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Abstract: Eco-efficiency is becoming an increasingly important organisational 
performance measure. Its indicators are regularly used alongside productivity, cost, 
quality, health and safety in operations and corporate social responsibility 
reporting. The purpose of this paper is to show an eco-efficiency modelling 
framework, and its application in the case of an automotive manufacturer. The 
framework composes, models and analyses resource and production data. Focus 
on energy, water distributions and material transformations in manufacturing, utility 
and facility assets are used to analyse eco-efficiency. Resources are examined in 
respect to three data granularity factors: subdivision, pulse, and magnitude. Models 
are linked with performance indicators to assess asset eco-efficiency. This work 
contributes to industrial sustainability literature by introducing a modelling 
framework that links with data granularity and eco-efficiency indicators. 
 
1. Introduction 
Formalised in the WBCSD’s 1992 Changing Course publication, eco-efficiency is 
proposed as the main strategy for promoting sustainability, by living within global 
resource carrying capacity [1]. Although eco-efficiency is a well-established 
concept, it is only beginning to be embraced by the wider business community. 
Promoted by legislative policies and standards such as ISO140001, resource 
improvement of factories is becoming an essential objective for manufacturers.    
 
Eco-efficiency is synonymous with management philosophies geared towards 
factory productivity and resource improvements. Typologies typically focus on 
environmental and economic indicators [2]. The EEA interpretation used by many 
manufacturers, defines eco-efficiency as a strategy enabling sufficient delinking of 
environmental from economic activity (Figure 1). Thus providing equitable access 
to natural resources for current and future generations [3]. 
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Figure 1: Decoupling environment & economics, yielding eco-efficient resource use 
 
There is a major difference between the EEA and WBCSD definitions. The EEA 
definition is concerned with comparable relativity, not global carrying capacity. This 
means that factory systems are audited against themselves and benchmarks. 
Additionally, neither definition provides a normative standard for resource 
management [4]. Meaning it is not possible for eco-efficiency frameworks to say 
which production method is absolutely effective for the environment and economy. 
Only whether a particular configuration improves or diminishes eco-efficiency, 
relative to a specified scope. 
 
Moves toward improving factory eco-efficiency are being driven by reductions in 
resource use [5]. Early interventions seek to reduce energy and materials used in 
localised areas, such as manufacturing cells [6]. However, there is paucity on 
impact of combining manufacturing, utility and facility models. In particular there is 
little consideration for relationship between model assets, data granularity and eco-
efficiency performance indicators. Data granularity refers to the extent of which a 
factory’s data can be isolated into distinguishable pieces. Therefore, subdividing 
resource pulse and magnitude data by linking to factory technical assets is logical.  
  
This paper uses literature as a basis for developing a factory eco-efficiency 
modelling framework based upon data-granularity factors. It is then applied to a UK 
automotive manufacturer’s resource and production data to model the eco-
efficiency of their paint shop assets. Conclusions on its applicability are provided. 
 
3. Framework Development 
As progress is made in eco-efficiency advances become more challenging [7]. To 
accommodate further resource reduction opportunities an expansion of scope 
(Figure 2), integrating resources across functional boundaries of manufacturing, 
utilities and facilities assets is necessary [8].  
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Figure 2:Framework schema integrates resource subdivision, pulse and magnitude 
*Specified assets/resources are non-exhaustive and for demonstration purposes only 
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A structured approach has been used to review eco-efficiency and modelling 
literature to derive data granularity factors, and functional elements of the factory 
eco-efficiency modelling framework. 
 
3.1 Factory Asset Subdivisions 
Examining factories as an integration of manufacturing, utilities and facilities is 
necessary to consider the distribution of resources, and how these relate to 
technical assets within a factory site [9]. This scale of analysis brings with it the 
complexity of composing a variety of discrete data pulses and magnitudes across 
asset subdivisions [10]. For example a facility may have a combination of 
manufacturing cells, sourcing different energies from utilities, which additionally 
supply other core and auxiliary zones. Therefore the framework must correlate 
subdivisions with other data granularity factors, whilst linking with relevant eco-
efficiency indicators. Data composition is a crucial pre-requisite for building 
representative asset models, which turns often-disparate raw data into information 
on asset eco-efficiency performance. Presently, there is paucity in eco-efficiency 
and modelling literature for data composition and asset modelling with appropriate 
indicators using data granularity factors. 
 
