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i 

Abstract 

Today’s aircraft are very complex in design and need constant monitoring of the 

systems to establish the overall health status.  Integrated Vehicle Health 

Management (IVHM) is a major component in a new future asset management 

paradigm where a conscious effort is made to shift asset maintenance from a 

scheduled based approach to a more proactive and predictive approach. Its goal is 

to maximize asset operational availability while minimising downtime and the 

logistics footprint through monitoring deterioration of component conditions. 

IVHM involves data processing which comprehensively consists of capturing data 

related to assets, monitoring parameters, assessing current or future health 

conditions through prognostics and diagnostics engine and providing 

recommended maintenance actions. 

The data driven prognostics methods usually use a large amount of data to learn 

the degradation pattern (nominal model) and predict the future health. Usually 

the data which is run-to-failure used are accelerated data produced in lab 

environments, which is hardly the case in real life. Therefore, the nominal model 

is far from the present condition of the vehicle, hence the predictions will not be 

very accurate. The prediction model will try to follow the nominal models which 

mean more errors in the prediction, this is a major drawback of the data driven 

techniques.    

This research primarily presents the two novel techniques of adaptive data driven 

prognostics to capture the vehicle operational scalability degradation. Secondary 

the degradation information has been used as a Health index and in the Vehicle 

Level Reasoning System (VLRS). Novel VLRS are also presented in this research 

study. The research described here proposes a condition adaptive prognostics 

reasoning along with VLRS.   
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Chapter 1 

 

This chapter briefly describes the basics of Integrated Vehicle Health Management 

(IVHM), a capability that enables a number of maintenance philosophies 

emphasising prognostics and reasoning, which are the most attractive research topics 

in this area. The research problem, aims, objectives of this study are outlined and the 

PhD contribution is presented. Finally the publications that have been made during 

this research are also listed and the architecture of the thesis is provided.  

 

1 Introduction 

IVHM is a latest technology in maintenance field, enabling disciplines with an 

integrated structure. Maintenance approaches like Condition Based Maintenance 

(CBM) or Reliability Centred Maintenance (RCM) are aided using IVHM. Prognostics 

and diagnostics are combined into the framework comprising the monitoring of 

sensory data and predicting the future health and diagnosing the faults of the system. 

IVHM technology has potential applications in many fields such as aerospace, 

military systems, electronics, machinery, energy, and manufacturing. In IVHM, real-

time sensory data obtained from the equipment is analysed continuously to detect 

and forecast the health states and to plan maintenance based on the forecasted 

health.  
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Prognostics is challenging and the fundamental technology within IVHM, where it 

requires identification of the current health level and extrapolating it to a predefined 

failure threshold, concluded with the estimation of remaining useful life (RUL). The 

output of prognostics (i.e. RUL) is the duration between the current time and the time 

at which the forecasted health level reaches to a predefined threshold. Benefits of the 

prognostics motivate researchers and the industry to achieve reduced costs, increased 

safety and availability via better maintenance planning. In contrast with traditional 

maintenance philosophies, the IVHM approach enables modelling and tracking of 

individual equipment deterioration leading to a maintenance action only when it is 

necessary rather than performing scheduled maintenance. Note that, Prognostics 

and Health Management (PHM) is a relevant technology to IVHM where slight 

differences may appear which are reported in the literature. IVHM endeavours 

bringing a business model within the integrated scheme which is missing in the PHM. 

However, this research coverage involves both PHM and IVHM. 

 

1.1    Research Problem Definition 

There are two major types of prognostic reasoning approaches, data-driven and 

model-based.  Both approaches are by no means without their own limitations. The 

model-based approach on the other hand has its limitations in terms of derivation of 

a physical degradation model which can be infeasible for the case of complex 

degradation mechanisms which makes a model based approach limited to simple 

systems. On the other hand a data-driven approach requires enormous amount of 

data to train the system.  Data driven approach uses the data to create a nominal 

model of the system. However if the condition changes and the true system data is 

far from the nominal model, which is often learnt from run-to-failure accelerated 

aging laboratory tests, then the data driven approach will try to stick with the 

nominal model regardless as what the present conditions might be of the system. 

Until now, there are very few prognostic examples addressing both of these 
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shortcomings reported in the literature. Primarily this problem will be addressed in 

this thesis.    

 Therefore, a prognostic approach that allows a complex degradation profile to be 

accurately modelled and is able to adapt to a wide range of operating profiles, which 

is likely to be the case in practice, would be of particular interest. 

 In this thesis, we explore how a complex degradation profile, where a traceable 

physical model might not be feasible, is modelled and adapted to a variation of 

operating profiles. Secondly, in complex systems it’s very difficult to find out the 

indicators which are affecting the overall health of the system and what certain data 

actually means in context of the present mission.  

Presently, in state of art systems there are many sensors, these systems take the 

input of the sensor and by expert knowledge the threshold gets setup whenever the 

value of the sensor reaches the threshold, when it does it generates false warmings 

which causes confusion to vehicle operators. The secondary problem which this 

research is trying to solve is, how to achieve the complex system reasoning in terms 

of overall health of the system and which components are effecting or contributing 

towards the overall health in the mission context? Furthermore how the prognostic 

framework can aid the Vehicle Level Reasoning System (VLRS) to improve the 

vehicle level reasoning results which could improve the safety of the vehicle.  

 

1.2    Research Aims & Objectives 

The primary research aim is to develop a proof-of-concept demonstration of a novel 

prognostic framework capable of providing accurate prediction and potentially 

utilising multiple fault precursors, a performance improvement in comparison to 

conventional data-driven approaches, over a wide range of operation uncertainties 

based on degradation patterns. The secondary aim is to demonstrate how this 

framework can aid the vehicle level reasoning system.    
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The core objectives of this research are the following:  

1. Review and identify key modelling and prediction aspects of state-of-the-art 

model-based and data-driven prognostic approaches. 

 

2. Identify key technical requirements to a predictive power of a prognostic 

reasoner if to be deployed in a real-world operation uncertain environment. 

 

3. Design a generic prognostic framework (or problem formulation) that can be 

operationally scaled to usage and imperfect manufacturing uncertainties and 

yet can be simply constructed using standard data-driven and parameter 

estimation building blocks. 

4. The conceptual design  of VLRS by providing prognostics engine output as a 

Health Index to VLRS    

 

5. Proof-of-concept demonstration and performance evaluation of the developed 

framework using adaptive/scalable machine learning and online estimation 

models based on aerospace related prognostic case studies. 

 

1.3    Contributions 

The intellectual contributions of this research are outlined below: 

1. Develop a prototype design of vehicle level reasoning system and a literature 

survey on the adaptive, scalable prognostics and VLRS.  

2. The development of generic prognostic framework that can be adaptable to the 

operating conditions and operationally scaled to usage, which are simple to be 

constructed using standard data-driven and parameter estimation building 

blocks. 

3. Systematic way to contextualise sensor data in terms of operation and safety 

which will enable relevant alerts and alarms to be generated in a timely 

manner. 
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4. Adaptive reasoning approach based on probabilistic contextual models that is 

able to estimate usage condition (and/or component specific) factors and 

accurately predict future health  

5. A non-linear functional mapping from multiple probabilistic fault precursors 

to uniform monotonic cumulative condition index function which is component 

life or safety margin correlated. 

 

1.4    List of Publications 

A list of publications that contributes to the literature regarding this research is 

listed below: 

Journal papers: 

1. F. Khan, T. Sreenuch, O. F. Eker, and A. Tsourdos " Adaptive Degradation 

Prognostic Reasoning by Particle Filter with Neural Network Degradation 

Model for Turbofan Jet Engine", Journal of Aerospace Information Systems, 

AIAA, (Submitted) 

 

2. T. Sreenuch, F. Khan, and J. Li.  "Particle Filter with Operational-Scalable 

Takagi–Sugeno Fuzzy Degradation Model for Filter-Clogging Prognosis", 

Journal of Aerospace Information Systems, AIAA, Vol. 12, No. 5 (2015), pp. 

398-412. doi: 10.2514/1.I010385.  

 

3. F. Khan, O. F. Eker, T. Sreenuch and A. Tsourdos, “Multi-Domain Modelling 

and Simulation of an Aircraft System for Advanced Vehicle-Level Reasoning 

Research and Development,” International Journal of Advanced Computer 

Science and Applications (IJACSA), vol. 5, no. 4, pp. 86-96, 2014. 

Conference Proceedings: 

1. F. Khan, O. F. Eker, T. Sreenuch, A. Tsourdos, “Health Index and Behaviour 

Based Vehicle Level Reasoning System”, IEEE PHM, Conference of the 

Prognostics and Health Management, Austin, Texas, USA, 21-25 June 2015. 
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2. F. Khan, , O. F. Eker, I. K. Jennions, A. Tsourdos,., “Prognostics of Crack 

Propagation in Structures using Time Delay Neural Network”, IEEE PHM, 

Conference of the Prognostics and Health Management, Austin, Texas,, USA, 

22-26 June 2015. 

3. F. Khan,, T. Sreenuch, A. Tsourdos, W. A. Orfali, “A Simulation-based Health 

Monitoring System Test-bed for an Electrical Power Distribution System”, 

IEEE PHM, Conference of the Prognostics and Health Management, Austin, 

Texas, USA, 22-26 June 2015. 

 

4. O. F. Eker, F. Khan,  Z. Skaf, F. Camci, I. K. Jennions, “Collection of a 

benchmark Dataset for Prognostic Modelling”, The Twelfth International 

Conference on Condition Monitoring and Machinery Failure Prevention 

Technologies, from sensors through diagnostics and prognostics to 

maintenance, Oxford, UK, 09-11 June 2015. 

 

5. F. Khan, I. Jennions and T. Sreenuch, "Integration Issues for Vehicle Level 

Distributed Diagnostic Reasoners," SAE Technical Paper 2013-01-2294, 2013, 

doi:10.4271/2013-01-2294, 2013. 

 

 

1.5    Thesis Layout 

Organisation of the thesis is as follows: 

Chapter 2:  provides a detailed literature review of maintenance schemes by IVHM. 

Secondly a diagnostics and prognostics reasoning literature reviews is presented and 

thirdly the VLRS and their types are discussed. It also provides the detail literature 

review of maintenance schemes of IVHM. Finally The VLRS and their types are also 

discussed.    

Chapter 3: There is a brief discussion about VLRS, next their design is studied which 

is followed by a presented novel VLRS design. It also shows the need of a health index 

calculation and adaptive data driven degradation models.  
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Chapter 4: An operational scalable data driven technique is presented along with a 

brief literature review and industrial need for such system. The design and 

methodology and implementation of the scalable model are also presented along with 

data-set information and results.   

Chapter 5: The adaptive data driven techniques for complex systems are mainly 

focused in this chapter, the design, methodology, implementation and results are also 

presented. The Particle Filter and RBF (Radial Bases Function) Neural Network 

design are also discussed.  

Chapter 6: A conclusion of the research study, it also concludes the outcomes of the 

research as well as summarises the research presented in this thesis and the 

potential future work that can be done on and with this research study.  
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Chapter 2 

 

2 Literature Review 

The primary aim of this chapter is to provide a detailed literature review regarding 

IVHM, reasoning approaches and prognostics along with a review of maintenance 

strategies. The prognostics and diagnostics approaches are categorised and discussed 

in detail. Furthermore, an analysis of the strengths and weaknesses of the 

approaches has also been conducted. However the chapters 3, 4 and 5 also provide 

brief literature reviews closely related to the subjects discussed. 

2.1 Integrated Vehicle Health Management (IVHM) 

An Integrated Vehicle Health Management (IVHM) system consistently evaluates 

the health of the vehicle and is also responsible for communicating and coordinating 

with various sub-systems within the vehicle/system. 

The main aims of the IVHM system are: 

 Increase the safety of the aircraft  

 Diagnose the faults within the system 

 Suggest the maintenance to perform  

 Detect the degradation of any parts / component 

 Predict the failure/remaining useful life of the components 

The Integrated Vehicle Health Management (IVHM) system plays a vital role in the 

management of the aircraft operation.  
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Generally, the IVHM is used in the aerospace sector, although some authors have 

proposed that IVHM functions can be found in other vehicle types including also 

helicopters, land vehicles and maritime systems and the definition and scope of IVHM 

has been defined differently, please see Table 1 for details.  

 

TABLE 2-1  IVHM DEFINITIONS 

 

Author (date) definition of IVHM 
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There is also literature that describes applications of IVHM to non-vehicle systems, 

such as power generation plants , production machines, drilling rigs, industrial 

process plants, or electronic equipment (IGBT (Insulated-Gate Bipolar Transistor), 

power supplies) [1]. NASA first conceptualised IVHM in a report that described 

“IVHM as the highest priority technology for present and future NASA space 

transportation systems”. However, their concept was established in the early 1970s 

[1]. Most of the literature on IVHM has been published since the late 1990s with 

conferences proceedings being the most common. The ‘IEEE Aerospace Conference’ 

being prominent among these. These articles cover a range of aspects of IVHM, with 

approximately 35% describing potential impacts or cost benefit analyses; 15% 

discussing design approaches and about 25% focusing on examples of IVHM systems 

in use or under development [1]. Other topics are related to technology evolution and 

integration. 

Most contributions to the literature on IVHM come from prime contractors or 

government agencies such as NASA, the Boeing Company or the US DoD. There have 

been rather few contributions from academics, and those that do exist have originated 

in the US and UK research centres’, such as the Applied Research Laboratory at 

Pennsylvania State University or the Intelligent Control Systems Laboratory at GIT 

(Georgia Institute of Technology) [2], [3].  
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There are multiple definitions of IVHM within the context of vehicle health 

management. Table 2.1 provides a tabulation of some of the important IVHM 

interpretations within the literature. 

IVHM enables many disciplines with an integrated framework. CBM, Health and 

Usage Monitoring Systems (HUMS), and RCM (Reliability Centred Maintenance) are 

some of the maintenance strategies offered under IVHM where diagnostics and 

prognostics were considered under the analytics category. IVHM builds the 

background of this thesis along with the relevant technology, PHM. 

The following sections present the maintenance strategies including CBM and its 

sub-disciplines which provide a basis for this research. 

2.2 Maintenance Strategies Overview 

Maintenance philosophies are classified into two categories, these are: 

1. Reactive Maintenance (unplanned) 

 Corrective Maintenance 

2. Proactive Maintenance (pre-planned) 

 Preventative Maintenance 

 Predictive Maintenance 

2.2.1 Reactive Maintenance  

Since World War II the most remarkable changes have been done in last sixty years; 

this gives the historical prospect of maintenance  [4]. Up until then the only option 

available was corrective maintenance where the equipment could only be fixed or 

replaced. It is less risky, cost effective, and failure consequences are not fatal, 

therefore, corrective maintenance is still in use for simple mechanisms such as light 

bulbs or a basic pipeline. 

Mechanisation and automation steps have grown since the mid-nineties due to the 

extreme intolerance of downtime and the significant increase in cost of labour. 

Development of proactive maintenance is a result of improved machinery of lighter 

construction which ran at a higher speed provoking wear out more quickly. Sub-

discipline of proactive maintenance is the preventative maintenance in which the 
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maintenance tasks are performed periodically. Periods are fixed intervals determined 

by using historical data (e.g. MTBF: Mean-Time-Between-Failures) and without any 

input from the individual equipment itself. Service is required or not regardless the 

equipment is serviced on a routine schedule which increases the cost. However, both 

approaches, reactive and blindly, have financial and safety implications associated 

with them. Few examples of preventative maintenance are routine inspection rounds 

and lubrication, bi-monthly bearing replacements, or maintenance inspections and 

overhauls on aircraft systems. 

In the late seventy’s, questions arose regarding the effectiveness of conducting 

preventative maintenance due to a common concern about ‘over-maintaining’ which 

led to the development of predictive maintenance. Major features that distinguish 

predictive maintenance from preventative maintenance are adaptively determined 

scheduling of maintenance actions. On the contrary, predictive maintenance is 

limited to those applications where the cost and consequences are critical and 

technically feasible [5]. Predictive maintenance is classified as two: Condition-based 

Maintenance (CBM) and Reliability-Centred Maintenance (RCM). RCM performs two 

tasks: first, analyse and categorise failure modes (e.g. FMEA) and second, assess the 

impact of maintenance schedules on system reliability [6]. RCM is based on manual 

inspections and basic data trending. CBM is discussed in further detail later in this 

chapter. 

2.2.2 Proactive Maintenance 

The Proactive maintenance is a preventive maintenance strategy for maintaining the 

reliability of systems or machines. The purpose of proactive maintenance is to 

manage machine failure that can be anticipated and setup the maintenance routine 

before they occur to reduce the downtime. From the 1980’s, systems became more 

complex in nature resulting in a more competitive marketplace and the intolerance 

of increased downtimes. The daily loss of revenue due to downtime is £320,000 for a 

Boeing 747 aircraft [7] is an example from the 21st century. Moreover, risk analysis 

and environmental safety issues have become predominant. New concepts have 
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emerged such as condition monitoring and expert systems. The Institute of Asset 

Management has been established in the UK in mid-90’s which has received 

significant attention from most organisations. In the 2000’s, terms such as 

prognostics, IVHM, and integrated system health monitoring (ISHM) have emerged 

and taken place in literature gradually thus far.  

Nowadays, in engineering practices, maintenance activities have become 

predominantly intuitive and are based on experts’ or personnel’s experience that are 

familiar with the equipment. However, it is becoming exceedingly difficult to gain 

experience due to an ageing engineering workforce and improved asset reliability. 

Additionally, when dealing with complex equipment, human decision making is not 

always adequately reliable due to the multitude of interrelating failure modes [8]. 

Current systems are becoming more complex and expensive which lead to an increase 

in competition drive and as a result industrial and military areas are highly 

concerned about the availability and reliability of the systems. For many industries 

it is vital to maximise the cost of system availability and reliability and minimise 

failure and downtime. Today’s sophisticated sensor technology enables engineers to 

track degradation processes and empowers for prognostic reasoning of equipment 

being monitored [9].  

 

2.2.3    Condition-Based Maintenance 

Condition-Based Maintenance (CBM) is a predictive maintenance strategy, whereby 

the maintenance tasks are performed when the need arises. The necessity concept is 

determined by assessing the health condition of the equipment continuously and 

extrapolating it to a predefined failure threshold [10], [11]. 
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Figure 2.1 The OSA-CBM architecture 

Figure 2.1 depicts the hierarchical steps of standardised Open Systems Architecture 

for Condition-Based Maintenance (OSA-CBM). OSA-CBM, a layered approach, 

describes a standardised information delivery system in between its functional 

blocks. First layer is acquisition of data which gets data from sensor. Second layer is 

where the data signal is processed (e.g. feature extraction). Third layer is for detect 

the state of the system and checks abnormality. Forth layer checks where different 

faults types are detected and isolated for comparisons (e.g. FMECA failure mode 

analysis). Fifth layer handles the degradation level of the system, where fourth layer, 

provides an input to a prognostic block in order to be able to predict the remaining 

useful life of the asset. The top two layers are responsible for the intelligent decisions 

for maintenance activity by means of the prognostic results and instrumentation, 

respectively. 

Figure 2.2  shows an example of degradation in health level of an asset. P-F (Physics 

of Failure) interval represents the time interval between potential failure which is 

identified by health indicators, and an eventual functional failure. With CBM, it’s 

necessary that the P-F interval is long enough to enable corrective maintenance 

action to be taken [12].  



25 

 

Figure 2.2. P-F curve of an equipment 

Maintenance preparations are achieved on the system while it’s up and running 

which greatly impacts the reduction of operation and support cost. The inventory cost 

will be reduced, in addition to the reduced down time, as more time will be available 

for obtaining required parts. Furthermore, better maintenance preparation will 

increase the efficiency in logistics and supply chain. Eventually, the life cycle cost of 

the equipment will be reduced, as they are used until the end of their lives. 

2.2.3.1    Diagnostics and Prognostics in CBM 

Two major disciplines of CBM are diagnostics and prognostics. In literature, there is 

a minor disagreement that prognostics is related to and highly dependent upon 

diagnostics [8].  

