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Abstract. This paper presents an enhancement of the Nimrod/O optimization tool by 
interfacing DEMO, an external multiobjective optimization algorithm. DEMO is a variant of 
differential evolution – an algorithm that has attained much popularity in the research 
community, and this work represents the first time that true multiobjective optimizations have 
been performed with Nimrod/O. A modification to the DEMO code enables multiple objectives 
to be evaluated concurrently. With Nimrod/O’s support for parallelism, this can reduce the 
wall-clock time significantly for compute intensive objective function evaluations. We describe 
the usage and implementation of the interface and present two optimizations. The first is two-
objective mathematical function in which the Pareto front is successfully found after only 30 
generations. The second test case is the three-objective shape optimization of a rib-reinforced 
wall bracket using the Finite Element software, Code_Aster. The interfacing of the already 
successful packages of Nimrod/O and DEMO yields a solution that we believe can benefit a 
wide community, both industrial and academic. 

 

1.  Introduction 
Optimization continues to be a widely researched topic and finds applications throughout science and 
engineering disciplines in both academia and industry[1]. It is often the case that two or more 
objectives need to be optimized simultaneously. A true multiobjective optimization process will not 
produce one single solution if any of the objectives are in conflict with each other. Mathematical 
optimization techniques have existed since the 18th century when Leibniz and Euler used differential 
calculus to develop a tool for evaluating minima and maxima of differentiable relationships, however 
it was not until the French-Italian economist V. Pareto (1848-1923) developed his theory of Pareto 
optimality that a framework could exist for multiobjective optimization problems (MOOP)[2]. The 
defining characteristic of the Pareto optimal set is the loss of optimality in one objective function as 
another objective function is improved.  

Since the 1980’s, sufficient computing power has existed to approach the MOOP via the use of bio-
inspired metaheuristics. The focus of optimization has shifted from mathematical programming 
techniques to the application of evolutionary methods, which adapt the genes of a population of 
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candidates with the aim of improving their “fitness”. Mathematical programming techniques typically 
require multiple optimization runs, each generating one element of the Pareto set and are susceptible to 
changes in the shape of the Pareto front (Section 2.2) and may not work when this front is concave or 
discontinuous[1]. By contrast, evolutionary algorithms simultaneously manipulate a set of possible 
solutions. In addition, evolutionary algorithms typically deal with discontinuous or concave Pareto 
fronts much better[1]. For this reason, they are known as “robust” optimization methods. Examples 
include: Strength Pareto Evolutionary Algorithm (SPEA)[3], Non-dominated Sorting Genetic 
Algorithm (NSGA)[4], Multi-Objective Tabu Search (MOTS)[5], and Differential Evolution Multi-
Objective (DEMO)[6]. 

However, executing an optimization involves much more than just applying a suitable algorithm. 
This is especially true when the calculation of the objective function is very (time) expensive - for 
example when the objective function is the result of a complex numerical simulation. Cluster and 
grid/cloud computing provide institutions with access to more much computing power than any one 
workstation, but all the elements of the optimization loop must somehow be coordinated and managed. 
In addition, the parameters of an optimization, and any constraint conditions, have to be described to 
the optimization software before it can be initiated. Part of a suite of problem solving tools developed 
at Monash University, Nimrod/O [7] is the optimization element and can be interfaced with computing 
clusters or grids [8] for the parallel evaluation of expensive objective functions. Using its declarative 
“plan file”, a user can specify an optimization readily. Nimrod/O has long provided a range of single 
objective optimization algorithms, and multiobjective optimizations have been possible by re-phrasing 
them as single objective optimizations with the use of a cost function. This paper represents the first 
interface of a true multiobjective optimization algorithm. 

The layout of the paper is as follows: The Nimrod/O optimization tool and the chosen optimization 
algorithm, DEMO, are described in more detail in sections 2.1 and 2.2. Adaptations to DEMO that 
enable parallelism, and the role of the DEMOinterface are detailed in section 2.3 before the two test 
experiments are presented (3.1 and 3.2). The first test in section 4.1 is a two-parameter optimization of 
a mathematical test function. The second test in section 4.2 is the shape optimization of a rib-
reinforced steel bracket using Finite Element evaluations from Code_Aster to compute the two 
objective functions of stress and deflection as well as incorporating a third, conflicting objective 
function, of reducing the mass of the part.  