The need to be more eco-efficient provides the momentum organisations require 
for pursuing factory modelling [11]. However, beyond Lean there is little to support 
the analysis of resource-use across asset subdivisions [12]. Current modelling 
tools and techniques are informed by detailed knowledge of narrow functional 
boundaries [13]. Making applicability limited by their bespoke relationship with pre-
defined assets, and a lack of knowledge beyond point-solutions for how individual 
asset configurations integrate within their wider system.  
 
A means for understanding factory eco-efficiency through data granularity factors, 
including the subdivision of technical assets, is required. The framework aims to 
develop knowledge in this area through data composition within and across 
subdivisions, by linking assets with relevant performance indicators. Framework 
models can be assembled at selected subdivisions appropriate to organisations 
eco-efficiency objectives. It has been designed to satisfy versatile user 
requirements, essential in developing representational factory models, with the 
ability to measure asset eco-efficiency [14]. 
 
3.2 Eco-efficiency Performance Indicators and Resource magnitudes 
There are recognised approaches that address eco-efficiency indicators and the 
magnitude of resource impacts conceptually. Examples include Industrial Ecology, 
Reduce, Reuse and Recycle and Green-Supply Chain Management. However, 
quantifying eco-efficiency for energy and material resources flowing through a 
factory system is difficult to evaluate using conceptual approaches alone. Despite 



 

widespread dissemination of existing eco-efficiency improvement initiatives, and 
reported studies exemplifying economic [15] and environmental [16] benefits, 
implementation barriers continue [17]. Examination of the literature suggests a lack 
of systematic rigour and repeatability in the application and scalability of 
performance indicators for modelling resource magnitudes.  
 
Contrary to eco-efficiency literature, operations management provides established 
improvement methods for process optimisation. Methods include six sigma, DMAIC 
and value stream mapping, which detail behaviours for standardising productivity 
improvement efforts. Indicators in this area focus on production inventory, quality 
and cycle time [18]. Operations management is widely used in industry. However, 
performance improvement is on productivity, of which improvements in resource 
magnitudes are a beneficial side effect. Material flow analysis and life cycle 
assessment of resource magnitude exist. Although structured by performance 
indicators for eco-efficiency, which are beneficial from a CSR perspective [19], their 
models have a limited ability to capture resource distribution dynamically. Making 
their applicability questionable at some subdivisions such as those of 
manufacturing cells, single machine and machine processes. These subdivisions 
require dynamic models with per-minute to per-second pulses of resource 
magnitudes to provide improvement opportunities.  
 
The framework performance indicators include: power factor, water footprint, 
energy mix, material yield, energy per unit and thermodynamic minimums. Many 
performance indicators are applicable at multiple subdivisions. However some 
such as thermodynamics minimum and energy per unit are more applicable at 
manufacturing cells and single machine subdivisions. Whereas energy mix and 
power factor are more applicable at facilities and facility zones, when a number of 
assets are required to be eco-efficient. Framework performance indicators are 
linked with resources magnitudes across asset subdivisions. Facility assets (e.g. 
air conditioning) operate in relation to manufacturing asset requirements (e.g. paint 
shop temperature and humidity). Utility assets may also share resources with 
building and manufacturing assets (e.g. hot/cold water circuits, steam pumps etc.). 
Therefore, attention in the framework is given to relationship and scale resource 
magnitudes across subdivisions. Once data granularities are accurately composed, 
they are coupled with performance indicators in the modelling environment. 
  
3.3 Modelling and Pulses 
Modelling is widely used within facilities [20], utilities [21] and manufacturing [22] 
design and operations. Generally assets for each domain are modelled and 
improved independently. This restriction in scope can be caused by the disparities 
in pulses between selected assets. Leading to complications in the control of a 
factory system [23] and increasing the potential of sub-optimal results [24]. 



