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Abstract

Current trends towards greater complexity and automation are leaving modern
technological systems increasingly vulnerable to faults. Without proper action, a
minor error may lead to devastating consequences. In flight control, where the
controllability and dynamic stability of the aircraft primarily rely on the control
surfaces and engine thrust, faults in these effectors result in a higher extent of risk for
these aspects. Moreover, the operation of automatic flight control would be suddenly
disturbed. To address this problem, different methodologies of designing optimal
flight controllers are presented in this thesis. For multiple-input multiple-output
(MIMO) systems, the feedback optimal control is a prominent technique that solves
a multi-objective cost function, which includes, for instance, tracking requirements
and control energy minimisation.

The first proposed method is based on a linear quadratic regulator (LQR) control
law augmented with a fault-compensation scheme. This fault-tolerant system handles
the situation in an adaptive way by solving the optimisation cost function and
considering fault information, while assuming an effective fault detection system is
available. The developed scheme was tested in a six-degrees-of-freedom nonlinear
environment to validate the linear-based controller. Results showed that this fault
tolerant control (FTC) strategy managed to handle high magnitudes of the actuator’s
loss of efficiency faults. Although the rise time of aircraft response became slower,
overshoot and settling errors were minimised, and the stability of the aircraft was
maintained.

Another FTC approach has been developed utilising the features of controller
robustness against the system parametric uncertainties, without the need for reconfig-
uration or adaptation. Two types of control laws were established under this scheme,
the H∞ and µ-synthesis controllers. Both were tested in a nonlinear environment
for three points in the flight envelope: ascending, cruising, and descending. The H∞

controller maintained the requirements in the intact case; while in fault, it yielded
non-robust high-frequency control surface deflections. The µ-synthesis, on the other
hand, managed to handle the constraints of the system and accommodate faults
reaching 30% loss of efficiency in actuation. The final approach is based on the control
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allocation technique. It considers the tracking requirements and the constraints of
the actuators in the design process. To accommodate lock-in-place faults, a new
control effort redistribution scheme was proposed using the fuzzy logic technique,
assuming faults are provided by a fault detection system. The results of simulation
testing on a Boeing 747 multi-effector model showed that the system managed to
handle these faults and maintain good tracking and stability performance, with some
acceptable degradation in particular fault scenarios. The limitations of the controller
to handle a high degree of faults were also presented.



Table of contents

List of figures xiii

List of tables xvii

Nomenclature xix

1 Introduction 1
1.1 Motivation Towards the Fault-tolerant Control . . . . . . . . . . . . . 1
1.2 Safety index and reliability . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 System redundancy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.5 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Fault-Tolerant Control: An Overview 9
2.1 Definitions of fault-tolerant control . . . . . . . . . . . . . . . . . . . 9
2.2 Fault types and modelling . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.1 Mathematical description . . . . . . . . . . . . . . . . . . . . 11
2.3 Fault detection and diagnosis . . . . . . . . . . . . . . . . . . . . . . 13
2.4 Real-world FTC operation . . . . . . . . . . . . . . . . . . . . . . . . 13

2.4.1 Airbus philosophy . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.4.2 Boeing philosophy: the B777 as an example . . . . . . . . . . 16

2.5 Fault tolerance control techniques . . . . . . . . . . . . . . . . . . . . 16
2.5.1 Passive fault-tolerant control . . . . . . . . . . . . . . . . . . . 18
2.5.2 Active fault-tolerant control . . . . . . . . . . . . . . . . . . . 19

2.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3 Aircraft Dynamics and Automatic Control 25
3.1 Basic aerodynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.1.1 Forces and moments . . . . . . . . . . . . . . . . . . . . . . . 27
3.1.2 Axes of orientation . . . . . . . . . . . . . . . . . . . . . . . . 28



x Table of contents

3.1.3 Euler angles . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.2 Aircraft stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.2.1 Longitudinal static stability . . . . . . . . . . . . . . . . . . . 30
3.2.2 Lateral static stability . . . . . . . . . . . . . . . . . . . . . . 31
3.2.3 Directional static stability . . . . . . . . . . . . . . . . . . . . 32

3.3 Aircraft equations of motion . . . . . . . . . . . . . . . . . . . . . . . 33
3.3.1 Generalised forces and moments equations . . . . . . . . . . . 33
3.3.2 The aircraft’s linear dynamic model . . . . . . . . . . . . . . . 35
3.3.3 The decoupled equations of motion . . . . . . . . . . . . . . . 36
3.3.4 Linear EoM in a state space form . . . . . . . . . . . . . . . . 37

3.4 Dynamic stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.4.1 Longitudinal dynamic stability modes . . . . . . . . . . . . . 38
3.4.2 Lateral dynamic stability modes . . . . . . . . . . . . . . . . . 39

3.5 Aircraft nonlinear simulation . . . . . . . . . . . . . . . . . . . . . . . 39
3.5.1 Modelling procedure . . . . . . . . . . . . . . . . . . . . . . . 40
3.5.2 Trimming and linearisation . . . . . . . . . . . . . . . . . . . 41

3.6 Aircraft flight control . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.6.1 PID controllers . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.6.2 Aircraft control surfaces . . . . . . . . . . . . . . . . . . . . . 42

3.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4 Optimal FTC using LQR and Adaptive Fault Compensation 47
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.2 Concept of Linear Quadratic Regulator control . . . . . . . . . . . . 49

4.2.1 The Linear Quadratic Regulator problem . . . . . . . . . . . . 49
4.2.2 The LQR tracking problem . . . . . . . . . . . . . . . . . . . 51

4.3 LQR optimal control for a linear aircraft model . . . . . . . . . . . . 52
4.3.1 Aircraft model . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.3.2 Classical proportional-integral-derivative (PID) Controller . . 53
4.3.3 Optimal LQR tracking control . . . . . . . . . . . . . . . . . . 56

4.4 Fault-Tolerant Adaptive Control . . . . . . . . . . . . . . . . . . . . 59
4.4.1 Adaptive fault compensation . . . . . . . . . . . . . . . . . . 59
4.4.2 Development of the Adaptive FTC for linear aircraft dynamics 62
4.4.3 Results of the adaptive Fault Tolerant Control . . . . . . . . . 64

4.5 Nonlinear simulations and testing . . . . . . . . . . . . . . . . . . . . 66
4.5.1 Aircraft business jet model . . . . . . . . . . . . . . . . . . . . 66
4.5.2 Trimming and linearisation . . . . . . . . . . . . . . . . . . . 67
4.5.3 The FTC Controller development . . . . . . . . . . . . . . . . 70



Table of contents xi

4.6 Simulation Testing and Results . . . . . . . . . . . . . . . . . . . . . 71
4.6.1 Fault Scenario 1: 70% loss of effectiveness fault . . . . . . . . 74
4.6.2 Fault Scenario 2: 80% loss of effectiveness. . . . . . . . . . . 74

4.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5 Robust Optimal FTC using H∞ and µ-synthesis Techniques 79
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
5.2 Robust Fault-tolerant Control . . . . . . . . . . . . . . . . . . . . . . 82

5.2.1 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . 82
5.2.2 Robust Stability H∞ Control . . . . . . . . . . . . . . . . . . 84
5.2.3 Robust Performance µ-synthesis Control . . . . . . . . . . . . 85

5.3 Implementation of the Robust FTC . . . . . . . . . . . . . . . . . . . 87
5.3.1 H∞ Control Design for System without Fault . . . . . . . . . 89
5.3.2 Robust Stability and Performance against Faults . . . . . . . 91

5.4 Non-linear Testing and Validation . . . . . . . . . . . . . . . . . . . . 94
5.4.1 Aircraft Mission Profile . . . . . . . . . . . . . . . . . . . . . . 94
5.4.2 Linear Models . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
5.4.3 Fault-tolerant Flight Control . . . . . . . . . . . . . . . . . . 95
5.4.4 Simulation and Results for µ controller . . . . . . . . . . . . . 99

5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

6 Reconfigurable Dynamic Control Allocation against Lock in Place
Faults 107
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
6.2 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

6.2.1 Unconstrained Control methods . . . . . . . . . . . . . . . . 110
6.2.2 Constrained Control methods . . . . . . . . . . . . . . . . . . 111

6.3 Dynamic Control Allocation using the Quadratic Programming approach114
6.4 Flight Control Allocation System for multi-aileron aircraft . . . . . . 119

6.4.1 Aircraft Dynamic Model . . . . . . . . . . . . . . . . . . . . . 120
6.4.2 The virtual control command . . . . . . . . . . . . . . . . . . 123
6.4.3 Control Allocation . . . . . . . . . . . . . . . . . . . . . . . . 125

6.5 Reconfigurable Fault-tolerant Control Allocation (FTCA) System . . 130
6.5.1 Redistribution of the control efforts . . . . . . . . . . . . . . . 131
6.5.2 Control Redistribution using Fuzzy Logic . . . . . . . . . . . 133
6.5.3 Fuzzy logic Implementation . . . . . . . . . . . . . . . . . . . 137
6.5.4 Process of the FTC . . . . . . . . . . . . . . . . . . . . . . . . 139

6.6 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140



xii Table of contents

6.6.1 Inner right aileron faults . . . . . . . . . . . . . . . . . . . . . 141
6.6.2 Outer right aileron faults . . . . . . . . . . . . . . . . . . . . 144
6.6.3 Rudder faults . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

6.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

7 Conclusion and Further Work 153

References 157

Appendix A Linear models for Business Jet Aircraft 171
A.1 Linearised models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

Appendix B Control computation 173
B.0.1 Mu-synthesis generalised plant (used in Ch. 5) . . . . . . . . . 173
B.0.2 State space model for H∞ control for the Control Allocation . 174
B.0.3 Matlab Codes for control gains computation . . . . . . . . . . 175



List of figures

1.1 Total number of aircraft accidents since 1995 [9]. . . . . . . . . . . . . 2
1.2 Average accident rate per million flights in the past 10 years [9]. . . . 2
1.3 On-board fatalities and fatal accidents by phase of flight [10]. . . . . . 3

2.1 Types of faults affecting the system [18]. . . . . . . . . . . . . . . . . 10
2.2 Types of actuator faults . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3 Multiplicative and additive faults to the system input . . . . . . . . . 12
2.4 Varieties of flight computers for A340 and A380 [7]. . . . . . . . . . 14
2.5 Actuator reconfigurations by Airbus [7]. . . . . . . . . . . . . . . . . 15
2.6 Classifications of FTC methods [3, 28, 29]. . . . . . . . . . . . . . . 17
2.7 Time for recovery vs. time needed by FTC [2]. . . . . . . . . . . . . 18

3.1 Aircraft motion variables [55]. . . . . . . . . . . . . . . . . . . . . . 26
3.2 Definitions of angle of attack, pitch angle, and flight path angle. . . . 28
3.3 Aircraft body-axis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.4 Conventional Earth axis . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.5 Axes transformation using Euler angles [60] . . . . . . . . . . . . . . 31
3.6 Static and dynamic stability [60] . . . . . . . . . . . . . . . . . . . . 32
3.7 Variation of pitching moment coefficient with respect to angle of attack

[60] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.8 Longitudinal short period and phugoid modes . . . . . . . . . . . . . 39
3.9 Nonlinear modelling layout . . . . . . . . . . . . . . . . . . . . . . . . 40
3.10 Feedback control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.11 Structure of the PID controller . . . . . . . . . . . . . . . . . . . . . 42
3.12 Aircraft control surfaces . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.13 Inputs and outputs to the aircraft dynamics [60] . . . . . . . . . . . 43

4.1 LQR structure incorporating the tracking error . . . . . . . . . . . . 51
4.2 Bank angle PID control with roll rate damper . . . . . . . . . . . . . 54
4.3 Aircraft bank angle response using PID controller . . . . . . . . . . . 54



xiv List of figures

4.4 Responses of other outputs using the PID . . . . . . . . . . . . . . . 55
4.5 Aileron deflections using the PID controller . . . . . . . . . . . . . . . 55
4.6 LQR tracking model . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.7 Modelling of the system’s dynamics . . . . . . . . . . . . . . . . . . . 57
4.8 Bank angle controller using LQR . . . . . . . . . . . . . . . . . . . . 57
4.9 Aircraft other variable responses using LQR. . . . . . . . . . . . . . 58
4.10 Actuators deflections to control the system using LQR. . . . . . . . . 59
4.11 Reference bank angle (ϕ) . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.12 FTC using LQR tracking control and fault compensation . . . . . . . 64
4.13 Bank angle (ϕ) response with 50% faulty actuators . . . . . . . . . . 65
4.14 Deflections with 50% faults. . . . . . . . . . . . . . . . . . . . . . . . 65
4.15 Bank angle response with 90% loss of effectiveness faults . . . . . . . 66
4.16 Control surface deflections with 90% loss of effectiveness faults. . . . . 66
4.17 Aircraft’s dimensions and configuration layout . . . . . . . . . . . . . 67
4.18 Elevator pulse input effects on the longitudinal dynamics. . . . . . . . 69
4.19 Aileron pulse input effects on the open-loop lateral dynamics. . . . . 69
4.20 Top-level view of the closed-loop system. . . . . . . . . . . . . . . . . 71
4.21 Adaptive FTC layout in the nonlinear simulations. . . . . . . . . . . 72
4.22 LQR control model for the computed gains . . . . . . . . . . . . . . 73
4.23 Nonlinear bank angle response with 70% faulty actuator. . . . . . . . 74
4.24 Control surface deflections with 70% actuator faults. . . . . . . . . . 75
4.25 Nonlinear bank angle response with 80% faulty actuator. . . . . . . . 75
4.26 Control surface deflections with 80% faulty actuator. . . . . . . . . . 76

5.1 System with input multiplicative uncertainty. . . . . . . . . . . . . . 82
5.2 Optimisation structure for tracking error and actuator input. . . . . . 84
5.3 System layout for H∞ control computation. . . . . . . . . . . . . . . 84
5.4 N∆ structure for robust performance. . . . . . . . . . . . . . . . . . . 86
5.5 Closed loop System including the weighting functions. . . . . . . . . . 87
5.6 Bode diagram of the tracking weighting function We. . . . . . . . . . 88
5.7 Bode diagram of the aileron weighting function Wu. . . . . . . . . . . 89
5.8 Bank angle response using H∞ controller. . . . . . . . . . . . . . . . . 90
5.9 Aileron and rudder deflections for the required manoeuvre using H∞

controller. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
5.10 Bank angle response and aileron deflections using H∞ controller. . . . 92
5.11 Bank angle response using µ-synthesis controller. . . . . . . . . . . . 92
5.12 Aircraft control deflections using the µ-synthesis controller. . . . . . . 93
5.13 Selected trimming points within the mission profile. . . . . . . . . . . 94



List of figures xv

5.14 Closed-loop system, including weighting functions. . . . . . . . . . . . 95
5.15 Bode diagram of tracking weighting functions We for bank angle (at

cruise). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
5.16 Bank angle response using the two controllers with 30% faulty actuators. 99
5.17 Aileron deflections with 30% loss of effectiveness faults. . . . . . . . . 99
5.18 Nonlinear simulation of bank (rolling) angle ϕ at cruise. . . . . . . . . 100
5.19 Aileron (ξ) and rudder (ζ) deflections to generate the required response.101
5.20 Bode plot for the closed loop system with µ-controller. . . . . . . . . 101
5.21 Nyquist plot for stability. . . . . . . . . . . . . . . . . . . . . . . . . . 102
5.22 Computing GM using Nyquist plot. . . . . . . . . . . . . . . . . . . . 102
5.23 Nonlinear simulation of bank angle ϕ under ascent operating conditions.103
5.24 Nonlinear simulation of aileron deflection angle ξ under ascent operat-

ing conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
5.25 Nonlinear simulation of bank angle ϕ under descent operating conditions.104
5.26 Nonlinear simulation of aileron deflection angle ξ under descent oper-

ating conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

6.1 Control allocation generic scheme . . . . . . . . . . . . . . . . . . . . 108
6.2 Control allocation techniques (Based on [112]) . . . . . . . . . . . . . 110
6.3 Boeing 747 lateral control configuration . . . . . . . . . . . . . . . . . 119
6.4 Closed loop system with the weight minimisation functions. . . . . . 121
6.5 General layout of the system for H infinity computation. . . . . . . . 121
6.6 We weighting functions for phi and beta. . . . . . . . . . . . . . . . . 123
6.7 Wu functions for aircraft’s control surfaces. . . . . . . . . . . . . . . . 123
6.8 Illustration of the computation of the virtual control command. . . . 125
6.9 Summation of transfer functions for each effector. . . . . . . . . . . . 127
6.10 Control surfaces’ deflections using non-saturated DCA. . . . . . . . . 128
6.11 Aircraft response using non-constrained DCA. . . . . . . . . . . . . . 128
6.12 Control surface deflections using constrained DCA. . . . . . . . . . . 129
6.13 Aircraft response using dynamic control allocation. . . . . . . . . . . 129
6.14 Rolling motion and deflections effects when inner right aileron is faulty.131
6.15 Ramp and step reference signals. . . . . . . . . . . . . . . . . . . . . 133
6.16 Mapping two inputs to one output using fuzzy logic. . . . . . . . . . 134
6.17 Types of membership functions [150]. . . . . . . . . . . . . . . . . . 135
6.18 Rules of membership functions [150]. . . . . . . . . . . . . . . . . . . 136
6.19 Fuzzy logic using Sugeno’s model. . . . . . . . . . . . . . . . . . . . . 137
6.20 Triangular membership functions for fault FA1. . . . . . . . . . . . . 137
6.21 Inner and outer ailerons vs. updating factor Gf . . . . . . . . . . . . 139



xvi List of figures

6.22 Outer ailerons vs. updating factor Gf and slope . . . . . . . . . . . . 139
6.23 Development process of the Fault-tolerant Control Allocation. . . . . 140
6.24 Reconfigurable FT control allocation layout. . . . . . . . . . . . . . . 141
6.25 Response with jammed inner right aileron at 17 degree. . . . . . . . . 141
6.26 Aircraft controls’ deflections with 17deg LIP on the inner right aileron 142
6.27 Aircraft responses with hardover faults in the inner right aileron. . . . 143
6.28 Deflections against hardover fault in the inner right aileron . . . . . . 144
6.29 Response for a step and ramp reference inputs, with 10deg LIP fault

in outer right aileron. . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
6.30 Deflections for step vs. ramp reference inputs . . . . . . . . . . . . . 146
6.31 Bank angle response for 16deg LIP fault in outer right aileron. . . . . 147
6.32 Deflections with 16deg LIP in the outer right aileron. . . . . . . . . . 147
6.33 Aircraft bank angle response against 6deg LIP fault in the rudder. . . 148
6.34 Aircraft sideslip angle response with 6 degree LIP fault in rudder. . . 149
6.35 Deflections with 6deg LIP rudder . . . . . . . . . . . . . . . . . . . . 149
6.36 Aircraft responses when the rudder is jammed at 10 deg. . . . . . . . 150
6.37 Deflections with 10deg LIP rudder fault. . . . . . . . . . . . . . . . . 151



List of tables

1.1 Reliability requirements for aircraft automatic flight control system. . 3

3.1 Basic definitions of systems’ models [56] . . . . . . . . . . . . . . . . 26

4.1 Specifications of the business jet aircraft. . . . . . . . . . . . . . . . . 67
4.2 Basic states of the trimmed aircraft. . . . . . . . . . . . . . . . . . . . 68

5.1 Results of the robust computation. . . . . . . . . . . . . . . . . . . . 91
5.2 Aircraft basic trimming conditions. . . . . . . . . . . . . . . . . . . . 95
5.3 We parameters for tracking requirements of the heading angle (ψ). . . 96
5.4 Wu parameters for control efforts. . . . . . . . . . . . . . . . . . . . . 97
5.5 Robustness condition results for nonlinear model. . . . . . . . . . . . 98
5.6 Trim and testing operating conditions. . . . . . . . . . . . . . . . . . 100

6.1 Control surfaces deflections and primary effects . . . . . . . . . . . . 120
6.2 Bode diagram specifications for We weighting functions . . . . . . . . 122
6.3 Required updates to the system subjected to actuators lock in place

faults. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
6.4 Details of membership functions characteristics . . . . . . . . . . . . 138

A.1 Aircraft control input and states for the selected trimming conditions. 171





Nomenclature

Greek letters

α Angle of attack

β Sideslip angle

∆ System’s uncertainty

δa Aileron angle deflection

δe Elevator angle deflection

δf Flap angle deflection

δr Rudder angle deflection

η Elevator deflection

γ Flight path angle

µ Structured singular value

ω Frequency

ϕ Rolling angle

ψ Heading angle

σ Upper singular value

Σ Loss of efficiency factor

τ Engine thrust

θ Pitch angle

ξ Aileron deflection



xx Nomenclature

ζ Rudder deflection

Acronyms

ACE Actuator Control Electronics

AMS Attainable moment set

AoA Angle of attack

ARE Algebraic Riccati Equation

CA Control Allocation

CFIT Controlled Flight Into Terrain

DCA Dynamic control allocation

FBW Fly-by-wire

FDD Fault detection and diagnosis

FTC Fault-tolerant control

FTFC Fault-tolerant flight control

GM Gain margin

LFT Linear fractional transformation

LIP Lock in place

LIP Lock in place

LOC-I Loss of Control in flight

LPV Linear parameter varying

LQR Linear quadratic regulator

MFs Membership Functions

MIMO Multiple-input multiple-output

MPC Model predictive control

MRAC Model-reference adaptive control



Nomenclature xxi

PCA Propulsion Controlled Aircraft

PFC Primary Flight Computer

PID Proportional-Integral-Derivative control

PID proportional-integral-derivative

PM Phase margin

RAT Ram Air Turbine

RE Runway Excursion

RP Robust performance

SMC Sliding mode control

STC Self-tuning control

UAV Unmanned Aerial Vehicle

Roman letters

u̇ Rate of change of control
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Chapter 1

Introduction

1.1 Motivation Towards the Fault-tolerant Con-
trol

Automated systems have been widely developed and applied to industrial processes to
increase precision, productivity, and quality. In the case of flight control of air-vehicles,
these systems are built to ensure the stability of the closed-loop system and to achieve
a desired performance [1]. In highly automated industrial systems, in which the
maintenance or repair cannot always be achieved immediately, systems become more
complex and will be more vulnerable against faults [2]. Consequently, a conventional
pre-designed feedback controller may result in an inadequate performance in the
event of faults in the actuators, sensors, or other components of the system, which
may lead to instability, loss of control, or catastrophic failures [3], [4], [5]. It is more
convenient and safe to design control methods that ensure the nominal performance
in the presence of faults [6], [7]. Loss of control accounts for over 25% of aircraft
accidents worldwide [8]. Figure 1 shows the percentage of the total number of
accidents since the year 1995 [9], where the categories of the cause of accidents are
defined as follows:

• Loss of Control while in flight (LOC-I).

• Controlled Flight Into Terrain (CFIT): which means in-flight collision with
terrain, obstacle, or water without indication of loss of control.

• Runway Excursion (RE): an over-run off the runway surface.

All other accident categories representing less than 10% are grouped under the
“Other” category. Note that approximately 27% of accidents were due to LOC-I.
The time-plot of the average accident rate per million flights due to these accident
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Fig. 1.1 Total number of aircraft accidents since 1995 [9].

categories is shown in Fig. 1.2. As in Fig.1.2, the safety measures taken toward the

Fig. 1.2 Average accident rate per million flights in the past 10 years [9].

reduction of aircraft accidents resulted in the decrease in accident rates. Yet the
LOC-I type of fault only decreased by 50%, while CFIT successfully decreased by
85% between the years 1995 and 2014. In another statistical report produced by
Boeing [10], the loss of control in flight type of fault resulted in 1656 fatalities as
41% of the total accident fatalities for the period of 2005-2014. In second place was
the CFIT, with 803 fatalities as 20% of total fatalities, followed by RE with 18.8%.
Moreover, if we want to consider the probabilities of accidents from the phase of
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flight aspect, we can see that in Fig.1.3 48% of aircraft accidents are occurring in
the final approach and landing, resulting in 38% of onboard fatalities.

Fig. 1.3 On-board fatalities and fatal accidents by phase of flight [10].

1.2 Safety index and reliability

The reliability of a flight control system is determined by its probability of failure
per flight hour. Another alternative description is the mean time between failures,
where time is in units of flight hours [11]. Typical reliability requirement figures for
some aircraft are presented in Table 1.1.

Table 1.1 Reliability requirements for aircraft automatic flight control system.

System application Probability of the to-
tal system failure

Military combat aircraft with me-
chanical controls

< 10−5 per hour

Military combat aircraft with fly-
by-wire control system

< 10−7 per hour

Civil transport aircraft with fly-by-
wire control system

< 10−9per hour

For human and operational safety, these reliability requirements are made very
low. To get an idea, a failure probability of a civil aircraft of < 10−9 per hour means
that a fleet of 1000 aircraft that fly an average of 3000 hours annually will experience
a total failure of the fly-by-wire system in 300 years. The current civil transport
aircraft reliability figure is approximately < 10−6 per hour [12]. The affirmation that
a given flight control system meets the reliability requirements is a difficult task
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because it is not possible to put the modern flight control system on test for the
determined period of time. However, a reliability of the system can be estimated
based on the known or estimated failure rates of the components making up the
complete system [11].

1.3 System redundancy

In the presence of major actuator failures, it is sometimes impossible to maintain
the faulty system at the original levels of performance. It becomes of principal
importance to bring the system as close as possible to its best operating condition
with respect to the desired performances. Therefore, the primary required feature
is to minimize the loss in controllability or/and to sustain the system to operate
safely without danger to people or loss of equipment. The system should continue
its operation with allowable decrease in performance as long as it remains within
particular acceptable limits. The machinery backup tools that are prepared to avoid
the cut, or loss of efficiency of any of the system’s functions, are called the hardware
(physical) redundancy. Thus, it refers to the duplication of critically important
systems (i.e. actuators and sensors). This concept, which sometimes also is called
direct redundancy, allows for using simple schemes for the alleviation and detection of
failures and faults at the price of increased system cost [6]. Hardware redundancy is
fundamentally important in systems where the safety of individuals could be affected.
In aircraft, for example, multiple flight computers (i.e. five on the A330/A340
and six on the A380) and different power sources are used for the control surface
actuation. Three hydraulic sources are used on the A340/A320, while two hydraulic
and two electric power sources are used on the A380. Additionally, for the A380 the
engine power also pressurizes the hydraulic circuits and supplies the electric network.
Moreover, in an emergency situation, a Ram Air Turbine (RAT) is used to provide
the energy to pressurize important hydraulic circuits [7]. Likewise, to provide inertial
information and air data to other systems, multiple and identical sensors are used.
More examples of the hardware redundancy are presented in [7], [12], and [11].

The use of redundant hardware back-up approaches will add cost, volume, and
weight penalties to the aircraft [4]. Moreover, redundant architectures can increase
the aircraft’s maintenance time due to an increase in the number of parts and
complexity. Redundant sensors are considerably easier and less expensive to install
than actuators.

After the development of fly-by-wire flight control systems in the late 1970s,
flight control computers became critical components in automated flight control
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systems. This led to the development of analytical redundancy methods, which
use signals generated from the mathematical model of the system for the fault
accommodation [3]. Analytical redundancy considers the functional relationship
between a system’s inputs and outputs, rather than the components themselves. For
example, measured quantities can often be calculated from other quantities by means
of algebraic or, more often, via dynamic relationships. Likewise, outputs strongly
influenced by some control input are often also controllable from other inputs, albeit
with different gains and time constants. Analytical redundancy is more challenging
to use than physical redundancy, but it allows for building more cost-efficient systems
[6]. This redundancy approach increases the reliability through software rather than
strictly hardware [13]. Nevertheless, attention must be paid to how to effectively and
efficiently utilize the analytical redundancy [14]. Challenging issues for FTC design
include the integration of hardware and software redundancy [3].

1.4 Thesis outline

In this work, the development of a fault-tolerant control (FTC) system for an aircraft
is considered. The FTC exploits both hardware and analytical redundancy, with some
specific emphasis on the mitigation of failures to enhance the safety of flight. The
thesis is presented as follows: in Chapter 2, fault-tolerant control is described with
the classification of FTC application methods. Chapter 3 presents the background
theory of aircraft dynamics and control that is essential for the FTC analysis and
design. In Chapter 4, a fault-tolerant control system that encompasses optimal linear
quadratic regulator control augmented with an adaptive fault-compensation-based
scheme is presented. As an optimal multivariable controller, the LQR baseline control
law was formulated. It handles the problem of tracking error and control energy
minimisation. The FTC system was developed based on a linear dynamic model and
then tested initially for performance and stability optimisation. For validation of
control viability, a nonlinear 6-degree-of-freedom (dof) simulation was performed. In
Chapter 5, the robust features of the H∞ and µ-synthesis techniques were utilized
to design an FTC in which actuator loss of efficiency faults have been modeled as
an uncertainty in the system. Robust computation involved the minimisation of
a cost function that considers multiple design objectives, which are the tracking
error minimisation, control energy minimisation, and the uncertainties handling.
Extensive nonlinear simulations were also conducted to validate the developed scheme.
Chapter 6 presents the development of a reconfigurable fault-tolerant flight control
system for a multi-effector aircraft. The aircraft has redundant ailerons and a rudder,
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which act as primary control inputs for the considered lateral motion. The approach
includes optimal control allocation development that handles the redundancy of the
control surfaces, tracking requirements, and actuator constraints. A new control
redistribution process was proposed for the lock-in-place type of faults in the actuators.
This approach relies on and assumes an effective onboard fault detection and diagnosis
(FDD) system that provides precise fault information of the actuators. To handle
the interpolation between the faults and the control redistribution, fuzzy logic was
implemented. The system was tested for different fault scenarios. Finally, Chapter 7
concludes with the main outcomes of the experiments and some recommendations
for further work.