2.  Software components 

2.1.  Nimrod/O 
Nimrod/O combines optimization, distributed computing and rapid prototyping in one tool. Various 
optimization routines are built into Nimrod/O such as BFGS (Broyden–Fletcher–Goldfarb–Shanno), 
the Downhill Simplex Method, Simulated Annealing, and EPSOC (Evolutionary Programming using 
Self-Organised Criticality)[9]. An optimization is readily specified by the user by parameterizing their 
problem using Nimrod/O’s declarative “plan file” (Figure 3), after which the tool computes the 
parameters that minimize or maximize the design’s objective function. Transparent to any of the 
optimization algorithms is Nimrod/O’s evaluation of the objective function. These evaluations can 
execute in parallel; on a multi-core CPU on the local machine, be farmed out to greater compute 
resources such as a cluster (e.g. [10]), or a grid resource such as provided by Nimrod/G[8], as shown 
in Figure 1. 

Nimrod/O has been applied to a wide range of problems since its publication [11], such as aerofoil 
optimization, air pollution studies, stress analysis, cardiac modelling, structural geology, fatigue based 
design optimization and high gain antenna design [12]. An additional flexibility of the tool is the 
provision for the user to incorporate their own optimization algorithm. These algorithms can be 
specified as a user-defined function, in which communication is facilitated by passing memory 
structures, or, implemented as a program external to Nimrod/O when pipes are used for the cross 
process communication. Recent code revisions of Nimrod/O have enabled multiobjective 
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optimizations to be handled and the first interface of a robust multiobjective optimization package is 
the subject of this paper.  

 

Figure 1. Overview of the process. Figure 2. Dataflow between the software 
elements. 

2.2.  DEMO 
Differential evolution (DE) by Price [13] was the culmination of work aimed at solving the 
Tchebychev Polynomial fitting problem proposed to him by Dr R Storn. It is a population-based 
optimization algorithm, but unlike classical genetic algorithms such as Holland’s [14] which encodes 
decision variables as binary numbers, DE uses real coding of floating point numbers. This, coupled 
with Price’s desire to make candidate mutation an adaptive procedure, resulted in a rapid and robust 
algorithm that is simple to use. The original version of DE is controlled by just three variables: the 
population size, N, the mutation scaling Factor, F, and the crossover constant, CR.  

Many optimization problems involve more than one criterion. In the unlikely event that these 
objectives are not in conflict with each other, the multiobjective optimization problem can reduce to a 
single ideal solution. However, this is not normally the case – for example the mass of an engineering 
part is desired to be low, whilst its load carry capabilities are desired to be high. In this situation, no 
single optimal solution will exist and the optimization algorithm searches for the Pareto front. The 
minimization of a general two criteria multiobjective optimization is formulated as follows: 

 
Minimize fሺxሻ  ൌ  ൫fଵሺxሻ, fଶሺxሻ൯ such that  x א X , the feasible region 
 

subject to ൜
g୨ሺxሻ ൌ 0  j ൌ 1, … , M
h୩ሺxሻ ൑ 0  k ൌ  1, … , K

 constraints  

 
where x is a p-dimensional vector whose components are know as decision variables, g୨ are equality 
constraints and h୩ are inequality constraints. 
 
Definition of dominance: Comparing two solutions, xଵ and xଶ, we say that xଵ dominates xଶ if: 
 
fଵሺxଵሻ  ൏  fଵሺxଶሻ   and   fଶሺxଵሻ  ൑  fଶሺxଶሻ  or  fଵሺxଵሻ  ൑  fଵሺxଶሻ   and   fଶሺxଵሻ  ൏  fଶሺxଶሻ 
 
The Pareto set is formed from only those solutions that are not dominated by any other (i.e. from non-
dominated solutions). The Pareto front is an imaginary line drawn in the objective space, along which 
candidates from the Pareto set would lie. 
 
