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Background. Many human immunodeficiency virus (HIV)–2-infected individuals remain aviremic and behave
as long-term non-progressors but some progress to AIDS. We hypothesized that immune activation and T-cell turn-
over would be critical determinants of non-progressor/progressor status.

Methods. We studied 37 subjects in The Gambia, West Africa: 10 HIV-negative controls, 10 HIV-2-infected
subjects with low viral loads (HIV-2-LV), 7 HIV-2-infected subjects with high viral loads (HIV-2-HV), and 10
with HIV-1 infection. We measured in vivo T-cell turnover using deuterium-glucose labeling, and correlated results
with T-cell phenotype (by flow cytometry) and T-cell receptor excision circle (TREC) abundance.

Results. Immune activation (HLA-DR/CD38 coexpression) differed between groups with a significant trend:
controls <HIV-2-LV <HIV-1 <HIV-2-HV (P < .01 for all cell types). A similar trend was observed in the pattern
of in vivo turnover of memory CD4+ and CD8+ T-cells and TREC depletion in naive CD4+ T-cells, although
naive T-cell turnover was relatively unaffected by either infection. T-cell turnover, immune activation, and progres-
sor status were closely associated.

Conclusions. HIV-2 non-progressors have low rates of T-cell turnover (both CD4+ and CD8+) and minimal
immune activation; high viral load HIV-2 progressors had high values, similar to or exceeding those in HIV-1 infection.
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Human immunodeficiency virus (HIV)–2 infection
represents a natural model for retroviral disease

in which non-progression is the norm. Although
HIV-2 can cause an immunodeficiency syndrome in-
distinguishable from HIV-1-induced AIDS [1, 2],
many HIV-2-infected individuals do not develop im-
munodeficiency within their lifetime and retain stable
CD4 lymphocyte counts for many years [3]. Indeed in
some West African populations, aviremic HIV-2 infec-
tion has no independent impact on survival [4]. The
marker of this low-risk state is a low or undetectable
plasma viral load (VL) [3, 5], which remains stable for
many years [4]. Aviremic or low viral load HIV-2 infec-
tion thus mirrors the therapeutic target state of “func-
tional cure,” characterized by “long-term control of
HIV in the absence of antiretroviral treatment” (ART)
[6]and represents an instructive model for mitigation of
retroviral pathology [1, 2].

This propensity for non-progression cannot be ex-
plained solely in virological terms. First, in vitro cyto-
pathogenicity for CD4+ T-cells is similar for HIV-1
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and HIV-2 [7]. Second, although high HIV-2 viral loads indi-
cate patients likely to progress [3, 8] and correlate with mortal-
ity, as for HIV-1 [9], advanced pathogenic HIV-2 occurs at
relatively low viral loads [10], approximately one log10 lower
than those in HIV-1-infected groups with similar mortality
[9]. It seems likely, therefore, that HIV-2 non-progression re-
sults from a more propitious immune response comprising
(1) better protection, and (2) less immunopathology.

Several lines of evidence support the concept of greater im-
mune protection. First, in HIV-2 infection, CD4+ T-cells retain
better proliferative capacity, remain less differentiated, and elicit
more polyfunctional responses than in HIV-1 infection [11].
Second, CD8+ T-cell responses, while retaining functional flex-
ibility [12], appear highly focused [13]with abundant polyfunc-
tional, relatively undifferentiated, Gag-specific effectors [14].
Furthermore, HIV-1/HIV-2 coinfection appears to protect
against HIV-1 pathogenicity [15], although this observation is
contentious [16] and not supported by meta-analysis [17].

Concurrently, immune responses in HIV-2 infection appear
less immunopathogenic. In HIV-1 infection, immune activation
is a pivotal mediator of immunopathology, strongly predicting
disease progression [18].HIV-2 cohorts have lower levels of im-
mune activation, intermediate between seronegative controls
and HIV-1-infected groups [19], consistent with the “less acti-
vation/better outcome” paradigm. However, such cohorts typi-
cally include few HIV-2 subjects with detectable/high VL and
low CD4 counts. When analyzed separately, HIV-2 high viral
load progressors demonstrate highly activated immune profiles,
similar to those in HIV-1 infection [20]; indeed, HIV-2 may in-
duce greater immune activation per unit viremia [21]. In HIV-2,
immune activation correlates with clinical parameters, such as
wasting, functional performance, and mortality [20], and solu-
ble markers of immune activation (β2-microglobulin, neopter-
in, and sUPAR) predict mortality in the same way for HIV-2
and HIV-1, despite their widely disparate viral loads and CD4
counts [21]. Excessive immune activation in the subpopulation
of HIV-2 patients with viremia may explain why they develop
AIDS or die at relatively high CD4 counts [19]. Once profound
CD4 lymphopenia (<200 cells/μL) has developed, mortality is
similar for both HIV-2 and HIV-1 infection [20].