1.5 Contributions

LQR and Adaptive Compensations:

• An adaptive fault-compensation approach was added to the optimal LQR
controller used to control a multiple-input multiple-output (MIMO) aircraft
system. The baseline LQR obtains the optimal control solution that maintains
the tracking requirements of the aircraft and minimises the control efforts. For
a fault-tolerant approach, an adaptive fault-compensation-based technique was
developed that can accommodate the loss-of-effectiveness faults.

• To validate the performance of the linear-based FTC control approach, nonlinear
simulation testing was performed.

H∞ and µ-synthesis:

• Robust H∞ and µ-synthesis techniques have been formulated for a multi-variable
aircraft system subjected to actuation faults.

• The nonlinear simulation testing of the scheme was conducted against actuator
faults at different operating conditions in the flight envelope (the ascending,
cruise, and descending cases were considered).

FTC using reconfigurable CA

• Different than existing methods of fault-tolerant control allocation techniques,
the developed approach incorporates a new control redistribution process, which
is updated when faults occur.
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• Further, fuzzy logic is used to correlate between faults and control redistribution.
Existing works assume certain faults in the model and produce the FTC lookup
tables accordingly. In contrast, fuzzy logic implementation can handle a wide
range of fault magnitudes online, by interpolation.

• Moreover, this method deals with a more severe type of faults, which is the
lock-in-place fault. It handles faulty situations and enhances the flying quality
with multi-effector controls.





Chapter 2

Fault-Tolerant Control: An
Overview

2.1 Definitions of fault-tolerant control

The fault-tolerant control (FTC) system for an aircraft exploits both the hardware and
analytical redundancy, with emphasis on failure mitigation to enhance flight safety.
Thus, it is suitable to start with a brief definition of some terms and expressions that
will be used throughout this thesis. The terminology of faults and failures used in the
FTC field was not unique, until the International Federation of Automatic Control
(the technical committee) made the relevant definitions related to this subject. The
definitions are as follows [15]:

Fault: is a deviation of one or more of the characteristic parameters or properties
of the system from an acceptable standard or usual condition.

Failure: is the permanent interruption of a system as it operates or performs
certain required functions.

These definitions were given to set a standard in this area to avoid confusion
among researchers [16]. The FTC is defined as a physical control system, which not
only performs regular control functions but also is capable of maintaining the safety
of the system in the event of faults. It has the following features [3]:

• the ability to accommodate faults of the system

• the ability to maintain the overall system’s stability and adequate performance
in the event of faults

It was also known as a self-repairing, restructurable, reconfigurable, or self-
designing control system that survives a major system fault [17]. Consequently, the
main objective of this controller is to guarantee the system’s stability while the
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original performance is restored as much as possible. The unfaulty performance may
not be fully achieved; however, the aircraft can be flown in a degraded mode but
with sufficiently acceptable handling qualities.

2.2 Fault types and modelling

Faults and failures could be categorized based on their location as follows [18]:
Actuator faults: They represent total or partial loss of control action. Total
actuator faults can occur as a result of burned or cut wiring, breakage, short circuits,
or due to a foreign body presented in the actuator, etc. Partially failed actuators,
which produce only part of the normal actuation, can result from pneumatic or
hydraulic leakage, fall in the supply voltage, or increased resistance, etc.
Sensor faults: These faults represent incorrect readings from sensors, and can
also be divided into partial and total faults. Total sensor faults give information
that is not the real value of the measured physical parameter. Partial sensor faults
give readings in such a way that some useful information could be retrieved. To
increase fault tolerance, and due to their smaller sizes, sensors can be duplicated in
the system.
Component faults: These are faults in components of the plant itself, and represent
changes in the system’s physical parameters, e.g. mass, aerodynamic coefficients, or
damping constants, etc., which are often due to structural damages. They are very
diverse and cover an extensive class of unanticipated situations.
The three types of faults are shown in Fig. 2.1 as classified in [18].

Fig. 2.1 Types of faults affecting the system [18].

In this thesis, only actuator faults are considered. They are classified in the
literature as follows [19], [20]:

• Lock in place: when an actuator becomes stuck and immovable, because of
a mechanical jam, for example, due to lack of lubrication. This type of failure
has occurred in incidents such as Flight 1080 (Lockheed L-1011, 1977, San
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Diego) where one of the horizontal stabilizers jammed in the full-up position;
and Flight 96 (DC-10, 1972, Windsor, Ontario) where the rudder jammed.

• Float: where the control surface moves freely and does not provide any moment
to the aircraft, which might be due to the loss of hydraulic fluid or the control
surface itself. It occurred in incidents including Flight 123 (B-747, 1985,
Japan) resulting from a total loss of hydraulics and DHL A300B4 (A300, 2003,
Baghdad).

• Hardover: a situation in which the control surface moves until it reaches its
maximum position limit. Such a failure could be caused by an uncommanded
large electric signal sent to the actuators. This type of failure occurred in
incidents such as Flight 85 (B-747, 2002, Alaska), which suffered from a lower
rudder full left deflection.

• Loss of effectiveness: where an actuator’s effectiveness reduces. Potential
reasons for such a failure are lack of hydraulic fluids or insufficient lubrication.

Fig. 2.2 illustrates these actuation failures.

Fig. 2.2 Types of actuator faults

2.2.1 Mathematical description

To formulate a mathematical model for faults, different approaches have been
proposed. In general, the modelling depends on the type of the fault (i.e. whether it
occurs in the system’s actuators or sensors). In this work, faults in the actuators,
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Fig. 2.3 Multiplicative and additive faults to the system input

which are the input of the system, are considered, and they are modelled as additive
and/or multiplicative faults, as shown in Fig. 2.2 [18].

The fault is mathematically denoted by a constant that represents the jammed
actuator or by a multiplication of a gain to the control input that represent the loss
of efficiency. For a number of actuators m, the fault is expressed by:

ui(t) =



ui(t) nominal
ci lock in place

ui,max hardover
ρ× ui(t), 0 < ρ < 1 loss of effectiveness

0 float

where i=1,. . . .,m, and ci is a fixed constant angle that represents the jammed
deflection of the corresponding actuator. In the work presented in [21], the faults’
mathematical integration to the linear system is defined as follows

uf =
∑

× u+ uc

where:

• uf is the faulty control input

• u is the nominal control

• ∑ = diag([α1, . . . αm]) is the loss of efficiency on the nominal control inputs.
α varies between 0 and 1

• uc is the additive faulty input

In this thesis, at each case of the FTC development, a relevant fault modelling
method is utilised. In the next section, an overview of fault detection and diagnosis
(FDD) systems is given.
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2.3 Fault detection and diagnosis

The design of the FDD is beyond the scope of this thesis. However, it is very useful
to provide a brief overview of the subject. The definition and classifications of FDD
are presented. The FDD scheme has two main tasks that are defined as follows [3],
[22], [23]:

• Detection: Indicates that something in the system is malfunctioning. It
detects the occurrence of a fault and the time of the fault.

• Diagnosis: Consists of:

– Isolation: determines the type and the location of the fault (which com-
ponent has failed).

– Identification: determines the magnitude (size) of the fault.

Primarily, two types of FDD approaches exist: the model-based and the data-
based approaches [3]. As the predominantly applied technique, the model-based FDD
scheme essentially uses a mathematical model to carry out the FDD in real time.
The non-model-based approaches utilize artificial intelligence and soft computing
to observe the fault [24]. The FDD unit needs to indicate the true status of the
entire system as promptly and accurately as possible, while rejecting false alarms
resulting from noise or spurious signals [25]. Information provided by the FDD on the
system fault has a direct impact on the control reconfiguration. Incorrect reactions
will be produced if unfavorable FDD information is supplied, which will affect the
safety. Thus, the FDD implementation requires a balance between high rate of fault
detection and low rate of false alarms [2]. For more details on FDD, see [2], [3], [20],
and [22].

2.4 Real-world FTC operation

In this section, the design philosophy and implementations of fault-tolerant flight
control by Airbus and Boeing on selected aircraft are presented.

2.4.1 Airbus philosophy

Dissimilarity: To ensure a fault tolerance, all Airbus aircrafts are fitted with two
types of computers, a primary and secondary computer. For example, five multiple
FBW computers are used in the A330/A340 aircraft, and six computers on the A380.
They are different in their hardware and software, and are developed by different
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teams. Figure 7 shows diversities of flight computers for the A340 and A380. To
avoid a total loss in the case of any damage, computers are installed at different
places on the aircraft [7].

Fig. 2.4 Varieties of flight computers for A340 and A380 [7].

Hardware redundancy: To mitigate the risk of faults or failures, critical systems
such as the actuation power sources are duplicated. For instance, three hydraulic
sources are used in the A340/A320. The A380 uses two hydraulic and two electric
power sources to actuate the control surfaces. Additionally, for the A380, the engine
power also pressurizes important hydraulic circuits. Moreover, in an emergency
situation, a Ram Air Turbine (RAT) will be used to provide the energy to pressurize
important hydraulic circuits [7].
Reconfiguration: This means that automatic management following the system’s
failure is a central point in the design of the fault-tolerant control. In Airbus aircraft,
two levels of reconfiguration are established:
The first type is system reconfiguration, in which the control surface has two actuators,
as shown in Figure 8.
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Fig. 2.5 Actuator reconfigurations by Airbus [7].

The first actuator is in active mode and is servo-controlled by a computer P1. The
second one is in a standby passive mode and follows the movement of the active
actuator. It is connected with a second computer P2. If the active actuator fails, it
changes to a passive mode, while the other one become active. Hence, this type of
reconfiguration is generally based on the hardware redundancy of systems.
The second type is the flight control law reconfiguration. At the normal conditions,
the aircraft is protected against critical events, and the corresponding flight control
law is referred to as the “normal law”. Operation provides protection against over-
speed, excessive load factor, stall, extreme bank angle, etc. Following a failure, i.e.
the loss of a control surface, some protection can be lost, and the system begins to
enter low-level laws where flight is sill possible but without the full flight envelope
protection. The last lower level is the direct law, where no protection is provided
and the aircraft is trimmed manually. This type of reconfiguration is due to the loss
of hardware redundancy.
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2.4.2 Boeing philosophy: the B777 as an example

The first commercial transport manufactured by Boeing that employees the FBW
flight control system is the Boeing 777 [26]. In terms of hardware redundancy,
hydraulically powered and electrically signaled actuators control the control surfaces
on the wing and tail of the B777. Two actuators per surface control the elevators,
ailerons, and flaperons, while three control the rudder. The actuation that powers
the ailerons, elevators, flaperons, and rudder has several operational modes defined
as follows [27]:
Active mode, in which all actuators receive commands from their respective Ac-
tuator Control Electronics (ACE) computers, and accordingly position the surface.
Actuators will remain in this mode unless commanded by the ACEs.
Bypassed mode, where the actuator does not respond to commands from ACE
but instead moves freely while the redundant actuators for a given control surface
position the surface.
Damped mode, which is similar to the bypassed mode except the actuators are
allowed to move but at a restricted rate sufficient for the airplane control.
Blocked mode in which failed actuators are not allowed to move, providing hy-
draulic lock in the surface. This mode exists for elevator and aileron actuators.

The Flight Control System of the aircraft has three operating modes: Normal,
Secondary, and Direct modes [27], defined as:
Normal mode: in which the PFCs provide actuator position commands to the
ACEs with full functionality of envelope protection, enhanced performance, and ride
qualities.
Secondary mode: which is similar to the normal mode except the functionality is
reduced. An example is that the envelope is no longer protected. When sufficient
failures in the system are detected, the system enters this mode automatically.
Finally, the Direct mode, in which the ACEs do not take commands from PFCs,
but instead decode the pilot’s commands directly. Total failure of all the three PFCs,
loss of flight control data busses, or internal failures of ACEs will let the system
enter this mode.

2.5 Fault tolerance control techniques

In this section, a general overview of the fault-tolerant control methods discussed in
literature is presented. Research efforts on Fault-Tolerant Flight Control (FTFC),
an area that has gained increased attention in the aerospace community motivated
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by several aircraft accidents, were initiated to accommodate in-flight faults and
improve the safety and reliability of the systems. FTFC aims to utilize all remaining
control effectors of the aircraft after an unanticipated mechanical or structural
failure. This is to recover its performance by automatic redesign of the flight control
system with sufficiently acceptable handling qualities. An extensive overview of
fault-tolerant control approaches is presented in [3]. In general, the fault-tolerant
control analysis includes analysis of the system’s input to determine the available
redundancy. In addition, it includes fault modelling that is to be considered in the
control computation. Fault-tolerant control can be classified into two main groups
[3], [28], [29]:

• Passive fault-tolerant control systems

• Active fault-tolerant control systems

Passive fault-tolerant control relies on the robustness of the control design
paradigm against faults and uncertainties. Therefore, in the event of a fault, the
controller should be able to maintain the system’s stability with an acceptable degra-
dation in the performance. This control system does not require a fault detection
system nor controller reconfiguration or adaptation. Conversely, active fault-tolerant
control systems respond to failures in an active way by control reconfiguration or
adaptation so that the stability of the entire system can be maintained. This recon-
figuration requires a fault detection scheme to provide fault information [15]. Figure
2.4 shows classifications of fault-tolerant control systems and provides examples of
control techniques.

Fig. 2.6 Classifications of FTC methods [3, 28, 29].

A limited amount of time available for recovery is available for the safety-critical
systems when they are experiencing malfunctions in operation. In the active fault-
tolerant control system where fault detection and diagnosis is needed, the time of
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recovery will play an important role in the stability of the system, as illustrated in
Figure 2.7. The time available for recovery depends on the magnitude of the fault,
its occurrence time, and the states of the system. The time needed by the FTC to
cope with the problem is closely tied with control efficiency, FDD efficiency, fault
type, and the degree of severity of faults [2].

Fig. 2.7 Time for recovery vs. time needed by FTC [2].

When the time needed by FTC to recover the system exceeds the available time
for recovery, then the system becomes unstable or unrecoverable. A work presented
by [30] includes a comparative study between passive and active faults. Although
different types of faults are introduced to various controllers, the study presents the
advantages and disadvantages of each method. In the next section, the two main
categories of FTC methods are presented.

2.5.1 Passive fault-tolerant control

In the absence of fault information, several methods have been proposed to achieve
robust performance and/or stability in the presence of a bounded uncertainty. The
passive approach neither has a reconfiguration mechanism nor an FDD unit; hence,
it is relatively simple to implement compared to the active methods. Moreover, the
controller is always engaged, no time delay issue exists, and there are no additional
actions to be taken in any passive FTC scheme. As a result, switching is no longer
a concern [2]. However, its fault-tolerant capabilities will shrink as the number or
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magnitudes of fault increase. If too many faults are to be considered at the design
process, one may not be able to find a passive FTCS altogether [30]. Considering
these advantages and disadvantages, different passive control methods can be em-
ployed. The main techniques are briefly presented.

Robust Control (H∞ Control)
One of the most common robust control methodologies established in the 1990s is the
H∞ control technique, which was proposed by Duncan McFarlane and Keith Glover
[31]. It was one of the most developed methods for multivariable control, and had a
variety of applications (i.e. industrial process control and aircraft control problems)
[32]. One shortcoming of the H∞ technique is that in some cases the controller is
conservative in the nominal conditions, and the performance is sometimes sacrificed
for robustness. Moreover, the designed controller is typically of a higher order than
the system. In the field of FTC, papers such as [33] and a chapter in [32] describe
some of the research applied in the area of flight control.

Sliding Mode Control (SMC)
The primary advantage of the SMC is its robustness against model uncertainties,

external disturbances, and variations in system parameters [34]. The benefits of
this controller for reconfigurable systems are that it can handle structural failures
that modify the dynamics of the plant within the assumed uncertainty, and the
online adaptation can handle partial loss of actuator. Although this technique
improves the aircraft control system, the use of SMC has limitations if presented
with the full reconfigurable problem. For every controlled variable, there must be
one control surface to handle uncertainties resulting from faults. Extensive tuning of
the controllers that include all possible failure cases is required [18].

2.5.2 Active fault-tolerant control

The active FTC approaches are more flexible for dealing with different types of faults.
Failure scenarios beyond the design-based faults are possibly considered. However,
the quality of the active FTCS depends profoundly on the FDD scheme to provide
accurate and timely fault information. Any time delay or uncertainties in the FDD
can reduce the effectiveness of the active FTCS. Some reconfigurable flight control
systems have been flight tested, but currently no reconfigurable fault-tolerant flight
controls have been certified or applied in any commercial or military aircraft [18].
In the following paragraphs, the main procedures used in the active fault-tolerant
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approach are presented.

Switching or blending / multiple model
Using multiple models for control reconfiguration was introduced in the early 1990s
[35]. In real systems, linear controllers are adapted to changes in operating conditions.
Therefore, using multiple model schemes is a proposed way to ensure that the con-
troller is designed to guarantee stability and performance for a wide flight envelope.
A devoted model describes the dynamics at each fault scenario. The models are
then paired with their corresponding controllers. The control system is reconfigured
by choosing the model/controller pair that is the most appropriate at each time
step. Different controllers for different possible faults and failure modes are designed,
and related controllers are only activated when faults occur. Limitations of this
approach appear when unmodelled faults are encountered. Moreover, the method
cannot handle multiple failures/faults simultaneously. Additionally, the number of
individual pairs of models to be designed may at times become remarkably large if
the system is to successfully operate with a wide range of failure scenarios [36]. The
application of multiple model ideas as an FTC for aircraft systems can be found in
[37] and recently in [38].

Propulsion Controlled Aircraft (PCA)
After the possibility of controlling the aircraft using only the engine throttles had

been demonstrated by the Sioux City accident, and following a recommendation from
the NTSB of America, the PCA problem was investigated by the NASA Dryden
Flight Research Centre [39], [40]. The aim was to provide a backup in the case of total
hydraulic failure. PCA is a multi-model approach in which the fault model is similar
to the nominal one, but the control surfaces are assumed to be free floating. In 1995,
demonstrations were made where an MD-11 and an F-15 had been recovered from
complete hydraulic failures and landed successfully under propulsion-only control
[41]. PCA is a useful and essential idea and solves very practical problems. However,
it is not appropriate to solve general reconfigurable control problems [15].

Scheduling
Gain scheduling deals with decomposing the nonlinear system into a set of linear
systems and designing a linear controller for each case [42]. The computed linear
models and their associated controllers are then scheduled. Models vary based on
some parameters of the system, i.e. the states. In the case of a non-normal operation,
no changes are made to the structure of the controller, but instead the controller



2.5 Fault tolerance control techniques 21

gains are changed accordingly, where pre-defined gains are chosen for certain flight
conditions. The switching between two gains is made by a simple logic switch
or through the use of look-up tables or curve fitting [43]. The gain scheduling is
easily understood and implemented; however, in some fault cases, the structure of
the nominal controller cannot cope sufficiently. Thus, the control adaptation or
reconfiguration could be a prominent solution. Information on gain scheduling can
be found in [42].
The linear parameter varying (LPV) control method is another type of scheduling. It
was developed due to the lack of stability and performance of classical gain scheduling
[44]. Moreover, it was needed for the problem of designing multiple controllers for
different models for a large flight envelope [24]. The idea behind an LPV is to obtain
linear models that vary with parameters such as altitude or speed. Different methods
for obtaining the LPV models are presented in [43]. After obtaining the LPV models,
the controller can be designed. Methods such as the Lyapunov [45] or the small
gain theorem can be used to obtain the controllers. Compared to the classical
gain scheduling technique in which the gains are interpolated from pre-computed
values, the LPV controllers are dependent on the parametric changes in the system.
For the FTC problem, works that are based on the LPV technique with actuator
faults/failures are presented in [44], [46], and [47].

Prediction
Initially, model predictive control (MPC) was developed in the process industry
because the concept and the mathematical description are easy to understand by
most control engineers. Therefore, it is not surprising that, other than classical
PID control, MPC is the most broadly implemented method in the process control
industry [48]. The original idea for MPC was to allow the production process to
run very close to the process limits to maximize production and therefore profit.
Model predictive control has been applied for flight control reconfiguration due to
its ability of handling constraints and changing model dynamics systematically [18].
An example of MPC in the field of fault-tolerant flight control can be found in
[32]. During faults/failures, the remaining working control surfaces will be driven to
their limits [49]. As a result of the boost in computational power in modern control
systems, MPC had been used for real-time control of a small hovercraft [50]. Another
example is discussed in [51], in which MPC had been implemented for real-time
control of an unmanned aerial vehicle. MPC in its most powerful form requires an
on-line solution to the constrained optimization problem [48], which is still hard to
achieve for systems that require fast responses—such as aircraft. Moreover, tuning
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the flight control system requires trial and error experience [29].

Adaptation
Adaptive control was proposed to deal with a wide range of flight conditions [52]. The
proposal was followed by the need to design autopilots for high-performance aircraft.
It is used to automatically adjust the parameters of the controller to achieve the
desired performance. In adaptive control, two approaches can be taken: direct and
indirect adaptation [53]. In indirect adaptation, the system parameters that changed
due to operating conditions changes (i.e. faults) are estimated; these estimations are
used to design the controller. A common example of this adaptation is self-tuning
control (STC).
In contrast, the direct adaptation approach does not require estimating the system

parameters to design the controller. A practical example of this adaptation is the
model-reference adaptive control (MRAC), in which the unknown parameters are
not estimated; rather, they are tuned and adjusted for the output of the plant to
follow the desired trajectory [15].

Control Signal Redistribution
The idea of redistributing control signals to the remaining healthy actuators is
also called “restructuring” [28]. It was not explored in the 90s but re-emerged in
recent years as control allocation. This was because of the development of high-
performance, highly redundant aircraft and the improvements in computational
power. Control allocation (CA) has the ability of redistributing the control command
signals to actuators, especially during faults/failures. The controller is designed
based on “virtual control” signals by mapping them for the actual control demand
to the actuators. The controller design is independent of the control allocation unit;
therefore, it can be used in combination with any other controller design paradigm.
Another advantage is that the actuator limitations are handled by including the
actuator constraint in the optimization process [29]. The challenge of CA is that,
for linear systems, the pure factorization of the input distribution matrix is strongly
required, and therefore some approximations have to be made [54].

2.6 Conclusion

In this chapter, an overview of fault-tolerant control for fixed wing aircraft is given.
The individual definitions of faults and failures of system components are presented,
followed by types of actuator faults and how they are represented mathematically in
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the system. Further, a brief presentation of the developments of FTC systems in
aircraft by Airbus and Boeing is given. Finally, the fault-tolerant control techniques
in the literature are presented. The next chapter discusses the essentials of aircraft
flight dynamics and control.





Chapter 3

Aircraft Dynamics and Automatic
Control

Flight dynamics deals primarily with the response of an aerial-vehicle to the control
inputs and to perturbations from the flight environments. In this response realisation,
it is necessary to characterize the propulsive and aerodynamic forces and moments
acting on the vehicle, which depend on the flight variables, including airspeed
and the vehicle’s geometry and orientation [55]. Systems can be described by
mathematical equations, which provide the means of systems analysis, control, and
other applications. They are represented by different types of models, based on how
their parameters are correlated. Table 3.1 lists some basic definitions for different
system models [56].

This chapter will present the basic principles of aircraft dynamics and control
required for the realisation of aerodynamic notations, stability, equations of motion,
and flight control.

3.1 Basic aerodynamics

To implement a suitable mathematical model for the aircraft motion, the basic
definitions and characteristics are studied. The aircraft’s standard notations for
translational and rotational motions are shown in Fig. 3.1 and described below:

• The variables x, y, z represent the aircraft’s axes. The x-axis starts from
the origin and points toward the nose of the aircraft. The z–axis, which is
perpendicular to the x-axis, is pointing down; while the y-axis is perpendicular
to the x and z axes and pointing out toward the right wing.
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Table 3.1 Basic definitions of systems’ models [56]

Type of model Definition criterion Type of model equa-
tion

Nonlinear Superposition does not apply Nonlinear differential
equations

Linear Superposition applies Linear differential
equation

Time-varying Model parameters vary in
time

Differential equations
with time-varying coef-
ficients

Continuous Dependent variables defined
over continuous range of inde-
pendent variables

Differential equations

Discrete Dependent variables defined
only for distinct values of in-
dependent variables

Time-difference equa-
tion

Fig. 3.1 Aircraft motion variables [55].

• The variables u, v, w represent the components of the linear velocities along
the x, y, and z directions, respectively.

• The variables X, Y, Z represent the components of the total forces in the
directions of x, y, and z.
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• The variables p, q, r represent the rotational angular rates around the x, y,
and z axes.

• The variables L, M, N represent the components of the total moments about
the x, y, and z axes.

3.1.1 Forces and moments

The forces and moments acting on the aircraft’s body are defined in terms of the
aerodynamic coefficients as follows:

Forces Drag D = qSCD
Lift L = qSCL
Side force Y = qSCY

Moments Rolling moment L = qSbCl
Pitching moment M = qScCm
Yawing moment N = qSbCn

where q is the free stream dynamic pressure, S is the reference wing area, b is the
wing span, and c is the wing’s mean aerodynamic chord.
Forces and moments are expressed in terms of their coefficients. The coefficients have
some changing terms with time, while some terms, related to aircraft specifications,
are constant. Changing terms are those that depend on angle of attack (α), sideslip
angle (β), Mach number, and the actuation deflections, as presented in the following
equations.

Force coefficients

CL = CL0 + Cα
L · α+ C

δf

L · δf + Cδe
L · δe +

c

2Va
(Cα̇

L · α̇+ Cq
L · q) + CM

L ·M (3.1)

CD = CD0 +
(CL − CL0)2

πeAR
+ C

δf

D · δf + Cδe
D · δe + Cδa

D · δa + Cδr
D · δr + CM

L ·M (3.2)

CY = Cβ
Y · β + Cδa

Y · δa + Cδr
Y · δr +

b

2Va
(Cp

Y · p+ Cr
Y · r) (3.3)

Moment coefficients:

Cm = Cm0 + Cαm · α+ C
δf
m · δf + Cδe

m · δe + c

2Va
(Cα̇m · α̇+ Cqm · q) + CMm ·M (3.4)

Cl = Cβl · β + Cδa
l · δa + Cδr

l · δr + b

2Va
(Cpl · p+ Crl · r) (3.5)

Cn = Cβn · β + Cδa
n · δa + Cδr

n · δr + b

2Va
(Cpn · p+ Crn · r) (3.6)

Detailed description of the above-mentioned parameters are found in [55, 57, 58].
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The angle of attack (α), as shown in Fig. 3.2, is the angle of the body x-axis of the
aircraft relative to the stream of the moving air, while pitch angle (θ) is the angle
relative to the horizon. Flight path angle (γ) is the angle between the direction of
flight path and the horizon.

Fig. 3.2 Definitions of angle of attack, pitch angle, and flight path angle.

The analyses of stability and control are concerned with the motion of the aircraft
and the rotation around the centre of gravity. The CG location of the aircraft is
given with respect to the vehicle’s nose and defined in terms of x,y,z coordinates.
For example, for all the aircraft’s elements, the x coordinate is given by

xcg =
∑
iWixi∑
iWi

where Wi is the weight of the element and xi is the distance from the nose to
the element of the x-axis. Similarly, for ycg and zcg, they are determined from the
reference point (the nose of the aircraft). However, due the symmetry on the Oxz
plane, the ycg equals 0. This assumption may not be valid if stores loading and fuel
will deter the mass and change the CG, which then have to be taken into account.

3.1.2 Axes of orientation

The formation of equations of motion, which describe the aircraft dynamics using
forces and moments, can be made using any axis of orientation [59] as long as the
variables are defined consistently. The variables can be transformed from one axis
to another using the transformation equation. However, here are the main axes
of aircraft orientation, used in the literature, for the aircraft’s nomenclature and
notations [60], [59]:
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Body axis

This right-handed axis of orientation is fixed to the aircraft body, and it is regularly
used for deriving equations of motion. The axis is chosen, as shown in Fig. 3.3,
where the origin is at the centre of gravity, the x-axis directs toward the nose, the
y-axis directs toward the starboard wing, and the z-axis directs downward. Angular

Fig. 3.3 Aircraft body-axis.

velocities and moments are prescribed to be positive when the direction of rotation
is clockwise looking toward the axis from the origin.

