
Journal of Hydrology 528 (2015) 631–642
Contents lists available at ScienceDirect

Journal of Hydrology

journal homepage: www.elsevier .com/ locate / jhydrol
Effect of baseline meteorological data selection on hydrological
modelling of climate change scenarios
http://dx.doi.org/10.1016/j.jhydrol.2015.06.026
0022-1694/� 2015 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

⇑ Corresponding author at: Cranfield Water Science Institute, Cranfield Univer-
sity, Cranfield, Bedford MK43 0AL, United Kingdom.

E-mail address: i.holman@cranfield.ac.uk (I.P. Holman).
Renji Remesan, Ian P. Holman ⇑
Cranfield Water Science Institute, Cranfield University, United Kingdom

a r t i c l e i n f o
Article history:
Received 5 December 2014
Received in revised form 27 May 2015
Accepted 14 June 2015
Available online 9 July 2015
This manuscript was handled by
Konstantine P. Georgakakos, Editor-in-Chief,
with the assistance of Matthew McCabe,
Associate Editor

Keywords:
Uncertainty
TRMM3B42 V7
Aphrodite
Impact response surface
Evapotranspiration
Climate change
s u m m a r y

This study evaluates how differences in hydrological model parameterisation resulting from the choice of
gridded global precipitation data sets and reference evapotranspiration (ETo) equations affects simulated
climate change impacts, using the north western Himalayan Beas river catchment as a case study. Six
combinations of baseline precipitation data (the Tropical Rainfall Measuring Mission (TRMM) and the
Asian Precipitation – Highly Resolved Observational Data Integration Towards Evaluation of Water
Resources (APHRODITE)) and Reference Evapotranspiration equations of differing complexity and data
requirements (Penman–Monteith, Hargreaves–Samani and Priestley–Taylor) were used in the calibration
of the HySim model. Although the six validated hydrological models had similar historical model perfor-
mance (Nash–Sutcliffe model efficiency coefficient (NSE) from 0.64 to 0.70), impact response surfaces
derived using a scenario neutral approach demonstrated significant deviations in the models’ responses
to changes in future annual precipitation and temperature. For example, the change in Q10 varies
between �6.5% and �11.5% in the driest and coolest climate change simulation and +79% to +118% in
the wettest and hottest climate change simulation among the six models. The results demonstrate that
the baseline meteorological data choices made in model construction significantly condition the magni-
tude of simulated hydrological impacts of climate change, with important implications for impact study
design.

� 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Understanding the current and future temporal dynamics of the
hydrological behaviour of rivers is vital for management of
hydro-power generation, irrigation systems, public water supply
and flood control structures (Jain et al., 2010). However, there is
a widely recognised cascade of uncertainty in top-down climate
change impact studies (Wilby and Dessai, 2010) that affects the
certainty in future water resource assessments (Refsgaard et al.,
2007). Many elements of the uncertainty cascade within climate
impacts modelling have been quantitatively assessed, highlighting
the uncertainty associated with climate model (RCMs or GCMs)
choice (Fowler and Kilsby, 2007; Woldemeskel et al., 2012), emis-
sions scenario (Maurer, 2007), downscaling method, model choice,
etc. (Pappenberger and Beven, 2006; Buytaert et al., 2009; Kay
et al., 2009; Chen et al., 2011; Xu, 1999; Wilby et al., 2004;
Wood et al., 2004).
However, quantification of the hydrological impacts of climate
change requires quality baseline data to enable meaningful com-
parison between present and future, but there is a paucity or lack
of coverage of land based measurements of meteorological vari-
ables in many parts of the world. Data sparsity tends to be exacer-
bated in mountainous regions where very steep temperature and
precipitation gradients are poorly characterised by the limited spa-
tial and temporal extents of raingauge and weather station net-
works (Legates and Willmott, 1990), leading to significant
uncertainty in precipitation and evapotranspiration.

Recently, many global/regional datasets have been developed as
an alternative or supplement to ground-based data over basins
with severe climate data scarcity (Meng et al., 2014) for use in
hydrological modelling studies (Andermann et al., 2012; Meng
et al., 2014). These data sets include the Asian Precipitation –
Highly Resolved Observational Data Integration Towards
Evaluation of Water Resources (APHRODITE) data and
satellite-based precipitation products such as the Tropical
Rainfall Measuring Mission (TRMM). However, there are consider-
able temporal and spatial differences between such data products
in comparison to weather station precipitation (Tian et al., 2007;
Habib et al., 2009; Andermann et al., 2011; Li et al., 2012; Lu
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et al., 2013; Jamandre and Narisma, 2013), although these may
partly be due to the difficulties in gauge-radar assimilation or com-
parison (Vasiloff et al., 2009). A number of studies have used
TRMM and APHRODITE for hydrological simulation in large river
catchments whilst also detailing their uncertainties – for example,
Collischonn et al. (2007, 2008) used TRMM rainfall data in mod-
elling the Tapajós river basin in Brazil; and APHRODITE precipita-
tion data were used in hydrological modelling of the Aksu River
basin, North-Western China (Zhao et al., 2013) and Himalayan riv-
ers in Nepal (Andermann et al., 2012). Meng et al. (2014) high-
lighted that TRMM (3B42V6) daily data sets were more
appropriate for monthly hydrological modelling in hilly regions
of the Tibetan Plateau within the Yellow river basin, but studies
by Xue et al. (2013) have shown a clear improvement of 3B42V7
data sets over 3B42V6 in hydrological applications in the
Wangchu Basin in Bhutan. Their study demonstrated that
3B42V7 provided better basin-scale agreement with observed
(2001–2010) monthly and daily rain gauge data and improved
rainfall intensity distribution than 3B42V6. Andermann et al.
(2011) compared APHRODITE with TRMM-3B42 (and 3B43 data)
along with other remote sensing based precipitation datasets along
the Himalayan front and suggest that estimation of precipitation in
high elevations regions such as the Himalaya is challenging and
that significant inconsistencies exist between different remote
sensing data products.

