dependent on the end 

use and initial purpose of treatment and include processes such as chemical 

precipitation, disinfection, oxidation, neutralisation and stabilisation. 
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Perhaps the most obvious process relates to precipitation of the available 

phosphorus, magnesium, calcium and sulphur along with the other micronutrients 

that exist within faecal material and urine (Table 2.6 and Table 2.9), in particular the 

use of source separation to enable recovery of the high content of P in urine (0.4 - 

2.5 g/cap/day) through struvite precipitation. The pH of faeces and urine are both 

slightly acidic in nature (Figure 2.5), however, the pH level is likely to increase over 

short time periods which helps drive the precipitation reactions. Indeed, this self 

induced onset of precipitation can be detrimental to treatment technology through the 

precipitation of unwanted scale forming crystals and is considered a particular 

problem in the supernatant following solid/liquid separation. Nevertheless, the 

nutrient potential of faeces should not be underestimated, with 50% of N being 

water-soluble as well as 40% of total P excretion being voided in the faeces.  

2.4.4 Thermal processes 

Efficient thermal technologies have been the focus of much development because of 

their potential for energy saving and cost recovery. However, although there is great 

potential for energy production there is the negative aspect of the loss of nutrients 

present within faeces and urine as the majority are made unavailable for agriculture 

use. The cost efficiency of the process is primarily dependent on the water content of 

excreta and its calorific value. 

The total solids (TS) content of faeces and urine is likely to be the most important 

factor impacting thermal treatment technology, with TS content of faeces (25%) and 

urine (1%). The TS content and its variation will determine the financial viability of 

thermal processes and whether it can be a viable feedstock. However, the TS 

content of faeces (25% TS), is in a similar range to that of dewatered sludge 

(typically 22-36% TS) from conventional sewage treatment works using belt-filter 

press, filter press and centrifuge dewatering (Tchobanoglous et al., 2003). This is 

important as it highlights that when faeces are voided the material is already at the 

level of de-watered sludge if it could avoid being diluted. This could therefore mean 

that thermal treatment technologies could potentially be used without prior 

dewatering processes and this factor could promote collection practices that involve 

less dilution of the waste stream highlighting again the need to understand the time 
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related change in faecal identity that occurs during the initial periods after being 

voided.  

Variation in water content (Figure 2.1) was significant with a range of 63% - 86%. 

Diet was the predominant cause for variation in water content (predominantly fibre 

intake) in healthy subjects, however, in unhealthy subjects this range can further 

increase due to the prevalence of diarrhoea. Chronic and acute diarrhoea within 

populations could have a significant impact on treatment technology as faeces of 

those with diarrhoea showed increases in water content and a change in physical 

structure. Global averages of diarrhoea prevalence are significant in developed 

countries; therefore, this should be accounted for and amplified for technologies 

aimed at low income regions where both the chronic and acute diarrhoea prevalence 

rates are likely to be significantly greater. In contrast to diarrhoea, constipation 

decreases the water content of faeces and is equally prevalent in the developed 

world. Scales relating to the physical form of faeces also provides a further 

estimation of the solids composition by providing approximate estimations of the TS 

content of faeces across large sectors of populations. Research being carried out by 

Wooley et al. (2013) into assigning a TS value to the Bristol Stool Form scale will be 

of further benefit to technology development in this respect. Extremes in solids 

composition may cancel each other out in an averaging effect; however, thermal 

systems would have to be capable of dealing with this wide range and potential 

fluctuations in water content.  

The calorific value can be used as a metric of potential energy that can be produced 

during combustion of excreta. Calorific value of faeces (4115 kcal/kg) shows lower 

values in comparison to animal manure feed-stocks such as swine (4634 kcal/kg), 

similar values to cattle manure (4211 kcal/kg) but greater than poultry litter (3611 

kcal/kg) (Cantrell et al., 2012). Human faeces therefore could present an 

economically viable option for energy creation through combustion. However, 

humans will consume a much more varied diet then animals, leading to greater 

deviation from median values than would be seen in manure feedstock.  For 

example, although there is variation in the calorific value of swine manure from 

different sites (e.g. 4660 – 7887 kcal/kg (Cao et al., 2010; Xiu et al., 2010) variation 

within these sites is limited as the animals are kept under the same conditions and 
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are being fed the same diet. In contrast, variation in the energy value of faeces is 

quite substantial (1523 kcal/kg - 10875 kcal/kg). This variation is predominantly 

caused by the varying presence of unavailable carbohydrates in the diet, the larger 

the quantity of unavailable carbohydrates the higher the energy value of faeces 

voided. This has significance, as in lower income countries foodstuffs may often 

have more unavailable carbohydrates, therefore, faeces of subjects in lower income 

countries may have faecal energy values higher than the values presented in this 

study suggest. As a guideline for calorific values faecal dry mass can be used as an 

estimate for energy losses in faeces (reflecting unavailable carbohydrate intake) and 

energy adsorption by the body is correlated significantly with faecal dry weights (-

0.911) (Calloway and Kretsch, 1978).  

The high TS concentration of faeces gives a good case for the source separation of 

faeces and urine as the addition of urine could add the further problem of dewatering 

and could resultantly increase costs of thermal treatment processes. Nevertheless a 

sizeable proportion of urine solids are produced by humans (59 g/cap/day) and the 

calorific value of urine (1701 kcal/kg) could contribute to energy production if efficient 

dewatering technologies were available. 

Other factors that may be significant for thermal process regard the potential 

emissions from any thermal treatment process. Levels of sulphur are low in faeces 

but slightly higher levels are observed in the urine fraction, this could be significant 

as sulphur in oxygen starved conditions is reacted in the form H2S (Kang et al., 

2011). 

2.4.5 Nutrient recovery processes 

The nutrients in faeces and urine originate from the food ingested and if recovered 

and recycled can help contribute to the nutrient requirements of food production in 

agriculture and subsequently reduce the need for chemical fertiliser manufacturing. 

Following adequate stabilisation and pathogen destruction the recycling of nutrients 

to agricultural soils can take place through the direct application of faeces and urine 

to land or through nutrient removal, concentration and recovery by secondary 

processes. 
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The application of human faeces and urine to land following biological processes 

presents the benefit of providing key macro (N, P, K, S, Ca and Mg) and micro (such 

as B, Zn, Cu, Fe) nutrients (Table 2.6 and Table 2.8) required for agricultural 

production as well as the addition of organic matter (44-55% C in faeces) to soils 

which has multiple benefits to soil composition (House, 1980). The presence of 

potentially toxic elements in sewage sludge has traditionally been a problematic 

issue in sewage application to land (Tchobanoglous et al., 2003). However, heavy 

metal concentrations in faeces and urine (such as Ni (1.15-1.52 g/kg), Pb (0.12-0.27 

g/kg) and Cr (0.31-0.91 g/kg)) are all present in very low concentrations and will not 

be an issue due to the self-regulating aspect of human consumption rarely 

exceeding potentially toxic concentrations in soils.  

The greatest proportion of N losses are through the urine fraction (80%), of which the 

vast proportion is present in the form of urea (9300-23300 mg/L) which is quickly 

transformed to NH4
+. The consequently high NH4-N concentration presents a 

valuable resource for nutrient recovery. Ion exchange is a potentially viable 

mechanism for NH4
+ capture (Beller-Baykal, 2004), however, competing cationic ions 

(K+, Na+, Ca2+, Mg2+) present in significant concentrations (Table 2.9) will hinder ion 

exchange processes and may limit its effectiveness in a urine waste stream.  
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Table 2.12 Summary table of faeces and urine characteristics providing on site 

sanitation design criteria 

Key design criteria Median 

value 

Faeces  

Faecal wet weight (g/cap/day) 128 

Faecal dry weight (g/cap/day) 29 

Stool Frequency (motions/24 hours) 1.1 

Total Solids (%) 25 

VS (% of TS) 89 

COD (g/cap/day) 71 

Nitrogen (g/cap/day) 1.8 

Protein (g/cap/day) 6.3 

Lipids (g/cap/day) 4.1 

Carbohydrate (g/cap/day) 9 

Fibre (g/cap/day) 6 

Calorific value (kcal/cap/day) 132 

pH 6.6 

Urine  

Urine wet weight (L/cap/day) 1.4 

Urine dry weight (g/cap/day) 59 

Urination frequency (urinations/24 hours) 6 

Nitrogen (g/cap/day) 11 

Calorific value (kcal/cap/day) 1701 

pH 6.2 

 

2.5 CONCLUSIONS 

This review aimed to characterise faeces and urine and determine the extent and 

causes of variation seen and its subsequent impact on technologies treating faeces 

and urine as a fresh waste stream. Table 2.12 provides a summary of the key criteria 

and values that will assist in not only the operation of existing OSS systems but will 

help advance research and development into new OSS technologies. 

The generation rate of faeces and urine shows significant variation across a wide 

range of studies presenting difficulties assigning standard design values for 

treatment technology processes. The values presented are based upon a large 

database of values from studies worldwide. The median generation rate of faeces 

has been calculated at 128 g/cap/day wet mass and 29 g/cap/day dry mass; 

however, caution should remain when using these central tendency figures as the 

data sets were highly skewed. The largest factor leading to variability in faecal mass 
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is the indigestible fibre content of dietary intake; this explains the reason why faecal 

wet mass values were increased by a factor of 2 in low income countries. A urine 

generation rate of 1.42 L/cap/day was recorded with the water balance of the body 

highlighted as the main cause of variation in volume.  

Variation in the chemical and physical composition of faeces and urine was 

widespread throughout the study; this means that technology developments must be 

robust and flexible in order to deal with this uncertainty. It can be concluded however 

that the composition of faeces and urine is highly dependent on the dietary intake of 

subjects. The predominant factor leading to variation in key parameters in faeces 

was the dietary intake of non-degradable fibre which was shown to impact 

production rate, stool frequency, TS, fat, protein and the energy value of faeces. In 

the urine fraction, protein intake was one of the key factors leading to variation in 

urea concentration as well as impacting concentrations of P, K and Ca in urine. 

Biological treatment processes are likely to be effective at treating faeces as a waste 

stream and a large proportion of the faeces are likely to digest readily. However, high 

non-degradable fibre content of faeces may reduce digestibility and with a combined 

waste stream of faeces and urine the anaerobic digestion process may be limited 

with potential problems such as ammonia toxicity. Technologies based on separation 

will predominantly be impacted by the variation in TS concentration as well as 

fluctuating levels of protein and fat found within the faeces. Chemical processes and 

nutrient recovery will be largely influenced by variation in the diet consumed by 

subjects, leading to fluctuations in nitrogen and phosphorus loads which could be 

influential on pH levels, precipitation, ion exchange and nutrient recovery. Thermal 

treatment processes will similarly be most influenced by variation in TS as well as 

the energy content of these solids, once again the intake of fibre proved most 

influential in predicting these factors.  

The source separation of faeces and urine could prove beneficial for biological 

treatment such as anaerobic digestion where large urea concentrations in the urine 

stream could prove problematic and cause ammonia toxicity. However, high 

concentrations of ammonium in urine could prove a significant opportunity for 

nutrient recovery through ion exchange. The separation of the two streams could 
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also increase the efficiency of the dewatering process and make thermal processes 

increasingly attractive. In addition to this the largest proportion of nutrients (e.g. N, P 

and K) are found within the urine fraction making nutrient recovery from urine more 

attractive from this more easily accessible stream. It is therefore evident that source 

separation could be beneficial to many treatment technologies. 

This study has illustrated that there is significant variation in both the production 

values as well as the physico-chemical composition of faeces and urine. Therefore, 

there are limitations in using standard design values in the development of treatment 

technology. Consequently it is important that treatment technology is robust and 

flexible enough to deal with the variation exposed. It is however possible to make 

more appropriate decisions about values of production and composition through the 

assessment of a target population’s diet. Through this a range of dietary factors can 

be assessed in order to make more informed decisions about design values that 

specifically target individual populations. Additional data, especially information 

regarding how the structure of faeces changes over time, would be of further benefit 

to technology development but there is nevertheless no shortage of data regarding 

the production and composition of faeces and urine. 
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ABSTRACT 

Anaerobic digestion as a treatment option for high solids waste streams from 

on-site sanitation systems was assessed. Faecal sludge was collected and 

characterised from pit latrines, unsewered public toilets, portable chemical 

toilets, and a portable chemical toilet holding tank. The readily degradable 

organic fraction of pit latrine sludge was lower than other faecal sludge types as 

illustrated by biochemical methane potential assays (49 and 281 mL CH4/g 

                                            

 Corresponding author, a.parker@cranfield.ac.uk 



 

98 

 

VSadded in pit latrines and portable toilets respectively). The highest species 

richness and diversity was observed in pit latrine samples, which also displayed 

the greatest degree of sameness in comparison to public toilets. Despite low 

methane production values, pit latrine sludge was treatable using anaerobic 

digestion with a C: N ratio of 12:1 and had significant nutrient recovery potential 

(1853 mg NH4-N
 L-1). Portable toilet waste had significant potential for 

anaerobic treatment; however, current use of odour suppressing chemical 

additives introduces heavy metals to the waste stream (27 g/kg TS Cu) and the 

active ingredients can supress methane production with IC50 values of 100 mg 

L-1 glutaraldhyde and ≥50 mg L-1 bronopol. 

 

KEYWORDS 

Faecal sludge, pit latrine, faecal sludge treatment, anaerobic digestion, portable 

toilets, sanitation. 
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HIGHLIGHTS 

 Comprehensive characterisation of four different types of faecal sludge 

completed. 

 High solids pit latrine sludge (19%TS) with large NH4-N concentration 

(1853 mg L-1).  

 Chemical additives cause inhibition of CH4 production and introduce 

heavy metals. 

 Species diversity greatest in pit latrines with high degree of similarity 

between sites 

 Anaerobic digestion is suited to treatment of faecal sludge in low income 

countries. 

 

3.1 INTRODUCTION 

The predominant form of excreta disposal in urban areas of much of Africa and 

Asia is through on-site sanitation (OSS) facilities (Strauss et al., 2000), which 

are unsewered systems in use as public or household facilities. However, these 

systems eventually reach capacity and require emptying; but poor design 

coupled with a dense urban environment makes this process challenging 

(Buckley et al., 2008). Faecal sludge (FS) from sanitation facilities that are 

emptied is often disposed of untreated due to the lack of sustainable sludge 

management and treatment options (Strande et al., 2014). Low cost and 

efficient treatment mechanisms for FS in low income countries remains a 

challenge. This stems in part from the variability and limited knowledge of 

physical, chemical and biological characteristics of FS from different forms of 

sanitation facilities. A full knowledge of the characteristics of FS is therefore 

essential for not only the design and sizing of subsequent treatment plants but 

also for the advancement and development of technologies to suit this context..  



 

100 

 

Wastewater characterisation information is available on faeces and urine as a 

fresh waste stream (Meinzinger and Oldenburg, 2009; Rose et al., 2015), 

sanitary sewage from water-borne sewage networks, as well as from the 

resultant sewage sludge following the treatment of water-borne sanitary sewage 

(such as primary and waste activated sludge) (Henze et al., 2001; 

Tchobanoglous et al., 2003). However, this material is substantially different to 

that of FS from OSS systems as the material will have undergone different 

periods of storage and storage conditions as well as different levels of dilution 

through flush-water and grey-water additions.   

Therefore, FS from pit latrines, unsewered public toilets and portable toilets 

were investigated in this study. Pit latrines are the most commonly used form of 

OSS systems in developing countries with an estimated 1.77 billion people 

around the world using some form of pit latrine (Graham and Polizzotto, 2013). 

Public toilet and ablution blocks where toilet and grey-water waste is collected 

in a sealed holding tank and emptied on a regular basis are also in widespread 

use (Drechsel et al., 2009). Finally, a new but additional expanding sector of 

OSS services is the provision of portable toilets to households which are then 

collected regularly (for example Clean Team in Ghana (Clean Team, 2012); 

these toilets provide another example of FS from a different OSS facility.  

The safe treatment of FS from OSS facilities is one of the most important 

factors in effective faecal sludge management in low income countries 

(Muspratt et al., 2014). Anaerobic digestion (AD) is commonly used for treating 

sewage sludge from wastewater treatment works in high income countries and 

there is significant potential for AD as a treatment mechanism in a low income 

context (Strande et al., 2014). However, many factors impact the performance 

of AD and the physical and chemical characteristics of the feedstock is vital 

information for the design and operation of AD facilities as it will affect biogas 

production and process stability. Consequently, understanding how FS 

characteristics of a wide range of OSS facilities will impact the AD process is of 

great significance. 
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The main objective of this work was to undertake a full characterisation of pit 

latrine waste, unsewered public toilet holding tank waste, portable toilet waste 

as well as portable toilet sludge after storage in an IBC tank all of which may 

become an increasingly common feedstock for AD in low income countries. 

Characterisation analysis was conducted to help define physico-chemical and 

microbial composition variability, gross energy values and methane production 

potential in order to assess the treatability of FS by AD. In addition, analysis 

was undertaken to support AD design and operation as well as to assess the 

health and environmental risks that could influence the handling and disposal of 

FS.  

3.2 MATERIALS AND METHODS 

3.2.1 Survey sites and study population 

The peri-urban district of location x was used for the collection of pit latrine 

(n=11) and unsewered public toilet (n=3) samples in February/March 2013. Pit 

latrines in this region were raised above ground level and had no vent pipes 

present. Community ablution blocks consisted of 4-12 flush toilets, urinals as 

well as running water used for washing and showering. This waste was then 

stored in lined holding tanks that were set below ground level.  

A pilot scheme (Clean Team, 2012) using specially designed portable toilets 

and a regular collection service was used as a site for portable toilet sludge 

characterisation in Kumasi, Ghana in July/August 2013. Portable toilets (n=36) 

were designed to be urine diverting toilets with only the faeces fraction 

collected, in a detachable container at the base of the toilet structure, and 

collections took place at least once every 4 days from households (average 

household users 4.2). Faeces were collected in this container which contained a 

commercially available toilet chemical additive (Active ingredients: Pentane 1,5 

diol 5-10%, 2-Bromo-2-Nitropropane-1,3-diol <5%) which was diluted in 5 -7 L 

of water in order to prevent odour issues. Collected portable toilet waste was 

subsequently emptied into an IBC (Intermediate Bulk Container, 1 m3 volume) 

(n=1) where it was stored for approximately 1 month prior to final treatment and 

disposal.  
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Institutional ethical approval (Cranfield University 109-2013) was obtained for 

the sampling and analysis of faecal sludge in both case study locations: location 

x and Kumasi, Ghana. 

3.2.2 Analytical methods 

On-site measurements of pH and temperature were recorded using a portable 

YSI G3 60 meter (YSI Ltd., Hampshire, UK) and the oxidation reduction 

potential (ORP) was measured using an ORP15 pen (model number I662-0121, 

VWR International, Leuven, Belgium). Bulk FS samples were taken (containing 

a combined mixture of municipal solid waste and faecal material) and aliquots of  

2 L were put into sealed plastic bags and stored on ice in a cool bag before 

being transported to the laboratory (approximate journey time of 1 hour) where 

they were refrigerated (4oC ± 0.5°C) on arrival. A plastic sample bag was also 

filled with FS and was immediately frozen (-20°C ± 0.5°C) once at the 

laboratory. 

In the laboratory set up at each case study location 2 L of each bulk sample 

was homogenised using a mechanical blender according to the methods of 

Buckley et al. (2008), any material that could not be blended was discarded and 

classified as municipal solid waste (MSW). All samples were analysed in 

triplicate and the mean and standard deviation recorded. Total solids (TS), 

volatile solids (VS), total nitrogen (TN), ammonium (NH4-N) and faecal coliforms 

were all determined on the homogenised wet sample. In addition a frozen 

aliquot of the complete sludge sample was stored and used for biochemical 

methane potential (BMP). The TS and VS were measured according to 

standard methods (APHA, 2005), TN was determined after digestion according 

to the Koroleff method (analogous to EN ISO 11905-1) and was measured 

photo-metrically (analogous to DIN 38405 D9) and NH4-N was measured 

according to DIN 38406 E5.  

The homogenised sludge sample was also centrifuged for 10 minutes at 5000 g 

(Hettich Zentrifugen, Tuttlingen, Germany) after which the supernatant was 

filtered through a 0.45µm filter (Sartorious, Epsom, UK) in order to give the 

soluble solid free fraction. Analysis was undertaken for CODsol, nitrate (NO3-N), 
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total phosphorus and potassium according to standard methods (APHA, 2005). 

An aliquot of 5 mL was immediately frozen (-20ºC) awaiting analysis for soluble 

magnesium and volatile fatty acid concentrations. 

A range of six volatile fatty acids (VFA) concentrations were measured and 

determined on the soluble solid free fraction using high pressure liquid 

chromatography (HPLC) (535 Kontron, Bio-TEK, UK) with a Bio-Rad 

fermentation column (Cat 125-0115) 300 x 7.8 mm maintained at 65ºC, with a 

UV detector at 210 nm. The sample volume was 50µl. All samples for VFA 

analysis were first acidified with concentrated H2SO4 to pH <2 according to 

Parawira et al. (2004) and a hydraulic flow rate of 0.8 mL/min used. An external 

multi-level calibration range from 0.1 g/L to 5 g L was used to quantify acetic, 

propionic, n-butyric, i-valeric and n-valeric acids. 

The solid fraction was obtained by drying c.0.5 L of FS at 40oC±0.5 for 48 

hours, to avoid potential volatilisation of nutrients and prevent further 

degradation of the samples. The samples were then sealed in plastic bags to 

await subsequent analysis. Quantitative elementary analysis was undertaken 

using a Vario EL (Elementar, Hanau, Germany) for % C, H and N according to 

ISO 10694. Total P in the dried solids fraction was measured according to US 

EPA Method 3051 and determined photometrically (Helios Gamma, New 

Brunswick, USA). Potassium (K), magnesium (Mg) and calcium (Ca) as well as 

heavy metals were determined after microwave digestion with a 

nitric/hydrochloric acid mixture and was measured using Atomic Adsorption 

Spectroscopy (AAnalyst 800, Perkin Elmer, Waltham, USA) according to APHA 

(2005). 

Biochemical methane potential (BMP) assays were carried out according to 

Owens and Chynoweth (1993) and Angelidaki at al. (2009). The anaerobic 

inoculum was collected from a mesophilic digester at a sewage treatment works 

(population equivalent (PE) of 288,000) and a stock solution of micronutrients 

(according to Gonzalez-Gil et al. (2001)) was added to each assay. Each assay 

was flushed with N2/CO2 (80:20% as volume) after transfer of inoculum and 

substrate before being anaerobically incubated for 32 days in a temperature 
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controlled shaker (37.5oC ± 0.5: 150 rev min-1)( (Excella E24, New Brunswick 

Scientific, Edison, USA). Cellulose was used as a positive control in all 

experiments and assays were carried out in quadruplicates. Blanks were run 

with inoculum only with no substrate addition and biogas production from the 

inoculum was subtracted from methane production values of tested substrates. 

Total gas volumes were calculated by water displacement. The production of 

biogas was given at standard temperature and pressure according to Angelidaki 

et al. (2009). The % methane (CH4) in biogas samples was measured using a 

Servomex 1440 (Zoetermere, Netherlands) gas analyser.  

Potential methane inhibition caused by the chemical toilet additive in use was 

investigated by determining the IC50 values of the two main active ingredients 

of the chemical additive (Glutaraldehyde (Pentane 1,5 Dial) and Bronopol (2-

Brono-2-Nitropropane-1,3 Dial). In order to test the inhibitory effect of these 

chemicals a primary sludge from the 288,000 PE sewage treatment plant was 

used as a substrate and a range of inhibitory and sub-inhibitory concentrations  

of Glutaraldehyde (10, 50, 100, 500, 5000 and 10000 mg L-1) and Bronopol (10, 

50, 100, 500, 1000, 10000 mg L-1) were added to the BMP assays completed 

as outlined above. Any inhibitory effect was determined by assessing the IC50 

value and was compared to a control group with no chemical addition. 

Thermotolerant coliform determination, DNA extraction and sequencing were 

carried out on pit latrine and portable toilet sludge samples only. Thermotolerant 

coliforms were determined within 4 hours of sample collection using membrane 

filtration and incubated on membrane lauryl sulphate broth at 44°C ±0.5°C for 

14 hours following the standard method for detection and enumeration of 

coliforms (APHA, 2005). DNA extraction and sequencing was conducted on 

homogenous sludge samples taken from 11 pit latrines and 3 public toilets as 

well as additional depth samples from the top (0.05 m), middle (1 m) and bottom 

(2.5 m) (total pit latrine depth 2.9 m) from one of the pit latrines (S863). One pit 

latrine was a dry urine diversion pit latrine and was identified as an ECOSAN 

latrine. All samples were stored at -20°C ± 0.5°C prior to DNA extraction. 

Methods of DNA extraction, next generation sequencing library construction and 

PCR amplification are provided in detail in Appendix B. The pooled multiplexed 
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library was sequenced using the Illumina Miseq (San Diego, USA) bench-top 

sequencer at the Centre for Genomic Research, Liverpool. 

3.3 RESULTS AND DISCUSSION 

3.3.1 Physical composition of faecal sludge 

Pit latrines had the highest TS concentration of the differing FS types with a 

mean of 19.24% TS (Std. Err.1.63). Within pit latrines a higher TS concentration 

(27.34% TS) was recorded in the top layer of the latrine vault in comparison to 

the bottom section of the pit latrine (19.21% TS) (Table 3.1). The high TS 

concentration is unusual in comparison to FS from other OSS facilities, such as 

septic tanks, where the TS concentrations are routinely lower (0.88-11.4% TS: 

Table 3.2). Nevertheless the TS of the pit latrine FS is within the upper range of 

literature values for pit latrines (Table 3.2). The higher than average TS 

concentrations are likely to be due to the unlined nature of most pit latrines in 

this study. Percolation out of the latrine vault will only take place if pit latrines 

are cited above the groundwater level meaning a net movement of water away 

from the latrine vault: in this study all pit latrines were raised above ground level 

due to a high water table existing in the area, this means that the majority of the 

latrine vault is likely to be above groundwater levels, consequently leading to 

net water loss through the side walls. However, the seepage of water out of pit 

latrines is likely to be retarded significantly by clogging of soil pores at the 

pit:soil interface, nevertheless infiltration will still take place and contribute to 

high TS concentrations. An additional factor for the high TS observed in pit 

latrine FS may also be due to the “wiping” anal cleansing practices of the area 

(the use of newspaper and/or rags) as well as the pit latrine emptying methods 

used (the use of shovels) meaning a large proportion of the material removed 

was likely to be of a spadeable consistency (15-20% TS).  

Table 3.1 Comparative analysis of the top and bottom layers within a pit latrine 

(n=1) with mean values presented (standard deviation).  

n = 1 Top Layer Bottom Section 

Total Solids (% g/wet mass) 27.34 (2.34) 19.21 (0.67) 

Volatile Solids (% g/TS) 36.23 (0.83) 35.02 (1.34) 

NH4-N (mg L
-1

) 2570 (129) 3100 (264) 
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CODtot (mg L
-1

) 274900 (33300) 126600 (3600) 

CODsol (mg L
-1

) 17780 (260) 25380 (1060) 

Total Psol (mg L
-1

) 119 (1) 120 (2) 
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Table 3.2 Literature values of the physio-chemical characteristics for similar FS types to this study.  

 Production 

(per capita 

L.day)  

Production 

(per capita 

g.day) 

BOD 

(mg L
-1

) 

COD 

(mg L
-1

) 

TS (%) VS (% 

of TS) 

Total N 

(mg L
-1

) 

pH References 

          

Nightsoil
a
 1-2.55 940-1800 10588-

3200 

20000-

175000 

2.242-

5.1 

71-

89.6 

950-

9520 

5.75-

8.5 

(Fenner et al., 2007; Doku, 2003; Panuvatvanich et al., 

2009; Meinzinger and Oldenburg, 2009; Czemiel, 2000; 

Heinss et al., 1998; Choi et al., 2004; Pradt, 1971; Issah, 

2011; Takahashi et al., 1989; Gajurel et al., 2003; Strauss, 

1985; Schouw et al., 2002) 

Pit Latrine 0.07-1.5 * 7600-

15000 

49000-

103300 

5.25-57 41-69 

 

3000-

5000 

7.9 (Heinss et al., 1999; Doku, 2003; Chaggu, 2004; Coetzee et 

al., 2011; Hawkins, 1982; Foxon et al., 2009; Salisbury et 

al., 2009; Buckley et al., 2008; Norris, 2000) 

Septage 0.3-1 * 600-

5500 

4200-

76000 

0.887-

11.4 

60-76 190-

2100 

6.7-8 (Heinss et al., 1999; Koottatep, T., Surinkul, N., 

Paochaiyangyuen, R., Suebsao, W., Sherpa, M., 

Liangwannaphorn, C., Panuwatvanich, A., 2012; Koné and 

Strauss, 2004; Norris, 2000; Choi et al., 2004) 

*Values not available 
a
 Nightsoil defined as any human derived waste collected at regular intervals as a fresh waste stream 
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Public toilet sludge had a mean value of 7.01% TS (Std. Err. 2.63) with values 

ranging from 2.94 - 11.94 %TS, which is within the range of values reported in 

the literature for FS from septic tanks (Table 3.2). The relatively low TS 

concentration in comparison to pit latrines (19.24 %TS) is due to the extensive 

dilution by flushing toilets as well as the entirely sealed nature of the tanks 

which meant minimal percolation into the surrounding soil took place.  

Due to the design and operation (with faeces contained in 5-7 L of liquid), as 

expected the portable toilets had the lowest TS content at 4.56% (Std. Err. 2.17) 

of all FS types studied. However, when TS was recorded in the IBC tank this 

increased to 9.50% TS, although the IBC was capped when not in use, moisture 

loss may have occurred periodically when open. A thicker layer was observed 

at the top of the IBC, however, no correlation between TS and depth within the 

IBC was observed using Student’s T-test (p>0.05).  

3.3.2 Organic composition of faecal sludge 

Portable toilet sludge was collected on a regular basis (≤ 3 day intervals) and 

was therefore a relatively fresh waste stream that had undergone little 

degradation, this was reflected by high VS values (78.87% of TS). This waste 

stream therefore had strong similarities to organic composition of faeces at 

point of release (89% VS on average (Rose et al., 2015)). Values of CODsol 

were higher in the IBC tank (25.50 g CODsol L-1) than within individual toilets 

(24.09 g CODsol L
-1) which is due to the longer retention time in the IBC where 

hydrolysis/fermentation will start to occur. In pit latrines a low proportion of 

VS:TS (VS 48% of TS) was recorded indicating partial stabilisation of FS was 

occurring within latrine vaults, which coincides with findings by Buckley et al. 

(2008). The low proportion of VS:TS in pit latrines is not reflected in other 

studies. For example, values of 58-69% VS were reported by Heinss et al. 

(1999). The lower VS in this study is most likely caused by the protracted period 

of storage of the FS prior to emptying with most latrine owners reporting longer 

periods (≥5 years) of time since construction or the latrine’s previous emptying.  
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The portable toilet IBC holding tank had the largest concentration of volatile 

fatty acids (VFA) (9023 mg VFA L-1) of FS types with portable toilets exhibiting 

similarly high VFA concentrations at 7182 mg L-1. Total VFA concentrations in 

pit latrines were lower with a mean of 3736 mg L-1 but with a larger range of 

302-7077 mg L-1 and the lowest VFA concentrations were observed in public 

toilet sludge (996 mg L-1). The high VFA build up in portable toilet waste is 

commensurate with the shorter retention time of the sludge in comparison to 

other FS types: the greater the retention time in the OSS facility, the more VFA 

will be consumed or converted to methane. In anaerobic treatment processes 

the design of hydrolysis/fermentation is based on a hydraulic retention time of 

typically 1-3 days (Tchobanoglous et al., 2003), which is a similar retention time 

to the portable toilets. The accumulation of VFAs in pit latrine FS is likely to 

have occurred because the rate of hydrolysis is faster than the rate of onward 

conversion of the acids. The vast proportion of VFAs in all FS types were found 

in acetic and propionic forms (1511 and 2101 mg L-1 in portable toilets and 1790 

and 795 mg L-1 in pit latrines respectively), with the proportion of acetic acid 

highest in pit latrines (55% of total VFA concentration).  