Earth axis

For the normal atmospheric flight consideration, it is usual to measure the aircraft’s
motion with reference to an Earth fixed axis, as shown in Fig. 3.4. The horizontal
plane defined by (oExEyE) is assumed to be parallel to the plane (o0x0y0) at the
surface of Earth. The flight is described by its coordinates, assuming a flat Earth
surface, and the vertical z-axis is aligned with the gravity vector.

3.1.3 Euler angles

The attitude of the aircraft is described as the angular orientation of the body-fixed
axis with respect to the Earth axis. The position of an aircraft in the space can be
specified by orientation change between an axis fixed to the centre of gravity of the
aircraft and the aircraft’s attitude. These right-handed rotations are called the Euler
angles and defined by the yaw angle ψ, the pitch angle θ, and the bank angle ϕ, as
shown in Fig. 3.5 [60].

To determine these angles, the following sequence of plane orientations (yaw,
pitch roll) is followed:
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Fig. 3.4 Conventional Earth axis

• First, rotate about oz0 through the yaw angle ψ to (Ox1y1z1)

• Second, rotate about oy1 through the pitch angle θ to (ox2y2z2)

• Third, rotate about ox2 through the roll angle φ to (ox3y3z3).

The transformation of the linear velocity components from aircraft’s wind axis to
body axis might be a typical example.

3.2 Aircraft stability

The tendency of an aircraft to converge to its initial equilibrium conditions following
a small disturbance from a trim is referred as the static stability. Conversely, the
dynamic stability of an aircraft describes the convergence of a transient motion
involved in the process of recovering equilibrium after a disturbance. Fig. 3.6
describes these definitions.

3.2.1 Longitudinal static stability

When an aircraft is in a longitudinal equilibrium condition and flying steadily, and
then exposed to a small disturbance, the equilibrium condition changes as some
parameters such as angle of attack change. Thus, the stability will be classified as
follows [57] [60]:
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Fig. 3.5 Axes transformation using Euler angles [60]

• If the change in pitching moment coefficient dCmwith respect to the change
in angle of attack αis with a negative slope, i.e. dCm

dα
< 0, then the aircraft is

statically stable. The nose-up disturbance will increase α and take the aircraft
to the point p, which is out of trim. The pitching moment coefficient becomes
negative and therefore restores the equilibrium.

• If dCm

dα
> 0, then the aircraft is unstable because of the opposite pattern

compared to the first condition.

• If dCm= 0, and dCm

dα
= 0, then the aircraft is neutrally stable.

This is illustrated in Fig. 3.7 for a statically stable aircraft for which the slope is
negative.

Static lateral-directional stability analysis involves the yawing moment coefficient
Cn, the rolling moment coefficient Cl, and the side force coefficient Cy. These
quantities are expressed in terms of the Mach number M, the rolling angle ϕ, the
sideslip angle β, the aileron deflection δA, and the rudder deflection δR. The rolling
motion is controlled primarily by the ailerons, while yawing motion is controlled by
the rudder [61].

3.2.2 Lateral static stability

Lateral static stability is expressed as the ability of the aircraft to maintain the
wing-level equilibrium condition in the roll sense. Wing dihedral, for instance, is the
most noticeable parameter that increases the lateral static stability of the aircraft.
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(a) Statically and dynamically stable (b) Statically unstable and dynamically stable

Fig. 3.6 Static and dynamic stability [60]

Fig. 3.7 Variation of pitching moment coefficient with respect to angle of attack [60]

It is worth mentioning that too much lateral static stability will make the aircraft
reluctant to manoeuvre laterally. For the lateral static stability, it is required that
the change in rolling moment coefficient Cl with respect to the rolling angle ϕ is less
than 0 (i.e. dCl

dϕ
< 0).

3.2.3 Directional static stability

It is expressed as the ability of the aircraft to yaw to maintain directional equilibrium
and fly with zero sideslip in the yaw sense. The aircraft’s vertical tail, i.e. the fin, is
the most perceptible contributor to directional static stability. For the directional
stability, it is required that the slope of Cn versus β is greater than 0 (i.e. dCn

dβ
< 0)

[57].
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3.3 Aircraft equations of motion

3.3.1 Generalised forces and moments equations

For the equations of motion of the flight vehicle, it is usually preferred to use the
body-fixed coordinate system, with the right-handed orientation and centre of mass
as the origin of the system [55]. Assuming a rigid body aircraft, the equations of
motion are obtained from Newton’s Second Law [57], [60], [55], [62], which states:

• The summation of all external forces acting on the aircraft is equal to the time
rate of change of the momentum of the body. That is

∑
F = d

dt
(mV ) (3.7)

• The summation of the external moments acting on the aircraft is equal to the
time rate of change of angular momentum:

∑
M = d

dt
H (3.8)

From Eq. 3.7, the vector equations consisting of the three force components can be
written as

Fx = X = d
dt

(mu)
Fy = Y = d

dt
(mv)

Fz = Z = d
dt

(mw)
(3.9)

Assuming a constant mass of the aircraft m, the rate of change of velocities results
in the acceleration components along each axis. When working out the acceleration,
the contributions to its velocity from both linear velocities (U, V, W) of the aircraft’s
centre of gravity, as well as the rotational rate (p, q, r) contributions about the axes
are considered.

Thus,

ax = U̇ − rV + qW

ay = V̇ + rU − pW

az = Ẇ + pV − qU

(3.10)

Hence, the total forces along the x,y,z axes, respectively, are represented by

X = m(U̇ − rV + qW )
Y = m(V̇ + rU − pW )
Z = m(Ẇ + pV − qU)

(3.11)
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The moment of momentum can be written in terms of the angular velocities ωand
position vector r as follows:

H =
∑

[r × (ω × r)]δm

For the rotary motion, the mass and acceleration are represented as the moment
of inertia and angular acceleration; hence,

Hx = pIx − qIxy − rIxz

Hy = −pIxy + qIy − rIyz

Hz = −pIxz − qIyz + rIz

(3.12)

where (Ix, Iy , Iz) are the moments of inertia and (Ixy, Ixz, Iyz) are the products
of the inertia, and they are given by:

Ix =
∫∫∫

(y2 + z2)δm
Iy =

∫∫∫
(x2 + z2)δm

Iz =
∫∫∫

(x2 + y2)δm
Ixy =

∫∫∫
xy δm

Ixz =
∫∫∫

xz δm

Iyz =
∫∫∫

yz δm

(3.13)

The total moments about the rotational body frame are expressed as follows

L = Ḣx + qHz − rHy

M = Ḣy + rHx − pHz

N = Ḣz + pHy − qHx

(3.14)

By substituting for the derivatives of moments of momentum equations with
Equation 3.12 into Equation 3.14 and assuming a symmetric aircraft about the oxz
axis (i.e. Ixy = Iyz = 0) yields

L = Ixṗ− (Iy − Iz) qr − Ixz(pq + ṙ)
M = Iy q̇ + (Ix − Iz) pr + Ixz(p2 − r2)
N = Iz ṙ − (Ix − Iy) pq + Ixz(qr − ṗ)

(3.15)

The equations (Equation 3.11 and Equation 3.15) represent the aircraft forces and
moments equations. The total forces (X, Y, Z) and moments (L, M, N ) of the aircraft
result from the aerodynamic, gravitational, controls, and power contributions. The
resulting equations are nonlinear, and their solution using the analytical methods is
not generally practicable. They must be linearised so they can be used for further
analysis and control design processes. The linearisation process is accomplished by
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constraining the motion of the aircraft to small perturbations about its trimming
point.

3.3.2 The aircraft’s linear dynamic model

Small perturbation theory

When the aircraft is assumed to be flying in a steady trimmed condition with zero
roll, sideslip, and yaw angles, the components of the linear velocity are (Ue,Ve,We)
and the angular velocity components are zero. If the aircraft experiences small
perturbations about the trim, then the total velocity components about the cg are:

U = Ue + u

V = Ve + v

W = We + w

(3.16)

where (u, v, w) are the linear disturbance velocities and (p, q, r) are the com-
ponents of the angular disturbance velocities. By substituting (last equation) into
Equation 3.11 and Equation 3.15, and neglecting the insignificantly small terms, the
linearised equations of motion can be obtained:

m(u̇+ qWe) = Xa +Xg +Xc +Xp

m(v̇ − pWe + eUe) = Ya + Yg + Yc + Yp

m(ẇ − qUe) = Za + Zg + Zc + Zp

(3.17)

and
Ixṗ− Ixz ṙ = La + Lg + Lc + Lp

Iy q̇ = Ma +Mg +Mc +Mp

Iz ṙ − Ixzṗ = Na +Ng +Nc +Np

(3.18)

where a, g, c, p are the aerodynamic, gravity, control, and power contributions.

Main contributors of aircraft forces and moments:

The gravitational, control, and power contributions are illustrated in literature, see
[55]. The aerodynamic contributions during a disturbance are computed by assuming
that the aerodynamic terms depend on the disturbed variables and their derivatives.
It is conveniently expressed as a sum of a number of Taylor’s series expansion [60].
For example, the axial force aerodynamic term Xa is expressed by:

Xa = Xae + X̊uu+ X̊vv + X̊ww + X̊pp+ X̊qq + X̊rr + X̊ẇẇ
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where Xae is a constant term, and the terms X̊uu+X̊vv+X̊ww+ ... etc, are called
aerodynamic stability derivatives. The dressing (̊) denotes dimensional derivatives.
By substituting the appropriate expressions for the aerodynamic, gravitational,
control, and thrust into Equations 3.17-3.18, the complete linearised equations of
motion are obtained as follows:

m(u̇+ qWe) = Xae + X̊uu+ X̊vv + X̊wwX̊pp+ X̊qq + X̊rr + X̊ẇẇ

−mgsinθe −mgθcosθe + X̊ξξ + X̊ηη + X̊ζζ + X̊ττ

m(v̇ − pWe + eUe) = Yae + Y̊uu+ Y̊vv + Y̊wwY̊pp+ Y̊qq + Y̊rr + Y̊ẇẇ

+mgψsingθe +mgϕcosθe + Y̊ξξ + Y̊ηη + Y̊ζζ + Y̊ττ

m(ẇ − qUe) = Zae + Z̊uu+ Z̊vv + Z̊wwZ̊pp+ Z̊qq + Z̊rr + Z̊ẇẇ

+mgcosθe −mgθe + Z̊ξξ + Z̊ηη + Z̊ζζ + Z̊ττ

(3.19)

Ixṗ− Ixz ṙ = Lae + L̊uu+ L̊vv + L̊wwL̊pp+ L̊qq + L̊rr + L̊ẇẇ

+L̊ξξ + L̊ηη + L̊ζζ + L̊ττ

Iy q̇ = Mae + M̊uu+ M̊vv + M̊wwM̊pp+ M̊qq + M̊rr + M̊ẇẇ

+M̊ξξ + M̊ηη + M̊ζζ + M̊ττ

Iz ṙ − Ixzṗ = Nae + N̊uu+ N̊vv + N̊wwN̊pp+ N̊qq + N̊rr + N̊ẇẇ

+N̊ξξ + N̊ηη + N̊ζζ + N̊ττ

(3.20)

3.3.3 The decoupled equations of motion

When the small perturbation transient motion is considered, the longitudinal and
lateral coupling is usually negligible. Hence, the decoupled longitudinal motion is
constrained to the longitudinal plane of symmetry only, which is the oxz plane.
Therefore, the motion is described by the axial force X, the normal force Z, and the
pitching moment M equations only. Since no lateral-directional motion is involved,
the lateral motion variables, aileron and rudder controls, and their derivatives are
all zero. By further simplification due to the symmetry of the referred plane, the
decoupled equations of longitudinal motion become

mu̇− X̊ẇẇ = X̊uu+ X̊ww + (X̊q −mWe)q −mgθcosθe + X̊ηη + X̊ττ

mẇ − Z̊ẇẇ = Z̊uu+ Z̊ww + (Z̊q +mUe)q −mgθsinθe + Z̊ηη + Z̊ττ

Iy q̇ − M̊ẇẇ = M̊uu+ M̊ww + M̊qq + M̊ηη + M̊ττ

(3.21)
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Additionally, the auxiliary equation relating the pitch rate to attitude rate is

θ̇ = q

Similarly, for the lateral-directional motion, as no longitudinal motion is involved,
the motion is described by the rolling moment L, the yawing moment N, and the
side force Y. The equations become

mv̇ − Y̊vv − pY̊p − (Y̊r −mUe)r −mgϕ = Y̊ξξ + Y̊ζζ

−L̊vv + Ixṗ− L̊pp+ Izxṙ − L̊rr = L̊ξξ + L̊ζζ

−N̊vv − Ixzṗ− N̊pp+ Iz ṙ − N̊rr = N̊ξξ + N̊ζζ

(3.22)

3.3.4 Linear EoM in a state space form

Powerful computational tools, i.e. computers, are very good in handling the numerical
matrix calculations. Thus, the use of matrix methods for solving linear dynamic
systems became an essential topic in modern applied mathematics. The matrix
format gives a compact expression of equations that could be solved using matrix
algebra. Thus, the equation of motion of the linear time-invariant system is written
as:

ẋ (t) = Ax (t) +Bu(t)

where x(t) is the state column vector of n variables, u(t) is the input column
vector of m variables, A is the (n x n) state matrix, and B is the (n x m) input
matrix. For systems in which some of the state variables may not be accessible or
measurable, an equation that determines some particular output variables is required,
as follows:

y (t) = Cx (t) +Du(t)

where y(t) is the column vector of r output variables, C and D are (r x n) and (r
x m) constant matrices, respectively.

Now, the aircraft’s decoupled equations of motions (Equation 3.21 and Equation
3.22) may be written in matrix form as

Mẋ (t) = Àx (t) + B̀u(t) (3.23)
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Finally, the state equations are obtained by multiplying Equation 3.23 by the
inverse of the matrix M, which yields for the longitudinal motion

u̇

ẇ

q̇

θ̇

 =


xu xw xq xθ

zu zw zq zθ

mu mw mq mθ

0 0 1 0




u

w

q

θ

+


xη xτ

zη zτ

mη mτ

0 0


η
τ

 (3.24)

In a similar manner, the lateral-directional equation is


v̇

ṗ

ṙ

ϕ̇

ψ̇


=



yv yp yr yϕ yψ

lv lp lr lϕ lψ

nv np nr nϕ nψ

0 1 0 0 0
0 0 1 0 0





v

p

r

ϕ

ψ


+



yξ yζ

lξ lζ

nξ nζ

0 0
0 0


ξ
ζ



For both equations, the coefficients of the state matrix A represent the aerody-
namic stability derivatives, while the coefficients of the input matrix B represent the
control derivatives. Detailed expressions for them are available in [60].

3.4 Dynamic stability

Static stability treats primarily the situation when the controls are fixed. However,
dynamic stability describes the response of the system against controls or disturbances.
System asymptotic stability describes the ability of the system variables to return to
their desired states after a disturbance. The excitation of aircraft dynamics resulted
in dynamic modes in the longitudinal and lateral motions, which will be presented
next.

3.4.1 Longitudinal dynamic stability modes

When the aircraft is disturbed from its equilibrium trim state initiated by, for
example, a change in power setting, pilot control inputs, and external atmospheric
influences, this will excite the dynamics for certain modes. Longitudinally, there are
two modes, the short period mode, and the phugoid mode [57]. The short period
mode is highly damped high-frequency pitching oscillation, as shown in Fig. 3.8.
The lower frequency mode is called the phugoid. The damping ratio of both modes
must be positive for the aircraft to be completely longitudinally stable.
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Fig. 3.8 Longitudinal short period and phugoid modes

The phugoid is classical damped motion that results in the aircraft flying along a
converging sinusoidal flight trajectory, where the angle of attack (α) remains constant.

3.4.2 Lateral dynamic stability modes

Generally, lateral motion has three modes: the roll, spiral, and dutch roll modes [61].
The roll subsidence mode is a stable and non-oscillatory mode, while the spiral mode
is a non-oscillatory mode resulting from slow recovery of bank angle disturbance. It
involves a coupled motion in roll, sideslip, and yaw. The dutch-roll mode is a stable
and short-period oscillatory mode [63]. Typically, from the characteristic equation,
a real root describes the spiral mode with high time constant, another real root
describes the roll subsidence mode with small time constant, and two complex roots
describe the oscillatory dutch-roll mode.

3.5 Aircraft nonlinear simulation

With a variety of formulations, aircraft nonlinear simulations attempt to provide an
imitation of the real world’s system operation. It is desirable to create a dynamic
representation of the behaviour of the aircraft’s motion in a manner that allows the
human to interact with it. These engineering simulations will allow designers to
explore different configurations and operations of the flying vehicle without having
to encounter the expenses and delays arising from building and testing ranges of
prototypes [64]. Thus, they provide a great means to model and repeatedly test the
system responses to challenges similar to those in real life.
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The mathematical modelling of the equations of motion is central to the analysis of
air-vehicle motion and dynamics. The nonlinear six-degree-of-freedom dynamic model
provides a comprehensive description of the aircraft response to control malfunctions
and external disturbances. Generally, they are represented in terms of displacement,
velocity, and acceleration variables in the translational and rotational axes. These
complex equations are solved using numerical methods by linearizing the model about
selected trim conditions using the Small Perturbation theory. The linearised models
describe the system at these selected operating points within the flying envelope, and
thus, a linear-based control system is developed. Among the modelling and analysis
software packages used widely in research institutions as well as industrial enterprises
is the Matlab/Simulink software environment. It was developed by Mathworks for
system’s dynamics simulations and analysis. Matlab is technical computing software
that provides core mathematical tools for data analysis, visualisation, and algorithm
design. While Simulink is the graphical block-diagramming tool integrated with
Matlab that provides modelling, simulation, and analysis of dynamic systems. It
includes block sets that implement aerospace mathematical representations.

3.5.1 Modelling procedure

The nonlinear six-degree-of-freedom aircraft dynamic model is implemented using
blocks-based modelling in the body-axis. Figure 3.9 summarizes the nonlinear
equation of motion (EoM) modelling procedure. Control inputs are provided from
the pilot (i.e. joystick) for manual flight, or from the autopilot for autonomous flight.

Fig. 3.9 Nonlinear modelling layout

Aerodynamic forces and moments coefficients are computed using linear combi-
nations of aerodynamic derivatives, as mentioned before.
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3.5.2 Trimming and linearisation

We may examine the dynamic motion of the aircraft near a singular point by slightly
perturbing some of the motion variables. This singular point is where all of the
forces and moment components exerted on the body of the aircraft are constant or
zero, and this case is typically called a steady-state condition [65]. This is provided
by a certain configuration of control surface deflections and engine throttle settings,
which constitutes trim values of flight mode. Hence, the aircraft motion is to be
trimmed around this point and then the linearisation process is applied to have a
linear mathematical representation of the system. The linear equations, composed
of longitudinal and lateral dynamics, needed for the control design, will mostly
be derived by numerical methods from the nonlinear computer model using the
Runge-Kutta method for linearisation [40].

3.6 Aircraft flight control

For automatic control of aircraft states, feedback control laws are used as shown in
Fig. 3.10. In this process, the parameter to be controlled is compared to a desired
reference signal, and the difference is used to compute corrective control action [66].

Fig. 3.10 Feedback control

3.6.1 PID controllers

For a control system to track an input command, one widely used control technique
for single-input single-output (SISO) systems is the proportional-integral-derivative
PID controller. The general form of PID controller C(s) is given by [67]:

C (s) = Kp + KI

s
+KDs

Figure 3.11 shows the structure of a PID controller in which s is the Laplace
operator, and the design of the controller involves the adjustment of KP , KI , and
KD coefficients. The proportional term makes the response faster in reaching the
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Fig. 3.11 Structure of the PID controller

steady state; however, error and overshoot may be introduced. Thus, the integral
part is used to eliminate the steady-state error, while the derivative part is used to
decrease the overshoot and settling time [57].

3.6.2 Aircraft control surfaces

Flight control surfaces are classified based on their roles in primary (such as elevator,
aileron, rudder, and spoiler) and secondary (such as trailing-edge flaps, leading-edge
slats, and airbrake) control surfaces. Control surfaces for fixed wing aircraft are
shown in Fig. 3.12.

Fig. 3.12 Aircraft control surfaces

For most recent aircraft transporters, the actuation systems of the control surfaces
are electronically signalled and hydraulically powered. Functions of the primary
flight control surfaces are critical to safety and controllability of the aircraft [58].
Figure 3.13 shows the thrust and primary control surfaces for the longitudinal and
lateral dynamics of the aircraft.

Generally, a positive control action by the pilot gives rise to a positive aircraft
response, whereas a positive control surface displacement gives rise to a negative
aircraft response [60]. Thus:
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Fig. 3.13 Inputs and outputs to the aircraft dynamics [60]

• In roll: positive right push force on the stick ⇒ positive stick displacement
⇒ right aileron up and left aileron down (negative) ⇒ right wing down roll
response (positive).

• In pitch: positive pull force on the stick ⇒ positive aft stick displacement ⇒
elevator trailing edge up (negative) ⇒ nose up pitch response (positive).

• In yaw: positive push force on the right rudder pedal ⇒ positive rudder bar
displacement ⇒ rudder trailing edge displaced to the right (negative) ⇒ nose
to the right yaw response (positive).

By introducing incremental lift forces on control surfaces, the control of the aircraft
can be achieved. In the following paragraphs, the contributions from primary control
surfaces are presented [57].
Elevator
The change in the aircraft’s pitching moment can be written as

∆Cm = Cmδe
δe

where δe is the elevator deflections and Cmδe
is the elevator control power which can

be expressed as:

Cmδe
= −VHη

(
d CLt
d δe

)

VH = lt St
S c̄

is the horizontal tail volume ratio, where lt is the tail moment arm.

η = Qt

Qw
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is the dynamic pressure ratio. The elevator effectiveness can be expressed as:

d CLt
d δe

=
(
d CLt
d αt

) (
d αt
d δe

)
= CLαt

τ

CLαt

is the lift curve slope of the tail, and τ is the value of the change between αand the
deflections for the specific control surface area.

Aileron

Considering the lift coefficient Cl of the segment containing the aileron, it can be
expressed as a function of aileron deflections and properties as follows:

Cl = Clα

(
dα

dδa

)
δa = Clατδa

where Clα is the lift curve slope at the section, τ is the parameter relating change in
αto the changes in deflections for the corresponding control surface area, and δa is
the aileron deflections.

Rudder

For the realization of rudder contribution, the yawing moment is considered:

Cn = Cnδr
δr

where δr is the rudder deflection, and Cnδr
is the rudder control power expressed by

Cnδr
= −Qv

Qw

(
lvSv
S b

)(
dCLv
dδr

)

where Qv is the dynamic pressure of the vertical tail, lvis the moment arm of the
vertical tail, and dCLv

dδr
is the rudder effectiveness expressed by

dCLv
dδr

= dCLv
dαv

dαv
dδr

= CLαv
τ

where τ is the parameter of change in alpha due to the change in rudder for the
specific area of the rudder, and CLαv

is the lift curve slope of the vertical tail (the
rudder).
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3.7 Conclusion

In this chapter, basic aerodynamics notations are illustrated, and forces and moments
that generate the motion are prescribed. A complete generation of equations of
motion is presented. For control law development, linear dynamics are used followed
by a linearisation process that is described in the chapter. Finally, functions of the
control surfaces and measures of their effectiveness are explained. In the following
chapter, a development of FTC for aircraft is presented.





Chapter 4

Optimal FTC using LQR and
Adaptive Fault Compensation

4.1 Introduction

One widely used feedback-based technique in flight control problems is based on the
consecutive loop closure of certain selected parameters [62]. Well-known tools such
as the root locus, Bode plot, and Nyquist plot enable the designer to visualize how
the system dynamic is changing for this one-loop at a time design approach. As
more loops are needed, this control design approach becomes increasingly difficult
and the control law solution, in this case, requires continuous adjustment in order
to maintain good stability and handling qualities [60]. On the other hand, solving
a matrix of mathematical equations containing the tracking requirements and the
control law gains will allow all of the gains to be computed simultaneously. This
yields that the loops are closed at the same time, which is considered to be a
significant advancement for the control design of multi-input multi-output systems
[62]. Non-inclusive techniques among this approach are Eigen-structure assignment
[68], model following [69], dynamic inversion [70], and the Linear Quadratic Regulator
LQR approach [71]. The linear quadratic regulator (LQR) is applied to control
linear systems, where the regulation’s main role is to maintain the states close to
zero and obtain desirable closed-loop response features. The problem is posed as
a quadratic cost function with additional constraints to be minimised such as the
efforts of the control inputs. This technique is considered to be a modern control
technique suitable for MIMO systems. It had been utilised in tracking desired
trajectories by a stable regulation of the system. Some applications of LQR in the
fault tolerant control domain are as follows. A technique presented in [72] includes a
reformulated Algebraic Riccati equation. Additionally, for a fault-tolerant control,
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the weighting matrices Q and R were adjusted. The method does not take into
account the constraints induced by actuator saturation. A synthesis of a robust
and optimal controller was proposed by [73] for unstable systems. It comprises a
linear quadratic state feedback regulator to maintain stability in the presence of
certain actuator faults. Another work encompasses LQR and a Kalman filter to
control a discrete-time system subject to faults [74]. A feedback linearisation method
was exploited in conjunction with LQR for hypersonic flight vehicles subjected to
uncertainties [75]. In [76] (B. Yu, Zhang, Minchala, & Qu, 2013), a comparison was
made between the LQR and the model predictive controller (MPC) techniques, to
control a quadrotor helicopter UAV subjected to partial loss of effectiveness actuator
faults. As stated, both methods led to acceptable performance and control. Robust
fault tolerant LQ control based on model matching was presented in [77]. In the case
of the fault, the work aimed to match the model to a pre-specified set of admissible
models, rather than to search for an optimal approximation online. This allowed
for some performance degradation, which yielded a set of solutions for the fault
accommodation problem. Nevertheless, the selection of one solution among the set
was still an open problem. These techniques are considered to be robust fault tolerant
methods.

In this work, the LQR-based approach controls a MIMO system subjected to
actuator faults in an adaptive way by taking information about the fault into account.
The baseline optimal controller is augmented with an adaptive fault compensation
framework to cope with actuator loss of effectiveness, where the fault’s information
are assumed to be known. In this work, the contribution is as follows:

• First, the integration of an adaptive fault compensation approach to the optimal
LQR controller used to control a MIMO aircraft system. The baseline LQR
obtains the optimal control solution that maintains the tracking requirements
of the aircraft, and minimises the control efforts by the actuators. For the
fault tolerant approach, an adaptive fault-compensation-based technique was
developed that can accommodate loss of effectiveness faults.

• The system was designed based on a linear model. In order to validate
the performance of the fault tolerant control scheme, a full 6-dof nonlinear
simulation testing was performed.
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4.2 Concept of Linear Quadratic Regulator con-
trol

4.2.1 The Linear Quadratic Regulator problem

The linear quadratic regulator relies on the feedback of the system’s outputs or states
that are presented as a quadratic cost function minimisation problem. The state
feedback is a special case of output feedback with C=I, assuming that the aircraft’s
states are measurable [62].

Consider the system
ẋ = Ax+Bu

with x ∈ Rn,u ∈ Rm, and the pair (A,B) are assumed to be stabilizable. The control
law for state feedback having the following form is to be examined

u = −Kx (4.1)

where K is the control gain to be computed. Thus, the closed loop system has
the form

ẋ = (A−BK)x = Acx (4.2)

Now, the problem becomes one of finding a controller gain K that drives any
initial condition error to zero. For optimal control, the performance of the system and
the complexity of the optimal control problem are determined by the performance
index. The most popular cost function is the quadratic function of the state variables
and the control input [78]. It is of the form:

J = 1
2

∫ ∞

0

(
xTQx+ uTRu

)
dt (4.3)

where x(t) represents the states, u(t) are the controls, and Q, R > 0are weighting
matrices which are typically chosen to be diagonal. Properties of the system, such
as the performance and the control input, depend on the selection of the weighting
matrices Q and R. With appropriate selection, the trade-off between those two
properties is handled. As mentioned previously, the performance index J, that has to
be minimized, encompasses both the state x(t) vector and control input u(t). If J is
minimized, then it certainly will become finite and x(t) goes to zero as time goes to
infinity, which guarantees the stability of the closed-loop system. The performance
index is expressed in terms of the gain K by substituting Equation 4.1 into Equation
4.3, which yields,
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J = 1
2

∫ ∞

0
xTQx+ (−Kx)TR(−Kx) dt

J = 1
2

∫ ∞

0
(xTQx+KTxT R Kx) dt

J = 1
2

∫ ∞

0
xT (Q+KT R K)x dt

The optimisation problem could be converted to an equivalent static problem as
follows. Assume that there is a solution for P that makes

d

dt

(
xTP x

)
= −xT (Q+KTRK) x (4.4)

Then, J may be written as,

J = 1
2x

T (0) Px (0) − 1
2 lim

1→∞
xT (t)Px(t)

Assuming that the closed-loop system is stable, and the regulation will make x(t)
become 0 as time → ∞, then

J = 1
2x

T (0) Px (0)

Using Equation 4.4 and substituting for Equation 4.2, then

−xT
(
Q+KTRK

)
x = d

dt

(
xTPx

)
= ẋTPx+ xTPẋ

= (Acx)TPx+ xTP (Acx)

= xT
(
ATc P + PAc

)
x

Accordingly, for a fixed K, there is a solution of Algebraic Riccati Equation
(ARE):

PA+ ATP +Q− PBR−1BTP = 0 (4.5)

that makes the optimal stabilising solution of the form

K = R−1BTP
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where R is the chosen weighing matrix and B is the control input matrix. The
solution of the controller K will preserve the trade-off between the transient response
and the control efforts.