The quantification of Reference Evapotranspiration (ETo) is also
associated with significant uncertainties that can affect water and
energy budgeting. Recent PET based studies including FLUXNET
(Baldocchi et al., 2001) and LandFlux-EVAL (Mueller et al., 2011,
2013) have addressed evapotranspiration uncertainty quantifica-
tion and evaluation. These studies principally aimed to compare
satellite-based estimates, IPCC AR4 simulations, land surface
model (LSM) simulations and reanalysis data products to produce
an ensemble of global benchmark PET datasets. Kay and Davies
(2008) found important differences between ETo estimates using
Penman–Monteith, a simpler temperature-based potential evapo-
transpiration (PET) method and the UK Meteorological Office
Rainfall and Evapotranspiration Calculation System (MORECS)
when applied to data from five global and eight regional climate
models. However, whilst Thompson et al. (2014) have
Fig. 1. The study area of the Beas
demonstrated that the choice of ETo method affected the simu-
lated hydrology of the Mekong and Andermann et al. (2011) high-
lighted the significant inconsistencies that exist between different
precipitation data products, including APHRODITE with
TRMM-3B42 (and 3B43 data), no studies have assessed the com-
bined effects of these two uncertainties for future climate change
simulations. There is therefore a lack of understanding concerning
the effect that the modeller’s subjective choice of historical mete-
orological data, as determined by their selection of both baseline
weather data products and the methods to derive meteorological
variables such as ETo, have on the uncertainty in future hydrolog-
ical impacts.

This study evaluates how the choice of gridded global precipita-
tion data sets and reference evapotranspiration (ETo) method affects
baseline hydrological model parameterisation and thereby the
uncertainty in simulated future climate change impacts using
scenario-neutral impact response surfaces. Six combinations of base-
line daily precipitation datasets (TRMM and APHRODITE) and ETo
methods (Penman–Monteith, Hargreaves–Samani and Priestley–
Taylor) were used in the calibration/validation of the HySim model
(Manley and Water Resource Associates Ltd., 2006), using the north
western Himalayan Beas river catchment as a case study.
2. Study area and methods

The Beas River is one of the five major rivers of the Indus basin
in India and originates in the Himalayas, flowing for approximately
470 km before joining the Sutlej River. The catchment area,
upstream of the Pong reservoir, is around 12,560 km2, and varies
in elevation from 245 to 6617 metres above sea level (m asl).
The catchment is bounded by Latitude 31�280–32�260N and
Longitude 75�560–77�480E (Fig. 1). Soils in the catchment are young
and relatively thin, with their thickness increasing in the valleys
and areas with gentle slopes (Pandey, 2002). The major land cover
classes include forest, snow and bare rock, with about 65% of the
area covered with snow during winter (Singh and Bengtsson,
2003). The Beas catchment is under the influence of western dis-
turbances that bring snowfall to the upper sub-catchment during
winter (December–April), whilst the monsoon provides around
river basin in northern India.
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70% of the annual rainfall during June–September. The catchment
is characterised by moderate – low temperatures with mean min-
imum and mean maximum winter temperatures of �1.6 �C and
7.7 �C, respectively (Singh and Ganju, 2008). The Pong reservoir
provides an active storage capacity of 7051 Mm3 to support flood
protection, hydropower generation and almost 9000 Mm3/year of
irrigation water demands (Jain et al., 2007). Daily gauged reservoir
inflows from January 1998 to December 2008 (11 years) were used
in this study.

The methodology adopted in this study for analysis of uncer-
tainty propagation is shown in Fig. 2. Six HySim models employing
different combinations of two gridded precipitation data sets and
three evapotranspiration equations (Sections 2.1 and 2.2) have
been calibrated and validated against observed daily river dis-
charge data (Section 2.4). Then a scenario-neutral approach has
been adopted to study the propagation of uncertainties in the
HySim models. The methodology departs from conventional
GCM/RCM based scenario-led impact studies because it is based
on sensitivity analyses of catchment responses to a plausible range
of climate changes, avoiding the application of time varying
GCM/RCM scenario outcomes simulated under certain assump-
tions of social/economic/environmental policies, thus making it
scenario-neutral (Prudhomme et al., 2010). Within the
Scenario-neutral approach, a range of annual temperature changes
and annual precipitation changes (Section 2.5) are applied to the
baseline (2000–2008) weather. Each of the six HySim model were
then run with each of the modified weather time series, and their
changes in hydrological indicators plotted as impact response sur-
faces [a surface plot showing the variation of a certain quantity
(e.g.: surface runoff) across the ranges of plausible changes in
future temperature and precipitation].