3.3.3 Methane potential and biodegradation of sludge 

The theoretical maximum energy that could be obtained from the FS is 

demonstrated by gross energy values (Table 3.3) with portable toilet waste 

(22.24 MJ/kg TS) over double that of pit latrine waste.  The portable toilet and 

public toilet FS had a similar calorific value to primary sludge (following primary 

settlement of sanitary wastewater) with Speece (2008) recording values 

between 23-29 MJ/kg TS. The gross energy values of pit latrines (10.24 MJ/kg 

TS) are comparatively lower than other studies such as Muspratt et al. (2014) 

who reported figures averaging 16.2 MJ/kg TS in similar partially lined pit 

latrines in Uganda. The lower values measured in this study in location x are 

likely to be due to the extensive period of time by which pit latrines were 

emptied (most owners reported irregular emptying of >3 years in frequency) 

indicating a well digested sludge type. 
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Due to the younger age of portable toilet waste (3-4 days old), BMP values 

were significantly greater than that of pit latrine FS (>3 years old) (Figure 1). 

The average BMP value of portable toilet waste (281 mL CH4/g VSadded) falls 

within the range of values reported for faeces (260-300 mL CH4/g VSadded) by 

Lim et al. (2011) and Rajagopal et al. (2013), however, the range of portable 

toilet values in this study was considerably greater (97 to 604 mL CH4/g VS 

added) which could be due to variation in factors such as the number of users or 

the interval between collections. Cumulative CH4 production values in pit 

latrines are considerably lower than that of any other FS substrate in this study 

(Figure 1) but also when compared to piped sanitary sewage sludge with values 

reported between 230-590 mL CH4/g VSadded for a sludge following primary 

settlement (Chynoweth et al., 1993; Elbeshbishy et al., 2012). This illustrates 

that the majority of the readily degradable organics have already been broken 

down in the pit latrine. 

 

Figure 3.1 The mean biochemical methane potential of pit latrines (n =11) and 

unsewered public toilets (n=3) in location x as well as individual portable toilets 

(n = 7) in Ghana. Analysis of each site was undertaken in quadruplicates with the 

mean value of all sites presented (with standard deviation). 
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Methane potential tests of portable toilet sludge found that 30% of samples had 

extremely low biogas production values, giving cumulative methane production 

values of 5, 1 and 6 mL/ g VSadded in comparison to the average value of the 

other assays for this FS type (281 mL CH4/g VSadded). These values were not 

dismissed as anomalies due to the relatively low standard deviations of the 

quadruplicates (2.6, 4.1, and 10.1) and high frequency within the samples (30% 

of samples). It was therefore hypothesised that the toilet chemical additive 

(used as an odour suppressant) was likely to be causing inhibition. The toxicity 

of the active ingredients of the chemical additive were subsequently tested and 

it was found that glutaraldehyde caused inhibition (IC50) at concentrations of 

≥100 mg L-1 and bronopol caused inhibition at concentrations of ≥50 mg L-1. 

Taking into account the levels of dilution that were in use at the time of 

sampling, estimated concentrations in the portable toilet FS material was 200 

mg L-1  glutaraldehyde and 100 mg L-1  bronopol which is above the IC50 levels 

determined. Similarly, Leung (2001) found that glutaraldehyde inhibited the 

metabolic activity of sewage at concentrations greater than 16 mg L-1. This was 

considerably lower than the glutaraldehyde IC50 value found in this study (200 

mg L-1), however, this could be due to the increased amounts of bacteria 

present in sludge samples whereas in the more diluted conventional sewage 

measured by Leung (2001) there would be less opportunity for the bacteria to 

overwhelm the chemical as is likely to be the case in a sludge. No studies 

regarding the inhibitory effect of bronopol on wastewater could be found, 

however, as an effective antibacterial preservative (Bryce et al., 1978) it is likely 

to have an impact on the bacterial population and therefore IC50 values (100 mg 

L-1) are relatively high which could again be accounted for by significant 

bacterial populations in the sludge overwhelming the addition of bronopol. 
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Table 3.3 Composition of faecal sludge from four different types of on-site 

sanitation facilities: pit latrines, unsewered public toilet holding tanks in location 

x and portable toilets and portable toilet holding tanks in Kumasi. Mean values 

are presented (with standard error).  

 Location x Kumasi, Ghana 

 Pit Latrines Public Toilet 

Holding tank 

Portable Toilets Portable toilet 

IBC 

Portable toilets 

(per cap/day) 

n 11 3 36 1 36 

pH 7.65 (0.031) 7.22 (0.025) 6.43 (0.27) 6.09 (0.16)  

Temp (oC) 24.128 (0.713) 27.038 (0.813) 26.8 (1.5) 27.3 (0.2)  

ORP (mV) -354.4 (7.7) -280.7 (37.5) -216.9 (147.5) -282.7 (20.3) 

 

 

TS (% g/wet 

mass) 

19.245 (1.638) 7.006 (2.634) 4.56 (2.17) 9.50 (5.82) 28.21 g (14.82)  

VS (% g/TS) 47.767 (2.906) 70.581 (3.530) 78.87 (8.80) 85.45 (1.00) 22.38 g (12.68)  

 

CODsol (g/L)* 9.444 (2.219) 3.263 (2.498) 24.09 (9.33) 25.5 (6.73) 13.40 g (7.38)  

 

Total N (mgL-1 4561 (439) 2090 (733) 2590 (1190) 2080 (54.2) 1360 mg (560) 

      

NH4-N (mgL-1) 1853 (178) 846 (267) 520 (400) 948.8 (412.9) 250 mg (190) 

  

NO3 (mgL-1)* 10.83 (3.08) 2.99 (1.26) 68.8 (26.3)  55.6 mg (38.5) 

  

Total P mgL-1* 85.52 (14.6) 111.52 (45.65) 396.2 (149.0) 484.3 (120.9) 226.1 mg (156) 

Total K mgL-1* 1236 (306) 766 (647) 29100 (0.01)  13.4 mg (2.9) 

  

Mg mgL-1* 70.65 (33.29) 31.84 (4.43) 303.57 (102.16) 278 (68.94) 

 

 

%C 24.156 (1.567) 40.113 (2.248) 52.4994 (1.450) 49.821 (0.528) 

 

 

%H 3.738 (0.230) 5.997 (0.426) 7.998 (0.180) 7.576 (0.097) 

 

 

%N 2.122 (0.157) 3.682 (0.165) 7.324 (0.642) 4.781 (0.116) 

 

 

C: N ratio 11.579 (0.5757) 10.989 (1.058) 8.546 (0.966) 10.425 (0.142) 

 

 

P (mg kg-1) 26950 (1291) 12106 (913) 74588 (13152) 48248 (6372) 

 

 

Gross Energy 

(MJ/kg TS) 

10.242 (2.861) 17.581 (2.848) 22.241 (0.436) 22.296 (0.416)  

Pb (mg kg-1) 135 (67) 121 (41) 140 (59) 337 (85) 

 

 

Cu (mg kg-1) 68 (11) 98 (18) 27251 (18971) 10330 (3452) 

 

 

Cr (mg kg-1) <DL <DL 83 (63) 58 (14) 

 

 

Zn (mg kg-1) 420 (281) 755 (298) 2538 (883) 1993 (509) 

 

 

Ni (mg kg-1) 84 (26) 75 (28) 177 (31) 196 (27) 

 

 

Cd (mg kg-1) 1.9 (0.3) 2.6 (0.4) 0.249 (0.098) 0.349 (0.018) 

 

 

Production rate 

(mL/cap/d) 

    244.0 (178.1) 

*Determined on the soluble solid free fraction 
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3.3.4 Chemical composition and nutrient value of faecal sludge 

The pH levels of pit latrine and public toilet FS were around neutral (7.22 – 7.65 

Table 2) and were equivalent to Heinss et al. (1999) measurements of FS from 

septic tank collections in Ghana (pH 7.9). In contrast to this, the FS of individual 

portable toilets was more acidic (pH 6.43) and could be accounted for by the 

odour suppressant chemical additive or alternatively by the increased VFA 

formation in the IBC (26% increase in VFAs following storage).  

As would be expected due to the addition of urine (urine comprises 68% of total 

N outputs in excreta (Rose et al., 2015)), the FS of pit latrines and public toilets 

had higher total nitrogen concentrations than that of portable toilets (Table 3.3). 

Within the solid fraction (Table 3.3), N made up 2.1% and 3.7% in pit latrines 

and public toilets respectively which is also within the range seen in primary 

(1.5-4%) and waste activated sewage sludge (2.4-5%) (Speece, 2008). 

However, values were significantly greater in portable toilet sludge (7% N) 

which subsequently reduced the C:N balance in the portable toilet waste stream 

(8:5).  

3.3.5 Biological pathogen indicators 

The mean value of faecal coliforms in pit latrine FS was 6.40 x 107 CFU/100 mL 

with a range of 4.28 x 105 – 5.35 x 108 CFU/100 mL. These levels are similar to 

levels measured by Issah et al. (2012) who recorded faecal coliform values of 

3.63 x 106 in FS. Similar levels of faecal coliforms have been found in sewage 

sludge with 106-107, 107-109 and 105-106  recorded in primary, secondary and 

mixed sludge respectively (Kiely, 1997) demonstrating that there is minimal 

removal of pathogen indicators despite percolation of liquids out of the pit latrine 

vault and significant retention time of FS in the latrine vault (generally >3 years). 

3.3.6 Microbial composition 

The proportions of the top 20 operational taxonomic units (OTU) that were 

present in pit latrines and public toilets are outlined in Figure 3.2. Pseudomonas 

was the most prevalent OTU present in the majority of samples, a genus 

containing a number of aerobic and facultative species, which are often 
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described as infectious pathogens. The high proportion in all waste types is a 

reflection of its environmental adaptability and is common in soil, water as well 

as humans (Stover et al., 2000). However, where Pseudomonas is not in the 

greatest proportion, for instance in two pit latrines (S856 and S861) and one 

public toilet (S862), an unclassified Comamonadaceae, a similarly aerobic 

family, instead makes up the vast proportion of genome composition (Figure 

3.2). Comamonadaceae is a beta proteobacteria that tends to use nutrients 

released from anaerobic digestion of organics (He et al., 2009). Another 

common OTU where high levels of abundance were detected included the 

Microvirgula genus, a denitrifier under aerobic conditions (Otani et al., 2004) 

which commonly occurs where there are fluctuating oxygen conditions and has 

been reported in aerobic and anoxic wastewater sludge (Patureau et al., 2000; 

Patureau et al., 2001). A high abundance of aerobic microbes was therefore 

present throughout all types of OSS system, which is interesting as it was 

expected that conditions within all OSS systems would be predominantly 

anaerobic. It is also evident that the OTU proportions of pit latrines are relatively 

similar between individual sites in comparison to public toilet samples which 

differ markedly between sites (Figure 3.2). This factor is also reflected by the 

high degree of clustering of pit latrines in comparison to public toilets (Figure 

3.3) which indicates a stronger degree of OTU similarity between individual pit 

latrine sites. 

Species diversity, as measured by the alpha diversity index, Shannon and 

Simpson diversity measures, was greatest in pit latrine samples in comparison 

to samples taken from public toilets (Figure 3.4). This is a reflection of the 

longer residence time under anaerobic conditions of pit latrines in comparison to 

public toilets. The difference in species diversity is important as it can have an 

effect on the stability of a subsequent AD treatment process if applied with 

Fernandez et al. (2000) reporting that the stability of reactors with greater 

diversity was less variable than those with reduced diversity during the start-up 

period. 

In order to illustrate overall variation between different OSS facilities, the degree 

of similarity of microbial community structures is depicted in one single non-
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metric multidimensional (NMDS) plot (Figure 3.3). Representative samples of 

the entire pit latrine contents had the greatest proportion of clustering in 

comparison to that of public toilets (Figure 3.3). This could be a reflection of 

residence time within the system or the similarity of pit latrines due to their close 

proximity (<5 km radius). It is also apparent, that as expected, the community 

structure of the sample taken from the top of a pit latrine is substantially 

different to that of all other types of OSS facility (Figure 3.3). This illustrates the 

undigested nature of this fraction and the more prevalent aerobic degradation 

that is taking place as opposed to the prolonged anaerobic conditions prevailing 

in all other OSS facilities measured resulting in the closer proximity of these 

OSS systems within the plot (Figure 3.3). 
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Figure 3.2 Comparison of the top 20 most abundant operational taxonomic units (OTU) in 11 pit latrines, 3 public toilets as well as the 

top, middle and bottom of one of the pit latrines sampled (S863).
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Figure 3.3 Weighted non-metric multidimensional scaling (NMDS) of representative 

samples from pit latrines and public toilets as well as the top, middle and bottom 

section of one of the pit latrines sampled. One pit latrine was of a different design and 

was labelled accordingly (ECOSAN). Points represent the original positions of 

communities in a multi-dimensional space and the relative sameness of OSS facilities. 

The greater the distance between samples the greater the difference in microbial 

community structure. 
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Figure 3.4 Alpha diversity measures illustrating the spread of OTUs within individual samples of pit latrines, public toilets and within 

the top, middle and bottom sections of one of the pit latrines sampled. One ECOSAN pit latrine is identified separately due to the 

difference in design and construction of this latrine type.
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3.3.7 Collection and transportation of faecal sludge 

Technology to enable the safe collection and transportation of FS from OSS facilities 

to treatment facilities is currently an extensive research area. Therefore, 

understanding how FS composition may impact collection technologies is important 

in addition to quantifying the volumes of FS being generated by populations in low 

income regions. 

The high TS observed in pit latrine sludge (19.2% TS) is likely to impact collection 

technology of this FS type. Difficult access combined with large volumes of MSW 

(mean volume of MSW after screening of 5 pit latrines was 12% of the total sludge 

volume collected) will make the removal of FS using emptying devices that rely on 

suction, including conventional vacuum trucks and small scale vacuum pumps, 

challenging. This factor may promote the use of screw and auger systems (e.g. 

Rogers et al. (2014)) over suction systems for FS such as in location x. 

The portable toilet accumulation rates and chemical composition were calculated on 

a per capita basis (Table 3.3). The volume of excreta collected in portable toilets 

(0.24 L/cap/day) was above mean literature values (0.14 L/cap/day) for faeces 

production (Meinzinger and Oldenburg, 2009). This could indicate that additional 

liquids (urine) are entering the toilets even though they are designed to be urine 

diversion toilets. Solids accumulation within portable toilets (28.21 g/cap/day) is 

consistent with literature values at between 12-81 g/cap/day (Rose et al., 2015), 

indicating that the sampling methodology and data collection methods were robust. 

3.3.8 Treatability of faecal sludge in anaerobic processes 

Anaerobic digestion has the potential to be used in low income countries to treat FS 

but a common constraint of assessing the suitability of AD in these localities is 

knowledge regarding the physical, biological and chemical characteristics of the 

feedstock.  

The TS content of the feedstock impacts on the reactor volume and organic loading 

calculations. Total solids concentrations observed in pit latrine sludge (19% TS) are 

more suited to suspended growth reactors rather than up-flow or down-flow high rate 

processes (Hassan et al., 2013). This factor constitutes a major challenge to high-
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rate AD treatment of FS and has led directly to research by Collins et al. (2013) into 

re-engineering AD biofilms and systems by using down-flow bioreactors employing 

combinations of trophic group-specific biofilms and materials to efficiently and rapidly 

digest high solids wastewater.  

The TS of pit latrines is greater than the concentration that can be effectively mixed 

or pumped (Speece, 2008) which could make the use of higher rate systems more 

challenging and may make high solids AD (generally greater than 15% TS) more 

attractive and cost efficient. High solids AD  (>15% TS) could bring advantages such 

as lower energy requirements, smaller reactor volumes, and less material handling 

(Guendouz et al., 2008) but with the disadvantages of lower CH4 yields and a slower 

rate of treatment. On the other hand, portable toilet sludge (4.5% TS) and public 

toilet sludge (6.1% TS) had TS concentrations similar to that of sewage sludge from 

conventional treatment works such as primary sludge which is usually in the range of 

2-8%TS (Tchobanoglous et al., 2003) and technology is already well adapted for 

these parameters.  

Due to the manual methods of pit latrine emptying and the unlined nature of pit 

latrines there is also likely to be a large amount of sand/grit entering digesters which 

could cause hydraulic overloading of AD systems without an adequate grit screen. It 

could also contribute to a large sand/grit layer forming at the bottom of unmixed 

digesters that would have to be periodically removed in order to utilise the full 

digester volume. Due to the high MSW levels (12% of total volume of FS removed) 

found within pit latrines (and one public toilet holding tank) an extensive screening 

process prior to AD is essential.  

The BMP of FS as measured by experimental BMP assays can also be compared to 

theoretical methane composition as determined by the stoichiometric equation based 

on the atomic composition of the FS by using the elements C, O, H and N (Table 

3.3). Theoretical methane potential values, as calculated using Boyle’s equation 

(Boyle, 1976), are greater than those recorded in experimental BMP assays in both 

pit latrines (199 and 49 mL CH4/g VSadded respectively) and portable toilet samples 

(405 and 281 mL CH4/g VSadded respectively). The higher theoretical values are likely 

to be due to substrate degradability not being accounted for which leads to higher 



 

121 

 

theoretical methane production values (Labatut et al., 2011). In pit latrines the low 

BMP values demonstrate that there is a significant proportion of material that is not 

readily degradable and therefore designing systems using standard rates of VS 

destruction would lead to overestimation of methane yields. In pit latrines, as the bulk 

of methane production occurs with solids retention time (SRT) of less than 10 days 

(Figure 1), it would be difficult to justify a longer SRT for the purpose of increased 

CH4 production. This is especially the case as the quantities of CH4 are not sizeable 

in comparison to other FS types (49 mL CH4/g VSadded and 281 mL CH4/g VSadded in 

pit latrines and portable toilets respectively). A regular collection service such as 

portable toilets could provide an attractive opportunity for regular containment and 

substrate delivery to AD plants, however, small per capita methane production 

values calculated from BMP tests (0.00627 m3 CH4/person/day) illustrate that a large 

number of collections would be required.  

Within pit latrines acetic acid (2057 mg L-1) was the most significant VFA component 

(total 3736 mg VFA L-1). High levels of acetate observed in FS are beneficial as 

acetate is the best substrate for methanogen bacteria, with the majority of methane 

produced in AD through the fermentation of acetate (acetoclastic cleavage) along 

with the reduction of carbon dioxide (Gerardi, 2003). The high acetic acid (55% of 

total VFA concentration in pit latrines) also indicates the hydrolysis stage of AD is 

complete, which is often the first and general rate limiting step in the digestion of 

particulate organic substrates (Zeeman and Sanders, 2001) and could resultantly 

reduce the need for separate hydrolysis/thermal hydrolysis steps before digestion.  

3.3.8.1 Potential causes of toxicity to anaerobic digestion 

Concentrations of NH4-N in FS were observed to be very high in pit latrines (1853 

mg NH4-N L-1) and public toilets (845 NH4-N L-1) and were still of significant 

concentrations in portable toilet sludge (396 NH4-N L-1). Ammonia (NH3) can be a 

toxic component in the AD processes and can inhibit acetoclastic methanogens. 

Ammoniacal nitrogen (NH4 + NH3) is dependent on pH and temperature: at 30oC, 

NH3 is approximately 5% of NH4-N at pH 7.8 (Strauss et al., 2000). Using these 

assumptions NH3 content of FS from pit latrines would give a concentration of 78 mg 

NH3 L
-1. The toxicity threshold for ammonia has been reported to be 100 mg NH3 L

-1 
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(McCarty and McKinney, 1961). Lay et al. (1998) also found a steady inhibition of 

methanogenic bacteria as the NH4
+ concentration was increased from 50 to 500 mg 

NH4
+ L-1, with 500 mg NH4-N L-1 the resultant toxicity level. However, all FS types 

exhibited relatively neutral pH values (pH 7.65, 7.21 and 6.43 in pit latrine, public 

toilet and portable toilet waste respectively) and consequently the majority of the 

ammoniacal nitrogen is in the ammonium-nitrogen form (NH4
+). Therefore, the 

concentration of NH3 in the FS of pit latrines is not likely to cause a reduction in 

enzyme activity or result in cell toxicity. 

Heavy metal concentrations in pit latrines and public toilet sludge did not show high 

enough concentrations that could prove toxic to anaerobic bacteria (Table 3.3), 

although there could be the potential for the long term accumulation of metals as 

they are not biodegradable (Sterritt and Lester, 1980). Within portable toilet sludge 

high levels of Cu were found, likely due to the chemical toilet additive in use. Not 

only does this present potential toxicity to methanogen bacteria over long time 

periods but could also prove problematic if the digestate was applied to land 

following treatment. Concentrations of K, Ca and Mg in portable toilet waste (Table 

3) were all below concentrations that could cause moderate inhibitory characteristics 

to AD. 

The use of odour suppressant chemical toilet additives within portable toilets causes 

problems such as high Cu concentrations and the active ingredients glutaraldehyde 

and Bronopol were proven to cause CH4 production inhibition (IC50 values ≥100 mg 

L-1 and ≥50 mg L-1 respectively). Although, it is likely reactors will become 

acclimatised to these chemicals to a certain extent and dilution will aid in reducing 

inhibitory concentrations. It nevertheless presents the question of toilet design and 

operation: if a toilet could be designed and operated in a way that uses less chemical 

odour suppressants this could lead to increased CH4 yields and accelerated 

breakdown of organic material within digesters as well as prevent the build-up of 

heavy metals such as Cu. 

3.4 CONCLUSIONS 

This study undertook a detailed physical and chemical characterisation of four 

different types of FS and variation was found both within individual FS types and 
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across differing FS types. Public toilet and portable toilet FS has similar chemical 

characteristics to septage and primary sludge, which are regularly used as an AD 

feedstock. Pit latrine sludge could be more problematic to AD processes due to high 

TS and MSW content. However, if factors such as those discussed are taken into 

consideration in the design and operation of treatment plants, anaerobic digestion is 

an appropriate and viable treatment technology for all types of FS investigated. 
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ABSTRACT 

On-site sanitation facilities comprise the majority of sanitation provisions in urban 

areas of low income countries. A common characteristic of on-site sanitation facilities 

is that residual sludge will eventually require further treatment before disposal or re-

use. Anaerobic digestion is the most common form of sludge treatment in high 

income countries and is increasingly common in low income countries. In order to 

effectively design, plan and operate anaerobic digestion facilities it is beneficial to 

estimate the methane yields and biodegradation potential expected from differing 

substrates. The biochemical methane potential of faecal sludge from pit latrines, 

public toilets and portable toilets was determined from two peri-urban areas, in 

location x and Ghana. Sewage sludge from a wastewater treatment works in a high 

income country (UK) was also compared. The greatest methane potential was from 

portable toilet waste (276.0 ± 151.3 mL/g VSadded) with pit latrine sludge exhibiting 
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lower methane potential values (50.6 ± 19.4 mL/g VSadded) indicating that much of 

the easily biodegradable organics have already been digested. All faecal sludge 

types had methane potential values below that of primary sewage sludge (358.4 

mL/g VSadded) and minimal difference between the top and bottom layer of pit latrine 

vaults (136 and 130 mL/g VSadded respectively) was exhibited. The results indicate 

that the retention time of the on-site sanitation facility is the greatest influence of 

methane potential values and should be considered in the provision of on-site 

sanitation facilities and in the treatment of faecal sludge. 

 

KEYWORDS 

Anaerobic digestion, biochemical methane potential, BMP, biogas, faecal sludge, 

sanitation. 

4.1 INTRODUCTION 

It is estimated that 2.7 billion people worldwide are served by sanitation facilities that 

require faecal sludge management (Strande et al., 2014). In Sub-Saharan Africa, 

80% of urban sanitation provision is met through on-site sanitation (OSS) facilities 

(Kone, 2010) in which residual solids, commonly referred to as “faecal sludge” (FS) 

are accumulated. Effective faecal sludge management can provide sustainable 

sanitation provision as long as there is safe storage, collection, treatment and 

disposal/reuse of FS by a means that prevents the spread of pathogens and 

parasites in the environment (Kone et al., 2007). However, in low income countries 

rapid urbanisation is causing substantial challenges for sanitation infrastructure such 

as the operation and maintenance of wastewater and faecal sludge treatment plants 

(Cofie et al., 2009; Rydin et al., 2012). In addition, the safe collection and treatment 

of FS is not guaranteed and is frequently discarded into water bodies or fields in 

close proximity to urban areas (Lalander et al., 2013). Resultantly, there is a strong 

driver for increased and improved FS treatment at both a centralised and 

decentralised level in peri-urban areas of low income countries. 

Anaerobic digestion (AD) is one of the most common means of treatment for primary 

sewage sludge (following primary settlement in wastewater treatment works) in the 
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European Union (Fytili and Zabaniotou, 2008). The AD of high-solids wastewater, 

such as FS, has been identified as a research area that would allow innovative 

solutions to FS treatment in peri-urban localities (Collins et al., 2013); where water 

stress and energy constraints challenge conventional wastewater treatment systems. 

Anaerobic digestion is a multiple stage biological process that breaks down organic 

compounds and results in the production of methane and a semi-solid digestate that 

is rich in valuable nutrients. Both of these by-products can in turn help to offset the 

prior costs of collection and treatment and become a successful new value 

proposition for FS management (Diener et al., 2014). As a FS treatment mechanism, 

AD provides flexibility at a range of scales: with widespread household/community 

application in rural areas of India, Nepal and China where animal manure is 

frequently combined with FS (Gautam et al., 2009; Bond and Templeton, 2011; Chen 

et al., 2012; Song et al., 2014). However, great potential also exists for expansion of 

semi-centralised or centralised systems for FS treatment in peri-urban areas of large 

low income cities (Collins et al., 2013; Strande et al., 2014) where waste water 

treatment works (WwTW) are often either vastly overloaded or non-existent 

(Hounkpe et al., 2014).  

The design and operation of anaerobic treatment facilities for FS has previously 

been reliant on limited chemical and physical FS characterisation data from similar 

OSS facilities. For instance, commonly reported FS characterisation data for pit 

latrines: such as COD (range of 10400-97000 mg COD L-1) and BOD (range of 

3800-1500 mg BOD L-1) (Heinss et al., 1999; Doku, 2003; Coetzee et al., 2011). 

However, through the use of stoichiometric methods CH4 production is directly 

related to degradation of organics (395 mL CH4 equals 1 g COD reduction (Speece, 

1996)),which will overestimate AD performance as the entire COD fraction will not be 

readily biodegradable. Similarly, BOD values will be misleading as they do not 

exclude aerobic non-biodegradable components that the BMP includes. 

Consequently, the direct measurement of the methane potential of faecal sludge is a 

requirement. 

Anaerobic digestion is impacted by feedstock composition (Drosg et al., 2013). The 

direct comparison of biogas production from different feedstock is difficult as the 

performance of different digesters will be dependent on individual experimental 
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conditions such as temperature, mixing, pH, hydraulic retention time, solids and 

organic loading rates (Ward et al., 2008). Consequently, the comparison of feedstock 

is best determined through the use of biochemical methane potential (BMP) assays 

(Owens and Chynoweth, 1993), through which the ultimate yields of methane and 

the digestibility of differing feedstock can be determined. Biochemical methane 

potential assays determine the concentration of organics that can be anaerobically 

converted to CH4 and allow comparison across other feedstock types, in addition, 

the rate at which CH4 is produced with the proposed feedstock can also be 

assessed. 

On-site sanitation facilities (OSS) within peri-urban areas of low income countries 

range vastly in regards to their design and operation (Tilley et al., 2008b), however, 

in regards to biogas production can be broadly grouped by the retention time of the 

systems. In order to obtain several different types of FS substrates from OSS 

facilities with a range in retention times; pit latrines, unsewered public toilets and 

portable toilets were investigated along with a primary sludge taken from a waste 

water treatment works (WwTW) in a high income country. Pit latrines are the most 

commonly used form of on-site sanitation (OSS) system in developing countries with 

an estimated 1.77 billion people around the world using some form of pit latrine 

(Graham and Polizzotto, 2013). Public toilet and community ablution blocks where 

toilet and grey-water waste is collected in a sealed holding tank and emptied on a 

regular basis (ca.3-6 months) are also commonly used in peri-urban areas (Drechsel 

et al., 2009). Finally, a new concept of OSS services is the provision of portable 

container based toilets to households which are then collected on a regular basis 

(Clean Team, 2012; Tilmans et al., 2015). 

Differing retention times and storage conditions between OSS facilities is a factor 

that is hypothesised to cause variability in BMP values of FS. Pit latrine sludge is 

stored within pit latrine vaults for long periods of time (ranging from 1-10 years), with 

the gradual addition of faeces and urine to the surface of the vault. However, 

unsewered public toilets were typically emptied every 3-6 months. In contrast to 

these systems, portable toilets are operated with a high collection frequency (<4 

days), after which the waste is emptied into an Intermediate Bulk Container (IBC) 

and stored (approximately 1 month) prior to collection and treatment. It was therefore 
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also hypothesised that differences in BMP values could be apparent due to depth 

and position within the OSS system, with slower anaerobic processes operating in pit 

latrines and the likely settlement or flotation of particles within IBC tanks storing 

portable toilet waste. 

This study presents a detailed assessment of the biochemical methane potential of 

FS and its potential as an AD feedstock in low income countries. An in depth study of 

BMP values of a range of FS types is explored and provides essential information in 

order to make the successful design and operation of AD systems treating FS 

possible in low income areas in need of effective faecal sludge management. The 

BMP of three types of faecal sludge from a range of OSS facilities used in peri-urban 

locations in low income countries are presented and compared to a baseline of 

sewage sludge from a WwTW in a high income country. Specifically, the objectives 

are to determine a) the ultimate methane potential of different substrates; b) the 

impact of sampling depth in pit latrine vaults on BMP values; and c) the impact of 

sampling by depth on BMP values within an intermediate storage tank for portable 

toilet waste. 

4.2 METHODS 

4.2.1 On site sanitation facilities and sampling location 

In order to get a broad range of differing faecal sludge types, three different OSS 

facilities were selected to be investigated: FS from pit latrines, unsewered 

community ablution blocks and portable toilets. In order to acquire this range of FS 

types, two peri-urban field locations were selected: Location x and Kumasi, Ghana. 

In addition to the three different FS types selected; a primary sludge from a WwTW 

in the UK was investigated in order to act as a direct comparison and benchmark to 

conventional sewage sludge treatment in high income countries. 

The peri-urban area of location x was selected as a site for the collection of faecal 

sludge samples from pit latrines and un-sewered public toilets. Pit latrines in the area 

were of a simple construction raised above ground level (0.5-2m) to prevent 

seasonal flooding, with no vent pipe present and the vaults of the latrines were 

partially lined. Manual collection methods were used to empty FS from pit latrine 
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vaults through the use of a range of modified equipment such as pitchforks and 

shovels; these methods allowed the collection of FS samples at varying depths. The 

disposal of Municipal Solid Waste (MSW) within the latrines was common practice in 

the area; large items (>100 mm diameter) were removed and not included in further 

analysis. Faecal sludge sampling from unsewered public toilets was carried out in 

the same peri-urban region of location x. Community ablution blocks consisted of 

between 4-12 flush toilets, urinals as well as wash-water from washing and 

showering. The collection tanks consisted of two fully lined concrete tanks connected 

in series, allowing partial settlement of solids and tanks were sunk below ground 

level. Manual collection methods were again used and both tanks were emptied 

simultaneously.  

A pilot scheme in Kumasi, Ghana testing the implementation of portable toilets was 

selected as a site for portable toilet sludge sampling (Clean Team, 2012). Portable 

toilets consisted of household units comprising a detachable container in which 

faeces collected over time in a mixture of a commercially available chemical toilet 

additive (Active ingredients: Pentane 1,5 diol 5-10%, 2-Bromo-2-Nitropropane-1,3-

diol <5%) diluted in between 5 and 7 L of water in order to prevent odour issues. 

Toilets were designed to be urine diverting and hence only the faeces were 

collected. Toilets were placed in customer households (average number of users 

4.2) where they were regularly collected at set time intervals (<4 day intervals) and 

containers were subsequently emptied into an IBC for storage before final treatment 

and discharge.  

A small WwTW (p.e. 3000 people) was selected in the UK for the collection of 

undigested sewage sludge following primary settlement; this was classified as 

primary sludge. This site was selected due to logistical ease and was assumed to be 

representative of primary sewage sludge from similar WwTW in the UK. Primary 

sludge was collected from the surface of the primary settlement tank at the head of 

the sewage works. 