4.2.2 The LQR tracking problem

In many practical applications, the system is designed to follow some required varying
states of the aircraft. The design of the controller, to achieve this goal, is known as
the tracking problem. The basic mathematical formula of LQR is exploited to track
a non-zero constant reference input. The idea is to extend the model with an error
equation that reflects the difference between the desired and the actual states [78].
For tracking design, the error equation is introduced as follows [79]:

ẋI (t) = e (t) = r (t) − y (t)

= r (t) − Cx (t)

So, the dynamical equations are modified to be:
 ẋ(t)
ẋI(t)

 =
 A 0
−Cy 0

  x(t)
xI(t)

+
Bu

0

 [u(t)
]

+
0
1

 [r(t)]

Figure 4.1 shows the linear quadratic tracking structure with the state feedback
(x) for tracking the reference input (r), which represents one variable or more.

Fig. 4.1 LQR structure incorporating the tracking error

The change in the state space system imposes changes in the Q, R, and K matrices.
The controller gains K to be computed are in the form

K = [Kx KI ]
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Accordingly, the control input u(t) becomes a formula of the states and error
functions as follows

u (t) = −[Kx KI ]
 x(t)
xI(t)


and the system is written as:

ẋ = Ax+B(−K1x−K2z) (4.6)

= (A−BK1)x−BK2z

4.3 LQR optimal control for a linear aircraft model

In this section, an optimal controller is implemented for a MIMO aircraft dynamical
model. The optimal performance of LQR control is tested against a classical approach
using a proportional-integral-derivative (PID) control.

4.3.1 Aircraft model

Consider a dynamical system having the following state space properties:

ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t) +Du(t)

where u , x , yare inputs, states, and outputs respectively. In most aircraft flight
control designs, this linearised form is used to represent the longitudinal or lateral
dynamics. In this design problem, the following state space form that represents the
lateral dynamics of DC-8 aircraft will be used [60],


v̇

ṗ

ṙ

ϕ̇

 =


−0.1 0 −468.2 32.2

−0.006 −1.2 −0.397 0
−0.003 −0.035 −0.257 0

0 1 0 0




v

p

r

ϕ

+


0 13.48

−1.62 0.392
−0.01875 −0.864

0 0


ξ
ζ


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

v

p

r

ϕ

β


=



1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

0.00214 0 0 0




v

p

r

ϕ

 (4.7)

where [v, p, r, ϕ] are sideslip velocity, roll rate, yaw rate, and bank angle,
respectively. The control inputs for the system are the aileron and rudder deflections
(ξ, ζ), respectively.

4.3.2 Classical proportional-integral-derivative (PID) Con-
troller

As a gain-tuning method, the PID controller was developed to control the bank angle
of the aircraft (ϕ), as shown in the block diagram in Fig. 4.2. The proportional
term aims to produce an output value that is correspondingly proportional to the
current error value, thus increasing the rise time. The integral part, on the other
hand, considers both the magnitude and the duration of the error, which is helpful
to eliminate the residual steady-state error. Lastly, the derivative term is used to
decrease the overshoot and settling time.

As in Fig. 4.2, the inner loop roll rate feedback is an augmented stability element
used to provide rate damping for the system. A rate gyroscope of 0.1 was modelled
as a motion sensor. Feedback of the deviation signal of the bank angle of the system
(the outer loop) can then be used to control the roll angle of the aircraft. This will
enhance the flying performance and stability. To simulate the actuator dynamics, a
linear second-order model was used with 0.5 natural frequency ωn and 0.9 damping
ratio ζ. The PID gains were tuned to improve the tracking performance in the time
domain.

Then, the control deflections signal sent to actuators δ is calculated by

δ =
[
0.018 + 7.6

s
+ 0.05s

]
× eroll

where
eroll = pcommand − pactual

pactual = C1 ∗ rate gyro ∗ p
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Fig. 4.2 Bank angle PID control with roll rate damper

= −209 × 0.1 × p

while pcommand is
pcommand =

[
−24.6 − 0.21

s

]
× eϕ

A plot of the bank angle controlled by the classical control system is shown in Fig.
4.3, where the dotted line is the required bank angle with step input. The plot shows
the response with a 3.2 s rise time (the time needed for the response to jump from
10% to 90% of the required manoeuvre), and zero steady state error. The damping
pattern yields to a 12 seconds settling time.

Fig. 4.3 Aircraft bank angle response using PID controller

The designed single-input multi-output control system resulted in changes in the
aircraft’s outputs, as shown in Fig. 4.4. As anticipated, there was a change in both
the roll rate and yaw rate due to the coupling effects in the lateral-directional motion.
All aircraft states show a smooth transient response.
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Fig. 4.4 Responses of other outputs using the PID

The required control input, the aileron deflection, to perform this manoeuvre
is shown in Fig. 4.5. It shows the deflections with acceptable rate of change and
smooth transient behaviour. The dynamical model of the actuator takes into account
those control input constraints.

Fig. 4.5 Aileron deflections using the PID controller

Furthermore, the control system for the afore-mentioned aircraft model is devel-
oped using the LQR optimal control in order to study the responses and features
compared to the classical approach.
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4.3.3 Optimal LQR tracking control

Here, the optimal LQR tracking controller is implemented to demonstrate the
differences compared to the nominal classical PID method. Once the structure of
LQR reference tracker is set, the control gains K includes Kx and KI are computed.
The tracking state space form of the model is as follows:



v̇

ṗ

ṙ

ϕ̇

v

p

r

ϕ

β



=



−0.101 0 −468.2 32.2
−0.006 −1.2 −0.397 0
−0.003 −0.035 −0.257 0

0 1 0 0
−1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

−0.002 0 0 0




v

p

r

ϕ

+



0 13.48
−1.62 0.392

−0.01875 −0.864
0 0
0 0
0 0
0 0
0 0
0 0



ξ
ζ

+



0
0
0
0
1
1
1
1
1



r(t)

The weighting functions Q and R are as follows

Q = diag([1 1 1 10 1 1 1 10 1])

R = diag([2 4])

The tracking weighting function, Q, gives more emphasis to certain reference
inputs. Here, for a lateral manoeuvre, the term corresponding to the bank angle is
10 times larger than the other variables. The control input weighting function R
has two terms representing the aileron and rudder actuators. As the corresponding
number increases, this will limit the use of that control input. The Algebraic Riccati
Equation 4.5 can be solved for controller gains [Kx KI ] towards this tracking problem.
By defining the Q and R matrices, the program code shown in Appendix C solves
for the optimal state-feedback control gain K. The results are

Kx =
−1.96 −1.3 0.036 −4.46

0.1 −13.2 0.27 0.98



KI =
0 0.03 −0.03 2.45 0
0 0 −0.24 −0.03 0


Figure 4.6 shows the multi-input multi-output controlled system using LQR,

where the aileron and rudder deflections are the inputs to the system u(t), while v,
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p, r, ϕ, β are the outputs. The tracking problem incorporates all the outputs of the
system, where only a bank angle manoeuvre is conducted, while other variables are
driven to zero.

Fig. 4.6 LQR tracking model

The aircraft’s dynamical system represented by the A,B,C matrices is shown in
the block diagram in Fig. 4.7.

Fig. 4.7 Modelling of the system’s dynamics

The controlled bank angle plot is shown in Fig. 4.8 where the solid line represents
the actual controlled bank angle response. The plot shows a critically damped
response with a 2.5 second rise time, and zero steady state error. The response
settled quickly after 7 seconds using the tracking optimal control.

Fig. 4.8 Bank angle controller using LQR

In terms of minimizing other output variables, the LQR controller maintained
their regulation, as shown in Fig. 4.9. It worth’s mentioning that the yaw rate
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was changing with the trajectory requirements of bank angle. This was due to the
coupling between these parameters, where the rudder is regulating this rate.

Fig. 4.9 Aircraft other variable responses using LQR.

The implemented LQR optimally utilized the aircraft actuators to produce the
required manoeuvre. Together, the aileron and rudder were used as shown in Fig.
4.10.

As shown in the figure, the aileron has a magnitude higher than the rudder
deflection since it is the main bank angle controlling effector. Rudder deflections
were needed to counteract any yaw rate and sideslip variation incidents. A maximum
deflection of ±10, and a rate of change of deflections of 20 deg/s are satisfactory. For
the classical and optimal controllers, both responses and control surface deflections
were acceptable. However, the optimal controller was implemented for the MIMO
system compared to the PID where only single input was considered. Moreover,
the optimal controller took the model’s constraints into account in the optimisation.
Therefore, there was no need to model the actuator dynamics. This will certainly
guarantee optimal control to meet the actuator constraints if implemented in real
applications. Consequently, these results demonstrate the advantages of using an
optimal control method to control the multivariable aircraft system compared to the
classical PID control.
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Fig. 4.10 Actuators deflections to control the system using LQR.

4.4 Fault-Tolerant Adaptive Control

When designing the optimal controller, the tracking performance was presumably
achieved when using the full readiness of the actuators. With actuators subjected
to loss of efficiency faults, the manipulation of weighing functions will reduce the
tracking requirements (using the Q matrix) or adjust the relationship between the
contributions of different actuators (with R). However, due to the large effect of
ailerons to the rolling motion, when this actuator is faulty, the maximum rudder
contribution will not be sufficient. Thus, there is a need to handle these control
impairment cases with adaptive control laws. The next section addresses this problem.

4.4.1 Adaptive fault compensation

The adaptive fault-compensation-based strategy towards a fault-tolerant control
system is primarily based on estimated faults. These faults in the linearised system
are represented mathematically using the multiplicative and/or additive terms [18].
In the work presented in [21], the fault’s mathematical integration to a linear discrete
system was defined. This approach is utilised here, but for a continuous time
system with the appropriate modifications. Suppose that the faulty actuator input
is represented by the multiplicative and additive terms as follows

Uf = α× U + Uf0
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where:

• Uf is the total faulty control input

• U is the total nominal control

• α = [α1, . . . αm] is the loss of efficiency on the nominal control inputs

• Uf0 is the total additive faulty input

To represent the faults within the state space model, let us consider uf = Uf −U0,
where uf is the faulty control input around the operating point and U0 is the initial
total control input. Hence,

ẋ = Ax+Buf

ẋ = Ax+B(α× U + Uf0 − U0)

However, u = U − U0, then

ẋ = Ax+B(α× U + Uf0 − U + u)

= Ax+Bu+B(α× U + Uf0 − U)

= Ax+Bu+B((α− I)U + Uf0)

which can be written as,

ẋ = Ax+Bu+ Fafa (4.8)

where Fa corresponds to the faulty elements in the matrix B, and the fault
magnitude fa = (α− I)U + Uf0.

For feedback control, the tracking control law, as described in the LQR tracking
problem, can be written as

u (t) = − KX (t) = −[K1 K2]
 x(t)
z(t)

 (4.9)

Then, Equation 4.8 becomes

ẋ = Ax+B(−K1x−K2z) + Fa fa

= (A−BK1)x−BK2z + Fa fa (4.10)
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To compensate for the fault effects on the system, a new control term uA is added
to the nominal control law as follows:

u = −K1x−K2z + uA

Hence, the closed loop equation of the system with faulty actuators will become:

ẋ = (A−BK1)x−BK2z + Fa fa+BuA (4.11)

The adaptation term uA can be calculated by equating Equation 4.11 to the
ordinary closed-loop equation that represent the system without fault terms, as
follows:

(A−BK1)x−BK2z = (A−BK1)x−BK2z + Fa fa+BuA

then,
Fa fa +B uA = 0

Thus,
uA = −B−1Fa fa

In the case that B is not a square matrix, where the number of system inputs is
less than the number of states, as in the considered problem, then the states have to
be subdivided into primary and secondary variables as follows:

ẋp
ẋs

 =
App Aps

Asp Ass

xp
xs

+
Bp

Bs

u+
Fap
Fas

 fa (4.12)

We can choose the primary variables such that the matrix Bp becomes a non-
singular square matrix. For the adaptive FTC tracking problem, the control input
in Equation 4.9 is written as,

u (t) = −[Kp Ks Kz]


xp

xs

z


Substituting into Equation 4.12 leads to,

ẋp = (App −BpKp)xp −BpK2z + (Aps −BpKs)xs + Fapfa +BpuA (4.13)
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ẋs = (Ass −BSKs)xs −BSK2z + (Asp −BsKp)xp + Fasfa +BsuAdd (4.14)

Now, as the fault effects are to be eliminated from the primary state model, the
additive control law can be calculated by

(Aps −Bp Ks )xs (t) + Fap fa (t) + Bp uA (t) = 0

and then uA can be calculated by:

uA (t) = −Bp
−1 [(Aps −Bp Ks )xs (t) + Fap fa (t)] (4.15)

It is worth mentioning that, due to the splitting of states to primary and secondary
variables in order to obtain a square B matrix, the adaptation term uadd becomes a
function of the secondary state variables, their corresponding control gains, and the
fault information. The development of a FTC based on this strategy utilizing the
LQR control is presented next.

4.4.2 Development of the Adaptive FTC for linear aircraft
dynamics

By selecting the primary state variables and formulating the state space model
as in Equation 4.12, the adaptation control part uAdd is calculated. Due to the
coupling between the roll rate motion and the yaw rate, and their influence on
lateral-directional angles and velocities, they have been selected as the primary
variables. Sideslip velocity and bank angle were considered to be secondary variables.
This led to the rearrangement of the state space model to be in the following form:


ṗ

ṙ

v̇

ϕ̇

 =


−1.2 0.397 −0.0058 0

−0.035 −0.257 0.0028 0
0 −468 −0.1008 32.2
1 0 0 0




p

r

v

ϕ

+


−1.62 0.392
−0.019 −0.864

0 13.48
0 0


ξ
ζ

+
Fap
Fas

 fa (4.16)
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The fault’s magnitudes, α = [α1 α2]T for aileron and rudder, was assumed to be
known. Since the loss of effectiveness actuation fault was only considered, the faulty
control input was modelled by a multiplicative equation while the additive fault
term Uf0 was omitted. Fault scenarios were assumed to be 50% and 90% loss of
effectiveness in actuation performance. Required bank angle (ϕ) for the manoeuvre
was applied to the system by a ramp input with a slope of 5 deg/s, as shown in Fig.
4.11, to test the effects of the fault. Other remaining outputs [p,r, v, β] were driven
to zero.

Fig. 4.11 Reference bank angle (ϕ)

As presented in the mathematical formula, the fault tolerant control strategy
encompasses the optimal control and a fault compensation term that is added to the
control input. Referring to Equation 4.16, the sideslip velocity and bank angle were
considered to be secondary variables xs, where Bp and Aps are

Bp =
 −1.62 0.392

−0.019 −0.864



Aps =
 −0.0058 0

0.0028 0


The term ks is related to the elements in the computed control gain K corre-

sponding to the secondary states, Fap = Bp, and fa is the measured magnitude of
the faulty input. The linear-based scheme was constructed as in Fig. 4.12.

The inner loop contains the states feedback multiplied by the relevant LQR gain;
the feedback-loop of the output (y) simulates the measurement of the system’s output
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Fig. 4.12 FTC using LQR tracking control and fault compensation

to keep tracking the output reference values. Fault compensation was calculated
based on Equation 14 and then added to the total control input (u).

4.4.3 Results of the adaptive Fault Tolerant Control

Fault scenario 1: 50% Loss of effectiveness fault:
In this case, the optimal LQR control dealt with the fault scenario very efficiently,
and provided an acceptable response, as in Fig. 4.13, due to the optimality features
resulting from the tuning of the weighting matrices and minimisation of the cost
function.

The FTC improved the response of the bank angle and reduced the effects of
the 50% loss of effectiveness fault further. The control deflections required by those
different cases are depicted in Fig. 4.14.

Fault Scenario 2: 90% Loss of effectiveness fault:
As shown in Fig. 4.15, in the case of a 90% fault, the LQR-based response had an
enormous overshoot (50%), long delay in the response (of about 10 seconds), and
highly undamped oscillatory behaviour. Due to the optimality feature, the LQR
still maintained a stable system as the bank angle converged around the required
reference value. On the other hand, the FTC with the fault compensation mechanism
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Fig. 4.13 Bank angle (ϕ) response with 50% faulty actuators

Fig. 4.14 Deflections with 50% faults.

yielded better results when acting against the 90% actuation fault, with relatively
acceptable overshoot and settling time, which were both halved compared to the case
when only the LQR was applied. The fault compensation added an extra required
term to the control input in order to overcome this fault, and the results in terms of
bank angle response were improved.

As depicted in Fig. 4.16, the deflections of control surfaces were severely affected
by the faults that resulted in undesirable aircraft response. However, the compen-
sation of FTC led to actuation having a reasonably similar pattern to the required
control input, although it is faulty.
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Fig. 4.15 Bank angle response with 90% loss of effectiveness faults

Fig. 4.16 Control surface deflections with 90% loss of effectiveness faults.

4.5 Nonlinear simulations and testing

Combining the developed adaptive LQR controller based on the approximated linear
system into the 6-dof modelling of the nonlinear equations of motion of the aircraft
will test its practicality and limitations.

4.5.1 Aircraft business jet model

In this work, a business jet aircraft nonlinear 6-dof dynamical model, built to conduct
control-related research, was utilised. The aircraft has rear twin jet engines and
a T-shape tail, as shown in Fig. 4.17, and has a mass of 6100 kg and a 14.7 m
wingspan.
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Fig. 4.17 Aircraft’s dimensions and configuration layout

Basic aircraft specifications are listed in Table 4.1.

Table 4.1 Specifications of the business jet aircraft.

Mass m = 6100 kg
Moment of inertia Ixx = 25418 kg m2

Iyy = 68684 kg m2

Izz = 78324 kg m2

Ixz = 4286 kg m2

Span b = 14.7 m
Wing area S = 25.7 m2

m.a.c. c̄ = 1.904 m
CG location CGx,y,z = [−0.017,0,−0.269] m

4.5.2 Trimming and linearisation

In this work, the aircraft was trimmed at steady-state wing-level flight around Mach
0.3 and altitude 4000 m. The trimming states and controls xe and ue were computed
from the nonlinear equations ẋ = f(x, u), such that f (xe, ue) = 0 for definite xi. This
steady state condition, which requires no changes in the angular rates or airspeed,
yields,

Ṗ , Q̇, Ṙ = V̇T , β̇, α̇ ≡ 0
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The aim is to design a controller for the linear model that will operate in the
region defined by the trimming conditions mentioned above. The trimming and
linearisation process yielded an elevator deflection equal to 2.8 deg., and engine
throttle of 20.33%; while aileron and rudder deflections are both zero. Aircraft flying
states of motion were computed and listed in Table 4.2.

Table 4.2 Basic states of the trimmed aircraft.

VT Airspeed [m/s] 97.37
α Angle of attack [deg] 3.4
θ Pitch angle [deg] 3.4
h Altitude [m] 4000

Numerical linearisation resulted in the decoupled linear lateral motion of the
aircraft in a state space form ẋ = Ax(t) +Bu(t) as follows:



ṗ

ṙ

ψ̇

ϕ̇

β̇


=



−2.6 0.87 0 0 −6.5
−0.31 −0.178 0 0 2.2

0 1 0 0 0
1 0.064 0 0 0

0.062 −0.1 0 0.1 −0.246





p

r

ψ

ϕ

β


+



−0.13 0.036
−0.012 −0.025

0 0
0 0

0.002 0.0008


ξ
ζ



Where ϕ and ψ are the bank and heading angles; and ξ, ζ are the aileron and
rudder deflections, respectively. Based on the linear form of the lateral dynamics, the
aircraft control law was designed. The variables to be controlled were the heading
angle ψand the rolling angle ϕ.

To test the linearisation fidelity of the open-loop system, the linear model at
cruise was verified against the nonlinear model for a pulse input from the control
surfaces, as shown in Figures 4.18 and 4.19. These show a complete match between
them for different variables, which validates the linearisation approximation.
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Fig. 4.18 Elevator pulse input effects on the longitudinal dynamics.

!

!
!
!

!
!
!

Fig. 4.19 Aileron pulse input effects on the open-loop lateral dynamics.
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4.5.3 The FTC Controller development

The LQR tracking control law was formulated by the error equation augmented in
the linear model, shown in the second row in the following equation, as follows:

 ẋ(t)
ż(t)

 =
 A 0

−C 0

 x(t)
z(t)

+
 B

0

 [u(t)] +
 0

1

 r(t) (4.17)

Where
ż (t) = referencesingal − actualsingal

and C is a diagonal matrix for the corresponding tracked states. Accordingly, the
system input u (t) is in the form:

u (t) = −[Kx Kz]
 x(t)
z(t)

 (4.18)

From Equation 4.18, in order to achieve the required response, the system input
u(t) is to be designed by finding the best controller gain K = [Kx Kz] that maintains
closed-loop stability and provides the required tracking responses. Using the linear
quadratic tracker strategy that is based on the minimization of the cost function,
the Q and R tuning for best performance resulted in

Q = diag([0.2 0.2 0.2 1.2 0.2 0.05 0.05])

R = diag([0.21 0.51])

Thus, the controller gains were calculated to be:

Kx =
 −1.8 −6.13 −4.76 −6.76 −4.6
−0.19 −0.762 −0.57 −0.725 −0.553



Kz =
 −0.48 −0.479

−0.06 −0.06


The compensation term of fault uA was computed using Equation 4.15, where

the primary variables selected are [p r]T and the secondary variables are [ψ ϕ β]T ,
thus:

uA (t) = −Bp
−1 [(Aps − Bp Ks )xs (t) + Fap fa (t)]

where:

Bp =
−0.1335 0.036
−0.0124 −0.0252


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Aps =
0 0.0008 −6.524
0 0.0021 2.2343



Ks =
 −4.76 −6.76 −4.595
−0.567 −0.7246 −0.553



Fap =
−0.1335 0.036
−0.0124 −0.0252


and fa is the measured faulty input.

4.6 Simulation Testing and Results

Effects of faults on the aircraft lateral motion were analysed in the nonlinear sim-
ulations. Figure 4.20 shows the closed loop system that includes the developed
controller.

Fig. 4.20 Top-level view of the closed-loop system.

Modelling of the adaptive LQR fault-tolerant control system in the nonlinear
environment is presented in Fig. 4.21, while the baseline LQR computed gains
integrated in the control system are shown in Fig. 4.22.

Faults were introduced to the system by certain assumed gains starting with a
small magnitude of fault, and then followed by increasing the severity of the fault.
This enabled the author to test the controller limitations. High fault scenarios are
presented.
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Fig. 4.21 Adaptive FTC layout in the nonlinear simulations.
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Fig. 4.22 LQR control model for the computed gains
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4.6.1 Fault Scenario 1: 70% loss of effectiveness fault

When applying a 70% fault, the bank angle response for the faulty system (with
only the LQR controller) had an overshoot and was poorly damped, resulting in a
high settling time, as depicted in Fig. 4.23. This affected the tracking performance.
The LQR-based response had a 19.5 second rise time compared to the FTC based
response, which was 25 seconds, yet, the FTC strategy greatly damped the oscillation
of the bank angle, which minimized the bank angle settling error and time.

Fig. 4.23 Nonlinear bank angle response with 70% faulty actuator.

To observe how the control surfaces will respond, Fig. 4.24 the required deflections,
where both surfaces had acceptable rates of changes in the two controller cases (the
LQR and FTC). Yet, the oscillation was minimized when using the FTC, resulting
in faster convergence and settling of actuator deflections.

4.6.2 Fault Scenario 2: 80% loss of effectiveness.

When applying 80% actuation faults, the LQR-controlled system became dynamically
unstable and the required bank angle could not be maintained, as shown in Fig. 4.25.
Noticeably, the FTC strategy had a slower response by 5 seconds but managed to
maintain the stability with a slight degradation in the tracking performance. This
clearly showed the advantages of this fault tolerant technique, which brought the
faulty system back to stability compared to the LQR only control, where stability
was lost.

As in Fig. 4.26, the faulty system had high overshoot and oscillatory non-stable
behaviour in both control surfaces. This was minimized when applying the FTC
technique as the deflections were damped and quickly settled to a certain deflection
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Fig. 4.24 Control surface deflections with 70% actuator faults.

Fig. 4.25 Nonlinear bank angle response with 80% faulty actuator.

angle. The FTC approach has culminated in the enhancement of the tracking
performance of the controller and has maintained the stability of the system when it
encountered actuation faults.
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Fig. 4.26 Control surface deflections with 80% faulty actuator.

4.7 Conclusion

In this work, a fault tolerant control system was developed for an aircraft subjected
to actuator faults. The system encompasses an optimal linear quadratic regulator
control augmented with an adaptive fault-compensation-based scheme. The aircraft’s
lateral motion was considered, with the aileron and rudder as the main effectors. As
an optimal multivariable controller, the LQR baseline control law was formulated.
It handles the problem of tracking error and control energy minimisation. By an
appropriate adjustment of the control weighting matrices, an optimal baseline control
solution was obtained. In the analysis, loss of efficiency type faults were assumed.

The adaptive scheme was developed in order to accommodate the faults and
prevent the degradation of the stability or deterioration of the tracking performance.
It includes fault representation and adaptive compensation terms that are added
to the model. The compensation term was computed by generating a faulty model
as it was equal to the free-fault one, then solving for the adaptation term. The
scheme relies on the availability of a fault detection system, which was assumed to
be providing fault information to the FTC system. The FTC system was developed
based on a linear dynamical model and then tested initially for performance and
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stability optimisation. For validation of control viability, a nonlinear 6-dof simulation
was performed. The LQR based controller was able to handle faults with magnitudes
up to 70%, with large induced overshoot and oscillations. Yet, the rise time of the
aircraft response was acceptable. When the fault increased, the system became
unstable using the LQR only control. Tracking performance deteriorated as well,
and the control surface deflections became unsettled. On the other hand, the FTC
strategy control managed to handle high magnitudes of loss of efficiency faults in
actuators. The aircraft response was slightly slower in rise time but overshoot was
greatly minimised, to assure the stability of the system and eliminate the settling
error. While accommodating the effect of faults on the stability, the approach also
yielded a faster settling response and converged control surface deflections. Further
improvements of the work may include studying of the effects of the delay of fault
information delivery on the FTC performance, and how to avoid any shortcomings.
Moreover, to cover the whole problem, the design of the fault detection and diagnosis
(FDD) scheme is also suggested. Additionally, the investigations of the lock in place
fault effects and accommodation will enrich the study to deal with different kinds of
fault scenarios, where a redundant-effector aircraft model could be utilised. Another
important investigation is to introduce the wind effects to the system, with a further
step of testing and validation processes.