Diagnostics is a relatively mature area compared to prognostics as it involves 

detecting and reporting abnormalities in signals as well as identifying the fault type, 

and the quantification of current health status of an asset. 

 

Once the abnormality has been detected CBM with diagnostics targets to stop and 

schedule a maintenance task for the system, otherwise the system continues to 

operate. Unscheduled maintenance should be performed once degradation is detected 

to prevent the failure consequences. Rather than executing actual maintenance it is 

very common to spend more time on maintenance preparation due to the lack of 

resources. Ideally, in prognostics, maintenance preparation could be performed when 

the system is up and running, since the time-to-failure is known early enough. 
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Therefore, in CBM only the actual maintenance duration becomes the major 

contributor of the downtime which is way less than the fault diagnostic approach. For 

example if prognostics can present a warning of a failure of an asset before 10 flight 

hours, re-test and installation steps can be pre-planned, yielding in saving of 

maintainer time and significant reduction in its variability [13]. The comparison of 

diagnostics and prognostics in CBM is illustrated in Figure 2.3. 

 

In general, incipient failures follow a progressive degradation path [14]. Once it has 

reached the sever point detection of failure progression is more valuable compared to 

the detection of failure. Moreover, it is a prerequisite for prognostics [15]. In other 

words, prognostics utilise the health severity or health status information 

transmitted from the diagnostics base. [13] states that prognostics for avionics is 

essential as the increasing of the number of complex systems comprising of electro-

mechanical components in current and future aircrafts and a possible shortage of 

technicians capable of servicing them. 

 

Figure 2.3. Fault Diagnostics vs. Failure Prognostics in CBM 

 Figure 2.4 displays two phases of prognostics. To access the current health 

condition is the aim of the first stage of prognostics. In literature, the terms used for 
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describing this stage are severity detection of system, health assessment, and 

degradation identification. Usually, Bayesian filtering and/or pattern recognition 

techniques such as classification or clustering are employed in the health assessment 

part. The goal of the second phase, also known as true prognostics, is to predict the 

failure time by forecasting the degradation trend leading to the estimation of 

remaining useful life (RUL). The terms used to describe this stage are time series 

analysis, extrapolation, propagation, trending, projection and tracking. 

Prognostics indicate forecasting of the system’s/component’s future health level by 

propagating the current health level until a failure threshold and therefore, enables 

an ability to provide an estimate of the remaining useful life (RUL). Prognostics are 

considered to be one of the most challenging and key enabling technologies among 

the CBM steps [16], [17], [18].  

 

 

 Figure 2.4. Prognostic and diagnostic phases [19] 

2.2.3.2    Benefits of Prognostics with CBM 

The CBM approach has significant advantages on reducing the support and operating 

costs and leading to a more effective planning and operational decision making. An 

unexpected one-day stoppage in machinery industry may cost up to £160,000 [17]. 

Another example from the return on investment for companies is the investment of 

£9,500 on monitoring the condition of systems which prevents £315,000 of 

maintenance costs per year [6].  
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In another example, FAA’s BRITE radar was maintained either with pre-arranged 

(proactive) or unscheduled (reactive) maintenance. Pre-arranged maintenance 

decisions were taken reasonably before the potential failure utilising prognostics by 

the monitoring of degradation in the radar. Unscheduled maintenance took seventeen 

hours more than the pre-arranged maintenance in mean time to restore (MTTR) 

which was fifteen times higher of downtime than that of the pre-arranged 

maintenance in comparison [13]. A detailed review of prognostic approaches is 

presented in the following section. 

2.3  Prognostics and Reasoning Approaches 

There are several different approach / methods for prognostics/ reasoning. There are 

three major methods or approaches for the reasoning.  The Figure 2.5 shows the 

hierarchical of major techniques of the reasoning, prognostics and diagnostics.   

 

Figure 2.5.  Classification of Diagnostics/Reasoning Algorithms 

 

In general, prognostic models can be categorised into main three classes, these are:  

1. Data-driven models 

2. Physics-based models 

3. Knowledge-based models 
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The first three categories are illustrated in Figure 2.6; this Figure presents the 

hierarchy of prognostic models based on the range of applicability, cost, and accuracy 

where knowledge-based models, being the most cost effective, find themselves a 

maximum applicability range in systems/components, albeit the accuracy of these 

models is less than the high accurate and costly physics-based models. Data-driven 

models fit in the middle of these models mentioned.  

Several literature surveys covering the prognostic models have been presented by [6], 

[9], [16], [17], [20], [21], [22], [23], [24], [25]. This literature review builds on the 

surveys referred in this section. In addition, current prognostic applications which 

are mentioned in the literature are further discussed. In the following sections, a 

literature review of prognostic approaches within these categories is presented. 

 

Figure 2.6. Prognostic models hierarchy [21] 

2.3.1    Data-Driven Models 

Data-driven models (DDM) utilise collected condition monitoring data and/or 

historical event data instead of constructing a model based on system physics or 

human expertise. DDMs attempt to track the degradation of an asset using 

extrapolation or projection techniques (e.g. regression, exponential smoothing, and 
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neural networks) or match similar patterns in the history of relevant samples to infer 

RUL [20]. They also rely on the past patterns of deterioration to forecast future 

degradation. Usually system or loading inputs are not involved in data driven 

prognostic modelling. The assumption for models in this category is that the future 

system inputs or operational profile remains constant or consistent with the past 

data. Since data-driven prognostics have no elaborate information (e.g. physical 

information) related to the asset or system, it is considered to be a black-box operation 

[26]. Data-driven models are divided into two categories: Statistical models and 

Artificial Intelligence-Based (i.e. machine learning) models. 

2.3.2    Model based / Physics base Models 

Physics-based Models (PbM), also known as ‘Model-based Prognostics or Model-based 

Approaches’, generally involve defining the physics of the equipment and the failure 

mechanism. The author prefers to use the term ‘physics-based models’ rather than 

‘model-based prognostics’ since the most data-driven approaches use models as well. 

This way of categorisation gives a better ability to distinguish physics-based and 

data-driven models [27].  

In PbMs, mathematical models of failure are usually employed which is directly tied 

to health degradation. In order to provide knowledge rich prognostics output; PbMs 

are attempted to combine defect growth formulas, system specific mechanistic 

knowledge and condition monitoring data. These models assume that an accurate 

mathematical model for component degradation can be constructed from first 

principles. Residuals, the outcomes of consistency checks between sensor 

measurements and mathematical model outputs, are utilised as features of health 

condition in PbM approaches. Thresholds to detect the presence of faults are 

determined by using statistical techniques. In addition, model parameters are 

identified using empirical data obtained from specifically designed experiments [20]. 

Physics-Based Models are implemented in three different ways [8]; firstly, dynamic 

ordinary or partial differential equations that can be solved with approximation 

approaches (e.g. Lagrangian or Hamiltonian dynamics), secondly, state-space 

methods (i.e. no differential equations), thirdly, simulation methods. In [28] employed 
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a physical stochastic model on gears. They calibrated the parameters for physical 

stochastic prognostics & diagnostics using system level features extracted from test 

specimens. In [29] they developed a fault detection and prediction algorithm for flight 

actuators which applies parametric identification and physical modelling techniques. 

In [30] and [31] they applied physics-based approaches to prognostics which have 

involved deriving the explicit relationship between condition variables and the 

current lifetime and failure lifetime via mechanistic modelling. Both of them applied 

their model for energy processors and bearings by employing vibration sensor 

measurements respectively. A general method for tracking the progress of a hidden 

damage process was proposed by [32]. The proposed model is applicable for a given 

situation where a slowly evolving damage process is connected to a fast, directly 

observable dynamic system. [33] Fused diagnostic information and physics of failure 

modelling is applied for helicopter gear prognostics. A hierarchical modelling 

approach proposed by [34] is used for system simulation to determine remaining 

useful life.  

A physics-of-failure approach reinforced with Kalman filters were used to track the 

dynamics of the frequency of accelerometer sensor signals in tensioned steel band by 

[35]. [36] Used a Kalman Filter with an associated interacting multiple model to 

perform tracking of sensor-level test-failure probability vectors for prognostics. 

Assumptions for Kalman Filters are that the system exhibits a linear process and the 

noise in the system follows Gaussian distribution. Extended Kalman Filters and 

Unscented Kalman Filters are some of the extensions to the traditional Kalman 

Filters in which the system is not bound by the linear process. [37] Presented an 

Extended Kalman Filter approach for estimation of Lithium-ion battery life. Particle 

filters are a generic type of Bayesian tracking method used with physics laws (i.e. in 

the form of differential equations) in which the model is not bound by the assumption 

of linearity in the system and Gaussian noise. Instead of using deterministic 

probability distributions, significant numbers of particles are employed, representing 

the health state of the system distribution. A number of examples are available in 
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prognostic modelling literature for particle filters [18], [38], [39]. Detailed discussion 

of particle filters is given in section 4.7 and 5.6. 

Physics-based models are considered to be more accurate if an accurate mathematical 

model representing the degradation process is fitted in the model thoroughly [20]. 

And the requirement concept on the data is significantly less, compared to the data-

driven models. However, PbMs are usually component or system specific models 

which mean usually they cannot be applied to other types of components or systems 

in which the physics of the failure mechanism is different. Another disadvantage is 

that the PbMs are costly compared to other approaches whereas they are the most 

suitable approach for cost-justified applications where accuracy outweighs most other 

factors [22]. 

The Physics based models and Data driven models are compared in table 2-2. The 

major advantages and disadvantages are listed. The advantages and disadvantages 

are mainly compared in the view of the prognostic and diagnostic reasoning.  

 

TABLE 2-2. COMPARISON OF THE BENEFITS OF PROGNOSTIC AND DIAGNOSTIC APPROACHES 

 Advantages Disadvantages 

Physics-

Based 

Models 

Accurate compared to other 

approaches (if a good 

representative of 

mathematical model is 

available) 

Higher precision 

Requires less data compared to 

other approaches 

Suitable for creation in design 

phase 

Difficult to create a model 

especially for complex systems 

Sensitive to the design and 

material properties 

Sufficient component information 

and a good insight of the failure 

mechanism is required 

High cost of implementation 

Component or system specific 

Data-

Driven 

Models 

Easy to conduct & simplicity in 

implementation 

Flexible and adaptable 

Need data representing the failure 

progression, which is often not 

possible to obtain 



33 

Suitable to all levels 

(component, system) 

More robust to changes in 

material or design compared 

to physics based 

Low cost 

Computational complexity may be 

high 

Difficulty in determining of the 

failure thresholds 

Knowledge-

Based 

Models 

Simple and easy to understand 

No model is required 

Wide application area and 

lower cost 

Ability of dealing with 

incomplete, noisy or 

imprecise input information 

Not always easy to obtain domain 

knowledge and extract rules 

Handling of new situations which 

are not stored in knowledge base 

is limited 

Computational difficulty increases 

dramatically as the number of 

rules increases 

Limited capability of learning  

No confidence limits are provided 

 

2.3.3 Knowledge-Based Models 

It is usually difficult to obtain an accurate mathematical model in real-world 

applications which limits the use of physics-based prognostic models. Due to the 

absence of a complex model, systems tend to be maintained with simpler models such 

as knowledge-based models (KbM). Knowledge or experience-based prognostic 

approaches are the simplest way of performing prognostics where the statistical 

historical failure information of systems is utilised for predicting the RUL [40]. The 

use of knowledge-based models is automated representation of how a human domain 

expert solves a problem [20]. Expert systems and fuzzy logic are two generic examples 

of these models. 

Disadvantages of knowledge based systems can be listed as: 

 Hard to obtain domain knowledge and extract rules 
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 Handling of new situations which are not stored in knowledge based  models 

is limited 

 Computational difficulty increases dramatically as the number of rules 

increases (i.e. combinational explosion problem) 

 No confidence limits are supplied 

The detailed literature review shows that all the approaches have their own 

advantages and disadvantages, therefore it would not be correct to imply that one 

approach is better than the other. It really depends on what model you would like to 

create and how complex the system is, whether the previous data is available for a 

modelled system etc.   

2.3.4 Expert Systems 

 The Expert systems were one of the earliest systems in the reasoning and prognostics 

field. Expert systems have been used since the 1960s, and are considered as an 

artificial intelligence (AI) program that represent domain expert knowledge in 

solving a problem related to a particular domain. In expert systems, knowledge of 

domain experts is stored in the knowledge base where the extracted rules are applied 

into the failure situations by the maintainer. Knowledge-based rules are generated 

from collections of real experiments. Basic IF-THEN statement rules are often based 

on heuristic facts acquired by experts over a number of years [8]. Outputs of expert 

systems are singular rather than a distribution of RUL usually. 

 Expert systems have traditionally been used in failure diagnostics cases and it is 

starting to be implemented in prognostics applications as well. [41] Developed an 

online expert system called CASSANDRA, which was built to monitor the condition 

of industrial equipment with the intent of fault prognostics. 

In [42] an expert system called PROMISE (Prognostics and Intelligent Monitoring 

Expert System) was presented which carries out both diagnostic and prognostic 

duties and provides solutions to system maintenance in plants. However no RUL 

information was provided with their proposed method. 
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 In [43] the authors have developed an expert system based framework called FDPM 

(Failure Detection and Predictive Maintenance) which consists of several expert-

system-related databases and components. It was applied on a power distribution 

system component for predicting maintenance demands. 

2.3.5 Fuzzy Logic 

 Similar to expert systems, fuzzy logic is a problem solving mechanism providing a 

robust mathematical framework to deal with non-statistical uncertainty and real 

world imprecision. A fuzzy system consists of a knowledge base; fuzzy rule, and the 

implementation algorithms for applying the logic. Fuzzy logic has a wide application 

area from simple small components to large workstations. Unlike expert systems, the 

fuzzy logic system has the ability to model system behaviours in continuum 

mathematics of fuzzy sets rather than with traditional discrete values. Fuzzy logic 

systems are usually incorporated with other methodologies such as neural networks 

(NN) or expert systems. 

 In [44]  a fuzzy expert system called ‘Alarm Filtering’ and Diagnostic System (AFDS) 

are proposed which provide clean alarm pictures and system wide failure information 

during abnormal states. It also provides alarm prognosis to notify the operator of 

process abnormalities. 

In [45]  a fuzzy logic process is presented in which the input data is mapped into fuzzy 

variables (i.e. fuzzification) using membership functions and de-mapping the fuzzy 

variables processed into numerically precise outputs (i.e. defuzzification). This 

methodology has been used widely in control applications such as in [46]. 

 In [47] the author has proposed a dynamic fuzzy system for real-time condition 

monitoring and incident prevention. However, the RUL was not calculated whereas 

the applicability of fuzzy logic into prognostics was demonstrated. 
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A comparison of a fuzzy logic model and neural networks is conducted by [48] for 

predicting the life of boiler tubes. Results show that neural network performed better 

where the applicability of NNs was favourable compared to the fuzzy logic model. 

Unlike [48] work, fuzzy logic is usually integrated in RUL calculations as an auxiliary 

method for the primary method to enhance prediction results.  Fuzzy logic has an 

ability of dealing with incomplete or imprecise input information with the use of 

linguistic variables such as ‘low’, ‘very low’, which provides an intuitive way of 

reasoning and the representation of the failure health level. On the other hand; 

having no memory, limited capability of learning, difficulties of determining good 

fuzzy rules and membership functions are some of the disadvantages of fuzzy logic.  

 

The next section will discuss the vehicle level reasoning system, their design and the 

development has been achieved and reported in the literature review.   

 

2.4 VLRS (Vehicle Level Reasoning System)  

The Vehicle Level Reasoning System (VLRS) is a system within the IVHM which is 

responsible for processing the input from several sub-systems and units to make 

logical decisions and predictions about the vehicle health.  

Generally, the reasoning system is an AI based application, where computational 

functions have to generate results from available knowledge/Data using logical 

techniques of deduction, diagnosing and prediction or other forms of reasoning [12]. 

According to NASA: the reasoning system is: a system to detect, diagnose, predict, 

and mitigate adverse events during the flight of an aircraft.  

Most aircraft sub-systems detect for simple threshold exceedance and report them to 

a CMC (central maintenance computer), the vehicle level reasoning system (VLRS) 

that operates on these evidences tends to be reactive rather than proactive. [12] 
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Figure 2.7. Basic Vehicle Level Reasoning System  [12] 

 Figure 2.7 shows the basic VLRS which has been presented by Ashok N Srivastava 

et al. at NASA Ames Research Centre [12]. This VLRS diagram has been divided into 

four parts. 

1. Inference Engine 

2. System Reference Model 

3. Data mining and learning Loop 

4. Communication Interfaces  

 

2.4.1 Reasoners / Inference Engine  

This module (showed in Figure 2.8) considers health evidence generated from all 

components, sub-systems and systems within the vehicle to produce the current 

diagnostic state or predict the future evolution of a fault.  
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Figure 2.8 Inference Engine [12] 

In this process, it produces a most plausible explanation for all the symptoms 

provided by various sources; creates new hypotheses to track multiple faults and 

deletes hypotheses that may have weak or no evidence support.   

 

2.4.2 System Reference Model 

The necessary relationships for the inference process are typically separated in a 

static system reference model. This partitioning allows the same inference engine 

software code to be reused in multiple vehicles and minimise certification and 

qualification costs for deploying the VLRS on-board an aircraft. The system reference 

model, an aircraft loadable software module, describes the relationship between 

evidence generated at the component and/or sub-system level and failure modes that 

can be mapped to specific maintenance or correction action [12].  

 

2.4.3 Data Mining and learning Loop 

Fleet modelling, data mining and knowledge discovery methods working with 

historical data can detect anomalies and precursors to critical failure modes. 

Discovering new patterns and updating old relationships in the system reference 

model can continually improve aircraft safety to a higher level. Information from this 

learning loop, resulting in a ƒ´-change in the reference model, enables the VLRS to 

provide an accurate health assessment of the component, sub-system, or system and 

support condition-based equipment maintenance and replacement. 
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2.4.4 Communication Interfaces  

By design, the VLRS takes a system-wide view of the adverse event detection 

problem. While the input interfaces defines how the VLRS receives health 

information from various member components, the output interface defines how it 

communicates its outputs to the flight crew (displays), ground maintainer (ground 

station) or a flight management system for automatic fault accommodation. 

 

Figure 2.9. Honeywell Data Driven VLRS+ Architecture 

 

The Figure 2.9 demonstrates the architecture of the data driven VLRS which is 

developed by Honeywell. There are many different approaches to designing the 

VLRS. These various approaches will be discussed in detail in this thesis.  

 

2.4.5 VLRS background 

In the early development of complex aerospace systems, the idea of built in testing 

became an important method to verify the integrity of on-board systems. The main 

idea is that it allows a machine to test itself and in some cases perform diagnostics to 

determine the source of a problem.  The hope was that these systems could help 

improve the reliability and increase mission assurance.  In many cases, the built-in 

test capability was implemented in hardware and helped a technician determine the 

state of health of the system. Early systems have little software and relied primarily 
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on the combination of human analysis of the results of the built-in test. As a result, 

such systems were not designed to operate in real time or during a mission [12]. In 

contrast, modern aerospace systems are fundamentally different. These systems are 

comprised of a combination of hardware and software operating on embedded 

systems.  Because of these highly complex systems, the need to develop techniques 

that can analyse their state of health in real-time with little to no human intervention 

is essential [12]. 

NASA is amongst the first organisations to contribute towards VLRS. Their VLRS 

was mainly for the space rovers and space vehicles of which the maintenance 

environment is not suitable. 

NASA launched a software LV2 (Livingstone Version 2) in 2004. This software has 

been uploaded to the EO-1 satellite to test and analyse errors in the spacecraft system 

[40]. Traditionally this troubleshooting is achieved from the ground station. Many 

tests have been conducted to detect and diagnose the simulated failures in the 

instruments and system of the satellite. 

The Livingstone version 2 application provides the opportunity to recover from errors 

to protect the system, and continue to achieve mission goals. On this mission, LV2 

also monitored another software application. LV2 detected the error, made a 

diagnosis, and sent its analysis to mission control.  