Consequently, two goals exist in multiobjective optimization[6]: 
 

1. Find the most diverse range of these solutions across the Pareto set, and 
2. Discover solutions as close as possible to the ideal Pareto front. 
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To these ends, Robič and Filipič developed DEMO (Differential Evolution for Multiobjective 
Optimization)[6]. Based on DE, it builds on the success of Price’s algorithm and adds the mechanisms 
of non-dominated sorting and crowding distance metric as used by state-of-the-art multiobjective 
evolutionary algorithms. This helps achieve the first goal of finding the most diverse range of non-
dominated solutions. The second goal is achieved by an emphasis on elitism: parent individuals are 
immediately replaced by the candidate that dominates them. By entering the population immediately, 
this new candidate can, without delay, take part in the creation of further candidates. With these 
additions, DEMO is shown to achieve competitive results on five ZDT [15] test problems. In a follow 
up paper, Robic[16] presents a comparison study in which DEMOS’s performance is found to be 
comparable to other state-of-the-art multiobjective evolutionary algorithms on nine newer test 
problems created by Huband et al. [17]. 

2.3.  Interfacing DEMO with Nimrod/O 
The original DEMO code was first ported from its MS Windows source code such that it could 
compile under the Linux operating system. The random number generator, a container declaration and 
the system-out calls comprised the three necessary alterations. Initial testing confirmed that the Linux 
port of DEMO worked equivalently to the Windows version.  

As described in section 2.2, one of DEMO’s key mechanisms is elitism within the reproduction 
process. Before an entire population has been evaluated, superior candidates will already have 
replaced their parents and take part in the creation of newer candidates. It should be clear that this 
mechanism requires sequential candidate evaluation and presents a conflict of interest. Whilst this 
elitism mechanism accelerates the discovery of the Pareto optimal set, parallel candidate evaluations 
would reduce the wall-clock time for optimization runs. To this end we introduce to DEMO’s 
initialization file a “BatchSize” parameter. BatchSize ൑ P ൑ N  where, N ൌ  Population size, and 
P ൌ  Number of processors available for parallel objective function evaluations. 

In the case that the user has access to a large compute resource, the BatchSize parameter tunes-
down the benefit from elitism in favor of an overall speed-up from parallelism. One further minor 
change to DEMO’s initialization file is the inclusion of a Boolean flag that indicates to DEMO that it 
will be working in a mode compatible with Nimrod/O. If this flag is turned off (0), then DEMO will 
function in stand-alone mode and identical to version 1.2. More information on DEMO’s usage can be 
found in the v.1.2 reference manual [18]. 

Nimrod/O 2.9 now supports multiobjective function evaluations. Via a “results” parameter in 
the plan file (Figure 3), Nimrod/O prepares to accept multiple objective functions and, during run 
time, both logs and caches these multiple results. As in prior versions, the cache mechanism (Figure 1) 
prevents unnecessary repetitions of prior function evaluations. The management of Pareto optimal 
sets, Pareto based ranking and sorting is not supported by the current version of Nimrod/O, however 
DEMO provides this functionality. 

Nimrod/O can host a concurrent execution thread in which an external optimizer runs. This intent is 
communicated in the plan file by the use of “method external “name” ./executable”. 
For this paper, the pipes method was chosen. In building the interface, the necessary include files from 
Nimrod/O’s package were noclient.c, noclient.h and definitions.h. These provide 
query and communication functionality between external code, such as the current interface, and 
Nimrod/O. Sufficient functions are implemented in noclient.c that an external, user-defined, 
optimization algorithm can operate as if it were part of Nimrod/O.  

The DEMOinterface is simultaneously the child process of Nimrod/O and the parent process of 
DEMO and, in use; it translates data formats and requests between these two applications (Figure 2). 
The user may alter specifics of the DEMO optimization by editing DEMO’s initialization file. For the 
convenience of the user, fields in Nimrod/O’s plan file that are repeated in DEMO’s initialization file 
are automatically inserted into DEMO’s initialization file by the interface before it spawns DEMO.  

The stopping criterion for DEMO is specified in its initialization file as a maximum number of 
candidate evaluations. Once this limit is reached, DEMO writes the current Pareto front to a file called 
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fronts.out. Further files such as the statistics on the population’s evolution and a log file are 
written by DEMO before it terminates. The DEMOinterface also detects when the maximum number 
of evaluations has been reached and notifies Nimrod/O which likewise finalizes its files and 
terminates. 

In addition to creating the DEMOinterface, the authors of this paper have made the above 
alterations to DEMO and further developed Nimrod/O for multiobjective compatibility. The rest of 
this paper concerns; testing the solution by minimizing a two-objective mathematical function, and, 
the three objective shape optimization of an engineering part using the Finite Element package, 
Code_Aster. 