Chapter 5

Robust Optimal FTC using H∞
and µ-synthesis Techniques

5.1 Introduction

In the absence of abrupt changes in the system, the pre-designed controller gains
programmed in the autopilot usually work adequately well to generate the required
manoeuvres automatically. However, this may not be the case when the aircraft
confronts an actuation fault that reduces the effectiveness of the control surfaces and
may lead to a degradation in the stability or tracking performance. It is important
to enhance the automatic operation of the closed-loop system to tolerate some
failures. As mentioned in the literature, in recent decades, designers have proposed
different ways of dealing with the fault-tolerant control (FTC) problems. They have
followed two main approaches: active or passive design methods [3, 18, 28]. Passive
methods are basically robust control techniques that are suitable for certain types
of perturbation that can be modelled as an uncertainty region around the nominal
model. Robust control is designed to operate under the assumption of worst-case
conditions. The computation is based on matrix singular value decomposition, which
is a good measure of gains, especially for multivariable control [80]. Moreover, faults
in actuators can be represented as an input multiplicative uncertainty. On the other
hand, active FTC methods do not assume a static nominal model but instead take
fault information explicitly into account. They require a fault detection and diagnosis
scheme to obtain fault information [29]. Examples appear in [81–83]. Progressive
complexities in the active technique may arise owing to the need for the development
of fault diagnosis schemes, and this may result in adverse consequences that cause
errors and inevitable delays. Moreover, the success of the FTC system is strongly
based on the reliability of the fault information [21]. Thus, in this study, the robust
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optimal control technique is considered to solve the stability and tracking problems
for aircraft working with faulty actuators. Skogestad and Postlethwaite [84] defined
robust stability analysis as determining, for a given controller K, whether the system
will remain stable for an uncertainty set. In contrast, robust performance (RP)
means that the performance objectives are satisfied for all the possible plants in
the set of uncertainty. Thus, the robust control problem can be summarised as
in [85] for a given a nominal process with acceptable values for perturbations: a
robust controller should provide satisfactory performance in a closed-loop system for
all the processes despite uncertainties in the model. Various types of uncertainties
are grouped into two main categories: parametric uncertainties, where some of the
parameters of the system are not certain, and unmodelled dynamics uncertainties,
which are due to missing dynamics or lack of understanding of a physical process
[80], [84]. Research on robust control of uncertain dynamic systems is based mainly
on the frequency-domain transfer function analysis or the time-domain state space
representation [85]. In this paper, a frequency-domain analysis is performed to design
an optimal robust controller. Examples of robust methods include H∞ control [86],
[87], µ-synthesis [88–90], or a combination of the two, such as [91]; linear-quadratic
Gaussian control, either alone [92] or in combination with linear-quadratic regulator
control [93]; linear matrix inequality control [94]; and robust linear parameter-varying
control [95]. In this work, the H∞ and µ-synthesis robust techniques will be used.
H∞ control is a frequency-domain framework for fulfilling standard control design
requirements such as speed of response, disturbance rejection, bandwidth, and robust
stability, which are expressed in terms of H∞ gain constraints [87]. On the other
hand, robust stability and performance could be achieved using design methods
that are based on the structured singular value (σ), such as the µ-synthesis robust
technique [84].

Robust controllers are considered as optimal techniques, but they are different to
the others, i.e. LQR, by the involvement of uncertainty in the framework. The anal-
ysis and design of H∞-based control laws for linear systems with uncertainties ensure
a worst-case performance, in which, for example, the faults bounds could be encom-
passed. Thus, when an optimal solution for specific uncertainty magnitude is found,
this will increase the inherent capabilities of the controller to self−accommodating
the faults.

Application of the H∞ control design technique to the marine dynamic positioning
(DP) control problem was presented in [96] where effective wave filtering can be
obtained with guaranteed stability robustness. The reduction of the high control order
is discussed in [97]. Automatic weight tuning is presented in [98], while an automatic
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weight selection algorithm for the robust controller design for an active magnetic
bearing system is proposed in [99]. An electric vehicle cruise control is researched
based on an H2/H∞ robust control approach [100]. Similar techniques are used for
the braking system of electric vehicles (EV), to guarantee system performance, robust
stability, and to attenuate the parameter perturbation and nonlinear uncertainties
[101]. For time-varying uncertainties, a state-feedback control strategy that stabilizes
the system and guarantees the H-norm bound constraint for disturbance attenuation
is presented in [102].

For a fault tolerant application, a robust H∞ control against actuator and sensor
faults for satellite attitude control is presented in [103]. In the study, faults were
represented by parametric uncertainty and uncertainty in the FDD. Simulation results
validate the effectiveness of the scheme. A mix of H2 and H∞ infinity fault tolerant
control methods for aircraft subjected to loss of efficiency faults was proposed by
[104]. The conditions of closed-loop stability and mix of H2/H∞ infinity constraints
were derived for both nominal and faulty cases. Simulations were also presented to
show the advantages of the method.

In contrast to the work in [98, 99, 105–109], this paper studies the fault-tolerant
flight control design for an aircraft subjected to actuator faults, where optimal H∞

and µ-synthesis techniques have been investigated towards the robustness of the
system in faulty cases. Moreover, the work encompasses the nonlinear simulation
testing of the scheme against actuator faults at different operating conditions in the
flight envelope (namely, the ascending, cruising, and descending cases).

In this work, the main goal is to achieve closed-loop stability and tracking
performance while providing adequate stability margins for an actuator-faulty flying
vehicle. The work encompasses no adaptation in the control law during faults, but
instead assumes particular uncertainties in the control design process to take faults
into account. The limits of robust control methods to handle actuation faults in a
flying aircraft and the possible levels of degradation of the stability and tracking
performance are also investigated. First, the closed-loop structure, including a
linear dynamical model of the aircraft and fault-tolerant optimal control elements,
is constructed. Second, stability, tracking performance requirements, and fault
constraints are formulated within the cost function. By appropriate selection and
tuning of the weighting elements, a robust stabilising solution is obtained. To cover
major parts of the flight envelope, three main flying conditions were investigated: the
ascending, cruising, and descending cases. For all of these cases, robust fault-tolerant
controllers were computed, and the closed loop system was tested in a nonlinear
simulation environment against loss of effectiveness faults.
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5.2 Robust Fault-tolerant Control

5.2.1 Problem Formulation

Consider a linear time-invariant aircraft dynamical model described by:

ẋ(t) = Ax(t) +Bu(t), y(t) = Cx(t) +Du(t) (5.1)

where x(t) ∈ Rn is the state vector, u(t) ∈ Rm is the control input, and y(t) ∈ Rp

is the measured output. A, B, C, and D and are known constant matrices of
appropriate dimensions. The initial states x(0) are the initial trimming conditions of
the aircraft. As mentioned above, the aim of this work is to develop an actuation
fault-tolerant tracking control, exploiting the inherent stability criteria in the robust
control technique. To formulate the fault-tolerant tracking control problem, a fault
model must first be established. Consider a loss-of-effectiveness fault in the aircraft
actuators, assuming that there are no redundant systems such as multiple ailerons
or rudders. The input multiplicative uncertainty, as shown in Figure 5.1, has the
relation:

u∆ = u+ (u ∗ ∆) ⇒ u∆ = u(I + ∆) (5.2)

where ∆ = diag[ρ1, ρ2, ..., ρm] represents the loss-of-efficiency actuator faults for m
actuators. Now, for any actuator i, the loss-of-effectiveness fault was set as:

ρi =


−1 complete loss

−1 < ρ < 1, except 0 partial loss

0 no loss

Fig. 5.1 System with input multiplicative uncertainty.



5.2 Robust Fault-tolerant Control 83

Hence, the aircraft dynamics with the actuator fault are described by:

ẋ(t) = Ax(t) +Bu(t)(I + ∆)
y(t) = Cx(t) +Du(t)(I + ∆)

(5.3)

From Figure 5.1, the transfer function from signal v to u, as illustrated in [80], is

Tuv = −KG(I +KG)−1 (5.4)

hence, from the small-gain theorem, we conclude that:
For a stable ∆(s), the closed-loop system is robustly stable if the controller K(s)

stabilises the nominal system and the following hold:
∥∥∥∆KG(I +KG)−1

∥∥∥
∞
< 1

and∥∥∥KG(I +KG)−1∆
∥∥∥

∞
< 1

(5.5)

which could be written in another form as:

∥∥∥KG(I +KG)−1
∥∥∥

∞
<

1
∥∆∥∞

(5.6)

thus, for the largest possible perturbation, we need to solve the minimisation problem

min
Kstabilizing

∥∥∥KG(I +KG)−1
∥∥∥

∞
(5.7)

Typically, we want to guarantee the stability of a system having uncertainty
and also maintain good tracking performance, robust stabilisation, and less control
energy with respect to the input multiplicative uncertainty. This is formulated as a
multiple cost function minimisation problem. From Figure 5.2, we immediately have
the relationships:

y = GK(I +GK)−1r

u = K(I +GK)−1r

e = (I +GK)−1r

The design problem is now represented by finding the optimal stabilising controller
K that minimises the following [84]:

to obtain good tracking ∥∥∥(I +GK)−1
∥∥∥

∞
(5.8)

to reduce the control energy
∥∥∥K(I +GK)−1

∥∥∥
∞

(5.9)
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For shaping the output z1 and z2 for error and control input minimisation, it is very

Fig. 5.2 Optimisation structure for tracking error and actuator input.

useful to use We and Wu as weighting functions, where z1 = We e and z2 = Wu u;
this yields the overall cost function

min
Kstabilizing

∥∥∥∥∥∥ We(I +GK)−1

WuK(I +GK)−1

∥∥∥∥∥∥
∞

(5.10)

5.2.2 Robust Stability H∞ Control

To adopt a unified solution process, the system structure in Figure 5.2, including the
cost functions in equation (5.10), can be recast into a standard H∞ configuration,
as shown in Figure 5.3. Where the external exogenous inputs are denoted by w,

Fig. 5.3 System layout for H∞ control computation.

including the reference r. While z, which includes both performance and robustness
measures, denotes the output signals to be minimised. The vector (r − y) represents
the error measurements available to the controller K, and finally, u is the vector
of the control input. P (s) is called the interconnected system or generalised plant.
Now, the objective is to find a stabilising controller (K) that minimises the output z.
this will represent a minimisation of the H∞ norm of the transfer function from w to
z [80]. The solution can be obtained using the lower linear fractional transformation
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technique [84]. First, the interconnected system P is partitioned as:

P (s) =
P11(s) P12(s)
P21(s) P22(s)


Then

z = [P11 + P12K(I − P22K)−1P21]w (5.11)

Referring to our problem, the interconnected system P (s) can be written from Figure
2, including the weighting functions, as:

z1

z2

r − y

 =


We −WeG

0 Wu

I −G


w
u



where z =
z1

z2

 =
We e

Wu u

, w = r, P11 =
We

0

,

P12 =
−We G

Wu

, P21 = I, and P22 = −G. The H∞ controller is computed by solving

the minimisation problem in the sense of energy; the controller will be robust if the
cost function:

γ = ∥Tzw∥ =
∥∥∥∥∥∥ We(I +GK)−1

WuK(I +GK)−1

∥∥∥∥∥∥
∞

(5.12)

is less than 1 [80], [84].

5.2.3 Robust Performance µ-synthesis Control

Let N be a closed system that includes the interconnected system P(s) and the
controller K. Then, the structured singular value µ of N with respect to (∆) is the
number defined such that µ−1

∆ (N) is equal to the smallest σ̄(∆) that is needed to
make (I −N∆) singular [84]. That is:

µ−1
∆ (N) = min {σ̄(∆) : det(I −N∆) = 0}

Theorem: Let the feedback plant (N) be a stable system and let β > 0 is the uncertainty
bound where ∥∆∥∞ < β. Therefore, the perturbed system shown in Figure 5.4 is
robustly stable with respect to ∆ if and only if [80]

µ∆(N) ≤ 1
β

⇒ ∥N∥µ < 1
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⇒ µ∆(N(jω)) < 1,∀ω

Robust performance requires that the H∞ norm of the upper linear fractional
transformation transfer function F = Fu(N,∆) in Figure 5.4 remains less than 1 for
all ∆ [84], as follows.
Assume N is stable; then:

RP
def⇔ ∥F∥∞ = ∥Fu(N,∆)∥∞ < 1,∀ ∥∆∥∞ ≤ 1

⇔ ∥N∥µ < 1
(5.13)

for the structured uncertainty ∆.

Fig. 5.4 N∆ structure for robust performance.

There is no direct method of synthesising a µ-optimal controller. However, for
complex perturbations ∆, the D − K iteration technique can be used to find a
controller that maintains the robust performance criteria Eq.(5.13) [84]. First, for
σ̄(∆) ≤ 1

µ(N) = max∆ρ(N∆)

µ is bounded by the spectral radius and singular value (spectral norm) as:

ρ(N) ≤ µ(N) ≤ σ̄(N)

Consider D to be set of matrices D that alter with ∆ (i.e. D∆ = ∆D); then the
upper bound of µ is:

µ(N) ≤min
D∈D σ̄(DND−1) (5.14)

The D−K iteration method combines both H∞ control and µ-synthesis. Because
the upper bound condition in the inequality (5.14) is used, the problem now is to find
a controller that minimises the peak value over the frequency of the upper bound by
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alternating between minimising K or D while keeping the other variable fixed, as in
the formula

min

K (
min

D ∈ D
∥∥∥DN(K)D−1

∥∥∥
∞

) (5.15)

The iteration process finishes when satisfactory robust performance, i.e. ∥DND−1∥∞ <

1, is achieved.

5.3 Implementation of the Robust FTC

Consider a lateral-dynamical model G(s) of a DC-8 aircraft having a weight of
190,000 lb and flying at a speed of 0.44 Mach at an altitude (h) of 15,000 ft, with
the following state space matrices [60]:

A =


−0.1008 0 −468.2 32.2
−0.0058 −1.232 0.397 0

0.003 −0.035 −0.257 0
0 1 0 0

,

B =


0 13.48

−1.62 0.392
−0.019 −0.864

0 0

, C =
[
0 0 0 1

]
,

and D =
[
0 0

]
.

Where the states of the model are side-slip velocity (v) (ft/s), roll rate (p) (rad/s),
yaw rate (r) (rad/s), and the bank angle (ϕ) (rad), respectively. The inputs to the
system are aileron and rudder deflections ξ, ζ (rad) respectively. The closed loop
system, including G(s), the controller K(s), and the weighting functions We,Wd,

and Wu, is shown in Fig. 5.5.

Fig. 5.5 Closed loop System including the weighting functions.

To shape the output z =
z1

z2

 in Fig. 5.5 based on the tracking and actuation

requirements, the system includes the following weighting functions:
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First, We(jω) for minimizing the tracking error of the bank angle was chosen to be a
low-pass filter with the following transfer function:

W = f s+m0

( f

m∞
) s+ 1

(5.16)

where f is the frequency when magnitude of the weight reaches or drops from 100%,
m0 is the magnitude at low frequency, and m∞ is the magnitude at high frequency.
In tuning We for best performance, the parameters were determined to be f= 0.01
rad/s, m0= 0 dB, and m∞=-36 dB. This resulted in We being as depicted in Fig. 5.6.

Fig. 5.6 Bode diagram of the tracking weighting function We.

Second, Wd for shaping the variation of the nominal value of fault (∆) over different
frequencies was determined. This weighing function could be frequency-dependent
weight or merely a constant. In this work, it was assumed to be a 2x2 unity matrix
for fault magnitude that doesn’t vary with different frequencies.

Finally, Wu(jω) to shape the control efforts and capture the actuators limitations
is required. Moreover, it is a trade-off between robustness and deflection. As this
weight is decreased, the system becomes more robust, but the deflection increases,
and vice versa. In this study, aileron and rudder actuators inputs are available, and
both of them have a specific weight Wu in a transfer function with high-pass filter
form (Eq.5.16). The aileron, as the primary rolling control surface, has a smaller
weight by a ratio of 4 compared to the rudder. This will give it more freedom to
actuate. Fig.5.7 shows the Bode diagram of the aileron weighting function Wu.
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Fig. 5.7 Bode diagram of the aileron weighting function Wu.

5.3.1 H∞ Control Design for System without Fault

The closed loop system depicted in Fig. 5.14 is put in the generalized plant P form
(as in Fig. 5.3) with the following relationship:


z1

z2

r − y

 =


We −We G

0 Wu

I −G


w
u



The H∞ controller is computed under the assumption that the uncertainty is
neglected. It is required to find the nominal stabilizing solution that fulfils the
following condition:

∥Tzr∥∞ =
∥∥∥∥∥∥ We(I +GK)−1

WuK(I +GK)−1

∥∥∥∥∥∥
∞

< 1

γ = ∥Tzr∥∞ that fulfils the robust controller requirements was found by adjusting the
weighting functions (We,Wu) and using a MATLAB function hinfsyn. This process
yielded to a stabilising solution where:

γ = 0.955

Time-domain Testing:

To test the H∞ nominal controller, the following reference input of bank angle
was used:
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ϕ(t) =

15 deg/s 2<t<20

0 otherwise

Figure 5.8 shows the bank angle response using H∞ controller with good rise time
response (2.5 seconds), relatively small overshoot, and acceptable steady state error.
This indicates that this robust controller had maintained the aircraft’s stability and
yielded to a good tracking performance.

Fig. 5.8 Bank angle response using H∞ controller.

Deflections of control surfaces resulted from using the H∞ controller were also
scrutinized as depicted in Fig. 5.9. Actuator dynamics were taken into account.
Apparently, in order to perform the required manoeuvre, the aileron actuates to
higher positions with higher rates compared to the rudder. Both of them have
acceptable limits.

Fig. 5.9 Aileron and rudder deflections for the required manoeuvre using H∞ con-
troller.
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This emphasizes the durability of using H∞ in this robust stability multi-variable
control system design. The robust performance controller design against actuator
faults will be investigated next.

5.3.2 Robust Stability and Performance against Faults

In robust control computation, it was assumed that the uncertainty represents an
actuator loss of effectiveness fault, with the following bounds:

−1 ≤ ∆ ≤ 1

Both H∞ and µ-synthesis controllers have been computed for the faulty system. The
generalized plant P, as in the figure shown in Appendix B.0.1, has the following
relationship 

Wd

z1

z2

r − y

 =


0 0 I

0 We −We G

Wu 0 Wu

−G I −G



ud

w

u


The robustness condition of the µ-synthesis controller is expressed in terms of the
upper bound of (µ). Results of robustness conditions for both controllers are as
follows: Results in Table 5.1 clearly indicate that the condition of robustness has

Table 5.1 Results of the robust computation.

Controller Condition of robustness Result
H∞ γ < 1 3.932
µ-synthesis µ < 1 0.99

not been achieved when using the H∞ controller. However, µ-synthesis solution has
maintained the robustness condition.

Time-domain Testing:
To test the closed-loop system with these computed controllers, faults were

introduced to the actuators by a gain that represents the magnitude of the fault.
Fault scenarios of ∆ = 10%, 30%, and 50% were assumed at the beginning of the
simulation (i.e t=0). First, the H∞ controller was tested. Fig. 5.10 shows the bank
angle response and actuator deflections to make the required manoeuvre. When
a 30% loss of effectiveness fault was introduced to aircraft actuators, the system
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Fig. 5.10 Bank angle response and aileron deflections using H∞ controller.

had a 25% overshoot in the bank response. Moreover, aileron deflections, as in
Fig. 5.10, change very rapidly from 0 to 10 degrees. This enormously exceeds the
actuators’ deflection rates. On the other hand, by controlling the system using the
µ-synthesis controller with fault magnitude reaching 50%, the system remains stable
with acceptable degradation in the tracking performance, as shown in Fig. 5.11.

Fig. 5.11 Bank angle response using µ-synthesis controller.

Tracking features of rise time (2 seconds), overshoot (< 5%), and steady-state
error (0%) are very satisfactory. Aircraft control deflections, shown in Fig. 5.12,
reach very standard positions (max ±6 deg) at normal rates (max ±6 deg/s) when
using the µ-synthesis controller.
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Fig. 5.12 Aircraft control deflections using the µ-synthesis controller.

The results noticeably demonstrate the ability of the µ-synthesis controller to
automatically preserve stability and performance criteria against actuator faults for
multi-variable aircraft dynamics.
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5.4 Non-linear Testing and Validation

5.4.1 Aircraft Mission Profile

The Business Jet aircraft nonlinear model, expressed in section 4.5.1, is used in this
analysis. The flight control law of the aircraft is designed using linear mathematical
representations of aircraft dynamics at specific flying points. Figure 5.13 shows

Fig. 5.13 Selected trimming points within the mission profile.

three points within the flight envelope that have been selected for this robust control
design and testing. At these particular points, in order to get the linear models
that represent the aircraft motion, the forces and moment exerted on the body of
the aircraft are assumed to be constant or zero. The aircraft is trimmed around
equilibrium points, typically called steady-state conditions [60], and a linearisation
process is applied. The trimming states and controls xe and ue were computed from
the nonlinear equations by solving for f(xe, ue) = 0 for definite xi. This steady-state
condition requires no changes in the angular rates or airspeed yields; Ṗ , Q̇, Ṙ ≡ 0;
V̇T , β̇, α̇ = 0; and flight path angle is constant.
The aim, now, is to design robust controllers for the derived linear models that will
operate in the region around their trimming conditions.

5.4.2 Linear Models

In this work, the aircraft was trimmed at three flight conditions at certain Mach
numbers, heights, and flight path angles, as listed in Table 5.2.

The trimming and numerical linearisation process yielded linear models (Equa-
tions (5.17) and basic states, as listed in Table A.1 For this FTC study, it was
assumed that faults occur in the lateral motion effectors, namely, the aileron and
rudder. Thus, the dynamics of the lateral motion only are investigated. The linear
lateral model of the aircraft in the cruise flying condition is
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Table 5.2 Aircraft basic trimming conditions.

Symbol Condition Ascending Cruise Descending

M Mach number 0.2 0.3 0.2
h Altitude, m 600 4000 300
γ Flight path angle, deg 15 0 −10



ṗ

ṙ

ψ̇

ϕ̇

β̇


=



−2.6 0.87 0 0 −6.5
−0.31 −0.178 0 0 2.23

0 1 0 0 0
1 0.064 0 0 0

0.062 −0.1 0 0.1 −0.246





p

r

ψ

ϕ

β


+



−0.13 0.036
−0.012 −0.025

0 0
0 0

0.002 0.001


ξ
ζ

 (5.17)

where p, r are the roll and yaw rates, and ψ, ϕ, β are the heading, bank, and sideslip
angles, respectively. ξ and ζ are the aileron and rudder deflections, respectively. The
aircraft dynamics for the ascending and descending cases in state-space forms are
given in Appendix A.1.

5.4.3 Fault-tolerant Flight Control

Control Configuration and Performance Consideration

For each trimming condition case, the optimal fault-tolerant controller is computed.
The generic closed-loop structure of the system G(s) with a controller K(s), including
the weighting functions We,Wd, and Wu, is shown in Figure 5.14.

Fig. 5.14 Closed-loop system, including weighting functions.

To shape the output z =
[
z1

z2

]
according to the robustness and performance

requirements, the system includes the following weighting functions:
First, We, for minimising the tracking error was designed to track the heading and
bank angles; where the performance requirements of the sensitivity function S are
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captured by the upper bound:

|S(jω)| < 1
We

,∀ω

We was chosen to be a low-pass filter, as shown in Figure 5.15, and tuned for the
required manoeuvres in each trimming case. Table 5.3 lists parameters of We for
heading angle ψ at different flying conditions.

Table 5.3 We parameters for tracking requirements of the heading angle (ψ).

We parameters Ascending Cruise Descending

Low-frequency gain, dB 6 13 14.9
Crossover frequency, rad/s 0.04 0.11 0.085
High-frequency gain, dB −40 −40 −20

To reduce the tracking efforts for a more robust stabilising solution, the heading
(ψ) and bank (ϕ) angles tracking requirements in We are identical in shape, however,
their magnitudes are different. Figure 5.15 shows the illustration of Bode diagram
for We for bank angle.

Fig. 5.15 Bode diagram of tracking weighting functions We for bank angle (at cruise).

Second, we consider Wd for shaping the variation of the nominal value of the fault
(∆) over different frequencies. This weighting function could be frequency-dependent
or just a constant. In this work, a 2 × 2 constant matrix was assumed with values
of ±1.

Finally, Wu is needed for shaping the control efforts and capturing the actuator
limitations. This weight represents a trade-off between robustness and deflection. As
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Table 5.4 Wu parameters for control efforts.

Wu Ascending Cruise Descending

Aileron 0.1226 0.09 0.075
Rudder 0.16 0.135 0.0975

this weight is decreased, γ (the robustness condition) decreases, but the deflection
increases, and vice versa. In addition, to use the aileron actuator more than the
rudder for a rolling motion, Wu for the rudder exceeds the weight of the aileron.
Table 5.4 lists the Wu parameters.

Robust Control Computation

The closed-loop system in Figure 5.14 is given in the generalised plant P form
(Figure 5.3) with the following relationship:


z1

z2

r − y

 =


We −We G

0 Wu

I −G


w
u



The H∞ controller is computed assuming that uncertainty is neglected. It is
necessary to find the nominal stabilising solution that fulfils the condition:

∥Tzr∥∞ =
∥∥∥∥∥∥ We(I +GK)−1

WuK(I +GK)−1

∥∥∥∥∥∥
∞

< 1

The value of γ = ∥Tzr∥∞ that fulfils the robust controller requirements was found
by adjusting the weighting functions and using the MATLAB function hinfsyn for
computation. For robust control design against uncertainty, that represents an
actuator loss-of-effectiveness fault, the faults are modelled as follows:

∆ =
30% 0

0 1%


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for 30% fault in the aileron and 1% fault in the rudder. The generalised plant P ,
depicted in Figure ?? in Appendix B.0.1, has the relationship

Wd

z1

z2

r − y

 =


0 0 I

0 We −We G

Wu 0 Wu

−G I −G



ud

w

u



The µ-synthesis controller based on D − K iteration was computed in terms of
the upper bound of (µ), whereas H∞ was analysed in terms of the (γ) bounds,
as mentioned before. Computational optimisation and iterations yielded the best
possible results for the robustness conditions of the controllers, as listed in Table 5.5.

Table 5.5 Robustness condition results for nonlinear model.

Controller The condition Ascending Cruise Descending

H∞ γ < 1 1.153 1.151 1.154
µ-synthesis µ < 1 0.994 0.998 0.999

The results indicate that the conditions of stability and performance robustness
were guaranteed when the µ-synthesis control technique was used, but could not be
achieved when the H∞ controller was used for the aircraft under different operating
conditions. Aircraft motion was examined for those two controllers with the 30%
loss of effectiveness aileron fault. Aircraft response, when using the µ-synthesis, is
damped with shorter settling time compared to the H∞ based response as shown
in Figure 5.16. Moreover, the response when using the µ-synthesis had neither an
overshoot nor a steady state error.

Aileron deflections when using the H∞ controller fluctuate very rapidly as shown
in Figure 5.17. It also saturated swiftly reaching the maximum deflection limit. On
the other hand, the aileron deflections when using the µ-synthesis controller had
a very acceptable rate of changes and position limits, which assures the actuator
dynamics. These results emphasise the robustness and viability of the µ-synthesis
controller against loss of effectiveness faults, which eventually enhance the aircraft’s
stability and performance.
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Fig. 5.16 Bank angle response using the two controllers with 30% faulty actuators.

Fig. 5.17 Aileron deflections with 30% loss of effectiveness faults.

5.4.4 Simulation and Results for µ controller

The robust computation for a stabilising controller shows that µ-synthesis, but
not H∞ control, can guarantee the stability and performance robustness; therefore,
µ-synthesis is now further tested in a nonlinear environment. In this study, a steady
atmosphere is assumed, and the effect of wind is neglected. The strength of the
controller is tested against a wider region around the trimming equilibrium point in
order to cover a major part of the flight envelope.

Cruising Case

Because it is the largest segment of flight, the cruise case is analysed first. To test
the performance of the controller in the time domain, the bank angle signal reference
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input was assumed to be:

ϕ(t) =



7.5 deg/s 2<t<4

15 deg 4<t<34

−7.5 deg/s 34<t<36

0 otherwise

Table 5.6 lists the testing conditions around the trimming point. The results of

Table 5.6 Trim and testing operating conditions.

Condition Altitude, m Mach Speed, km/h

Trimming point 4000 0.3 367
Test condition 1 3475 0.26 318
Test condition 2 3750 0.28 342
Test condition 3 4266 0.32 392

nonlinear testing are shown in Figure 5.18. With a 30% faulty aileron, the nonlinear

Fig. 5.18 Nonlinear simulation of bank (rolling) angle ϕ at cruise.

test of the entire system showed good consistency between the linear and nonlinear
controlled closed-loop models. Moreover, from a control design viewpoint, the robust
µ-synthesis controller led to a good tracking response of the bank (rolling) angle
ϕ, where the steady-state error was very small. The aircraft response was slightly
sluggish (rise time, 11 s) owing to the effects of the fault. However, the robust
controller maintained good performance under different operating conditions.
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Fig. 5.19 Aileron (ξ) and rudder (ζ) deflections to generate the required response.

For control surfaces deflections shown in Figure 5.19, the aileron actuates smoothly
at a maximum rate of 5 deg/s and a deflection of 32 deg. However, the deflection
was high when testing at low speed (0.26 Mach).

The phase and gain margins indicate that there is still a safety margin before
instability. The feedback closed loop system between ϕref and ϕactual is expressed by:

ϕref
ϕactual

= L = GK

1 +GK

where G is the aircraft lateral dynamical model and K is the µ-controller. Results
as shown in Figure 5.20 are: the gain margin GM= 17.7 dB @ 0.582 rad/s and the
phase margin PM= 117 deg. @ 0.129 rad/s. This is also confirmed by the Nyquist

Fig. 5.20 Bode plot for the closed loop system with µ-controller.
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plot as in Figure 5.21, where the gain margin is determined by the expressions below.
From the Nyquist plot, L(jωp) is found as shown in Figure 5.22. Then the gain

Fig. 5.21 Nyquist plot for stability.

Fig. 5.22 Computing GM using Nyquist plot.

margin is:
GM = 20log10

1
|L(jωp)|

L(jωp)= 0.13, thus, GM=17.7 dB. Phase margin is angle between 0 and where
the plot crosses the unity circle in the counter clockwise direction, which is equal to
PM= 117 deg.
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Ascending Case

Fig. 5.23 Nonlinear simulation of bank angle ϕ under ascent operating conditions.