2.1. Rainfall and meteorological data

This study has used three datasets – two gridded precipitation
datasets and a gridded meteorological dataset:

� Tropical Rainfall Measuring Mission (TRMM) Data product 3B42
V7 of daily precipitation data has been used in this study.
TRMM is a joint space programme between NASA and the
Japanese space agency to monitor precipitation in the tropics
and subtropics and its associated latent heat (launched on
November 27, 1997) which provides an important precipitation
database for environmental and hydrological research around
the globe. The gridded TRMM data at a spatial resolution of
0.25� � 0.25� over the latitudinal band of 50� N–S are available
from 1998.
Fig. 2. Methodology adopted for analysis of
� Asian Precipitation – Highly Resolved Observational Data
Integration Towards Evaluation of Water Resources
(APHRODITE)– the APHRODITE Water Resources project
(http://www.chikyu.ac.jp/precip/) has created long-term daily
gridded precipitation datasets over Asia from the year 1951.
In this study we have used 0.25� � 0.25� gridded daily datasets
over Monsoon Asia (APHRO_MA_V1101), available between
60�E–150�E and 15�S–55�N, which are calculated by interpola-
tion of rain-gauge data from meteorological stations in the
region (Yatagai et al., 2012).
� NCEP Climate Forecast System Reanalysis (CFSR) data – meteoro-

logical variables (e.g.: daily maximum temperature, daily mini-
mum temperature, daily wind velocity, daily average relative
humidity, daily average solar radiation, etc.) at a spatial resolu-
tion of 0.5� � 0.5� are available from the National Centres for
Environmental Protection (NCEP) Climate Forecast System
Reanalysis (CFSR) for the 31-yr period from 1979 to 2009 for
the calculation of ETo.

2.2. Potential evapotranspiration equations

There are numerous methods available for the calculation of
evapotranspiration, which differ in their data requirements and
accuracy (see the reviews by Kumar et al. (2011) and Kumar
et al. (2012)). In this study we have used three reference evapo-
transpiration equations of differing complexity in input data usage
and process representation for the calculation of ETo viz. FAO
Penman–Monteith (Allen et al., 1998), Hargreaves–Samani
(Hargreaves and Samani, 1985a,b) and Priestley–Taylor (Priestley
and Taylor, 1972).

2.2.1. The FAO Penman–Monteith method
The FAO Penman–Monteith method is considered as one of the

best methods for ETo calculation (Ngongondo et al., in press), but
also has the greatest data demands. It considers both aerodynamic
phenomena and surface resistance factors (resistance of vapour
flow through the transpiring vegetation and evaporating soil sur-
face) (Allen et al., 1998). The equation is given as

ET0 ¼
0:408DðRn � GÞ þ c 900

Tþ273 u2ðes � eaÞ

Dþ cð1þ 0:34u2Þ
ð1Þ

where ET0 is reference evapotranspiration (mm day�1), Rn net radi-
ation at the crop surface (MJ m�2 day�1), G soil heat flux density
(MJ m�2 day�1), T mean daily air temperature at 2 m height (�C),
u2 wind speed at 2 m height (m s�1), es saturation vapour pressure
(kPa), ea actual vapour pressure (kPa), (es � ea) saturation vapour
uncertainty propagation in this study.

http://www.chikyu.ac.jp/precip/
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pressure deficit (kPa), D slope vapour pressure curve (kPa �C�1), �

psychrometric constant (kPa �C�1) (Mallikarjuna et al., 2014).

2.2.2. The Hargreaves–Samani method
The Hargreaves–Samani method (Hargreaves and Samani,

1985a,b) is a well-established approach that has been shown to
give similar performance to Penman–Monteith (Heydari and
Heydari, 2014), but without the need for solar radiation, relative
humidity and wind speed data:

ET0 ¼ 0:0135KRs

Ra

k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðTmax � Tmin

p
ÞðT þ 17:8Þ ð2Þ

where Ra is the extra-terrestrial radiation (MJ m�2 day�1), and k is
the latent heat of vaporisation (MJ kg�1) for the mean air tempera-
ture T (�C), which is equal to 2.45 MJ kg�1, KRs is the radiation
adjustment coefficient (the numerical value is 0.17) (De Sousa
Lima et al., 2013; Samani, 2004). Pandey et al. (2014) considers
Hargreaves–Samani method as one of the promising approaches
for estimation of reference evapotranspiration under data-scarce
mountainous conditions based on experiments in East Sikkim,
India.

2.2.3. The Priestley–Taylor equation
The Priestley–Taylor equation replaces the aerodynamic term in

the Penman–Monteith equation with a dimensionless constant
(Priestley–Taylor coefficient)

ET0 ¼ a � D
Dþ c

� Rn � G
HE

ð3Þ

where HE is specific heat of evaporation (MJ m�2 mm�1), a
Priestley–Taylor parameter (a = 1.26) and specific heat of evapora-
tion can be calculated using HE = 0.0864 (28.9 � 0.028T)
(Eidgenössische Technische Hochschule (ETH), 2014).

2.3. The HySim hydrological model

HySim is a continuous, daily conceptual rainfall–runoff model
(Manley and Water Resource Associates Ltd., 2006) with separate
sub-routines to simulate catchment hydrology and channel
hydraulics. The catchment hydrology is simulated by seven surface
and subsurface stores (snow storage, upper and lower soil horizon,
transitional groundwater, groundwater storage and minor channel
storage) whilst the hydraulic sub-routine uses kinematic routing of
the river flows to the outlet. HySim has been extensively used in
upland and mountainous catchments under current and future cli-
mate conditions (e.g. Wilby, 2005; Murphy et al., 2006).