The LV2 has a model of the spacecraft and it compares the model with the current 

behaviour of the spacecraft. On the detection of different behaviour from the model, 

the LV2 will search for the faults and provide the controller a list of suggestions of 

possible faults.   

The remote agent reasoning system is also related to the same league. This system 

enables autonomous planning and execution of many tasks on-board the spacecraft 

[12]. With this capability, only general directions are commanded from ground 

controllers on earth.  

The need for vehicle level reasoning in aircraft will grow in the next generation 

because of the increasing complexity of aircraft and the higher reliance on 
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automation. Civil aviation is also demanding greater reliability and safety from its 

vehicles.  

A reasoning system also reduces maintenance costs [49], as the human 

troubleshooting decreases [1]and chances of replacing wrong parts are reduced. As 

well as the minimisation of the overall maintenance time.  

 

2.5 Research Gap  

In the detailed literature review the advantages and disadvantages of the data driven 

and model based approaches were shown in this chapter. The need of VLRS also has 

been highlighted. However the following are the research gaps which this thesis has 

contributed towards and focused on.  

 In the data driven approach the major problem is if the operating conditions 

are different than the nominal model, in this case the prediction errors 

increases and the precision of the RUL results are worse.  The prognostic 

reasoner will try to stick with the nominal model regardless of the operational 

conditions.  

 When the sensor data is collected from any component what does the 

information really mean? In a traditional system the expert person sets the 

threshold with upper and lower bounds on the sensor values and when certain 

values reach the system it generates the associated warning to the user. The 

problem with this approach is the 1) Sensor values are mostly contaminated 

with huge amount of noise which results in false alarms. 2) The values do not 

indicate any information regarding the health of the system or components.  

 The reasoning of the system is usually achieved on the sub-system level, and 

no overall vehicle health is defined. Each sub-system reasoner achieves the 

results by checking their own sensor values, and the other system health’s are 

ignored. However most of the systems rely on each other on the vehicle level 

point of view, which results in ‘No Fault Found’ problem or ‘False Fault’ 

indication. To develop a VLRS system which can overcome these limitations 

require all the prescribed component/system sensor information. Intensive 
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amounts of sensor data cause the problem that most of the algorithms have 

limitations and too many components’ data will cause convergence problems. 

There is a need of VLRS which can take sub-system results (which are already 

reported to the operator) and other indications which can relate the faults.   

This study presents two different techniques for the Adaptive Data Driven 

Techniques which overcomes these major issues with the data driven technique, the 

presented adaptive data driven technique is scalable to the operational conditions 

and is adaptive their usage (see chapter 4 and 5).   

 

This study also provides the context aware prognostics reasoning which identifies 

what the sensor value means to the operator in the context of the system health 

without identifying any threshold values for warming generation (see chapter 5).  

 

The study also provides the vehicle level reasoning without having issues of 

convergence and it provides extra information of each system (see chapter 3).   
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Chapter 3 

 

Health Index and Behaviour Based 

Vehicle Level Reasoning System 

This chapter will discuss the VLRS and presented design. This VLRS takes the input 

from the adaptive degradations models which are presented in chapter 4 and 5, 

therefore this chapter also highlights the importance of the adaptive and scalable 

prognostics models.  Finally, this chapter also discusses the novel design of VLRS and 

their industrial use.  

3 Introduction  

A Vehicle Level Reasoning System (VLRS) helps with improving the safety of the 

aircraft.  These systems comprise of various sub-system diagnostics/detection units 

that monitor related components or/and sub-systems for functional status and relay 

back the operational status to the entities of interest. Therefore, a main purpose of 

the VLRS, is to deduce the overall operational health of the aircraft rather than each 

individual component, see Figure 3.1. 

To comprehend the overall health, the VLRS takes into account the individual health 

state of the various components within the aircraft. These distinct components often 

employ specific sensory inputs / outputs and are subject to a constant inference 
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mechanism to establish the functional health. The nature of the component governs 

the technique used by the inference mechanism. A real-time embedded computer 

system incorporates this inference mechanism by employing a suitable deduction 

technique.  These deduction techniques are domain specific and are often 

implemented as an algorithm within the inference mechanism. However, several 

complex components require advanced artificial intelligence (AI) techniques and 

machine learning algorithms to deduce their health status [50]. 

 

 

Figure 3.1. VLRS Overview 

To establish the overall vehicle health, the VLRS coordinates with the component 

level inference mechanisms to [51]. Furthermore, this liaison aid in the identification 

of fault domains and the execution of a rectification strategy. 

3.1 Background 

The fault finding can be achieved in different ways, basic abnormal change in sensor 

values (threshold detection) or other types of detection, or fault diagnostics which 

could be achieved manually, by rule-based systems, model based techniques, 

mathematical or other learning. 

Fault isolation, detection and diagnosis in engineering systems have been widely 

used in commercial industry over the past few decades. 

Vehicle Level 

Reasoning System 
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Historically, troubleshooting is a major component of the maintenance strategy, 

mainly for mechanical equipment of many kinds. In the traditional detection system 

it monitors the sensor thresholds when it reaches the fixed thresholds it triggers a 

warning to the ground based system. Almost all complex systems, especially 

aerospace systems are in need of a precise diagnostics system. The precise diagnostics 

system will be cost effective as it will reduce the troubleshooting activity and speed 

up the repair and decrease the down time of the equipment [52]. This has an impact 

on the further development for the diagnostic and detection reasoner, introducing 

several different techniques such as Model Based Reasoning (MBR) or data driven 

methods which has been discussed earlier in this thesis. 

 

3.1.1 VLSR Industry Key Players 

 

Modular diagnostic systems / reasoners were the initial starting point for the aircraft 

industry. Where each vital sub-system (such as the engine, electrical power unit, and 

hydraulic system) had their own reasoning/diagnostic system and these reasoning 

systems provided the health status to the flight deck. In case of emergency, the pilot 

received a warning message related to the specific failure. However, this approach 

had many drawbacks due the systems being inter-dependable. Failure in one system 

could cause or trigger failure in another. For instance, aircraft generator is dependent 

on the engine and the engine is dependent on the fuel system. If fuel system fails it 

would have catastrophic results as this failure will affect the engine and the engine 

will affect the power generation. 

These systems are inter-dependable but their diagnostics and reasoning systems are 

not. There is no knowledge sharing mechanisms between Modular diagnostic systems 

and their diagnostics/reasoning systems. A VLRS has an advantage because it is 

capable of foreseeing and predicting one system failure effect on another system 

which is interdependent. There are many challenges in the development of VLRS 

which will be discussed later in this chapter. 
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There are very few organisations who are working on VLRS as it is a fairly new 

concept in fault diagnostics and reasoning. Some of the industries and organisations 

are working on VLRS such as NASA, BAE Systems, Boeing, Lockheed Martin and 

Honeywell.  

 

 

 

 

 

Figure 3.2. Aircraft basic Sub-System 

The overview of an aircraft major systems such as the fuel system, electrical system, 

jet engine etc. is shown in figure 3.2. 

 

Boeing and Honeywell are the designers of Aircraft Diagnostic and Maintenance 

System (ADMS) [53], [54].  Boeing first incorporated on-board health monitoring into 

the 747-400 in the late 1980s in the Central Maintenance Computer (CMC) to collect 

fault data from various system components and perform diagnostics [55]. Please see 

table 3.1 for list of reasoners and their use.   

 



47 

TABLE 3-1. LIST OF DIAGNOSTIC REASONERS 

Intelligent 

Reasoner 
Type Known 

Applications 
Company  

CMC Fault 

propagation 

modelling 

Boeing 777; Primus 

Epic ( business jets, 

helicopters) 

Honeywell 

International 

TEAMS 

Toolset 
Multi-signal 

dependency 

modelling 

(advanced 

form 

modelling) 

Consult Company Qualtech 

Systems Inc. 

eXpress 

Design 

Toolset 

Dependency 

modelling 

(similar to 

fault 

propagation 

modelling) 

Consult Company DSI 

international 

Livingsto

ne 
Artificial 

intelligence 

based 

reasoner 

(mixture of 

functional 

and 

parametric 

modelling) 

DEEP Space One 

Spacecraft ; Earth 

observing one 

(EO-1) satellite 

NASA Ames 

Research Centre 

BEAM Artificial 

intelligence 

based 

reasoner 

(mixture of 

functional 

and 

parametric 

modelling) 

NASA Deep Space 

Missions 

(Voyager, Galileo, 

Megellan, Cassini 

and Extreme 

Ultraviolet 

explorer 

NASA Jet 

Propulsion 

Laboratory 

 

At the moment there are hardly any aircraft that actually have VLRS capability built 

in, they are mainly implemented at a research level.  Those built in VLRS that are 

there, are based on pattern recognition diagnostics and basic detection.  

There is very little information out there about VLRS implementation in military and 

civil aircraft, as the literature review shows us.  

The Eurofighter, F22 and the Joint Strike Fighter are when it comes to defense 

aircraft the best developing health management system examples [56]. The VLRS of 
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the JSF has advanced AI capabilities, although the JSF is still in the developmental 

stage. The AI algorithms are achieved by using mathematical techniques. We see less 

of the defence developments discussed in the literature due to the complex and 

sensitive nature of the subject. 

In current VLRS development arguably the best example of the VLRS would be the 

developing example of program F35 (Joint strike Fighter), it has a highly integrated 

VLRS system for health management [56].  

One of the difficulties in developing a health management system from the beginning 

has been in sifting out the objectives and requirements of the user to an acceptable 

level that contains buy in from the expected and diverse user groups. 

3.2 Methodology 

Customarily, the reasoning system is an AI based software and hardware application 

or it is a combination of hardware and software whose computational  purpose it is to 

achieve conclusions from available information using rational techniques of 

deduction, prediction and diagnosing or other styles of reasoning [57]. Nonetheless, 

if the VLRS is constructed in a comparable manner as the system level diagnostics, 

the main difficulty would be algorithm merging. The convergence of the algorithm 

becomes more difficult because of the growth of the input of the diagnostics system. 

This will be a computational issue, because the VLRS has to oversee far too many 

factors and systems. The VLRS which is presented in this academic work is somewhat 

different in nature. The following part will discuss the VLRS architecture.  

3.2.1 Proposed VLRS 

VLRS can be implemented in different ways. Generally, it’s linked to the major part 

of the sub-system’s sensors or components, thereafter, the sensory signal will be 

analysed and processed by the diagnostic engine.  

In order to drive the vehicle level reasoning in the presented approach, the 

diagnostics algorithm has to take thousands of the sensory information from many 

sub-systems. Most of the diagnostics algorithm such as Bayesian belief networks 

increase the complexity of the diagnostics reasoned rather than converging to produce 

effective diagnostics results.  
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However, this study exhibits a novel method for vehicle level reasoning. The 

presented technique is to consider the following: 

1. Condition/health index of each sub-system of the vehicle.  

2. Physical behaviour and the responses of the vehicle. 

3. Sub-system diagnostics results along with probability where possible.  

 

As presented in Figure 3.3 on the basis of the engineering principals’ vehicle level 

reasoning engine will also assign weights to each input. 

 

VLRS
 Overview of 

Vehicle Health

 Faults with 

Probability

 Further Actions 

System Level Diagnostics Engine

Sub-System Results with Probability 

Vehicle 

Behaviour

Further Processing after 
Suggested Action taken

VLRS Results 
output

Engine 1 CI/HI = 0.9

Engine 2 CI/HI = 0.7

Fuel System CI/HI = 0.6

Sub-System Health/

Condition Index

Prognostics Engine

Vibration at the left wing
Fuel tank unbalanced

Sensor data 
information 

exchange 

Sensor data 
information 

exchange 

Electrical SystemFuel System Engine

Aircraft Sub System

Fuel Pump 1  Failed / HP 
Trubine fault / Nozzle Clogging  

 

Figure 3.3. Presented VLRS with Inputs. 

 

Figure 3.3 displays the inputs of VLRS, which are condition indicator (CI)/ health 

index (HI), sub-system results and vehicle behaviour of the vehicle. The details of the 

CI, sub-system results and behaviours are discussed later in this chapter. 
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3.2.2  Health Index of Sub System 

The term, health index (HI), is described by a discrete number representing the actual 

health of the system. For example, 1 indicates the best health condition and 0 

signifies the worst health condition. A mid-range value such as 0.5 represents half-

life, see Figure 3.4. Following equation can be used to determine the virtual health 

index of the system: 

𝐻𝐼 =  
𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝑅𝑈𝐿  

𝐸𝑜𝐿 
        (3.1) 

 

The formulised health index at a specific time point as the rate of current RUL 

(remaining useful life) to the end-of-life (EoL) of the system. 

 

 

Figure 3.4. Initial HI (Health Index) for Component 

 

The Figure 3.4 illustrates the linear HI calculated from the initial state of the system 

as the HI is calculated from the equation 3.1. However, when the sensor readings are 

received the HI calculation will be dynamic according to the sensor data received. 
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Figure 3.5. Degradation of the of health index of component /sub-system 

 

Figure 3.5 displays the degradation of a sub-system; as the sub-system health 

degrades with time, the health index will decrease. The Y-axis is the HI, the X-axis 

is the sensor reading. The red outbound also provides the uncertainty of the 

calculation. 

The HI has been fed to the VLRS and taken into account, as probability shows the 

components in a worse health index/condition are more likely to have a problem. 

Because this calculation will also be providing the RUL of the component, it is part 

of the prognostic engine. To prevent a catastrophic failure this warns the operator 

before the component/system completely crashes.  The main focus of this chapter is 

VLRS rather than the calculation of HI in detail; therefore, further information on 

calculating the health index is provided in chapter 5 [58].  

3.2.3 Vehicle Behaviour 

The performance of the vehicle is one of the most important signs for the aircraft 

pilot. There are scenarios where the sub-system diagnostic engine does not supply 
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any fault warning, or in the case of No-Fault-Found the pilot has to depend partly on 

the way the aircraft performance and other indicators. 

In most cases, with an aircraft, it would be difficult to link certain behaviour to the 

defect(s), mainly because each behaviour could possibly be linked to many different 

problems or faults.  

 

In addition, the behaviours and the performance of the aircraft have to generally be 

seen by the pilots of said aircraft. Therefore it has to be fed into the behaviour engine 

by hand. Diagnosing faults by using the performance and behaviour of the aircraft 

has been done before in different fields [59]. Aircraft flight behaviour studies are also 

discussed at simulation level in [60]. 

 

The behaviour and performance of the aircraft, which provides different fault 

possibilities to the main VLRS is discussed in this chapter. The behaviour of the 

vehicle can provide certain fault information. For example, in the case study 

presented in section 3.2.4, the pilot was not given any fault warning.  

Nonetheless, the performance of the aircraft provided very beneficial information 

which was not noticed by the pilot. It was very clear that the aircraft was unbalanced 

and that the fuel tank on the one wing was indeed heavier than the other tank, due 

to the leak on one side.  
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Figure 3.6. Behaviour relations to fault 

Figure 3.6 describes the basic faults connected with the behaviours of the aircraft; 

however, this linkage regarding the behaviours is essential to be defined in detail by 

an expert.  However, the vehicle faults and behaviour can be recorded and linked 

from the real accidents/incidents. Following is a real life incident case study which 

could be used for capturing the faults and their behaviour and other useful 

information.    

3.2.4 Case study of a real incident 

Aircraft details: Airbus A330, Manufactured in March 1999, France. 

Fault Type: Fuel leak (at the entrance of the engine inlet pipe line).  

Detection: No fault found (at the aircraft system) only warning has been issued for 

low oil temperature and high oil pressure. 

Details: 

Flight TS 236, took off from Toronto at 0:52 (UTC) on Friday August 24, 2001 (local 

time: 8:52 pm (ET) on Thursday August 23, 2001) bound for Lisbon.  

At 05:16 UTC, in flight deck warnings have been issued for ‘low oil temperature’ and 

‘high oil pressure’ at engine #2. There was no understandable connection between the 
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oil temperature or pressure problem and fuel leak. The Captain Piché and First 

Officer DeJager assumed that the warning were false warnings and shared that 

opinion with their (MCC) Maintenance Control Centre, who advised them to observe 

the situation. At 05:36 UTC, the pilots received a warning of a left fuel tanks 

imbalance. The pilots followed a civil aviation procedure to resolve the imbalance by 

transferring fuel from the left wing tank to the right wing tank which was almost 

empty. At this point pilots were unaware regarding the real fault of the aircraft, 

which was a fuel leak in a line to the #2 engine. The fuel transfer from the left wing 

tank to the right wing triggered fuel to be wasted through the leak in the line to the 

#2 engine.  

The damaged fuel line was leaking at a gallon per second approximately, which 

caused a higher than normal fuel flow through the fuel-oil heat exchanger (FOHE) 

causing the low temperature of the oil. The Portuguese Aviation Accidents Prevention 

and Investigation Department (GPIAA) investigated the accident together with 

Canadian and French establishments.  

The investigation revealed the reason of the accident was a fuel leak in the #2 engine, 

caused by an incorrect part fitted in the hydraulics system. Air Transat maintenance 

staff had replaced the engine as part of regular maintenance, using a spare engine, 

lent by Rolls-Royce, from an older model. Despite the lead mechanic's concerns, Air 

Transat ordered the use of a part from a similar engine, an adaptation that did not 

maintain satisfactory clearance between the hydraulic lines and the fuel line. This 

lack of clearance caused the transfer of vibrations to the hydraulic lines to degrade 

the fuel line, causing the fracture which led to leak.  

 

3.2.5 Sub-System Results  

There are many sub-systems in every aircraft such as an engine, fuel system, 

hydraulics system, electrical system etc. shown in Figure 3.7. Latest civil aircrafts are 

equipped with a sub-system diagnostics/detection system, which reports faults and 

errors to the flight deck.  The health status is displayed to the flight deck for further 

action to be taken by the pilot. Most of the systems are connected and dependent on 
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each other, such as the electrical system is dependent on generators; generators are 

dependent on the engine; engines are dependent on the fuel system; fuel system is 

dependent on the electrical system. If one system breaks down in the aircraft it will 

affect the entire chain of systems. However, further problems will be reduced due to 

the backup in most of these systems.  The linkages between the systems are still very 

important. 

An advanced diagnostics system is not very commonly used in most of the civil 

aircrafts.  Usually, they are equipped with a simple diagnostics / detection system 

where a range of thresholds has been fixed, hence, a warning to the pilot flight deck 

is generated when the sensor values are out of the pre-set threshold values. 

 

3.3 VLRS Engine 

The main purpose of a vehicle level reasoning system (VLRS) is to identify faults and 

failures at the aircraft level. The VLRS receives health information from sub-systems 

and fuses them to provide an overall health state of the aircraft. The aim of VLRS is 

not to replace the diagnostics system but merely to aid the pilot in providing extra 

beneficial information which would assist in the decision making.  

 

The presented VLRS takes the fault report or health status from several sub-systems. 

The sub-systems, in this chapter, are supposed to be the fuel system, engine, and 

electrical system etc. as shown in Figure 3.7 
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Figure 3.7. VLRS Engine 

 

The faults are logged with time stamps in the demonstrated VLRS. In case of 

multiple break down, it would be helpful to identify the root cause of the failure. 

Commonly, the first failure would be the source of other failures.  

The comprehensive design of the reasoning system has been demonstrated in 

Figure 3.7. The outcomes from the sub-system reasoner are stored into a list, let’s 

say set A and the behavior of the aircraft has been inserted into the behavior 

engine which provides the fault list associated with the behavior which are stored 

in a list (set B). The intersection of Set A and B are stored and given weights 

according to the health index of the sub-system. Once the health indexes are given 

to their sub-system, the faults which have a higher weight are more likely to be   

the real fault.  