Institutional ethical approval (Cranfield University 109-2013) was obtained for the 

sampling and analysis of faecal sludge in both case study locations: Location x and 

Kumasi, Ghana. 
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4.2.2 Sampling description and methodology 

Samples were collected from a total of 11 pit latrines, 2 unsewered public toilets and 

10 portable toilets. Sampling according to depth was carried out at one pit latrine site 

and within the holding tank IBC for portable toilet sludge. Representative samples in 

pit latrines and unsewered public toilets were determined by taking a sub sample 

(0.5 L) from the centre of each 60 L barrel of sludge removed from each facility 

(range of 12-64 barrels removed). These sub samples were then combined to 

produce one composite sample (6-18 L), of which a sample of 0.5 L was taken. In 

order to assess the impact of sampling at different depths a sample from the top 

layer (0.15 m depth) was taken and a sample from the bottom layer (1 m depth) was 

taken. Representative samples for portable toilets were obtained by firstly manually 

mixing each individual toilet for 5 minutes to homogenise the contents, following this, 

three samples of 0.5 L were taken from the top, middle and bottom of the container 

by using a modified sample jar and drain rod configuration. These samples were 

combined (1.5 L) where the contents were once again manually mixed before a final 

sample was taken from this container. The holding tank, an Intermediate Bulk 

Container (IBC), containing FS waste from portable toilets was sampled with depth 

(0.3 m intervals) using the same methods allowing a vertical profile of the IBC to be 

constructed. Primary sludge was collected from the surface of a primary settlement 

tank. A sample of 5L was taken from the surface of the tank and homogenised for 5 

minutes before a sub sample of 0.5 L was subsequently taken.  

All samples were sealed in plastic sample bags and placed in a cool box 

(approximate journey time: 1 hour) prior to being frozen (-20°C). Frozen samples 

were subsequently transported back to a UK laboratory in a cool box packed with ice 

and samples were <4°C on arrival. All samples were subsequently stored at -20°C (< 

3 months) before BMP assays were conducted in one laboratory utilising the same 

experimental set up and operational conditions. The freezing of samples was 

necessary in order to avoid microbial transformation and collate a large number of 

samples in order to ensure that BMP methodologies were conducted by consistent 

and robust methodologies. Triolo et al. (Triolo et al., 2014) illustrated that the 

freeze/thawing of samples before BMP assays was not too disruptive, with the 
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relative standard deviation between the BMP of controls and freeze-thawed samples 

in the range of 2.1-9%.  

4.2.3 Analytical methods and calculations 

Biochemical methane potential (BMP) assays were used to determine the potential 

methane yield of the sludge under anaerobic conditions, and were carried out 

according to Owens and Chynoweth (Chynoweth et al., 1993) and Angelidaki et al. 

(Angelidaki et al., 2009) (Figure 4.1). An anaerobic inoculum was taken from a 

mesophilic digester at a UK waste water treatment works (population equivalent of 

288000) and a stock solution of micronutrients (according to Gonzalez-Gil et al. 

(Gonzalez Gil et al., 2001)) was added to ensure sufficient quantities of trace metals 

were available. An inoculum: substrate ratio of 2:1 on the basis of VS was used for 

all assays, exhibited to give maximum conversion rates by Chynoweth et al. (1993). 

A positive control containing inoculum and cellulose was used in order to provide an 

indication of the response of the inoculum to a standard material. All blanks, 

standards and feedstock assays were carried out in quadruplicates and the average 

value reported with standard deviation. Each assay was flushed with N2/CO2 

(80:20% as volume) after transfer of inoculum and substrate before being 

anaerobically incubated for 32 days in a temperature controlled shaker (Excella E24, 

New Brunswick Scientific, Edison, USA) at 37.5°C±0.5: 150 rev. min-1. In order to 

account for residual degradable matter in the inoculum, blanks containing only 

inoculum were run to account for gas production not attributed to the FS substrate 

being tested. The volume of biogas was determined using the water displacement 

method. A gas analyser (Servomex 1440, Zoetermere, Netherlands) was used to 

determine % methane concentration and was carried out at the same frequency as 

gas volume measurements. The total biogas production was calculated at standard 

temperature and atmospheric pressure (STP) was expressed in mL. Total solids 

(TS) and volatile solids (VS) were measured according to standard methods (APHA, 

2005) and pH was measured using a portable YSI G3 60 (YSI Ltd., Hampshire, UK). 
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Figure 4.1 Biochemical methane potential assay containing an inoculum from a 

mesophilic digester treating sewage sludge, a nutrient stock solution, the faecal 

sludge substrate under analysis and deionised water for dilution. Biogas 

measurement was undertaken through water displacement after a assay bottles were 

de-gassed. 

4.3 RESULTS AND DISCUSSION 

4.3.1 Characterisation of substrates used in experiments 

The BMP assay is a realistic way of measuring anaerobic biodegradability within 

substrates (Speece, 2008) and for each differing FS type shows both the ultimate 

CH4 yield and provides an indication as to the amount of stabilisation occurring 

under differing storage conditions. The inoculum used had a pH of 8.52, a solids 

concentration of 44.15 g TS L-1 and 31.29 g VS L-1. The characteristics of each 

faecal sludge type are outlined in Table 4.1. There was variation in organic 

composition across FS types with pit latrines showing on average the largest VS 

concentration (91.92 g VS L-1), although this was predominantly due to the high TS 

content of pit latrines (19.2% TS). In contrast portable toilets had the lowest TS 

concentration (43.81 g TS L-1) but with a comparatively high VS concentration in 

comparison to pit latrines (74.42% VS (8.60 Std Dev.) and 47.76% (Std Dev. 9.63) 

VS as a % of TS respectively). Primary sludge proved a sensible comparison to the 
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different FS types with TS and VS values within the range of the other sludge types 

(Figure 4.2). 

 

Table 4.1 Characterisation of three types of faecal sludge used as substrate; pit 

latrines and public toilets in location x as well as from portable toilets in Kumasi, 

Ghana. In addition the composition of a primary sludge from a waste water treatment 

works in the UK. Average values of each classification presented (Standard Deviation 

in brackets). 

 Pit latrine 

(location x) 

Public toilets 

(location x) 

Portable toilets 

(Ghana) 

Primary sludge (UK) 

TS (g L
-1

) 192.45 (54.31) 60.97 (20.81) 43.81 (12.71) 54.52 (0.54) 

VS (g L
-1

) 91.92 (17.43) 36.97 (15.32) 33.04 (11.31) 48.96 (0.50) 

pH 7.65 7.22 6.43 6.24 
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Figure 4.2 Average (with standard error) biochemical methane potential of primary 

sludge (n=1), portable toilet waste (n=10), unsewered public toilets (n=2) and pit 

latrines (n=11) after 32 days.Methane Production from Faecal Sludge Substrates 

 

The BMP assays show the ultimate methane yield of sludge from pit latrines, 

unsewered public toilets and portable toilets (Figure 4.2). A wide variation both within 

and across FS types was observed in the BMP results. Sludge from portable toilets 

on average showed the highest methane production values (276.0 ± 151.3mL/g 

VSadded) and pit latrines the lowest methane potential (50.6 ± 19.4mL/g VSadded) at 

standard temperature and pressure. As would be expected, the range of values for 

pit latrines was much narrower (12.2 to 72.8 mL/g VSadded) than that of portable 

toilets (97.1 to 603.5 mL/g VSadded): this is likely to be due to the large amount of 

individual variation that would be expected between household portable toilet 

samples, this could be due to variations in the total number of users as well as their 

diet. The greater range in portable toilet waste could also be due to varying amounts 

of chemical additive in use, which at high concentrations could inhibit methane 

production through the suppression of bacteria (Leung, 2001; Bryce et al., 1978). 

Chemical toilet additives present at high concentrations were also hypothesised to 

have caused complete inhibition of methane production in three samples which were 

consequently excluded from experimental results. The toxicity of the active 

ingredients in the chemical toilet additive was consequently investigated in full in 

Chapter 3. 

Biochemical methane potential tests carried out on a faeces only waste stream by 

Rajagopal (2013) gave similar CH4 production values (260-300mL CH4/g VSadded) 

and Lim et al. (2011) reported slightly higher cumulative CH4 production values of 

535-672 L/kg VSadded to that of cumulative CH4 values seen in portable toilets in this 

study (280.5 mL/kg VSadded), although a wider range (97.2-603.5 mL/kg VSadded) was 

seen within this study. The low cumulative methane production values of pit latrines 

(Figure 4.3) show consistency with findings by Nwaneri et al. (2008) who found that 

methane production from pit latrine sludge was below detection levels in their study 

and in many cases caused inhibition to assays. Although no complete inhibition was 
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found within pit latrine FS in this study there were very low CH4 production levels 

(50.6 mL/g VSadded) in comparison to both IBC storage of portable toilet sludge 

(211.6 mL/g VSadded) as well as to primary sludge from a WwTW as measured in this 

study (358.4 mL/g VSadded). The easily degradable fraction has already been lost 

within the pit latrines due to the much greater period of storage (between 2-10 years) 

in comparison to portable toilet waste which was collected at more regular intervals 

(< 4 days). The low methane production potential of pit latrine sludge could also be 

accounted for by other factors and not just a reflection of its greater age. High 

concentrations of nitrogen (N) were present in pit latrine sludge (average: 4561 mg N 

L-1) with average values of ammonium nitrogen of 1853 mg NH4-N L-1. These high 

concentrations of N are similar to those reported by Coetzee et al. (2011) (3000-

5000 mg N L-1) in pit latrine FS. Due to the anaerobic nature of pit latrines the 

majority of N in FS of pit latrines will be in the inorganic form of ammonium-nitrogen 

(NH4+NH3). Therefore, due to these high ammonia (NH3) concentrations there is a 

strong possibility of NH3 toxicity occurring within the assays and could be a reason 

for the low BMP values seen in the FS of pit latrines in this study. It should be noted 

however that in practice the impact of NH3 toxicity will reduce with time as bacterial 

communities within reactors become acclimatised to higher NH3 concentrations 

(Speece, 1996). 

Primary sludge from conventional wastewater treatment works was predicted to be 

the most comparable to that of FS from OSS facilities, due to its high solids (54.52 g 

TS L-1) and undigested nature. All FS types exhibited lower cumulative CH4 

production values to that of primary sludge from a WwTW in the UK (358.4 mL CH4/g 

VSadded), although only one WwTW was sampled in this study. Nevertheless, BMP 

values for primary sludge are numerous in the literature: values in this study are 

lower than that reported by Chenynoweth et al. (1993) who reported values of 590 

mL CH4/g VSadded but higher than the value of 230 mL CH4/g VSadded reported by 

Elbeshbishy et al. (2012). The BMP values for primary sludge are therefore within a 

similar range to these studies indicating that the experimental methods were robust 

and further validating the results of FS substrates recorded. The BMP of primary 

sludge was the highest recorded of all FS types (Figure 4.2). This factor is not 

surprising as the skimming’s from primary settlement tanks are generally high in 
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grease content (13-65% (Speece, 2008)), which results in significant CH4 production 

due to the much greater extent to which grease components can be biodegraded. 

However, it is unlikely that OSS substrates contained great concentrations of fats 

and greases, as these predominantly come from being discharged to sewers from 

kitchens (Williams et al., 2012), which explains the lower BMP values observed in 

these substrates. 
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Figure 4.3 The biochemical methane potential of a) pit latrines (n=11) , b) pubic toilets 

(n=2) and c) portable toilet waste (n=10)  in Kanayma, a peri-urban area of location x. 

Dashed line indicates cellulose standards. 
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An additional reason for the greater biogas production of primary sludge in 

comparison to FS (Figure 4.2) could also be accounted for by the inoculum used in 

the BMP assays (from a mesophilic digester treating primary and waste activated 

sewage sludge). This inoculum source will be well acclimatised to primary sludge, 

however, it is possible that it may not have had the extensive trophic microbial 

composition required to ensure that the FS did not encounter any limitations when 

combined with FS, resulting in reduced CH4 yields. As it is likely that FS from pit 

latrines also had additional materials other than human waste present in the waste 

stream (e.g. animal waste and vegetation) further verification of the results could be 

carried out through the mixing of several different inocula together (e.g. from 

mesophilic digesters treating sewage sludge and food waste) to make a combined 

inoculum with a wider microbial composition as suggested by Angelidaki et al. 

(2009). However, an inoculum from an active sewage sludge digester was selected 

due to it being cited as being a good broad spectrum inoculum suitable for a range of 

feedstocks (Chynoweth et al., 1993). As the tests were run for 33 days this should 

have ensured adequate time/acclimatisation for the inoculum to metabolise even the 

most toxic or unusual pollutants in the FS substrates (Speece, 2008). Additionally, as 

BMP assays of all FS types produced steady CH4 production curves (Figure 4.3), 

without long start up times or inhibition phenomena, the relative impact of the 

inoculum is not likely to supersede the primary objective of assessing methane 

potential values.  

4.3.2 The impact of sampling depth and storage 

In pit latrines, minimal difference in BMP values between the top and bottom layers 

of the vault (Top: 136 mL/g VSadded, bottom: 130 mL/g VSadded) were observed. As 

there was minimal difference between VS levels (36.23% and 35.02% VS/TS in the 

top and bottom layers respectively), this indicates that predominantly most of the 

degradation and loss of organics happens rapidly on the surface of the pit latrine 

(faeces at point of release has a VS content of 84-93% (Rose et al., 2015; Bai and 

Wang, 2011; Feachem et al., 1978)). The non-readily biodegradable organics that 

are not rapidly digested on the surface of the pit are then slowly broken down 
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through anaerobic digestion in the subsequent lower layers. As the difference in 

BMP values by depth is minimal (Figure 4.4) this is likely to be a very slow process 

and does not contribute greatly to the reduction of organics. This is in line with 

findings by Buckley et al. (2008) that up to 50% of COD may be degraded under 

predominantly aerobic conditions on the pit surface. Therefore, if the maximisation of 

CH4 yields was desired, the collection of pit latrine sludge at regular intervals (e.g. 

every 6 months) would not be beneficial, and the collection of the entire pit latrine 

contents would suffice.  

Storage of portable toilet waste in IBC tanks meant that a cross section of the IBC 

depth could be created and this allowed the assessment of BMP values with depth 

(Figure 4.4). Within the IBC tank storing portable toilet sludge there was variation 

according to depth with the top producing BMP values more than 8 times that of the 

bottom layer (342.6 and 41.7 mL/g VSadded respectively). The variation in BMP values 

throughout the different depths of the IBC are expected due to the flotation and 

settling of particles. Higher BMP values at the top of the tank (342.6 mL/g VSadded) 

are likely to be due to the flotation of lighter fats, oil and grease particles that could 

cause a scum layer to form and will resultantly produce higher yields of methane. 

Lower BMP values from the bottom of the tank (41.7 mL/g VSadded) are likely to be 

due to the settlement of heavier inorganic solids. 
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Figure 4.4 The biochemcial methane potential (BMP) of a) the top and bottom layers of 

pit latrines in location x and b) the BMP of a cross section of an intermediate bulk 

container with FS of portable toilets. 
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4.3.3 Implications for design and operation of treatment facilities 

The BMP values combined with an estimate of organic loading over a given time 

period, can aid in determining the biogas storage volume for the reactor and 

calculate a rate of return from biogas production. As AD investment costs are high, 

careful planning is required to optimise performance and maximise return on 

investment in regards to methane production. Consequently, an accurate 

assessment of methane production is essential and BMP assays provide a much 

improved figure for methane production of different FS types in comparison to 

stoichiometric predictions of CH4 production. In addition, the high repeatability of the 

tests both within (illustrated by the low standard deviation in experiments: Figure 4.3) 

and across (BMP value of primary sludge, 358.4 mL CH4/g VSadded, within literature 

values of 230-590 mL CH4/g VSadded (Chynoweth et al., 1993; Elbeshbishy et al., 

2012)) studies allows relative comparisons across OSS facility types as well as to 

more commonly used feedstocks.  

However, it is evident that CH4 yields (Figure 4.3) are under optimal conditions (e.g. 

temperature and mixing) and actual yields will be reduced in full scale operation, for 

example, average biogas and methane production was over predicted in BMP trials 

by 51.4% and 1.2% respectively in comparison to full scale operation when treating 

dairy manure (Bishop et al., 2009). Additional reasons for CH4 yield overestimation 

could be due to the BMP methodology utilised: as dilution is required, it is therefore 

possible that potential causes of toxicity by FS types are masked and additional 

continuous bench scale tests may be required to assess potential toxicity due to 

compound build up or conversely any acclimatisation that could occur.  

Nevertheless, despite potential inaccuracies, the range of OSS systems assessed 

will assist in site specific design criteria for similar OSS facility types as well as AD 

design for other FS types. Although feedstock BMP assays in isolation cannot be 

relied upon for digester design, they allow an improved understanding of how 

digesters may operate. For instance, in all FS types the majority of methane 

production was complete within 10 days (Figure 4.3) indicating that a sludge 

retention time of any greater than this would not be beneficial in regards to CH4 

yields.  



 

152 

 

The characteristics of FS are highly variable and dependent on factors such as OSS 

system type, usage, collection method, infiltration and storage duration (Bassan et 

al., 2013; Strande et al., 2014) . However, the primary factor influencing BMP values 

can be attributed to storage duration: with pit latrine (storage time 1-10 years) values 

(50.6 ± 19.4mL/g VSadded) significantly below that of relatively fresh (≤4 days) 

portable toilet waste (276.0 ± 151.3mL/g VSadded). This factor has significance as it 

indicates FS should not be compared to primary sewage sludge from WwTW for 

design purposes, as it may overestimate CH4 production potential which could in turn 

influence expected cost recovery expected through CH4 generation. 

4.3.4 Implications for practitioners and the sector 

Although OSS facility types in this study were limited to the three types across two 

geographical locations, the BMP values stated provide a realistic estimate of the 

anaerobic digestibility of FS that are likely to be significantly more accurate than 

design values for wastewater sludge in high income countries or stoichiometric 

calculations from similarly sparse FS characterisation data. Furthermore it has been 

established that the physical and chemical composition of faeces is not controlled by 

any overriding factor (Rose et al., 2015), therefore there is no reason to suspect 

these locations were not representative and applicable to other geographical 

regions. Consequently, the most important factor in the interpretation of these results 

is the storage time and conditions within the OSS facility. These factors bear 

significance as individual site specific feasibility studies are often not financially 

viable or practical in a low income context.  

Existing OSS facilities in peri-urban areas of Sub-Saharan Africa largely consist of pit 

latrines and public toilets. However, minimal CH4 production values (Figure 4.2) 

make the use of AD uninspiring if CH4 production is the primary motive. However, 

the production of CH4  is not always the principal driving force for the implementation 

of AD systems and can instead be approached from a faecal sludge management 

perspective: providing benefits such as sludge stabilisation, odour reduction and 

pathogen destruction.  In this context, any CH4 production is therefore an additional 

benefit. However, it may be a practical consideration in the design and planning 

stage to supplement aged FS with additional substrates through co-digestion in order 
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to reach desired levels of CH4 production. Alternatively a system could incorporate 

regular collection of FS, for example through OSS facility types such as portable 

toilets, that have a shorter retention times and resultantly greater methane yields.  

4.4 CONCLUSIONS 

In conclusion, this study presents BMP values from three different types of sanitation 

facilities. Faecal sludge from portable toilets has the potential to produce high 

volumes of CH4 (276.0 mL/g VSadded), and is comparable to BMP values seen in 

sewage sludge of a WwTW (358.4 mL CH4/g VSadded). Methane production from the 

AD of this feedstock could potentially help to recover costs and promote the use of 

AD as a treatment facility when combined with regular collection. However, the 

ultimate yield of CH4 from pit latrine FS is minor (50.6 mL/g VSadded) in comparison, 

partly due to the rapid degradation of organics on the pit surface leaving the non-

readily biodegradable organics to be broken down in the remainder of the pit vault. 

This is a slow process, with minimal difference in BMP values between the top (136 

mL/g VSadded) and bottom (130 mL/g VSadded) of pit latrines. The retention time of the 

OSS facility type is likely to be the best indicator in assessing potential methane 

yields of FS substrates from different OSS facilities and this should be used for 

guideline values, as opposed to BMP values from WwTW, when planning the design, 

construction and optimisation of AD systems treating FS. 
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ABSTRACT 

This study reviews the potential for nutrient recovery following the anaerobic 

digestion of faecal sludge. Faecal sludge characterisation data from pit latrines in 

location x is utilised to make predictions of digestate composition. The high likelihood 

of pathogens in digestate makes direct application to land unsafe, therefore 

secondary treatment processes are explored alongside the optimal recovery of 

nutrients. Nitrogen was found to have the greatest potential for recovery, with 

significant total nitrogen (1440 mg N L-1) concentrations present in the digestate with 

current secondary treatment technologies failing to recover this resource in a simple 

and cost efficient way. The high NH4-N
 concentrations (864 mg NH4-N L-1) as well as 

the high solids (2.1 g TS L-1) nature of digestate prove problematic to existing NH4-N
  

recovery technologies and the requirement for a technology that simultaneously 

dewaters waste and recovers nutrients is apparent. 
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5.1 INTRODUCTION 

On-site sanitation systems can effectively form part of a sustainable system of 

Faecal Sludge Management (FSM) in peri-urban cities providing that residual 

sludge from these systems is collected, transported and treated before final 

reuse or safe disposal (Strande et al., 2014). As part of the FSM chain, 

anaerobic digestion (AD) is a viable means of treatment for OSS facility waste 

(Kerstens et al., 2012) and can be operated at varying scales from small rural 

digesters to larger centralised or semi-centralised systems (Gautam et al., 

2009; Bond and Templeton, 2011; Song et al., 2014). Higher rate AD systems, 

such as up-flow anaerobic sludge blanket (UASB), exhibit great potential 

providing increased efficiency through the digestion of high solids faecal sludge 

(FS), with biogas production and stabilisation at a higher rate than unmixed 

plug-flow digesters (Collins et al., 2013; Parker et al., 2013). The suspended 

sludge bed in the UASB reactor filters and treats wastewater as the wastewater 

moves vertically upwards through it. Microbes in the sludge particles act upon 

the wastewater and break down the organic matter and the up-flow nature, 

along with gas bubbles, allow efficient mixing without the need for mechanical 

agitation. Reactors based upon UASB design are attractive due to their 

compact nature, low sludge production rates and low operational costs with 

significant cost recovery potential through methane production (Chong et al., 

2012). The use of expanded granular sludge bed (EGSB) reactors for high 

solids waste digestion is also a growing research area (Collins et al., 2013). An 

EGSB reactor is a variation on the UASB reactor design; which utilises effluent 

recirculation combined with taller reactors (with a greater height to diameter 

ratio) and an increased velocity of wastewater applied in order to cause the 

sludge bed to expand and resultantly increase the contact between sludge and 

wastewater leading to improved treatment.  

However, AD is not a complete treatment tool in itself and should be combined 

with additional treatment processes in order to protect the environment, through 

the prevention of diffuse nitrogen (N) and phosphorus (P) pollution (Lu et al., 
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2012), and public health through preventing the spread of pathogens and 

disease vectors (Issah et al., 2012; Katukiza et al., 2012). Resultantly, AD of 

faecal sludge cannot operate in isolation; instead, an entire treatment flow sheet 

needs to be developed prior to its implementation in order to achieve 

comprehensive treatment of AD effluents and ensure the safe recovery and 

reuse of valuable nutrients. 

Human waste comprises a wide range of valuable nutrients (Rose et al., 2015), 

in particular N and P which along with potassium (K) are the most critical 

nutrient elements for agriculture and horticulture worldwide (Heinonen-Tanski 

and van Wijk-Sijbesma, 2005). During the AD process the total mass of 

nutrients is not reduced and due to the mineralisation of the organic speciation, 

the inorganic speciation will increase (for instance, the conversion of organic N 

to ammonium N). In order to assess nutrient recovery potential of waste 

streams the primary prerequisite is to know the composition of the product that 

is to be re-used/disposed. However, this information is often not available at the 

early stages of treatment process flow planning and resultantly there is little 

emphasis on secondary treatment, resource recovery and the recovery of 

nutrients from digestate. However, it is possible to predict what the physical and 

chemical characteristics of AD will be by assessing the influent sludge 

composition and utilising performance data of similar anaerobic digesters. This 

information will in turn allow an assessment to be made as to the most 

appropriate secondary treatment processes and help determine feasible options 

available when considering technologies for nutrient recovery after AD.  

This study will utilise faecal sludge characterisation data from location x in order 

to project nutrient flows around anaerobic digestion. Utilising this data, nutrient 

recovery processes will be reviewed alongside secondary treatment 

mechanisms and opportunities for research and development will be explored 

according to the needs and requirements of the location x study site. 

Specifically, the objectives of this study are to predict the nutrient composition of 

anaerobically digested faecal sludge using results from a pilot expanded 
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granular sludge bed (EGSB) reactor (Aguilera et al., 2012); and identify feasible 

technologies to recover these nutrients in a low income context. 

5.2 METHODS 

5.2.1 Study site and faecal sludge management system in operation 

Location x was used as a study site with data collection taking place in March 

and December 2014. A peri-urban locality of location x was used as an example 

of a newly implemented Faecal Sludge Management (FSM) scheme which was 

launched in 2013. This FSM project was carried out in collaboration with WSUP 

(Water and Sanitation for the Urban Poor) and BORDA (Bremen Overseas 

Development Association), by the community based water service provider in 

location x who initiated a formalised pit latrine emptying service combined with 

semi-centralised primary and secondary treatment (WSUP, 2014). Primary 

treatment is by a batch-fed un-mixed anaerobic digester, with the liquid fraction 

of the digester discharged to leach fields and the residual solids transported by 

vacuum tanker to a secondary treatment site where sludge drying beds are 

used (Figure 5.1). The dried solids are finally utilised as an agricultural soil 

amendment (WSUP, 2014).  

 

Figure 5.1 Simplified faecal sludge management in location x. 
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5.2.2 On-site sanitation facilities and faecal sludge characterisation 

An extensive faecal sludge characterisation programme was carried out in 

March 2013 by accompanying manual pit latrine emptiers in the peri-urban 

district of location x with data collected from a total of 11 pit latrines. The 

sampled pit latrines were of a simple design with the drop hole and 

superstructure raised above ground level by between 1-2 m with no vent pipe 

present. Pit latrines were partially lined with the exception of one latrine that had 

a completely sealed tank. Manual methods using an array of modified 

equipment such as pitchforks and shovels were used to remove sludge from pit 

latrine chambers and these emptying methods allowed representative samples 

of the entire contents of pit latrines to be taken. The results of the physical and 

chemical characterisation (Figure 5.2) of pit latrine sludge are used as the basis 

for projecting nutrient flows post anaerobic digestion. 

Institutional ethical approval (Cranfield University 109-2013) was obtained for 

the sampling and analysis of faecal sludge in both case study locations: location 

x and Kumasi, Ghana. 

5.2.3 Predicting anaerobically digested faecal sludge composition 

Utilising data regarding the physical and chemical characterisation of pit latrine 

sludge along with performance data of a pilot-scale mesophilic UASB reactor 

(Aguilera et al., 2012) a set of projections were constructed in order to establish 

the composition of anaerobically digested faecal sludge. There are numerous 

methods of treatment for FS that can be applied to a low income country 

context. Anaerobic technologies present significant advantages over aerobic 

technologies due to lesser reliance on costly energy inputs. Primary settlement 

ponds combined with secondary treatment through Anaerobic Baffled Reactors 

(ABR), present a simple, effective means of treatment, however, have a large 

operational footprint in a context where land constraints often prevail. Therefore, 

the benefit of using anaerobic technologies that operate at a higher rate is 

paramount and has great potential and was subsequently selected to be 

incorporated in the analysis An UASB reactor was used for the projections, due 
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to its aspirational nature and great potential for the treatment of faecal sludge at 

a higher rate than commonly used plug flow reactors. Due to the design and 

operation of an UASB digester there is no separation between the solid/liquid 

fraction, with one combined digestate produced. Assumptions of removal 

efficiency were determined with a reactor retention time of 7 days and are 

outlined in Figure 2. As a result of the high solids nature of pit latrine sludge 

(190 g TS L-1) all influent sludge was diluted to 6 g TS L-1 as this was deemed 

an achievable level in which digestion in a UASB reactor could take place 

(Collins et al., 2013). 

5.3 RESULTS AND DISCUSSION 

5.3.1 Digestate output projections 

Projections on the composition of the effluent are shown in Figure 5.2. Within 

these projections it is presumed that microbial pathogens are still present in the 

AD effluent and require further pathogen destruction before re-use or discharge. 

This is because two of the principal components casing pathogen decay or loss 

of viability in AD are temperature and hydraulic retention time (Smith et al., 

2005), which are not favourable with higher rate AD processes operating within 

an EGSB. As a result secondary treatment is essential from a public health 

perspective. 

5.3.2 Secondary treatment of digestate 

The pathogenic content of AD effluents combined with the high water content 

(97.9 % water content) make the use of secondary treatment processes 

essential but also require the preservation of the valuable resources such as 

organic matter (4472 mg COD L-1), trace elements and macronutrients (1440 

mg N L-1, 1617 mg P L-1, 390 mg K L-1) enabling nutrient recovery. There are 

many low-cost secondary treatment methods to treat AD effluents: for example, 

solids and organics reduction can be achieved through waste stabilisation 

ponds, Imhoff tanks, planted/unplanted drying beds and, following this, the 

liquid fraction can be treated by aerobic and anaerobic filters or constructed 
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wetlands which can further reduce organics and nutrients present. Removal of 

P occurs through a combination of microbial growth, precipitation and 

adsorption; with nitrogen removal through nitrification/denitrification processes. 

However, the majority of these processes will not be recovering all of the 

valuable nutrients present, and through the use of systems such as constructed 

wetlands, nutrients will be used through plant growth. There is therefore a need 

for nutrient recovery options that combine secondary treatment and resource 

recovery, in turn creating a valuable product that is safe for land application, 

feasible to transport as well as desirable to use. 
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*Assumptions of UASB projections according to Aguilera et al. (2012) 

CODtot:  50% removal 

CODsol:  35% removal 

TS:  35% removal 

VS:  50% removal 

pH:  slight reduction 

Total N: remain constant 

NH4-N:  60% total N to NH4-N 

Other Nutrients: remain constant 

Figure 5.2 Mass flow projections of an up flow anaerobic sludge bed (UASB) 

reactor fed with pit latrine sludge (diluted to 6 % TS) as a feedstock. Influent 

faecal sludge characterisation (left ) from location x was used. Solids removal, 

organics reduction and nutrient speciation transformation (centre) are based on 
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mass flow projections from the performance data of a pilot scale UASB reactor 

with a hydraulic retention time of (10 days) and a liquid recycle in an up flow 

configuration. . 

 

5.3.3 Opportunities for nutrient recovery 

The recovery of nutrients for use in agriculture is a recognised resource for 

potential cost-recovery in many FSM projects. However, in the design stages of 

treatment process flows, in order to determine nutrient recovery components 

there is a need to prioritise the most important nutrients to target for recovery.  

The residual sludge solids of anaerobically digested FS also contain significant 

P concentrations (26950 ± 1291 mg P/kg TS) and are comparable to digested 

sewage sludge biosolids from WwTW in high income countries (19500-29917 

mg P/kg TS (Mantovi et al., 2005; He et al., 2010)). It can be estimated that 

38% of P present will be bound to the solid matter (Martin, 2005) making the 

residual digested solids a valuable source of P that can be directly utilised in 

agricultural soils. In addition, P through the AD and subsequent dewatering 

steps, will be concentrated in the solid matter providing a valuable source of P 

to agricultural soils. The reduced solubility of P in dewatered solids also make 

the direct use attractive due to the reduced likelihood of leaching in soils 

providing there is no direct run-off of solids or the soil. The remaining 62% of 

the P fraction will be in the liquor stream after dewatering, making the 

precipitation of P, for example through struvite precipitation, a nutrient recovery 

possibility (Miles and Ellis, 2001; Nelson et al., 2003). Resultantly, through the 

combination of P precipitation in the liquor fraction and the use of dewatered 

solid matter as a direct source of P in soils, the recovery of P can be fully 

utilised. 