The HySim model uses inputs of precipitation, potential evapo-
transpiration and temperature-based snowmelt to simulate stream
flow – see Pilling and Jones (1999) for details of the main model
parameters. The selection of the number of sub-catchments is sub-
jective, but the river basin has been sub-divided on altitude, given
the importance of the snow dynamics to hydrological behaviour,
into Upper (permanent snow/ice), Middle (seasonal snow) and
Table 1
Uncertainty ranges in the HySim parameter bounds with different input space across thre

Parameters TRMM Priestley–
Taylor

TRMM Penman–
Monteith

Rooting depth (mm) (RD) 1218–2746 1121–2752
Permeability – horizon boundary

(mm/h) (PHB)
764–7663 3.8–26

Permeability – base lower horizon
(mm/hour)(PBLH)

526–529 17–163

Interflow – upper (mm/h))IU) 3.7–600 5.7–7.6
Interflow – lower (mm/h) (IL) 3015–774 82–330
Snow Threshold (�C) (ST) 0.3–2.0 0.5–0.6
Snow melt rate (mm/�C/day) (SM) 2.5–2.5 0.8–1.2
Lower (no snow) sub-catchment areas of 5720, 3440 and
3350 km2, respectively. Areal averaging was used to change the
precipitation and evapotranspiration data from the different reso-
lution grids. HySim soil hydraulic parameters were estimated from
the land uses and soil types of the region and from the literature
(Jain et al., 2010; FAO/IIASA/ISRIC/ISSCAS/JRC, 2012). Initial values
of the HySim soil parameters were based on the spatially-weighted
physical attributes given in the Harmonized World Soil Database
(HWSD) (FAO/IIASA/ISRIC/ISSCAS/JRC, 2012) [resolution of about
1 km (30 arc seconds by 30 arc seconds)] although model default
values for the soil hydraulic parameters were calibrated
(Schwarz, 2013). Initial rooting depths were in the range of
800 mm (grassland)–5000 mm (forest) (Manley and Water
Resource Associates Ltd., 2006). Table 1 shows the minimum to
maximum parameter ranges across the three sub-catchments
and six HySim models, which indicates calibrated parameter vari-
ability. To characterise permanent Himalayan snow and ice cover
within the simulations, the upper sub-catchment in the model
was initialised with an arbitrary ice/snow depth of around 25 m
informed by past research (Kulkarni et al., 2005; Kulkarni and
Karyakarte, 2014; Linsbauer et al., 2014).
2.4. Model calibration and validation

HySim was independently calibrated and validated for each
combination of the two global gridded data sets and the three
potential evapotranspiration equations (Fig. 2), producing six vali-
dated models. After two years of model warm-up (1998–1999),
each model build was calibrated using flow data for 2000–2004,
and validated for 2005–2008. Seven parameters relating to land
cover (rooting depth, mm (RD)); snowmelt (snow melt threshold,
�C (ST); snow melt rate, mm �C�1 day�1 (SM)) and soil hydrology
(Permeability of horizon boundary, mm/hour (PHB); Permeability
of base lower horizon, mm/hour (PBLH); Interflow in upper layer,
mm/hour (IU); and Interflow in lower layer, mm/hour (IL)) were
calibrated using the commonly used Nash–Sutcliffe Efficiency
Criterion (NSE – Eq. (4)) and the Percent Bias (PBIAS – Eq. (5))
goodness-of-fit measures (as recommended by Moriasi et al.
2007):

NSE ¼ 1�
PN

1 ðMi � OiÞ2PN
1 Oi � ��O
� �2 ð4Þ

PBIAS ¼
PN

1 ðOi �MiÞ � 100PN
1 Oi

" #
ð5Þ

where Oi and Mi are the observed and simulated values for the ith

streamflow value, respectively, ��O is the mean observed value, and
N is the number of days.

NSE is selected as the best objective function for reflecting the
overall fit of a hydrograph (Moriasi et al., 2007) whilst PBIAS mea-
sures the average tendency of the simulated data to be larger or
e sub-catchments.

TRMM
Hargreaves

Aphrodite
Priestley–Taylor

Aphrodite Penman–
Monteith

Aphrodite
Hargreaves

166–4285 811–1146 864–3211 2195–2766.
221–658 346–686 101–550 96–524

482–711 646–777 305–569 202–377

282–500 70–307 10–606 15–814
78–224 103–612 18–466 24–639
1.1–1.2 2.3–2.4 1.4–2.0 1.8–2.5
1.7–1.8 2.0–2.5 1.8–2.3 2.2–2.5



Fig. 3. Comparison of annual (a) APHRODITE and (b) TRMM precipitation data at
the sub-catchment scale.

Table 2
Statistical summary of daily TRMM and APHORDITE precipitation data (1998–2007).

Indices (mm/day) TRMM precipitation data APHRODITE data

Upper sub-catchment Middle sub-catchment Lower sub-catchment Upper sub-catchment Middle sub-catchment Lower sub-catchment

Mean 2.77 3.76 4.12 2.00 3.10 4.47
Maximum 96.44 119.44 136.83 53.74 74.07 121.18
Minimum 0.00 0.00 0.00 0.00 0.00 0.00
SD 6.69 9.00 10.04 4.50 6.85 10.66
5th percentile 0.38 0.22 0.20 0.06 0.01 0.02
95th percentile 13.83 19.28 23.19 10.02 16.14 24.38

N.B: the indices were applied on gridded average corresponding to each sub-catchment.

