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EXECUTIVE SUMMARY 

Multi-pass fusion welding by a filler wire (welding electrode) is normally carried 

out to join thick steel sections used in most engineering applications. Welded 

joints in an installation, is the area of critical importance, since they are likely to 

contain a higher density of defects than the parent metal and their physical 

properties can differ significantly from the parent metal. Fusion arc welding 

process relies on intense local heating at a joint where a certain amount of the 

parent metal is melted and fused with additional metal from the filler wire. The 

intense local heating causes severe transient thermal gradients in the welded 

component and the resulting uneven cooling that follows produces a variably 

distributed residual stress field. In multi-pass welds, multiple thermal cycles 

resulted in a variably distribution of residual stress field across the weld and 

through the thickness. 

These complex thermal stresses generated in welds are undesirable but 

inevitable during fusion welding. Presence of such tensile residual stresses can 

be detrimental to the service integrity of a welded structure. In addition to a 

complex distribution of residual stress state, multi-pass welds also forms dendritic 

grain structure, which are repeatedly heated, resulting in segregation of alloying 

elements. Dendritic grain structure is weaker and segregation of alloying 

elements would result in formation of corrosion microcells as well as reduction in 

overall corrosion prevention due to depletion of alloying elements. 

In this research, redistribution of residual stress magnitude and profile and the 

microstructural characterisation were studied and compared in three multi-pass 

welded structural alloys. These three alloys are; API 5L X100 pipeline steel (20 

mm thick), S275JR structural steel (12 mm thick) and 304L austenitic stainless 

steel (12 mm thick). 

The main objective of this study is to apply a novel processing to redistribute the 

harmful tensile residual stress field and minimise the effect of dendritic grain 

structure. This research aims at understanding the suitability of a novel 
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processing to create a stress free weldment with recrystallized grain structure in 

the weld metal.  

In order to achieve the objectives in this research, the experiment was carried out 

in two phases.  The first phase of the experiment involved three steps; welding 

was carried out by Tandem GMAW DC process, the post weld cold rolling was 

performed using an in-house rolling device and finally, the post weld cold rolling 

was followed by laser processing using 8 kW (peak power) CW fibre laser. The 

laser processing in the first phase was in transient heating mode using a laser 

power of 3 kW with a travel speed of 0.3 m min-1 and laser spot dimension (beam 

diameter) of 20 mm. 

The residual stress was determined non-destructively by neutron diffraction, 

using the SALSA strain scanner at the reactor neutron source at ILL, Grenoble in 

France. The redistribution of the as-welded residual stress state was achieved by 

cold rolling which was followed by laser processing to induce recrystallization of 

the cold rolled grains. The stress measurements were supplemented with 

mechanical properties (hardness and tensile strength) evolutions in the welded 

structures after the three processing conditions. 

In residual stress analysis, the result indicated that, in all the structural alloys 

studied, the stress variation in as-welded state, showed diminishing longitudinal 

peak stress magnitude through the thickness from cap to root pass. 

Post weld cold rolling was effective in redistributing the stress field. Up to 4 mm 

below the capping pass in API 5L x100 grade, modifies the stress state from 

tensile to compressive across the weld centre line. While in 304L austenitic 

stainless steel, post weld cold rolling was effective in modifying the residual stress 

distribution throughout the entire thickness.  

Post weld cold rolling followed by laser processing in transient heating mode in 

all the cases reinstated the as-welded residual stress magnitude and distribution 

while, microstructural characterization showed minor grain refinement near the 

capping pass for all the structural alloys. 
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With respect to mechanical properties, in the post weld cold rolling condition, 

hardness distribution in all the structural alloys showed a significant evidence of 

plastic deformation at the cap pass of the weld metal. However, for the ferritic 

steel (API X100 pipeline steel, S275JR structural steel) the effect of cold working 

was observed up to about 7 mm below the weld cap. Up to about 4 mm below 

the weld cap, the effect is more pronounced while after that, from 4 to 7 mm the 

effect is gradually diminishing. While in austenitic steel (304L stainless steel), the 

effect of cold working was observed throughout the entire thickness of the 

material. Laser processing after the localised plastic deformation of all the 

structural alloys resulted in softening of the weld metal. 

The post weld cold rolling resulted in an increase in ultimate tensile strength and 

proof strength with corresponding reduction in elongation in the fusion zone of all 

the alloys. Laser processing after cold rolling reverted back the as-welded 

conditions with reduction of the ultimate tensile strength and proof strength and 

corresponding increase in elongation. 