The well-recognized link between immune activation and im-
munopathology remains poorly explained, but exhaustion of
homeostatic T-cell replacement by accelerated turnover, a char-
acteristic feature of HIV-1 infection [22–24], may be critical.
Memory T-cells appear most affected, irrespective of viral tro-
pism [25]; by contrast, in early disease, naive T-cells remain rel-
atively unaffected [25]. In later-stage disease, rates of loss of
naive cells, whether by direct viral targeting, activation, or accel-
erated homeostatic turnover, may exceed their normally slow
homeostatic replacement [26, 27]. We therefore hypothesized
that long-term survivor, low viral load HIV-2-infected subjects
would have low levels of immune activation and low (normal)

rates of T-cell turnover, while HIV-2-infected subjects with
high viral loads would have accelerated turnover, similar to
those in HIV-1-infected individuals. To test these hypotheses,
we measured in vivo T-cell turnover using oral deuterium-
glucose labeling [28] and compared the results to activation sta-
tus by immunophenotyping, and replicative history from T-cell
receptor excision circle (TREC) abundance, in asymptomatic
HIV-1- and HIV-2-infected subjects in an HIV-2-endemic
area of Africa.

METHODS

Ethics Statement
All subjects gave written informed consent; the study was ap-
proved by the Gambia Government/Medical Research Council
Joint Ethics Committee. All procedures were conducted in ac-
cordance with the ethical standards of the Helsinki Declaration.

Clinical
Four groups of subjects were recruited from a clinical cohort at
the Medical Research Council (UK) in Fajara, The Gambia,
West Africa: (1) healthy HIV-negative controls, (2) HIV-2-
infected subjects with low plasma viral loads (<100 viral cop-
ies/mL), (3) HIV-2-infected subjects with high viral loads
(>1000 viral copies/mL), thus considered likely to progress rap-
idly to AIDS, and, (4) HIV-1-infected subjects. A CD4 count of
≥500 cells/μL at screening was an entry criterion, as we wished
to investigate early events in HIV pathogenesis. All were ART-
naive, aged ≥18 years, clinically well with no apparent intercur-
rent illness, no fever, a negative malaria film, a hemoglobin level
of ≥10 g/dL, and fasting glucose ≤6 mmol/L. Target recruit-
ment was 10 per group; however, as few HIV-2-infected patients
have detectable viral loads, recruitment to this group only
reached 7 subjects. Thirty-eight subjects entered the study but
1 control subject declined follow-up.

Immunophenotyping and T-cell Receptor Excision Circle
Abundance Analysis
Peripheral blood mononuclear cells were stained for expression of
CD3, CD4, CD8, CD45R0, CD45RA, human leukocyte antigen
(HLA)–DR, CD38, Ki67, CD95, Annexin V, and programmed
death-1 (PD-1) in 3 overlapping panels (see Supplementary In-
formation). Data acquired by multicolor flow cytometry (CyAn,
Beckman Coulter) were analyzed by FlowJo software (Tree Star)
(Supplementary Figure 1). T-cell receptor excision circle abun-
dance (TREC) quantification was performed as previously de-
scribed [29] (Supplementary Information) and expressed as
TREC per 105 CD4+ or CD8+ CD45R0− T-cells.

In Vivo Turnover Measurements
Proliferation and disappearance rates of lymphocyte subpopu-
lations were measured using deuterium-glucose labeling
[28, 30]. Subjects received 60g of 6,6–2H2-glucose (Cambridge
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Isotopes) orally in half-hourly aliquots over 10 hours, as de-
scribed [31],monitoring plasma glucose deuterium-enrichment
for precursor estimation. Blood was taken 4, 10, and 21 days
post-labeling and peripheral blood mononuclear cell fractions
sorted by negative-selection for CD45R0 and CD45RA into
“naive” (CD45R0−) and “memory” (CD45RA−) sub-
populations, then by positive-selection for CD8 and CD4
using antibody-coated magnetic beads (Miltenyi Biotec) (Sup-
plementary Information) [31]. Purities were confirmed with
both CD45RA and CD45R0. (Definition of “naive” cells by
CD45R0− would have an expected specificity of 97%–98% for
CD4 cells and 87%–93% for CD8 cells [32].) Lymphocyte sub-
populations were analyzed for DNA deuterium-labeling by gas
chromatography mass spectrometry, as described [28, 33].