 

Additionally, there are an ever-increasing number of modelling tools [50] being 
used within these domains. Making selection of an appropriate eco-efficiency 
method and tool more complicated [25]. 
 
Facility assets are modelled within tools like IES<VE>, MicroStation and Ecotect. 
These tools focus on the eco-efficiency of assets during the design and 
construction phases (e.g. embodied carbon) of a facility’s lifecycle, and not on the 
performance of facility assets throughout operations. Therefore, pulses for these 
assets have a relatively coarse granularity specific for designing and constructing 
building fabric eco-efficiently. Manufacturing modelling tools on the other hand, 
focus on operational eco-efficiency. Discrete-event simulation tools for production 
include Witness, Arena and Simul8. These are normally use finer pulse 
granularities to assess asset details such as processing costs, cycle-times and 
queue buffering. This distinction in pulse granularity is important for linking 
between subdivisions.  Additionally, these modelling tools are able to simulate both 
continuous flows and discrete events, making them useful for modelling continuous 
resources (e.g. water) alongside discrete manufacturing (e.g. machining), utility 
(e.g. pump) and facility (e.g. lighting) assets. 
 
Modelling is a recognised tool for providing the necessary dynamic environment to 
measure eco-efficiency within different ranges of pulses. However, more guidance 
on the applicability of specific pulse granularities to accurately compose, model 
and indicate eco-efficiency is still required.  The framework contributes to this area 
by consolidating subdivisions with resource data at given pulses. Quantifying eco-
efficiency through models to produce a comprehensive understanding of the 
factory system, in which the modelled assets operate [26].  
 
To develop knowledge in the area of data granularity the factory eco-efficiency 
modelling framework uses a structured data composition and modelling approach. 
This helps modellers move beyond current-tendencies of developing localised 
point-solutions. Framework modelling results can be used to measure and 
determine improvement opportunities at single or multiple data granularities, based 
on the application of best practices from specific industries [27]. Framework 
models incorporate the evaluation of energy distributions and material 
transformations within technical assets [28]. Allowing eco-efficiency indicators, to 
systematically measure and improve factory performance [29]. 
 
3.4 Factory Eco-efficiency Modelling Framework 
This framework is used to measure resources consumed by assets and improve 
operational eco-efficiency within the factory site. Each subdivision of the framework 
considers assets at greater detail through progressively modelling finer data 
granularities. Modelling focuses on the dynamic behaviour of system inputs, 



 

outputs, controllers and losses (figure 3) to show asset subdivision eco-efficiency 
based upon pulse frequency and resource magnitudes.  
 

 
 

Figure 3: Conceptual model designed to work with framework data granularities 
 
The framework integrates resource, production and cost data sets, which are 
measured in modelling environments. A process flowchart (figure 4) shows the 
modelling method applied in the case. The case application shows how facility 
zones, single zone utilities and manufacturing cells subdivisions are used to 
analyse eco-efficiency performance of associated assets. 
 

 
 

Figure 4: Modelling process flowchart shows how the framework can be applied 
 

4. Modelling Case Application 
Indisputably, the highest resource consuming facility in automotive manufacturing 
is the paint plant, accounting for 45%–70% of total energy used in production [30]. 
In the case of this automotive manufacturer, the paint plant is operated 6.5 days 
per week, with asset maintenance occurring over the remaining 0.5 days. Three 
types of aluminium (Al) and steel (Fe) vehicle bodies are washed, dried, sprayed, 
polished, waxed and inspected, prior to dispatch. Water, gas, and electricity 
resources are distributed through utility assets for use in manufacturing. 
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Ecopare ltd. has captured detailed per-hour data for resource distributions within 
paint plant assets from 10-16th November 2014. The captured data has been 
composed using Facility Zones, Utilities (SGL zone) and manufacturing cells 
subdivisions (Table 1). Sense checks and unit conversions were completed to 
allow meaningful analysis, using a simplified flow scheme model, and resource 
distribution profile for the highlighted treatment line assets to visualise 
energy/water per unit, and energy mix eco-efficiency performance. 
 