In contrast, the nitrogen fraction is more problematic due to the potential 

volatilisation and loss of nitrogen when stored or applied direct to the soil. The 

outputs of AD are predicted for the case study site (Figure 5.2) have significant 

quantities of NH4-N (840 mg NH4-N
 L-1). If there is a solid/liquid separation 
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process, the majority of NH4-N (89%) will be in the liquor fraction (Martin, 2005) 

and if there is no solid/liquid separation there is the high likelihood of ammonia 

(NH3) volatilisation post in digestate. The significant quantities of NH4-N in 

digestate, result in the need for careful N management, due to the damaging 

impact of N when leached to the surrounding environment. This often results in 

limiting the application of digestate during seasons of high rainfall. However, 

agricultural food production is heavily reliant on N fertiliser inputs in order to 

achieve successful yields worldwide (Xu et al., 2012). Ammonium nitrate is the 

most common nitrogen fertiliser product in Europe (Fertilizers Europe, 2013), 

with production through the Haber-Bosch process consuming more than 1% of 

the world’s power production (Kitano et al., 2012). This factor resultantly makes 

the cost of N fertilisers reliant on global gas prices, which frequently has the 

negative impact of out-pricing farmers in Sub-Saharan Africa. Therefore, if N 

recovery from wastewater could be achieved, this could help to decrease 

demand for artificial fertiliser production and offset the ecological impact of 

energy usage through N production (McCarty et al., 2011). In addition, low 

income countries that are previously reliant on international imports and global 

energy prices, could become partially self-sufficient in regards to their domestic 

N demand making them less vulnerable to global market fluctuations. This 

factor could in turn make N fertilisers which are frequently too expensive due to 

energy prices and import taxation for low income countries increasingly more 

available. 

Resultantly, in situations such as the case study site, there are significant 

drivers for designing NH4-N recovery systems as the principle target for nutrient 

recovery as opposed to P recovery systems. The use of dewatered solids 

provides a sustainable source of P to agricultural soils with minimal 

management measures required. Whereas, direct application of digestate 

provides localised environmental issues as well as having wider financial and 

ecological impacts. It is therefore evident that if N could be recovered and 

released in a slow release format, this would provide significant benefit to 
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farmers and the surrounding environments in low income countries such as 

location x. 

5.3.4 Direct application of anaerobic digestate 

After the disinfection or pasteurisation of anaerobic digestate, direct application 

to land can be an appropriate means of nutrient recovery and is widely 

practised in high (WRAP, 2012) and low income countries (Vögeli et al., 2014). 

Projections of the AD composition in location x indicate significant nutrient 

potential in the digestate with 2.12 kg nitrogen/tonne, 0.26 kg phosphorus/tonne 

and 0.39 kg potassium/tonne. In addition to this, valuable micro nutrients/trace 

elements are present (68 mg/kg CU, 84 mg/kg Ni and 420 mg/kg Zn) which 

further benefits crop production. In location x, sludge from waste stabilisation 

ponds at the municipal wastewater treatment works is regularly purchased and 

utilised for landscaping purposes, a factor that illustrates demand and 

acceptance for human derived by-products at large scale farming operations. In 

contrast, at the household level, extensive interviews conducted in location x 

established that 60.7% of respondents believed it was not safe to use human 

derived fertiliser after treatment (Kennedy-Walker et al., 2015). Demand for 

using digestate as a complete product is therefore likely to be from large scale 

farmers from the fringes of location x who have the equipment and capital to 

purchase and use digestate as a fertiliser product instead of the small-scale 

peri-urban farmer. 

Digestate can be transported from the treatment site to farmland by tanker and 

distributed via an irrigation network or mechanical spreader. However, digestate 

storage facilities must be sufficient in order to enable substantial storage until 

the desired time of year for application, and sludge must be directly injected or 

incorporated into the ground to avoid nitrogen loss through NH3 volatilisation. 

The volatilisation and loss of NH3 following application of digested sludge is a 

key concern with Smith et al. (2007) reporting losses of 22-34% of NH4-N 

applied via trailing hose application. These high costs of storage, transportation 

and application cause a barrier to the use of digestate. The separation of the 
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liquid and fibre fractions of the digestate would reduce transportation costs 

significantly due to volume reduction; however, the liquid fraction would still 

require either substantial irrigation networks or transportation to farmland. 

It is resultantly evident that more valuable products could be produced if 

nutrients could be removed, recovered and concentrated on-site: creating high 

value products that can be marketed without the transportation and application 

difficulties that applying digestate brings. 
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Table 5.1 Ammonium recovery options from anaerobic digestate 

Ammonium 

Recovery 

Process 

Process Description Pre-treatment 

Required 

Limitations and applicability 

to low income context 

References 

Algae ponds NH4-N taken up by 

algae for biomass 

growth 

Significant TS 

reduction 

required and 

dilution 

Sensitive to high concentrations 

and fluctuations of NH4-N 

(Hoffmann, 

1998; Wilkie 

and Mulbry, 

2002; Mulder, 

2003) 

Reverse 

Osmosis 

NH4-N concentrated in 

semi-permeable 

membrane 

TS reduction 

required 

Solid/liquid separation required 

to reduce membrane fouling and 

clogging, high energy use 

(Mondor et al., 

2008; Ledda et 

al., 2013) 

Ammonia 

Stripping 

Raised pH to convert to 

NH3, air passed through 

solution into 

concentrated liquid 

(NH4)2SO4 

Chemical 

additions for pH 

adjustment, 

solid/liquid 

separation 

High energy usage of 

compressed air, high 

temperature required high cost 

of chemical requirements to 

raise pH. Air stripping towers 

are large and can become 

clogged by solids. Acid required 

to convert NH3 to marketable 

fertiliser. 

(Guštin and 

Marinšek-Logar, 

2011; Li et al., 

2014; Serna-

Maza et al., 

2014) 

Struvite 

Precipitation 

NH4MgPO4·6H2O 

mineral precipitation 

when ions are released 

Mg and P 

addition and pH 

adjustment 

High cost of chemical additions, 

extra processing costs of Ca 

ions , process difficulties with 

high solids effluents. 

(Miles and Ellis, 

2001; Nelson et 

al., 2003) 

Ion Exchange NH4-N ions present in 

wastewater are 

exchanged with ions of 

media resin 

Solid/liquid 

separation to 

prevent media 

clogging 

Media costs and/or regeneration 

cost of chemicals 

(Wang and Wu, 

2006; Hankins et 

al., 2005; 

Cooney et al., 

1999) 

Adsorption NH4-N adsorbed to 

surface of media which 

was strong adsorption 

capacity 

Solids/liquid 

separation likely 

to be required 

Solids inhibit the adsorption 

capacity of media, cost of media 

and/or regeneration costs 

including chemicals and 

infrastructure. 

(Vassileva et al., 

2009; Sarkhot et 

al., 2013) 
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5.3.5 Impact of predictions on existing NH4-N recovery technologies 

There are numerous means of recovering ammonium from digestate which are 

described in Table 5.1, however, many of the processes (reverse osmosis, NH3 

stripping and struvite precipitation) present significant challenges to application 

in a low income context as they have significant energy needs, and require 

chemicals and consumables that are both costly and have a difficult-to-manage 

supply chain. Algae ponds, although having a low capital and operational costs 

are sensitive to the high NH4-N levels in digestate (1440 mg NH4-N L-1), and 

high TS in the effluent will also be problematic as it will impact light availability 

of the algae. The two technologies with the most potential for NH4-N recovery in 

this context are adsorption and ion exchange processes, with the primary 

challenge in the recovery of nutrients being the high solids nature of the 

digestate (2.1 g TS L-1), high organic matter (4472 mg COD L-1) and the cost or 

regeneration of adsorption or ion exchange medias. 

5.3.6 Separation technologies and opportunities for ammonium 

recovery  

The majority of ammonium recovery processes therefore require separation of 

the solid and liquid fractions in order for nutrient recovery processes to take 

place. Dewatering can be achieved through centrifugation, filtration and 

evaporation or through a combination of these processes. The majority of 

mechanical means of dewatering (e.g. centrifugation and belt presses) are not 

suitable for low income countries due to the high levels of capital and 

operational expenditure. Nevertheless, dewatering can take place through 

simple processes of filtration and evaporation; with unplanted sludge drying 

beds one of the most numerous forms of digested sludge dewatering in 

developing countries (Koné and Strauss, 2004).  

However, simplified process flow sheets in faecal sludge treatment are 

important. Therefore, if a dewatering system could be combined with the 

recovery of ammonium this would present a significant benefit. Due to the 

simplicity and wide application of sludge drying beds in developing countries 
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adapting a hybrid between sludge drying bed and an adsorption or ion 

exchange system would be a feasible and realistic target for the recovery of 

NH4-N. 

5.3.7 Application of low cost media adsorbents 

Numerous types of adsorbents for NH4-N removal from wastewater have been 

investigated; for example activated carbon, limestone, clay and zeolites (Horan 

et al., 1997; Rožić et al., 2000; Aziz et al., 2004; Wang et al., 2006). One of the 

greatest limitations to the application of adsorbents and ion exchange media for 

nutrient recovery in wastewater treatment is the cost of regenerating exhausted 

media (Wang and Wu, 2006). Regeneration of media causes operational 

complications, increased infrastructure and uncertainties that prevent simple 

treatment flows for application in a low income country context. Consequently, 

the selection of media should not only account for NH4-N uptake potential, but 

also for potential as a soil amendment once saturated in NH4-N. This approach 

could form two approaches: firstly a relatively inert material could be selected 

with a view to adding significant value (e.g. through the use of natural zeolites) 

which are relatively inert and have been used as filler products in fertilisers 

(Pawełczyk and Popowicz, 2006), secondly a material already established for 

its benefits as a soil amendment product could be used (e.g. biochar (Jeffery et 

al., 2015)) and further value added to it through the capture of nutrients. 

5.4 CONCLUSIONS 

In conclusion this study has utilised the performance data of an existing EGSB 

reactor (Aguilera et al. 2012) to make predictions of the composition of the AD 

effluent based on faecal sludge characterisation data collected. Significant 

opportunities to recover nutrients were highlighted, especially NH4-N, from the 

digestate of AD treating faecal sludge. Despite many methods of secondary 

treatment, all fail to capture nutrients such as NH4-N in a manner that is both 

cost-efficient and appropriate for a low income context. Adsorption and ion 

exchange have been identified as feasible methods for NH4-N
 recovery in this 

context; however, high costs as well as complications involved in the 
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regeneration process promote the use of ion exchange/adsorbent media that 

can be directly applied to agricultural land as an enhanced fertiliser product. 

Furthermore, if the ion exchange/adsorption processes could be combined 

within a sludge drying bed configuration, enabling digestate dewatering and 

simultaneous capture of NH4-N
   a significant benefit could be gained. Through 

this, process flows would be simplified and a valuable product created that will 

be more concentrated in regards to nutrient values, easier to transport, store 

and apply to agricultural land, as well as creating a product that is more 

detached from human waste appearance that currently limits social acceptance 

in peri-urban agriculture. 
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ABSTRACT 

This study investigates the potential for the use of non-regenerative media as part of 

a passive treatment system for the recovery of ammonium from high strength (>200 

mg L-1) wastewater. Clinoptilolite and biochar were identified as suitable non-

regenerative media. Batch adsorption and kinetic experiments were carried out along 

with dynamic column experiments to determine the media capacity, the most efficient 

operation and configuration in order to establish scale-up design values. Clinoptilolite 

was established as the more effective media with a superior capacity to biochar 

(12.2 and 5.0 g NH4-N/kg respectively) despite a 23.8% reduction in the uptake 

capacity due to the presence of competing cations in high strength wastewater. 

Empty bed contact time (20-354 minutes) was the most important factor influencing 

clinoptilolite performance with the most efficient operation (4.45-8.73 kg/m3
treated) at 

empty bed contact times of ≥ 226 minutes. Increasing influent NH4-N concentrations 

caused quicker exhaustion with bed volumes treated to exhaustion decreasing from 

635 to 301 with an increase from 60 to 200 mg NH4-N
 L-1. A passive nutrient 

recovery system (with a feasible footprint of 67-190 L/m2/day) for the recovery of 

ammonium is a viable alternative treatment and recovery option, utilising clinoptilolite 
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as a non-regenerative media that can subsequently be used directly as an enriched 

agricultural fertiliser product. 

 

KEY WORDS 

Ammonium recovery, ion exchange, nutrient recovery, clinoptilolite, biochar. 
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HIGHLIGHTS 

 The non-regenerative use of clinoptilolite is proposed for ammonium recovery. 

 Clinoptilolite had a greater NH4-N
 capacity to biochar (9.3 and 4.8 mg NH4-

N/g). 

 Operation at long empty bed contact times (>226 mins) provides the most 

efficient uptake of NH4-N. 

 A passive system can remove NH4-N and the direct use of saturated media 

can achieve nutrient recovery. 

 

6.1 INTRODUCTION 

Ammonia is one of the major pollutants introduced into receiving natural waterways 

by industrial, domestic and agricultural wastewater discharges (Hasanoğlu et al., 

2010). This has significance due to the toxic effect of ammonia on most fish species 

(Tetreault et al., 2013) as well as the biological nitrification of ammonia to nitrite and 

nitrates which are undesirable to human health (Cockburn et al., 2013).  

Wastewaters with high concentrations of ammonium-nitrogen (>200 mg NH4-N L-1) 

are produced due to a wide range of human activities: such as landfill leachates, 

sewage treatment works, agricultural slurries as well as numerous chemical and 

industrial processes. Many of these wastewater streams are treated through sludge 

digestion, and effluents from subsequent dewatering processes frequently contain 

high NH4-N concentrations, with typically 15-30% of the total nitrogen (N) load in a 

sewage treatment works found as NH4-N
 in centrate or filtrate streams (US EPA, 

2007).  

Not only is there an environmental driver for reducing NH4-N discharges to 

waterways but there is also an increasing ecological driver to recover rather than 

remove key macronutrients (Guest et al., 2009), such as N, required in plant 

production. Agricultural productivity relies heavily on N fertilisers in order to achieve 

maximum crop production (Xu et al., 2012). Nitrogen fertiliser production amounted 
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to 113 million tonnes in 2014, with forecasted growth of 1.4% annually until 2018 

(FAO, 2015). Ammonium nitrate is the most commonly used compound for chemical 

nitrogen fertiliser production in Europe (Fertilizers Europe, 2013), with production 

through the Haber-Bosch process consuming more than 1% of the world’s power 

production (Kitano et al., 2012). Consequently, if the sustained recovery of N from 

wastewater could be achieved, this could help to decrease demand for artificial 

fertiliser production and offset the ecological impact of energy usage through N 

production (McCarty et al., 2011). 

Existing technologies for NH4-N recovery, such as membrane separation and air 

stripping, have a high energy demand (Park and Kim, 2015) and as a result are 

mainly confined to large wastewater treatment works (Liu et al., 2014). There is 

however, a need for passive treatment technologies, e.g. constructed wetlands and 

sand filtration systems, where conventional wastewater treatment works are 

uneconomical to construct, operate and maintain (Speer et al., 2012). These passive 

systems have significant benefits to situations where it is less cost efficient to 

operate high intensity large scale processes and fit in line with technology 

development recommendations in low income countries (Parkinson and Tayler, 

2003). There is, consequently, a strong driver for the development of passive 

solutions to recover NH4-N
 from wastewater. 

Ion exchange and adsorption systems have the potential to be applied in a passive 

way to recover NH4-N
 from high strength waste streams, such as anaerobic liquors, 

with concentrations reported at 200-700 and 520-1853 mg NH4-N L−1 in faecal 

sludge and sewage sludge respectively (Thornton et al., 2007; Rose et al., 2015). 

However, conventional ion exchange and adsorption processes require the 

regeneration of exhausted media to take place when reaching uptake capacity 

(Hedström, 2001). This factor creates one of the greatest complications and costs 

involved in the process: requiring increased infrastructure, purchase of chemical 

regenerants and disposal costs for regenerants (Wang and Wu, 2006). 

Consequently, this promotes the potential of low cost single-use non-regenerative 

media in passive adsorption and ion exchange processes. This media, following 

exhaustion, can then be applied directly to land as an enhanced fertiliser product, 

achieving effective low cost nutrient recovery. This concept has been applied to 
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phosphorus recovery in wastewater treatment with non-regenerative media 

promoted as a calcium phosphate fertiliser product (Johansson and Gustafsson, 

2000; Berg et al., 2006; Hylander et al., 2006), however, its application in the 

recovery of NH4-N
 is limited. 

In order to effectively design a fixed bed absorber for the recovery of NH4-N in a 

passive system there are two major considerations. Firstly, an appropriate media 

must be selected and the uptake capacity determined using the expected 

wastewater composition; secondly, the most efficient operational configuration of the 

media bed must be determined. Media capacity is primarily determined through the 

use of batch adsorption isotherms and kinetic studies (Bulut et al., 2008; Guo et al., 

2008; Vassileva et al., 2009). The design of a fixed bed absorber can also be 

calculated through batch adsorption isotherm and kinetic data, using theoretical 

models utilising mass transfer coefficients (Bulut et al., 2008; Barros et al., 2013). 

However, an empirical approach is preferable with pilot scale columns being the 

most reliable means of determining the effect of key operational parameters such as 

empty bed contact time (EBCT), bed depth and influent NH4-N
 concentrations 

(Cooney et al., 1999). Through the operation of pilot scale columns at anticipated 

flow rates, bed depths and influent NH4-N concentrations expected in the final 

application, the most reliable design criteria for scale-up can be determined. 

6.1.1 The selection of non-regenerative media  

The selection of non-regenerative media that could be used in a passive NH4-N 

recovery application is dependent on three primary factors: firstly the media must 

have a low enough purchase price so it can be reimbursed in the final sale of the 

enhanced product, its physico-chemical properties must be beneficial to soil 

application and, finally, the media must capture a significant quantity of NH4-N
 to 

enrich the product. A preliminary review identified biochar and clinoptilolite as 

meeting these criteria. 

Biochar is solid carbon residue that is produced through the pyrolysis of biomass and 

is generally distinguished from the term charcoal due to its intended final use as a 

soil amendment (Sohi et al., 2009). Biochar has been promoted recently as a soil 

amendment due to its potential for amelioration of soil degradation as well as 
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increasing soil fertility (Jeffery et al., 2015). As a water treatment mechanism, 

activated carbon filtration is used in wastewater treatment (Tchobanoglous et al., 

2003); however, charcoal that has not been activated has also been used for 

adsorbing NH4-N
 in wastewater (Vassileva et al., 2009) as well as in animal manure 

effluents (Sarkhot et al., 2013). 

Clinoptilolite is a natural zeolite, an aluminosilicate mineral with a porous structure, 

and can be used as filler material in artificial fertiliser production (Pawełczyk and 

Popowicz, 2006) as well as directly as a soil amendment with an ability to act as a 

slow release fertiliser, improve soil performance and increase crop yields (Malekian 

et al., 2011; Lija et al., 2012; Aainaa et al., 2014). Clinoptilolite has a highly porous 

structure and high affinity for the ammonium ion (Demir et al., 2002). However, using 

clinoptilolite to recover ammonium from high strength liquor streams may be 

challenging due to high concentration of organic matter and competing cations which 

impact the exchange of the ammonium ion (Carley and Mavinic, 1991; Wang et al., 

2007; Huang et al., 2010). Most researchers have investigated the potential use of 

clinoptilolite to remove NH4-N from low strength wastewaters such as the final 

effluent of wastewater treatment works (Metropoulos et al., 1993; Baykal and Guven, 

1997; Cooney et al., 1999; Wang and Peng, 2010). These wastewaters have low 

NH4-N, total solids, organic matter and cationic ion concentrations, that are all likely 

to interrupt the ion exchange process; however, the use of clinoptilolite to directly 

capture NH4-N from high strength wastewaters with this interference, such as in high 

NH4-N
 concentration liquors, has not previously been investigated. 

The aim of this study is to assess the feasibility of using a passive system for the 

recovery of NH4-N from anaerobic digestate liquors (that have high NH4-N
 

concentrations) utilising non-regenerative media (biochar and clinoptilolite) that can 

be used directly as an enhanced fertiliser product once exhaustion has been 

reached. The design values for scale-up procedures will be established with regards 

to the main operational parameters for passive bed operation; particle size, empty 

bed contact time (EBCT), bed depth and influent NH4-N concentration. Specifically, 

the objectives are to a) select an appropriate media for the recovery of NH4-N from 

anaerobic digestate liquors through the use of batch adsorption and kinetic studies; 

b) quantify the impact of high concentrations of organic matter and competing 
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cationic ions present in sludge liquors; c) establish, in continual operational mode, 

the optimum operational capacity of a down-flow fixed media bed with regards to 

empty bed contact time, influent NH4-N concentration, particle size and bed depth 

when treating digestate liquors. 

6.2 MATERIALS AND METHODS 

6.2.1 Media and solutions used in batch and dynamic experimental work 

6.2.1.1 Non-regenerative media used 

Silica sand (Garside Sands, Leighton Buzzard, UK) was utilised as a baseline 

comparator in the study with a small (0.63-0.85 mm) and large (2-2.7 mm) particle 

size selected. Clinoptilolite (supplied by RS Minerals Ltd., Cleveland, UK) was 

screened into two fractions of 0.7-1.6 mm and 5-9 mm. The clinoptilolite used had 

92% purity with other clay minerals (5% smectite and 3% biotite) present. 

Clinoptilolite had a pH of 6.5-7.5, bulk density of 1.23 g/cm3, real density of 2.25 

g/cm3, porosity of 84.5% and a specific surface area of 41 m2/g. A deciduous mixed 

wood biochar (Biochar Foundation, Loanhead, UK) was used with production carried 

out according to Ulyett et al. (2014). The biochar had a pH of 10.2, carbon: nitrogen 

ratio of 117 and a cation exchange capacity of 66 cmol+ kg-1 (Ulyett et al., 2014). The 

char was sieved to fractions of 5.4-6 mm and 1-2 mm. Before use in experiments, all 

media was rinsed with deionised water to remove impurities, before drying at 103°C. 

Batch and kinetic experimental work was carried out on sand, biochar and 

clinoptilolite and a small and large particle size of each medium was selected for 

comparative purposes. Dynamic experimental work was carried out on the 

clinoptilolite medium only.  

6.2.1.2 Competing cationic ions and organic matter solutions 

A wastewater solution containing a high concentration of competing cations was 

deemed appropriate for a wide range of studies as significant concentrations are 

normally present when NH4-N concentrations are high: for example, Karadag et al. 

(2008) reported concentrations of 3328 Na+, 1785 K+, 220 Mg2+ and 36 Ca2+ in 

landfill leachate and similarly high concentrations are found in digestate liquor 

streams (Thornton et al., 2007). In order to replicate the complex nature of high 



 

192 

 

strength liquors a solution of competing cationic ions was created to replicate 

concentrations as measured in effluent digestate (Table 6.1). Digestate was from a 

mesophilic anaerobic digester treating a mixture of primary and waste activated 

sewage sludge (population equivalent 288000). The synthetic solution was 

constructed using calcium chloride dehydrate, magnesium sulphate heptahydrate, 

sodium chloride and potassium chloride acquired from Fischer Scientific 

(Loughborough, UK). Organic matter (7675 mg COD L-1) was simulated using D-

Glucose monohydrate (VWR International, Lutterworth, UK) and the concentration of 

NH4-N was adjusted using a concentrated stock solution of ammonium chloride 

(NH4Cl) (Fischer Scientific, Loughborough, UK). 

 

Table 6.1 Composition of digested sewage sludge from a mesophillic anaerobic 

digester and the synthetic solution of competing cations and organic matter created 

to replicate digestate leachate without the interference of solid matter. 

 Anaerobic Digestate 

(mg TS L
-1

) 

1/10 dilution Sludge 

(mg TS L
-1

) 

Synthetic AD leachate 

(mg TS L
-1

) 

Total Solids (TS) 51000 5000  

Ammonium (NH4-N) 2060 206 200 

Calcium (Ca) 533 53.3 53.4 

Magnesium (Mg) 450 45.0 44.9 

Sodium (Na) 858 85.8 86.5 

Potassium (K) 2775 277.5 277 

Chemical oxygen demand (COD) 80000 8000 7995 

 

6.2.2 Experimental setup and operation 

6.2.2.1 Batch adsorption isotherms and kinetic studies 

In all batch experiments 1 g of media was placed in 250 mL Erlenmeyer flasks and 

equilibrated with 100 mL of NH4-N solution of varying concentration (10-400 mg NH4-

N L−1) on an orbital shaker at 125 revolutions min-1 (Stuart Orbital Shaker, Bibby 

Scientific Ltd., Stafford). All experiments were carried out at room temperature (20 ± 

1°C) with a contact time of 24 hours, deemed suitable after preliminary tests. In order 

to determine the maximum NH4-N capacity of the media NH4-N solutions were made 
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up of laboratory grade NH4Cl (Fischer Scientific, Loughborough, UK) and deionized 

water. In order to determine the NH4-N adsorption kinetics of the media, samples 

(0.1 mL) were taken at regular time intervals throughout the 24 h period (0.5, 1, 1.5, 

2, 4, 6, 0, 14, 20, 22, 24 h). The NH4-Ncapacity and removal efficiency were 

calculated according to equation 1 and 2: 

𝑄𝑒 =
(𝐶0 − 𝐶𝑒) 𝑉

𝑚
                                                                                                                                  (1) 

𝑅𝐸 =
(𝐶0 − 𝐶𝑒) 

𝐶0
∙ 100                                                                                                                          (2) 

where Qe is the ammonium adsorption capacity at equilibrium (mg/g), RE the 

removal efficiency (%), C0 and Ce the initial and equilibrium concentrations (mg L-1), 

respectively, V the volume of the solution (L) and m the mass of media (g). 

6.2.2.2 Dynamic column studies 

In order to obtain the maximum fertiliser value from the media all operational column 

experiments were operated until exhaustion, where column effluent concentration 

was ≥ 95% of column influent NH4-N concentration (Ce NH4-N ≥ 95% of C0 NH4-N). 

The operational capacity of clinoptilolite was determined through investigations into 

empty bed contact time (EBCT), variations of influent NH4-N concentration and 

media bed depth. A column (inside diameter: 0.05 m, length: 0.7 m) was used with 

clinoptilolite (particle size: 0.7-1.3 mm) and a synthetic solution replicating digestate 

without the interference of solid matter (Table 6.1). 

6.2.2.3 Effect of empty bed contact time 

The effect of EBCT (bed volume/volumetric flow) on the ability of clinoptilolite to 

capture NH4-N
 was investigated using 500 g of clinoptilolite, giving a fixed bed height 

of 0.33 m (bed volume of 590 cm3). A synthetic digestate liquor recipe was used with 

a 200 mg NH4-N
 L−1 concentration (Table 6.1). Each experimental run was ended 

following exhaustion of the media (Ce NH4-N ≥ 95% of Ci NH4-N). Columns were 

gravity fed using a peristaltic pump (Watson Marlow, Falmouth, UK) at 13 different 

EBCT giving a range of 20 – 354 mins with individual experimental periods ranging 

from 1-65 days before exhaustion of the media was complete. The risk of 
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channelling within the profile of the column was minimised in all column experiments 

due to the ratio of column diameter: media particle size being greater than 20 

according to Martin et al. (2013). A mesh (0.5 mm) was used to prevent media loss 

from the base of the column. 

6.2.2.4 Continuous and batch fed operation of clinoptilolite beds 

The performance of clinoptilolite was investigated in two modes of operation: 

continuous and batch-fed. Two EBCT of 40 and 80 mins were selected with 

continuous operation (as of section 2.3.2) with batch-fed operation carried out by 

complete loading of the allotted volume and restricting the drainage to give two 

comparative EBCT. 

6.2.2.5 Operational capacity of media at different NH4-N concentrations 

Utilising one single bed depth (0.33 m) and EBCT (80 mins) the effect of NH4-N 

uptake by clinoptilolite at varying influent concentrations was assessed. Six different 

NH4-Nconcentrations (20, 60, 80, 100, 150, 200 mg NH4-N
 L-1) were used in order to 

establish the effect of NH4-N
 concentration on media operational capacity. These 

NH4-N
 concentrations were selected in order to represent a range in values ranging 

from zero to a maximum of 200 mg NH4-N
 L-1 commonly seen in low strength or 

diluted anaerobic liquors (Rose et al. 2015). Nonlinear regression analysis with 

groups was used to compare data that fitted an asymptotic curve (or exponential 

curve). The analysis had a corrected r2 (percentage variation accounted for) value of 

95.8% with a pooled standard error of observations = 0.0745 (Ci/Co units). For each 

different NH4-N concentration a rate constant was calculated (the rate that the slope 

reaches the asymptote). Exponential rate constants are presented with standard 

error and are presented for each NH4-N concentration. 

6.2.2.6 Operational capacity of media at different bed depths 

In order to establish the effect of bed depth on NH4-N
 uptake capacities, a total of 6 

different bed heights (0.11 - 0.66 m) were assessed (media volumes 230 – 1400 

cm3). The same EBCT (80 mins) was maintained for each different bed height and 

resultant media volume. The media utilisation rate, the mass of media required in 

order to remove a defined mass of NH4-N from m3 of liquor with a concentration of 
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200 mg/L NH4-N  was subsequently calculated to the point of exhaustion (kg 

media/m3
treated). 

6.2.2.7 Determining operational column capacity 

Effluent of the columns was collected at regular time intervals until the media 

reached exhaustion (Ce NH4-N ≥ 95% of C0 NH4-N). The NH4-N adsorption capacity 

and removal efficiency of clinoptilolite was determined according to equations 3 and 

4: 

 

C𝑡𝑜𝑡𝑎𝑙 = ∫ (𝐶0 − 𝐶𝑒)
𝑉=𝑉𝑡𝑜𝑡𝑎𝑙

𝑉=0

∙ 𝑑𝑉                                                                                                                                 (3) 

𝑅𝐸 =
C𝑡𝑜𝑡𝑎𝑙

C𝑓𝑒𝑑 ∙ 𝑉𝑡𝑜𝑡𝑎𝑙
∙ 100                                                                                                                       (4) 

 

where Ctotal is the total NH4-N adsorbed in the column (mg), Qfed the total NH4-N fed 

(mg L-1), RE the removal capacity (%), C0 and Ce are the ammonium concentrations 

of the influent and effluent (mg L-1), respectively, Vtotal the solution volume fed (L).  

The fraction of unused bed length (LUB) is a measure of the unused capacity of the 

bed if the adsorption process was to be stopped at the point of breakthrough (0.05% 

C0) (Cooney et al., 1999). This was determined according to equation 5: 

𝐿𝑈𝐵 = 1 −  
𝑡𝑏

𝑡𝑒
                                                                                                                                      (5) 

Where tb is the time until breakthrough (5% of influent concentration) and te is the 

time until exhaustion (95% of influent concentration). 

In order to establish whether different column configurations had an impact on the 

flow dynamics through the fixed media bed, the Reynolds number was calculated 

according to the method used by Martin et al. (2013) as described in equation 6: 
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𝑅𝑒 =  
𝜌𝑉𝐷

𝜇(1 − 𝜀)
                                                                                                                                       (6) 

Where 𝜌 is the density of the water, V is the superficial velocity of the feed solution 

through the bed, D is the particle size of the media, 𝜇 is the dynamic viscosity of the 

water (0.001 Pa s) and 𝜀 is the void fraction (0.11 as determined in the used media 

through the methodology of Kleinübing and Da Silva (2008)). 

6.2.3 Analytical procedures 

In the batch adsorption and kinetic testing, NH4-N concentrations were determined 

after filtration through 0.45 µm microporous membrane filters (Sartorius, Epsom, UK) 

before analysis by a Burkard SFA-2000 auto-analyser (Burkard Scientific Ltd., 

Uxbridge, UK) according to the Automated Phenate Method (APHA, 2005). In all 

dynamic column experiments analysis was carried out in duplicate: ammonium-

nitrogen (NH4-N), magnesium (Mg), potassium (K) and phosphorus (P) were all 

determined photometrically using Spectroquant Nova 60 (Merck-Millipore, 

Darnstradt, Germany). The soluble solid free fraction of the digestate was also used 

for the analysis of calcium (Ca) and sodium (Na) by Atomic Absorption 

Spectrophotometry (Shimadzu 6300, Shimadzu, Japan). The pH of samples and 

solutions was measured directly by pH meter (model 3540, Jenway, Dunmow, UK). 