Modeling/Statistics
In order to compare in vivo T-cell proliferation rates, we
modeled the incorporation of deuterium into deoxyadenosine
of cellular DNA, as previously described (Supplementary Infor-
mation) [34], to derive an in vivo proliferation rate, p, which
relates to the whole population, and a disappearance/death
rate, d*, which relates only to recently divided, labeled cells.
Modeling was performed using Sigmaplot (Systat Software)
and statistical comparisons using Prism (GraphPad Software).
Comparisons were nonparametric (Kruskal–Wallis), except
where data passed D’Agostino–Pearson normality testing,
when parametric analysis of variance was used.

RESULTS

Clinical Details
Clinical details are summarized in Table 1. As expected from
the entry criteria (CD4 >500 cells/μL), CD4 counts were similar
between groups, while CD8 counts were higher in HIV-1-
infected subjects than in other groups. HIV-1-infected subjects

tended to have a lower body weight, while controls were youn-
ger than HIV-infected subjects in the HIV-1 and HIV-2-HV
groups. Notably, low viral load HIV-2 subjects had documented
non-progression for a median of 11.8 years.

HIV-2 Non-progressors are Characterized by Low Levels of
Immune Activation in Naive and Memory T-cell Populations
When we investigated levels of immune activation (HLA-DR/
CD38 coexpression) by flow cytometry within CD4+- and
CD8+-naive and memory T-cell subsets (defined by CD45RA+

or CD45R0+ expression, respectively), we found a similar pat-
tern for all 4 T-cell subpopulations. Immune activation levels
remained low in HIV-2 low viral load subjects, close to control
values, but were highest in HIV-2 subjects with high viral loads
(Figure 1), similar to or exceeding levels in HIV-1-infected sub-
jects (Table 2). Although this has previously been observed in
other cohorts [20], a novel aspect here is the separation of
naive and memory cells, cognizant that involvement of the
naive pool may be pivotal in disease progression. We found
that activation was induced in both naive and memory compart-
ments in HIV-1 and HIV-2-HV, but not significantly in either
compartment in HIV-2-LV. In all T-cell subgroups, median im-
mune activation followed the same trend: controls <HIV-2-LV
<HIV-1 <HIV-2-HV. When ranked in this order using a categor-
ical variable (1–4), correlation analysis demonstrated a highly sig-
nificant hierarchy for all four T-cell subpopulations (Figure 1). In
order to investigate whether immune activation cosegregated
with other parameters according to subject group, this hierarchi-
cal ranking was used in subsequent analyses.

Markers of cell death, such as the early apoptotic marker An-
nexin V and CD95 (Fas or APO-1), were similar between groups,
although an excess in Bcl-2 expression was seen in 3 out of 4
T-cell subsets in HIV-2-HV subjects. PD-1 expression was higher
on memory than naive T-cells as expected, but no significant dif-
ferences were found between HIV-infected and control subjects.

Table 1. Subject Characteristics

Controls HIV-2-LV HIV-2-HV HIV-1 P Valuea

N 10 10 7 10

Gender (F:M) 7:3 8:2 7:0 6:4
Age (years) 26.5 (23–35) 41.0 (38–46) 38.0 (35–52) 42.0 (29–55) <.005

Viral load (copies/mL) N/A <100 2834 (2028–121 199) 186 347 (53 249–486 378) <.001

CD4 count (cells/µL) 872 (747–1286) 946 (681–1019) 761 (530–980) 780 (575–854) .263
CD4% 40.5 (38–45) 35.5 (32–45) 37.0 (32–39) 27.5 (35–21) .004

CD8 count (cells/µL) 689 (456–774) 750 (549–1047) 637 (427–804) 1076 (926–1600) .010

Weight (kg) 63.7 (61.4–84.1) 71.8 (62.3–80.7) 66.4 (58.7–96.2) 54.8 (50.0–63.2) .023
Time in cohort (years) N/A 11.8 (4.1–14.8) 5.7 (1.0–11.7) 1.3 (0.9–5.5) .020

Values are median (IQR).

Abbreviations: ANOVA, analysis of variance; HIV, human immunodeficiency virus; HIV-2-HV, HIV-2 infected with high viral load (>1000 copies/mL); HIV-2-LV, HIV-2
infected with low viral load (<100 copies/mL); IQR, interquartile range; N/A, not applicable.
a P represents comparison of groups by ANOVA (Kruskal–Wallis).
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The primary phenotypic difference between T-cells in HIV-2
non-progressors and progressors therefore appears to relate to
their very disparate levels of immune activation.