3.  Experimental setup 

3.1.  Poloni test function 
Poloni’s function [19] offers a convenient way to test the DEMO algorithm. It is a two parameter, two 
response, mathematical function (given below). 
 
x, y א ሾെπ, πሿ 
 
Fଵሺx, yሻ ൌ  െ ሾ1 ൅ ሺAଵ െ Bଵሻଶ ൅ ሺAଶ െ Bଶሻଶሿ 
Fଶሺx, yሻ ൌ  െ ሾሺx ൅ 3ሻଶ ൅ ሺy ൅ 1ሻଶሿ 

 
 

Where, 
Aଵ ൌ 0.5 sin 1 െ2.0cos 1 ൅ sin 2 െ 1.5 cos 2 
Aଶ  ൌ  1.5 sin 1 െ cos 1 ൅ 2sin 2 െ 0.5 cos 2 
Bଵ  ൌ  0.5sin x െ 2 cos x ൅ sin y െ 1.5 cos y 
Bଶ ൌ 1.5 sin x െ cos x ൅ 2sin y െ 0.5 cos y 

Price [13] provides a guide for the population size as 10 ൈ d where d is the number of dimensions 
of the problem, therefore in this test ܰ ൌ 20 . The weight of the mutation scaling factor can be any 
value in the interval [0,2] and was chosen as F ൌ 0.5. The crossover probability must lie in the interval 
[0,1] and CR ൌ 0.3 was chosen. These F and CR values were used for both the optimizations presented 
in this paper. Price and Storn [20] describe the settings for these parameters in more detail. A 
concurrency setting of 4 directed Nimrod/O to enable parallel function evaluations on the quad-core 
host machine. 
parameter p float range from -3.1415926 to 3.1415926 
parameter q float range from -3.1415926 to 3.1415926 
 
results 2 
 
task main 
   copy  poloni node:poloni 
   node:execute  ./poloni $p $q 
   copy  node:exp_result output.$jobname 
endtask 

 
method external "DEMO" ./DEMOinterface 
  starts 1  
  endstarts 
endmethod 

Figure 3. Nimrod/O plan file: poloni.shd. 

3.2.  Shape optimization of a rib-reinforced wall bracket 
The shape under consideration is a rib-reinforced wall bracket. The back face of the bracket is 
constrained and a distributed loading is applied to the protruding face, simulating the bracket 
supporting a weight of approximately 200kg. Technical drawings (Figures 5 and 6) show the 
dimensions of the part (mm) as well as the five decision variables (A, … , Eሻ. These variables will be 
optimized to minimize the three objective functions of: mass, maximum deflection, and, maximum 
VonMises stress. Minimizing the mass conflicts with minimizing the stress and the deflection and so 
the problem will not reduce to one optimal solution – instead a Pareto set of solutions will be found. 
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Table I. Wall bracket decision variables. 

ܣ ൌ Thickness of bracket plate (mm)  [1,10]  
ܤ ൌ Thickness of ribs (mm) [1,10]  

ܥ ൌ Placement of ribs (%). When: 
ܥ ൌ 0,  Rib distribution is widest 
ܥ ൌ 100,  Rib’s Inner faces are 10mm from mounting holes 

 

ோ௜௕_ଵ݁ܿܽܨݎ݁ݐݑܱ_ݐ݁ݏ݂݂ܱ_݁ݐݑ݈݋ݏܾܣ ൌ 119 െ ቆ
ܥ

100 ൈ ሺ29 െ  ሻቇ (1)ܤ
 

ோ௜௕_ଶ݁ܿܽܨݎ݁ݐݑܱ_ݐ݁ݏ݂݂ܱ_݁ݐݑ݈݋ݏܾܣ ൌ 1 ൅ ቆ
ܥ

100
ൈ ሺ29 െ  ሻቇ (2)ܤ

 

ܦ ൌ   displacement of curve control point [30,70]  ݔ
ܧ ൌ  displacement of curve control point [30,70]  ݕ

 

Figure 4. Rib-reinforced 
wall bracket 

 
A stand alone computer was used for the results in this paper with a Quad Core AMD Phenom 

2.5GHz processor, 4MB cache with 4GB of RAM installed. The operating system was 
CAELinux2008 [21] which includes the open-source CAE software: Salomé, Code_Aster, 
Code_Saturne and OpenFOAM. For this work, only Salomé and the Finite Element software of 
Code_Aster were used. Onto the base installation of the operating system, the source codes for 
Nimrod/O 2.9, DEMOinterface and DEMO were compiled and installed. 