6.3 RESULTS AND DISCUSSION 

6.3.1 Media Selection 

6.3.1.1 Batch adsorption Isotherms and Kinetics 

Three adsorption isotherm models (Langmuir, Freundlich and Tempkin) are applied 

to the data (Table 6.2) with the Langmuir model proving the best fit (r2=0.945) for 

clinoptilolite (0.7-1.6mm), which suggests that NH4-N adsorption onto the 

clinoptilolite is more like a monolayer adsorption process and that the clinoptilolite 

presents homogenous sites for ammonium adsorption and a uniform distribution of 

energetic adsorption sites (Widiastuti et al., 2011). The Psuedo-first-order and 

Psuedo-second-order models were used to model the kinetics of the NH4-N uptake 

of the clinoptilolite with the Psuedo-second-order model providing the best fit 
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(r2=0.997) over the entire kinetic period (Table 6.2). This indicated that a pseudo-

second-order reaction was predominant and that chemisorption controlled the 

adsorption process (Kučić et al., 2012). The ideal maximum adsorption capacity (QL) 

of clinoptilolite was 14.1 mg/g, which was higher than those reported by Zhang 

(2012) (10.5 mg/g) and Sarioglu (2005) (12.5 mg/g). This factor is likely to be due to 

differences in the chemical composition of the media, for instance impurities in the 

clinoptilolite, with a high (92%) purity used in this study. 

At a concentration of 200 mg NH4-N L-1, Clinoptilolite with the smaller particle size 

(0.7-1.6 mm) had both a greater capacity (12.2 mg/g) as well as a faster kinetic rate 

(1.013 h-1) in comparison to biochar with a similar particle size (1-2 mm), exhibiting 

comparative kinetic uptake rates of 5 mg/g and a reduced kinetic rate of 0.557 h-1 

(Table 6.3). The greater performance of clinoptilolite was anticipated due to its high 

selectivity for the ammonium ion (Demir et al., 2002) and hydrophilic surface, 

nevertheless, biochar did capture NH4-N with adsorption over double that of a silica 

sand which represented a control in the study (2 mg/g). The adsorption capacity of 

clinoptilolite was influenced by particle size of the media with a 25% reduction in 

NH4-N adsorption capacity when particle size is increased from 0.7-1.6 mm to 7-9 

mm. Similarly, Sprynskyy et al. (2005) reported a 14% reduction in the uptake 

capacity of clinoptilolite when particle size fractions were increased from 0.5-0.7 to 

1.4-2 mm. The reduction in capacity is frequently accounted for by increases in the 

external surface area of clinoptilolite particles (for instance in this study external 

surface area increased from 0.029 m2 g-1 to  7.45 m2 g-1 media when particle size 

fractions decreased from 8- 1.2 mm). However, when particle size is reduced this 

does not reduce internal surface area which is not considerably impacted except for 

minor changes due to the opening of clogged pores in the clinoptilolite’s structure 

which could account for the increases in capacity observed (Erdoğan and Ülkü, 

2011). The faster kinetic uptake rate of the smaller particle size (0.725 h-1) indicates 

an increased initial uptake which is likely to be due to the larger external surface 

area exposed to cations in the solute. However, over time the saturation of external 

sites results in the predominant mechanism becoming internal mass transfer, as 

expected from experimental isotherms (Table 6.1). This indicates that the 

clinoptilolite has a high degree of internal porosity, a factor similarly observed by 
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Hankins et al. (2005a). Therefore, it is not the external surface area that is the 

principle driver but the diffusion of water molecules and cations through the 

clinoptilolite framework. Therefore, the effect of particle size is more apparent when 

establishing the kinetic rate of NH4-N uptake, with the quicker rate of uptake in the 

smaller particle size in comparison to the larger clinoptilolite particle size (0.323 h-1 

and 1.013 h-1 respectively). 

6.3.1.2 Influence of anaerobic liquors on uptake capacity 

The presence of competing cations in the solution caused a 23.8% reduction in the 

uptake capacity of clinoptilolite (0.7-1.6 mm) due to increased competition for 

exchange sites on the media (Table 6.3). This reduction was greater with a 34.7% 

reduction in uptake capacity when a larger clinoptilolite particle size (7-9 mm) was 

used. This is a reflection of the reduced external surface area of the larger particle 

size (7.45 m2/g and 0.029 m2/g media in the small and large particle size 

respectively), resulting in fewer sorption sites available for exchange, meaning that 

there is greater competition for these sorption sites between competing cations. In a 

similar study detailing the effect of competing cations on clinoptilolite, Wang et al. 

(2006) reported a reduction in capacity of 10-20%. The reduction in capacity of 

clinoptilolite due to the presence of competing cations is also consistent with the 

results of others (Nguyen and Tanner, 1998; Wang et al., 2007; Huang et al., 2010). 

This is a factor of paramount importance when applying batch adsorption data to an 

applied context, such as passive removal in high NH4-N
 concentration waste streams 

in which equally high competing cations will be present. The addition of competing 

cations on biochar’s uptake capacity was greatest when the particle size was 

greatest (Table 6.3); similarly, this is likely a result of decreased external surface 

area meaning increased competition for sorption sites by other cations attaching to 

the biochar surface. 
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Table 6.2 Batch adsorption isotherms and kinetic modelling for clinoptilolite, biochar and sand using a solution of NH4Cl and a 

solution of NH4Cl mixed with competing cations (equal to anaerobic digestate) and organic matter (8000 mg/L COD). 

Media Zeolite  Char  Sand 

Particle size Large (7-9 mm) Small (0.7-1.6 mm)  Large (5.4-6 mm) Small (1-2 mm)  Large 

1.2-

2.4mm  

Small 

2.4-4 

mm 

Solution NH4-

N 

NH4-N
 

cations
a
 

NH4-N 

organic
b
 

NH4-N NH4-N
 

cation
a
 

NH4-N 

organic
b
 

 NH4-

N 

NH4-N
 

cations
a
 

NH4-N 

organic
b
 

NH4-

N 

NH4-N
 

cations
a
 

NH4-N 

organic
b
 

 NH4-

N 

NH4-

N 

                

Freundlich model                

Kf 0.772 0.195 0.779 1.187 0.158 0.856  0.189 0.038 0.144 0.189 0.033 0.150  0.038 0.048 

1/n 0.469 0.598 0.459 0.432 0.704 0.510  0.527 0.649 0.574 0.571 0.855 0.614  0.719 0.676 

R2 0.928 0.981 0.962 0.956 0.964 0.971  0.920 0.908 0.947 0.972 0.996 0.959  0.706 0.708 

HYBRID 22.403 4.459 9.616 16.977 11.629 13.723  13.51 5.496 11.877 7.984 0.945 10.013  24.086 25.421 

                

Langmuir model                

Qm 10.195 7.307 9.801 11.444 16.532 14.107  3.949 2.609 4.329 5.700 14.326 6.086  3.590 3.048 

aL 0.029 0.009 0.026 0.043 0.004 0.022  0.016 0.004 0.012 0.011 0.001 0.009  0.005 0.008 

R2 0.980 0.930 0.952 0.957 0.948 0.953  0.875 0.863 0.913 0.947 0.994 0.950  0.855 0.850 

HYBRID 3.660 7.851 9.095 8.985 17.100 13.115  10.68 7.055 8.961 6.659 0.740 6.190  14.340 14.411 

                

Tempkin model                

b 1.286 2.297 1.621 1.274 1.900 1.180  3.048 7.955 3.001 2.498 3.346 2.369  4.241 4.089 

K 0.426 0.212 0.656 0.870 0.225 0.596  0.201 0.153 0.173 0.193 0.118 0.162  0.103 0.116 

R2 0.989 0.877 0.936 0.971 0.765 0.923  0.907 0.751 0.921 0.933 0.826 0.943  0.942 0.939 

HYBRID 2.442 11.664 20.784 10.600 44.921 28.110  6.940 7.961 5.572 5.376 22.257 4.550  12.317 2.865 

                 

KINETICS                 



 

200 

 

                

First order model                

k1 0.305 0.239 0.585 0.633 0.927 1.386  1.589 0.593 0.527 0.701 0.383 0.632  0.608 0.502 

R2 0.951 0.962 0.854 0.848 0.781 0.749  0.917 0.781 0.843 0.634 0.956 0.623  0.724 0.943 

HYBRID 12.675 6.355 16.991 17.212 8.167 9.852  0.897 3.956 7.755 13.89 3.086 15.866  7.055 2.152 

                

Second order model                

k2 0.400 0.323 0.609 0.725 1.013 1.524  3.497 0.518 0.483 0.464 0.557 0.377  0.453 0.680 

β2 1.148 1.099 1.496 1.496 1.723 2.062  0.861 1.623 1.460 1.948 1.090 1.924  1.601 1.198 

R2 0.978 0.972 0.977 0.962 0.961 0.953  0.984 0.954 0.959 0.937 0.942 0.928  0.875 0.976 

HYBRID 3.969 2.436 1.629 3.182 0.793 0.714  0.062 0.381 0.587 1.162 3.654 1.253  1.155 0.662 
a 
Competing cation solution constructed to give a concentration of 53.4 mg/L Ca, 44.9 mg/L Mg, 86.5 mg/L Na, 277 mg/L K as measured in anaerobic digestate. 

b 
Concentration of organics constructed using glucose monohydrate to give a COD concentration of 8000 mg/L. 
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High organic loading (8000 mg COD L-1) is also present in high strength liquor 

streams (Table 6.1) and caused a slight increase in uptake capacity in biochar 

(Table 6.3). A more profound increase of 13.9% was observed under high COD 

concentrations in clinoptilolite (0.7-1.6 mm). An increase in NH4-N uptake capacity 

was also observed with the addition of glucose by Semmens et al. (1981). This could 

be accounted for by a reduction in surface tension caused by the organics and/or the 

adsorption of NH4-N to organic matter in the solution or attached to the media 

surface, providing alternative exchangeable sites, as illustrated by Muherei and 

Junin (2009). However, the clinoptilolite with a larger particle size (7-9 mm) was not 

impacted by high COD loading (1% reduction in capacity) which indicates that when 

the surface area of the media is reduced then there is more competition for sorption 

sites and this is the predominant mechanism. An additional factor that may have 

caused an increase in NH4-N uptake across all media types is the use of glucose as 

a method of increasing COD concentrations in the experiments. The presence of 

glucose in the solution gives increased availability of carbon, providing surfaces 

within the solution in which nitrifying bacteria can grow (Carley and Mavinic, 1991). 

This resultantly reduces the NH4-N concentrations remaining in the solution following 

the completion of batch experiments.  



 

202 

 

 

Table 6.3 Summary table reporting the theoretical capacity of media through batch adsorption isotherms and kinetics studies of NH4-

N uptake of sand, char and clinoptilolite at a concentration of 200 mg NH4-N L-1. 

Media 
Particle 

size (mm) 

 Capacity at 200 mg NH4-N L
-1

 

Qe (mg/g) 

Impact on uptake capacity 

(%) 

Kinetic rate of adsorption (k2) (h
-1

) 

NH4-N 

only 

NH4-N and 

cations
a
 

NH4-N and 

organics
b
 

Addition of 

competing 

cations
a
 

Addition of 

Organic 

loading
b
 

NH4-N only NH4-N and 

cations
a
  

NH4-N and 

organics
b
 

Clinoptilolite 
0.7-1.6 12.2 9.3 13.9 23.8 (-) 13.9 (+) 0.725 1.013 1.524 

7-9 9.8 6.4 9.9 34.7 (-) 1.0 (+) 0.400 0.323 0.609 

Biochar 
1-2 5.0 4.8 5.1 4.0 (-) 2.0 (+) 0.464 0.557 0.377 

5.4-6 4.0 1.9 4.0 52.5 (-) 0.0 (+) 3.497 0.518 0.483 

Silica Sand 
1.2-2.4 2.0 - - - - 0.453 - - 

2.4-4 2.0 - - - - 0.680 - - 

a 
Competing cation solution (Ca, Na, K, Mg) created to replicate the high concentrations of competing cations found in anaerobic digestion effluents. 

b 
High organic loading (8000 mg COD L-

1
) in anaerobic digestion effluents were replicated by the addition of glucose. 
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6.3.2 Operational capacity in dynamic experiments 

Clinoptilolite had a 2.4 fold superior capacity in comparison to biochar under batch 

experimental conditions and was more suited to the recovery of NH4-N
 under 

challenging conditions presented in digestate liquors (200 mg NH4-N
 L-1 , 8000 mg 

COD l-1 and competing cations). For this reason clinoptilolite was selected for further 

experimental work into establishing design parameters.  

6.3.2.1 Empty Bed Contact Time 

Breakthrough curves at all EBCT had an idealised (S) shape (Figure 6.1), indicating 

that bed packing and hydraulic flow rates were sufficient and that channelling was 

not likely to be occurring. It is evident that as EBCT is increased the exhaustion 

curve becomes more drawn-out indicating greater sorption capacity by the biochar 

(Figure 6.1). Both the total bed volumes treated to breakthrough (5% C0) and 

exhaustion (95% C0) had a weak linear relationship to EBCT (r = 0.703, p = 0.011 

and r = 0.836, p = <0.001 respectively) (Figure 6.2). The fewer number of bed 

volumes until exhaustion at low EBCT (Figure 6.1) is a result of NH4-N ions flowing 

through the column before the complete exchange of ions with clinoptilolite is 

complete and was similarly observed by Demir et al. (2002) and Karadag et al. 

(2008). As a result, the total uptake of NH4-N by clinoptilolite was also positively 

correlated to EBCT (r = 0.899, p = < 0.001) with the capacity ranging from 5-60 g/kg 

dependent on the EBCT (Figure 6.3). The dramatic increase in media capacity was a 

result of increasing EBCT and was similarly observed by Sarioglu et al. (2005a) who 

reported an increase in clinoptilolite capacity by 248% when EBCT was increased 

from 9.8 to 38 mins. This was again attributed to contact time. 
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Figure 6.1 Exhaustion curves for clinoptilolite (0.7-1.6 mm) with a bed depth of 0.33m and a synthetic AD liquor with an influent 

concentration of 200 mg NH4-N L-1. 
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Figure 6.2 a) The effect of changing EBCT on breakthrough (Ce 5% C0) and exhaustion (Ce 95% of C0) of the media at 200 mg NH4-N L-1 

synthetic no solids solution. 
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This subsequently meant that the media usage rate was reduced when operating at 

longer EBCT (Figure 6.2); for instance at the shortest EBCT (20 mins) the media 

usage rate at exhaustion was 23 kg/m3 wastewater treated, however, at the longest 

EBCT (354 mins) the media utilisation rate was vastly reduced to 4 kg/m3
treated. 

Therefore operation at an extended EBCT would be beneficial in terms of extending 

service time as well as ensuring maximum efficiency (60 g NH4-N /kg clinoptilolite). 

However, the media utilisation rate in relation to EBCT (Figure 6.2) indicates that at 

an EBCT of ≥226 mins, the media utilisation rate flattens and the marginal benefit of 

operating at a longer EBCT is minimal in regards to maximising media efficiency. It 

was similarly observed by Jorgensen et al. (1976) that capacity increased with EBCT 

up to 120 mins, however this study was carried out at a reduced NH4-N 

concentration. There are limited studies that use long EBCT, as used in this study, 

most likely due to the intended application in high intensity configurations utilising 

regeneration, consequently there is a paucity of comparative literature values at 

these extended contact times. 

 

 

Figure 6.3 The effect of increasing EBCT on the NH4-N uptake of clinoptilolite when 

operated with a bed depth of 0.33m and a particle size range of 0.7-1.6 mm 
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6.3.2.2 Continuous and batch fed operation of clinoptilolite bed 

Minimal difference was observed in regards to the operational feed mode. Batch fed 

operation yielded slightly increased NH4-N uptake at both a 40 min EBCT (5.59 g 

NH4-N/kg vs 5.69 g NH4-N/kg) and 80 min EBCT (9.27 NH4-N/kg vs 9.62 NH4-N/kg). 

It is therefore likely that the effect of the feed regime is minimal at the range of EBCT 

operated at. The slight increase in NH4-N uptake by the media when operated in 

batch mode, can be attributed to greater turbulence and mixing as a result of batch 

fed loading, leading to improved mixing and contact between the solution and the 

media. 

6.3.2.3 Bed Depth 

The most efficient bed depth in regards to media utilisation rate is 0.11 m (Table 

6.4), this is primarily due to the reduced mass of media used (10.387 kg/m2) in 

comparison to that of deeper bed depths of 0.55-0.66 m (44.539 and 52.880 kg/m2 

respectively). Increasing bed height by 6 fold, increased the total uptake of the bed 

by 28% (Table 6.4), this was similarly the case in a study by Karadag et al. (2008) 

who reported an increase in 5% exchange capacity as a result of a 2 fold increase in 

bed height. This was unexpected as an increase in bed depth would provide an 

increase in the number of exchange sites, which should increase ammonium uptake. 

Others have investigated the influence of increasing bed depth without maintaining a 

consistent EBCT. For instance, Mashal et al. (2014) found that increasing bed depth 

from 0.1 to 0.4 m caused an increase in exhaustion times from 90 – 340 mins, 

however, hydraulic flow rates were not adjusted to maintain constant EBCT in this 

study and as EBCT is one of the key variants in capacity, comparison to these 

results is not appropriate.  

The reason for a limited increase in exchange capacity in this study could be 

accounted for by the increase in flow rate to maintain a consistent EBCT throughout 

all experiments. This would have caused irregularities in flow pattern at different bed 

depths and may not have allowed constant pattern behaviour to occur. However, a 

ratio of bed depth to column diameter of at least 2:1 was maintained and a 

Reynolds’s number of <10 was not reached at any bed depth (calculated Reynold’s 

number range of 0.030 to 0.178) which limits the effect of these factors on 
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experimental results (Martin et al., 2013). Nevertheless, the results indicate that bed 

depth does impact media uptake with a range of 5.52-22.25 g NH4-N/kg media 

(Table 6.4). However, the desired service time as well as the pressure drop within 

the bed is likely to predominate over the efficiency of the media at different bed 

depths (4.05-11.89 kg/m3
treated) (Table 6.4). Only a true economic analysis of the 

media cost, service cost and final market value of the fertiliser product will be able to 

determine the most efficient bed depth. 

 

Table 6.4 The effect of bed depth (0.11-0.66 m) on clinoptilolite performance when 

hydraulic flow rate is adjusted in order to maintain a consistent EBCT (80 mins). The 

media utilisation rate, the mass of media required in order to remove NH4-N mass per 

m3 of influent with a concentration of 200 mg/L NH4-N was subsequently calculated to 

the point of exhaustion (kg media/m3
treated). 

Bed 

depth 

BVs to 

breakthrough 

BVs to 

exhaustion 

NH4-N captured 

(mg) 

Media utilisation rate (kg NH4-

N/m
3
) 

0.11 16.93 67.00 4537 4.05 

0.22 14.32 60.71 3616 7.89 

0.33 20.90 56.04 3282 11.89 

0.44 28.96 102.56 3702 8.71 

0.55 12.62 164.93 5424 7.06 

0.66 12.59 188.12 5821 7.35 

 

6.3.2.4 Influent ammonium concentration 

The exhaustion curves with different influent NH4-N concentrations are illustrated in 

Figure 6.4. When the influent NH4-N concentration is decreased, the exhaustion 

curve is shifted to the right, indicating an increased sorption capacity (Figure 6.4).  It 

is also evident that exhaustion becomes less steep and vertical and becomes 

increasingly horizontal as the influent NH4-N concentration is decreased (Figure 6.4). 

This is also evident that as NH4-N concentration is increased, the rate of reaching 

the asymptote gets faster, that is, the rate constant gets smaller (reduction from 

1.00133 (standard error.0.000474) at 60 mg NH4-N L-1 to 0.98537 (standard error 

0.00237) at 200 mg NH4-N L-1: Figure 6.4).This indicates that NH4-N adsorption at 

high concentrations is faster and exhaustion is likely to be reached quicker. This 
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finding corresponds to theory, as it would be expected that the higher the 

concentration of NH4-N in the influent solution, the higher the solute gradient will be, 

meaning that it will provide the necessary driving force for replacement of cations by 

NH4-N ions within the same given contact time (Du et al., 2005). For instance, NH4-N 

uptake in a dynamic study by Dryden and Weatherley (1989) increased linearly with 

influent concentration, although this was carried out at lower concentrations and at a 

reduced range (1-5 mg NH4-N
 L-1) in comparison to this study (20-200 mg NH4-N

 L-1). 

Similarly, Mashal et al. (2014) observed an exhaustion curve that shifted to the right 

with increasing NH4-N concentrations (ranging from 15-50 NH4-N
 L-1). However, in 

dynamic experiments carried out by Karadag et al. (2008) only a slight drop in 

performance was measured when influent concentration was increased from 100-

200 mg NH4-N
 L-1, but, when concentrations were increased to 400 mg NH4-N

 L-1, a 

sharp decrease in bed volumes to exhaustion was recorded.  

An increase in influent NH4-N concentrations led to an increase in the LUB fraction 

from 0.38 at 20 mg NH4-N L-1 to 0.94 with an influent concentration of 200 mg NH4-N 

L-1. This demonstrates that a change in the concentration gradient affects the 

saturation rate of the clinoptilolite meaning that the diffusion process is concentration 

dependent. Therefore, as influent concentration increases, so does the driving force 

for mass transfer, causing the LUB fraction to increase (Barros et al., 2013). 

 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 100 200 300 400 500 600 700

N
H

4
+

 (
C

i/
C

0
) 

Total Bed Volumes 

60 mg/L: 1.00133 (se= 0.000474)

80 mg/L: 1.03154 (se= 0.00507)

100 mg/L: 0.99614 (se=0.00070)

150 mg/L: 0.98763 (se=0.00151)

200 mg/L: 0.98537 (se=0.00237)



 

211 

 

Figure 6.4 The effect of increasing influent ammonium concentration (60-200 mg NH4-

N L-1) on exhaustion curve shape in a dynamic continuous flow operation with a bed 

depth of 0.33 m and an EBCT of 80 minutes. Legend details exponential rate constant 

and standard error for each different NH4-N L-1 concentration group. 

 

6.3.3 Structural integrity of media 

Clinoptilolite experienced structural disintegration during dynamic experiments, with 

exhausted media displaying greater fracturing and signs of erosion in comparison to 

unused washed clinoptilolite (Figure 6.5). The greater pore depth and favourable 

adsorption characteristics depicted in the saturated clinoptilolite (Figure 6.5) can 

most likely be attributed to the presence of dust and fines on the unused media 

which is subsequently removed following saturation. The susceptibility to 

disintegration of clinoptilolite’s structural aggregates after wetting has also been 

reported by Nguyen and Tanner (1998). Disintegration of clinoptilolite during 

continuous flow operation causes increased amounts of pores to appear in the 

media (Figure 6.5), which has the benefit of increasing surface area for exchange 

sites which could be a contributing reason for increased capacity at greater EBCT 

(Figure 6.2). This factor was observed by Huo et al. (2012) as a result of pre-

treatment of clinoptilolite leading to increased NH4-N uptake. However, media 

disintegration also has the detrimental effect of causing clogging as particle dust and 

fines fill media voids and an inhibitory pressure drop within the media bed could be 

created. This factor is likely to be increasingly problematic when media is being 

regenerated and used over multiple cycles, and further promotes the use of 

clinoptilolite as a non-regenerative single use media. 
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Before clinoptilolite exhaustion  After clinoptilolite exhaustion 

 

 

 
   

 

 

 

Figure 6.5 Scanning electron microscopy (SEM) images of clinoptilolite (0.7-1.6 mm) before and after saturation in the media bed with 

a synthetic anaerobic digestion leachate solution (200 mg/L NH4-N, COD loading of 8000 mg L-1 with the addition of competing 

cations) with a bed depth of 0.33 m and an EBCT of 80 mins. 
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6.3.4 Design and scale up considerations  

6.3.4.1 Media selection and performance 

Clinoptilolite was established as the most appropriate media with a superior capacity 

to biochar (12.2 and 5.0 g NH4-N/kg respectively) through batch adsorption 

isotherms and kinetic studies. However, empirical data through column experiments 

is preferable to establish operational capacity and bed design parameters (Cooney 

et al., 1999). Clinoptilolite has the greatest NH4-N uptake capacity at long EBCT 

(Figure 6.2b), which is consistent with the literature (Jorgensen et al., 1976; Demir et 

al., 2002; Sarioglu, 2005b). However, no other studies have utilised such long EBCT. 

This is because in conventional ion exchange systems in wastewater treatment 

(utilising regeneration of the media on-site) it is rare to have such a protracted EBCT 

because the marginal gain of increasing contact time (20-354 mins) in order to 

reduce the media usage rate (23-4 kg/m3
treated) would not be considered worthwhile 

to merit the increased reactor volumes that would be required. In addition, as NH4-N 

removal treatment systems using ion exchange predominantly rely on media 

regeneration (Gupta et al., 2015), there is not usually the requirement to utilise the 

full capacity of the media and consequently when the effluent reaches a defined 

breakthrough concentration the process is stopped and the media regenerated. 

However, in a passive NH4-N recovery system utilising non-regenerative media, it is 

essential to have a completely saturated media in order to maximise its potential sale 

price as a fertiliser product. Consequently, operation at long EBCT (>226 mins) 

would be worthwhile in a passive recovery system utilising clinoptilolite as a non-

regenerative media. 

Increasing the clinoptilolite particle size from 0.7-1.6 mm to 7-9 mm caused a 25% 

reduction in NH4-N adsorption capacity. The uptake of NH4-N by clinoptilolite has 

also been observed to decrease by others with the increase in clinoptilolite particle 

size (Sprynskyy et al., 2005; Wang et al., 2006), and it is apparent that a smaller 

particle size has higher kinetic uptake rates (Table 6.1). However, there is a trade-off 

in regards to performance and practicality as the media bed is likely to be more 

prone to clogging, especially if the digestate liquor has solid matter present in the 

influent with 150-384 mg TSS L-1 reported in digestate liquor in sewage treatment 
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works (Fux et al., 2002; Mosquera-Corral et al., 2005) and 13-5000 mg TSS L-1 in 

landfill leachate (Renou et al., 2008)). The TSS present in waste streams may 

resultantly clog void spaces and result in an inhibitory pressure drop build up in the 

bed before the point of exhaustion has been reached. This means that finer grained 

material is more susceptible to clogging by solid matter than coarser grained material 

(Brune et al., 1994). Therefore, use of a larger particle size may be preferential 

despite reduced uptake capacity (9.3 and 6.4 mg NH4-N/kg in 0.7-1.6 mm and 7-9 

mm clinoptilolite particle sizes respectively). In order to reduce potential clogging 

problems further it could be beneficial to increase the media particle size to greater 

than the 7-9 mm tested, such as in gravel filters investigated by Peeling et al. (1999) 

and Paksy et al. (1998). However, this is not recommended and may be problematic 

as the majority of fertiliser products have a particle size of between 1.1-5.5 mm 

(Antille et al., 2013). It is therefore important to remain as close as possible to this 

range in order to be comparative to commercial fertiliser products and allow existing 

spreading equipment to be utilised.  

6.3.4.2 Passive media bed configuration 

If media beds were operated to the point of breakthrough (95% C0), the LUB fraction 

ranged from 0.32 to 0.90 dependent upon EBCT. Consequently, this means that at 

shorter EBCT the media is not being used optimally, which further promotes the use 

of clinoptilolite as a non-regenerative media and the operation of beds in series. 

Furthermore, in order to maximise the clinoptilolite’s NH4-N uptake capacity, the 

operation of media beds in series is necessary and will result in fluctuating NH4-N 

concentrations entering subsequent beds. Increasing influent NH4-N concentrations 

caused quicker rates of exhaustion (Figure 6.4): with bed volumes to exhaustion 

decreasing from 635 to 301 with an increase from 60 to 200 mg NH4-N L-1. In 

addition it was reported by Hankins et al. (2005b) (in up-flow dynamic column 

studies) that although clinoptilolite was able to tolerate NH4-N concentration 

disturbances, the system was likely to reach exhaustion faster than that of a non-

disturbance system. It was also observed by Nguyen and Tanner (1998) that NH4-N 

removed from wastewater by clinoptilolite was tightly held by the media and was not 

released when extraction was attempted with deionised water. This is beneficial as it 

means that media beds can operate in series and the subsequent flow through each 
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media bed will not cause desorption of NH4-N from the media to occur. Despite the 

use of multiple beds in series, periodic monitoring would also be required to establish 

when a bed within the series has reached full exhaustion and provide subsequent 

maintenance and flow redirection. This allows substantial flexibility in the design, for 

instance in regards to service time, however, it results in the system not being 

entirely passive in regards to servicing and monitoring.  

The EBCT was established as the most important factor influencing the design and 

operation of a clinoptilolite bed. This has been similarly observed by others when 

assessing clinoptilolite performance (Du et al., 2005; Karadag et al., 2008; Saeed 

and Sun, 2012). However, the extended EBCT investigated in this study have not 

previously been examined, which is important in the creation of a passive NH4-N 

recovery system. A bed depth of  ≥0.33 m is recommended in the design of a 

passive NH4-N recovery system, which means extensive land areas would not be 

required. Whereas, if a shallow bed depth was used, such as 0.11 m, a 3 fold greater 

land requirement would be necessary in order to maintain the most efficient EBCT 

(>226 mins). In addition the need for operation in series would further add to the 

system’s footprint with at least 2 beds in series, dependent on service time required. 

The most efficient operation (8.73 kg/m3
treated) was at an EBCT ≥ 226 mins which 

would give a hydraulic flow rate of 33.51 L/m2/day (with a bed depth of 0.33 m, with 

two beds in series). However, if an increased rate of flow was desired, an EBCT of 

80 mins could be used (efficiency rate of 20.28 kg/m3
treated), giving a daily flow rate of 

94.82 L/m2/day. These flow rates are low in comparison to conventional filtration 

treatment systems for final effluents from sewage treatment works: with reported 

values for slow sand filtration, rapid sand filtration and deep bed filtration at 720-

1140, 1920-4800 and 1920-7680 L/m2/day respectively (Tchobanoglous et al., 

2003). However, the values presented in this study, although lower in regards to 

system footprint, are feasible in comparison to other passive treatment systems, 

such as constructed wetlands with loading rates of 18-160 L/m2/day (Nivala et al., 

2013), so could consequently present a viable alternative for NH4-N recovery. 

Therefore, a non-regenerative bed of clinoptilolite for the recovery of NH4-N
 has 

potential for a broad range of applications. For instance, wastewater high in NH4-N, 
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that is produced in remote locations, at low hydraulic flow rates such as landfill 

leachate (0.2 m3/m2/year according to Rowe et al. (2000)) and the percolate fraction 

of sewage sludge dewatering processes such as sludge drying beds (2.4 m3/m2/year 

(Tchobanoglous et al. 2003)), could benefit from a passive nutrient recovery system 

that requires minimal construction, operation and maintenance costs and, through 

nutrient recovery, produces a high value fertiliser product. A clinoptilolite bed could 

also be incorporated into other existing passive systems. For instance, clinoptilolite 

has been combined with sand filters to retain low concentrations of NH4-N and 

effluent spikes that occur in domestic wastewaters (Ferguson and Pepper, 1987; 

Baykal and Guven, 1997). However, none of these studies aimed to utilise 

exhausted clinoptilolite, therefore missing the nutrient recovery dimension that can 

easily be achieved.  

Clinoptilolite is an abundant, low cost media, available extensively in countries such 

as China, Turkey and India at potentially viable prices (approximately 50-100 

$USD/tonne) (Shokrian et al., 2015). Through using passive NH4-N recovery 

systems the value of clinoptilolite could therefore be raised substantially due to the 

media now containing increased amounts of NH4-N (60g NH4-N/kg clinoptilolite). 

Through this, NH4-N can be recovered and concentrated on the clinoptilolite allowing 

subsequent storage before application at beneficial periods of the growing season, 

providing greater agronomic benefits as well as reducing leaching into watercourses. 

The high concentration of NH4-N on clinoptilolite resultantly reduces transportation 

costs of liquid digestate. The transport of liquid sludge is extremely expensive and a 

reduction in transportation costs in excess of 80% can be achieved if the sludge is 

dewatered and only the dewatered cake has to be removed (Thornton, 2007). In 

addition, saturated clinoptilolite contains 60 g NH4-N/kg clinoptilolite in comparison to 

the same NH4-N concentration found in the same mass of liquid digestate which 

contains only 0.02 g NH4-N/L. Consequently, the recovery of N through saturated 

clinoptilolite also has the essential element of concentrating N, allowing both storage 

as well as reducing the vast costs of haulage away from the digester site. 
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However, the finanacial value of the end product of the process (NH4-N saturated 

clinoptilolite) remains unknown due to uncertainties surrounding the extent of 

beneficial properties to agricultural soils when used as a soil conditioner (Malekian et 

al. 2011; Lija et al. 2012; Aainaa et al., 2014). Therefore, in order for a treatment 

process, such as is proposed to be implemented, further research would be required 

into how saturated clinoptilolite effects soil and plant chemistry, soil structure and the 

availability of N to crops. These essential research questions would enable tangible 

financial valuations to be made of the market value of saturated clinoptilolite. 