Accelerated Turnover Occurs Predominantly in Memory T-cell
Compartments in High Viral Load HIV-2 and HIV-1 Infection
T-cell turnover was assessed using three complementary ap-
proaches: Ki67 expression by flow cytometry, in vivo turnover
from deuterium-labeling, and TREC content.

Ki67 Expression
The nuclear protein antigen Ki67 was used as an indirect mark-
er for “proliferation,” being present during cell cycle but not in
G0 (resting) cells. As expected, Ki67 expression was generally
low in naive T-cells, commensurate with their slow turnover
[26, 27, 35], but tended to be elevated in naive cells from
HIV-2 subjects with high viral loads (Table 2). For memory

cells, Ki67 expression was highest in HIV-2-HV subjects,
9.1% and 11.1% in CD4+ and CD8+ cells, respectively, about
twice control values, 4.9% and 5.6% (Table 2). By contrast,
Ki67 levels in HIV-2-LV remained similar to control values.
Ki67 expression followed the same hierarchy across groups
(controls <HIV-2-LV <HIV-1 <HIV-2-HV; P < .05 for both
CD4+ and CD8+; Figure 2) as immune activation.

In Vivo Turnover
Enrichment curves from in vivo deuterated glucose-labeling
showed lower enrichment levels in naive cells than in memory
cells, indicative of slower turnover, as previously described [28].
When compared between subject groups, HIV-2-HV subjects had
significantly higher enrichment peaks in memory cells
than control subjects (P < .05 for both CD4+ and CD8+;
Table 3). Magnitude of peak enrichment demonstrated the
same hierarchy across groups as seen with immune activation

Figure 1. HIV-1 and HIV-2 at high viral loads induce immune activation in both naive and memory T-cell subsets. Values represent proportion of T-cells
coexpressing HLA-DR and CD38, as median, interquartile (box) and range (whiskers) within the following populations: (A) CD4+CD45RA+ and (B)
CD8+CD45RA+ “naive” cells; (C) CD4+CD45RA− and (D) CD8+CD45RA− “memory” cells. HIV-2-LV and HIV-2-HV refer to low and high viral load HIV-2-in-
fected subjects. Group differences tested by ANOVA: (A) 0.012, (B) <0.001, (C) 0.059, (D) <0.001; *P < .05 by post hoc (Tukey) test. Hierarchical trend analysis
across groups ranked in this order, P < .01 for all cell types. No differences were observed between memory and naive CD4+ T-cells, median values, all
subjects, CD45RA+ 4.51% versus CD45RA− 4.30% (P = .554), but in CD8+ cells, activation was greater in memory cells, median CD45RA+: 5.72 versus
CD45RA−: 12.8% (P < .0001, Wilcoxon matched-pairs signed rank test). Abbreviations: ANOVA, analysis of variance; HIV, human immunodeficiency
virus; HIV-2-HV, HIV-2 infected with high viral load (>1000 copies/mL); HIV-2-LV, HIV-2 infected with low viral load (<100 copies/mL); HLA, human leukocyte
antigen.
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Figure 2. Ki67 expression in naive and memory T-cells in controls and HIV infection. Values represent proportion of cells expressing Ki67 within T-cells
populations: (A) CD4+CD45RA+ and (B) CD8+CD45RA+ “naive” cells; (C) CD4+CD45RA− and (D) CD8+CD45RA− “memory” cells. Line, box and whiskers
represent median, IQR and range; outliers shown as dots using Tukey criteria. Group differences tested by ANOVA: (A) 0.082, (B) 0.052, (C) 0.055, (D)
0.035; *P < .05 by post hoc (Tukey) test. Trend analysis, P < .05 for both CD4+ and CD8+ memory (CD45R0+) populations. Abbreviations: ANOVA, analysis
of variance; HIV, human immunodeficiency virus; HIV-2-HV, HIV-2 infected with high viral load (>1000 copies/mL); HIV-2-LV, HIV-2 infected with low viral
load (<100 copies/mL); IQR, interquartile range.