Fig. 4. Cumulative and probability density functions showing the uncertainty in the grid
1998–2007 data.
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smaller than the observed data and hence quantifies overall water
balance errors (Gupta et al., 1999). We have based the evaluation
of model performance using these metric on the NSE and PBIAS
limits specified by Moriasi et al. (2007) and Henriksen et al.
(2003). For example, Moriasi et al. (2007) recommends that ‘satis-
factory’ performance for monthly time step stream flow is given by
0.50 < NSE 6 0.65 and ±15 6 PBIAS (%) 6 ±25.
2.5. ‘Scenario neutral method’ of climate change impact assessment

Plausible ranges of future changes in annual temperature and
annual precipitation were informed by the regional summary
results from 25 to 39 GCMs given in Christensen et al. (2013).
This study used the projections for the Tibetan Plateau area
(bounded by lat. 30�–75�N and long. 50�–100�E) and the Central
Asia area (lat. 30�–50�N and long.40�–75�E), as the Beas catchment
is located close to the boundary of the two modelled regions. Six
temperature change factors between DT = 0 �C and DT = 5 �C (in
steps of 1 �C) and seven precipitation change factors from
DP = �10% to DP = +20% (in steps of 5%) were used, which span
the range of GCM projections for the Representative
Concentration Profiles (RCP) across the two areas for 2065, and
capture the median temperature increase under RCP8.5 (Riahi
et al., 2011) and the 25th to 75th range in precipitation change
across the RCPs to 2100. The above mentioned change factors were
applied to the daily values of the whole baseline time series (2000–
2008) to construct the future scenario-neutral climate variables. In
ded precipitation datasets [TRMM and APHRODITE] in the three sub-catchments for
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the results section, all model results are compared to those from
2000 to 2008 (i.e. with zero temperature/precipitation change).

Each temperature change factor was added to the historical
NCEP data to provide modified temperature and subsequently
ETo time series. All other weather variables were assumed
unchanged in the derivation of the modified ETo time series. The
relative changes in precipitation were applied to each of the
TRMM and APHRODITE historical time series (Prudhomme et al.,
2010). Each of the six calibrated/validated HySim models was
run for the thirty combinations of changed temperature (5) and
precipitation (6). All calibrated model parameters were unchanged.
Table 3
Statistical summary of daily calculated ETo (1998–2007).

Indices
(mm/day)

Upper sub catchment Middle sub catchm

Penman ETo
(mm)

Hargreaves
ETo (mm)

Priestley–
Taylor ETo

Penman ETo
(mm)

Ha
ET

Mean 1.97 1.58 2.49 4.62 3.2
Maximum 6.31 4.47 6.43 9.70 6.7
Minimum 0.27 0.00 0.48 0.53 0.5
Standard

deviation
1.03 0.96 1.38 1.80 1.4

5th
percentile

1.79 1.55 2.26 4.40 3.2

95th
percentile

3.87 3.19 5.05 7.94 5.5

Fig. 5. Cumulative and Probability Density Functions showing the uncertainty in the dif
Taylor, Hargreaves–Samani] in the three sub-catchments for 1998–2007 data.
3. Results and discussions

The presentation of results is laid out as follows. Sections
3.1 and 3.2 discuss, compare and contrast the different gridded
precipitation data and ETo series in three sub-catchments of
the river Beas. Section 3.3 presents the HySim based model cal-
ibration and validation under the six data input combination;
whilst Section 3.4 examines how the resultant model parameter
uncertainty affects impact response surfaces of future Q10
and Q90 daily discharge to changes in temperature and
precipitation.
ent Lower sub catchment

rgreaves
o (mm)

Priestley–
Taylor ETo

Penman ETo
(mm)

Hargreaves
ETo (mm)

Priestley–
Taylor ETo

2 3.36 6.58 4.43 3.51
9 6.75 15.92 8.84 7.21
0 0.61 0.73 0.67 0.50
4 1.85 2.65 1.91 1.99

2 3.30 6.23 4.39 3.41

0 6.16 11.36 7.50 6.42

ferent daily reference evapotranspiration time series [Penman–Monteith, Priestley–
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3.1. Comparison of precipitation data sets

Given the paucity of land based measurements of precipitation
in the Himalayan region and the challenges of assessing the rela-
tive performance of raingauge and radar datasets (Vasiloff et al.,
2009), the differences between TRMM and APHRODITE are com-
pared (Fig. 3), but assessing their accuracy and reliability is not
within the scope of this paper.

There are significant differences in the spatial and temporal dis-
tribution of precipitation between the two datasets (Table 2 and
Fig. 3). Differences in average precipitation between TRMM3 B42
V7 and APHRODITE increase with increasing sub-catchment eleva-
tion. Although there is an 11% difference in annual average precip-
itation for the whole catchment, there is an �39% difference in the
Upper sub-catchment and �13% in the Lower sub-catchment. The
datasets have greatest monthly differences in winter (maximum
difference of �46%) and spring (maximum of �47%) in the Upper
sub-catchment; whereas the highest differences in the Lower
sub-catchment are in the low flow autumn season (maximum
Fig. 6. The uncertainty bounds in simulated daily discharge during (upper)
calibration and (lower) validation periods due to the variability in input parameter
space across the six HySim models.