For the ascending scenario, the bank angle reference signal was requested, and the
aircraft response was analysed accordingly. Figure 5.23 shows the testing results for

Fig. 5.24 Nonlinear simulation of aileron deflection angle ξ under ascent operating
conditions.

the bank angle response at different operating points around the trimming condition.
First, the slow response and overshoot were due to the 30% fault in the aileron, which
limited the control power. However, the response was stable and converging, and
the controller maintained stability under different ascending trimming conditions. In
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Figure 5.24, the aileron deflection is analysed. At very low speeds (0.16 and 0.18
Mach), the deflection was high. This was because the moments generated by the
actuators depend on the aircraft’s speed squared; so at low speed, high deflection of
the actuators was required. In addition, the test showed that the linear model has
no actuator dynamics, resulting in a non-oscillatory deflection pattern compared to
the nonlinear response.

Descending Case

Finally, the last testing case is the aircraft descent. The response of the bank angle
ϕ (Figure 5.25) shows an acceptable response for the linear and nonlinear cases
in terms of the overshoot, stability, and settling error. For the aileron deflections

Fig. 5.25 Nonlinear simulation of bank angle ϕ under descent operating conditions.

(Figure 5.26), the maximum limit and rate of change were acceptable. Moreover, the
controller asymptotically stabilised the system under different operating conditions
even with a 30% actuator loss-of-efficiency fault.
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Fig. 5.26 Nonlinear simulation of aileron deflection angle ξ under descent operating
conditions.

5.5 Conclusion

In this chapter, an optimal fault tolerant controller was developed for a flying vehicle
where the robust features of the H∞ and µ-synthesis techniques were utilised. The
work contained modelling of actuator loss of efficiency faults as an uncertainty in the
system, which can be handled inherently with these control techniques. Thus, this
type of method does not rely on any fault detection schemes. Robust computation
involved the minimisation of a cost function that takes into account multiple design
objectives. These objectives are the tracking error minimisation, control energy
minimisation, and uncertainties. The modelling of faults as an uncertainty in the
system enabled the author to exploit the robustness of the controllers and test the
control law for aircraft subjected to actuator faults. The weighting functions for
optimisation objectives are selected and designed to shape the corresponding relevant
requirements. When the linear-based optimised solutions were found, the system
was tested in the nonlinear environment for more practical validation. Three design
points were chosen within the flight envelope, which are the ascending, cruising, and
descending operating cases. At these selected flying scenarios, the robust optimal
fault-tolerant controllers were tested.

Results showed that the H∞ baseline controller managed to give good tracking
and control input performance for the multi-variable system. However, it could
not withstand against actuator faults. The system’s deflection performance was
deteriorated by very high-frequency, rapid fluctuations, and sharp deflections as well.
On the other hand, in all flying cases, when testing the µ-synthesis-based controller,
the system maintained great tracking performance and smooth rate of change control
deflections with 30% fault magnitudes.
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Moreover, the system was tested at operating points near to the trimming points
to test the region around them, which can be covered by one controller. Results
showed that when the testing point is at lower speed, the robust µ-synthesis controller
maintained the tracking performance, but led to higher aileron deflections. The gain
and phase margins for the system were computed in the cruising case and results
showed that the system has acceptable margins with the robust controller before it
becomes unstable.

Further work may include further optimisation of the µ-synthesis-based controller
that may lead to the increase in the fault-tolerance degree. This could be by the
tuning of control or tracking weighting functions or the way the optimisation problem
is solved. Another extension is the lock in place fault accommodation problem, which
may need a considerably reconfigured control law.



Chapter 6

Reconfigurable Dynamic Control
Allocation against Lock in Place
Faults

6.1 Introduction

The primary means of control surfaces used to control the rolling, pitching, and yawing
motion of the aircraft are the ailerons, elevators, and rudder, respectively. When one
of the actuators incurs a loss of effectiveness fault, the adaptation or robustness of the
controller could enhance the controllability and handle the situation by maintaining
minimum stability requirements, as discussed in the previous chapters. Now, a
more sophisticated problem, when one actuator experiences a lock in place fault, is
investigated. This type of fault usually occurs due to, for instance, a structural jam
that prevents the actuator from moving, or hydraulic oil leakage. etc. [110]. The
lock in place faults will certainly introduce undesirable adverse moments that divert
the aircraft out of its trajectory. In the passive fault-tolerant control techniques,
discussed in Chapter 5, deviations of the plant parameters or the actuators from
their expected position were accommodated by a fixed robust feedback controller
that accounts for uncertainties up to a certain limit. However, if these deviations
became excessively large and exceed the robustness properties, other actions need
to be taken. Therefore, an active fault-tolerant control approach is proposed here.
The problem includes the exploitation of the other available control effectors, which
needs a thorough investigation to resolve this critical problem automatically. For
these jam actuator effects, functional redundancy is considered. Typically, it will be
assumed that the redundant hardware that powers the faulty actuator are unusable,
thus, it is the role of the other healthy actuators to cope with this situation. In
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flight control real applications, the redundancy is extended to cover the aerodynamic
control effectors. For example, the Boeing 747 has a three-segment rudder, where the
redundant control system’s channels independently power each segment [11]. In this
work, the utilisation of healthy effectors to handle lock in place faults is considered
for automatic closed loop operation. An advanced optimal multivariable approach is
exploited for this fault tolerant control problem, which is the control allocation.
In recent years, flight control design techniques that compute the moments to
be produced in pitch, roll, and yaw orientations, rather than the control surface
deflections, have gained increased attention. These methods generate the virtual, or
generalized, control commands v(t), as shown in Fig. 6.1, that are transferred and
allocated to the aircraft’s control surfaces. The problem of transforming these virtual
control commands is commonly known as the control allocation problem [111].

Fig. 6.1 Control allocation generic scheme

Thus, the main objective of control allocation is to compute a control input u(t)
that ensures that the commanded virtual control v(t) is cooperatively produced by
all effectors [112]. The control allocation (CA) approach has the following features
[113], [110]:

1. It handles the redundancy of the control surfaces for certain optimized objec-
tives, such as trajectory following and surface deflection prioritization, etc.

2. Actuator constraints, such as rate and position limits, are taken into account
in the optimisation solution. When one actuator is saturated, the other control
surfaces can produce the required control efforts.

3. The allocation problems, which are based on optimization techniques, are
emphasized since their computational requirements are within the capabilities
of current embedded computer technology.

The principles of control allocation, in general, are not restricted to motion control
systems. Therefore, virtual control command v(t) is not limited to representing the
generalised forces or moments, but could also represent quantities such as mass and
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energy [112]. In this work, a fault-tolerant constrained control allocation system is
developed to cope with an aircraft’s lock-in-place faulty actuators. The next section
will present the techniques and formula used in the control allocation problems.

6.2 Related work

Consider a linear system represented by

ẋ(t) = Ax(t) +Buu(t)

y = Cx(t) +Du(t)

Assume that Bu can be factorised as

Bu = BvB

where the matrix Bv ∈ Rn×k, B ∈ Rk×m, and k = rank(Bu). Thus, the system,
alternatively, can be written as:

ẋ = Ax+Bvv

v = Bu

y = Cx

where v ∈ Rnis the total required control efforts and will be referred to as the virtual
control vector [114]. The computation of the control law that leads to the required
virtual control can be performed via different multivariable control techniques.
Allocation is the next step of the approach. Control allocation techniques vary
based on the inclusion of the actuator constraints and computational method. They
are classified into two categories, unconstrained and constrained control allocation
methods [115], [116], as shown in Fig. 6.2. A comparison study between the
constrained and unconstrained methods is available in [117].
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Fig. 6.2 Control allocation techniques (Based on [112])

6.2.1 Unconstrained Control methods

In the unconstrained control allocation methods, the saturation and rate constraints
on the input u(t) are neglected. The challenging problem of inverting the model

v(t) = Bu(t) (6.1)

is that B is not a square matrix. Normally, for a multi-effector system, B has full row
rank, which result in an infinite number of control inputs u(t) that satisfy Equation
6.1 for any given v(t). In this case, the generalized inverse method is used to deal
with this extra freedom, as in [118] and [119]. The unconstrained control approach
is presented in the context of minimizing a least-square cost function. Assuming the
saturation and rate constraints of input u are neglected, the control allocation cost
function is formulated as a quadratic cost function as follows

min
u∈Rp

1
2(u− up)TW (u− up) (6.2)

subject to v = Bu, where W ∈ Rp×p is a positive definite weighting matrix, and
up is the preferred value of u. Subsequently, when B has a full rank, this weighted
least-square problem has the following solution [115]:

u = (I − CB)up + C v(t)

where

C = W−1BT (BW−1BT )−1
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is a generalised inverse derived from Equation 18 using the Lagrange multipliers, see
[120].

6.2.2 Constrained Control methods

Methods based on the generalized inverse do not consider the constraints on the
input u(t). When the unconstrained solution is exposed to a simple saturation
process, this will not guarantee that the allocated virtual control will be equal to
the required virtual command. Moreover, minimisation of the error between them is
not guaranteed [115]. Hence, some constrained control allocation methods have been
proposed to solve these problems.

Redistributed pseudo-inverse and Daisy Chaining

The first step of the redistributed pseudo-inverse technique is to solve the uncon-
strained control allocation problem (Equation 6.2). If a solution that doesn’t exceed
the position and rate limits is found, no further steps are needed. However, if one
or more effector saturate, the problem is solved again, taking out the saturated
elements in the B matrix [121]. In order to reduce the gap between the allocated
and the desired generalized forces, the unsaturated elements of the control vector
u(t) are re-computed by solving a reduced problem using a reduced pseudo-inverse.
This method includes firstly, the decomposition of the control input u(t) and control
matrix B into two set of elements, the saturated and the unsaturated elements. If
one element is saturated, the requirements are redistributed among the unsaturated
elements. The redistribution process is repeated until a feasible solution is found
or no further improvement can be made. This method neither guarantees the fea-
sible solution nor the minimization of the allocation error [112]. Examples of the
redistributed pseudo-inverse CA methods are found in [122] , [123], [124].

The Daisy Chaining technique assumes a hierarchy of control effectors [125]. They
are grouped into two or more groups and prioritized based on their contribution to
the required command. The first allocation problem is solved for the group with
the highest priority. If the first group saturates, the second is utilized and so on.
In some cases, this technique may lead to a solution where some effectors are not
utilized. Examples of the daisy chaining technique are found in [126], [127].

Direct allocation

This method of direct control allocation was proposed by [128]. In this approach, the
moment vectors achievable within the predefined actuator constraints are generated
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offline as an attainable moment set (AMS), denoted as A, and then stored in lookup
tables [129]. When the desired moment is requested, the on-board computer finds
the corresponding command for each actuator to follow using the lookup tables [130].
The approach starts with the unconstrained control allocation problem using the
pseudo-inverse. If the control input satisfies the input constraints, then no further
steps are required. Otherwise, another solution within the boundary of A that
maintains the direction of v(t) and meets the constraints, has to be computed as
follows

max
α≤1

α

such that Bu = α v, where α v ∈ A, and α ∈ [0, 1].

Error minimisation using linear programming

As stated earlier, the primary objectives of a control allocation technique is to
compute a control input that fulfils the control constraints and ensures that the
commanded virtual control v = h(u, x, t) is produced by the control surfaces.
For error minimization, if a feasible u(t) cannot be found, the control allocation
algorithm degrades the performance objectives and searches for a control input u(t)
∈ U that minimizes the following allocation error [124, 131, 132]:

vc − v = vc − h(u, x, t)

The objectives then can be expressed as an optimisation problem, as follows

min
u∈Rp,s∈Rm

∥Qs∥ (6.3)

subject to vc − h(u, x, t) = s, u ∈ U.

where s represent a minimization variable, ∥.∥ is some selected norm, and Q is a
weighting matrix. With the linear effector relations, the problem in Eq. 6.3 will be
subjected to vc −B (x, t)u = s, u ∈ U

The solution to Equation 6.3 is not unique, which gives more opportunity to
introduce another cost function that reflects on actuator constraints or any other
criteria [115]. Hence, the optimization framework becomes

min
u∈Rp,s∈Rm

(∥Qs∥ + J(x, u, t))

subject to vc − h(u, x, t) = s, u ∈ U.
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With the cost function defined using the 1-norm, the resulting problem becomes
a linear programming one (LP), with the form

min
u,s

 m∑
i=1

qi |si| +
p∑
j=1

wj |uj|


subject to Bu = vc + s, umin ≤ u ≤ umax.

The simplex, active set, and interior point methods are the most common
numerical methods for linear programming [133].
Sequential Quadratic programming for error minimisation

The control allocation problem, with the 2-norm formulation, yield a quadratic
problem that can be solved using numerical quadratic programming methods [116],
such that

min
u,s

 m∑
i=1

qis
2
i +

p∑
j=1

wju
2

 (6.4)

subject to Bu = vc + s, umin ≤ u ≤ umax.

The technique to solve this problem is to find a solution vector that minimizes the
quadratic problem subject to particular constraints. An approach proposed by [111]
involves a two-step minimization problem. First, find a set of all feasible solutions of
u(t) that minimize the virtual control error, and call it Ω. Then, the second problem
includes the selection of the minimum solution resulting from the first step that fulfils
the control input constraints and steady state control distribution. The two-step
optimisation is as follows:

Ω = arg min
umin≤u≤umax

∥Wv(B u− v)∥ 2

u = arg min
u∈Ω ∥Wu(u− ud)∥ 2

The first includes minimizing the virtual control error weighted by Wv. This
will allow prioritisation of certain elements of v. The second problem includes the
selection of the minimum solution resulting from the first step. Therefore, the
problem is summarized as follows; from Ω,the set of feasible control inputs that
minimize the virtual control error Bu− v, pick the control input u that minimizes
the cost function (u − ud) weighted by Wu, where ud is the desired control input.
The weighting matrices Wu and Wv are square diagonal matrices of proper dimensions.

Contribution highlights
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In this chapter, the contribution is summarised in the following points:

• Different from the methods of Fault Tolerant Control Allocation techniques
such as those described in [134–138], this approach incorporates a new control
redistribution process, which is updated by the occurrence of a fault. This
approach relies on and assumes an effective on-board FDD system to provide
precise fault information of the control surfaces.

• Further, it uses fuzzy logic to implement the correlation between fault and
control redistribution. Existing works assume certain faults in the model and
produce the FTC lookup tables accordingly, i.e. [130] (Naskar et al., 2015).
Here, the implementation of fuzzy logic can handle a wide range of fault
magnitudes online by interpolation.

• Moreover, unlike the works of FT control allocation techniques described in
[117, 136, 139, 140], [138, 141], that only consider loss of efficiency faults; this
method deals with the more severe lock in place fault. It handles the faulty
situation and enhances the flying quality with multi-effector controls.

6.3 Dynamic Control Allocation using the Quadratic
Programming approach

Several existing control allocation methods, such as daisy chaining, direct control
allocation, and methods based on constrained linear or quadratic programming, have
been investigated, see [112] for a survey. These methods are static in the sense that
the control surface deflection commands, computed at any time t, only depend on
the virtual control commands

u = f(v)

To allow different actuators to produce control efforts at different frequency
ranges, a dynamic mapping of the following form is needed [111]:

u(t) = f(v(t), u(t− T ), v(t− T ), u(t− 2T ), v(t− 2T ), ..)

where T is the sampling period. The formula requires the mapping of the previous
values of v and u, to capture the saturation in the actuators and penalize the actuator
rates as proposed by [142]. Now, consider a linear dynamical model of an aircraft
given by:
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ẋ = f(x, u)

subject to the following position and rate constraints:

umin ≤ u ≤ umax, |u̇| ≤ urate (6.5)

In modern aircraft, where digital control systems are implemented, the rate
constraint in Equation 6.5 can be transformed into position limits [143]. Accordingly,
the actuator rate and position limits can be written as

u(t) ≤ u ≤ u(t) (6.6)

where,

u(t) = max[umin, u(t− T ) − urateT ]

u(t) = min[umax, u(t− T ) + urateT ]

The dynamic control allocation task can be posed as a sequential quadratic
programming problem using the Euclidean 2-norm [111]:

Ω = arg min
umin≤u≤umax

∥Wv(B u(t) − v(t))∥ (6.7)

u = argmin
u∈Ω

(
∥W1(u(t) − us(t))∥ 2 + ∥W2(u(t) − u(t− T ))∥ 2

)
where B ∈ Rk×m is the control effectiveness matrix, u(t) ∈ Rm is the commanded
control input, v ∈ Rk is the virtual control, us ∈ Rm is the desired steady state
control input, and Wv, W1, and W2 are square diagonal weighting matrices of proper
dimensions. The optimization problem works as follows; pick from the feasible set
of control input Ω that minimize the virtual control error, a control input u(t) that
fulfils the control input constraints. When Ω is calculated, the optimization for
u(t) is made by keeping u as close as possible to the steady state value (us), and
minimizing the change between the control input u(t) and the previous sampling
instant u(t− T ). The steady state control input is calculated by us(t) = Sv(t) where
BS = I, and S is the control distribution matrix. In order to design a closed loop
system that fulfils the tracking requirements and control deflection constraints, the
problem is then split into two main tasks. Firstly, the virtual control command is
represented in terms of the total moments generated by the actuators, subtracting
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the effects of the general states, as follows: The roll, pitch, and yaw moments (L, M,
N) are represented by their coefficients, which are functions of the deflections and
the states as follows:

Cm = Cm0 + Cαm · α+ C
δf
m · δf + Cδe

m · δe + c

2Va
(Cα̇m · α̇+ Cqm · q) + CMm ·M (6.8)

Cl = Cβl · β + Cδa
l · δa + Cδr

l · δr + b

2Va
(Cpl · p+ Crl · r) (6.9)

Cn = Cβn · β + Cδa
n · δa + Cδr

n · δr + b

2Va
(Cpn · p+ Crn · r) (6.10)

Assuming C α̇
m = Cm0 = C

δf
m = 0, then, the coefficients in Eq. 6.8-6.10 are

equivalently written as:
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(6.11)

Thus, the virtual control will be

v (t) = Cδ × δ − Cxx (6.12)

where Cδ are the of variation of moment coefficients with respect to the deflections,
and δ are the actuator deflections computed by δ = e(r, y) × K, where e is the
reference error and K is a control law computed using any multivariable design
approach.

Secondly, distribute the virtual control command over the available effectors,
which is known as the control allocation task. In this problem, the control command
u(t), that is feasible with the constraints of the actuator and satisfies v(t) = Bu(t),
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is determined at each sampling time. The S matrix is the control distribution matrix
with parameters that relate to the effects of each control surface on the corresponding
rotational motion. It also prioritizes the roles of the control surfaces.

In order to solve the sequential least square problem in Equation 6.7, it is
reformulated into another form where the two cost functions are merged together,
making the weighted least square problem as follows:

arg min
u≤u≤ū

∥Wu(u− up)∥2 + γ ∥Wv(Bu− v)∥2 (6.13)

to emphasise the minimisation of Bu− v, then the weighting factor γ has a large
value in the computation. Now, rearranging Equation 6.13,

∥Wu(u− up)∥2 + γ ∥Wv(Bu− v)∥2 =

∥∥∥∥∥∥∥∥∥∥
(
γWvB

Wu

)
︸ ︷︷ ︸

A

u−
(
γWvv

Wuup

)
︸ ︷︷ ︸

b

∥∥∥∥∥∥∥∥∥∥

2

(6.14)

and solve for

arg min
u

∥Au− b∥ (6.15)

subject to u ≤ u ≤ ū.
To solve Equation 6.15, consider

min
u

∥Au− b∥ (6.16)
Bu = v (6.17)
Cu ≥ U (6.18)

where Equation 6.18 is equal to u(t) ≤ u ≤ u(t) when C =
 I

−I

and U =
 u

u

.
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Given uk for the number of iterations k, find p (the optimal perturbation) such
that:

min
p

∥∥∥A(uk + p) − b
∥∥∥

if uk + p is a feasible solution, set uk+1 = uk + p and compute
 µ

λ

 for which µ

is associated with Bu− vand λ is associated with Equation 6.18. Otherwise, remove
the constraints for negative λ.

The Lagrange multipliers
 µ

λ

 are computed from:

AT (Au− b) =
BT

CT
0

 µ
λ


where C0 is the row of C corresponding to the constraints. This method of solving
the weighted least square problem is referred to as the active set algorithm (see
[144]).

Dynamic control allocation without saturation: a special case

Under the assumption that the actuators do not reach saturation, the actuator
position constraints can be ignored and the optimisation problem is reduced to

min
u(t)

(
∥W1(u (t) − us(t))∥ 2 + ∥W2(u (t) − u(t− T ))∥ 2

)
(6.19)

Subject to B u (t) = v(t).

The solution of this optimisation problem is computed with the following condi-
tions. First, the matrices W1 and W2 are symmetric matrices, i.e. each matrix is
equal to its transpose. Second, W is non-singular and represented by

W =
√
W 2

1 +W 2
2

When these assumptions hold, the control allocation problem in Equation 6.19
has the solution

u (t) = Eus (t) + Fu (t− T ) +Gv(t) (6.20)

Where,

E = (I −GB)W−2W 2
1
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F = (I −GB)W−2W 2
2

G = W−1(BW−1)†

The symbol † denotes the pseudo-inverse of the function which is defined as
B† = BT (BBT )−1 for a (k×m) matrix B with a full row rank. Proof of this formula
is shown in [111] and [142]. This illustrates that the optimal solution for control
input u(t) to the unconstrained control allocation problem, is given by the linear
filer (Equation 6.20).

6.4 Flight Control Allocation System for multi-
aileron aircraft

An optimal control allocation is developed using a twin-engine, multi-effector Boeing
747 aircraft lateral dynamical model. The aircraft has two ailerons per wing (inboard
and outboard) and a rudder as control surfaces, as shown in Figure 6.3.

Fig. 6.3 Boeing 747 lateral control configuration

The twofold aileron control surfaces may introduce an additional workload in the
control redundancy management; however, this will give an extra freedom to control
the rolling motion of the aircraft, particularly in faulty situations.
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6.4.1 Aircraft Dynamic Model

At trimmed conditions of 0.8 Mach and 2500 m altitude, the linearised aircraft
dynamics [145] is given by:

ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t) +Du(t)

where

A =


−1.06 0.172 −1.65 0.0004
−0.12 −0.21 0.28 −0.002
0.1014 −0.989 −0.1 0.106

1 0.09 0 0



B =


−0.083 0.083 −0.2285 0.2285 0.1187
−0.0154 0.0154 −0.0123 0.0123 −0.2478

0 0 0 0 0.0174
0 0 0 0 0


C =

0 0 1 0
0 0 0 1


and D is a (2 × 5) zero matrix. The states x = [p r β ϕ]Tare the roll rate (rad/s),

the yaw rate (rad/s), the sideslip angle (rad), and the roll angle (rad). The control
input u = [ξir ξil ξor ξol ζ]

T consists of the inboard right and left ailerons, outboard
right and left ailerons, and the rudder, respectively. Measured outputs y(t) represent
the sideslip angle β and the roll angle ϕ.

The aircraft’s main effectors for lateral dynamics are shown in Fig. 6.3. The
maximum deflection for the actuators is ±30 degree, and the maximum rate of
change is ±50 degree per second. A positive aileron deflection is defined when the
right aileron is up and the left aileron is down. A positive rudder deflection is defined
with the trailing edge to the right, as viewed from above.

Table 6.1 Control surfaces deflections and primary effects

Control surface Deflection Sign Primary effects
Inboard right aileron Trailing edge up + Positive roll moment
Outboard right
aileron

Trailing edge up + Positive roll moment
Rudder Trailing edge right + Positive yaw moment
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The flight control law

The control law, that yields the virtual control command v(t) based on Equation 23,
is designed first in the control allocation problem. An H∞ controller is developed
to utilize the optimizing features of minimising the tracking error and total control
energy. For a closed loop system, the control law problem is represented by finding
an optimal stabilizing solution that minimises the following cost function:

∥∥∥∥∥∥ We(I +GK)−1

WuK(I +GK)−1

∥∥∥∥∥∥
∞

(6.21)

for the feedback control law shown in Fig. 6.4.

Fig. 6.4 Closed loop system with the weight minimisation functions.

The weighting functions We and Wu are used to shape the output [z1 z2]T , for
the tracking error and control input minimisation. This would lead to the generic
structure of the H∞ control system as shown in Fig. 6.5, where w represents the
external exogenous input, i.e. the reference input, noise, etc. In this work, w denotes
the reference-required command.

Fig. 6.5 General layout of the system for H infinity computation.

The system has the following interconnected matrix (P), partitioned as follows:

P (s) =
 P11(s) P12(s)
P21(s) P22(s)


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From the lower linear fractional transformation (LFT) technique, the output
would be

z = [P11 + P12K(I − P22K)−1P21]w (6.22)

Where,


z1

z2

r − y

 =


We −W eG

0 Wu

I −G


 w

u

 (6.23)

To minimise the tracking error of the sideslip and rolling angles [β ϕ]T , the
weighting function We is a diagonal matrix with two low-pass filters that minimises
the two reference inputs. The filter will allow signals with frequencies less than the
cross over frequency to pass, but attenuate signals with frequencies higher than the
cross over frequency. Basic features are listed in Table 6.2.

Table 6.2 Bode diagram specifications for We weighting functions

We Magnitude at low
frequency (dB)

Cross over
frequency
(rad/s)

Magnitude at high
frequency (dB)

For β 13.98 0.08 -60
For ϕ 28.46 0.42 -45.5

The weighting function We for the rolling angle ϕ is higher in magnitude than
the one for bank angle β, to give it more significance in the optimisation problem as
shown in the Bode plot Fig. 6.6.

The second weighting function in the H∞ control law design is Wu. This function
is used to shape the controlling efforts of the actuators. Three main sets of controls,
namely the inboard ailerons, outboard ailerons, and the rudder, are available. The
rolling primary effectors are the outer ailerons. Weights given to each effector are
correlated to its primary task. The Bode plot, in Fig. 6.7, shows the weighting
function Wu, for the control inputs.

A Matlab algorithm is used to compute the stabilising solution that minimises
the cost function in Equation 6.21. Results of the tuning and computations yields
the optimal stabilising solution with γ=0.998, and H∞ control gain in the state space
from as shown in Appendix.
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Fig. 6.6 We weighting functions for phi and beta.

Fig. 6.7 Wu functions for aircraft’s control surfaces.

6.4.2 The virtual control command

For the aircraft with 30 ft span, 6.5 ft chord, and flying at a speed of 445 ft/s, the
virtual control command is computed using Equation 6.12. Aerodynamic stability
and control derivatives are as follows [55]:
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Cβ
l -0.193

Cp
l -0.3

Cr
l 0.2

Cα
m -1.15

Cq
m -20

CM
m 0.12

Cβ
n 0.147

Cp
n -0.06

Cr
n -0.2

C
δA−ir

l -0.013
C
δA−il

l 0.013
C
δA−or

l -0.017
C
δA−ol

l 0.017
CδR
l 0.004

CδA−ir
m 0

CδA−il
m 0

CδA−or
m 0

CδA−ol
m 0

CδR
m 0

CδA−ir
n -0.0015

CδA−il
n 0.0015

CδA−or
n -0.0012

CδA−ol
n 0.0012

CδR
n -0.108

Thus, using these parameters, the matrices in the system are as follows:

Cδ =


−0.013 0.013 −0.017 0.017 0.004

0 0 0 0 0
−0.0015 0.0015 −0.0012 0.0012 −0.108



Cx =


0 −0.193 −0.0101 0 0.0067 0

−1.15 0 0 −0.1461 0 0.12
0 0.147 −0.002 0 −0.0067 0


, and

x(t) =



α

β

p

q

r

M


Detailed aerodynamic characteristics for the B747 are available in [146, 147]. The

virtual control command, as illustrated in Fig. 6.8, is therefore computed.

The resulting computed virtual control command v(t) is composed of three vectors
that represents the total required control efforts along roll, pitch, and yaw axes.
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Fig. 6.8 Illustration of the computation of the virtual control command.

6.4.3 Control Allocation

Once the virtual control command v(t) is computed, it is now a task of allocating
the total control efforts on the available aircraft control surfaces. At trimmed flying
conditions, the desired steady state control distribution matrix that resembles the
relationships between total required rolling, pitching, and yawing efforts and the
corresponding control surfaces is chosen to be:

S =



−5.0 −0.05 −0.12
5.0 −0.05 0.12
−10 −0.02 −1.0
10 −0.02 1.0

0.02 0 −8.0


Where the weights are W1 = diag ([2 2 2 2 2]) and W2 = diag([8 8 10 10 10]).