There are occasions when there are faults in the aircraft which do not get detected 

or the wrong fault gets detected by the diagnostics/detection system. These 

occasions can be taken as case studies and as a starting point to see how the VLRS 

system performs. 
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Figure 3.8. Reasoner of VLRS 

 

Figure 3.8 demonstrate the reasoner of the presented VLRS. In this figure it shows 

how the results are fused from the sub-system diagnostics (Set A) and from the 

Behaviour engineer (Set B). The fusion is done in very simple way as simple 

addition of the both list. Which makes the new fault list (Set C), thereafter the HI 

are been marked on the component which are listed in the fault list. The HI is used 

in a similar manner like a probability of the fault occurrence. The final list after 

the fault along with the HI/probability will be fed to the flight deck and the 

mitigation advisor which would advise for further actions to take for the operator 

/ pilot. However, the design of the mitigation unit is out of scope of this thesis.  

     

3.4  Summary 

This chapter presents the design of the VLRS and its use in aerospace 

applications. VLRS designs and its use in aerospace applications have been 

presented in this chapter. Some of the challenges to VLRS have also been 
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discussed. The ambiguity in diagnosis is mainly due to the lack of sensing data. 

However, if more diagnostic related data is available from other sub-systems an 

improvement in reasoning accuracy can be made,  particularly through using the 

health index, health status of other sub-systems and vehicle behavior of each sub-

system. We proposed, in this chapter, that vehicle-level reasoning systems would 

significantly improve, if this information would be used to accomplish the 

diagnostics results. The presented case study of an actual accident demonstrates 

that if these VLRS like systems would have been equipped in the aircraft, the 

accident could have been avoided with the help of the VLRS. 

 

The Health index (HI) has been used as a weight/probability; however 

optimisation of these weights could improve the results. This led to the problem 

how to calculate the HI and how to give probability of failure to each 

component/system. How the health index has been calculated of each component 

is discussed in chapter 5. However, it is very apparent that the adaptable and 

scalable degradation systems are in need of developing, which could provide many 

benefits, including it being used in the VLRS. The next chapters will discuss more 

how to develop the adaptable, scalable degradation prognostics system and HI 

calculation of each component. 
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Chapter 4 

 

4 Operational Scalable Data Driven 

Technique for Prognostics  

 

This chapter provides information regarding the essence of prognostics, problems 

of prognostics predictions, and the approach presented for a single component / 

system. The approach has been explained and the results are also provided.  

4.1    The Essence of Prognostics  

 The main involvement of prognostics is the prediction of the present health and 

the calculation of the remaining useful life of the system or component. In the 

literature review (chapter two) different types of prognostics modelling such as 

Physical based modelling and data driven modelling have been discussed. 

However this section only will explain the present problems with the data driven 

prognostics.   

To perform the data driven prognostics modelling, the first requirement would be 

to have run-to-failure data of the focused system. Generally, most of the run-to-

failure data are collected on the accelerated test and in a laboratory environment 

which are very different in time scale as compared to the real environment. When 

these datasets are used to create models, those models are mainly made for the 

environment of the laboratory and for accelerated data. In a real environment the 

degradation pattern might be similar but the time scales are completely different. 
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The next section will discuss the issues and problems with the present data driven 

modelling and the solution provided along with the methodology and results.    

 

4.2 Operational-Scalable Degradation Model for Filter Clogging Fault 

Prognosis 

Prognostics in general involve a construction of a degradation model and then use 

it to estimate a current degradation state and to predict EoL of a component. The 

purpose of a model is to capture how degradation evolves over time. The current 

degradation state is estimated based on noisy measurement update and possible 

paths (determined by the model) from the previous degradation states. The model 

then uses the estimated degradation state to propagate the state until it reaches 

EoL at some pre-defined degradation threshold. The other operational 

parameters, like usage or component specific degradation coefficients, can also be 

taken into account in the state estimation and EoL prediction. The model itself 

forms a key part in prognostics. It acts as a physical constraint which is used to 

determine not all possible but the most likely degradation paths. 

4.2.1    Problem with the Presented Prognostics  

There are two commonly used prognostic approaches; one is ‘data-driven’ and the 

other is ‘model-based’/”physics base model”. In the data-driven approach, multiple 

training data sets are used to learn a model. The resulting model can be considered 

as a nominal model which on average represents the degradation paths used in 

training. Notable data-driven modelling approaches are Time-Delay Neural 

Network (TDNN), Hidden Markov Model (HMM), Gaussian Process (GP) and 

Fuzzy Inference System (FIS). The key advantage of these approaches is that a 

complex nonlinear degradation path can be easily captured in the model without 

having to know the exact physics of the system. However, the model structure 

itself will not naturally reflect the physics of the system despite modelling the 

degradation paths, which is somewhat expected.  
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Figure 4.1. Data-Driven Prognostics Approach 

 

Figure 4.1 conceptually describes how prognosis is carried out in the data-driven 

approach, where 𝑘, 𝑥, 𝑥̃, EoL and RUL are a discrete time, system degradation 

state (e.g. fault precursor), estimated degradation state, EoL threshold and 

remaining useful life, respectively. At each time step, a prediction is carried out 

by referring to the nominal model.  𝑥̃ is calculated from a measurement update 

and used as an initial condition for propagation of a degradation path. The 

degradation path is propagated until the predicted 𝑥 reaches the EoL threshold. 

Actual RUL at time k simply equals to EOL-k. In the data-driven approach, the 

prognostic process assumes there are no changes in the system and operating 

conditions except the initial condition for degradation path propagations.  

The prognostic algorithms developed using the data-driven approach will 

generally perform well if the runtime (or test) operating condition is similar to the 

conditions used to generate the training data. The overall prognostic accuracy will 

decrease and become more apparent as the difference in the operating condition 

from the trained condition increases. However, as the model is some kind of an 

average degradation path, if trained operating conditions are significantly varied, 

then the prognostic performance will also not be good, in particular for the outliers, 
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even though the operating condition is similar to one of the trained conditions. In 

the data-driven approach, physical properties of a system are in general not 

explicitly parameterised in the degradation model. Consequently, the model will 

not be able to adapt when there are changes in operating conditions or system 

physical properties, and hence a decrement in prognostic performance when 

operating away from the trained condition. 

In the model-based approach, a model is in a generic sense referring to a 

degradation model which can be mathematically formulated using physical 

knowledge of a system. In contrast to the data-driven approach, the model is in a 

form of mathematical equations where the component’s physical properties can be 

explicitly parameterised in the model. The usage or system aging factors can be 

directly or indirectly related to the model parameters. Notable techniques related 

to the model based approach are Physics of Failure (PoF) [61], Particle Filter (PF) 

and Kalman Filter (KF). PoF is a modelling approach, but PF and KF are not; they 

are stochastic estimators. Figure 4.2. Model-Based Prognostics Approach) 

conceptually describes how prognosis is carried out in a model-based approach. 

Addition nomenclatures θ, 𝜃̃  and f (∙, ∙) are a model parameter (e.g. usage or system 

aging factors), estimated model parameter and degradation equation, respectively. 

From measurement updates, true values of degradation related variables are 

estimated. 𝑥̃ and 𝜃̃  estimates are continuously updated using PF or KF whenever 

measurements become available. They are the values that are most likely to 

generate a prediction x consistent with the measurements. In contrast to the data-

driven approach, the model dynamics used in propagating a degradation path will 

vary depending on the estimated 𝜃̃ . This way the real degradation path can be 

more accurately predicted, which otherwise will either be over or under estimated 

as illustrated in Figure 4.2.   
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Figure 4.2. Model-Based Prognostics Approach 

 

A physical model and PF (or KF) are always used in combination with model based 

prognostics. This way the degradation model is able to adapt according to the real 

usage or component specific aging conditions, and hence good prognostic 

accuracies can be expected over a wide range of operating conditions. However, 

mathematical formulation in itself can be a disadvantage in the model based 

approach. Physics of component degradation may not be known. A complex 

nonlinear degradation path can be difficult to formulate mathematically. 

Therefore, if a derived model does not sufficiently capture the degradation physics 

of a component, then a poor prognostic performance is likely to be expected. 

4.3 Operational Scalable Prognostics Model 

In terms of operating condition, the model-based approach has certain advantages 

over the data-driven approach. However, in many cases, degradation physics of a 

system is not always known and hence a model cannot be formulated. On the other 

hand, a degradation model can be physically well defined but has too many 

unknown parameters that need to be assigned. This makes the model-based 

approach difficult to apply in these situations. In this thesis, we propose that a 

data-driven model can be used in combination with a model-based estimator to 

address this shortcoming. It is important to recognise that multiple training data 

sets of a system will have similar degradation patterns. Hence, in contrast to how 
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data-driven models are conventionally constructed, the focus should be on 

extracting a generalised degradation pattern rather than trying to learn a model 

that overall fits the data. The model should be learned in such a way that there 

are explicit parameters (or inputs) that can scale the model to fit data differed in 

degradation condition. By using the scaling parameters, a data-driven model 

constructed in this way will be able to adapt when there are variations in usage 

condition or component physical properties. 

 

 
 

Figure 4.3. Operational-Scalable Data-Driven Prognostics Block Diagram 

 

Figure 4.3 depicts a prognostics architecture where a data-driven degradation 

model is used in combination with a model-based estimator (e.g. PF or KF). 

Additional nomenclatures u, z and x' are a system input, noisy measurement 

update and model state prediction, respectively. In this prognostic approach, a 

data-driven model is parameterised (or inputted) by a scaling parameter θ, e.g. 

usage or system aging factors. The model predicts a current degradation state 𝑥′𝑘 

by taking previous estimated degradation states 𝑥̃𝑘−1,…, 𝑥̃𝑘−𝑁 (and other system 

input information 𝑢𝑘) as input. An estimator determines the most likely 

degradation state 𝑥̃𝑘 and scaling parameter 𝜃̃𝑘  from the predicted state 𝑥′𝑘 and 

measurement  𝑧𝑘.  𝑥̃𝑘 and 𝜃̃𝑘 are then fed back to update the predicted current state 

and model scaling parameter. Changes in θ reflect variations in operating 
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condition and system specific properties. The degradation path [𝑥̃𝑘, 𝑥′𝑘+1, … , 𝑥′𝐸𝑂𝐿]′ 

is then further propagated until the predicted state 𝑥′  reaches the EOL threshold. 

In this approach, the degradation paths are propagated using the updated scaling 

parameter estimated during runtime instead of using a nominal value as in a 

conventional data-driven prognostic approach. This way a data-driven based 

propagation path will be able to adapt to match real current usage and system 

variations. 

4.3.1 Filter Clogging Problem  

Filtration is the removal of suspended particles from a fluid performed by a filter 

medium. It is an important process in many engineering systems where 

purification of fluid is required. Failures due to clogging are the most common for 

a filter.  The consequences of filter failure are more pronounced in safety critical 

systems such as aircraft fuel and engine systems. In aircraft, fuel filter clogging is 

commonly caused by fuel contamination and debris from degraded fuel pumps. If 

a filter at the engine fuel inlet becomes clogged, it can cause an aircraft to return 

to the ground or divert and a remote possibility of engine shutdown [62], [63]. 

Moreover, pressure build up can consequently cause leakage (or damage) in other 

parts of the fuel system. Minimising unexpected downtime is key for an aircraft 

operating in a commercial environment. Hence, there is a need for a capability to 

monitor and accurately predict degradation in a critical system, or a component 

like filter to be developed and matured. This will enable maintenance to be 

planned and performed before clogging reaches a level allowed for safe operation, 

therefore minimising unexpected downtime and associated cost. 
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Figure 4.4. Filter Clogging Experiment Setup 

 

In our study on the filter clogging the experimental data is similar to the one used 

in [64].  

An overview of the experiment setup where the data was collected from is shown 

in Figure 4.4. The experiment was designed to create filter clogging using 

continuous cyclical flow. The filter used in the experiment is Baldwin’s fuel filter 

BF7725 model, whose pore size is 125 μm. The filters were tested using different 

solid-ratio suspension (slurry) composed of Polyetheretherketone (PEEK) particles 

and water. The particle size is 61 μm on average with 24 μm standard deviation. 

During each test, the peristaltic pump was kept at constant speed at around 211 

revolutions per minute (RPM). However, there was no control on the actual pump 

speed or flow rate, and therefore in addition to solid ratio, variations in the 

operating conditions can occur during the test and as well between the tests. Two 

pressure sensors and one flow sensor were used for data collection. It has been 

shown that the pressure drop ∆𝑃 across the filter is a good precursor for detection 

of incipient clogging. In this setup, the data collections were stopped when the 

pressure drop had reached about 35 psi. 
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Figure 4.5. Raw and Filtered Filter-Clogging Data 

 

 
Figure 4.6. Filter Clogging Data Profiles 

 

Figure 4.5 and 4.6 show examples of run-to-failure data collected during the 

experiment. In this study, raw pressure data are filtered using a low-pass 

Chebyshev Type I Infinite Impulse Response (IIR) filter [65] of order 8 and down 

sampled from 1,000 Hz to 1 Hz, see Figure 4.5. The filtered data in Figure 4.6 

shows a similar degradation pattern for all the 10 samples. In this particular 

0 50 100 150 200 250 300
-10

0

10

20

30

40

50

Time (s)

P
re

s
s
u

re
 D

ro
p

 a
c
ro

s
s
 F

il
te

r,
 

P
 (

p
s
i)

0 100 200 300 400 500 600 700 800
0

5

10

15

20

25

30

35

40

45

Time (s)

P
re

s
s
u

re
 D

ro
p

 a
c
ro

s
s
 F

il
te

r,
 

P
 (

p
s
i)



 

68 

setup, three clogging stages can be observed; 1) almost zero ∆𝑃, 2) steady increase 

in ∆P and 3) rapid increase leading to saturation in ∆P, see Figure 4.5. It is worth 

comparing the filter’s pore size (125 μm) with the particle size (61±24 μm). From 

the distribution, 2% of the particles will be greater than the pore size. In the 

beginning of filtration (stage 1), only a small proportion of solid particles are 

retained on the filter’s mesh surface. The solid suspension can pass through the 

filter almost without restriction, hence a very small build-up in ∆P. More large 

particles are retained as a more solid suspension is filtered and eventually 

providing filtering action for the smaller size particle. As time goes by the 

thickness of the cake increases, as more particles are filtered. This results in a 

steady increase of the pressure resistance across the filter; stage 2. As more solid 

suspension is filtered, more particles build up from the filtrate end, and the cake 

has increased till it touches the walls of the filter, which decreases the filtrations 

area dramatically; stage 3 clogging. This results in a rapid increase in ∆𝑃 as the 

filter surface area decreases. Recall that the pump was kept at a constant RPM, 

but not the flow rate. With the same RPM, the pump is unable to provide the same 

flow rate as the flow becomes too restricted; thus saturation in ∆P as the flow rate 

decreases. 

4.4 Operation-Scalable Takagi-Sugeno Fuzzy Model 

4.4.1 Multiple Linear Models 

Takagi-Sugeno (TS) fuzzy model approach provides a useful and uniform 

framework for system identification and modelling of non-linear systems [66], [67]. 

TS fuzzy models are weighted combinations of multiple linear models, and can be 

used as a universal approximator with good interpolation and extrapolation 

characteristics. TS models can either be derived from input-output data via system 

identification or from mathematical models of nonlinear systems. In this chapter, 

a TS fuzzy model is used to illustrate the concept proposed in (section 4.3 

Operational Scalable Prognostics Model). The model structure is transparent in 

terms of its linear dynamics. This is useful in providing an intuitive example of 

how a data-driven model can be scaled to match a variation in system operating 

conditions.  
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In our case, a TS fuzzy model is constructed as a data-driven model for the filter 

clogging process shown in Figure 4.7. The dynamics of ∆P is system identified by 

fitting a grayscale TS model to the time series clogging data. Following the 

clogging stages described in section 4.3, a TS fuzzy filter clogging model can be 

described by a set of N (=3) fuzzy rules as follows: 

 

 
Figure 4.7. Takagi-Sugeno Fuzzy Rules 

 

𝐴𝑖 and 𝐵𝑖 are local model parameters. For simplicity, the trapezoidal and 

triangular membership functions 𝜇(∙) are used in this chapter. These membership 

functions are defined by scaling between 0 and 1 how representative the local 

clogging models are for a certain value of ∆𝑃. However, filter clogging is a 

continuous dynamic process, smoothly transitioning from one clogging stage to 

another clogging stage. In a TS fuzzy model, this fact is reflected by the 

defuzzification process in which ∆𝑃̇ can be calculated as: 

                                                     ∆𝑃̇ = 𝑓(∆𝑃) 

= ∑ 𝑤𝑖(∆𝑃)(𝐴𝑖∆𝑃 + 𝐵𝑖)

𝑁

𝑖=1

. 

 

(4.1) 

The normalised weighting functions 𝑤𝑖(∙) are given by the fuzzy inference  

 
𝑤𝑖(∆𝑃) =

𝜇𝑖(∆𝑃)

∑ 𝜇𝑗(∆𝑃)𝑁
𝑗=1

.  (4.2) 

It is worth noting that the number of fuzzy rules (i.e. local models) need not be 

limited to 3. N can be set without having to consider the physics of a system. 

Rule 1: IF is THEN .

Rule 2: IF is THEN .

Rule 3: IF is THEN
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Intuitively, the higher number of N the more accurate the model is. However, this 

also means more difficulty in learning the model; more parameters need to be 

identified.   

  

4.5 Rate Variation and Scaling 

From Figure 4.8, it can be observed that all the 13 samples have a very similar 

degradation (or clogging) pattern. The only difference is in the clogging rate. The 

time that ∆𝑃 reaches a certain value, let say 15 psi, happens earlier or later than 

one another. This is due to variations in operating condition and filter physical 

properties.  

 

Table 4-1. Examples of Linear Time-Invariant System. 

Differential Equations Integral Solutions 

𝑥̇ = 𝐵 𝑥(𝑡) = 𝐵𝑡 + 𝑥(0) 

𝑥̇ = 𝐴𝑥 𝑥(𝑡) = 𝑥(0)𝑒𝐴𝑡 

𝑥̇ = 𝐴𝑥 + 𝐵 𝑥(𝑡) =
𝐵

𝐴
(1 − 𝑒𝐴𝑡) + 𝑥(0)𝑒𝐴𝑡 

 

The question is ‘How can the variation rate be intuitively captured in the model?’ 

Let’s consider linear time-invariant (LTI) differential equations and their integral 

solutions shown in table 4.1. These equations are, in fact, in the form of local TS 

fuzzy models described in section 4.1. The first two can be the case where 𝐴 or 𝐵 

are very small. Suppose the integral solutions are scaled in time by a constant 𝜃, 

i.e. 𝐵𝑡 → 𝐵(𝜃𝑡) or  𝑒𝐴𝑡 → 𝑒𝐴(𝜃𝑡). In our case, this means clogging will reach a certain 

level earlier or later depending on the value of 𝜃. Note 𝐵(𝜃𝑡) and 𝑒𝐴(𝜃𝑡) can be 

rewritten as (𝐵𝜃)𝑡 and 𝑒(𝐴𝜃)𝑡, respectively. From table 4.1, by replacing 𝐴 with 𝜃𝐴 

and 𝐵 with 𝜃𝐵, the differential equations become 𝜃𝐵, 𝜃𝐴𝑥 and 𝜃(𝐴𝑥 + 𝐵); hence 

multiplying the rate equation is equivalent to time-scaling the integral solution. 

Conceptually, if 𝑥̇(𝑡) = 𝐴𝑥(𝑡) + 𝐵 is a nominal degradation model, then individual 

data samples can be closely fitted with 𝑥̇ = 𝜃(𝐴𝑥 + 𝐵) by choosing the right value 

of 𝜃. The 𝜃 values will be different for different data samples. 
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Following this line of reasoning, the TS fuzzy model defined in (4.1) can be 

rewritten to include an operational-scalable parameter as 

 ∆𝑃̇ = 𝑓(∆𝑃, 𝜃) 

= ∑ 𝑤𝑖(∆𝑃)𝛾𝑖(𝜃)(𝐴𝑖∆𝑃 + 𝐵𝑖)

𝑁

𝑖=1

. 