Table 2. Immune Activation, Ki67 Expression, and TREC Content in Lymphocyte Subsets in Control and HIV-Infected Subjects

Controls HIV-2-LV HIV-2-HV HIV-1 P Valuea

HLA-DR/CD38 coexpression (%)

CD4+CD45RA+ 2.83 (1.45–4.69) 3.98 (3.39–4.47) 9.94 (6.40–16.0) 6.15 (3.92–6.95) .012
CD8+CD45RA+ 2.80 (2.05–3.48) 5.47 (4.15–6.05) 14.89 (6.97–21.1) 8.41 (6.13–9.69) <.001

CD4+CD45RA− 2.33 (1.47–3.48) 3.77 (3.04–6.05) 6.14 (3.59–21.1) 5.12 (4.46–9.69) .059

CD8+CD45RA− 5.91 (3.96–10.1) 11.69 (7.88–13.3) 24.24 (14.51–31.8) 17.67 (11.3–18.9) <.001
Ki67 expression (%)

CD4+CD45RA+ 1.12 (0.56–2.01) 1.13 (0.95–1.69) 3.30 (1.76–9.2) 1.60 (1.25–2.11) .082

CD8+CD45RA+ 3.22 (1.88–4.06) 1.93 (1.78–2.34) 4.51 (3.30–11.0) 2.69 (2.22–3.29) .052
CD4+CD45RA− 4.88 (3.07–4.06) 4.84 (4.14–2.34) 9.14 (7.09–11.0) 6.56 (5.01–3.29) .055

CD8+CD45RA− 5.61 (4.19–6.90) 4.99 (3.53–6.90) 11.06 (6.93–16.1) 8.14 (7.05–11.1) .035

sjTREC (log copies/105 cells)
CD4+CD45R0− 4.43 (4.17–4.51) 4.13 (3.63–4.17) 3.58 (3.38–3.65) 4.10 (3.33–4.41) .004

CD8+CD45R0− 4.23 (4.06–4.40) 4.03 (3.90–4.21) 3.49 (3.33–4.02) 4.00 (3.94–4.11) .189

Values represent median (IQR).

Abbreviations: ANOVA, analysis of variance; HIV, human immunodeficiency virus; HIV-2-HV, HIV-2 infected with high viral load (>1000 copies/mL); HIV-2-LV, HIV-2
infected with low viral load (<100 copies/mL); IQR, interquartile range; TREC, T-cell receptor excision circle.
a P value represents comparison of groups by ANOVA.
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and Ki67 expression (controls <HIV-2-LV <HIV-1 <HIV-2-
HV) in naive CD8+ cells and both CD4+ and CD8+ memory
cells (Table 3).

When turnover rates were modeled to derive proliferation
rate constants (p), we found that CD4+ naive cell turnover
was relatively unaffected by disease status, having a turnover
rate of about 0.5%/day in all groups, equivalent to a lifespan
of about 150 days (Table 3). Although a trend toward accelerat-
ed turnover in CD8+ naive cells in HIV-2-HV and HIV-1 was
seen, it was not significant. In memory cells, turnover showed a
significant trend when analyzed using the same ranking as im-
mune activation (controls <HIV-2-LV <HIV-1 <HIV-2-HV;
Figure 3; P < .01 for CD4+ and CD8+ memory cells). The
most marked effect was seen in the CD8+ compartment,
where memory cell turnover was doubled in HIV-2-HV from
1.55% (controls) to 3.44%/day, while changes in memory turn-
over in HIV-2-LV were minimal compared to control subjects
(Table 3; Figure 3). Not unexpectedly, disappearance kinetics
(d*) did not differ between groups; they contribute to calculated
values for proliferation, but, in short-term labeling studies such
as this, contribute little as independent parameters, referring
only to the small fraction of labeled cells [28].

TREC Content
TREC content showed the same hierarchy as described above in
CD4+ cells, but reversed, with the lowest values in naive T-cells

of HIV-2 high viral load subjects (Figure 4; Table 2). Age was an
independent predictor of TREC content (P = .004), but, after
controlling for age by multiple regression, the effect of infection
status was still independently significant (P = .022). CD8+ cells
appeared to show a similar hierarchy, but this was not signifi-
cant (Figure 4).

Predictors of T-cell Turnover in HIV-2 Infection
In order to understand the factors contributing to the known
risk of HIV-related disease in the four subject groups (ie,
none in controls, low-risk in HIV-2-LV [20], and high-risk in
HIV-2-HV and HIV-1), we investigated relationships between
parameters. For memory CD4+ T-cells, we found that, although
proliferation rates were associated with viral load (Supplemen-
tary Figure 2A) and CD4 lymphopenia (Supplementary Fig-
ure 2B), the strongest association was with immune activation
(HLA-DR/CD38 coexpression; Supplementary Figure 2C), al-
though it should be noted that no markedly lymphopenic sub-
jects were recruited. As expected, in vivo proliferation and Ki67
expression showed a significant correlation (P < .005; Supple-
mentary Figure 2D), although not directly measuring the
same physiological process.