Control Allocation without saturation

The results of the computation of the control allocation filter using Matlab for the
unsaturated formula yields sets of transfer functions that relate the inputs (v) to the
outputs u. Hence, the transfer function of input vroll to inner right aileron, neglecting
the very small terms (i.e. < 1x10−7), is:

ξir
vroll

= −18.03 s5 + 51.7 s4 − 49.4 s3 + 15.8 s2

s5 − 2.9 s4 + 2.7 s3 − 0.86 s2

The transfer function of input vroll to inner left aileron is:

ξil
vroll

= 18.03 s5 − 51.7 s4 + 49.4 s3 − 15.8 s2

s5 − 2.9 s4 + 2.7 s3 − 0.86 s2

transfer function of input vroll to outer right aileron is:
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ξor
vroll

= −15.5 s5 + 44.1 s4 − 41.7 s3 + 13.17 s2

s5 − 2.9 s4 + 2.7 s3 − 0.86 s2

transfer function of input vroll to outer left aileron is:

ξol
vroll

= 15.5 s5 − 44.1 s4 + 41.7 s3 − 13.17 s2

s5 − 2.9 s4 + 2.7 s3 − 0.86 s2

transfer function of input vroll to rudder is:

ζ

vroll
= 0.85 s5 − 2.4 s4 + 2.3 s3 − 0.73 s2

s5 − 2.9 s4 + 2.7 s3 − 0.86 s2

transfer function of input 2 (vpitch) to inboard right and left ailerons:

ξi
vpitch

= −0.003 s5 − 0.006 s4 − 0.003 s3

s5 − 2.9 s4 + 2.7 s3 − 0.86 s2

transfer function of vpitch to outboard right and left ailerons:

ξo
vpitch

= −0.0008 s5 − 0.0015 s4 − 0.0007 s3

s5 − 2.9 s4 + 2.7 s3 − 0.86 s2

transfer function of input vpitch to rudder:

ζ

vpitch
= −7x10−22 s2 − 7x10−22 s

s5 − 2.9 s4 + 2.7 s3 − 0.86 s2 = 0

transfer functions of input 3 (vyaw) to inboard right aileron

ξir
vyaw

= −0.69 s5 + 2 s4 − 1.9 s3 + 0.62 s2

s5 − 2.9 s4 + 2.7 s3 − 0.86 s2

transfer function of input vyaw to inboard left aileron

ξil
vyaw

= 0.69 s5 − 2 s4 + 1.9 s3 − 0.62 s2

s5 − 2.9 s4 + 2.7 s3 − 0.86 s2

transfer function of input vyaw to outboard right aileron

ξor
vyaw

= −0.56 s5 + 1.6 s4 − 1.5 s3 + 0.46 s2

s5 − 2.9 s4 + 2.7 s3 − 0.86 s2

transfer function of input vyaw to outboard left aileron

ξol
vyaw

= 0.56 s5 − 1.6 s4 + 1.5 s3 − 0.46 s2

s5 − 2.9 s4 + 2.7 s3 − 0.86 s2

transfer function of input vyaw to rudder
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ζ

vyaw
= −9.23 s5 + 26.3 s4 − 25.04 s3 + 7.94 s2

s5 − 2.9 s4 + 2.7 s3 − 0.86 s2

For each actuator, the related transfer functions were added together giving the
total required deflections sent to the control surface. Figure 6.9 shows the transfer
functions between components of the virtual control command and each actuator.
To test the control laws, the following were assumed:

ϕ =
 30 3 ≤ t ≤ 30

0 otherwise

Fig. 6.9 Summation of transfer functions for each effector.

The result of using a no-saturation DCA are analysed in terms of the control
deflections and the response of the aircraft, as shown in Fig. 6.10 and Fig. 6.11. Outer
ailerons have identical deflections with different signs. Similarly for the inner ailerons.
The rate of change of deflection was acceptable, but the outer ailerons exceeded
the maximum deflection limit (±30 deg), as expected, due to the non-constraint
computations.

For aircraft response, although the rise time was satisfactory, there was a 16%
steady state error for the requested rolling angle, even with high actuator deflections.
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Fig. 6.10 Control surfaces’ deflections using non-saturated DCA.

Fig. 6.11 Aircraft response using non-constrained DCA.

Constrained Dynamic Control Allocation

In this computation method, the control input u(t) is calculated based on the virtual
control command optimisation function, using the weighted least-squares solver
[144]. Thus, in order to give more emphasis on the virtual control command part
that generates the rolling motion, the weights corresponding to the pitch and yaw
motion are kept small, Wv = diag([10 1 1]). Results of using constrained DCA
technique are shown in Fig. 6.12 for controls deflections and Fig. 6.13 for aircraft
response. The deflection plot shows a higher rate of change (reaching 20 deg/s) in
the controls compared to the unsaturated computation, yielded in faster aircraft
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response. Moreover, the deflections were constrained by the maximum deflection
position. It is shown that when one actuator saturates, the other actuators margin
of deflection is exploited.

Fig. 6.12 Control surface deflections using constrained DCA.

The aircraft response is fast (rise time is 2.8 second) and well damped, resulting
in a relatively small steady state error (<3%).

Fig. 6.13 Aircraft response using dynamic control allocation.

The constrained dynamic control allocation has the following merits over the
non-saturation case. First, it has very small steady state tracking error in the aircraft
response. Moreover, it takes position limits into account and utilises the optimised
computation for rate limits, which produces a quicker and more accurate response.
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Taking these limits into account in the design process is advisable because they
will comply with actuator dynamics in real-life applications. In the next section, a
fault-tolerant control allocation scheme will be developed based on the constrained
control allocation approach.

6.5 Reconfigurable Fault-tolerant Control Allo-
cation (FTCA) System

As shown in the previous section, the constrained dynamic control allocation technique
led to a stable, more accurate, and faster response of the aircraft. However, how the
system would respond with this control technique in the case of actuation lock in
place faults. This section is devoted to addressing this problem. Faults in actuators
vary from lock in place, hardover, loss of effectiveness, and float faults. For number
of actuators m, the fault is expressed by:

ui(t)



ui(t) nominal

ci lock in place

ui,max hardover

ρ× ui(t), 0 < ρ < 1 loss of effectiveness

0 float

(6.24)

where i=1,. . . .,m, and ci is a fixed constant angle that represents the jammed
deflection of the corresponding actuator. In this work, lock in place and hardover
faults are considered. The hardover is one type of lock in place fault but at its
maximum degree. Severe rolling motions are anticipated when the aircraft is subjected
to aileron hardover. The previously developed constrained control allocation system
was subjected to this fault and the results are shown in Fig. 6.14. The inner right
aileron of the aircraft is assumed to encounter a hardover fault 1 second after the
pilot’s rolling angle command. The available healthy control surfaces cooperate to
accommodate the fault and deliver the required rolling angle. However, all actuators
were driven to saturation when the pilot requested a rolling back to zero degree angle.
This was due to the accumulative efforts passed to each control surface which results
in a drastically unstable rolling of the aircraft.

The results emphasise control reconfiguration to overcome the deficiency of the
available control surfaces in order to gain stable and safe flight. Since the actuators
in the DCA were driven to their maximum rate of change in the design process before
the fault, the reconfigurations of the weights W1, W2, and Wv are not appropriate.
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Fig. 6.14 Rolling motion and deflections effects when inner right aileron is faulty.

However, the control distribution matrix will be investigated in order to reshape the
efforts directed to the available control surfaces in the presence of a fault.

6.5.1 Redistribution of the control efforts

The desired control input us is calculated by mapping the virtual control command
v(t) over the available controls using the control distribution matrix S as follows:

us(t) = S v(t)

Hence, in the case of any actuator fault, the distribution matrix S is to be updated.
Since the inner ailerons are symmetric and conduct essentially the same task but
with opposite directions, and similarly for the outer ailerons, faults in the inner right
aileron, outer right aileron, and rudder are analysed. If any actuator is jammed, its
related parameter in the S matrix will be set to zero, while other parameters will
be multiplied by an updating factor (Gf). For a jammed inner right aileron, for
instance, that affects the rolling motion, the control distribution matrix will be as
follows:

The updating factor depends entirely on the fault type, magnitude, and location.
Due to the fact that lock in place of an aileron will generate an undesirable rolling
motion it will be assumed that the magnitude of the fault will start from the angle 0
degree. This corresponding to the scale of the updating gain factor Gf , that starts
from 1. Thus, the table below (Table 5) summarises the requirements for updating
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the system when lock in place fault occurs in the lateral control surfaces, ailerons, or
rudder.

Table 6.3 Required updates to the system subjected to actuators lock in place faults.

Fault location Magnitude [deg.] Updating factor
(Gf )

Max reference
rate of change
[deg/s]

Inner right
aileron

Jam at angle < 10
deg

1.1 -

10 deg< Jam < 20
deg

1.25 -

Hardover at max 1.6 -
Outer right
aileron

Jam at angle < 5 deg 1.55 -

5< Jam < 10 deg 1.55 8.5
10 deg < Jam < 20
deg

1.75 1

Hardover at max 1.8 1
Rudder Jam at angle < 10

deg
2 -

The maximum rate of change of the reference signal was also constrained because
it affects how the aircraft’s actuators are excited. For instance with a step response,
the sharp change in the aircraft manoeuvre demands a faster response from the
controls, which yield higher magnitudes of deflections. In this FTC experiment,
aircraft response was examined for two reference signals, shown in Fig. 6.15, the
step and ramp inputs.
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Fig. 6.15 Ramp and step reference signals.

6.5.2 Control Redistribution using Fuzzy Logic

Due to the different aspects considered in choosing the model’s gain to update the
control distribution matrix S, there was a need for a technique to handle these
conditions. Fuzzy logic formulation is a method that can map an input space to
an output space. L. Zadeh, of the University of California at Berkeley, proposed
the idea of fuzzy sets [148]. Later, E. Mamdani, a professor at London University,
applied fuzzy logic to the control of an automatic steam engine [149]. In recent years,
the varieties of applications of fuzzy logic have been increasing significantly. The
applications range from consumer products such as washing machines to industrial
process control, medical instrumentation, etc. Fuzzy logic maps a range of input to a
range of output, as illustrated in the following two examples. With the specification
of how hot you want the water to be, a fuzzy logic system will adjust the faucet
valve to the appropriate setting. Likewise, with information about how fast the car
is going and also how hard the motor is working, the fuzzy logic system shifts gears.
Thus, it is a prominent technique for FTC redistribution for the following features
[150, 151]:

• Mapping given range of inputs (such as the faults magnitude, location, etc) to
a range of outputs (such as the updating gain, or other constraining parameter,
i.e. the reference signal rate of change).

• Interpolation between sets of data of the input and provision of the most
relevant output.

• Moreover, fuzzy logic is cheaper to develop compared to other intelligent systems.
It simplifies knowledge acquisition and representation and also accommodates
complexity of rules.
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To illustrate, a typical mapping of a two-input to one-output fuzzy controller is
depicted in the 3-D plot shown in Fig. 6.16.

Fig. 6.16 Mapping two inputs to one output using fuzzy logic.

In this example, the fuzzy logic inputs are the signals and the change of the error,
while the output is the control action inferred from the fuzzy rules. To implement a
fuzzy logic technique, the following three steps are required [150]:

1. Fuzzification: convert the classical data into fuzzy data or to Membership
Functions (MFs).

2. Fuzzy Inference Process: combine the membership functions with the control
rules in order to get the fuzzy output.

3. Defuzzification: generate a table of the associated output. Different methods
are used based on the defuzzification process.

In Matlab, fuzzy logic can be implemented using one of the following two tech-
niques, namely, Mamdani and Sugeno fuzzy techniques. The Mamdani fuzzy inference
method is among the first control systems to have been built using fuzzy theory to
control a steam engine by setting linguistic control rules obtained from an experienced
human operator. This type of fuzzy inference is the most commonly used method in
control applications. The other type is Sugeno fuzzy inference, which was introduced
by [152], and is similar to Mamdani’s method in fuzzifying the inputs and applying
a fuzzy operator. However, they are different in the output membership function
where Sugeno’s is either linear or constant.
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1.Fuzzification: To categorize the inputs based on certain pre-defined degree or
levels, the membership functions concept is used. For example, in the following
figure, there are two plots, one is a sharp-edged signal while the other is a smoothly
varying curve that passes from the not-tall to the tall data set. Both data set are
tall to some extent, but one is significantly less tall than the other. Thus the curve
defines the transition over the set, and determines the designation of µ, which is the
output axis varying between 0 and 1 and is known as the membership value. This
defines how each element in the input space is mapped to a membership value.

Fig. 6.17 Types of membership functions [150].

2- Fuzzy Inference Rules and Process: To generate the fuzzy inference rules
between multi-input and multi-output sets, mathematical operations are used. The
basic classical set of operations are the intersection, union, and complement [150],
which are represented by AND, OR, and NOT operators, respectively, as follows:
For two classical sets, A and B:

Intersections:

A ∩B = µA (X) ∩ µB (X) = min (µA (X) , µB (X))

Union:
A ∪B = µA (X) ∪ µB (X) = max (µA (X) , µB (X))
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Complement:
AC = X − A

where X is the entire set of elements and µ is the degree of membership. The
complement of A is everything outside A. These operators for different membership
functions are demonstrated in Fig. 6.18.

Fig. 6.18 Rules of membership functions [150].

To formulate the fuzzy rules, IF-THEN processes are used. Some examples are:
For Mamdani:
IF {conditions 1} AND/OR{conditions 2}, .. AND/OR {conditions n},
THEN {output 1}, AND/OR{output 2}, .. AND/OR {output m}.
For Sugeno:
IF {Input 1 = x} and {Input 2 = y},
THEN {Output is z = ax + by + c}
This will specify the degree to which an input data matches the condition of a

rule and results in what output or action will be taken.

3- Defuzzification: Sugeno fuzzy inference results in constant or linear output,
while for the Mamdani fuzzy model, the process is to convert linguistic variable
fuzzy output to crisp or classical output. For this type of inference system, three
defuzzification techniques are mainly used, namely, the Mean of Maximum method,
the Centre of Gravity method, and the Height method. For more details see [150].
The terminal result of defuzzification in both methods is the lookup table.
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6.5.3 Fuzzy logic Implementation

Fuzzy inference related calculations are performed prior to the real application.
Therefore, it is not a time-consuming process when it is run online. It is implemented
using Matlab/Simulink software. Sugeno’s fuzzy logic method is computationally
more efficient and has a more compact representation than a Mamdani system [151].
Thus, it is selected in this work. The inputs are the location and degree of the fault,
while the outputs are the control distribution updating factor and the reference
signals maximum rate of change. First, the membership functions are described
below.

Fig. 6.19 Fuzzy logic using Sugeno’s model.

As shown in Fig. 6.19, the fuzzy system comprises three inputs FA1 , FA2, and
FA3 that represent the inner right aileron fault, the outer right aileron fault, and
the rudder fault, respectively. For all cases, triangular membership functions have
been chosen to linearly represent the faults, as shown in Fig. 6.20 for the inner right
aileron fault FA1. Membership function details are listed in Table 6.4.

Fig. 6.20 Triangular membership functions for fault FA1.
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Table 6.4 Details of membership functions characteristics

Fault location Membership function Centred at

Inner right aileron (FA1)
1 0
2 15
3 30

Outer right Aileron (FA2)

1 0
2 2.5
3 5
4 10
5 15
6 20
7 25
8 30

Rudder (FA3)
1 0
2 1
3 10
4 20

The next step is the implementations of the Sugeno’s IF/THEN rules that set the
relations between inputs and outputs, determining the shape of the required outputs.

Rules:

1. (FA1=0) =⇒ (Gain=1)

2. (FA1=15) =⇒ (Gain=1.25)

3. (FA1=30) =⇒ (Gain=1.75)

4. (FA2=0) =⇒ (Gain=1)

5. (FA2=2.5) =⇒ (Gain=1)

6. (FA2=5) =⇒ (Gain=1.5) & (RefSlope=15)

7. (FA2=10) =⇒ (Gain=1.5) & (RefSlope=8.5)

8. (FA2=15) =⇒ (Gain=1.75) & (RefSlope=1)

9. (FA2=20) =⇒ (Gain=1.75) & (RefSlope=1)

10. (FA2=25) =⇒ (Gain=1.8) & (RefSlope=1)

11. (FA2=30) =⇒ (Gain=1.8) & (RefSlope=1)

12. (FA3=0) =⇒ (Gain=1)
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13. (FA3=1) =⇒ (Gain=1)

14. (FA2=10) =⇒ (Gain=2)

15. (FA3=20) =⇒ (Gain=2.2)

Results of the rules are illustrated by the plots for the updating gains for each
fault’s magnitude, as shown in Fig. 6.21 for inner aileron and rudder against the
updating factor. While, Fig. 6.22 shows the plots for FA2 against the updating
factor and the required maximum slope for reference angle.

(a) FA1 vs. Gf . (b) FA3 vs. Gf

Fig. 6.21 Inner and outer ailerons vs. updating factor Gf

(a) FA2 vs. Gf . (b) FA2 vs. the slope

Fig. 6.22 Outer ailerons vs. updating factor Gf and slope

6.5.4 Process of the FTC

For this reconfigurable control allocation system in respect of lock in place faults, a
summary of the development process is illustrated in Fig. 6.23. The jamming faults
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were modelled using Eq.6.24. For each scenario, the control distribution matrix S is
updated using fuzzy logic.

Fig. 6.23 Development process of the Fault-tolerant Control Allocation.

As the fuzzy system is created and tuned, it will be embedded as a simulation
block for validation and testing. The general scheme, shown in Fig. 6.24, incorporates
the control allocation system with the FTC reconfiguration, while the FDD system
is assumed. Information regarding faults is provided to the pre-defined fuzzy logic
block that computes the reconfiguration parameters.
Results of the experimental simulation analysis are presented in the next section.

6.6 Simulation Results

Lock in place faults and hardover scenarios have been tested. Software codes and
modelling are available in Appendix D. In all scenarios, it was assumed that fault
information was provided 1 second after the fault occurs, and redistribution was
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Fig. 6.24 Reconfigurable FT control allocation layout.

conducted directly afterwards. The testing was conducted for a number of fault
magnitudes within the considered region.

6.6.1 Inner right aileron faults

A lock in place fault was introduced in the inner right aileron while the opposite inner
left aileron was assumed to be working properly. In this experiment, the actuator
stuck at a 17 degree deflection angle at time t=3 seconds. The aircraft response (in
Fig. 6.25) shows how the redistributed and nominal CA dealt this situation. The
difference between them was small, where both optimal computations yielded a good
rise time (3 seconds) and less than 10% overshoot. The redistributed CA produced a
slightly faster settling time response, and both introduced a very small settling error
(<2 deg).

Fig. 6.25 Response with jammed inner right aileron at 17 degree.
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Control deflections are shown in Fig. 6.26, where the redistributed CA had
introduced a very small difference in the deflection patterns compared to the nominal
ones. This was due to the small influences resulting from the secondary effects
produced by the inner ailerons on the rolling motion.

Fig. 6.26 Aircraft controls’ deflections with 17deg LIP on the inner right aileron

Hardover fault:

The aircraft response against the hardover fault in the inner right aileron is shown
in Fig. 6.27. The normal control allocation without redistribution was unable to
maintain the stability of the aircraft, and resulted in deterioration of the stability
of the aircraft. On the other hand, the redistribution of control efforts preserved
the stability and leading to a great tracking response with small settling error (<3
degrees).

Deflections resulted from this situation are shown in Fig. 6.28, where in the
nominal distribution case, all the available healthy actuators were driven to their
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Fig. 6.27 Aircraft responses with hardover faults in the inner right aileron.

maximum deflections in order to restore the stability, but without success. However,
when using the redistributed CA technique, the system accommodated the fault and
the actuators were optimised for successful deflection performance against the step
required reference signal.
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Fig. 6.28 Deflections against hardover fault in the inner right aileron

6.6.2 Outer right aileron faults

The outer ailerons are considered to be the primary effectors of rolling. Hence any
lock in place fault will affect the stability and tracking performance of the aircraft.
The controllability of the aircraft will be tested only using the developed FTCA
approach.

10 degrees lock in place:

This fault scenario, as shown in Fig. 6.29, yielded an unstable aircraft response
when the redistributed CA was subjected to a step reference input. Redistribution
of control efforts achieved a stable response only when the ramp reference input was
requested. This led to a substantial limitation in the rolling rate. Although this
trajectory is a slow-moving pattern, the developed CA was able to guarantee the
stability and automatic tracking requirements of the system.
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Fig. 6.29 Response for a step and ramp reference inputs, with 10deg LIP fault in
outer right aileron.

Control surface deflections against the 10-deg lock in place fault in the outer
right aileron are shown in Fig. 6.30, where the step reference input resulted in
the saturation of all the available actuators, and hence led to the aforementioned
unstable aircraft response. On the other hand, the lock in place fault in the outer
right aileron was accommodated when using ramp reference input which resulted in
smooth actuator deflections.
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Fig. 6.30 Deflections for step vs. ramp reference inputs

16 degree lock in place:

At higher magnitude of lock in place faults occurred in the outer right aileron, the
aircraft was pushed to the edge of tracking performance and stability. The 16 deg
jam fault was introduced at t=5 seconds, and through the redistribution of the
control efforts, the system was just able to meet the stability conditions when the
constrained reference ramp input was requested, as shown in Fig. 6.31.

Control surface deflections of the redistributed CA using the constrained ramp
input are shown in Fig. 6.32. As a result of the selected reference input, the
deflections are smooth and maintain the actuator’s limits of position and rate of
change.

Magnitude of the faults of the outer right aileron was analysed to this point.
Higher faults drastically affected the stability of the aircraft and led to uncontrollable
aircraft manoeuvres, which are considered to be the limits of this control solution to
restore the stability of the aircraft with the given conditions and optimisation.
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Fig. 6.31 Bank angle response for 16deg LIP fault in outer right aileron.

Fig. 6.32 Deflections with 16deg LIP in the outer right aileron.
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6.6.3 Rudder faults

As mentioned earlier, the yawing motion is mainly controlled by the rudder. Thus,
in case of lock in place faults, the available ailerons will be required to overcome this
problem and maintain the stability and tracking requirements.

Lock in place at 6 degree

When the rudder jammed at 6 degrees of deflection, the aircraft in both redistributed
and nominal control allocation cases had a similar stable response, as shown in Fig.
6.33. There was an overshoot and an acceptable 4 degrees steady state error in the
bank angle.

Fig. 6.33 Aircraft bank angle response against 6deg LIP fault in the rudder.

The sideslip angle (β) response in Fig. 6.34 shows that, in the free-fault case,
the controller minimised the angle to zero degrees. With faults in the rudder, there
was a 4-degree induced sideslip angle, with the aircraft brought back to straight
flying. There was no improvement in the response due to redistribution, however,
the control allocation optimal control yielded a minimum divergence of the side-slip
angle.

Aircraft actuator deflections, when the aircraft was subjected to a 6-degree
jammed rudder, are shown in Fig. 6.35. In the control distribution matrix S,
updating the elements of the available healthy actuators, corresponding to the rolling
and yawing rotation, has not yielded any improvements compared to the nominal
control allocation response. This was due to the fact that the contributions from the
ailerons are relatively small compared to the rudder. Yet, in general, the DCA led
to a stable response.
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Fig. 6.34 Aircraft sideslip angle response with 6 degree LIP fault in rudder.

Fig. 6.35 Deflections with 6deg LIP rudder

Lock in place at 10 degree

Similarly, when applying a 10-degree lock in place at the rudder, the nominal control
allocation matched the redistributed CA, as in Fig. 6.36. The optimal solution of the
control allocation managed to maintain the stability of the aircraft, with an increase
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in the overshoot and settling tracking error as the lock in place fault on the rudder
increases.

Fig. 6.36 Aircraft responses when the rudder is jammed at 10 deg.

The related deflections are shown in Fig. 6.37. Although the redistributed CA
excited the available controls, there was no difference in the aircraft’s response. This
was due to the limited influence from the ailerons towards the compensation of rudder
impairments.
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Fig. 6.37 Deflections with 10deg LIP rudder fault.

6.7 Conclusion

This chapter discusses the development of a reconfigurable fault tolerant flight control
system for a multi-effector aircraft using a control allocation technique and a new
efforts-distribution method among the control surfaces. The aircraft model used in
the study has redundant ailerons and a rudder as the primary control inputs for the
considered lateral motion. The optimal control allocation problem that handles the
redundancy of the control surfaces, tracking requirements, and actuator constraints
was formulated. The control input constraints included both the maximum rate
of change and the saturation limits. The developed approach incorporates a new
control redistribution process, which is updated at the occurrence of a fault. This
approach relies on and assumes an effective on-board FDD system to provide precise
fault information regarding the actuators. Fuzzy logic was implemented to correlate
between the faults and the control redistribution. The fuzzy logic implementation
handles a wide range of faults magnitudes online, by interpolation. The system deals
with a more severe type of actuator fault, which is the lock in place fault. Due to
this fault, anticipated moments are generated which need counteracting from the
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available control surfaces. Both inboard and outboard ailerons and rudder faults
were tested. When the inner aileron experienced a 20-degree or less lock in place
fault, the system was asymptotically stabilised by both the baseline and reconfigured
control allocation methods. This was due to the minor effects brought about by the
inner ailerons for the rolling motion. Hardover faults on the other hand deteriorated
the tracking performance as the control surfaces were driven to saturation using the
baseline control allocation. Yet the system was stabilised against this fault using
the redistributed control allocation, where the tracking requirements and control
deflection constraints were fulfilled.

As the primary rolling effector, the testing of the system against lock in place
faults in the outer aileron showed a huge influence on the aircraft response. The
aircraft was only brought to stability when using the redistributed CA and the
required reference signal of the bank angle took a ramp-shape, with rate of change
depending on the magnitude of the fault. Higher than 16% lock in place faults in the
outer aileron could not be alleviated with the proposed settings, due to the saturation
limits of the available healthy actuators. Finally, in the case of rudder faults, the
redistribution of control efforts to the ailerons to accommodate jammed rudder faults
did not improve the response. Nevertheless, the system was stabilised with the
control allocation scheme, with a slight degradation in the tracking performance. A
satisfactory sideslip angle response was achieved. For further work, the linear-based
controller could be tested in a nonlinear environment. Moreover, improvement of
the tracking performance is suggested to overcome the problem of high outer aileron
faults. Engine thrust could be integrated in the loop. Effects of the delays from the
FDD could be also investigated.



Chapter 7

Conclusion and Further Work

The developments of fault tolerant controllers for fixed wing aircraft using different
optimal multivariable techniques were presented in this thesis. Loss of efficiency and
lock in place actuator faults were investigated. The definitions and classifications of
existing fault tolerant techniques were presented in chapter 2. The required aircraft
dynamics analysis and control was provided in chapter 3. This was followed by the
analysis and development of the fault-tolerant control approaches as follows:

In chapter 4, the FTC scheme encompasses an optimal linear quadratic regu-
lator control augmented with an adaptive fault-compensation-based scheme. The
multivariable LQR baseline control law was formulated to handle the problem of
tracking error and control energy minimisation. By an appropriate adjustment of the
control weighting matrices, an optimal baseline control solution was obtained. The
adaptive scheme includes fault representation and adaptive compensation terms that
were added to the model. The compensation term was computed by making a faulty
model as if it is the same as the free-fault one, then solving for the added term. The
scheme relies on the availability of a fault detection system, which was assumed to be
providing the fault information to the FTC system. In the analysis, loss of efficiency
type of faults were assumed. For validation of the control practicality, a nonlinear
6-dof simulation was performed. The LQR based controller was be able to handle
faults with magnitudes up to 70%, with large induced overshoot and oscillations.
Yet, the rise time of the aircraft response was acceptable. When the faults increased
in magnitude, the system became unstable using the LQR only control. Tracking
performance also deteriorated, and the control surface deflections became unsettled.
On the other hand, the FTC based control managed to handle high magnitudes of
loss of efficiency faults in the actuators. The aircraft response was slightly slower in
rise time, but overshoot was greatly minimised, which assured the stability of the
system and eliminated the settling error. While accommodating the effects of faults
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on the stability, the approach also yielded to a faster settling response and converged
control surface deflections.

In chapter 5, the inherent robustness features of the H infinity and mu-synthesis
techniques were utilized, where actuator loss of efficiency faults were modelled as
input uncertainties to the system. This type of approach does not require any fault
detection schemes. The robust computation involved the minimisation of a cost
function that takes into account multiple design objectives. These objectives are
tracking error minimisation, control energy minimisation, and the fault handling.
The weighting functions for the optimisation objectives are selected and designed to
shape the corresponding relevant requirements. When the linear-based optimised
solutions were found, the system was tested in a nonlinear environment for more
practical validation. Three design points were chosen within the flight envelope
which are the ascending, cruise, and descending operating cases. At these selected
flying scenarios, the robust optimal fault-tolerant controllers were computed and
tested. Results showed that the H infinity baseline controller managed to give good
tracking and control input performance for the multi-variable system. However, it
could not withstand actuator faults. The system’s control surface performance was
deteriorated by very high frequency, rapid fluctuations and sharp deflections. On the
other hand, in all flying cases, when testing the mu-synthesis-based controller, the
system maintained great tracking performance and smooth rate of change of control
surface deflections with 30% fault magnitudes in actuators. Results of testing the
controllers at operating points near to the trimming points showed that they worked
properly and maintained tracking performance, with slightly higher deflections when
testing occurs at lower speed. The gain and phase margins for the system were
computed in the cruising case and results showed that the system has adequate
margins with the robust controller before it became unstable.