 

 (4.3) 

The local scaling functions 𝛾𝑖(∙) can be given by    

 𝛾𝑖(𝜃) = 𝐶𝑖𝜃  (4.4) 

Where 𝜃 and 𝐶𝑖 are a global scaling parameters and constants for a specific local 

model, respectively. 𝐶𝑖 allows the rates to be scaled differently for different local 

models. The nominal degradation path will have 𝜃 = 1. 𝜃 > 1 will represent the 

data samples that have faster clogging rates. The time that ∆𝑃 increases to a 

certain level will be earlier than the nominal model. Conversely, 𝜃 < 1 will be for 

the data samples that have a slower clogging rate. However, (Eq. 4.3) is a 

nonlinear system where multiple local linear models are scaled, weighted and 

combined. In this case, multiplying the rate will approximately be scaling the time 

of the integral solution, but it will not be an exact equivalent of rate and time as 

for a LTI system.  

4.6 System Identification 

Sections 4.4 describe the structure of the TS fuzzy degradation model. However, 

for the model to closely approximate the clogging process, the model parameter 

values need to be tuned (or system identified) from the collected data samples. The 

aim is to minimise the prediction errors between the experimental clogging data 

and simulated data from the TS fuzzy model. In this chapter, where there is no 

ambiguity, the terms ‘optimise’ and ‘minimise’ are used interchangeably. 

In this study, Mean Square Error (𝑀𝑆𝐸) is used as a performance measure for 

system identification of the TS clogging model defined in (Eq.4.3). For a given data 

sample, 𝑀𝑆𝐸 can be evaluated using 

 

𝑀𝑆𝐸 =
1

𝑁𝐷
∑(∆𝑃𝑘

′ − ∆𝑃𝑘)2,

𝑁𝐷

𝑘=1

 (4.5) 

Where ∆𝑃, ∆𝑃′ and 𝑁𝐷 are a train data (in this case pressure drop across filter) 

sample, predicted value calculated from the model and number of data points in 

the sample, respectively. However, our model is aimed to generalise a degradation 
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pattern from multiple data sets. Hence, the measure has to combine the 𝑀𝑆𝐸 

values evaluated against multiple train data. In this chapter, Euclidean norm 𝐿2 

is used as a combined cost function, it can be defined by   

 

𝐶𝑜𝑠𝑡 = (∑ 𝑀𝑆𝐸𝑗

𝑁𝑆

𝑗=1

)

1
2⁄

, (4.6)  

Where 𝑁𝑆 is a number of data sets used in learning the model. To learn the model, 

we minimise 𝐶𝑜𝑠𝑡, i.e. overall minimising 𝑀𝑆𝐸𝑗. In this case, the optimising 

parameters for the nominal TS fuzzy degradation model are the values 

characterising the membership functions ∆𝑃Stage 𝑖, the local model parameters 𝐴𝑖, 

𝐵𝑖 and the scaling constants 𝐶𝑖. By expanding (Eq. 4.3), it can be realised that 𝐶𝑖𝐴𝑖 

and 𝐶𝑖𝐵𝑖 are essentially 2 constants. Substituting 𝐶𝑖𝐴𝑖 with 𝐴𝑖 and 𝐶𝑖𝐵𝑖 with 𝐵𝑖, 

(Eq.4.3) can be rewritten with mathematically equivalent as 

 
∆𝑃̇ = 𝜃 ∑ 𝑤𝑖(∆𝑃)(𝐴𝑖∆𝑃 + 𝐵𝑖)

𝑁

𝑖=1

. (4.7) 

Therefore   there are in total 3 × 𝑁(= 3) = 9 local model parameters instead of 12. 

In addition to 𝜃𝑗 there are also the free parameters that scale the nominal model 

to fit 𝑁𝐷training data. 

 

Figure 4.8. Scalable Filter Clogging Profiles 
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In this research, a global optimisation algorithm, namely Scatter Search [68], is 

used to find 9 + 𝑁𝑆 optimal values for ∆𝑃Stage 𝑖, 𝐴𝑖, 𝐵𝑖 and 𝜃𝑗. The search is 

implemented using the GlobalSearch function of the MATLAB’s Global 

Optimisation Toolbox. In this chapter, we used 6 of 10 data samples for training 

the model and the other 4 for prognostic testing. The sampling period 𝑇 is 1 s. The 

optimised model parameters, where 𝐶𝑜𝑠𝑡 is minimal, are ∆𝑃Stage 𝑖 = {−3.6322, 

6.3099, 18.9145}, 𝐴𝑖 = {0.0, −0.0155, −0.0168} and 𝐵𝑖 = {0.0, 0.1044, 0.8134}. 

Figure 4.8 shows variation in time response as the nominal model is scaled by the 

parameter 𝜃 from 0.5 to 1.5. The initial condition  ∆𝑃(0) is selected as 0.8 for this 

simulation. For pressure drop across filter ∆𝑃 at 15 psi, the corresponding time 

scales are 0.6688, 0.8025, 1.0, 1.3312 and 1.9936 for the scale parameter 𝜃 values 

of 0.5, 0.75, 1.0, 1.25 and 1.15, respectively. It can be shown that the scaling 

parameter 𝜃 is correlated with the resulting time scale, where 1.1213𝜃 − 0.1121 is 

the linear regressed output time scale at ∆𝑃 = 15 psi. 

 

4.7 Particle Filter 

4.7.1 Probabilistic Model 

In order to predict 𝐸𝑂𝐿 of a system, the system’s current state of degradation and 

unknown operational parameter have to be continuously estimated from the 

measurement updates. In this case, the fault precursor ∆𝑃 and the scaling 

parameter 𝜃 are the variables that are required to be estimated. Kalman and 

Particle Filters are commonly used for estimating the degradation state and 

unknown model parameter. In this chapter, PF is used as it is more applicable to 

general non-linear systems. The estimation process of PF is based on the discrete 

stochastic state transition and measurement equations: 

 ∆𝑃𝑘 = 𝑓(∆𝑃𝑘−1, 𝜃𝑘−1) + 𝒩(0, 𝜎∆𝑃
2 ) (4.8) 

                                        Δ𝑃̃𝑘 = ∆𝑃𝑘 + 𝒩(0, 𝜎∆𝑃̃
2 ) (4.9) 

Where Δ𝑃̃,𝒩(∙,∙), 𝜎∆𝑃
2  and 𝜎∆𝑃̃

2  are noisy measurement pressure, Gaussian random 

function, process uncertainty variance and measurement noise variance, 

respectively. In PF framework, (4.8) and (4.9) are equivalently formulated in terms 

of probability density functions as:  

 ∆𝑃𝑘~𝑝(∆𝑃𝑘|∆𝑃𝑘−1, 𝜃𝑘−1)  (4.10) 
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                                                 Δ𝑃̃𝑘~𝑝(Δ𝑃̃𝑘|∆𝑃𝑘, 𝜃𝑘)  (4.11) 

where 𝑝(∙) is a probability density function and ~ means ‘sample from’.  

𝑓(∆𝑃𝑘−1, 𝜃𝑘−1) is deterministic and known through optimisation as described in 

section 4.3. The stochastic parts 𝜎∆𝑃
2  and 𝜎∆𝑃̃

2  of (Eq. 4.8) and (Eq.4.9) are unknown 

and need to be evaluated as required by the PF probabilistic framework. In this 

chapter, Random-Walk Metropolis-Hastings (MH) algorithm [69, 70, 71, 72] is 

used as a Markov Chain Monte Carlo (MCMC) sampling method to estimate 

probability distributions of 𝜎∆𝑃
2  and 𝜎∆𝑃̃

2 . The pseudo code of a generic MH algorithm 

is listed in algorithm 1, where 𝑥𝑖 = (𝜎∆𝑃̃
𝑖 , 𝜎∆𝑃

𝑖 ), 𝑞(∙ | ∙), 𝜋(∙), 𝒰(∙,∙) and 𝛼(∙ | ∙) are 

sample at ith  iteration, Gaussian proposal distribution, full joint density, uniform 

random function and acceptance probability, respectively. A proposal (or 

candidate) sample 𝑥′ is computed using 

 𝜎∆𝑃
′ = 𝜎∆𝑃

𝑖−1 + 𝒩(0, 𝜎𝑥
2) (4.12) 

                                                   𝜎∆𝑃̃
′ = 𝜎∆𝑃̃

𝑖−1 + 𝒩(0, 𝜎𝑥
2) (4.13) 

 Where 𝜎𝑥
2 is a variance (small positive number) of random walk step in the 

dimensions  𝜎∆𝑃 and 𝜎∆𝑃̃. The proposal distribution 𝑞(𝑥′|𝑥𝑖−1) = 𝒩 (𝑥𝑖−1, [
𝜎𝑥 0
0 𝜎𝑥

]) 

randomly perturbs the current sample of the chain, and then either accepts or 

rejects the candidate 𝑥′ depending on its acceptance probability. In this case, we 

set the random walk variances to be equalled (i.e. 𝜎𝑥) for both dimensions, however 

they can also be fine-tuned to different ones depending on the true values of 𝜎∆𝑃 

and 𝜎∆𝑃̃. 

 

 

Algorithm 1:  Metropolis-Hastings [72] 

Initialise  𝑥0 = (𝜎∆𝑃̃
0 , 𝜎∆𝑃

0 ):  

Output: {𝑥𝑖 = (𝜎∆𝑃
𝑖 , 𝜎∆𝑃̃

𝑖 )}
𝑖=𝑁𝐵

𝑁
  

for 𝑖 = 1 to 𝑁 do 

Step 1 (Propose) 



 

75 

𝑥′~𝑞(𝑥′|𝑥𝑖−1)      

Step 2 (Acceptance Probability) 

𝛼(𝑥′|𝑥𝑖−1) = min {1,
𝑞(𝑥𝑖−1|𝑥′

)𝜋(𝑥′)

𝑞(𝑥′
|𝑥𝑖−1)𝜋(𝑥𝑖−1)

}  

Step 3 (Accept) 

𝑢~𝒰(0,1)  

if 𝑢 < 𝛼  then 

𝑥𝑗 ← 𝑥′  

   else 

       𝑥𝑗 ← 𝑥𝑗−1  

  end if 

end for 

The MH acceptance function is designed to tend to visit higher probability areas 

given by the ratio 
𝑞(𝑥𝑖−1|𝑥′

)𝜋(𝑥′)

𝑞(𝑥′
|𝑥𝑖−1)𝜋(𝑥𝑖−1)

 In the case of random walk, 𝑞(∙ | ∙) is symmetric 

(i.e. 𝑞(𝑥𝑖−1|𝑥′) = 𝑞(𝑥′|𝑥𝑖−1)), hence the acceptance function is simplified to be 

 
𝛼(𝑥′|𝑥𝑖−1) = min {1,

𝜋(𝑥′)

𝜋(𝑥𝑖−1)
} (4.14) 
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Figure 4.9. Illustration of Full Joint Density Function 

The acceptance becomes proportional to how likely each of the current state and 

the proposed state are under the full joint density (see Figure 4.9), which can be 

defined as a maximum likelihood function 

 

𝜋(𝑥) = ∏ ∏
1

√2𝜋𝜎∆𝑃̃

exp (−
(Δ𝑃̃𝑘

𝑗
− ∆𝑃𝑘

𝑗
)2

2𝜎∆𝑃̃
2 )

𝑁𝐷
𝑗

𝑘=1

𝑁𝑆

𝑗=1

 (4.15) 

where Δ𝑃̃𝑘
𝑗
 and ∆𝑃𝑘

𝑗
 are obtained from the test data set and computed using (4.8), 

respectively  In order for the MH algorithm not to get stuck at one sample, the 

space is ensured to be explored by randomly sampling the acceptance probability 

𝑢 from a uniform distribution 𝒰(0,1). The proposed sample 𝑥′ is accepted if  𝑢 < 𝛼; 

otherwise we reject it. This way the distribution of  𝑥 is ensured to converge to the 

true distribution that we are interested in.  

We used 9 data samples as in section 4.4 and their associated optimised scaling 

parameters 𝜃𝑗 for the evaluation of the full joint density function 𝜋(∙). 𝜎𝑥, 𝑁 and 

𝑁𝐵 were set to 0.001, 1,000,000 and 500,000 burn-in time, respectively. The burn-

in time 𝑁𝐵 is required to allow the Markov chain to approach the equilibrium; thus 

the representative draws from the true distribution. In this run, the means of the 

distributions 𝜎∆𝑃 and 𝜎∆𝑃̃ are respectively 0.0168 and 0.0998, where 0.0017 and 

3.7115 × 10−4 are the corresponding standard deviations.  

Higher Density Proposal

Current Point

Low Density Proposal
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4.7.2 State and Parameter Estimation 

PF uses a statistical method called Bayesian inference, in which measurements 

are used to estimate and update the pressure (state) variable ∆𝑃 and model 

parameter 𝜃 in a form of probability density function (pdf). This chapter focuses 

on how a data-driven approach can be formulated to handle large variations in the 

data. Therefore, to simplify we use the simplest form of the particle filter, named 

Sequential Important Resampling (SIR) [73, 71], to demonstrate the concept in 

this chapter. 

Algorithm 2: The pseudocode of algorithm SIR Particle Filter is provided below [73] . 

Inputs: {(∆𝑃𝑘−1
𝑖 , 𝜃𝑘−1

𝑖 )}
𝑖=1

𝑁𝑃
 and Δ𝑃̃𝑘 

Outputs: {(∆𝑃𝑘
𝑖 , 𝜃𝑘

𝑖 ), 𝑤𝑘
𝑖 }

𝑖=1

𝑁𝑃
 

Step 1 (Update) 

for 𝑖 = 1 to 𝑁𝑃 do 

𝜃𝑘
𝑖 ~𝒩(𝜃𝑘

𝑖 , 𝜎𝜃) or 𝒩(𝑚(𝜃𝑘
𝑖 ), ℎ2𝑉𝑘) 

∆𝑃𝑘
𝑖 ~𝑝(∆𝑃𝑘|∆𝑃𝑘−1

𝑖 , 𝜃𝑘
𝑖 )  

end for 

Step 2 (Resampling) 

for 𝑖 = 1 to 𝑁𝑃 do 

𝑤𝑘
𝑖 ← 𝐿(∆𝑃̃𝑘|∆𝑃𝑘

𝑖 , 𝜃𝑘
𝑖 )  

end for 

𝑊 ← ∑ 𝑤𝑘
𝑖𝑁𝑃

𝑖=1   

for 𝑖 = 1 to 𝑁𝑃 do 

𝑤𝑘
𝑖 ← 𝑤𝑘

𝑖 𝑊⁄   

end for 
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{(∆𝑃𝑘
𝑖 , 𝜃𝑘

𝑖 )}
𝑖=1

𝑁𝑃
← 

Resample ({(∆𝑃𝑘
𝑖 , 𝜃𝑘

𝑖 ), 𝑤𝑘
𝑖 }

𝑖=1

𝑁𝑃
) 

 

The pseudo code of a generic SIR particle filter algorithm is listed in algorithm 2 

and graphically illustrated in Figure 4.10.  

 

 

Figure 4.10. Illustration of Particle Filtering Process [71, 39] 

In PF, pdf is not explicitly defined, but instead 𝑁𝑃 number of samples{(∆𝑃𝑖, 𝜃𝑖)}
𝑖=1

𝑁𝑃
, 

so called particles, are used as an approximation of the pdf. A prior probability 

information of  (∆𝑃𝑘−1, 𝜃𝑘−1) and a measurement update Δ𝑃̃𝑘 are the algorithm 

inputs. To initialise the algorithm, the particles (∆𝑃0
𝑖 , 𝜃0

𝑖 ) are often sampled 

uniformly from the possible (or arbitrary) intervals of ∆𝑃 and 𝜃. If 𝑁𝑃 is sufficiently 

large, then {(∆𝑃𝑖, 𝜃𝑖)}
𝑖=1

𝑁𝑃
can be regarded as the representative draws of (∆𝑃, 𝜃), 

which effectively ensures consistent results between runs.  

 

PF consists of two main steps: update and resampling. In the update step, the 

prior pdf {(∆𝑃𝑘−1
𝑖 , 𝜃𝑘−1

𝑖 )}
𝑖=1

𝑁𝑃
 is propagated forward to time 𝑘 by some random 

processes. ∆𝑃𝑘 is evolved using (4.8) (or equivalently (4.10)), which represents the 

physics of filter clogging. However, some type of evolution needs to be defined for 

particles 

resampling

update

update

step 

step 

step 

likelihood 

posterior 

prior 

posterior 

prior particles 

particles 

particles 
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the parameter 𝜃𝑘.  The typical solutions are to use either a random walk [74, 18] 

or kernel smoothing function [75, 76, 73]. The random walk can be defined by 

 𝜃𝑘 = 𝜃𝑘−1 + 𝒩(0, 𝜎𝜃
2), (4.16) 

Where 𝜎𝜃 defines a random walk step size. 𝜎𝜃 determines the rate and estimation 

performance of the parameter 𝜃𝑘. A large 𝜎𝜃 will give fast convergence but high 

fluctuations, whereas a small value of 𝜎𝜃will produce a smoother (but slower) 

convergence of 𝜃𝑘. In kernel smoothing, the evolution of 𝜃𝑘  on the other hand takes 

into account of the probability information of 𝜃𝑘. The parameter 𝜃𝑘
𝑖 is indirectly 

sampled through 

 𝜃𝑘
𝑖 ~𝒩(𝑚(𝜃𝑘

𝑖 ), ℎ2𝑉𝑘), (4.17) 

Where 

 𝑚𝑘
𝑖 = 𝑎𝜃𝑘

𝑖 + (1 − 𝑎)𝜃̅𝑘 and (4.18) 

 

𝑉𝑘 = ℎ2
1

𝑁𝑝
∑(𝜃𝑘

𝑖 − 𝜃̅𝑘)2

𝑁𝑃

𝑖=1

 (4.19) 

With 𝜃̅𝑘 is the mean value of 𝜃𝑘
𝑖  and 𝑎 = √1 − ℎ2 where ℎ > 0 is the smoothing 

parameter. Similarly to the random walk method, a larger 𝑎 will give faster 

convergence but high fluctuations, whereas a small value of 𝑎 will give a smoother 

(but slower) convergence. It is common practice to use 𝑎 around 0.98 or higher [73]. 

The kernel smoothing method provides an adaptive way to evolve the parameter 

𝜃𝑘.  

In the resampling step, the likelihood of the particles {(∆𝑃𝑘−1
𝑖 , 𝜃𝑘−1

𝑖 )}
𝑖=1

𝑁𝑃
 are 

evaluated using 

𝐿(Δ𝑃̃𝑘|∆𝑃𝑘
𝑖 , 𝜃𝑘

𝑖 ) =
1

√2𝜋𝜎∆𝑃̃

exp (−
(Δ𝑃̃𝑘 − ∆𝑃𝑘

𝑖 )
2

2𝜎∆𝑃̃
2 ) 

. 

(4.20) 

In equation (4.20) quantitatively determines how likely a measurement Δ𝑃̃𝑘 is 

produced by a particle (∆𝑃𝑘
𝑖 , 𝜃𝑘

𝑖 ). The particles are weighted in which where their 

weights 𝑤𝑘
𝑖  are proportionally (or equal) to the computed likelihood values. This is 

in a way proposing a pdf for (∆𝑃𝑘, 𝜃𝑘). The weights are then normalised and used 

to systematically resample (or commonly known as roulette wheel) the particles, 

i.e. {(∆𝑃𝑘
𝑖 , 𝜃𝑘

𝑖 )}
𝑖=1

𝑁𝑃
← Resample ({(∆𝑃𝑘

𝑖 , 𝜃𝑘
𝑖 ), 𝑤𝑘

𝑖 }
𝑖=1

𝑁𝑃
) in algorithm 2. Intuitively, a 
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particle that has a higher weight will have a higher probability of being duplicated, 

and vice versa (see Figure 10). The resampled particles (posterior) are used to 

estimate the state ∆𝑃̅𝑘 and model parameter 𝜃̅𝑘, which can be by either taking the 

mean or median of the particles, and then form the prior pdf for the next filtering 

iteration. 