For memory CD8+ T-cells, even stronger relationships were
seen; immune activation strongly predicted in vivo turnover
(Supplementary Figure 2G; r = .796, and P < .001) and Ki67 ex-
pression (0.696; P < .001). As for CD4+ T-cells, relationships

Table 3. Turnover Rates of T-cell Subsets

Controls HIV-2-LV HIV-2-HV HIV-1 P Value

Naive T-cells (CD45R0−)

CD4+

Peak (%) 0.34 (0.30–0.79) 0.61 (0.41–0.79) 0.53 (0.23–0.93) 0.45 (0.25–0.85) .520

p (%/day) 0.47 (0.34–0.56) 0.44 (0.11–0.72) 0.53 (0.20–1.13) 0.40 (0.23–0.84) .492

T2 (days) 148 (124–229) 142 (92–227) 137 (69–409) 173 (83–336) .806
CD8+

Peak 0.44 (0.22–0.66) 0.47 (0.37–0.65) 0.66 (0.48–0.96) 0.88 (0.47–1.01) .019

p (%/day) 0.30 (0.23–0.52) 0.38 (0.23–0.80) 0.66 (0.45–0.99) 0.69 (0.33–1.61) .136
T2 (days) 232 (135–312) 182 (90–289) 105 (72–176) 100 (43–210) .182

Memory T-cells (CD45RA−)

CD4+

Peak (%) 1.08 (0.77–1.70) 1.46 (1.22–1.94) 2.32 (1.12–3.57) 1.85 (1.33–3.73) .028

p (%/day) 1.30 (1.00–2.47) 1.98 (1.30–2.50) 1.87 (1.57–6.72) 2.36 (1.52–5.19) .047

T2 (days) 54 (28–72) 35 (28–53) 37 (10–44) 29 (13–46) .055
CD8+

Peak (%) 0.85 (0.58–1.47) 1.50 (0.97–1.82) 2.65 (1.47–5.02) 1.60 (1.00–3.34) .008

p (%/day) 1.55 (0.71–2.06) 1.85 (1.20–2.29) 3.44 (2.44–7.11) 2.24 (1.10–5.27) .010
T2 (days) 45 (35–98) 38 (30–58) 20 (9–28) 32 (13–63) .031

Peak is the maximum level of isotope labeling, corrected for glucose enrichment to derive an equivalent for 1 day’s labeling; p, modeled proliferation rate constant;
T2, doubling time of cells, within that pool, calculated as ln(2)/p. Values are median (IQR). P values by ANOVA; for T2 data was log-transformed.

Abbreviations: ANOVA, analysis of variance; HIV, human immunodeficiency virus; HIV-2-HV, HIV-2 infected with high viral load (>1000 copies/mL); HIV-2-LV, HIV-2
infected with low viral load (<100 copies/mL); IQR, interquartile range.
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Figure 3. Proliferation rates of T-cell subpopulations in controls and HIV infection. Modeled proliferation rate constants (p) in CD4+ and CD8+ T-cell
subpopulations for (A) CD4+CD45 R0− and (B) CD8+CD45 R0− “naive” cells; and (C) CD4+CD45RA− and (D) CD8+CD45R0A− “memory” cells. Line, box,
and whiskers represent median, IQR, and range, respectively; outliers shown as dots using Tukey criteria. Note different scales for naive and memory cells.
There was a significant trend across groups for CD4+ and CD8+ memory cells (P < .006, .001, respectively), but not for naive cells. Specific group differences
tested by ANOVA: naive cells, not significant; memory cells, P = .047, .010, for CD4+ and CD8+, respectively; *P < .05 by post hoc test. Abbreviations: ANOVA,
analysis of variance; HIV, human immunodeficiency virus; HIV-2-HV, HIV-2 infected with high viral load (>1000 copies/mL); HIV-2-LV, HIV-2 infected with low
viral load (<100 copies/mL); IQR, interquartile range.