Table 4
Statistical indices of HySim model performance for different precipitation and evapotrans

Calibration (2000–2004) V

Year Penman–Monteith Priestley–Taylor Hargreaves Y

PBIAS (%) NSE PBIAS (%) NSE PBIAS (%) NSE

TRMM precipitation data with different ETo combinations
2000 16.8 0.75 4.3 0.75 10.9 0.74
2001 20.9 0.69 17.3 0.73 16.5 0.70
2002 11.9 0.59 4.6 0.55 �3.3 0.53
2003 1.5 0.77 �9.9 0.75 �10.4 0.71
2004 0.5 0.69 �11.8 0.68 �13.3 0.65 A
Average 7.54 0.70 4.1 0.69 3.5 0.67

APHRODITE precipitation data with different ETo combinations
2000 28.2 0.60 34.4 0.54 36.8 0.57
2001 18.1 0.69 26.4 0.67 21.6 0.68
2002 0.5 0.69 14.9 0.74 5.3 0.66
2003 �19.7 0.69 �14.0 0.75 �15.5 0.64
2004 �36.7 0.62 �29.1 0.70 �27.1 0.62 A
Average 6.80 0.66 6.51 0.68 12.02 0.64
value �50%). In the Middle sub-catchment, the differences were
in the range of �6% (October) to �29% (April) with the lower and
higher values just after and before the South west summer
Monsoon. The lowest monthly differences between the datasets
in all three sub-catchments of 2–6% occurred in the summer sea-
son. The differences between the Probability Density Function
(PDF) and Cumulative Density Function (CDF) plots for the
TRMM and APHRODITE gridded precipitation data sets in Fig. 4
show the uncertainty in daily precipitation in the upper, middle
and lower sub-catchments.
3.2. Comparison of reference evapotranspiration methods

As would be expected, all three ETo methods give decreasing
ETo with increasing sub-catchment elevation (Table 3). However,
there are distinct differences between the methods with
Penman–Monteith giving annual average values that are 47% and
30% higher than the methods giving the lowest values in the
Lower (Priestley Taylor) and Middle (Hargreaves–Samani)
sub-catchments. In contrast, the Priestley–Taylor method gave
the highest annual average value in the Upper glacier dominated
sub-catchment, which was 36% higher than the lowest method
(Hargreaves). The PDFs and CDFs of daily reference evapotranspira-
tion for 2000–2008 used to drive the six hydrological models, given
in Fig. 5, demonstrate the significant uncertainty introduced by the
choice of ETo method (Priestly–Taylor, Penman–Monteith, and
Hargreaves–Samani).
3.3. Hydrological modelling – calibration and validation

Fig. 6 shows the narrow uncertainty bounds in simulated daily
flow across the six models for both the calibration and validation
periods. The strong seasonality in observed river response associ-
ated with the monsoon and snow melt is reproduced. There is gen-
erally good agreement across the flow duration curve (Fig. 1 of the
Supplementary material), with the six models spanning the
observed flows through the flow range, with the exception of about
the upper 5% exceedance probability which may partly reflect the
difficulty of accurately measuring such high discharges.

Similar levels of model performance were achieved across the 6
model combinations in the calibration period, with NSE varying
between 0.64 and 0.70. The three TRMM models having slightly
higher NSEs and lower PBIAS (Table 4). The performance metrics
for the three TRMM models are very similar in the validation phase
(0.66–0.71), although there is an increase in the PBIAS. In contrast,
piration combinations.

alidation (2005–2008)

ear Penman–Monteith Priestley–Taylor Hargreaves

PBIAS (%) NSE PBIAS (%) NSE PBIAS (%) NSE (%)

2005 39.9 0.50 31.7 0.57 31.8 0.66
2006 31.2 0.70 21.5 0.75 26.9 0.70
2007 14.6 0.72 2.3 0.69 7.2 0.71
2008 �2.4 0.74 �14.9 0.71 �7.1 0.77

verage 20.8 0.66 10.2 0.68 14.7 0.71

2005 25.1 0.56 24.8 0.51 30.8 0.54
2006 �0.6 0.44 �1.5 0.46 7.1 0.39
2007 0.4 0.44 1.5 0.45 8.5 0.46
2008 �14.6 0.72 �14.0 0.77 �17.5 0.73

verage 2.58 0.54 2.69 0.55 7.24 0.53



Fig. 7. Q–Q plot evaluation of the modelled daily discharge in the six models
against observed discharge data for 2000–2008.

Fig. 8. (a–b) Model uncertainty (as given by the percentage difference between
simulated and observed discharge) along the flow exceedance curves showing
associated uncertainties in six hydrological modelling setups under the calibration
(2000–2004) and validation (2005–2008) phases.
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the NSE for the APHOPRITE runs within the validation period
reduce (0.53–0.55), albeit still within the satisfactory range as
defined by Moriasi et al. (2007) and Henriksen et al. (2003), but
is accompanied by an improvement in the PBIAS to 2.6–7.2%. The
reliability of the predictive output distribution in the different
models is demonstrated using the quantile–quantile (Q–Q) plots
in Fig. 8. Although the overall performances of the models (as given
by the NSE and PBIAS metrics for the calibration and validation
periods) are similar, it is apparent from Fig. 7 that there are
parameter-related uncertainties in simulated discharge. Fig. 8(a
and b) express this uncertainty by showing the model uncertainty
(as given by the percentage difference between simulated and
observed discharge) associated with flow exceedance probability
for each of the models during the calibration (2000–2004) and val-
idation (2005–2008) periods. The discharge uncertainty arising
from the model parameterisations are from +8% to �13% for Q10
and +15% to �45% for Q90 in the validation period.