In chapter 6, a reconfigurable fault tolerant flight control system for a multi-effector
aircraft is proposed using a control allocation technique and an efforts redistribution
scheme among the available control surfaces. The aircraft has redundant ailerons and
a rudder as the primary control inputs for the considered lateral motion. The optimal
control allocation problem that handles the redundancy of the control surfaces,
tracking requirements, and actuator constraints was formulated. The control input
constraints included both the maximum rate of change and saturation limits. The
developed approach incorporates a new control redistribution process, which is
updated in the occurrence of fault. This approach relies on and assumes an effective
on-board FDD system. Fuzzy logic was implemented to correlate between the faults
and the control redistribution. The fuzzy logic implementation handles wide range of



155

fault magnitudes online, by interpolation. The system deals with a more severe type
of actuator fault, which is the lock in place fault. Both inboard and outboard ailerons
and rudder faults were tested. When the inner aileron experienced a 20-degree or less
lock in place fault, the system was stabilised by both the baseline and reconfigured
control allocation methods. This was due to the minor effects brought about by the
inner ailerons for the rolling motion. Hardover faults on the other hand, deteriorated
the tracking performance, where control surfaces were driven to saturation. However,
the system was stabilised against this fault using the redistributed control allocation,
where the tracking requirements and control deflection constraints were fulfilled. The
testing of the system against lock in place faults in the outer aileron showed that
the aircraft was only brought to stability when the required reference signal of the
bank angle took a ramp-shape, with rate of change dependent on the magnitude
of the fault. Higher than 16% lock in place faults in the outer aileron could not
been alleviated using the proposed setting. Finally, in the case of rudder faults,
the redistribution of control efforts to the ailerons to accommodate jammed rudder
faults did not improve the response. Nevertheless, the system was stabilised with
the control allocation scheme, with a slight degradation in tracking performance. A
satisfactory sideslip angle response was achieved.

The proposed techniques managed to enhance the stability of the flying aircraft
against different types of actuator fault. However, expansions of the work is suggested
to further tackle the problem from different aspects, as follows:

• In chapter 4, further improvements of the work may include studying the
effects of delays in fault information delivery on the FTC performance, and how
to avoid any related deficiencies. Moreover, to cover the whole problem, a design
of the FDD scheme is also suggested. Additionally, the investigations of the lock
in place fault effects and accommodation would enrich the study in dealing with
different kinds of fault scenarios, where a redundant-effector aircraft model could be
utilised. Another important investigation would be to introduce the wind effects on
the system, with a further step of testing and validation processes.

• In chapter 5, further work may include more optimisation of the mu-synthesis-
based controller that may lead to an increase in the fault-tolerance degree. Another
expansion is the lock in place fault accommodation problem, which may need a
considerably reconfigured control law or available redundant control surfaces.

• For further work based on chapter 6, the linear-based controller could be tested
in a nonlinear environment for a more realistic validation. Moreover, the investigation
of the stability and tracking performance against high faults in the outer aileron,
atmospheric turbulences, or delays from the FDD are particularly suggested.
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Appendix A

Linear models for Business Jet
Aircraft

A.1 Linearised models

Table A.1 Aircraft control input and states for the selected trimming conditions.

Symbol Condition Ascending Cruise Descending

ξ Aileron deflection, deg 0 0 0
τ Engine throttle, % 52.2 20.3 10
α AoA, deg 4.08 3.64 10.8
θ Pitch angle, deg 19.08 3.64 0.8

The ascending linear model is given by


ṗ

ṙ

ψ̇

ϕ̇

β̇

 =


−2.6 0.85 0 0 −4.4
−0.32 −0.174 0 0 1.4

0 1 0 0 0
1 0.35 0 0 0

0.069 −0.99 0 0.137 −0.23




p

r

ψ

ϕ

β

 +


−0.0785 0.024
−0.006 −0.018

0 0
0 0
0 0.001


[
ξ

ζ

]
(A.1)
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The descending linear model is given by



ṗ

ṙ

ψ̇

ϕ̇

β̇


=



−2.75 1.023 0 0 −5.9
−0.51 −0.19 0 0 1.42

0 1 0 0 0
1 0.015 0 0 0

0.19 −0.97 0 0.145 −0.26





p

r

ψ

ϕ

β


+



−0.082 0.023
−0.008 −0.02

0 0
0 0

0.0001 0.0009


ξ
ζ

 (A.2)



Appendix B

Control computation

B.0.1 Mu-synthesis generalised plant (used in Ch. 5)

With the following relationship
Wd

z1

z2

r − y

 =


0 0 I

0 We −We G

Wu 0 Wu

−G I −G



ud

w

u


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B.0.2 State space model for H∞ control for the Control Al-
location

A=

−5.245 −7.964 6.102 −7.64 −0.1896 3.292 1.282 −1.282 2.466 −2.466 0.4922
−0.5266 −1.004 1.032 −0.747 −0.01895 0.3208 0.09929 −0.09929 0.2694 −0.2694 −0.1726
0.1066 −0.9782 −0.1096 0.1151 0.000268 −0.004131 −0.002044 0.002044 −0.003951 0.003951 0.01431

1 0.0893 2.87e − 42 0 −1.985e − 24 0 0 0 0 0 −2.753e − 37
0 0 2.22e − 16 0 −0.0158 0 0 0 0 0 −3.96e − 30
0 0 0 −1.11e − 16 6.971e − 39 −0.0158 0 0 0 0 9.671e − 52

42.68 83.02 −78.99 77.89 1.944 −33.55 −16.18 16.18 −31.81 31.81 −4.051
−42.68 −83.02 78.99 −77.89 −1.944 33.55 16.18 −16.18 31.81 −31.81 4.051
83.72 162.7 −155 152.8 3.792 −65.82 −31.69 31.69 −62.38 62.37 −7.791

−83.72 −162.7 155 −152.8 −3.792 65.82 31.69 −31.69 62.37 −62.38 7.791
11.2 22.36 −20.75 20.51 0.5716 −8.813 −4.361 4.361 −8.429 8.429 −1.502



B=



−8.112e− 27 0
−1.86e− 26 0

0 0
−1.765e− 25 0

7.025 0
6.2e− 40 7.025

0 0
0 0
0 0
0 0
0 0


C=


0.6903 1.343 −1.278 1.26 0.03144 −0.5428 0.2565 0.2617 −0.5145 0.5145 −0.06554

−0.6903 −1.343 1.278 −1.26 −0.03144 0.5428 0.2617 0.2565 0.5145 − 0.5145 0.06554
1.064 2.067 −1.969 1.942 0.04819 −0.8366 −0.4028 0.4028 −0.3856 0.7927 −0.09902

−1.064 −2.067 1.969 −1.942 −0.04819 0.8366 0.4028 −0.4028 0.7927 −0.3856 0.09902
0.04294 0.08573 −0.07959 0.07866 0.002192 −0.03379 −0.01672 0.01672 −0.03232 0.03232 0.1171



D=


0 0
0 0
0 0
0 0
0 0


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B.0.3 Matlab Codes for control gains computation

1. Baseline LQR Control

1 %1. defining A,B,C,D for model

2 %2. defining Q and R weights

3 %3. Solution for controller using: lqr command

4 %4. Arrangements based on primary and secondary variables

5 %5. Solution 2 for gains for the new arrangements

6 X0=[0 0 0 0 250 0 5000 0 0]'

7 U0 = [0.724 −2.55 0 0]' % Throttle Elevator Aileron Rudder

8 Y0 = [250 5000 0 0]'

9 A=[−0.0079 3.9198 −9.8066 0.0216 0.0000 0.0000 0

0 0;

10 −0.0003 −0.9972 −0.0000 1.0037 0.0000 0 0

0 0;

11 0 0 0 1.0000 0 0 0 −0.0000
0;

12 0.0001 −3.5165 0.0000 −2.1528 −0.0000 0 0

0 0;

13 0 −250.0000 250.0000 0 0 0 0 0

0;

14 −0.0000 0 −0.0000 0 0.0000 −0.2990 0.0431 −0.9991
0.0392;

15 0.0000 −0.0000 0 0 −0.0000 −9.2887 −2.4478 0.5494

0;

16 0.0000 −0.0000 0 0 −0.0000 4.7892 −0.1025 −0.5415
0;

17 0 0 0 0.0000 0 0 1.0000 0.0432

0]

18 %Deflections [de dpe dae dre] Throttle, elevator, aileron, rudder

19 B=[1.3625 −0.5088 0 0;

20 −0.0003 −0.0867 0 0;

21 0 0 0 0;

22 0.0170 −5.8916 0 0;

23 0 0 0 0;

24 0 0 0.0100 0.0598;

25 0 0 −2.3527 1.7970;

26 0 0 0.3459 −2.7287;
27 0 0 0 0];

28 C=[0 0 0 0 1 0 0 0 0;

29 0 0 0 0 0 0 1 0 0;

30 0 0 0 0 0 0 0 0 1;

31 0 0 0 0 0 0 0 1 0]
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32 Cp=C(:,1:4)

33 Cs=C(:,5:9)

34 D=zeros(4,4)

35 % Q and R weights

36 Qs=[1 1 1 1 1 1 1 1 1 1 1 1 1];

37 Qa=diag(Qs)

38 Rs=[700 0.001 0.5 0.5]; %Throttle Elevator Aileron Rudder

39 Ra=diag(Rs);

40 % solve for Controller gains

41 % FAULT MODELLING, and Adaptation

42 p1=2;p2=4;p3=7;p4=8;

43 s1=1;s2=3;s3=5;s4=6;s5=9;

44 Acomp=[

45 A(p1,p1) A(p1,p2) A(p1,p3) A(p1,p4) A(p1,s1) A(p1,s2) A(p1,s3) A(p1,s4) A(p1,s5);

46 A(p2,p1) A(p2,p2) A(p2,p3) A(p2,p4) A(p2,s1) A(p2,s2) A(p2,s3) A(p2,s4) A(p2,s5);

47 A(p3,p1) A(p3,p2) A(p3,p3) A(p3,p4) A(p3,s1) A(p3,s2) A(p3,s3) A(p3,s4) A(p3,s5);

48 A(p4,p1) A(p4,p2) A(p4,p3) A(p4,p4) A(p4,s1) A(p4,s2) A(p4,s3) A(p4,s4) A(p4,s5);

49 A(s1,p1) A(s1,p2) A(s1,p3) A(s1,p4) A(s1,s1) A(s1,s2) A(s1,s3) A(s1,s4) A(s1,s5);

50 A(s2,p1) A(s2,p2) A(s2,p3) A(s2,p4) A(s2,s1) A(s2,s2) A(s2,s3) A(s2,s4) A(s2,s5);

51 A(s3,p1) A(s3,p2) A(s3,p3) A(s3,p4) A(s3,s1) A(s3,s2) A(s3,s3) A(s3,s4) A(s3,s5);

52 A(s4,p1) A(s4,p2) A(s4,p3) A(s4,p4) A(s4,s1) A(s4,s2) A(s4,s3) A(s4,s4) A(s4,s5);

53 A(s5,p1) A(s5,p2) A(s5,p3) A(s5,p4) A(s5,s1) A(s5,s2) A(s5,s3) A(s5,s4) A(s5,s5);];

54 App=Acomp(1:4,1:4);

55 Aps=Acomp(1:4,5:9);

56 Asp=Acomp(5:9,1:4);

57 Ass=Acomp(5:9,5:9);

58 A4lqr=Acomp;

59 B;

60 Bp=[B(p1,:);

61 B(p2,:);

62 B(p3,:);

63 B(p4,:)]

64 Bs=[B(s1,:);

65 B(s2,:);

66 B(s3,:);

67 B(s4,:);

68 B(s5,:)]

69 invBp=inv(Bp);

70 B4lqr=[Bp

71 Bs];

72 sA=size(A4lqr)

73 rA=sA(1)

74 cA=sA(2)

75 sB=size(B4lqr)

76 rB=sB(1)
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77 cB=sB(2)

78 sC=size(C)

79 rC=sC(1)

80 cC=sC(2)

81 Aa=[A4lqr zeros(rA,rC)

82 −C zeros(rC,rC)];

83 Ba=[B4lqr

84 zeros(rC,cB)];

85 ka=lqr(Aa,Ba,Qa,Ra);

86 KX=[ka(:,1) ka(:,2) ka(:,3) ka(:,4) ka(:,5) ka(:,6) ka(:,7) ka(:,8) ka(:,9)];

87 KI=[ka(:,10) ka(:,11) ka(:,12) ka(:,13)];

88 KX;

89 KXp=[KX(:,1) KX(:,2) KX(:,3) KX(:,4)];

90 KXs=[KX(:,5) KX(:,6) KX(:,7) KX(:,8) KX(:,9)];

91 %Multiplicative actuator fault, 1=no fault and 0=full fault

92 gamma=diag([1 1 1 1]);

93 unity=diag([1 1 1 1]);

94 %Additive actuator fault, 0=no fault and not zero=there is fault

95 uf0=[0 0 0 0]';

96 %% Calculating f_a and u_add

97 alpha1=1; %throttle

98 alpha2=0.3; %elevator

99 alpha3=1; %aileron

100 alpha4=1; %rudder

101 n=4;%xp

102 k=5;%xs

103 p=4;%z

104 m=4;%u

105 q=4;%y

106 l=4;%f

107 Ts=0.1

108 Fa=B4lqr

109 Fap=Fa(1:4,:)

110 Fas=Fa(5:9,:)

2. Baseline Robust Control

1 % Units: 1.angles: radian 2.length: ft 3.time: second

2 %% Dynamical sys

3 Alat =[−0.1008 0 −468.2 32.2;

4 −.00579 −1.232 0.397 0;

5 0.00278 −0.0346 −0.257 0;

6 0 1 0 0];

7 Blat = [0 13.484;
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8 −1.62 0.392;

9 −0.01875 −0.864;
10 0 0];

11 Clat=[0 0 0 1]; %v p r phi

12 Dlat=[0 0];

13 %Plant G

14 G=ss(Alat,Blat,Clat,Dlat); % plant is G

15 %% Tracking performance: where 1/We is upper bound of S sensitivity function

16 % 1

17 Ms=20;wb=0.01;epsi=3;

18 Wetf=tf([1/Ms wb],[1 wb*epsi]);

19 % 2

20 We = tf(.3*[1 100],[1 30]);

21 % 3

22 Wedist=.055*tf([.5 10e0],[1 1e−1]); %increasing the constant will

23 %increase gamma/bnd and

24 %4

25 We4=tf(.5*[1 100],[1 30]);

26 % 5

27 We5=.1*tf([1 10e0],[2 1e−2]); %increasing the constant will

28 % increase gamma/bnd but quicker response

29 % select

30 We=We5; %bode(We);grid

31 %% Controlling Efforts

32 % 1

33 MuA=1.6;wbcA=1.0;epsi1A=0.01 ;%OR only a constant

34 MuR=1.6;wbcR=1.0;epsi1R=0.01 ; %OR only a constant

35 Wutf1=tf([1 wbcA/MuA],[epsi1A wbcA]) ;% for aileron

36 Wutf2=tf([1 wbcR/MuR],[epsi1R wbcR]); % for rudder

37 % bodemag(Wutf1,'−',Wutf2,'−−');
38 %Wu=append(Wutf1,Wutf2);

39 %Wu=ss([cWu1 0;0 cWu2]);

40 % 2

41 Wu40 = diag([1/(100*pi/180),1/(100*pi/180)]); % to capture the deflections limits

42 % as 40 deg in aileron and rudder

43 Wu30 = diag([1/(30*pi/180),1/(30*pi/180)]); % to capture the deflections limits

44 %as 30 deg in aileron and rudder

45 Wu25 = diag([1/(25*pi/180),1/(25*pi/180)]); % to capture the deflections limits

46 %as 25 deg in aileron and rudder

47 Wu20 = diag([1/(20*pi/180),1/(20*pi/180)]); % to capture the deflections limits

48 %as 20 deg in aileron and rudder

49 Wu=Wu30

50 %% uncertainty model

51 % Normalized error dynamics

52 Delta_G = ultidyn('Delta_G',[2 2],'Bound',1.0);
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53 % Frequency shaping of error dynamics

54 % 1

55 w_1 = 0.5*tf([1/10 1],[1/100 1]);

56 w_2 = 0.5*tf([1/10 1],[1/100 1]);

57 Wd1 = append(w_1,w_2);

58 % 2

59 Wd2=[0.5,0;0,0.5];

60 % 3

61 Wd3=[1,0;0,1];

62 Wd=Wd3

63 % bodemag(w_1,'−',w_2,'−−');
64 % title('Relative error on nominal model as a function of frequency')

65 % legend('stabilizer','rudder','Location','NorthWest');

66 %% Generalized plant P is found with function sysic%

67 systemnames ='G We Wu Wd';

68 inputvar ='[u_d(2); r(1); u(2)]';

69 outputvar ='[Wd; We; Wu; r−G]';
70 input_to_G ='[u+u_d]';

71 input_to_We ='[r−G]';
72 input_to_Wd ='[u]';

73 input_to_Wu ='[u+u_d]';

74 sysoutname ='P';

75 cleanupsysic ='yes';

76 sysic;

77 [Ap,Bp,Cp,Dp]=ssdata(P);

78 %% Finding H−infinity optimal controller%

79 nmeas=1; ncon=2;

80 [Khinf,CL,GAM,INFO]=hinfsyn(P,nmeas,ncon,'DISPLAY','on');

81 % [gopt,Khinf]=hinflmi(P,[nmeas,ncon])

82 [Ach,Bch,Cch,Dch]=ssdata(Khinf);

83 %% Mu synthesis controller

84 nmeas=1; ncon=2;

85 % [Kmu,clp,bnd]=dksyn(P,nmeas,ncon)

86 fmu = logspace(−2,2,60);
87 Delta=[ultidyn('D_1',[1 1],'Bound',0.3) 0;0 ultidyn('D_2',[1 1],'Bound',0.3)]

88 % Diagonal uncertainty

89 Punc=lft(Delta,P);

90 opt = dkitopt('FrequencyVector',fmu,'NumberofAutoIterations',5);

91 [kmu,clpmu,bnd] = dksyn(Punc,nmeas,ncon,opt);

92 bnd

93 [Acm,Bcm,Ccm,Dcm]=ssdata(kmu);

3. Baseline Control Law for Control Allocation
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1 % Units: 1.angles: radian 2.Length: ft 3.time: second

2 %% Dynamical sys

3 % Only bank and beta control using ailerons and rudder

4 U0=[0 0 0 0 0 0 0 0 0 0 0 0 0]';

5 % dA_ir dA_il dA_or dA_ol dsp1?4 dsp5 dsp8 dsp9?12 dR e1lat e2lat e3lat e4lat

6 X0=[0 0 0 0]'; % p r beta phi

7 Y0=[0 0 0 0 0]'; % p r beta phi

8 %states : p r beta phi

9 Alat=[−1.0579 0.1718 −1.6478 0.0004;

10 −0.1186 −0.2066 0.2767 −0.0019
11 0.1014 −0.9887 −0.0999 0.1055

12 1.0000 0.0893 0 0];

13 % Control input ?A_ir ?A_il ?A_or ?A_ol ?sp1?4 ?sp5 ?sp8 ?sp9?12 ?R PLUS

e1lat e2lat e3lat e4lat

14 B_full_lat=[−0.0832 0.0832 −0.2285 0.2285 −0.2625 −0.0678 0.0678 0.2625 0.1187;

15 % 0.0246 0.0140 −0.0140 −0.0246;
16 −0.0154 0.0154 −0.0123 0.0123 −0.0180 −0.0052 0.0052 0.0180 −0.2478;
17 % 0.1269 0.0724 −0.0724 −0.1269;
18 0 0 0 0 0.0017 0.0006 −0.0006 −0.0017 0.0174;

19 % 0.0005 0.0005 −0.0005 −0.0005;
20 0 0 0 0 0 0 0 0 0];

21 % 0 0 0 0];

22 % control inputs are: A_ir A_il A_or A_ol rudder

23 Blat=[B_full_lat(:,1) B_full_lat(:,2) B_full_lat(:,3) B_full_lat(:,4) B_full_lat(:,9)];

24 %states : p r beta phi

25 Clat=[0 0 1 0; 0 0 0 1];

26 Dlat=zeros(2,5);

27 noX=4;

28 noI=5;

29 noO=2;

30 dtr=pi/180;

31 rtd=180/pi;

32 % : p r beta phi

33 %Plant G

34 G=ss(Alat,Blat,Clat,Dlat); % plant is G

35 %% Tracking performance: where 1/We is upper bound of S sensitivity function

36 % 1

37 % Ms=20;wb=0.01;epsi=3;

38 % Wetf=tf([1/Ms wb],[1 wb*epsi]);

39 %Well established, More accurate Tunning:

40 lfm=50;% specify the ratio in/out:

41 cat=.79;

42 %rad/s when increase: gamma increase || deflection

43 hfm=.01;% specify the ratio in/out

44 We6=makeweight(lfm,cat,hfm);
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45 % select

46 ratioInc=.53;

47 %when increase you require better track,

48 %and you got in reality ... response

49 ratioDec=0.1;

50 WeBeta=ratioDec*We6;

51 WePhi=ratioInc*We6;

52 We=[WeBeta 0;

53 0 WePhi]; %bode(We);grid

54 %% Controlling Efforts

55 % Group

56 lfm=.01;% specify the ratio in/out (the exact ratio not the dB):

57 cat=.65;

58 %rad/s this controls the steep of deflection (rise time)

59

60 % when increase gamma decrease, deflection

61 hfm=49.3;% specify the ratio in/out

62 Wu1=makeweight(lfm,cat,hfm);

63 AilronR=1.1;

64 RudAilR=2.90;

65 Wu2=AilronR*Wu1;

66 Wu3=RudAilR*Wu1;

67 A_i=Wu1*1.1*.25;

68 A_o=Wu1*.35;

69 Rudd=Wu1*2.9*.4;

70 % choose

71 Wu4=[A_i 0 0 0 0;

72 0 A_i 0 0 0;

73 0 0 A_o 0 0;

74 0 0 0 A_o 0;

75 0 0 0 0 Rudd];

76 %CHOOSE

77 Wu=Wu4;

78 %% Generalized plant P is found with function sysic%

79 systemnames ='G We Wu';

80 inputvar ='[ r(2); u(5)]';

81 outputvar ='[We; Wu; r−G]';
82 input_to_G ='[u]';

83 input_to_We ='[r−G]';
84 input_to_Wu ='[u]';

85 sysoutname ='P';

86 cleanupsysic ='yes';

87 sysic;

88 [Ap,Bp,Cp,Dp]=ssdata(P);

89 %% Finding H−infinity optimal controller%
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90 nmeas=2; ncon=5;

91 [Khinf,CL,GAM,INFO]=hinfsyn(P,nmeas,ncon,'DISPLAY','on');

92 % [gopt,Khinf]=hinflmi(P,[nmeas,ncon])

93 [Ach,Bch,Cch,Dch]=ssdata(Khinf);

94 %%

95 %uvirtual=1; % first kick for uvirtual

96 %Finding u from the virtual control

97 % define: B, v, plim,rlim,T,Wv,W1,W2,S

98 clA_ir=−0.013 ; clA_il=0.013 ;clA_or=−.017 ; clA_ol=.017 ; clR=.004;

99 cmA_ir=0 ; cmA_il=0 ;cmA_or=0 ; cmA_ol=0 ; cmR=0 ;

100 cnA_ir=−.0015 ; cnA_il=.0015 ;cnA_or=−.0012 ; cnA_ol=.0012 ;cnR=−.108 ;

101 B=[clA_ir clA_il clA_or clA_ol clR;

102 cmA_ir cmA_il cmA_or cmA_ol cmR;

103 cnA_ir cnA_il cnA_or cnA_ol cnR];

104 %for fixed alpha, Mach,

105 M=0.8;

106 alpha=2.5*dtr;

107 cm_alpa=−1.15 ; cl_beta=−0.193; cn_beta=0.147;

span= 30; Va=445; %ft/s

108 cl_p=−0.3 ; cn_p=−0.06; chord=6.5 ;

cm_q=−20; cl_r=0.2;

109 cn_r=−0.2; cm_M=0.12;

110 c4moments=[0 cl_beta (span/(2*Va))*cl_p 0

(span/(2*Va))*cl_r 0;

111 cm_alpa 0 0 (chord/(2*Va))*cm_q 0

cm_M;

112 0 cn_beta (span/(2*Va))*cn_p 0 (span/(2*Va))*cn_r

0];

113 C4moments=[c4moments(:,2) c4moments(:,3) c4moments(:,5)];

114 S_old=[−5 −.05 −.12;
115 5 −.05 .12;

116 −7 −.02 −1;
117 7 −.02 1;

118 .02 0 −8];
119 S_basic=[−5 −.05 −.12;
120 5 −.05 .12;

121 −10 −.02 −1;
122 10 −.02 1;

123 .02 0 −8];
124 % Jam and saturation in First Actuator: Inner right Aileron

125 GainsUpdate2=1.6; % 1.6 when hardover in inner right

126 GainsUpdate2=1.23; % 1.23 when jam in inner right

127 GainsUpdate2=1.75; % 1.75 when jam at −16.7 deg in outer right

128 GainsUpdate2=1.55; % 1.75 when jam at −10 deg in outer right

129 GainsUpdate2=2; % 2 when jam at −4.22 deg in rudder
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130 S_a1j=[0 0 0;

131 6 −.05 .12;

132 −11 −.02 −1;
133 11 −.02 1;

134 .02 0 −8];
135 %

136 S_a1Jam=S_basic;

137 %AcAdapt4A_ir=GainsUpdate(1,1); %Lookup tables

138 AcAdapt4A_ir=GainsUpdate2; %Fuzzy logic

139 S_a1Jam(1,:)=0;

140 S_a1Jam(2,1)=AcAdapt4A_ir*S_basic(2,1);

141 S_a1Jam(3,1)=AcAdapt4A_ir*S_basic(3,1);

142 S_a1Jam(4,1)=AcAdapt4A_ir*S_basic(4,1);

143 S_a1Jam;

144 %

145 S_a1s=[0 0 0;

146 9 −.05 .12;

147 −12 −.02 −1;
148 12 −.02 1;

149 .02 0 −8];
150 %%%%% Jam and saturation in third Actuator: outer right Aileron

151 S_a3Jam=S_basic;

152 %AcAdapt4A_or=GainsUpdate(1,1); %lookup tables updates

153 AcAdapt4A_or=GainsUpdate2; %Fuzzy logic updates

154 S_a3Jam(3,:)=0;

155 S_a3Jam(2,1)=AcAdapt4A_or*S_basic(2,1);

156 S_a3Jam(1,1)=AcAdapt4A_or*S_basic(1,1);

157 S_a3Jam(4,1)=AcAdapt4A_or*S_basic(4,1);

158 %%%%% Jam and saturation in fifth Actuator: rudder

159 S_a5Jam=S_basic;

160 %AcAdapt4Rudder=GainsUpdate(1,1); %lookup tables updates

161 AcAdapt4Rudder=GainsUpdate2; % Fuzzy logic

162 S_a5Jam(5,:)=0;

163 S_a5Jam(2,1)=AcAdapt4Rudder*S_basic(2,1);

164 S_a5Jam(1,1)=AcAdapt4Rudder*S_basic(1,1);

165 S_a5Jam(4,1)=AcAdapt4Rudder*S_basic(4,1);

166 S_a5Jam(3,1)=AcAdapt4Rudder*S_basic(3,1);

167 S_a5Jam(1,3)=AcAdapt4Rudder*S_basic(1,3);

168 S_a5Jam(2,3)=AcAdapt4Rudder*S_basic(2,3);

169 S_a5Jam(3,3)=AcAdapt4Rudder*S_basic(3,3);

170 S_a5Jam(4,3)=AcAdapt4Rudder*S_basic(4,3);

171 %%%% %%%%% %%%%%

172 S= S_basic; % Selection of S for nominal intact system.

173 S_reAlloc=S_a5Jam ;

174 % Select which S for reAllocation depends on the fualt scenario
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175 plim=dtr*[−30 30;

176 −30 30;

177 −30 30;

178 −30 30;

179 −30 30];

180 rlim1=dtr*[150;

181 150 ;

182 150 ;

183 150 ;

184 100];

185 rlim=[−rlim1 rlim1]; %

186 %v=virtual;

187 T=.02;

188 W1=diag([2 2 2 2 2]); % for no of inputs: to penalize position

189 W2=diag([8 8 10 10 10]); % for no of inputs: to penalize rates

190 Wv=diag([10 1 1]); % for penalizing moments: cl, cm, cn
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