Figure 4. TREC content of naive CD4+ and CD8+ T-cells. TREC content shown as log copies per 105 cells for (A) CD4+CD45R0− and (B) CD8+CD45R0−

“naive” T-cells. Line, box, and whiskers represent median, IQR, and range, respectively. ANOVA (nonparametric): P = .004, P = .19 respectively; *significant
intergroup difference by post hoc testing. Trend across groups was significant (P < .001) for CD4+ cells, with HIV-2-HV group having lowest TREC content
values in naive cells, but not for CD8+ cells (P = .056). Abbreviations: ANOVA, analysis of variance; HIV, human immunodeficiency virus; HIV-2-HV, HIV-2
infected with high viral load (>1000 copies/mL); HIV-2-LV, HIV-2 infected with low viral load (<100 copies/mL); IQR, interquartile range; TREC, T-cell receptor
excision circle.
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with viral load and CD4 lymphopenia were weaker, but still sig-
nificant (Supplementary Figure 2E and 2F). Interestingly, even
in the control group there was a correlation between HLA-DR/
CD38 coexpression and modeled proliferation rate (data not
shown), suggesting that these methodologies are sufficiently
sensitive to demonstrate subclinical inflammation or infection
in clinically “healthy” controls.

DISCUSSION

Control of HIV, with low or absent viremia, well-maintained
CD4 counts, and absence of clinical disease, may be achieved
in several ways. Elite controllers, for example, who represent
about 1% of HIV-1 infected subjects, control viremia through
strong CD8+ cytotoxic T lymphocyte (CTL) responses (with
CD8+ T-cell activation); they have favorable HLA types for
HIV-epitope presentation. A different pattern is seen in “post-
treatment controllers,” who remain aviremic even after discon-
tinuation of ART initiated during primary infection; their well
being appears to result from low levels of immune activation
rather than strong CTL responses [36]. Both patterns have
wider implications as they inform pursuit of the goal of “func-
tional cure,” control of viremia without ART. HIV-2 infection
represents a further informative model, as subjects at very low
and at high risk of disease progression can be differentiated ac-
cording to viral load status [4]; indeed HIV-2-LV subjects in this
cohort had a median untreated progression-free follow-up of
approximately 12 years (Table 1). This dichotomy allows dissec-
tion of likely protective factors from those predisposing to pa-
thology [1, 2]. Although a contribution from viral diversity
cannot be excluded (for example, HIV-2 capsid proteins, such
as p26, appear to favor progressive disease [37]), this study fo-
cuses on immunological factors.

First, our observations confirm the divergence between low
and high viral load subjects with HIV-2 infection [2, 4]. We
found clear differences between these groups in terms of immune
activation, in vivo memory T-cell turnover, and Ki67 expression.
Second, we found that the hierarchy of immune activation (con-
trols <HIV-2-LV <HIV-1 <HIV-2-HV) predicted kinetic param-
eters, including Ki67 expression, in vivo turnover, and TREC
content. Third, we found that although both naive and memory
cells showed an activated phenotype in high viral load HIV-2-
infected individuals, the effect on proliferation was more marked
in the memory T-cell compartment. These 3 observations were
more marked for CD8+ T-cells. Fourth, while in low viral load
HIV-2, TREC were relatively well preserved, consistent with
well-preserved telomeres in this group [38], we found that
TREC content tended to be lower in HIV-1 and HIV-2 progres-
sors; more markedly in CD4+ cells.

Our findings thus concur with the paradigm that immune ac-
tivation is central to disease progression. Immune activation
was the strongest predictor of T-cell turnover in both CD4+

and CD8+ populations (Supplementary Figure 2). This is con-
sistent with the observation that, at similar clinical disease stag-
es, HIV-1- and HIV-2-infected subjects demonstrate similar
levels of immune activation [21, 39].Our data add subset specif-
icity to this paradigm; for example, naive CD8+ T-cells are even
more activated by HIV-2 viremia than by HIV-1 (Figure 1B),
consistent with poor outcomes at viral loads about 1 log10
lower in HIV-2 infection [9]. In parallel studies relating viral
tropism to T-cell turnover, we also found that immune acti-
vation was the primary determinant of turnover rather than
viral specificity or lymphopenia [25]. Consistent with this
model is the extreme example of the SIVsm–infected sooty man-
gabey in which the absence of immune activation may explain
how high-level viremia is tolerated without disease [40]. We
interpret the association of CD4 lymphopenia with both
CD4+ and CD8+ T-cell turnover (Supplementary Figure 2)
as an indirect effect of immune activation rather than homeo-
stasis, as CD4 lymphopenia affected both pools, whereas CD8
lymphopenia affected neither (data not shown). Drivers of
immune activation include loss of gastrointestinal integrity
and activation of toll-like receptors by viral RNA [18]. The
final pathway for CD4 cell death may be caspase-1-mediated
pyroptosis [41, 42].