 

4.7.3 End of Life Prediction 

At a given time 𝑘, the future state of ∆𝑃 of a particle (∆𝑃𝑖, 𝜃𝑖) can be predicted by 

propagating forward using (2.8) where ∆𝑃𝑘
𝑖  and 𝜃𝑘

𝑖  are an initial condition and fixed 

model parameter, respectively. To compute 𝑅𝑈𝐿, we then propagate each particle 

until ∆𝑃 reaches the ∆𝑃𝐸𝑂𝐿 threshold to obtain the probability distribution of 

predicted 𝐸𝑂𝐿′. The distribution of predicted 𝑅𝑈𝐿′ can then be obtained by simply 

subtracting the pdf of 𝐸𝑂𝐿′ with 𝑘.  The estimated 𝑅𝑈𝐿̅̅ ̅̅ ̅̅  can be calculated by either 

taking the mean or median of the distribution. Note that prediction requires 

hypothesising future operating conditions of the system as the clogging rate is 

dependent on the pump speed, change in the solid-ratio, and so on. In this chapter, 

these operating conditions are encapsulated into a single model parameter 𝜃. In 

prediction, fixing 𝜃 to the current estimated value will mean the operating 

conditions are assumed to be unchanged in the future state. If the operational 

profile is to be varied, then the model parameter fixing 𝜃 has to be time-varying 

during the simulation (forward propagation) according to the profile and this will 

be based on a pre-defined mapping (or lookup table) between the model parameter 

and operational conditions.  

 

4.8 Results 

To demonstrate the approach, we tested the developed algorithm based on 4 test 

data samples, all of which have different operating conditions. In this chapter, we 

have implemented our algorithms in MATLAB. The measurement data is 

rendered point by point to simulate online estimation and prediction. Here, the 

end of life threshold ∆𝑃𝐸𝑂𝐿 was set at 15 psi. The PF parameters 𝑁𝑃, 𝜎𝜃 and 𝑎 were 

trial and error set at 1,000,  1.0 × 10−4 and 0.998, respectively. As discussed in 

section 4.7.2, the values of 𝜎𝜃 and 𝑎 will affect how the estimations converge. 
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However, how to optimally tune them is not the focus of this chapter. Further 

information can be found in [73, 76].  

 

The resulting state estimation, parameter estimation and remaining useful life 

prediction are shown in Figures 4.11, 4.12 and 4.13, respectively. The results were 

generated using three different algorithm settings; 1) nominal TS fuzzy model + 

PF without parameter estimation, 2) scalable TS fuzzy model + PF with random 

walk parameter estimation and 3) scalable TS fuzzy model + PF with kernel 

smoothing parameter estimation. The results highlight the differences in 

prediction performance of the non-scalable and scalable data-driven TS fuzzy 

models. In overall, both non-scalable and scalable models are able to track the 

degradation (or clogging) profiles generated from different operating conditions, 

see Figure 4.11. With the scalable TS model, the online parameter estimation 

results show good convergences of the model parameter 𝜃 to its true values, see 

Figure 4.12. Recall that the operating conditions are encapsulated in the model 

parameter 𝜃, hence significantly better accuracies in the 𝑅𝑈𝐿 prediction are to be 

expected for the scalable TS fuzzy model, and, regardless of the operating 

conditions, this indeed reflects in the results shown in Figure 13. In contrast to 

the scalable model, the prediction errors increase as the operating conditions 

deviate away from the nominal condition.     
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Figure 4.11: Estimated Pressure Drop Across Filter (State) ∆P. 

                                  

 

a) Test Sample #1 b) Test Sample #2 

c) Test Sample #3 d) Test Sample #4 
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Figure 4.13 Estimated Scalable Model Parameter θ. 

 

 

 

 

a) Test Sample #1 b) Test Sample #2 

c) Test Sample #3 d) Test Sample #4  

Figure 4.12 Estimated Remaining Useful Life (RUL ). 

 

 

a) Test Sample #1 b) Test Sample #2 

c) Test Sample #3 d) Test Sample #4 
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One of the commonly used performance metrics for prognostics is Root Mean 

Square Error (𝑅𝑀𝑆𝐸) [77]. For a given 𝑅𝑈𝐿 prediction profile, 𝑅𝑀𝑆𝐸 can be offline 

evaluated using 

𝑅𝑀𝑆𝐸 = √
1

𝑁𝑃
∑ (𝑅𝑈𝐿̅̅ ̅̅ ̅̅

𝑘
′ − 𝑅𝑈𝐿𝑘)2𝑁𝑃

𝑘=1       (4.21)  

 

 

Where 𝑅𝑈𝐿̅̅ ̅̅ ̅̅
𝑘
′  and 𝑅𝑈𝐿𝑘 are predicted mean (or median) 𝑅𝑈𝐿 (either mean or 

median) and true 𝑅𝑈𝐿 at time 𝑘, respectively. Table 4.2 shows the 𝑅𝑈𝐿 prediction 

errors measured in 𝑅𝑀𝑆𝐸 for the 4 test samples. It can be seen that the 𝑅𝑈𝐿 

prediction results are significantly better in the case of online parameter 

estimations (i.e. using the scalable TS degradation model). The 𝑅𝑀𝑆𝐸 ratio 

between nominal and scalable models is more significant if the operating condition 

𝜃  of a test sample is more different from the nominal condition 𝜃 = 1.0 (𝑅𝑈𝐿 =

312.5 s). From the 𝑅𝑀𝑆𝐸 results, the kernel smoothing method gives a better (but 

not significantly) 𝑅𝑈𝐿 prediction than the random walk based parameter 

evolution. It can be seen that the kernel smoothing method has a better 

convergence in estimating the parameter 𝜃 (see Figure 4.12), hence this explains 

the better 𝑅𝑀𝑆𝐸 results as observed in this experiment.  

 

Table 4-2. Remaining Useful Life (𝑅𝑈𝐿) Prediction Error for Test Samples 

Particle Filter 

Prediction Models 

Root-Mean-Square-Error (RMSE) 

Test 1 Test 2 Test 3 Test 4 

Nominal Model 76.242 29.155 73.846 125.992 

Random Walk 36.464 19.010 21.840 50.151 

Kernel Smoothing 34.526 13.262 21.238 44.266 
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To gain insight into the working mechanism of the proposed prognostic approach, 

we shall analyse the results in more detail. Let’s consider the light blue shade 

areas of the estimated ∆𝑃, 𝜃 and predicted 𝑅𝑈𝐿 results for the test sample #1 

shown in Figure 4.11 to 4.13. The estimated ∆𝑃 is able to closely track the 

measurement Δ𝑃̃, but somewhat underestimated as shown in the zoom-in of 

Figure 4.11 (a).  This is due to the fact that the prior pdf of the parameter 𝜃 is 

being less than its true value (black solid line in Figure 4.12 (a). Therefore, the 

estimated ∆𝑃 is evolving at a lesser rate than the true clogging profile. For a 

similar ∆𝑃, a particle that has a higher value of 𝜃 will more likely to be duplicated 

as it will produce ∆𝑃 at the next step with a lesser underestimation. This can be 

observed in an increment of the estimated 𝜃 towards its true value ~1.61. The 

closer the parameter 𝜃 is to its true value means the better the model represents 

the true clogging profile. This in a way provides a more accurate model for the 𝐸𝑂𝐿 

prediction, hence a decrement in the 𝑅𝑈𝐿 prediction error as the time went on as 

seen in Figure 4.13a. 

 

 In Figure 4.11 (b) to Figure 4.13 (d) and Figure 4.12 (b) to Figure 4.12 (d), large 

fluctuations in the parameter estimation and 𝑅𝑈𝐿 prediction can be observed at 

the beginning of the data renderings, between 0 and 50 s. This is caused by the 

modelling error and, as earlier described in the case of Figure 4.11a to 4.13a, the 

difference between the model parameter 𝜃 and its true value. To understand the 

former, let’s consider the shade areas of the Figure 4.11d to 4.13d. From the zoom-

in of Figure 4.11 (d), it can be seen that the ∆𝑃 estimation is varied from 

overestimate, close estimate to underestimate over the range of 0 to 50 s. In 

contrast to where the parameter is un-tuned, the modelling error is the variation 

in the scaled TS model from the real clogging profile; the model does not accurately 

represent the data in some parts of the profile. At the start, the across pressure 

∆𝑃 is overestimated (see Figure 4.11d), and thus the model parameter has adapted 

itself towards ~0.6 to reduce the estimation error |Δ𝑃̃ − ∆𝑃|. The model parameter 

𝜃 is converging to its true value up to the point where the estimated ∆𝑃 closely 

tracks the measurement Δ𝑃̃. From > 20 s, the estimated ∆𝑃 changes from close 

estimate to underestimate, and therefore a reverse in the direction of the model 
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parameter 𝜃. Regardless of its true value, the particle filter will evolve 𝜃 in a way 

that the estimation error is minimised. This can be seen in Figure 4.11d and 

Figure 4.12d, where the model parameter 𝜃 fluctuates away from ~0.6 while the 

estimation error |Δ𝑃̃ − ∆𝑃| is decreasing. In a similar way, this explains the large 

alternations in the parameter estimation and 𝑅𝑈𝐿 prediction as observed for the 

case of test samples #2 and #3.  

 

Now let us consider the shade areas of the estimated ∆𝑃, 𝜃 and predicted 𝑅𝑈𝐿 

results for the test samples #2 and #3 shown in Figure 4.11 - Figure 4.13. Figure 

4.12b and Figure 4.12c show that the model parameter 𝜃 has converged to around 

it true values 1.19 and 0.7, respectively. Moreover, the estimated ∆𝑃 closely tracks 

the measurement Δ𝑃̃ for both samples #2 and #3, see the zoom-ins of Figure 4.11b 

and 4.11c. Therefore, the 𝑅𝑈𝐿 predictions will be expected to close the real 𝑅𝑈𝐿s 

as shown in Figure 4.13b and Figure 4.13c. For clarity, it is worth further 

discussing the difference between the test sample #1 and #2 in terms of how the 

model parameter 𝜃 converges in the shade areas shown in Figure 4.11 to Figure 

4.13. To answer ‘Why does the model parameter 𝜃 of the test sample #2 not vary 

in the similar way as the test sample #1?’, notice the difference in the scale of the 

zoom-in graphs of Figure 4.11a (10 × 0.8) and 4.11b (25 × 0.45). The estimation 

error |Δ𝑃̃ − ∆𝑃| of the test sample #2 is in fact smaller than the test sample #1 

(even though visibly larger). Furthermore, the rate of change in ∆𝑃 is also much 

smaller for the test sample #2 (~0.23 of the test sample #1); hence less variation 

in the likelihood due to the difference in 𝜃 for particles with a similar ∆𝑃. For the 

shade areas, this explains (in relation to the test sample #1) a slower rate of change 

in the model parameter 𝜃 as observed in Figure 4.12b.    

 

From the results, it is worth emphasising that our scalable TS fuzzy model is only 

a nonlinear approximator of the experimental data. It is not a physical model that 

the data were generated from, and hence modelling (or pattern) errors are 

inevitable. Recall that PF will only try to scale the TS fuzzy model in such a way 

that the estimation error |Δ𝑃̃ − ∆𝑃| is decreasing, it does not actually know what 

the true value of 𝜃  is. Thus, how good the parameter estimation and 𝑅𝑈𝐿 
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prediction are at a given time will depend on how much deviation the 

approximated degradation pattern has from the data at an interval around that 

particular time step.  This consequently results in the small fluctuations in 𝜃 and 

prediction errors in 𝑅𝑈𝐿 around their associated true values as observed in Figure 

4.12 and Figure 4.13.  

 

The summery of this chapter has been discussed in detail in the conclusion 

chapter. The next chapter will discuss the second technique of adaptive/scalable 

data driven techniques.  
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Chapter 5 

 

5 Adaptive Degradation Prognostic Reasoning by 

Particle Filter with Neural Network 

Degradation Model for Turbofan Jet Engine   

 

This chapter provides information regarding the essence of prognostics, problems 

of prognostic predictions, and the approach presented for single component. The 

approach has been explained and the results are also provided.  

 

5.1 Introduction  

This chapter presents the second adaptive data driven technique. This adaptive 

data driven technique is mainly useful where the sensor data does not show 

directly the degradation of the system or such system where several sensor data 

are available to track the degradation of the system. In the previous chapter, it 

has been discussed where the sensor data directly shows the degradation of the 

system. However, in this chapter the dataset that has been selected has several 

different sensors to track one complex system, for instance the jet engine has 

several sensors to monitor the whole jet engine, different sensors are monitoring 

different parts, such as temperature, pressure, fuel flow etc. This dataset also 

provides the health index of the part of  the system which has been analysed. The 

health conditions are essential in terms of the mission context. The next section 

will discuss the motivation behind the philosophy of this technique. 
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5.2 Motivation  

Generally, Prognostics involve a construction of a degradation model and then use 

it to estimate a current degradation state and to predict EoL of a component. The 

purpose of a model is to capture how degradation evolves over time. The current 

degradation state is estimated based on noisy measurement updates and possible 

paths (determined by the model) from the previous degradation states. The model 

then uses the estimated degradation rate to propagate the state until it reaches 

EoL at some pre-defined degradation threshold. The other operational 

parameters, like usage or component specific degradation coefficients, can also be 

taken into account in the state estimation and EoL prediction. The model itself 

forms a key part in prognostics. It acts as a physical constraint which is used to 

determine not all possible, but the most likely degradation paths. 

 

Particle filters (PF) are commonly used Bayesian estimators for tracking the state 

of a degrading system. The common usage involves tracking the parameters of the 

state transition equation as well as tracking the main degradation indicator (i.e. 

health index). Health Monitoring (HM) data could be classify into two categories: 

direct HM data, and indirect HM data. Direct HM data indicates the health level 

of system directly (e.g. crack size, wear level) whereas indirect HM reflects the 

underlying system health partially or indirectly (e.g. sensor information, 

vibration, oil based monitoring). Wiener and Gamma processes, regression-based 

models, and Markovian-based models are based on direct HM data, while 

Stochastic Filtering-Based Models, Covariate-Based Hazard Models, Hidden 

Markov Models (HMMs) and, Hidden Semi Markov Models (HSMMs) would 

classify as the indirect HM kind.  The sensory data also introduces noise as well 

as accuracy problems with it. Therefore PF are used to estimate the actual state 

of the system behaviour which is the actual response supposed to be measured. 

On the other hand, for the cases where the actual health index of the system is not 

directly measured (i.e. indirect CM), the health index is approximated via 

transforming the sensory information. The sensory information does not directly 
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exhibit the health of the component/system, however it shows a degradation 

profile to be used in the transformation process [78]. 

 

 The engine degradation simulation dataset doesn’t provide health index 

information, however the dataset suppliers (NASA) provided the actual RUL of 

the system which could be treated as virtual HI information and system 

degradation information. The information they provided are the operational 

profiles and sensory data corresponding to some components. Therefore one has to 

establish a mechanism which transforms the sensory data into the health index to 

be used with particle filters.  

To construct a prognostics degradation model for complex system like Turbofan jet 

engine is extremely difficult task. As it would need to measure and weight all the 

parameters which would be involved in degradations of the system. In literature 

there are control models of the Turbofan jet engine however, no prognostics 

degradation model has been found. Furthermore the NASA Turbofan jet engine 

dataset has been created from the simulation testbed. However, dynamic system 

state transition model can be approximated using regression or machine learning 

algorithms which are data driven techniques. The complexity of modelling the 

degradation behaviour is achieved by the learning algorithm which maps the 

sensory data into HI. However, the approximated data-driven nominal state 

transition model is not adaptable for different profiles of data. If the current 

conditions are far away from the nominal model then the errors will be higher in 

the prediction this is the major down side for the data driven technique in context 

of prognostics and they provide you with a model which will give you a dynamic 

model with fixed parameters. These limitation makes less adaptable to data 

driven technical in regression context.  

 

The primary novelty of this research is, it provides the adaptable data driven 

technique which mainly captures different operational profiles. The secondary 

novelty of this work, is to transform the RUL information into HI as well as 

mapping the sensory data to HI values using a machine learning algorithm (i.e. 

NN) to be used as a measurement function within the particle filter tracking 
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mechanism. In this way, the nominal mapping algorithm results are becoming 

adaptable by taking into account the particle filters which leads to more accurate 

prognostic results. The details of the methodology are elaborated in the next 

section.   

 

5.3 Proposed Approach 

This reasoning system designed and developed machine learning algorithms that 

can identify causal links between precursors and their associated system health 

indices in the form that will be relevant to the alert/alarm generation, operation 

and further predictive trend analysis. Meaningful information would be a 

quantitative value like probability, certainty or likelihood of an event or a 

combination of events will compromise the safety margin or cause a particular 

impact on operation. 

 

5.3.1 Turbofan Engine Degradation Simulation Dataset 

The NASA C-MAPSS turbofan data set has been used for this reasoning system, 

as the requirement of the dataset was it had to be a real or accurate dataset.  

This dataset has four sets of data each, which is a combination of two failure modes 

and two operating conditions. Every dataset has at least hundred engine 

degradation simulations carried out using C-MAPSS, which are divided into 

training and test subsets [78]. Twenty one different sensor measurements as well 

as RUL values for test subsets are given. However, health indicators are not 

provided with the dataset. 

 

The degradation in the Fan and HPC of the turbofan engine is simulated. The 

model that the dataset suppliers applied is exponential degradation shown in Eq. 

5.1 where (d) is initial degradation, (A) is a scaling factor, (B(t)) time varying 

exponent, and (thw) is upper wear threshold. The model is a generalised equation 

of common damage propagation models (e.g. Arrhenius, Coffin-Manson, and 

Eyring models) [78].  

ℎ(𝑡) = 1 − 𝑑 −  𝐴𝑒𝐵(𝑡)/𝑡ℎ𝑤                   (5.1) 
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The dataset is eligible for a data-driven approach, as sufficient data and RUL 

values are available within dataset. Either statistical or machine learning data-

driven models can be applied to predict the RUL of turbofan engines.  

 

However, the physics-base modelling would not be appropriate for this sort of 

system as the Turbofan jet engines are very complex systems and many 

parameters have to be accounted for. Therefore the data driven approach would 

be more suitable for this dataset/ system.   

 

5.3.2 NASA Turbofan Dataset 

The dataset given in [78] consists of multivariate time series signals that are 

collected from the turbofan engine dynamic simulation process. The engine run-

to-failure simulations were carried out using C-MAPSS. A Hundred engine's run-

to-failure time series trajectories are considered in this study (dataset FD001) 

which can be considered to be forming a fleet of engines of the same type.  The 

aircraft gas turbine engine’s RUL is closely bound up with its conditions. To 

monitor the aircraft gas turbine engines conditions, several kinds of signals could 

be used, such as temperature, pressure speed and air ratio. In this simulation a 

total of 21 sensors were installed in the aircraft engine’s different components 

(Fan, LPC, HPC, LPT, HPT, Combustor and Nozzle) to monitor the aircraft 

engine’s health conditions.  