Facility Zones Single Zone Utilities Manufacturing Cells Pulse Magnitude 
Paint Plant - Zone 3 Town Water Skid Wash 09:00 121.68 kL 
Paint Plant - Zone 3 Town Water Skid Wash 10:00 238.68 kL 
Paint Plant - Zone 4 Demin Water Treatment Lines 09:00 1100.56 kL 
Paint Plant - Zone 4 Demin Water Treatment Lines 10:00 1240.02 kL 
 
Table 1: Composed data shows asset subdivisions with intervals and magnitudes 
 
Facility zones data shows that the cumulative total for mean water distribution 
across assets is 880kL over the operating week. Additionally, electrical assets 
consume a mean of 33,864kW over the operating week. For brevity, the model 
(Figure 5) shows water distribution and material transformations occurring per 
hour. This model quantifies the water-footprint of paint plant assets, identifying the 
largest resource consumer for further analysis within a resource distribution profile. 
 

 
 
Figure 5: Model quantifies material transformations and water distribution per hour 



 

 
5. Modelling Results and Analysis 
Model results (figure 6) show the relationship between material transformations 
and water use, across paint plant assets. The model visualises subdivision and 
magnitude data on resource inputs, controllers, outputs and losses.  
 

 
 

Figure 6: Modelling of assets mean water footprint to indicate large consumers 
 
The largest average consumption of town and demineralised water (983.39kL/h) 
occurs in the Treatment Line manufacturing cell. Therefore, a distribution profile for 
all resources was undertaken (Figure 7) to show pulses and calculate energy per 
unit, water per unit and energy mix eco-efficiency indicators (Table 2). 
 

 
 

Figure 7: Treatment Line manufacturing cell resource distribution profile 
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Indicator Metrics Result 
Energy per Unit 1 kW(Gas+Elec)/kg(2570) 41.77	  
Energy per Unit 2  kW(Gas+Elec)/kg(2398) 38.98	  
Energy per Unit 3 kW(Gas+Elec)/kg(3050) 49.58	  
Water per Unit 1 kL/kg(2570) 31.49	  
Water per Unit 2 kL/kg(2398) 29.37	  
Water per Unit 3 kL/kg(3050) 37.36	  
Energy Mix per hr* Non-renewable to renewable ratio 5.67:1 
*15% of all energy delivered is derived from renewable sources. 
 
Table 2: Eco-efficiency calculations for treatment line manufacturing cell resources 
 
Information from the simplified flow scheme and resource distribution profile is 
highlighted within the eco-efficiency indicators. Application of the framework 
demonstrates modelling at progressive levels of detail, based upon data granularity 
subdivision, pulse and magnitude factors. These results structure the treatment line 
asset resource-use baseline. Recommendations such as changing asset set 
points, re-aligning resource with production profiles, and synchronising assets to 
allow for resource cascading, can be made to increase eco-efficiency. Prior to 
implementation, the framework can be used to build simulation models to test any 
potential technical interventions. Assessing the level of eco-efficiency improvement 
with various model configurations. 
 
5. Framework Applicability and Case Conclusions 
The framework has been designed to further factory eco-efficiency modelling 
knowledge using data granularity. It combines assets with resources, and eco-
efficiency indicators within quantitative models. The reason for undertaking this 
work comes from the realisation that the quality of technical interventions in 
factories is governed by the accuracy of data granularity, the types of models 
developed and particular eco-efficiency indicators applied in analysis. 
 
This paper has shown that the framework is useful for developing models, which 
visualise asset eco-efficiency performance. In this case the framework is used to 
understand the data granularity of resources within a paint plant. Resource and 
production data across facility zone, utilities and manufacturing cell subdivisions, 
with per hour pulses and magnitudes are composed and modelled to determine the 
eco-efficiency baseline for the treatment line manufacturing cell. It contributes new 
knowledge to the area of industrial sustainability by showing how data granularity 
can be used to compose, model and indicate asset eco-efficiency.  



 

Future work will focus on the development of simulating asset configurations to 
measure eco-efficiency as basis for providing implementable technical 
interventions. 
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