We have previously observed the relative impunity of naive
T-cells to the effects of viral infection on turnover in both
HIV and acute Epstein–Barr virus infection [25, 43]. In HIV-2
high viral load patients, although we did not measure a change
in turnover rate versus other groups, there still appears to be an
effect on naive CD4+ cells, which have higher activation levels
(Figure 1A) and lower TREC abundance (Figure 4). TREC con-
tent is determined both by thymic output and by replicative his-
tory [44].We attribute the independent effect of age to reduced
thymic output, but hypothesize that the HIV-2-HV effect
relates to greater cumulative mitotic history in this group. Re-
duced TREC levels have also been demonstrated in Portuguese
subjects with HIV-2 infection, albeit younger patients with un-
detectable viral loads [45]. Our data suggest that HIV-2 viremia
accelerates TREC dilution. The relative absence of an effect of
HIV-1 infection on TREC is consistent with other studies in
early chronic HIV infection where thymic output appears to
maintain TREC-high naive cell numbers [46]. Although all
our subjects were in early chronic disease (in terms of CD4
count), later involvement of the naive T-cell pool may be a crit-
ical tipping point for progression, as naive cells are normally
only very slowly replaced [26, 27].

The absence of differences in cellular markers of cell death or
“exhaustion” (Annexin V, PD-1, 7AAD and CD95) may be the
consequence of selecting a cohort with early disease (entry CD4
count > 500 cells/μL). Although previous studies have reported
increased PD-1 expression in HIV-1 infection, this primarily af-
fects virus-specific CD8+ [47] and antigen-specific CD4+ T-cells
[48].Other studies have found a less-marked effect of HIV-2 on
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PD-1-expression, consistent with our data [49]. The higher ex-
pression of Bcl-2 (which is antiapoptotic) in HIV-2-HV sub-
jects may represent a protective mechanism operating at high
CD4 counts, before cells are lost.

In vivo T-cell kinetics are technically difficult to estimate, but
labeling approaches measuring stable isotope incorporation
into DNA of dividing cells using either heavy water (deuterium
oxide) or deuterium-labeled glucose have enabled direct nonin-
vasive monitoring in humans [30]. Small changes may be diffi-
cult to detect, hence the major limitation of this study is its size;
further larger studies, including studies investigating specific
memory T-cell subpopulations and more precisely defined
naive T-cells, would elucidate our observations. Our definition
of “naive” cells may be adequate for CD4+ cells, but for
CD45R0− CD8+ cell preparations would also have included
some CD45RA-revertant “memory” cells [32]. Our decision
not to investigate further T-cell subpopulations was based on
logistic constraints; we limited our studies to subpopulations
we could prepare in sufficient numbers by magnetic bead isola-
tion (rather than flow cytometry), using limited blood sample
volumes (a culturally sensitive issue), sorting only fresh cells
(on the day of blood drawing), while promoting technology
transfer by performing as much laboratory work on-site in
The Gambia as possible. All samples were checked for purity
by flow cytometry; sorted subsets that failed to meet a priori pu-
rity criteria were excluded. Minor contamination (naive T-cells
in memory cells, or vice versa) was corrected for mathematically
(Supplementary Information). Some control subjects may have
had subclinical infection or low-grade inflammation, as illus-
trated by increased HLA-DR/CD38 coexpression and turnover
in some control subjects, although they do represent a true pic-
ture of the background asymptomatic state in The Gambia and
so represent valid controls. Investigation of the relationship be-
tween viremia, cell turnover, and the size of latent viral reser-
voirs would also be instructive.

The model of non-progression in HIV-2-LV subjects that
emerges from this study is characterized by low, but not absent,
levels of immune activation; indeed some CD8+ T-cell activa-
tion may be beneficial. HIV-2-LV subjects resemble HIV-1
elite controllers in that they have robust Gag-targeted polyfunc-
tional T-cell responses [11, 13, 50], whose efficacy may be en-
hanced by greater constraints on CTL escape in HIV-2
infection [14]. The skewing of the cytokine profile of such
cells away from perforin/cytotoxicity may explain the absence
of immunopathology. In HIV-2, as in HIV-1, accelerated turn-
over appears to be a critical component of the pathological pro-
cess leading to chronic cell depletion [41, 42]. Low levels of
immune activation may protect cells from chronic depletion,
as seen in posttreatment controllers [36]. Lessons from HIV-2
suggest that a “functional cure” response needs to balance suf-
ficient targeted anti-HIV immune reactivity to critical epitopes
with an absence of generalized aberrant immune activation, and

specifically protection of the naive T-cell pool against
exhaustion.
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