Table 1 shows that the variability in the observational input
data space has led to quite different optimal parameter vectors
with similar model performance The differences in the
Fig. 9. Impact response surfaces of simulated changes (%) in (upper) Q10 and (lower) Q
performance metrics and calibrated parameter values across the
six models solely reflect the effects of the differences in the input
precipitation and ETo data, given that all other input data and
the observed discharge data are consistent across the six models.
This demonstrates how the calibration process can effectively
modify hydrological parameters to compensate for uncertainties
in input data.
90 to changes in annual precipitation and temperature for the six HySim models.



Fig. 10. Comparison of the model validation uncertainty (grey shaded area) with the future impact uncertainty (as given by the spread of the percentage change in future
daily discharge relative to the baseline for the 6 HySim models) across the flow exceedance probability for four change factor scenarios showing how the spread of future
hydrological uncertainty expands from the uncertainty due to the input data selection subjectivity impacts validation period as the change in climate increases.
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3.4. Effect of parameter uncertainty on climate change impact
response surfaces

The daily flow that is equalled or exceeded 10 and 90% of the
time (annual high flow (Q10) and annual low flow (Q90)), respec-
tively, are commonly used in designing hydropower projects (IITR,
2011). Fig. 9 shows the impact response surfaces for each of the 6
validated models for Q10 and Q90, expressed as a percentage of
that model’s baseline (2000–2008) value, across the range of plau-
sible changes in future annual temperature and precipitation. The
uncertainty range in Q10 and Q90 across the six different models
is given in Fig. 2 of the Supplementary material. Both flow indices
generally change in proportion to the changes in both precipitation
and temperature, indicating that the increases in temperature pro-
duce greater modelled increases in snowmelt than actual evapo-
transpiration. The simulated median (Q50), annual high flow
index (Q10) and annual low flow index (Q90) characterising the
hydrological impacts of plausible climate change as simulated by
the six HySim models are given in Table 1 of the Supplementary
material. This indicates that the differences in hydrological param-
eters arising from input uncertainty have greater impact on the
uncertainties in low flows (Q90) than on high flows (Q10).

The Q90 is more sensitive to precipitation and temperature
changes than the Q10 in relative terms, as a given absolute change
in flow represents a larger proportion for low flows than high flows.
The greatest decrease in both metrics occurs under the (DT =
0 �C � DP = �10%) scenario, ranging from �25% (TRMM-Priestley–
Taylor) to �2% (TRMM + Penman–Monteith) for Q90; and from
�11% (TRMM + Penman–Monteith) to �6%, (APHRODITE + Penman–
Monteith) for Q10.

Similarly, the greatest increases occurred under the
(DT = +5 �C � DP = +20%) scenario due to the increased precipita-
tion and snowmelt outweighing the effects of increased evaporation/
evapotranspiration – they ranged from +133% (TRMM + Penman–
Monteith) to 238% (APHRODITE – Hargreaves) for Q90, representing
an absolute increase in the Q90 flow of between 37–51 m3/s; and
from +79% (TRMM + Penman–Monteith) to +118% (APHRODITE –
Priestley–Taylor) for Q10 equivalent to a modelled increase of 470–
771 m3/s. It is apparent that, whilst the general trends in the response
surfaces for the 6 different models respond similarly across tempera-
ture and precipitation changes, the choice of precipitation dataset and
ETo method differentially affects the magnitude of changes in Q90
and Q10. Fig. 10 shows how the parameter differences associated with
the choice of baseline data impact on the flow duration curves for
selected future climate scenarios, superimposed with the uncertainty
range for the 6 models for the validation period (from Fig. 8b). The
selected scenarios are [DP =�10%, DT = 0 �C] (highest reduction in
precipitation and no change in temperature), [DP =�10%, DT = 5 �C]
(highest reduction in precipitation and highest change in tempera-
ture), [DP = +20%, DT = 0 �C] (highest increase in precipitation and
no change in temperature), [DP = +20%, DT = 5 �C] (highest increase
in precipitation and temperature from baseline climate). These show
that large precipitation changes in the absence of temperature
increases tend to lead to the largest percentage changes in the median
to low flow end of the flow duration curve; whereas temperature
increases cause the largest increase around the 25th to 50th excee-
dance probability reflecting large increases in pre- and
post-monsoon snowmelt. However, when the future discharge uncer-
tainty for the 6 models across the range of flow exceedance is com-
pared with the model uncertainty from the validation period, it is
apparent that the future changes in discharge tend to exceed the val-
idation uncertainty across the flow exceedance range, with the excep-
tion of small climate changes (e.g. [DP =�10%, DT = 0 �C]). Decreasing
precipitation decreases the uncertainty range but temperature
increases have a much greater impact on the uncertainty. It is appar-
ent that, in the case of such a highly responsive snow-dominated
catchment, stream flow uncertainty is smaller with changes in precip-
itation than that of temperature. For the [Aphrodite + Penman–
Monteith] model, a hydrological uncertainty range of �6.4% to 16%
was associated with changes in precipitation from �10% to +20% at
DT = 0, compared to an uncertainty range of 0 to +84% for tempera-
tures change of 0 to +5 �C at DP = 0%.
4. Discussion and conclusion

The need to understand uncertainty within water resource
assessments is widely recognised (Refsgaard et al., 2007), and
many elements of the uncertainty cascade within climate impacts
modelling have been quantitatively assessed, highlighting the rel-
ative importance of GCM choice, emissions scenario, downscaling
method, model choice, etc. (Pappenberger and Beven, 2006;
Buytaert et al., 2009; Kay et al., 2009; Chen et al., 2011).
However, the role of modeller subjectivity is generally ignored,
despite its recognition in other modelling fields, such as pesticide
fate (Dubus et al., 2003; Beulke et al., 2006) and hydraulic mod-
elling (Garcia-Salas and Chocat, 2006).