The five decision variables in Table I comprise the thickness of the bracket, A, and the thickness of 
the ribs, B, a distribution of the ribs, C, and co-ordinates for a curve control point D and E. The 
distribution of the ribs is presented to the optimizer as a floating point variable in the range [0,100], 
however this variable needs to be translated into physical dimensions on the bracket itself. The 
equations used to translate the variable C are equations (1) and (2). These equations are necessary to 
accommodate changes to the rib thickness, B, and guarantee that when C=100 the inner faces of both 
ribs will be exactly 10mm from the centre of the mounting holes irrespective of the value B (Figure 5). 
Likewise, when C=0, the outer faces of the ribs will be located at their widest distribution: 1mm from 
the outer edges of the bracket itself. Both ribs are symmetrically distributed. D and E are ݔ and ݕ co-
ordinates of a point through which the profile of the ribs is interpolated. D and E are in the interval 
[30, 70], the 30 being the displacement in mm from the inner face of the bracket therefore keeping the 
rib profile point independent of A (Figure 6). 

 

Figure 5. Plan view of the wall bracket. Figure 6. Side elevation of the wall bracket. 

Loaded Face (evenly 
distributed pressure)

Rear Face
(constrained)

Room :
40 X 40

1
D & E

30

30
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3.2.1.  The shape optimization job. The flow chart, Figure 7 shows the steps involved for shape 
optimization using Code_Aster, Nimrod/O and DEMO. The first two steps involved setting up the 
shape and the optimization, but the main work was conducted in an automated loop governed by 
Python scripts and simple shell scripting.  

From the Graphical User Interface (GUI) of Salomé, arbitrary settings for the decision variables 
ሺA, … , Eሻ were chosen in building the body of the first shape. The geometry was auto meshed with the 
in-built algorithms shown in Table III. The volume contained ~ 11,000 Tetrahedrons after meshing. 
The Code_Aster Linear Elastic job was set up with a distributed pressure loading of 0.16667 MPa that 
represents ~200kg mass on to the upper surface of the bracket. The degrees of freedom for the rear 
face and interior of the rear bolt holes is given by (DX,DY,DZ) = (0,0,0). The relevant physical 
properties of the chosen material, Plain Carbon Steel, are given in Table II. After verifying a 
successful run of the Code_Aster solver, the above three steps were “dumped as Python study”. In this 
way templates were created that could later be called from the command line. 
 

 
Figure 7. Flowchart of the shape optimization 
process. 

Table II. Material properties of the bracket. 
Plain Carbon Steel 

Young's modulus, E ሺܽܲܩሻ 200 
Poisson's ratio, ߭ 0.3 
Density ሺ݃ ܿ݉ଷ⁄ ሻ 7.86 
Yield Stress, ߪ௬ ሺܽܲܯሻ 280 

Table III. Auto meshing settings used. 

Meshing
Applied 
Algorithms 

Applied 
hypotheses 

1D Average length 
(6) 

Wire 
discretisation 
Added: 
Quadratic Mesh

2D MEFISTO_2D Length from 
edges 

3D Tetrahedron 
(Netgen)  

 

Two edits were then necessary in the text files name.comm and nameGEMO.py. In the 
name.comm text file, maximum deflections and principal stresses were requested to be included in 
the pain text name.resu results file of Code_Aster.  In the Python geometry script, nameGEMO.py, 
the following lines were added adjacent to the last line: 

 
myTuple = geompy.BasicProperties(finished_body) 
myMass = (myTuple[2]/1000) x 7.86 
 
This calculates the volume of the shape and multiplies by the density. Further Python commands 

save this mass to file. Two simple C++ programs were also written. 
Inject_vector_into_python_scripts takes the decision variables ሺA, … , Eሻ as arguments, 
parses the template of nameGEMO.py, and inserts changes to the geometry script at runtime. 
Extract_Objective_Functions is called after Code_Aster, extracting the calculated values 
for maximum deflection and the maximum VonMises stress from name.resu. The mass is also 
read-in from file, and the three objective functions are then formatted for Nimrod/O by 
Extract_Objective_Functions and saved to file. After setting up Nimrod/O’s plan file and 
DEMO’s initialization file, a small number of shell scripts were created to implement automation. The 