6.4 CONCLUSIONS 

In this study the potential for non-regenerative media to be used in a passive system 

for NH4-N recovery was investigated. Experiments were performed in batch mode to 

establish the more effective media to recover NH4-N
 from high strength liquors (such 

as digestate filtrate and landfill leachate). Clinoptilolite had a greater NH4-N
 

adsorption capacity to biochar (9.3 and 4.8 mg NH4-N/g media respectively) and a 

greater kinetic uptake rate (1.013 h-1 and 0.557 h-1 respectively) and, despite the 

high concentration of competing cations present in the wastewater, had preferable 

characteristics for this application. Dynamic column experiments were utilised to 

determine operational capacity with long EBCT (≥226 mins) established as the most 

important factor influencing media efficiency (23-4 kg/m3 wastewater treated). 

Dynamic experiments carried out at different NH4-N
 concentrations indicate that NH4-

N adsorption at high concentrations is faster and exhaustion will occur at a quicker 

rate. The effect of bed depth on NH4-N uptake was marginal, with the greater 

footprint required for shallow clinoptilolite bed depths preventing application in this 

form. The configuration of a passive clinoptilolite bed (0.33 m depth with an EBCT 

≥226 mins) operated in series is a feasible means for NH4-N recovery from high 

strength liquors and it’s potential for use in a wide range of applications is evident.
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ABSTRACT 

Anaerobic digestate is rich in nitrogen, phosphorus and potassium which are all 

nutrients required for plant growth. However, following dewatering processes 

the majority of the nitrogen and potassium is lost in the liquor fraction, leaving a 

biosolids product that, although rich in phosphorus, has unbalanced nutrient 

ratios and has a resultant low utility as an agricultural fertiliser. In this study we 

present a process to recover nutrients from digestate through the integration of 

an adsorption/ion exchange zone into a sludge drying bed, allowing the 

simultaneous dewatering and recovery of nutrients from the percolate fraction. 

The ability of biochar to capture ammonium in the configuration was limited with 

ammonium removal (13% removal) similar to that of a sand control (8% 

removal). In contrast, clinoptilolite performed optimally with ammonium removal 

rates of 62-99%, dependent on particle size and configuration. However, 

clogging of the media bed occurred rapidly (0.88-12.39 bed volumes) before full 

saturation of the media bed had occurred. A sacrificial sand barrier was 
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subsequently incorporated into the design to reduce media clogging (37-56 % 

TS removal) and intensify drying bed operation through the scraping of residual 

solids to prevent the onset of cake filtration (0.046-0.500 kg TS/m2). 

Clinoptilolite was successfully utilised as a non-regenerative adsorbent in an 

integrated nutrient recovery sludge drying bed design with a sacrificial sand 

bed. The exhausted clinoptilolite (saturated in ammonium and potassium) can 

either be utilised directly or blended with dewatered biosolids (high in 

phosphorus) to ensure complete nutrient recovery and create an enriched 

biosolids product. 

 

KEY WORDS 

Ammonium recovery, sludge drying beds, ion exchange, faecal sludge 

management, nutrient recovery, clinoptilolite 

 

HIGHLIGHTS 

 A process to enable complete nutrient recovery using sludge drying beds 

was proposed. 

 Clinoptilolite incorporated in bed profile to recover NH4
+ and K+ from 

percolate. 

 Recovery rate of 62-99% ammonium in effluent percolate when 

clinoptilolite used. 

 Sacrificial sand barrier needed to enable media saturation and intensify 

operation. 

 Saturated clinoptilolite and biosolids gives high value enriched fertiliser 

product. 
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7.1 INTRODUCTION 

Sewage sludge and faecal sludge (FS) are unavoidable by-products of 

wastewater treatment and on-site sanitation facilities. The average sewage 

sludge production in European countries is approximately 0.09 kg TS/cap/day-1 

(Brester et al., 1998). Anaerobic digestion (AD) is the most common means of 

treatment and stabilisation of sewage sludge in Europe (Fytili and Zabaniotou, 

2008) and is an expanding area for the decentralised treatment of faecal sludge 

in low income countries (Collins et al., 2013; Strande et al., 2014). The AD 

process breaks down pathogenic microorganisms, converts organic matter to 

methane (CH4) and carbon dioxide (CO2), and the residual solids (referred to as 

digestate) are rich in valuable nutrients (Speece, 2008). The effluent digestate 

can be utilised directly in agriculture as a liquid digestate (Paavola and Rintala, 

2008) or, alternatively, can be further refined in order to create products of 

increased value. This provides a distinct opportunity for cost recovery of 

treatment and collection processes, following the shifting paradigm away from 

what must be removed from wastewater to what can be recovered from 

wastewater (Guest et al., 2009). 

Nutrient levels in digestate are substantial, with the key plant fertilising nutrients 

nitrogen (N), phosphorus (P) and potassium (K) present. In effluent digestate, 

treating sewage and faecal sludge, large concentrations of ammonium-nitrogen 

(NH4-N) are reported at 200-700 and 520-1853 mg NH4-N L−1 respectively 

(Thornton et al., 2007b; Rose et al., 2015). In addition high levels of P and K 

have been reported at 154-1617 mg P L-1 and 390 mg K L-1 respectively 

(Parsons et al., 2001; Rose et al., 2015). Agricultural productivity relies heavily 

on N and P fertilisers in order to achieve high crop yields (Xu et al., 2012). 

Nitrogen fertiliser production amounted to 113 million tonnes in 2014, with 

forecasted growth of 1.4% annually until 2018 (FAO, 2015) and global 

phosphate rock production was estimated at 195 million tonnes in 2011 

(Watson et al., 2014). Additionally, the recovery of NH4-N also has global 

significance in regards to energy production and ecological drivers, with ~7% of 

the world’s natural gas production used in 1990 to fix atmospheric N to satisfy 

global demand, there is a requirement to save energy by using re-cycled 
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nutrients in agriculture rather than spend energy removing fertilising elements 

from wastewaters (McCarty et al., 2011). 

The direct application of anaerobic digestate to agricultural land is 

commonplace and does recover nutrients, however, prior to dewatering, 

digestate comprises > 90% water (Speece, 2008) resulting in high 

transportation and application costs. In addition, the spreading of liquid 

digestate can lead to the volatilisation and loss of ammonia (NH3) as well as 

contributing to pollution of waterways due to direct run off and leaching of nitrate 

(Kowaljow et al., 2010). The dewatering of AD effluents is therefore necessary 

to address these issues, such as through settlement or centrifugal processes, 

which increases TS concentrations to typically 25-35% TS (Holm-Nielsen et al., 

2009). However, within these dewatered biosolids it can be expected that 60-

80% of the original P content of the digestate will be maintained, but  only 11-

25% of the N and 10-15% of the K (Martin, 2005; Møller et al., 2006). The lack 

of N in dewatered biosolids therefore lowers its utility as an agricultural fertiliser 

and inefficiencies in nutrient recovery are presented. 

The increasing cost of artificial fertilisers (Heffer and Prud’homme, 2013) and 

low utility of biosolids in agriculture have given rise to recent research into 

enhancing biosolids to increase product value and reduce artificial fertiliser input 

requirements: for instance, Antille et al. (2013) investigated the coating of 

dewatered biosolids with urea to increase N content. This approach requires 

additional inputs of artificial fertilisers. However, if the substantial N and K 

concentrations lost during the dewatering process (75-89% N and 85-90% K 

(Martin, 2005; Møller et al., 2006)) could be recovered from liquors during the 

dewatering process and combined with the dewatered biosolids (already high in 

P) a complete fertiliser product could be generated with equal N-P-K 

proportions (e.g. 10-10-10 wt. %) as marketed in artificial fertiliser products 

(Lima et al., 2015). 

These factors create a need to develop a treatment process that will dewater 

AD effluents and recover and concentrate NH4-N and K+ to create a final 

product that can be added to P rich biosolids. Existing options for NH4-N 
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recovery from AD liquors requires the prior separation of solid and liquid 

fractions before recovery can take place. For instance, reverse osmosis, and 

other options, such as ammonia (NH3) air stripping, require acid to convert NH3 

to marketable fertilisers and both have high energy demands (Park and Kim, 

2015). Passive ion exchange and adsorption systems for NH4-N
 recovery in 

anaerobic liquors, has been identified as a feasible means of recovery with low 

energy requirements (Chapter 6). However, the effect of the high solids nature 

of digestate percolate is yet to be investigated.  

There are numerous methods of solid/liquid separation (e.g. centrifuge, screw 

or belt filter press); however, one of the simplest and least energy intensive 

processes are sludge drying beds which are the most widely used method of 

sludge dewatering in both low income countries such as Ghana (Koné and 

Strauss, 2004) as well as high income countries such as the United States 

(Tchobanoglous et al., 2003). However, sludge drying beds cannot operate in 

isolation; the percolate requires further treatment, often with the recirculation of 

effluents to the head of a sewage works (Abel, 1996). Alternatively, if anaerobic 

digesters are operating at a decentralised level away from wastewater 

treatment works (WwTW) (as is a growing trend in faecal sludge management 

(Gutterer et al., 2009)) then further treatment of percolate can be problematic. 

There is, therefore, a significant opportunity to modify sludge drying beds to 

make them a more efficient dewatering and nutrient recovering process and 

combining these two processes into one single process train could present 

substantial benefit. 

The predominant mechanism for dewatering in sand sludge drying beds is 

through percolation, with approximately 75% of water loss occurring through 

this mechanism (van Haandel and Van Der Lubbe, 2007). In order to capitalise 

on this factor, there is potential for inserting an adsorption or ion exchange zone 

into the drying bed profile in order to capture nutrients that would have 

previously been lost in the percolate stream. However, one of the greatest costs 

and complications of adsorption and ion exchange systems in wastewater 

treatment processes is the regeneration of exhausted media (Wang and Wu, 

2006), which requires increased infrastructure, expensive chemical regenerants 
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as well as final disposal issues for brine (Mormile et al., 1999). Synthetic ion 

exchange media, e.g. Mesolite, has a high purchase cost but a greater NH4-N
  

capacity (49 g NH4-N
  kg-1) (Thornton et al., 2007b), in comparison to abundant 

low-cost media, such as clinoptilolite (12.2 g NH4-N
  kg-1) which could be used 

as a non-regenerative media (Rose et al. 2015). This difference in media 

capacity will impact media bed life, with reduced treatment capacity by non-

regenerative media before servicing of the media bed is required. Nevertheless, 

a lower purchase price and operational cost make the use of non-regenerative 

media attractive. In addition, due to the large footprint of sludge drying beds 

(Dodane and Ronteltap, 2014), and resultantly low hydraulic flow rates of 

percolate liquors, the greater capacity of high cost regenerative media is 

unnecessary. Consequently, there is a strong driver for the use of non-

regenerative passive medias which, once saturated with nutrients, can be 

directly applied (or co-applied with biosolids) to agricultural soils.  

The integration of sludge drying beds and non-regenerative media to achieve 

complete nutrient recovery presents multiple challenges. Previous studies 

(Rose et al 2015) have investigated the operational capacity and configuration 

of non-regenerative media (biochar and clinoptilolite) without the interference of 

TS in digestate. However, the percolate of sludge drying beds will still contain 

substantial amounts of TS (5700-6100 mg TS L-1 with removal of 80-81% TS 

reported by Cofie et al. (2006)) which could prove problematic to ion exchange 

and adsorption processes. In sludge drying beds, the predominant mechanism 

for volume reduction is through percolation (50-80%), in which predominantly 

free water is lost, within a time span of 1-3 days (Heinss et al., 1999; 

Tchobanoglous et al., 2003; van Haandel and Van Der Lubbe, 2007). The 

remaining bound water is subsequently lost through evaporation but this is 

highly dependent on climatic conditions (temperature, humidity, wind) and takes 

substantially longer. Therefore, the percolation rate will be the primary 

mechanism controlling the rate of NH4-N recovery in an integrated sludge drying 

bed and nutrient recovery design.  

However, the rate of percolation will not be consistent throughout the drying bed 

cycle due to gradual build-up of TS on the surface of the bed, known as cake 
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filtration. The onset of cake filtration is important as it provides an indication as 

to the TS loading before cake filtration commences; resulting in the incremental 

build-up of solids retained on top of the filter medium, which subsequently 

provides the majority of filtration action but at a reduced hydraulic rate. 

Therefore, optimising the hydraulic and TS loading of drying beds to ensure 

optimal percolation rates is necessary in order to establish nutrient recovery 

rates and operational footprint. A full investigation into influencing factors, such 

as the onset of cake filtration and TS loading rates, is essential to establish an 

integrated nutrient recovery drying bed design. 

The aim of this study is to assess the feasibility of modifying sludge drying beds 

to incorporate a nutrient recovery zone in which non-regenerative media 

(biochar and clinoptilolite) will be used to capture and recover NH4-N and K+. In 

addition, the use of a sacrificial sand barrier to maintain media bed life and 

dewater P rich biosolids will be investigated. This study aims to present process 

design  information along with a discussion centred around the relative trade-

offs involved in the design and operation of the modified sludge drying bed 

concept. Specifically, the objectives are to a) establish the performance of a 

pilot scale media bed for the recovery of NH4-N
 and K+ from anaerobic 

digestate; b) determine the TS loading required before the onset of clogging 

commences at the media: sludge interface and on a sacrificial sand barrier; d) 

determine optimum TS loading rates in batch fed sludge drying beds; and e) 

propose design values for the operation of an integrated sludge drying bed and 

nutrient recovery system. 

7.2 MATERIALS AND METHODS 

7.2.1 Non-regenerative media description 

Clinoptilolite (supplied by RS Minerals Ltd., Cleveland, UK) was screened into 3 

fractions of 0.7-1.6 mm, 2-4 mm and 7-9 mm. The media was predominantly 

clinoptilolite (92%) with other clay minerals (5% smectite and 3% biotite) with a 

pH of 6.5-7.5, bulk density of 1.23 g/cm3, real density of 2.25 g/cm3, porosity of 

84.5% and a specific surface area of 41 m2/g. A deciduous mixed wood biochar 

(Biochar Foundation, Loanhead, UK) was used with production carried out 
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according to Ulyett et al. (2014). The biochar media had a pH of 10.2, C:N ratio 

of 117 and a cation exchange capacity of 66 cmol+ kg-1 (Ulyett et al., 2014). The 

char was sieved to particle sizes of 6, 4, 3.5,2, 1 mm. Silica sand (Garside 

Sands, Leighton Buzzard, UK) with particle size of 0.63-0.85, 0.9-1.18 and 2-

2.7mm was used. Gravel was used to enable under bed drainage and had a 6 

mm particle size. Before use, all media was rinsed with deionised water to 

remove impurities, before drying at 103°C. 

7.2.2 Anaerobic digestate used in experimental work 

The effluent from a continuous stirred-tank mesophilic anaerobic digester, with 

thermal hydrolysis pre-treatment, fed with sewage sludge from a WwTW (p.e. of 

288000) was used as a high solids anaerobically digested sewage sludge. The 

anaerobic digestate was diluted using tap water, in order to ensure the 

consistent presence of competing cations in the digestate dilutions according to 

Thornton et al. (2007a). This provided a range of total solids (TS) 

concentrations between 5000 - 50000 mg L-1 TS. 

7.2.3 Dynamic column studies with anaerobic digestate 

Digestate was used to determine the effect of high solids loading on the NH4-N , 

K and P recovery process with three columns used in parallel (inside diameter: 

0.15 m, length: 1.5 m: Figure 7.1) for the three different media types (sand, 

biochar and clinoptilolite). The anaerobic sludge was stored in a continuously 

stirred tank to prevent any settlement of solids occurring (Figure 7.1). Sludge 

was then pumped using a peristaltic pump (Watson Marlow, Falmouth, UK) to a 

gravity fed column with a fixed media bed volume of 8830 cm3 and surface area 

of 0.178 m2 (Figure 7.1). An empty bed contact time (EBCT) of 354 minutes was 

used and columns were operated continuously with free drainage until the bed 

clogged. A pressure trigger, defined as when there was >1 bed volume of 

influent sludge suspended above the surface of the media bed for a period >24 

hours, was used to signal that clogging had occurred and the end of each 

experimental run was indicated. The media bed depth (0.5 m) and volume 

(8830 cm3) remained constant throughout all experimental runs and was 

underlain by gravel (6 mm particle size) to support the media bed and enable 
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efficient drainage to occur (Figure 7.1). In order to investigate the effect of 

different particle sizes on filtration and nutrient capture, media beds were 

configured in two ways. Firstly, multilayer graded media beds were configured 

with the largest particle size at the top of the bed reducing in size to the smallest 

media particle size at the bottom of the bed (5.4, 2 and 1 mm in char; 2.35, 1.99 

and 1.5 mm in sand; and 7, 4 and 2.3 mm in clinoptilolite) in order to prevent 

clogging at the media: sludge interface, secondly one bed of a single particle 

size was used (2.35 mm, 5.4 mm, 7 mm in sand, biochar and clinoptilolite 

respectively).  All media configurations had a bed volume of 8830 cm3, a bed 

depth of 0.5 m and were supported by a gravel bed (6 mm particle size) of an 

equal proportion. Influent (Si) samples were taken daily from the feed tank and 

effluent (Se) samples from the base of each column (Figure 7.1) to determine 

removal efficiencies. 
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Figure 7.1 Experimental set-up for a) critical solids loading rates for the onset of 

cake filtration and b) dynamic studies investigating NH4-N uptake by sand, 

clinoptilolite and biochar. 

 

7.2.4 Sacrificial sand barrier 

7.2.4.1 Onset of cake filtration through continuous flow experiments 

The onset of cake filtration was determined on a sacrificial sand barrier with two 

different sand particle sizes (0.9-1.2 mm and 0.6-0.9 mm) and was established 

by operating a column (inside diameter: 0.05 m) with a bed surface area of 0.02 

m2 and a bed depth of 0.05 m (sand bed volume 98.17 cm3) in down-flow 

operation at a fixed flow rate of 5.64 L/m2/hour. Column effluent volume was 

continuously measured and the TS measured at 30 minute intervals. The critical 
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point in which sand beds were defined as clogged was when the volume of 

percolate exiting the columns was 10% of influent hydraulic flow rate. This 

process was repeated at 7 different TS concentrations (5000, 7500, 10000, 

12500, 15000, 17500, 20000 mg TS L-1) and experiments were carried out in 

duplicate. Influent sludge was continuously stirred to ensure no settlement took 

place prior to being pumped into each column using a peristaltic pump (Watson 

Marlow, Falmouth, UK). 

7.2.4.2 Batch fed solids loading 

The impact of using a sand barrier when carrying out batch-fed mode operation 

was assessed by establishing clogging rates, TS removal and percolation rates 

through the sand barrier. A column (inside diameter: 0.15 m) with a bed depth 

0.05 m (bed volume 884 cm3) with a sand (0.9-1.2 mm) and gravel drainage 

layer (0.1 m) used. Digestate (50000 mg TS L-1) was applied at 9 different 

hydraulic loads (68-750 L/m2) in order to provide 9 different TS loading rates (3-

30 kg TS/m2). The percolate was collected at the base of each column with the 

volume and TS concentration recorded regularly throughout the 32 day 

experimental run for each TS loading rate. 

7.2.5 Media clogging 

7.2.5.1 Combined media and sacrificial sand bed 

A column (inside diameter: 0.05 m) with a bed height of 0.33 m (bed volume 

590 cm3) of clinoptilolite (0.7-1.6 mm) was configured with a sacrificial sand 

barrier (0.9-1.2 mm) of  0.05 m depth routinely applied on top of the media 

(sand bed volume 98 cm3). The sacrificial sand barrier was removed along with 

dewatered solids every 24 hours (application rate of 1 BV of 0.5 % TS 

digestate/24 hours) and replaced with a new sand barrier. According to 

literature regarding TS removal in sludge drying beds (Cofie et al., 2006; van 

Haandel and Van Der Lubbe, 2007), the sacrificial sand barrier was not 

expected to achieve 100% TS removal. Therefore, in order to quantify clogging 

of the clinoptilolite media void spaces at different bed depths samples were 

extracted and solid matter was washed from the media and dried at 105°C 

according to Nivala et al. (2012). 
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7.2.6 Analytical procedures 

In all dynamic column experiments analysis was carried out in duplicate: NH4-N, 

K and P were all determined photometrically using a Spectroquant Nova 60 

(Merck-Millipore, Darnstradt, Germany). Chemical oxygen demand (COD), total 

solids (TS), total suspended solids (TSS), volatile solids (VS) was carried out in 

triplicate according to standard methods (APHA, 2005). Particle size distribution 

of digestate was measured through a laser diffraction particle sizer (Mastersizer 

2000, Malvern Instruments, Malvern, UK). Samples were pumped (60 mL min-1) 

by peristaltic pump (Model 505, Watson Marlow, Falmouth, UK) with the particle 

size distribution measurements replicated six times with the average and 

standard deviation values reported. The pH of all samples and solutions was 

measured directly by pH meter (model 3540, Jenway, Dunmow, UK).  

7.3 RESULTS AND DISCUSSION 

7.3.1 Influent digestate composition 

The particle size distribution of digestate used in all experiments is illustrated in 

Figure 7.2. All particles were >0.9 µm and <158.4 µm, with d (0.1), d (0.5) and d 

(0.9) values of 3.638 ± 0.036, 14.001 ± 0.1799 and 57.367 ± 2.014 µm 

respectively, which indicates that 10%, 50% and 90% of particles measured 

were less than or equal to the sizes stated. The d (0.5) values are within the 

range reported by Houghton et al. (2002) in digested sewage sludge (30.5-69.9 

µm) consisting of a range of different primary:waste activated sludge ratios, but 

are less than d (0.9) values (245.3-300.3 µm). This reflects the thermal 

hydrolysis pre-treatment step that was undertaken on the digested sludge used 

in this study, which breaks down larger particles present in sewage sludge 

through high temperatures and pressure (Higgins et al., 2011). This factor is 

likely to have caused the low d (0.9) values and caused a more homogenous 

particle size distribution in comparison to digested sewage sludge without 

thermal pre-treatment (Figure 7.3).  
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Figure 7.2 Particle size distribution of digestate from a mesophilic anaerobic 

digester fed with primary and waste activated sewage sludge utilising a thermal 

hydrolysis pre-treatment step. 

 

7.3.2 Dynamic column studies utilising digestate and non-

regenerative media 

7.3.2.1 Multilayer graded media bed 

The sand media bed had TS removal rates (43-65 % TS removal) within the 

range of biochar and clinoptilolite at all influent TS concentrations (Table 7.1). 

The sand filter beds in this study are therefore at the lower range of TS removal 

in conventional sand sludge drying beds with 60-70% TS removal (Drinan and 

Spellman, 2012).The graded media bed was constructed in order to provide a 

graded porosity throughout the bed depth and as the particles of the digestate 

in use were relatively fine (<57.367 ± 2.014 µm), the TS particles present had to 

impact on the walls of the channel and remain there by force (Matteson and Orr, 

1998). This process culminates with the rapid build-up of solids on the surface 

of the media, which was of a similar particle size and grading between media 

types, providing a cake filtration effect at the surface and resultantly similar 

filtration characteristics between all media types (Table 7.1). Similarly, COD 
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removal across all media types was consistent, primarily as it is a function of TS 

removal, as under the short experimental time periods in which the filter beds 

were operational (< 10 days), biofilm growth to facilitate organic removal by 

attached microorganisms was not likely to have developed (Mara and Horan, 

2003). The shorter operational time is also the reason why COD removal rates 

were lower in this study than other pilot scale sludge drying beds or filter bed 

systems, with 85-90% COD removal reported in a study by Cofie et al. (2006). 

The ability of biochar to capture NH4-N was limited with removal rates (13% 

NH4-N removal) that were similar to sand (8% NH4-N removal). The NH4-N 

removal rate of sand and biochar only increased when the TS concentration 

increased (2.5% TS) as a result of clogging occurring almost immediately 

(0.442 and 0.579 BVs until pressure trigger reached in sand and biochar 

respectively), resulting in a dense sludge cake layer forming rapidly and 

providing increased filtration action with 73% and 61% TS removal in biochar 

and sand respectively at 25000 mg TS L-1, in comparison to 45% and 51% TS 

removal at 5000 mg TS L-1. In addition, the formation of a substantial cake 

filtration layer reduced the hydraulic flow rate of the percolate, increasing EBCT, 

which is beneficial for NH4-N and other contaminant adsorption (Reungoat et 

al., 2012).  
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Table 7.1 Drying bed experiments utilising a column (id: 0.15 m, length: 1.25 m) fed with anaerobic digestate at three different TS 

concentrations (0.5 – 2.5 % TS). Media beds were configured with the largest particle size at the top of the bed reducing in size to the 

smallest media particle size at the bottom of the bed. Three different particle sizes were used in the beds; 5.4, 2 and 1 mm in char; 

2.35, 1.99 and 1.5 mm in sand; and 7, 4 and 2.3 mm in clinoptilolite. All media beds had a volume of 8.83 L, a bed depth of 0.5 m and 

were supported by a gravel bed (6 mm particle size) of an equal proportion. EBCT of 354 mins 

 (%) (L) (BVs/24 

hours) 

(%) (%) (%) (g NH4-N/m
3
 

media/day) 

(g NH4-N /g TS) 

Media Influent. 

TS 

Total 

BVs 

BVs/day TS removed COD removed NH4-N removed NH4-N removed NH4-N removed 

Char 0.50 14.781 5.439 -0.458 (0.117) -0.240 (0.168) -0.128 (0.048) 165.885 (43.934) 0.684 (0.345) 

Sand 0.50 11.573 11.573 -0.511 (0.101) -0.211 (0.378) -0.079 (0.044) 470.418 (706.889) 0.973 (0.450) 

Clinoptilolite 0.50 8.176 8.176 -0.542 (0.040) -0.253 (0.169) -0.950 (0.084) 750.109 (94.953) -0.996 (0.002) 

Char 1.50 4.593 1.690 -0.629 (0.231) -0.667 (0.239) -0.216 (228.138) 171.391 (17.472) 1.680 (1.009) 

Sand 1.50 2.756 1.014 -0.544 (0.270) -0.769 (0.155) -0.420 (173.047) 100.857 (125.148) 2.015 (1.237) 

Clinoptilolite 1.50 2.930 1.078 -0.434 (0.411) -0.864 (0.126) -0.999 (560.327) 148.476 (148.300) -0.997 (0.002) 

Char 2.50 0.579 0.579 -0.737 * -0.925 * -0.985 * 583.455 * -0.944 * 

Sand 2.50 0.440 0.440 -0.619 * -0.925 * -0.925 * 415.719 * -0.802 * 

Clinoptilolite 2.50 0.461 0.461 -0.654 * -0.993 * -0.999 * 471.184 * -0.998 * 

*No data available 
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The formation of a clogging layer at the surface of the media bed, commonly 

referred to as the schmutzdecke in slow sand and intermittent sand filtration 

(Muhammad and Hooke, 2003), is where complex microbial communities form 

in a biofilm and it is through this that the majority of NH4-N removal takes place 

(Gimbel et al., 2006). This is reflected in the higher removal rates in literature 

values for intermittent sand filtration systems (85-99% NH4-N removal (U.S. 

EPA, 1999; Rodgers et al., 2005; Healy et al., 2007)) in comparison to the sand 

filter used in this study (8-42% NH4-N removal). However, as this study was 

carried out at much higher hydraulic and TS loading rates (5000-25000 mg TS 

L-1) (EBCT 354 minutes), and over a shorter time period (<10 days) this did not 

allow time for biological nitrogen removal to take place and can explain the 

reduced NH4-N
 removal rates by sand beds in this study. 

However, NH4-N
 recovery relies on biological nitrogen removal not taking place, 

with alternate uptake mechanisms used by non-regenerative media. It was 

previously reported that the NH4-N
 uptake capacity of biochar is 5 mg NH4-N/g 

at a 200 mg NH4-N L-1 concentration under batch conditions (Rose et al. 2015) 

and 3-5.3 mg NH4-N /g dynamic conditions (Sarkhot et al., 2013). However, 

when under dynamic experimental conditions with the presence of TS in the 

percolate (357-3019 mg TS L-1), the performance of biochar was significantly 

hindered (Table 7.2). As the main mechanism for NH4-N adsorption by biochar 

is physical adsorption (Halim et al., 2010), in a filter bed system, when digestate 

is applied, the TS matter in the percolate clogs the porous structure of the 

biochar and prevents the physical uptake of NH4-N by pores in the media. This 

makes biochar an unsuitable media for applications in, for example, an 

integrated nutrient recovery sludge drying bed, where substantial interference 

from TS in the percolate will take place. 
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Clinoptilolite’s NH4-N removal efficiency was substantial at all TS loading rates 

(5000, 15000, 25000 mg TS L-1) with average removal rates of 95%, 99% and 

99% NH4-N respectively (Figure 7.3), indicating that the ion exchange process 

was not adversely impacted by the high solids nature of digestate percolate. 

Removal rates increased following day one (Figure 7.3) due to the blocking 

filtration action of TS filling media void spaces, followed by the partial onset of 

cake filtration. The high removal rate in the graded bed configuration (95-99% 

NH4-N
 removal) concurs with findings that the predominant mechanism for NH4-

N recovery in clinoptilolite is cation exchange (Demir et al., 2002; Hankins et al., 

2005; Wang et al., 2008), rather than adsorption, and the effect of TS on the 

surface charge density of the clinoptilolite particles is not detrimental to the 

performance of the clinoptilolite. For this reason, clinoptilolite is a robust media 

and is highly suitable for NH4-N and K+ recovery in a sludge drying bed 

configuration. Nevertheless, low hydraulic loading rates, before clogging of the 

media bed occurred (0.46-8.18 total BVs), were still prevalent despite operation 

at long EBCT (354 minutes) (Table 7.2). This is significant due to the substantial 

potential capacity of clinoptilolite: with a capacity of 60 g NH4-N /kg and >80 bed 

volumes of percolate required before full capacity of the media is obtained at an 

influent concentration of 200 mg L-1 (Chapter 6). 
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Figure 7.3 a) Influent, effluent and % removal by clinoptilolite (graded particle 

size media bed with larges media size on the top of the bed: 7, 4 and 2.3 mm , 

bed depth of 0.5m) with a flow rate of 3.01 BVs/day and 8.17 BVs in total being 

fed by influent TS concentration of 5000mg.L. b) NH4-N removal by clinoptilolite 

media (particle size of 7mm, bed depth 0.5m) with a flow rate of 4.083 BVs/day 

and 15.3 bed volumes in total being fed by influent TS concentration of 5000 

mg.L-1. 
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7.3.2.2 Single layer media bed 

In order to minimise media clogging and maximise contact between the sludge 

and media, the largest clinoptilolite particle size (7-9 mm) was utilised (Table 

7.2). At the lowest TS loading rate (5000 mg TS -1), the largest volume of sludge 

was treated (12.39 BVs) but with the lowest NH4-N recovery efficiency (62% 

removal). However, at the highest TS loading rate (25000 mg TS L-1), the 

greatest NH4-N recovery efficiency was reached (99%) but a reduced volume 

was treated (total 0.87 BVs). This is due either to the onset of cake filtration at 

the media: sludge interface or the blocking of void spaces throughout the media 

bed occurring quicker with the high solids effluent. This has the effect of 

increasing the pressure drop within the column and reducing the hydraulic flow 

rate of percolate through the media bed, resulting in a longer EBCT, which 

increases media uptake rates (Rose et al. 2015). Although NH4-N recovery 

efficiency was substantial at all TS loading rates, the total bed volumes (BVs) of 

percolate treated (0.88 – 12.39 BVs) were substantially lower than the BVs of 

percolate required to reach exhaustion of the clinoptilolite media (50-183 total 

BVs dependent on EBCT (Rose et al. 2015)). This factor promotes the need for 

either a TS reduction process prior to the media bed or an integrated TS barrier 

to prevent clogging of the bed and allow the full utilisation of the media to take 

place. 
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Table 7.2 Average removal efficiency of clinoptiolite beds fed with anaerobic digestion effluent  at a range of TS concentrations (0.5 – 

2.5 %) with a media configuration of a single fixed bed of clinoptilolite with a particle size of 7-9mm. The media bed had a volume of 

8.83 L, a bed depth of 0.5 m and were supported by a gravel bed (6 mm particle size) of an equal proportion. EBCT of 354 mins. 