 

The 21 sensory signals, as detailed in the Table 5.1, where obtained from the above 

mentioned sensors. Among the 21 sensory signals, some signals contain little or 

no degradation information whereas the other shows a degradations trend. Most 

of the sensors data were contaminated with measurement noise. 
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TABLE 5-1.DESCRIPTION OF THE SENSOR SIGNALS FOR THE 

   AIRCRAFT GAS TURBINE ENGINE DATASET [78] 
 

Inde

x 

Symbol Description Units 
1 T2 Total Temperature at fan 

inlet 

°R 
2 T24 Total temperature at LPC 

outlet 

°R 
3 T30 Total temperature at HPC 

outlet 

°R 
4 T50 Total temperature LPT 

outlet 

°R 
5 P2 Pressure at fan inlet psia 
6 P15 Total pressure in bypass-

duct 

psia 
7 P30 Total pressure at HPC 

outlet 

psia 
8 Nf Physical fan speed  rpm 
9 Nc Physical core speed rpm 
10 Epr Engine pressure ratio -- 
11 Ps30 Static pressure at HPC 

outlet 

psia 
12 Phi Ratio of fuel flow to Ps30 psi 
13 NRf Corrected fan speed rpm 
14 NRc Corrected core speed rpm 
15 BPR Bypass ratio -- 
16 farB Burner fuel-air ratio -- 
17 htBleed Bleed enthalpy -- 
18 Nf_dmd Demanded fan speed rpm 
19 PCNfR_dm

d 

Demanded corrected fan 

speed  

rpm 
20 W31 HPT coolant bleed ibm/s 
21 W32 LPT coolant bleed ibm/s 
°R           The Rankine temperature scale 

paisa     Pounds per square inch absolute 

rpm       Revolution per minute  

pps        Pulse per second 

psi         Pounds per square inch 

ibm/s    Pound mass per second  

 

To improve the RUL prediction accuracy and efficiency, important sensory signals 

must be carefully selected to characterize degradation behaviour for the aircraft 

gas turbine engine health prognostics. By observing the degradation behaviour of 

the 21 sensory signals, seven of them (2, 4, 7, 8, 11, 12, and 15) were selected in 

this study. The engine run-to-failure simulations were carried out using C-MAPSS 

simulation; they are a presentative simulation model of a modern commercial 

turbofan engine [79].  
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 Simplified diagram for the aircraft 

gas turbine engine 

 

A layout of modules and connections in 

the simulation 

Figure 5.1. Gas turbine Engine dataset architecture [78] 

 

C-MAPSS simulation have fourteen inputs and thirteen health parameters which 

allow the user to simulate the outcomes of degradation and faults in any of the 

five rotating parts of the engine i.e. Fan, LPC, HPC, HPT, and LPT.  The time 

series data is recorded to characterize the evolution of the obscured health state 

of the engine.  

The operability margins, for example temperature margins and stall, define the 

safe threshold operation region for the engine. The 6 flight conditions that have 

been simulated in this simulation, comprising arrange of values for 3 operational 

settings: Mach number (M: 0–0.84), altitude (Alt: 0–42Kft), and throttle solver 

angle (TRA: 20–100). Every engine degradation simulation starts with a different 

initial degradation state due to different degrees of initial wear and 

manufacturing variation in practice. 

In  the selected data set   snapshots of engine performance parameters sat at  sea 

level for each flight were used, i.e., Alt= 0, M=0, and TRA = 100). For more details 

on the engine run-to-failure simulation, the reader is referred to [80]. More 

information regarding the sensory signal screening is available from [78]. 

5.4 Reasoning and Prediction Thought Health Index Calculation  

5.5 Health Index  

Generally, the detection/reasoning system takes the input from the sensor and has 

some kind of threshold setup by the expert. The threshold usually has two limits 

the higher and the lower, each one is assigned with some kind of message or 

warning from the expert’s knowledge. However, until the threshold is reached the 
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warnings are not displayed and the sensor values are just a data rather than 

information. This data doesn’t provide any information regarding the health of the 

system. The HI calculation converts the raw sensor data into HI information. The 

HI term is defined by a discrete number representing the actual health of the 

system. For instance, 1 indicates the best health condition and 0 signifies the worst 

health condition. A mid-range value such as 0.5 represents half-life. The virtual 

health index of the system can be calculated in this system by using the following 

formula: 

𝐻𝐼 =  
𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝑅𝑈𝐿  

𝐸𝑜𝐿 
        (5.2) 

In this chapter we formulized the health index at a specific time point as the rate 

of current RUL to the EoL of the system. 

 

 

Figure 5.2. Real HI (Health Index) Degradation for Component  

 

The Figure 5.2 shows the general degradation of the health index in real life 

environments. The physics of the system usually degrades far faster towards the 

EoL. However, in this chapter the health index has been simulated as a linear 

degradation of health to make the calculation less computational and simpler to 

simulate as shown in the Figure 3.4. Initial HI (Health Index) for Component. The 

initial state of the system as the HI is calculated from the equation 5.2. However 
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when the sensor readings are received the HI calculation will be dynamic 

according to the sensor data received.  

 

Figure 5.3a Four Sensors data over the time  

 

Figure 5.3 b Degradation of the of health index of four sensor over data. 

The Figure 5.3a shows the sensor data on the Y-axis and X-axis is the time. 

Whereas in Figure 5.3b shows the HI on the Y-axis and the sensor reading on the 

X-axis.  Figure 5.3b demonstrates the difference as to how the HI is degrading over 
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time. The way to calculate the HI from sensor values is discussed in the next 

section.  

5.5.1 Health index modelling using Neural Network  

Radial basis functions (RBF) are kind of neural networks used for function 

approximations. RBFs are usually used in time series prediction, forecasting 

problems, regression, classification, non-linear system control etc. RBFs are three-

layer feed-forward neural networks, where the hidden nodes implement a set of 

radial basis functions (e.g. Gaussian functions) as shown in Figure 5. On the other 

hand, the output nodes implement linear summation functions as in Multi-Layer 

Perceptron (MLP) [81]. The approximation function can be described in the 

following form in Eq. 5.3: 

𝑦(𝑥) = ∑ 𝑤𝑖∅(‖𝑥 − 𝑥𝑖‖)

𝑁

𝑖=1

 (5.3) 

Where, 𝑦(𝑥) ∈ ℝ𝑛 represents the actual approximation function with 𝑁 numbers 

of radial basis. Each basis function is associated with different centres. Centre 

mean and standard deviation is symbolised as ‘xi’ along with the associated 

weights ‘wi’. ‘x’ in the equation stands for the measurement inputted in the system. 

The norm and the basis function (i.e. ‘∅’) are typically taken to be the Euclidean 

distance respectively. In this research the Gaussian basis function is selected. 

Gaussian basis function can be formulised as given in Eq. 5.4: 

∅(𝑥) = 𝑒
− 

‖𝑥−𝑥𝑖‖
2

2𝜎𝑖
2

  (5.4) 

 

The Neural RBF networks are universal approximators.  A RBF network with 

enough hidden neurons can approximate continuous function with arbitrary 

precision. The weights ‘wi’ and ‘xi’ are determined in a manner that optimises the 

fit between the output and input. 
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Figure 5.4. Radial Network Measurement Function. 

The Neural Network has been fed the sensor data and has been mapped with the 

HI index along with the bound confidence (standard deviation) of 30%. The RBF 

also calculates and maps the data to the probability levels, because normal NN do 

not provide the probability/ confidence levels. The outputs of the RBF of the entire 

sensors are shown in the Figure 5.6.  The Figure 5.4 shows the basic architecture 

of the Neural Network with the RBF function used. There are two inputs and two 

outputs to the NN, one output is the nominal model and the other is a standard 

deviation of the nominal model.  

 

5.5.2 Cost function  

In the previous section, Neural Network modelling is explained. However, for the 

model to closely approximate the degradation process, the model parameter values 

need to be tuned (or system identified) from the collected data samples. The aim 

is to minimise/optimise the prediction errors between the experimental 

degradation data and simulated data from the NN model.  

 

The centres and associated weights are determined using a constrained nonlinear 

optimisation algorithm (i.e. ‘fmincon’) provided within MatLab. To do that, an 
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object function script is written to calculate the error regarding the optimisation 

output.  

 

In this chapter, Maximum likelihood Estimation (𝑀𝐿𝐸) is used as a performance 

measure for system identification of the Neural Network degradation model 

defined in (eq 5.3). For a given data sample, 𝑀𝐿𝐸 is obtained by maximising the 

log-likelihood metric, which is given in Eq. 5.5: 

           

𝐿 = −
1

2
ln(2𝜋) − ∑ ln(𝜎𝑖) − ∑

(𝜇𝑖−𝑥)2

2𝜎𝑖
2       (5.5) 

  

Where ‘𝜇𝑖’ and ‘𝜎𝑖’ are the basis function centre mean and standard deviation, 

whereas ‘𝑥’ is the input measurement from the training data. 

5.6 Particle Filter  

5.6.1 Probabilistic Model 

In order to predict 𝐸𝑂𝐿 of a system, the system’s current state of degradation has 

to be continuously estimated from the measurement updates. The basic system 

state transition equation is given in Eq. 5.6: 

𝐻𝐼𝑘 = 𝐻𝐼𝑘−1 − 𝑎   (5.6) 

In this case, the fault precursor ‘𝐻𝐼’ and the parameter ‘𝑎’ are required to be 

estimated. Kalman and Particle Filters are commonly used for estimating the 

degradation state. In this chapter, PF is used as it is more applicable to general 

non-linear systems. The estimation process of PF is based on the discrete 

stochastic state transition and measurement equations (Eq. 5.7) & (Eq. 5.8): 

 𝐻𝐼𝑘 = 𝑓(𝐻𝐼𝑘−1, 𝑎𝑘−1) + 𝒩(0, 𝜎𝐻𝐼
2 ) (5.7) 

                                        𝐻𝐼̃𝑘 = 𝐻𝐼𝑘 + 𝒩(0, 𝜎𝐻𝐼̃
2 ) (5.8) 

where 𝐻𝐼̃, 𝒩(∙,∙), 𝜎𝐻𝐼
2  and 𝜎𝐻𝐼̃

2  are noisy health index obtained from the NN using 

the sensory data, Gaussian random function, process uncertainty variance and 

measurement noise variance, respectively.  
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5.6.2 State and Parameter Estimation  

PF uses a statistical method called Bayesian inference, in which measurements 

are used to estimate and update the HI (state) variable and model parameter 𝑎 in 

a form of probability density function (pdf). In this chapter the measurement 

function is the RBF network methodology itself. Hence, to simplify we use a 

 

ALGORITHM 1:  SIR Particle Filter [73] 

Inputs: {(𝐻𝐼𝑘−1
𝑖 , 𝑎𝑘−1

𝑖 )}
𝑖=1

𝑁𝑃
 and 𝐻𝐼̃𝑘 

Outputs: {(𝐻𝐼𝑘
𝑖 , 𝑎𝑘

𝑖 ), 𝑤𝑘
𝑖 }

𝑖=1

𝑁𝑃
 

Step 1 (Update) 

for 𝑖 = 1 to 𝑁𝑃 do 

𝑎𝑘
𝑖 ~𝒩(𝜃𝑘

𝑖 , 𝜎𝜃) or 𝒩(𝑚(𝑎𝑘
𝑖 ), ℎ2𝑉𝑘) 

𝐻𝐼𝑘
𝑖 ~𝑝(𝐻𝐼𝑘|𝐻𝐼𝑘−1

𝑖 , 𝑎𝑘
𝑖 )  

end for 

Step 2 (Resampling) 

for 𝑖 = 1 to 𝑁𝑃 do 

𝑤𝑘
𝑖 ← 𝐿(𝐻𝐼̃𝑘|𝐻𝐼𝑘

𝑖 , 𝑎𝑘
𝑖 )  

end for 

𝑊 ← ∑ 𝑤𝑘
𝑖𝑁𝑃

𝑖=1   

for 𝑖 = 1 to 𝑁𝑃 do 

𝑤𝑘
𝑖 ← 𝑤𝑘

𝑖 𝑊⁄   

end for 

{(𝐻𝐼𝑘
𝑖 , 𝑎𝑘

𝑖 )}
𝑖=1

𝑁𝑃
←

Resample ({(𝐻𝐼𝑘
𝑖 , 𝑎𝑘

𝑖 ), 𝑤𝑘
𝑖 }

𝑖=1

𝑁𝑃
)  
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simplest form of the particle filter, named Sequential Importance Resampling 

(SIR) [73, 71], to demonstrate the concept in this chapter. The pseudo code of a 

generic SIR particle filter algorithm is listed in algorithm 1 and graphically 

illustrated in Figure 10. In PF, pdf is not explicitly defined, but instead 𝑁𝑃 number 

of samples{(𝐻𝐼𝑖, 𝑎𝑖)}
𝑖=1

𝑁𝑃
, so called particles, are used as an approximation of the 

pdf. A prior probability information of  (𝐻𝐼𝑘−1, 𝑎𝑘−1) and a measurement update 

𝐻𝐼̃𝑘 are the algorithm inputs. To initialise the algorithm, the particles (𝐻𝐼0
𝑖 , 𝑎0

𝑖 ) are 

often sampled uniformly from the possible (or arbitrary) intervals of 𝐻𝐼 and 𝑎. If 

𝑁𝑃 is sufficiently large, then {(𝐻𝐼𝑖, 𝑎𝑖)}
𝑖=1

𝑁𝑃
can be regarded as the representative 

draws of (𝐻𝐼, 𝑎), which effectively ensures consistent results between runs.  

PF consists of two main steps: update and resampling. In the update step, the 

prior pdf {(𝐻𝐼𝑘−1
𝑖 , 𝑎𝑘−1

𝑖 )}
𝑖=1

𝑁𝑃
 is propagated forward to time 𝑘 by some random 

processes. 𝐻𝐼𝑘 is evolved using (5.8), which is obtained using the RBF network. 

However, some type of evolution needs to be defined for the parameter 𝑎𝑘.  The 

typical solutions are to use either a random walk [74, 18] or kernel smoothing 

function [75, 76, 73]. The random walk can be defined by Eq. 5.9: 

  𝑎𝑘 = 𝑎𝑘−1 + 𝒩(0, 𝜎𝑎
2), (5.9) 

Where 𝜎𝑎 defines a random walk step size. 𝜎𝑎 determines the rate and estimation 

performance of the parameter 𝑎𝑘. A large 𝜎𝑎 will give fast convergence but high 

fluctuations, whereas a small value of 𝜎𝑎will produce a smoother (but slower) 

convergence of 𝑎𝑘. 
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In the resampling step, the likelihood of the particles {(𝐻𝐼𝑘−1
𝑖 , 𝑎𝑘−1

𝑖 )}
𝑖=1

𝑁𝑃
 are 

evaluated using 

𝐿(𝐻𝐼̃𝑘|𝐻𝐼𝑘
𝑖 , 𝑎𝑘

𝑖 ) =
1

√2𝜋𝜎𝐻𝐼̃

exp (−
(𝐻𝐼̃𝑘 − 𝐻𝐼𝑘

𝑖 )
2

2𝜎𝐻𝐼̃
2 ) 

. 

(5.10) 

In equation (5.10) quantitatively determines how likely a measurement 𝐻𝐼̃𝑘 is 

produced by a particle (𝐻𝐼𝑘
𝑖 , 𝑎𝑘

𝑖 ). The particles are weighted in which their weights 

𝑤𝑘
𝑖  are proportionally (or equal) to the computed likelihood values. This is in a way 

proposing a pdf for (𝐻𝐼𝑘, 𝑎𝑘). The weights are then normalised and used to 

systematically resample (or commonly known as roulette wheel) the particles, i.e. 

{(𝐻𝐼𝑘
𝑖 , 𝑎𝑘

𝑖 )}
𝑖=1

𝑁𝑃
← Resample ({(𝐻𝐼𝑘

𝑖 , 𝑎𝑘
𝑖 ), 𝑤𝑘

𝑖 }
𝑖=1

𝑁𝑃
) in algorithm 1. Intuitively, a particle 

that has a higher weight will have a higher probability of being duplicated, and 

vice versa (see Figure 5.5). The resampled particles (posterior) are used to estimate 

the state 𝐻𝐼̅̅̅̅
𝑘 and model parameter 𝑎̅𝑘, which can be by either taking the mean or 

median of the particles, and then form the prior pdf for the next filtering iteration. 

 

 

 
 

Figure 5.5. Illustration of Particle Filtering Process [71, 39]. 
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5.7 End of Life Prediction 

At a given time 𝑘, the future state of 𝐻𝐼 of a particle (𝐻𝐼𝑖 , 𝑎𝑖) can be predicted by 

propagating forward using (5.8) where 𝐻𝐼𝑘
𝑖  and 𝑎𝑘

𝑖  are an initial condition and fixed 

model parameter, respectively. To compute 𝑅𝑈𝐿, we then propagate each particle 

until 𝐻𝐼 reaches the 𝐻𝐼𝐸𝑂𝐿 threshold to obtain the probability distribution of 

predicted 𝐸𝑂𝐿′. The distribution of predicted 𝑅𝑈𝐿′ can then be obtained by simply 

subtracting the pdf of 𝐸𝑂𝐿′ with the time index 𝑘.  The estimated 𝑅𝑈𝐿̅̅ ̅̅ ̅̅  can be 

calculated by either taking the mean or median of the distribution. 

 

5.8 Results 

To demonstrate the approach, we tested the developed algorithm based on C-

MAPSS dataset. In this chapter, we have implemented our algorithms in 

MATLAB. The measurement data is rendered point by point to simulate online 

estimation and prediction.  

The resulting state estimation, parameter estimation and remaining useful life 

prediction are shown in Figures 5.7, 5.8, 5.9 and 5.10 respectively.  

The results were generated using two different algorithms: 1) nominal RBF NN 

model + PF parameter estimation, 2) similarity based prognostics for 

benchmarking the results.  

The results highlight the differences in prediction performance of the non-

scalable/adaptable data-driven models. 

One of the commonly used performance metrics for prognostics is Root Mean 

Square Error (𝑅𝑀𝑆𝐸) [77]. For a given 𝑅𝑈𝐿 prediction profile, 𝑅𝑀𝑆𝐸 can be offline 

evaluated using 

 

𝑅𝑀𝑆𝐸 = √
1

𝑁𝑃
∑(𝑅𝑈𝐿̅̅ ̅̅ ̅̅

𝑘
′ − 𝑅𝑈𝐿𝑘)2

𝑁𝑃

𝑘=1

 (5.11) 

Where 𝑅𝑈𝐿̅̅ ̅̅ ̅̅
𝑘
′  and 𝑅𝑈𝐿𝑘 are predicted mean (or median) 𝑅𝑈𝐿 (either mean or 

median) and true 𝑅𝑈𝐿 at time 𝑘, respectively. 

The MAPE (Mean Absolute Percent Error) measures the prediction precision, the 

size of the error in percentage terms. It calculates as the average of the unsigned 

percentage error. 
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𝑀𝐴𝑃𝐸 = √
1

𝑁𝑃
∑ (

𝑅𝑈𝐿𝑘−  𝑅𝑈𝐿̅̅ ̅̅ ̅̅ ̅
𝑘
′

𝑅𝑈𝐿𝑘
)

 
𝑁𝑃
𝑘=1 ∗ 100 (5.12) 

  

Table 5.2 to 5.5 shows the 𝑅𝑈𝐿 prediction errors measured in 𝑅𝑀𝑆𝐸 𝑎𝑛𝑑 𝑀𝐴𝑃𝐸 for 

the 4 test samples. It can be seen that the 𝑅𝑈𝐿 prediction results are significantly 

better in the case of adaptable NN+PF technique comparatively to the normal data 

driven technique similarity based prognostics (SBP). 

 

The Figure 5.6 demonstrators the nominal models which have been created from 

the data by using the RBF NN which models have been fed to the Particle Filter 

for RUL predictions. The solid blue line shows the mean of the nominal model and 

the dashed lines are the confidence bounds of the nominal models. The red dots 

are the data from the sensor which has been used to create the nominal model. 

 

The measurement model has been created by using RBF NN and used as a 

measurement equation in the particle filter. Once the observed sensor value is 

provided to the particle filter it’s fed to the measure equation which takes sensor 

observed values and provides HI mean with standard deviation which is needed 

to form a Gaussian distribution. The particle filter evaluates the likelihood of each 

particle and randomly resample according to its likelihood by using a roulette 

wheel genetic algorithm and reiterate the process. This way the particle with more 

likelihood will stay and the one with the lowest likelihood will be eliminated. 
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Figure 5.6. The NN results of 14 sensors of Turbofan Jet Engine 

The presented technique has been tested rigorously to test the adaptability and 

robustness of the technique.  The four specimens that have been selected to test 

the technique, are the longest flight lasted engine, small flight lasted engine and 

randomly selected middle two flights lasted engines specimens. These specimens 

have been selected to check the adaptability of the presented technique, as the 

longest lasted engine will more likely to be under less stresses comparatively to 

the shortest flight 
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Figure 5.7. RUL Calculation of 4 Selection Sensors for Engine 6 

 
 

  

Figure 5.8. RUL Calculation of 4 Selection Sensors for Engine 39 
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Figure 5.9. RUL Calculation of 4 Selection Sensors for Engine 69 

 

 
 

 
 

Figure 5.10. RUL Calculation of 4 Selection Sensors for Engine 73 
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Figure 5.11. Parameter ‘a’ learning for 

Engine 6 sensor Total Pressure at HPC 

Outlet 

 

Figure 5.12. Parameter ‘a’ learning for 

Engine 39 sensor Total Pressure at 

HPC Outlet 

 

Figure 5.13. Parameter ‘a’ learning for 

Engine 69 sensor Total Pressure at HPC 

Outlet 

 

Figure 5.14. Parameter ‘a’ learning for 

Engine 73 sensor Total Pressure at 

HPC Outlet 

 

The Figures 5.11 to 5.14 show the way parameter ‘a’ learned in different engines, 

how the particle filter is attempting to learn and how it’s evaluating over time.  