In this paper, we have investigated the combined consequence
of modeller choice on two key elements of a hydrological model
build in data-sparse areas which, to-date, have received little
consideration in the context of their overall contribution to the
uncertainty in climate impact assessment – the choice of baseline
precipitation dataset and the choice of method for deriving refer-
ence evapo-transpiration.

The consequence of the differing model parameterisations
resulting from the dataset/method choice in this study, through cal-
ibrating the hydrological model with different precipitation and
ETo time series, do not manifest themselves in significant differ-
ences in model behaviour and performance during the historical
baseline period as given by conventional performance metrics.
The HySim model was demonstrated to have similar NSE and
PBIAS values and flow duration curves to the observed river flows
across the 6 model builds, despite the significant uncertainty in
daily precipitation between APHRODITE and TRMM and notwith-
standing issues around the use of such data products in daily hydro-
logical modelling (Zhao et al., 2013; Meng et al., 2014). The similar
model performance reflects the ‘success’ of each of the calibrations
in modifying the parameter values which control the rates and
thresholds of hydrological processes to compensate for differences
in precipitation and ETo amount (through changing snow melt
characteristics and the actual ET via the rooting depth) and timing
(through changing the rates of vertical and horizontal flow through
the sub-catchments) to enable the simulated river flows to satisfac-
torily match the observed. The results demonstrate that uncer-
tainty in any set of hydrologic inputs (here precipitation and
evapotranspiration) can be conserved, with the translation of this
uncertainty into simulated stream flow and performance metrics
concealed or reduced through the calibration of model parameters
(Singh and Bárdossy, 2012, Andreassian et al., 2004 and Oudin et al.
2006). However, parameter-related uncertainties do exist in the
baseline simulated discharge, as shown by the range of discharge
error within the 6 models along the flow exceedance curves (Fig. 8).

It is usual for modellers to assume that the range of uncertainty
and model performance statistics assessed during calibration and
validation remain largely invariant, regardless of the type or source
of input data sets used for modelling (McMillan et al., 2011).
However, our analysis has shown that the baseline uncertainty
due to parameter bias (Fig. 8) is generally exceeded by the uncer-
tainty associated with applying those models with altered climate
(indicating that model uncertainty is not invariant) and that the
impact uncertainty (arising from model parameterisation) magni-
fies as the difference from the current climate increases (Fig. 10).
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This study has highlighted that the use of state-of-art techniques
for parameter estimation can still allow parameter bias, given the
input space used for calibration. The consequence of such con-
cealed uncertainty and parameter bias rematerialize in climate
change impact studies when models are taken outside of the input
space of the calibration/validation period.

This paper has used a simple scenario-neutral framework to
illustrate the important consequences of model calibration with
alternative meteorological time series data for assessing climate
change impacts. We acknowledge the simplification in assuming
that future ETo is only modified by changing temperature, whilst
assuming other meteorological variables such as solar radiation
and wind velocity which may also influence future evapotranspira-
tion dynamics remain unchanged). However, the insights are per-
tinent to more sophisticated climate change impacts approaches
where hydrological models are calibrated to observed flows using
imperfect baseline meteorological data.

Refsgaard et al. (2007) state that uncertainty assessment is not
something to be added after the completion of the modelling work,
but should be seen as running throughout the modelling study
starting from the very beginning. This paper supports this asser-
tion, and demonstrates that input data choices made by a modeller
prior to the model build influence the behaviour and results of the
calibrated model when run with perturbed weather inputs. Whilst
the uncertainty range across the scenario-neutral modelling space
due to the choice of precipitation product and ETo method (of up to
105% and 39% of the simulated baseline Q90 and Q10 values,
respectively) is smaller than the widely acknowledge effects of
GCM uncertainty on flows (e.g. Buytaert et al., 2009), the difficul-
ties of measuring precipitation and ETo amount and timing in
mountainous regions will remain. Modellers must therefore be
aware of the implications of their choice of baseline data for the
simulation of future impacts. In such conditions where there is
considerable uncertainty in observed meteorological data and/or
different satellite based precipitation and temperature data prod-
ucts are available, an ensemble of hydrological model-builds cali-
brated to the different combinations of available meteorological
forcing data should be used to inform the understanding of the
uncertainties associated with input selection and the resultant
effect of parameter biases on climate change impact studies.

This study has provided the first quantitative evaluation of how
the recognised compensation-effect of hydrological model param-
eterization for input data uncertainty affects the magnitude of
future simulated climate change impacts. The recognition of how
the subjectivity of the hydrological modeller in input selection
choices can influence impact results, and that the range of baseline
model uncertainty is not conserved within future impacts, has
important implications for future climate change impact and adap-
tation studies, especially in data-sparse regions.
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