(%) (L) (L/24 h) % (-) % (-) % (-) (g NH4-N /m3 

media.d) 

% (-) (g NH4-N /g 

TS) 

% (-) % (-) 

Influent 

TS 

Total 

BVs 

BVs/d TS removed COD 

removed 
NH4-N removed NH4-N removed NH4-N removed P removal 

 

K removal 

2.5 0.875 0.322 88.1

94 

(0.03

9) 

90.4

25 

(0.05

4) 

99.7

99 

(0.002) 646.

578 

(337.945) 97.530 (0.321) 94.58

5 

(0.027

) 

92.144 (0.0
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7.3.3 Sacrificial solids barrier to protect media bed 

7.3.3.1 The onset of cake filtration under continuous flow conditions 

The critical point at which the onset of cake filtration occurred (percolate <10% 

influent hydraulic flow rate) in the sand barrier ranged from 0.070-0.320 kg 

TS/m2 with the smaller sand particle size (0.6-0.9 mm) and from 0.046-0.500 kg 

TS/m2 when a larger sand particle size was used (0.9-1.2 mm) dependent on 

digestate TS concentration (0.5-2% TS) (Figure 7.5). The flow of TS matter 

through a sacrificial sand filter, as well as the subsequent rate at which cake 

filtration commences, is therefore dependent on the particle size of the sand. 

However, the particle size distribution of TS in the digestate is also important: 

as the particle size of the digestate is fine (<158.4 µm) and highly homogenous 

(Figure 7.2), physiochemical filtration is therefore likely to predominate over 

mechanical filtration, which prevails when larger particles are present (Herzig et 

al., 1970). The time for a sludge cake filtration layer to develop is within the 

reported range of TS loading rates for sludge drying beds (0.18 kg 

TS/m2/application according to Tchobanoglous et al. (2003)), indicating that a 

mixture of both physical filtration by sand and sludge cake filtration occurs 

within a conventional sludge drying bed.  

7.3.3.2 Solids removal before and after the onset of cake filtration 

The mean TS removal rate of the sand barrier was 48% and 44% in the small 

and large sand particle size respectively (Figure 7.5). The difference in critical 

clogging points between different particle sizes (average values of 0.12 and 

0.06 kg TS/m2 in the large and small sand particle size respectively) can be 

attributed to the difference in void size as it will require an increased mass of TS 

in order to bridge larger pore sizes (0.9-1.2 mm sand) than smaller pore sizes 

(0.6-0.9 mm sand).  The TS removal before the onset of cake filtration was 

within a narrow range across media sizes and the range of influent TS 

concentrations (37-56 % removal). Similarly, following the commencement of 

cake filtration the TS concentration was consistent across all influent TS 

concentrations independent of influent TS concentrations with values in the 

percolate between 1193-2653 mg TS L-1(Figure 7.4). This differs to findings by 
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Wett et al. (2005) who reported increased filtration efficiency at higher influent 

TS concentrations in the filtration of sewage sludge by geotextiles. The 

difference to this study can be accounted for by the different filter mediums 

used and also by the difference in particle size distribution of the sewage sludge 

used, which was from a septic tank system which will have a larger more 

heterogeneous particle size distribution (Vincent et al., 2011) than the sludge 

used in this study, meaning that the onset of cake filtration is likely to be 

reached quicker. 

 

 

Figure 7.4 Total solids concentration of sand filter barrier (particle size 0.63-0.85 

and 0.9-1.2 mm: 0.05 m bed depths) effluent before and after the onset of cake 

filtration (defined as when effluent percolate flow is < 10% of influent flow. 

Influent flow was consistent at 22.5 L/m2/hour and was repeated at a range of TS 

concentrations (5000-20000 mg TS L-1). 
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7.3.3.3 The onset of cake filtration in clinoptilolite 

The particle size of the media directly impacts the NH4-N adsorption capacity of 

the media (Rose et al. 2015); however, the particle size will also affect the 

speed in which a sludge cake layer will form on the media surface due to 

increases in particle void space. Clinoptilolite with a smaller particle size (0.7-

1.6 mm), had a reduced TS loading capacity before the onset of cake filtration 

(with an influent 10000 mg TS L-1 concentration), than the larger (7-9 mm) 

media size (0.23 and 0.43 kg TS/m2 respectively). The larger clinoptilolite 

particle size (7-9 mm) could therefore be loaded with 48% more TS than the 

smaller particle size (0.7-1.6 mm) before the onset of cake filtration. It was 

similarly observed by Brune et al. (1994) that finer grained material was more 

susceptible to clogging than coarser grained material when studying particle 

size ranges of 2-4,4-8, 8-16, 16-32 mm. Values of this study regarding 

clinoptilolite clogging (0.7-1.6 mm) are comparable to values of clogging in sand 

of 0.9-1.2 mm and 0.6-0.9 mm particle size (0.43 and 0.11 kg TS/m2 

respectively), demonstrating that over the initial period of filtration, the filtering 

mechanisms, through straining (fluid and gravitational forces) of clinoptilolite, 

are similar to that of sand when the same hydraulic and TS loading is applied.  
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Figure 7.5 The total solids loading on a sand filter barrier (particle size 0.63-0.85 and 0.9-1.2 mm: 0.05 m bed depths) before the onset 

of cake filtration (effluent percolate flow rate is < 10% of influent flow rate). Influent flow rate remained at 22.5 L/m2/hour and was 

repeated at TS concentrations between 5000-20000 mg/L TS. Average TS removals before the onset of cake filtration are illustrated 

for each TS concentration. 
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7.3.3.4 Batch fed solids loading of sacrificial sand barrier 

The physical process of filtration by the sand barrier has an idealised blocking 

filtration model shape (Figure 7.6), meaning that if the flow rate is constant, the 

pressure drop increases exponentially with the quantity filtered, with the number 

of void spaces approaching zero (Ripperger et al., 2012). Following initial 

blocking filtration, cake filtration subsequently commences and it is assumed 

that TS is deposited on the filter medium as a homogenous porous layer with a 

constant permeability (Sparks, 2011). Therefore, if flow rate is constant, the 

pressure drop will increase linearly, proportional to the quantity of solids 

deposited (Figure 7.6). 

Cumulative percolate volumes varied according to TS loading with a range of 

35-167 L/m2 (Figure 7.7). A spike in the concentration of the effluent TS can be 

observed on day one of the 32 day percolation cycle, however, once cake 

filtration has commenced, effluent TS concentrations remain consistent and 

within a narrow range (3532-13791 mg TS L-1) (Figure 7.7). Greater than 50% 

of total percolation occurred on average within 27 hours (range of 15-60 hours), 

however, during this time period the highest concentrations of TS in the effluent 

were also present (Figure 7.7). This represents the time when blocking filtration 

is ongoing and physical filtration by the sand is the predominant mechanism. 

However, after cake filtration has commenced, this becomes the predominant 

method of filtration, with greater TS removal but at a reduced hydraulic rate 

(Figure 7.7).  

The rate of percolation is therefore dependent on the TS application rate (Figure 

7.7) but once cake filtration has commenced it will be independent of the 

particle size of the sand (or media) bed due to the increase in pressure drop 

that is a result of a build-up in the cake filtration layer. Total percolation volumes 

were less than theoretical values of dewatering times stated by Van Haandel 

and Van Der Lubbe (2007), who calculated that 75% of the water content is lost 

through percolation in sand sludge drying beds and it was estimated by Wang 

et al. (2010) that 60-80% of sludge water is drainable dependent on the extent 

of digestion that the influent sludge has undergone. Therefore, the wide range 
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of applied water collected in the percolate (10% - 71% of the water content 

applied) in this study is at the lower end of these theoretical values, largely due 

to the wide range in TS loading rates (3-30 kg TS/m2) utilised in this study. 

However, in pilot scale studies of sludge drying beds by Cofie et al. (2006) it 

was reported that between 39-79% of sludge loaded on drying beds was 

present in the percolate fraction. These values are within those of this study and 

illustrate the varied nature of dewatering in the drying bed process. 

 

 

Figure 7.6 The physical filtration characteristics of a sand (0.9-1.2 particel size) 

filter barrier (0.05 m bed depth) batch fed with digestate at solids loading rates 

between 3-37 kg TS/m2. 
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Figure 7.7 Batch fed percolation rate through sand bed (inside diameter: 0.05 m, bed height: 0.05 m) with a particle size 0.9-1.2 mm 

with varying hydraulic batch loads of anaerobic digestion effluent at TS. 
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7.3.3.5 Solids accumulation within integrated sand barrier and media bed 

A clinoptilolite media bed with a sacrificial sand barrier was utilised in down-flow 

experiments. After 25 BVs of sludge (0.5% TS) the clinoptilolite bed was defined as 

clogged, due to percolation not being complete after 24 hours. The removal 

efficiency of NH4-N by the sacrificial sand bed and clinoptilolite within the column 

was > 99%, with 5 mg NH4-N/g media recovered. This value is still significantly lower 

than the theoretical operational capacity without solids interference (60 mg NH4-N/g 

media (Chapter 6)), due to there being significant unused capacity of media in the 

bed before clogging took place. Accumulation of TS within the vertical profile of the 

bed illustrates that there was a positive linear correlation between TS accumulation 

and bed depth (r = 0.949, p = 0.03). This factor suggests that the majority of TS was 

being washed through the media bed and accumulating at the base of the bed where 

there was increased resistance to TS movement out of the column effluent port. This 

corresponds to work by Rowe et al. (2000) who found that the greatest accumulation 

of clogging materials (organic and inorganic) was near the leachate collection pipe in 

experimental work examining landfill leachates. However, results of the present 

study are in contrast to findings by Lianfang et al. (2009), who reported the majority 

of clogging occurred within the top 0.15 m of the bed depth in lab scale column 

experiments simulating clogging of a vertical flow constructed wetland made up of 

coarse sand above gravel. This difference can again be attributed to the particle size 

distribution of the digestate in use: consisting of fine particle sizes, with d (0.9) 

values of 57.367 ± 2.014 µm, in comparison to other types of sewage sludge and 

wastewater commonly applied to wetlands. 

7.3.4 Design Considerations 

7.3.4.1 Mechanisms and trade-offs in sludge drying beds and nutrient recovery  

Sludge drying beds have a notoriously large footprint with low TS loading rates of 

120-150 kg TS/m2/year for the treatment of digested primary sludge (Tchobanoglous 

et al., 2003) and 196 -321 kg TS/m2 for faecal sludge in Ghana (Cofie et al., 2006). 

Reducing footprint and increasing the rate of treatment is also essential in achieving 

nutrient recovery, as over conventional drying bed cycles (2-6 weeks according to 

Wang et al. (2010)) there is the potential for nitrification to commence (Mara and 
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Horan, 2003) which would not recover the N present in the percolate, which is the 

primary objective. The main mechanisms of dewatering in sludge drying beds can be 

described through filtration theory (Sparks, 2011; Ripperger et al., 2012): dewatering 

commences through rapid filtration action by the drying bed media (Figure 7.5). This 

is followed by blocking filtration until the onset of cake filtration (Figure 7.6), at which 

point the dewatering rate slows substantially (Figure 7.7). 

Clinoptilolite proved a resilient media that can operate effectively despite high TS 

(1193-2653 mg TS L-1) and competing cation concentrations (mean electrical 

conductivity value of 16746 µS/cm) in the percolate of drying beds (with 62-99% 

NH4-N recovery rates). However, the use of non-regenerative passive media relies 

on increasing the media value, which only occurs if clinoptilolite is fully saturated 

(>80 BVs according to Rose et al. (2015)). The full saturation of media was not 

achieved in any of the configurations tested in this study without utilising a sand 

barrier, with a maximum of 14.7 bed volumes treated. It is consequently evident that 

the limiting factor of the proposed system is not the performance and capacity of the 

media but instead it is a hydraulics issue of enabling sufficient contact between the 

percolate and the media without the media bed becoming clogged. 

7.3.4.2 Process options for nutrient recovery and sludge drying beds 

7.3.4.2.1 Clinoptilolite as a direct replacement to sand in sludge drying beds 

The performance of clinoptilolite as a filter medium was equally comparable to sand 

in regards to TS, COD and P removal (Table 7.2), consequently, clinoptilolite could 

directly replace sand in sludge drying beds, with the benefit of recovering NH4-N
 and 

K+. However, this would present inefficiencies in unused media capacity. The use of 

non-regenerative media is only beneficial if the product can be suitably enriched 

before re-sale (Cucarella et al., 2007; Kõiv et al., 2012). Therefore, if media is being 

removed before its full capacity has been reached, this would no longer present a 

cost efficient proposal. It is for this reason that either a prior solid/liquid separation 

process step, for instance waste stabilisation ponds, or the use of a low cost barrier 

to reduce the movement of TS into the media bed, is necessary to the integrated 

nutrient recovery sludge drying bed design. 

7.3.4.2.2 Integrated nutrient recovering sludge drying bed and sacrificial sand barrier 
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Other researchers have achieved the intensification of sludge drying beds through 

the use of increased solar drying conditions: for example, researchers have 

investigated the use of greenhouse solar drying and enhancing ventilation to improve 

drying times (Seginer et al., 2007) and others such as Radaidah et al. (2011) 

achieved a 30% reduction in drying times through the use of solar heated water 

pipes running through conventional sludge drying beds. These methods of 

intensification all predominate around the evaporation step and the removal of bound 

water from the sludge through increased evaporation. However, digestate is 

predominantly composed of free water as AD causes bound water to be partly 

converted to free water due to decomposition and cell lysis (Luo et al., 2013). The 

high fraction of free water is reflected in this study by the high rates of percolation 

achieved (Figure 7.7) when minimal evaporation was taking place due to the sealed 

nature of the filter columns (Figure 7.1). Therefore, the intensification of drying beds 

can also be achieved through de-coupling the two main processes of free water 

removal in sludge dewatering: initial percolation, in which over 50% of total percolate 

volume occurs on average over the first 1.14 days, and the subsequent cake 

filtration step, where percolation rates are substantially reduced (Figure 7.7a). Bound 

water in digestate will not contribute to the nutrient recovery process and could 

subsequently be carried out in a separate conventional drying bed as this relatively 

small water fraction is harder to separate and evaporation or disruption of the cells is 

required for moisture removal. 

If semi-dewatered solids (15-25 % TS), with the remaining bound water present, 

were scraped from the surface of the sacrificial sand barrier following completion of 

the initial percolation step (0.5 kg TS/m2: Figure 7.5), then loading rates could be 

increased by 35 % allowing greater saturation of the clinoptilolite bed before the 

commencement of biological nitrogen removal. A sacrificial sand barrier would 

provide a semi-dewatered material containing phosphorus (4.28% P TS) and carbon 

(32% C TS), providing benefits to agricultural soils such as improving microbial 

communities, micronutrient availability and soil structure (Lu et al., 2012). There is, 

subsequently, the potential benefit of co-application of dewatered solids with the 

saturated clinoptilolite beneath the sand barrier, creating a balanced fertiliser product 
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with consistently high and controlled NH4-N and K+ content which is often a limitation 

in the valorisation of dewatered digestate (Antille et al., 2013). 

The use of a sacrificial sand bed with the scraping of semi-dewatered solids after the 

initial percolation step is complete, provides multiple benefits. It would allow process 

intensification by utilising TS application rates of 3 kg TS/m2/day (Figure 7.7) and 

utilising daily scraping of the bed surface, TS loading rates could be increased from 

conventional loading rates of 120-150 kg TS/m2/year (Tchobanoglous et al., 2003) to 

1095 kg TS/m2/year. A sacrificial sand bed also prevents an inhibitory pressure drop 

occurring from TS blocking media void spaces, reducing TS movement into the 

clinoptilolite bed (34-65 % TS removal in continuous fed systems and 65-98% TS 

removal in batch fed operation). In addition, in batch fed systems, a sand barrier will 

reduce the hydraulic flow of digestate through the media bed beneath, improving 

NH4-N recovery due to an increase in EBCT.  

However, it should be noted that through the intensification of sludge drying beds, 

the removal of the cake filtration layer is likely to cause a decrease in the process 

performance of drying beds, as TS reduction is substantially greater once cake 

filtration has commenced (Figure 7.4). This factor was similarly observed by Koné et 

al. (2007) who reported reductions from 5600 to 3600 mg COD L-1 and from 600 to 

290 mg TSS L-1 between the first day and last day of a drying cycle on pilot scale 

sludge drying beds. The cake filtration component is therefore an attribute in regards 

to pollutant removal but a constraint in regards to loading rates and nutrient 

recovery. 

Despite this, the regular removal and reapplication of a sacrificial sand bed will be 

beneficial in regards to reductions in drying bed performance following repeat 

applications. For instance, Cofie et al. (2006) reported a dewatering time of 11 days 

on the third application cycle, which was only 73% and 50% complete after the same 

time in subsequent cycles 4 and 5. The use of a sacrificial sand bed could, therefore, 

be used to reduce footprint and increase the rate of nutrient recovery and is a 

feasible means of extending bed life over repeat applications. This would in turn 

allow complete nutrient recovery to take place with both the solid and liquid percolate 

fractions fully utilised.  
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7.4 CONCLUSIONS 

This study has conducted a series of experiments in order to establish the design of 

an integrated sludge drying bed and nutrient recovery system utilising non 

regenerative media.  

 Clinoptilolite can effectively be used as part of a sludge drying bed 

configuration to capture NH4-N
 from digestate percolate under high solids 

loading conditions and the saturated media can be used directly as a high 

value fertiliser product presenting a complete nutrient recovery process in an 

integrated nutrient recovery drying bed design. 

 Dewatering in sludge drying beds commences through rapid filtration action 

by the drying bed media. This is followed by blocking filtration until the onset 

of cake filtration occurs. As a result, matching the dewatering mechanisms of 

sludge drying beds to the uptake capacity of clinoptilolite presents the primary 

challenge in balancing TS loading rates and nutrient recovery. 

 The use of a sacrificial sand bed, that can be scraped away with the 

accumulated TS after initial blocking filtration is complete, will substantially 

reduce the large footprint of conventional sludge drying beds and enable the 

full saturation of the clinoptilolite media bed to take place. 

 The combined dewatered solids (high in P) can then be blended with the 

media beneath (saturated in NH4-N and K+) to create an enriched biosolids 

product with balanced nutrient ratios for agricultural application. 
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8 THESIS DISCUSSION 

Household sanitation services in low income countries are predominantly provided 

through off-grid on-site sanitation (OSS) facilities, with more than 2 billion urban 

dwellers using facilities such as pit latrines and septic tanks for excreta and 

wastewater management (Kone, 2010). These facilities differ substantially to that of 

water-borne piped sewage networks and subsequent waste water treatment works 

(WwTW) that prevail in high income countries. The sewage of water-borne piped 

networks is well characterised (Tchobanoglous et al., 2003) but there is a paucity of 

information regarding the composition of the residual waste of OSS facilities (faecal 

sludge), which consequently hinders the advancement and development of 

downstream treatment and resource recovery processes for FS (Niwagaba et al., 

2014). Faecal sludge containment, treatment and resource recovery requires simple 

treatment flow sheets in order to meet the challenging socioeconomic conditions that 

prevail in low income countries. This has led to a surge in research aimed at the 

advancement of OSS facilities, treatment mechanisms and resource recovery 

processes for FS. High rate AD has been identified as a treatment mechanism that 

can provide safe FS stabilisation (Collins et al., 2013) and resource recovery will 

take place through methane (CH4) capture. However, digestate, rich in nutrients, is 

often underutilised with impracticable nutrient recovery products created and this is 

where previous studies have been insufficient in providing a solution that addresses 

the need for simple treatment processes combined with effective nutrient recovery. 

This research commenced with a review reporting current knowledge of the physical 

and chemical composition of faeces and urine. It was hypothesised that variation in 

production rates, physical and chemical composition could be accounted for by 

human factors such as diet and also that composition will directly influence the 

selection, design and development of new OSS technologies. Following this, waste 

characterisation was undertaken in order to establish the physical, chemical and 

biological characteristics of a range of different types of faecal sludge from OSS 

facilities (pit latrines, un-sewered public toilets and portable toilets). It was 

hypothesised that any variation that occurred across different OSS facilities could be 

attributed to differences in facility types, including retention time and storage 
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conditions within the OSS facility. The FS characterisation data collected also 

enabled the establishment of a baseline of FS composition and AD as a treatment 

process was evaluated. 

In order to assess the digestibility of FS, operation of laboratory scale biochemical 

methane potential (BMP) assays enabled the quantification of CH4 production for 

each FS substrate. The residence time in the OSS facility was hypothesised to 

impact BMP values of FS, with shorter residence times (<4 days in portable toilets) 

resulting in greater BMP values than OSS facilities with greater residence times (1-

10 years in pit latrines). To elucidate the lower (<95% of average values) CH4 

production observed in 30% of portable toilets tested, the toxicity of the chemical 

toilet additives, which was hypothesised to cause CH4 inhibition, was calculated 

through an assessment of the toilet chemical’s active ingredients (glutaraldehyde 

and bronopol) half maximal inhibitory concentration (IC50) values.  

Nutrient analysis of FS was carried out to enable nutrient recovery pathways to be 

evaluated and allow the informed selection of the primary target for nutrient recovery, 

NH4-N. It was hypothesised that through the identification of current secondary 

treatment processes and feasible nutrient recovery technologies that are suitable for 

the challenging socio-economic conditions of low income countries, the identification 

of a potential nutrient recovery system could be established. This led to the 

identification of sludge drying beds and adsorption/ion exchange processes for the 

recovery of NH4-N, as well as the need to develop simple treatment flow sheets. 

These factors culminated in the research hypothesis that sludge drying beds could 

be modified by having suitable media incorporated into the drying bed configuration 

in order to achieve simultaneous dewatering and nutrient recovery. 

Each individual component of this concept was tested under controlled conditions 

with three different media (sand, biochar and clinoptilolite) using a synthetic solution 

replicating digestate, as well as at greater scale using digested sewage sludge. 

These tests allowed the suitability of the media to recover NH4-N as part of a sludge 

drying bed configuration to be assessed. It was hypothesised that high 

concentrations of cationic ions (>50 mg L-1 Ca, Mg, Na, K), organic matter (8000 mg 

COD L-1) as well as the high solids nature of digestate percolate (20000-500 mg TS 
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L-1) would hinder the NH4-N
 uptake capacity of the media. In addition the effect of 

empty bed contact time (EBCT), influent NH4-N concentration and bed depth were all 

investigated to enable an effective design to be constructed. The drying bed 

configuration utilised a sand barrier above the media bed; it was hypothesised that 

this sand layer provided the majority of filtration and solids removal in a conventional 

sludge drying bed and sludge cake filtration was not the predominant mechanism. 

This information was utilised and incorporated into the design of a sludge drying bed 

configuration with a sacrificial sand barrier to enable simultaneous dewatering and 

nutrient recovery. 

8.1 Potential for treatment of faecal sludge through anaerobic 

digestion 

Faeces and urine composition was assessed in relation to a broad range of 

treatment processes (physical separators, chemical, biological, and thermal 

processes), with biological processes, notably AD, highlighted as the most numerous 

treatment mechanism under development (Chapter 2). However, the transformation 

of faeces and urine to FS through storage in OSS facilities was a key area of 

uncertainty to the application of biological processes such as AD. Previously 

reported studies on the characterisation of faecal sludge are focussed on a single FS 

type in a defined location and were therefore insufficient in order to assess the 

treatability of this waste stream by AD. A lack of comprehensive FS characterisation 

data are evident, largely due to the challenging environments in which data are 

collected and a lack of infrastructure capacity to carry out analysis in these localities. 

It was hypothesised that FS characteristics were influenced by OSS facility type, 

retention time within the system and user behaviour. A large variation in the physical 

composition across OSS types was observed (4.56-19.24% TS: Chapter 3) 

demonstrating the site specific nature of FS, and was accounted for by the function 

of water inputs (dilution through flush water, urine, wash-water and chemical toilet 

additives) and outputs (leaching of water from storage facilities). Previous studies 

regarding the characterisation of FS also reported a wide range in TS and VS 

concentrations (Foxon et al., 2009; Salisbury et al., 2009; Coetzee et al., 2011) 

further emphasising the site specific type and nature of OSS facilities.  
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There was a wide range in COD concentrations (3.2-25.5 g CODsol L
-1) across OSS 

types in this research, with the difference in readily digestible organics primarily 

influenced by the retention time of the facility type with BMP assays illustrating the 

most aged FS (pit latrines) had the lowest BMP values (50.6 mL CH4/g VSadded) in 

comparison to that of the regularly emptied portable toilets (281 mL CH4/g VSadded). 

However, no significant difference in BMP values were found between the top (0.15 

m) and bottom sections (1 m) of pit latrines (Chapter 4) indicating that there was 

likely to be rapid aerobic degradation of the readily degradable fraction of the FS on 

the surface of the pit latrine followed by prolonged, slow anaerobic degradation in the 

succeeding layers. This confers with findings in pit latrines in South Africa by Buckley 

et al. (2008) who concluded that aerobic degradation through naturally occurring 

microorganisms occurred at the pit surface and is the predominant mechanism for 

organic removal and subsequent degradation once anaerobic conditions prevail is 

minor.  

The high VFA concentrations seen in all FS types (9023-996 mg VFA L-1) are 

produced by acidogenic and acetogenic bacteria, which reflects a kinetic uncoupling 

between acid producers and consumers (Ahring, 1995). Faecal sludge from OSS 

facilities with longer retention times, such as pit latrines and unsewered public toilets, 

have high acetic acid concentrations (55% of total VFA) indicating the hydrolysis 

stage, which is frequently identified as the rate-limiting step in AD (Li. and Noike, 

1992; Wang et al., 1999; Tiehm et al., 2001), is complete. This means that the 

proteins, carbohydrates and fats have been broken down to amino acids, sugars and 

fatty acids by bacteria (Nielsen et al., 2007). Consequently, there is not the need for 

pre-treatment systems to be used in order to achieve higher rate digestion of this FS 

type. Therefore, AD as a treatment mechanism can be successful in the further 

stabilisation of FS from pit latrines despite relatively low BMP values (50.6 mL/g 

VSadded). However, high CH4 production comparable to primary sewage sludge from 

conventional WwTW (358.4 mL CH4/g VSadded) will only be generated by FS from 

OSS facilities that have a shorter retention time (<4 days) (such as portable toilets: 

281 mL CH4/g VSadded), where VFA build up is greatest (9023 mg VFA L-1) and 

onward conversion to methane has not yet taken place (Chapter 3). 
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Urine has high urea concentrations (9300-23300 mg CH4N2O L-1: Chapter 2), that 

increase substantially through storage due to urease decomposing urea into NH3 

and bicarbonate (Udert et al., 2003). This could cause ammonia (NH3) toxicity in 

mixed waste streams. However, in a faeces only waste stream (such as portable 

toilets) causes of toxicity were observed because of secondary influences, such as 

chemical toilet additives (IC 50 values of ≥100 mg L-1 glutaraldheyde and ≥50 mg L-1 

bronopol), rather than the human faeces components (Chapter 3).  

8.2 Anaerobic digestion and nutrient recovery  

Anaerobic digestion of FS will not reduce the mass of nutrients such as N and P, it 

only in-part mineralises organic N and P to inorganic forms (NH4
+ and PO4

-) (Möller 

and Müller, 2012). Consequently, the nutrient composition of FS prior to AD can 

reliably indicate nutrient flows in AD effluents (Chapter 5). The concentration of P in 

residual solids (12-26 g P kg-1) were found to be marginally lower in pit latrines and 

unsewered public toilets in comparison to primary sludge from piped waterborne 

sewage networks (19-29 g P kg-1 (Mantovi et al., 2005; He et al., 2010)), this could 

be accounted for by minimal detergents/cleaning products entering OSS facilities: 

which often accounts for a high proportion of P received at WwTW (Yeoman et al., 

1988), with toilet wastewater contributing only 59% of P received in the US (U.S. 

EPA, 2002). In contrast, high P concentrations were found in portable toilet waste 

(75 g P kg-1), primarily as a result of the chemical toilet additive and not the human 

waste components (1.7-9.9 and 3.5-25 g P kg-1 in faeces and urine fractions 

respectively: Chapter 2). Concentrations of NH4-N were high throughout all types of 

FS (520-1853 mg NH4-N L-1), in agreement to other studies investigating different FS 

types such as nightsoil (2000-5000 mg NH4-N L-1(Pradt, 1971; Heinss et al., 1998)) 

and septage (150-600 mg NH4-N L-1 (Koottatep et al., 2004)). In addition significant 

organic nitrogen (2080-4561 mg N L-1) present in FS will partially mineralise during 

AD causing a further increase in NH4-N concentrations (Chen et al., 2008). Total N 

concentrations will vary according to OSS facility but N production in faeces and 

urine is high (1.8 and 11.0 g/cap/day N in faeces and urine respectively): for this 

reason, AD effluents from both OSS facilities and WwTW will have high NH4-N 

concentrations with Parsons et al. (2001) reporting concentrations in the region of 
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426-957 mg NH4-N L-1 across six different UK WwTW. The high concentration of 

NH4-N in AD effluents therefore presents an opportunity for nutrient recovery. 

8.3 Nutrient recovery sludge drying beds 

The adaptation of sludge drying beds is a feasible method for the recovery of key 

macro-nutrients (N, P, K) required in agriculture (Chapter 6 and 7). However, the 

design (Figure 8.1) and treatment flow sheet (Figure 8.2) has to balance media 

capacity, particle size as well as hydraulic and solids loading rates which all in turn 

influence the performance, configuration and operation, as described below.  

The use of batch adsorption and kinetic tests provided a useful foundation in regards 

to the selection of suitable media, as well as providing an indication of the extent to 

which varying factors impact performance (for instance organic matter and 

competing cationic ions) and these results have broadened the understanding of the 

potential for clinoptilolite and biochar to be used in a drying bed application. In this 

regard, clinoptilolite had the greatest potential for the drying bed application (NH4-N 

capacities of 4.8 and 9.3 mg/g in biochar and clinpotiolite respectively) which was 

within the literature range for NH4-N capture (3-5.3 and 5-15 mg/g in biochar and 

clinoptilolite respectively when applied to wastewater (Green et al., 1996; Nguyen 

and Tanner, 1998; Sarkhot et al., 2013)). However, it is only through dynamic 

column studies that the true operational capacity of the media was determined. For 

instance, the batch adsorption capacity of clinoptilolite at 200 mg NH4-N L-1 (9.33 

mg/g) was lower in comparison to the range of capacities at the same NH4-N 

concentration utilising dynamic column experiments (5-60 mg/g dependent on 

operational conditions). This is because in dynamic experiments the influent NH4-N 

concentration is constantly being replenished resulting in a higher solute gradient 

providing the necessary driving force to enable NH4
+ ions to replace cations. In 

contrast, in batch equilibrium trials the NH4-N solution reduces as uptake of the 

media increases (Du et al., 2005; Wang et al., 2006). Consequently, dynamic 

experiments at a range of EBCT, NH4-N concentrations, and bed depths are 

essential in order to assess, design and scale-up a fixed media bed to be 

incorporated into a sludge drying bed configuration (Cooney et al., 1999).  
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Figure 8.1. Nutrient recovery drying bed configuration consisting of 2 clinoptilolite 

beds operating in series with an EBCT of 354 minutes, with semi-dewatered solids 

scraping (application rate of 0.5 kg/m2) and application to secondary sludge cake 

drying beds. 

 

The design and rate at which the nutrient recovery process is operated at will be 

determined by the desired footprint and service time of the individual site. For 

instance, the recommended bed depth of 0.22 m (Figure 8.1) is dependent on the 

desired service time of the media (79 days: Figure 8.2) rather than the efficiency of 

the media at different bed depths (4.05-11.89 kg/m3 treated: Chapter 6). The desired 

service time is important as this will determine how quickly the media will become 

exhausted and require changing; consequently a more regular service time will result 

in increased operational costs, reducing efficiency. Similarly, operation at a low 

hydraulic loading rate (EBCT: 354 minutes) may be the most efficient in regards to 

NH4-N capacity (60 g NH4-N /kg clinoptilolite). However, the drying bed will have a 

significantly larger footprint (17.7 times greater) than a system with reduced EBCT 

(20 mins) and resultant media capacity (5 g NH4-N /kg clinoptilolite) as reflected by 

the vastly increased hydraulic loading rates at low EBCT (3 and 0.17 bed 

volumes/hour respectively). Nevertheless, EBCT will be determined to the greatest 

extent by the rate of clogging by TS in the digestate, with TS loading rates of 0.04-
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0.5 kg TS/m2: (Chapter 7) indicating the critical point in which percolation is reduced 

and cake filtration predominates. 