Once the value of ‘a’ provides the state estimations which are coinciding with what 

has been observed, it will not have enough errors to be updated dramatically to 

adapt. 

5.9 Benchmarking  

 In benchmarking the techniques that has been used is Similarity-Based 

Prognostics (SBP). The result shows that the presented techniques have achieved 
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better results in almost all tested cases. The results comparisons are 

demonstrated in the RUL Figures 5.7 to 5.10.  The presented technique is proven 

to be an adaptable data driven technique in comparison the other data driven 

methods. The details on the SBP technique are provided in the next section.   

 

5.9.1 Similarity-Based Prognostics 

 Similarity-based Prognostics (SBP) is a generic type of prognostic approach where 

the test specimen signal segments, consisting of sequential raw measurements or 

processed data are correlated to the previously collected data (i.e. historical data) 

segments by using a similarity concept. Unlike traditional data-driven models, in 

SBP, RUL is calculated by aggregating the weighted average of the training 

sample RUL values rather than extrapolating the test sample’s current health 

level to a predefined threshold.  

 

 Similarity-based Prognostic approach is a powerful algorithm for RUL 

estimations, notably when the historical training sample size is relatively 

abundant. In addition, they are suitable for the cases where the degradation path 

is not necessarily exhibiting a monotonic propagation pattern which is difficult to 

model using parametric approaches [81].  Wang et al [82] won the Prognostic and 

Health Management Society’s data challenge competition in 2008 where they 

employed a similarity-based prognostic approach to predict the RUL of turbofan 

engines created by C-MAPSS simulation. 

 

 In similarity based prognostics the estimations of RUL involve calculating the 

similarity between the test sample (i.e. ‘𝑞’) and the training samples (i.e. ‘𝑟 = 1: 𝑅’) 

as shown in Eq. (5.13). The similarity index is based on the calculated point wise 

Euclidean distances in between ‘𝑛 − 𝑙𝑜𝑛𝑔’ sequences of observations. Distance 

score calculation in between training samples and the test sample at the ‘𝑖𝑡ℎ’ time 

point formulated in Eq. (5.12). Final RUL estimation of a test sample at a time 

instance  (i.e. ‘𝐼’) is achieved by aggregating the weighted average of training 

samples’ corresponding remaining useful life values as formulated in Eq. (5.14). 

To be more precise, ‘𝑟𝑢𝑙𝑖
𝑟 ’ symbolises the remaining useful life of the ‘𝑟𝑡ℎ’  training 
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sample at ‘𝑖𝑡ℎ’ time point which is obtained by calculating the difference between 

the training sample’s end-of-life time and the ‘𝑖𝑡ℎ’ time point. The most similar 

segment to the test segment is specified for each training sample whereas the RUL 

of the test sample is obtained by taking the weighted average of these training 

RUL values. In fact, the weights are obtained using the bell-shaped similarity 

functions. 

𝑑𝑖
𝑟 = √∑ ‖𝑧𝐼−𝑛+𝑗

𝑞 − 𝑧𝑖−𝑛+𝑗
𝑟 ‖

2
𝑛
𝑗=1   (5.12) 

𝑠𝑖
𝑟 = 𝑒−

(𝑑𝑖
𝑟)2

𝜆   (5.13) 

𝑅𝑈𝐿𝐼
𝑞 =

∑ 𝑠𝑖
𝑟𝑟𝑢𝑙𝑖

𝑟𝑅
𝑟=1

∑ 𝑠𝑖
𝑟𝑅

𝑟=1
   (5.14) 

 

 ‘λ’ is an arbitrary parameter which can be set to shape the desired interpretation 

of similarity, whereas ‘n’ defines the number of latest consecutive observations 

involved in similarity calculations.  

 

The smaller the ‘λ’ is, the stronger the definition of similarity. For instance, a small 

value for ‘λ’ signifies that the training segment should be very similar to the test 

segment so that it will be appointed with a similarity value reasonably higher than 

zero. However, when working with higher decimal point precision systems, this 

concept becomes trivial as the similarity ratio in between training samples remain 

the same. 
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TABLE 5-2. Remaining Useful Life (𝑅𝑈𝐿) Prediction Error for Sensor Static Pressure at HPC Outlet 
 

Data Driven Techniques 

and Models 

Root-Mean-Square-Error (RMSE) and Mean Absolute Percent Error (MAPE) 

Engine 6 ENGINE 39 ENGINE 69 ENGINE 73 Error Calculation Method  

RBF NN + PF 12.12 9.30 68.91 24.80 RMSE 

 19.53  19.65  86.32 25.87  MAPE (%) 

SBP 31.04 24.21 88.04 49.95 RMSE 

 36.15 50.81 38.78 45.18 MAPE (%) 

 

 

TABLE 5-3. Remaining Useful Life (𝑅𝑈𝐿) Prediction Error for Sensor Total Pressure HPC Outlet. 
 

Data Driven Techniques 

and Models 

Root-Mean-Square-Error (RMSE) and Mean Absolute Percent Error (MAPE) 

Engine 6 ENGINE 39 ENGINE 69 ENGINE 73 Error Calculation Method 

RBF NN + PF 10.78 5.17 72.78 19.04 RMSE 

 18.43 15.78 104.89 18.85 MAPE (%) 

SBP 36.86 31.86 86.25 53.07 RMSE 

 36.62 69.46 37.22 46.22 MAPE (%) 

 

 

TABLE 5-4. Remaining Useful Life (𝑅𝑈𝐿) Prediction Error for Sensor Ratio of fuel flow to Ps30. 
 

Data Driven Techniques 
and Models 

Root-Mean-Square-Error (RMSE) and Mean Absolute Percent Error (MAPE) 

Engine 6 ENGINE 39 ENGINE 69 ENGINE 73 Error Calculation Method 

RBF NN + PF 11.57 8.43 63.35 19.04 RMSE 

 16.32 25.69 81.42 23.59 MAPE (%) 

SBP 31.86 22.49 84.08 55.76 RMSE 

 36.48 49.71 40.67 49.73 MAPE (%) 

 

 

TABLE 5-5. Remaining Useful Life (𝑅𝑈𝐿) Prediction Error for Sensor LPT Coolant Bleed. 
 

Data Driven Techniques 

and Models 

Root-Mean-Square-Error (RMSE) and Mean Absolute Percent Error (MAPE) 

Engine 6 ENGINE 39 ENGINE 69 ENGINE 73 Error Calculation Method 

RBF NN + PF 12.91 3.59 95.75 14.76 RMSE 

 35.44 13.39 124.24 30.03 MAPE (%) 

SBP 30.81 44.17 81.10 40.9 RMSE 

 40.82 104.76 39.30 41.00 MAPE (%) 
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 The compassion between the presented adaptable data driven technique to SBP 

has been shown in the Figures 5.7 to 5.10 and the error also has been presented 

in tables 5.2 to 5.5.  

The 𝑅𝑀𝑆𝐸 ratio between nominal and adaptable models is more significant if the 

operating condition "𝑎"  of a test sample is more different from the nominal model. 

Hence this explains the better 𝑅𝑀𝑆𝐸 results as observed in this experiment. 

 

5.10 Summary  

The future health prediction enables to minimise the risk of system failure, which 

could lead to catastrophic accidents.  Prognostics will be most useful when the 

component’s operating condition varies from its nominal value and cannot be pre-

determined in advance. In most cases, the actual end-of-life of a component can be 

expected to be significantly different from its manufacturer-defined mean time 

before failure. 

 

 There are two most common approaches reported in the literature, data-driven 

and model-based. The data driven approach allows complex degradation patterns 

to be easily captured in the model, but has a severe limitation in the operating 

conditions in which the model is valid. In the model-based approach, a degradation 

model is explicitly described using mathematical equations with physical 

meaning. Explicit mathematical representation (often not possible to derive 

economically) allows the relevant model parameters to be scaled online to match 

a current operating condition. Therefore, a combination of data-driven model and 

online parameter estimation can be used to address a prognostics problem which 

has a complex degradation model and a large variation in operation conditions, 

and this is what is proposed in this chapter. 

 

 How fast a system degrades is proportional to its degradation rate which will 

essentially depend on the operating conditions. If the rate is multiplied by some 

factors, then this also means we are scaling the time by a proportion of that factor. 

In order for a data-driven model to be scalable, a scaling parameter will have to 
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be explicitly part of the model. Instead of overall fitting the data, the model (the 

model presented in this chapter) has to learn a nominal degradation pattern where 

different degradation profiles can be fitted by using some appropriate model 

parameters. This way the data-driven model is able to be updated to match the 

current operating conditions, and hence a better 𝑅𝑈𝐿 prediction because of a more 

accurate model. 

 

In this case study, it can be seen that the proposed prognostic approach has 

potential to be applicable in a real world environment where operating conditions 

can vary significantly and cannot be accurately defined in advance. The approach 

can potentially be used in applications where only accelerated testing data are 

available for the algorithm development. However, its claim as a generic adaptable 

approach has to be further researched in comparison with other engineering 

examples and with other data-driven techniques, like Time Delayed Neural 

Network (TDNN) or similarity based prognostics (SBP). 
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Chapter 6 

 

6 Conclusions 

Vehicle Level Reasoning System (VLRS) is a relatively new concept as compared 

to a system level diagnostics system especially in aircraft research and industry.  

In aircraft field, system level diagnostics and detection systems have the 

limitation as they only monitor single sub-systems of the aircraft. Whereas VLRS 

doesn’t suffer this limitation, however VLRS does encounter different problems 

compared to sub-system diagnostic systems. The next section will discuss the 

VLRS philosophy, effectiveness and limitation. 

6.1 The VLRS Effectiveness and their Philosophy 

There are some issues when designing the VLRS, such as the integration of the 

VLRS with the subjected systems, which will provide the vital sensor data in order 

to perform the reasoning to produce vehicle level results. Secondly, most of the 

algorithm have convergence issue on vehicle level because of the vast amount of 

sensors data which needed to be processed. Thirdly, to monitor the enormous 

amount of data, it requires a huge computational processing power, which could 

be a problem if the reasoning is done on-board. 

In this thesis the VLRS presented addresses all the above issues and presents a 

novel VLRS design, which overcomes above listed issues. However there are 

different limitations of the presented VLRS (presented in chapter 3). The 

presented VLRS utilises the HI and vehicle behaviour along with the sub-system 

diagnostics results, which are more computational efficient and have less 
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problems in order to deploy the present aircraft without having huge integration 

issues.      

In VLRS the prognostics engine’s output and health index information are very 

important, as the components that have a lower health index are more likely to be 

faulty or working at the lowest threshold which could cause problems or future 

problems. In this thesis there are three techniques presented, one conceptual 

design of VLRS (chapter 3), operational scalable prognostic framework (chapter4) 

and adaptive data driven techniques (chapter 5).  

6.2 Objectives and Evaluation 

The outlined aims and objectives in the chapter 1 have been fulfilled entirely. The 

objective 1 (Review and identify key modelling and prediction aspects of state-of-

the-art model-based and data-driven prognostic approaches) and objective 2 

(Identify key technical requirements to a predictive power of a prognostic reasoner 

if to be deployed in a real-world operation uncertain environment) has been met 

and demonstrated in chapter 2 and 4 as well as in the published one journal and 

two conference article. Full review of VLRS and data driven prognostics 

techniques has been discussed. The real life problems have been heighted for 

prognostics framework.   

 

The objective 3 (Design a generic prognostic framework (or problem formulation) 

that can be operationally scaled to usage and imperfect manufacturing 

uncertainties and yet can be simply constructed using standard data-driven and 

parameter estimation building blocks.) has been fulfilled and showed in the 

chapter 4 and published journal article. The design of the framework which can 

scaled to the real environment and with different usage profiles has been 

presented in the chapter 4 and in the journal article. The usage of the framework 

and the problems has bean also evaluated. The framework works very well and it 

scales to the usage profile as the results shows, however huge amount of data is 

required in order the train the framework.   

The prognostics allow anticipation of system failures well ahead of time so that 

maintenance can be planned, scheduled and performed in the most optimal way. 

Prognostics will be most useful when the component’s operating condition varies 
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from its nominal value and cannot be pre-determined in advance. In most cases, 

the actual end-of-life of a component can be expected to be significantly different 

from its manufacturer-defined mean time before failure (MTBF).  

Data-driven and model-based are the most common prognostic approaches 

reported in the literature. The former allows complex degradation patterns to be 

easily captured in the model, but has a severe limitation in the operating 

conditions in which the model is valid. In the model-based approach, a degradation 

model is explicitly described using mathematical equations with physical 

meaning. Explicit mathematical representation (often not possible to be derived) 

allows the relevant model parameters to be scaled online to match a current 

operating condition. To solve this problem two different data driven techniques 

have been presented in this thesis. In one of the techniques a combination of data-

driven model and online parameter estimation can be used to address a prognostic 

problem which has a complex degradation model and large variation in operation 

conditions. How fast a system degrades is proportional to its degradation rate 

which will essentially depend on the operating conditions. If the rate is multiplied 

by some factors, then this also means we are scaling the time by a proportion of 

that factor. In order for a data-driven model to be scalable, a scaling parameter 

will have to be explicitly part of the model. Instead of overall fitting the data, the 

model (which is a TS fuzzy model in chapter 4) has to learn a nominal degradation 

pattern where different degradation profiles can be fitted by using some 

appropriate model parameters. This way the data-driven model is able to be 

updated to match the current operating conditions, and hence a better RUL 

prediction because of a more accurate model.  

In the first data driven technique (chapter 4), a TS fuzzy (where any data driven 

technique can be used to create the model) model is used to approximate the 

nominal degradation pattern from the data. In overall, the model parameter will 

be able to converge close to its true and thus a good RUL prediction. However, at 

a given time, how well the prediction tracks the true RUL will depend on how 

much the modelling error (deviation of the scaled degradation pattern) is from the 

degradation profile at an interval around that particular time step. The keys to 

this approach therefore are: the data for different operating conditions have a 
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similar degradation pattern and different data can be closely approximated by 

rate-scaling the nominal model.    

For this technique the filter clogging case study has been used. It can be seen that 

the proposed prognostic approach has potential to be applicable in a real world 

environment where operating conditions can vary significantly and cannot be 

accurately defined in advance. The approach can potentially be used in 

applications where only accelerated testing data are available for the algorithm 

development. However, its claim as a generic operational-scalable approach has to 

be further researched in comparison with other engineering examples and with 

other data-driven techniques, for example Time Delayed Neural Network (TDNN) 

Bayesian belief etc. can be used. 

 

The objective 4 (The conceptual design of VLRS by providing prognostics engine 

output as a Health Index to VLRS) has been fulfilled and showed in the chapter 3 

and published journal article and a conference article. The novel design of the 

VLRS has been presented and the usage of the behaviour and health index are 

used in the design. The design also has some limitations, such as the behaviour 

engine could give not every accurate fault list as well as it also need to process lot 

of sensory data to measure health index.  

The objective 5 (Proof-of-concept demonstration and performance evaluation of the 

developed framework using adaptive/scalable machine learning and online 

estimation models based on aerospace related prognostic case studies) has been 

fulfilled and showed in the chapter 5 and published journal article. In the chapter 

5 the adaptiveness of the second technique has been demonstrated by using 

several different dataset of different jet engines. The results are also presented 

and benchmarked.    

This data driven technique (chapter 5) shows that adaptation to the condition. In 

this technique Neural Network (NN RBF) has been used to create the nominal 

model from the data and the nominal model with uncertainty bounds has been 

given to the particle filter (PF). In this technique the NASA Jet turbofan data has 

been used.  This dataset has the data of 21 sensors of jet engines. The Jet engines 

are classified as complex systems as their degradation is very difficult to model, 
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therefore the sensor data has been used to convert into health index information, 

which means what sensor information really means to operator rather than just 

number. To calculate the HI from the sensor readings data-driven technique have 

been employed. Data driven techniques are very good in modelling the complex 

systems, therefore this task has been achieved by the Neural Network using radial 

basis function which are typical data driven techniques. Once the health 

degradation model has been created it has been given to the particle filter (PF). 

The particle filter has adapted the model to real sensor data. Many different 

samples have been tested in order to confirm whether the adaptation technique is 

working as intended (Please see results of chapter 5).   

The technique which is presented in this chapter has been benchmarked by 

similarity based prognostics approach and the results are compared please see 

results are provided in the tables 5-2 to 5-5.  

The scalable and adaptive, both data driven techniques shows that it has potential 

to be used at the industrial level, as in a real environment the conditions are very 

dynamic which is hardly the case with  the laboratory generated data.  

Generally, the presented prognostics techniques use laboratory generated data 

which are created in very controlled environment and do not contains much 

variations in the data. Both of these techniques focus on how to solve these issues 

as well which have been noted previously in this thesis.  

6.3 Key Novelty  

The key novelty of this are listed below: 

1. The novel design has been presented of VLRS which utilise the usage of 

prognostics framework provided health index and vehicle behaviour.  

2. The scalable data driven techniques has also presented by using the fuzzy logic 

and particle filter. This technique provides accurate results even if the usage of 

the system is very much different from the nominal model usage. 

3. The adaptive data driven technique is also novel the way it has been 

implemented it also calculate the health index as well the RUL of the 

component. The also adapts to the mission context while calculates the RUL 

which makes this technique adaptive and novel.  
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6.4 Future Work 

 The Future works could be pursued into a few different directions, and one could 

be in VLRS, secondly the scalable prognostics framework presented in chapter 4 

and thirdly could be the adaptable prognostics technique for complex system.  

In VLRS, further design configurations and testing and results would be the 1st 

step and more sub-system information could be shared with VLRS and further 

development of the VLRS, where sub-system results could be provided along with 

the behaviour and health index. Automatically detection of the vehicle behaviour 

would be very beneficial for VLRS, therefore the vehicle behavioural engine would 

be another further work.  The implementation of the VLRS on small sized drone 

would be real beneficial and economical to proof of concept. The behaviour engine 

and health index calculation could be improved after the results on the 

implementation in real life environment. Usually, each vehicle would have 

different fault allocation with different behaviour therefore real system testing 

will provide intensive amount of data which could be used in order to update the 

VLRS.  

 

Secondly, In terms of prognostics framework, future development could be 

implemented with several different datasets in order to evaluate further 

performance which might be able to enhance by using of different deep learning 

algorithms along with more than just 3 number of degradation stages as presented 

in chapter 4.  

 

Thirdly, the RBF Neural Network has been used to create the nominal model to 

map the sensor values to health index. This process also can be further develop by 

using cascading Neural Network or even Bayesian regression algorithm.  

The fuel rig data (presented in chapter 4) also could be used on this technique, this 

task would be very simple to achieve and it would provide plausible results and it 

will add information to raw sensor data.      

 

Furthermore, in complex system such as jet engine many different components are 

involved in the degradation of the whole system. The dataset has been used in the 
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chapter 5 it has 21 different sensor data which are providing indirect condition 

monitoring of the system, one sensor information/data would be not enough to 

monitor the whole health of the system. Therefore the sensor fusion technique 

would be application which will provide the system level prognostics results. There 

are several different technique available for sensor fusion, however the sensor 

fusion technique must follow the overall health and RUL of system to validate if 

the sensor fusion technique is valid for prognostics proposes    
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