In Salome GUI:
Create Geometry
Mesh Geometry
Set up Code Aster Job
Run Job
Dump study as Python scripts

Set up Nimrod/O plan file
Set up DEMO initialization file

Call Nimrod/O plan file

Nimrod/O DEMOinterface DEMO

Service DEMO 
optimization

Candidate 
vector

./Inject_vector_into_python_scripts

Call Python scripts:
New shape is constructed, meshed, and, solved

./Extract_Objective_Functions
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memory requirement for an individual job was ~1.3GB. With the installed 4GB of RAM, and with the 
operating system overhead, a concurrency setting of 2 was the maximum level of parallelism 
attainable without paging to the hard disk. 6GB or more of RAM would have permitted four 
concurrent shape evaluations. 

4.  Results 

4.1.  Poloni test function 
Figure 8 shows a scatter plot of the Poloni function. 600 function evaluations were performed by 
Nimrod/O and the final Pareto set of 20 candidates found by DEMO is shown with superimposed 
square diamond markers. An interpolated line has been added to aid clarity. Visual inspection of this 
Pareto set indicates that DEMO has been successful in attaining the two aims of; finding a diverse 
range of solutions, and, finding solutions that are as close as possible to the ideal Pareto front. 
Arguably, this front is superior to that obtained by Poloni et al. [19] with their MOGA (Multi 
Objective Genetic Algorithm) optimizer which involved 50 candidates and 2500 evaluations. 

 
Figure 8. Poloni function, Pareto set superimposed. 

4.2.  Shape optimization of the rib-reinforced wall bracket 
800 candidate evaluations were performed by Nimrod/O, each involving the creation of new 
geometries and a linear elastic simulation by Code_Aster. The population size was N=50 and four 
results from the final Pareto set are given in Table IV. Across the final, 50 candidate Pareto set, the 
decision variables fell in the intervals: A[1.0,10.0] B[1.0,5.58] C[86.6,97.7] D[30.0,67.0] E[30.0,57.1] 

The full Pareto set is plotted in the 3D scatter graph, Figure 9, showing mass, maximum VonMises 
stress and maximum deflection on each axis. In Table IV, displayed are the two heaviest candidates 
among the Pareto set for which calculations of maximum VonMises stress and maximum 
displacement were least. The lightest candidate was found to have a maximum VonMises stress of 
only 3% below the ߪ௬ of 280MPa. A typical safety factor setting of 3.0 would exclude this bracket 
from use, and likewise the next 16 light-weight solutions due to high imposed stresses. By inspection 
of the scatter graph in Figure 9, there is a region containing a small number of candidates (lying near 
the point where the mass begins to significantly increase) that substantially reduce the stress and 
deflection when compared to the lightest candidates. One of these is labeled the “compromise 
solution” (Table IV). For this candidate, the maximum calculated VonMises stress is 15.2% of the ߪ௬ 
and the Mass is only 28.3% of the two heaviest solutions. The deflections of this compromise solution 
are represented visually in Figure 10. The greatest deflections of this solution are located in the 50% of 
the loaded face that is furthest from the back plate, at the extreme left and right edges. 
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0
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Table IV. Results of the multiobjective wall bracket optimization. 
Decision variables Objective functions 

A B C D E 
Max  Deflection 

(µm) 

Max 
VonMises 

(MPa) 
Mass 
(kg) 

1.00 1.00 91.1 30.0 33.0           739         271 0.22 Least Mass 
10.0 4.94 97.7 40.1 30.0           0.90         3.82 1.99 Least Stress  
10.0 5.44 91.7 33.8 30.0           0.81         3.90 1.98 Least Deflection 

2.71 1.00 90.4 40.1 41.4           29.4         42.5 0.56 Compromise 
solution 

 

 
Figure 9. 3D scatter plot of the Pareto optimal set. 

 
Figure 10. Deflections of the compromise 
solution (Key in mm). 

5.  Conclusion 
This paper has described the successful implementation of the DEMO - Nimrod/O interface and 
illustrated its usage with two, truly multiobjective, optimizations. A parameter that enables parallelism 
has been implemented which can reduce the wall-clock time for optimizations when multiple 
processors are available, or, be tuned-out by the user - potentially accelerating the convergence to the 
Pareto front. 
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