 

 
a 
Production rate of faeces and urine from median literature values (Chapter 2) 

b 
TS loading rates utilised from AD projections (Chapter 5) 

c 
Sludge cake drying bed to remove 10% wt. moisture and highly dependent on climate as solar drying 

predominates (Chapter 6) 

Figure 8.2 Proposed treatment flow sheet for faecal sludge management and nutrient 

recovery with a population equivalent (PE) of 2000 utilised for faeces and urine 

production rates.  

 

Consequently, the hydraulic loading of the system should be based upon TS loading 

values of 0.04-0.5 kg TS/m2 (dependent on sand particle size and the TS of influent 

digestate: Chapter 7, Figure 7.5), which is within the range of TS loading rates for 

conventional sludge drying beds (0.18 kg TS/m2/application (Tchobanoglous et al., 

2003)). However, in order to achieve intensification of the system and reduce the 

considerable footprint of sludge drying beds (120-321 kg TS/m2/year 

(Tchobanoglous et al., 2003; Cofie et al., 2006)), scraping of TS from the sacrificial 

sand barrier used to protect the media bed is necessary (Figure 8.1). More than 50% 

of percolation occurs within the first 28 hours (Chapter 7: Figure 7.7), which 

corresponds to findings that 75% of sludge water percolates within 1-3 days in 

conventional sludge drying beds (van Haandel and Van Der Lubbe, 2007). 
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Therefore, if the semi-dewatered solids are scrapped from the surface of the nutrient 

recovery drying beds and reapplied to an additional sludge cake drying bed (Figure 

8.1 and Figure 8.2) TS application could be increased by 15 fold (assuming a 30 day 

application period in conventional sludge drying beds). This intensification would in 

turn allow sufficient contact time between the digestate percolate and the fixed 

clinoptilolite bed beneath and would allow NH4-N recovery to progress unhindered 

and achieve maximum recovery rates stated (60 g NH4-N/kg clinoptilolite: Chapter 

6). 

The intensification of sludge drying beds is also beneficial for the nutrient recovery 

component; as over long time periods there is the potential for biofilm growth on and 

within media particles in which nitrifying bacteria may remove NH4-N (Nguyen and 

Tanner, 1998). This would be beneficial in terms of NH4-N
 removal; however, the 

process would not be adding to the capacity of the clinoptilolite and resultantly would 

not increase its fertiliser value. Therefore, conditions relating to the speed of growth 

of a biofilm may need to be taken into account: for instance substrate, temperature, 

pH, NH4-N concentration and dissolved oxygen levels (Mara and Horan, 2003). 

However, no increase in nitrate concentrations of column effluents was observed 

during long-term (25 days) studies utilising anaerobic digestate (Chapter 6) 

indicating conditions were not optimal for the growth of nitrifying bacteria on the 

media with the sludge drying bed. 

Media selection is also an essential factor in the design of nutrient recovery drying 

beds. Clinoptilolite with a larger particle size (7-9 mm) could be loaded with 48% 

more TS than that of a smaller particle size (0.7-1.6 mm) before the critical clogging 

point was reached. This factor is important as the sacrificial sand barrier will only 

remove on average between 44-48% TS (Chapter 7: Figure 7.5), therefore the media 

bed beneath may become clogged before the clinoptilolite has reached saturation. 

Therefore, despite larger media sizes being less efficient in NH4-N capture than 

smaller particle sizes (20.27 and 14.40 mg NH4-N/g media), the positive impact of 

allowing increased TS loading (0.43 and 0.22 kg TS/m2 respectively) and reducing 

pressure drop build-up in the bed will outweigh any reduction in performance. 

Consequently, a particle size ≥5 mm is consequently recommended (Figure 8.1).  
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A distinct operational benefit of incorporating an ion exchange system over a 

conventional biological nitrogen removal system is the ability of clinoptilolite to 

effectively deal with a wide range of NH4-N concentrations (20-200 mg NH4-N L-1) 

(Chapter 6: Figure 6.4) as well as the peak NH4-N
 loads that would be expected in 

the percolate of batch fed drying beds (Jorgensen and Weatherley, 2003; Sica et al., 

2014). Consequently, the effluent of a nutrient recovery drying bed system could 

consistently meet NH4-N discharge consents if required or be recirculated for dilution 

of FS prior to AD (Figure 8.2). The gradual saturation and movement of the mass 

transfer zone through the media bed depth (Chapter 6: Figure 6.1), means the 

effluent of beds will therefore gradually increase in NH4-N concentration causing 

rising concentrations in the discharge/recycle stream and inefficiency in the NH4-N
 

recovery process. For this reason, the operation of the dying bed configuration is 

optimal in series of at least two beds (Figure 8.1). 

The full saturation of the clinoptilolite in the configuration outlined (Figure 8.2) would 

provide a fertiliser product with a grade of 5.9 wt. % NH4-N. In addition, due to high K 

concentrations (277 mg K L-1: Chapter 6) present in the sludge liquor fraction the 

media will have an equally high proportion of K+ due to the favourable selectivity 

sequence of clinoptilolite (K+ > NH4
+ > Na+ > Ca2+) (Papadopoulos et al., 1996; 

Cooney et al., 1999; Hankins et al., 2005). These values are lower than common 

artificial N fertiliser grades: such as ammonium nitrate (34% N), ammonium sulphate 

(21% N) and urea (45% N) (DAFVM, 2014) but are not far removed in N and K from 

commonly used 10/10/10 wt. % N-P-K fertilisers (Lima et al., 2015). Saturated media 

therefore provides consistent values for NH4-N and K+, however to provide a 

balanced fertiliser product, the dewatered sludge cake solids from the secondary 

sludge drying bed (4.2 wt. % P) (Figure 8.1) can be blended with the clinoptilolite as 

part of the treatment flow sheet (Figure 8.2): this will provide a complete N-P-K 

fertiliser product and can be blended to the desired proportions according to market 

demand in the locality. This has the additional advantage of providing organic matter 

to soils (32 wt. % C) that has additional benefits to soil structure and microbial 

communities (Lu et al., 2012). Consequently the use of a secondary sludge drying 

bed for the solar drying of semi-dewatered cake that accumulates on the sand 

barrier surface (Figure 8.1) could have multiple benefits: the intensification of drying 
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beds enabling nutrient recovery at a faster rate and the creation of a P rich bi-

product that can be blended with saturated media to create a complete N-P-K 

fertiliser and an enriched biosolids product (Figure 8.2). 

8.4 Implications and practicalities for the sector 

On-site sanitation facilities (such as pit latrines) in urban areas have often been 

considered as temporary solutions until sewer based systems could be introduced 

(Seck et al., 2014), however, an estimated 1.7 billion people worldwide use some 

form of pit latrine (Graham and Polizzotto, 2013) and the FS produced consequently 

requires urgent removal, treatment and re-use according to these defined storage 

conditions (Chapter 3). Consequently, adapting a treatment and nutrient recovery 

process to adequately address this waste stream is a research priority. In addition, 

new innovative forms of OSS facilities (such as portable toilets) are currently being 

introduced (Clean Team, 2012) and these facilities need to use FS characterisation 

information such as that presented here. For instance, portable toilet waste will 

require extended residence time and a resultant greater digester capacity in order to 

break down the chemical toilet additive components and the chemical additives 

introduce heavy metals (27251 mg Cu kg-1: Chapter 3) to the effluent which will 

exceed regulatory limits for sewage sludge application (European Union, 1986). In 

addition it is also probable that chemical toilet additives (at current concentrations) 

will hinder potential nutrient recovery systems such as ion exchange (Chapter 6 and 

7) due to vast concentrations of competing cationic ions, dye components and heavy 

metals (e.g. 27251 mg Cu kg-1) present. 

Overall, this highlights the need for a holistic approach that encompasses the 

complete system in order to engineer OSS facilities to collect FS by a means that 

can enable resource recovery opportunities, e.g. by avoiding chemical usage 

through systems such as the ‘rotating odour barrier’ (Parker, 2014) in household 

toilet design. Regular collections would be required to ensure the maximum CH4 

yield (Chapter 4), however, a short retention time is not required for the recovery of 

key macro nutrients (Chapter 5). Consequently, if the majority of cost recovery is 

expected through nutrient recovery the collection period can be extended, such as in 

pit latrines (1-10 year collection frequency), and the marginal gain of regular 
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collection from this OSS facility type was highlighted as being minimal (Top: 136 mL 

CH4/g VSadded, bottom: 130 mL CH4/g VSadded). 

Multiple process flows in WwTW presents challenges to operation and maintenance 

(Bassan and Robbins, 2014). Consequently, if a nutrient recovery system could be 

combined with sludge dewatering in one simple treatment process this would present 

great benefit to the sector (Figure 8.2). The ability of clinoptilolite to perform as both 

a solids filter (44-48 % TS removal: Chapter 7) as well as maintain high NH4-N 

operational capacity (60 g NH4-N /kg clinoptilolite), demonstrates a highly suitable 

media for this application. However, this reduction in cost of a pre-treatment step 

may be negated by the increased complication in design, which would require a site 

specific design and installation, which could prove challenging in a low income 

environment where skilled process engineers are both scarce and expensive. 

Experimental work in this study (Chapter 7) was carried out utilising digestate from a 

mesophilic AD at a UK WwTW that utilised a Thermal Hydrolysis Process (THP) 

(Blytt, 2009) pre-treatment step. This was primarily due to logistical ease, however, 

poses the question of how transferable the results are to digestate expected from AD 

in low income countries. The expected NH4-N concentrations (Chapter 5) and the 

effect of any variation on the media uptake capacity was explored (Chapter 6), 

however, the greatest factor influencing the drying bed design is likely to be the 

clogging and dewatering characteristics of the digestate, primarily influenced by 

particle size distribution (Karr and Keinath, 1978; Neyens and Baeyens, 2003). 

Particle size distribution was measured in FS of pit latrines and public toilets 

(Chapter 3: Appendix 2) and had a range in values similar to primary sewage sludge 

(>7mm 5-20%, 1-7mm 9-33%, <1mm 50-88%), the predominant feedstock of AD at 

WwTW, which would indicate a comparable FS type. However, the thermal 

hydrolysis pre-treatment step in use changes the rheology of the digested sewage 

sludge due to high temperature and pressure: this results in a more highly 

compressible sludge (improving dewaterability), which consequently differs to 

conventional digestion of sewage sludge (Higgins et al., 2011) and is reflected by the 

digestate particle size distribution d (0.9) value of 57.367 ± 2.014 µm ). Therefore, 

percolation rates of this study (Chapter 6: Figure 7.7) may be amplified, although 

conversely the smaller particle sizes of the digestate used in this study may cause 
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increased rates of clogging within the media bed due to greater penetration into the 

sacrificial sand layer and subsequent build up in the media layer beneath. The 

results of this study regarding clogging rates should therefore present guideline 

figures and it is clear that site specific testing with the actual digestate and sand 

particle size would be beneficial to accurately gauge percolation rates. 

Sanitation provision and wastewater treatment in low income countries 

predominantly revolves around the ease of implementation and cost, therefore 

appropriate media selection is a pivotal factor (Chapter 5). Caution should remain in 

the use of clinoptilolite due to its heterogeneous nature with varying degrees of 

impurities within the media (e.g. Clinoptilolite used in this study had 92% purity) 

presenting uncertainties in process design such as media capacity and kinetic 

uptake rates. Nevertheless, clinoptilolite is an abundant and low cost media 

(Shokrian et al., 2015), available extensively in countries such as China, Turkey and 

India at potentially viable prices (approximately 50-100 $USD/tonne). Although the 

direct use of saturated clinoptilolite requires large volumes of media, as regeneration 

is not required, the high regeneration costs (including infrastructure, chemicals, 

chemical storage and brine disposal) are redundant which further increases the 

viability of using ion exchange in a drying bed configuration.  

The feasibility of nutrient recovery drying beds to increase the value of low cost 

media and create a valuable product that has high defined NH4-N
 and K+ 

concentrations, with the media combined with dewatered solids (4.2 wt. % P) to form 

a balanced fertiliser product, has been illustrated (Figure 8.1 and Figure 8.2). 

However, its implementation success will be dependent on a full economic analysis 

of the production costs and market demand in the locality. Nevertheless, additional 

benefits of incorporating a nutrient recovery stage to the treatment process flow 

sheet (Figure 8.2) beyond cost recovery; include the potential for the media beds to 

adsorb any non-biodegradable organics that could not be broken down in the AD 

process, either reducing concentrations in effluent recycle streams or preventing 

discharge to the environment.  
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8.5 Further Work 

The results of this study have illustrated that clinoptilolite can be utilised as part of a 

sludge drying bed design to enable the recovery of NH4-N from anaerobic digestate. 

However, the optimisation of this process along with the subsequent use of the 

fertiliser product created requires further research, with particular emphasis on the 

following issues: 

 Operation at long EBCT has proven the most efficient operational mode in 

regards to media capacity, however, the presence of nitrifying bacteria on the 

media’s long term operational capacity requires further investigation to 

determine whether nitrification may result in the loss of NH4-N, negating the 

primary objective of nutrient recovery. 

 Additional uncertainties remain regarding the desorption properties of 

clinoptilolite as when media has reached exhaustion there is the potential for 

NH4-N
 to be removed by influent percolate, this could lead to effluent NH4-N

 

concentrations being greater than influent NH4-N concentrations in the drying 

bed configuration. This factor would therefore be important to consider and 

will also provide essential information regarding the application of saturated 

clinoptilolite to agricultural soils. 

 The fertiliser properties of the saturated clinoptilolite product created is the 

most important issue requiring further research. A full investigation into the 

exact nutrient composition, along with pot and field trials will be necessary in 

order to establish whether the saturated clinoptilolite brings value as a 

fertiliser product. In addition, the effect of the addition of saturated clinoptilolite 

on soil structure and chemistry are vital issues. Other factors to consider will 

be desorption of NH4
+ and K+ from clinoptilolite into the soil over short and 

prolonged timescales. In addition the relative benefits of co-applying 

dewatered solids (as a source of P), that accumulate on the top of the sand 

barrier with the saturated clinoptilolite will inform agricultural use as well as 

inform treatment flow sheets. The fertiliser benefits to agricultural production 

will in turn help to establish a market value for the product.  
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 A full economic assessment should be undertaken in order to establish the full 

cost of construction, maintenance and operation of the integrated nutrient 

recovery sludge drying beds. The purchase cost of the original clinoptilolite as 

well as the final market value of the saturated clinoptilolite and blended 

biosolids product will be dependent on geographical location and local market 

demand but is an essential element to the success of an integrated nutrient 

recovery sludge drying bed system. 
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9 CONCLUSIONS 

This study has designed a nutrient recovery system and process for the capture of 

nutrients from anaerobic digestion effluents treating faecal sludge. These 

conclusions correspond to the objectives that were outlined in Chapter 1 of this 

thesis. 

1. To review current knowledge of faeces and urine characteristics in order to 

determine how the physical and chemical composition will impact different 

treatment process types and nutrient recovery potential. 

 The rate of production (51-796 g/cap/day) as well as the physical (12-81 g 

TS/cap/day) and chemical composition of faeces is variable (7.0-38.3 g N 

kg-1, 1.8-9.9 g P kg-1, 1.8-4.9 g K kg-1, 0.8-4.94 g Na kg-1) and the greatest 

factor causing variation was indigestible dietary fibre intake of the target 

population. Similarly, urine production rates are wide ranging (0.6-2.6 

L/cap/day), primarily due to differences in the water balance of the body. 

The substantial variation subsequently presents difficulties in assigning 

standard design values for on-site sanitation treatment systems and 

means collection/treatment systems must be robust and flexible to deal 

with this uncertainty. 

 Biological treatment processes are well suited for faeces treatment, 

although substantial urea concentrations in urine (9300-23300 mg CH4N2O 

L-1) have the potential to cause NH3 toxicity issues. This factor could 

promote source separation and would equally increase efficiency of 

dewatering and thermal treatment processes.  

 The largest proportion of N (90%), P (50-65%) and K (50-80%) was 

present in the urine fraction, however, the nutrient recovery potential of 

faeces should not be underestimated with production rates of 1.8 

g/cap/day N, of which 50% is water soluble, and significant quantities of P 

(0.47 g/cap/day) are voided in the faeces fraction which could be 

recovered. In addition high concentrations of macro-nutrients (8140 mg N 
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L-1, 4650 mg P L-1, 1314 mg K L-1) as well as micro-nutrients in the urine 

fraction that are readily available. 

2. To establish the physical, chemical and biological characteristics of different 

types of faecal sludge from on-site sanitation facilities and evaluate how the 

results will impact anaerobic digestion as a treatment process. 

 The physical composition of pit latrine FS (19.2% TS) is more suited to 

suspended growth reactors rather than up-flow or down-flow high rate 

processes whereas portable toilet (4.5% TS) and unsewered public toilet 

waste (6.1% TS) are more feasible for increased rate AD processes 

without the need for significant dilution. High municipal solid waste content 

(12% of total volume) in pit latrine FS could also prove problematic without 

substantial screening prior to AD. 

 The mean C:N ratio was similar in pit latrines and unsewered public toilets 

(11.58 and 10.99 respectively), but was slightly reduced in portable toilets 

(10.43). The concentration of NH4-N was greatest in pit latrine FS (1853 

mg NH4-N
 L-1) but similarly high concentrations were observed in 

unsewered public toilets and portable toilet waste (846 and 949 mg NH4-N
 

L-1 respectively). 

 Values of CODsol varied vastly from 3.26 g CODsol L
-1 in unsewered public 

toilets to 25.5 g CODsol L
-1 in portable toilets. Gross energy values were 

greatest in FS that was stored in OSS with a shorter retention time (22.241 

MJ/kg TS and 10.242 MJ/kg TS in portable toilets and pit latrines 

respectively). 

 High acetic acid formation (55% of total VFA concentration in pit latrines) 

indicates the hydrolysis stage is complete, which is often the first and 

general rate limiting step in AD and could negate the need for separate 

hydrolysis/thermal hydrolysis steps before digestion. 

3. To assess the digestibility of faecal sludge from a range of on-site sanitation 

facilities and establish the biochemical methane potential of each substrate. 
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 The highest BMP values of 276.0 ± 151.3 mL/g VSadded were recorded in 

portable toilet waste. In contrast relatively low BMP values were recorded 

in FS from pit latrines and public toilets (50.6 ± 19.4 mL/g VSadded and 36.6 

± 19.8 mL/g VSadded respectively). These values of OSS facilities with long 

retention times differ substantially to BMP values of primary sewage 

sludge (358.4 mL CH4/g VSadded) that was used as a benchmark for CH4 

production.  

 In pit latrines the relatively low BMP values (50.6 mL CH4/g VSadded) 

demonstrate that there is a significant proportion of organic material that is 

not readily degradable, with rapid aerobic degradation likely on the surface 

of the pit latrine. Therefore designing systems using standard rates of VS 

or COD destruction would lead to overestimation of methane yields. 

 The use of odour suppressant chemical toilet additives within portable 

toilets causes problems such as high Cu concentrations (27251 mg/kg Cu) 

and the active ingredients glutaraldehyde and bronopol were proven to 

cause CH4 production inhibition at IC50 values of ≥100 mg L-1 and ≥50 mg 

L-1 respectively. 

4. To determine technically feasible methods in which to recover nutrients in a 

low income context. 

 High concentrations of 1440 mg NH4-N L-1 in AD effluents presented a 

valuable nutrient recovery resource. Phosphorus concentrations (26950 

mg Ptot kg-1) although significant, were bound to particulate matter with low 

soluble concentrations of 27 mg Psol L
-1 making NH4-N the more desirable 

target for nutrient recovery. 

 Current NH4-N recovery process options (reverse osmosis, NH3 stripping 

and struvite precipitation) present significant challenges to application in a 

low income context primarily due to significant energy needs, high 

chemical costs and logistical challenges in the supply chain. 

 Due to the simplicity and wide application of sludge drying beds in 

developing countries adapting a hybrid between a sludge drying bed and 
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an adsorption or ion exchange system is a feasible and realistic target for 

the recovery of NH4-N (Chapter 5). 

5. To examine the feasibility of using a modified sludge drying bed system for 

the recovery of nutrients from high solids anaerobic digestion effluents. 

 Clinoptilolite had both a superior capacity (12.2 mg NH4-N/g) as well as 

the fastest rate of uptake (1.013 h-1) in comparison to biochar exhibiting 

comparative uptake rates of 5 mg NH4-N/g and a slower kinetic uptake 

rate of 0.557 h-1. 

 Clinoptilolite is a resilient media that can operate effectively despite 

high TS and competing cation concentrations (23.8% reduction in the 

uptake capacity) in the percolate of the drying beds (Chapter 6).  

 Increasing contact time (20 mins - 354 mins) reduces the media usage 

rate (23 – 4 kg/m3 treated) and increases operational capacity (5 - 60 g 

NH4-N /kg clinoptilolite). 

 The TS loading for sludge cake filtration to commence on sand is 

relatively low, at 0.070-0.320 kg TS/m2 (0.6-0.9 mm sand particle size) 

and from 0.046-0.500 kg TS/m2 (0.9-1.2 mm sand particle size) 

dependent on digestate TS (0.5-2% TS), indicating that the 

predominant mechanism in sludge drying beds is through cake filtration 

and not the physical filtration action of the sand. 

6. To propose design values for the construction and operation of nutrient 

recovering drying beds. 

 The ion exchange process allows clinoptilolite to capture NH4-N under 

high solids loading conditions and its most efficient operation is at long 

EBCT (>354 mins). This ensures that the maximum fertiliser value is 

obtained (60 g NH4-N/kg clinoptilolite) and optimum removal efficiency 

from the percolate (95% NH4-N
 removal) occurs. It is necessary to operate 

two beds in series to enable the continual capture of NH4-N as the first 
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media bed gradually reaches exhaustion and effluent concentrations 

increase. 

 A larger media particle size (7 mm) is recommended despite reductions in 

capacity (26% reduction in NH4-N capacity in comparison to a 1 mm 

particle size) because of the greater TS loading rate before clogging 

occurred (TS loading capacity 48% greater) decreasing the rate at which 

clogging of the bed occurs, leading to inhibitory pressure drops in the bed. 

Bed depth should also be maintained below 0.33 m to avoid inhibitory 

pressure drops in the system. 

 To reduce the footprint and intensify nutrient recovery sludge drying beds 

the use of a sacrificial sand bed (0.05 m depth) is necessary in which 

semi-dewatered sludge cake can be scrapped away and applied to a 

secondary drying bed once cake filtration has commenced (0.5 kg TS/m2) 

and percolation rate has reduced. This will suitably extend the service time 

of the bed to enable full saturation of the clinoptilolite to take place 

enabling efficient capture of NH4-N by the media. 

 Clinoptilolite can effectively be used as part of a sludge drying bed 

configuration to remove NH4-N
 from digestate and the saturated media can 

be used directly as a fertiliser product or could additionally be blended with 

the dried solid fraction to create a balanced NPK fertiliser product (5.9 wt. 

% NH4-N/4.2 wt. % P/≥6.0 wt.% K+) with minimal capital and operational 

expenditure.  
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10 APPENDICES 

Appendix A Description of sampling sites and detailed 

sampling methodologies 

A.1 Sampling sites 

Survey sites in peri-urban localities of location x and Kumasi, Ghana were selected 

for the detailed characterisation of faecal sludge (FS). Four different types of FS 

were selected for sampling and analysis: in location x pit latrines and unsewered 

public ablution blocks as well as portable toilets and an intermediate bulk container 

(IBC) that was in use as a holding tank for portable toilet waste in Kumasi.  

Location x is located on the central African plateau, 1300 m above sea level. 

Temperatures are moderate with a maximum average temperature of 31.2o C 

(October) and minimum average temperature of 9.6oC (July); there is an average 

annual rainfall of 803 mm with the majority of this falling in the rainy season between 

November and April. Location x is a peri-urban district of a African city and was used 

for all FS sampling. The geology of the area is predominantly dolomitic marble with 

shallow depths of fine sandy soils containing large numbers of laterite pisoliths. 

Human behavioural practice in location x consisted of ‘wiping’ as an anal cleansing 

method using a range of different available materials (e.g. toilet paper, newspaper, 

vegetation) all of which were disposed within the pit latrine or flush toilet bowl. 

A pilot scheme using portable chemical toilets was selected in Kumasi, Ghana. 

Kumasi is approximately 260 m above sea level and has a wet semi-equatorial 

climate with temperatures averaging 28oC and has an annual average rainfall of 

1340mm (Keraita et al., 2003). Common user behavioural practice in Kumasi was 

‘wiping’ for anal cleansing practices with toilet paper being disposed of in the toilet 

bowl along with faeces only (urine diverting toilets). 

A.2 Pit latrines detailed sampling methods 

In location x, a manual emptying team was accompanied over a period of one month 

in March 2013, during which samples were taken from a total of ten pit latrines, one 

UDDT, as well as from three holding tanks from community ablution blocks within the 
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district of location x. Sites were selected by accompanying the team on alternate 

days with the first site visited on each day chosen for sampling. The approximate 

age of FS was estimated through questioning of the clients when the previous 

emptying took place. 

Pit latrines were emptied manually using an assortment of tools (long handled 

shovel, pitch fork) into 60 L barrels. A sub sample of 0.5 L was taken from the centre 

of each barrel of FS removed by a modified sample jar and drain rod, and 

subsequently combined together to make one composite sample (6-12 L) 

representative of the entire contents removed from the pit. An additional pair of 

samples were collected in December 2013, one from the surface layer and one 

sample from the bottom section of the pit latrine, in order for a comparative analysis 

to be undertaken of the different layers.  

A.3 Portable toilets detailed sampling methods 

Portable toilets were selected at random. In total, 36 toilets were sampled and 

analysed over a period of 6 weeks in July/August 2013. In order to gain a 

homogenous sample toilet units were firstly manually mixed for 5 minutes before 

three samples (0.5 L) were taken providing a vertical cross section of the unit. 

Samples were then combined and manually mixed again before a final sub sample 

(0.5 L) could be taken. A vertical cross section of the IBC storage tank was also 

constructed by taking 0.5 L grab samples at depths of 0.3 m intervals from the 

surface to the base of the tank. Accumulation rates and chemical analysis, 

expressed as per capita/day, were calculated from the number of users divided by 

the frequency of waste collection and excluding the initial volume of chemical 

additive.  
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Appendix B  Analytical Methodology 

B.1 DNA extraction and sequencing methodology 

Homogenous sludge samples were taken from11 pit latrines and 3 public toilets as 

well as additional samples from the top (0.05 m), middle (1 m) and bottom (2.5 m) of 

an additional pit latrine (total depth 2.9 m) were stored at -20°C prior to DNA 

extraction. Extraction and purification was carried out using a Fast DNA Spin Kit for 

Soils (MP Biomedical, Irvine, USA) according to manufacturer’s guidelines. DNA 

extractions were quantified using the Broad-Range Qubit Assay (Life Technologies, 

Darmstadt, Germany) and stored at -20°C until used in library preparation methods 

for Next Generation Sequencing (NGS). Library construction was applied to all DNA 

samples. Prior to PCR preparation, each DNA sample was thawed, normalised to 1 

ng/µl template DNA by dilution in PCR grade water (Qiagen Nuclease Free water, 

Cat No. 129115), and stored at -20°C until PCR preparation. Golay barcoded PCR 

primers (F515/R806) were used for amplification of the V4 region of the 16S rRNA 

gene (Caporaso et al., 2012). An additional degeneracy on the Golay primers was 

utilised; base-N substituted for base-C in third position of F515 forward primer; for 

improved detection of Archaea. Each sample processed was amplified in triplicate 25 

µl reactions. PCR amplification reactions were prepared using reagents from the 

KAPA HiFi HotStart PCR Kit with dNPTs (KAPA Biosystems) and a single 25ul 

reaction contained: 11ul PCR grade water (Qiagen as previous), 5ul 5X KAPA HiFi 

Fidelity Buffer, 0.75ul dNTP Mix, 0.75ul of forward and reverse primers at 0.3uM 

concentration, 0.5ul KAPA HiFi Taq, 6.25 µl template DNA at 1ng/µl concentration. 

Reactions were held at 950C for 5 minutes then 980C for initial denaturation of the 

DNA, with amplification proceeding for 25 cycles of 980C for 20 seconds 

denaturation, 600C for 15 seconds for annealing, and 720C for 40 seconds for 

extension, followed by 720C for 1 minute final extension. Triplicate reactions were 

pooled and PCR product was gel-purified (Zymoclean Gel DNA Recovery Kit) and 

quantified prior to sequencing using the High-Sensitivity Qubit Assay (Life 

Technologies). PCR products were normalised to 5 ng/µl DNA in nuclease free 

water, pooled to a total volume of 50 µl and stored at -20°C until sequenced. The 
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pooled multiplexed library was sequenced using the Illumina Miseq bench-top 

sequencer at the Centre for Genomic Research, Liverpool. 
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Appendix C Images of on-site sanitation facilities sampled 

 

Pit latrine (a) Unsewered public toilet 

(b) 

Portable household toilet 

c) 

   

   

Figure A - 1 On-site sanitation facilities in which sampling took place in faecal sludge 

characterisation work. Pit latrines (location x) were predominantly emptied from a 

hole in the side wall (a), unsewered public toilets were emptied from a specially 

designed emptying port (b) and portable toilets were emptied direct from the 

collection chamber (c). 
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Pit Latrine Top Pit Latrine Bottom 

  

Figure A-2 Comparative photos detailing the top and bottom sections of pit latrines in 

location x. 

 

Appendix D Supplementary faecal sludge characterisation 

data 

D.1 Particle Size distribution 

 

Figure A-3 Particle size distribution (mean values) of a) pit latrines and b) public toilet 

holding tanks in location x determined on the bulk sample collected from each on-site 

sanitation facilities
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D.2 Volatile Fatty Acids  

 

Table A-1 Volatile fatty acid (VFA) concentrations in pit latrines, unsewered public 

toilets, portable toielts adn a holding tanks for portable toilet waste 

 Pit 

Latrines 

Unsewered Public 

toilets 

Portable 

Toilets 

Portable Toilet 

IBC 

 

Acetic 2057 (1207) 452 (456) 1449 (786) 1745 (874) 

 

Propionate 851 (998) 517 (595) 2170 (1150) 1839 (1055) 

 

Iso-

butyric 

47 (76) * * * 

 

n-butyrate 146 (203) * 1118 (516) 1058 (338) 

 

Iso-valeric 204 (293) * 677 (331) 1018(523) 

 

n-valeric 430 (566) 26 (37) 1767 (1313) 3763(1353) 

 

Total VFA 3736 (2810) 996 (1089) 7182 9423 
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Appendix E Images of Experimental Apparatus and Rigs 

E.1 Biochemical methane potential and toxicity assays 

 

Figure A-4 Biochemical methane potential (BMP) assay consisting of substrate and 

inoculum (at VSseed :VS substrate ratio of 2:1),deionised water to bring working 

volume to 60 mL and nutrient stock solution. Samples were incubated in a 

temperature controlled shaker at 37.5°C ± 0.5 at 150 RPM. 
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E.2 Lab scale dynamic column experiments 

 

 

Figure A-5 Experimental rig for the investigation of operational capacity of media at 

different empty bed contact times, bed depths, NH4-N concentrations and flow 

regimes. 
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E.3 Pilot scale dynamic column experiments and percolation bed 

studies 

 

 

Figure A-6 Pilot scale filter columns used for application with anaerobic digestate, 

large media particle sizes and batch fed percolation tests 
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Appendix F Additional results 

F.1 Media physical and chemical properties 

Figure A-7 Chemical composition (wt. %) of clinoptilolite and sand used in batch and 

dynamic experimental work 

Element Clinoptilolite 

(wt. %) 

Sand   

(wt.%) 

SiO2 

Al2O3 

Fe2O3 

TiO2 

CaO 

MgO 

Na2O 

K2O 

P2O5 

SO3 

L.O.I 

Silica 

Alumina 

Iron 

Titania 

Calcium 

Magnesium 

Sodium 

Potassium 

Phosphate 

Sulphate 

Loss on ignition 

(1000ºC) 

70.5 

12.5 

0.72 

0.10 

3.11 

0.85 

0.13 

2.14 

0.04 

0.11 

9.57 

96.36 

0.29 

2.49 

0.024 

0.02 

0.03 

0.04 

0.04 

0.01 

- 

0.55 

 