The second phase of the experiment, was based on the observation made in the 

first phase of the experiment, that;  post weld cold rolling followed by laser 

processing reinstated as-welded residual stress state profile with even higher 

magnitude of peak stress and also resulted in minimal refinement of 

microstructure. This indicated that the re-crystallisation is not complete because 

the transient thermal cycle is not sufficient to supply enough energy to sustain 

the entire recrystallization kinetics. Based on this observation, a new laser 

processing was adopted. 

The new laser processing involves applying thermal energy for a prolonged 

period which would ensure full recrystallization of the grain structure and 

formation of new set of strain free grains. In order to understand the time-

temperature cycle required for full recrystallization, an experiment using 

reheating furnace was carried out on post weld cold rolled samples.   

The furnace experimental result showed that recrystallized grains was formed 

after heating the API X100 pipeline steel to 900oC, while in austenitic stainless 

steel, recrystallized grains was observed when heated to 800oC. Based on this 



vi 

observation, the laser processing in the second phase of the experiment was 

designed. 

In this phase the same CW laser was used as in the first phase, but instead of 

transient heating mode the post weld cold rolled samples were gradually heated 

by controlling the laser power at a large beam diameter of 110 mm. The ferritic 

steel was heated up to 900oC, while, the austenitic steel was heated to 800oC 

using identical laser parameters. 

In order to overcome the problem of restoration of residual stress after laser 

processing of the post weld cold rolling samples as observed in the first phase of 

the experiment, a second cold rolling was applied. This cold rolling after laser 

processing is to redistribute and eliminate the tensile residual stress state which 

would have formed during laser processing. 

The result showed that, the modified laser processing followed by cold rolling 

resulted in generation of complete recrystallized microstructure with compressive 

residual stress state. Generation of this compressive stress state is beneficial in 

improving the structural integrity of a component as most of the in-service 

deterioration starts with a surface flaw. The generation of the recrystallized 

microstructure with large proportion of high angle grain boundaries would 

increase the strength and toughness of the material which is lower in as-welded 

dendritic grain structure state. 

In conclusion, this novel processing clearly demonstrates the improvement of 

structural features that can be obtained in traditional welded structural alloys. 

However, optimisation of the post weld cold rolling and laser processing would 

be required for different alloy systems. In order to optimise such processing, it 

would be advisable to consider the material’s work hardening characteristics, to 

understand the necessary effects of local tensioning on constitutive properties, 

and metallurgical characteristic if post weld cold rolling is to be applied.  

Keywords: structural steel alloys; multi-pass welds; microstructures; 

mechanical properties; residual stress; neutron diffraction; rolling; laser 

processing. 
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1 Introduction 

This chapter of the thesis presents an overview of the background, motivation for 

the research, research questions and hypothesis, the aim and the objectives of 

the research. It also describes the thesis structure. 

1.1 Background 

The need to have a reliable and efficient source of energy has been on increase 

for the past 100 years. This effort is more pronounced in the recent time [1]. Fossil 

fuel for example, has been one of the most widely used natural resources. This 

fuel is been used for the generation of electricity, power plants and for domestic 

uses in the world today [2]. A number of researches [3],[4],[5], have explained the 

use of this natural gas. Coupled with its abundance in nature, this natural gas is 

been consumed by industry as a source of energy. 

This natural gas has also been considered as a most reliable and clean 

transportation fuel. It has been used for powering urban mass transportation 

systems. Increase in demand for this commodities in European, North American 

and Asian countries, has called for the development of safe and cost effective 

transportation of this natural gas (gas fields) which are mostly located in remote 

area.  In fact, in some cases, this gas fields are located 5000-6000km away from 

the regions where it is used and often located offshore in harsh environments [3]. 

These fossil fuel and large reserves of natural gas that are located remotely are 

required to be conveyed from the source to many other countries across the 

border, for consumption. To transport this large gas volumes under high pressure, 

the use of high strength steels is considered as the most efficient, safe and the 

best economical means of transportation for final consumers [5]. 

1.1.1 Material: Steel 

Steel is useful material which has a very wide range of attractive properties, and 

can be manufactured at a low cost. Steel is generally defined as a ferrous alloy 

containing less than 2.0 wt. %C [6]. Complexity of steel arises with the 

introduction of further alloying elements into the iron – carbon alloy system which 
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lead to different categories of steels. High-strength low-alloy steel (HSLA) types 

of steels for example, provides good mechanical properties or better corrosion 

resistance than carbon steel. This type of steels (HSLA) are made to meet a 

specific mechanical properties. Hence, they differs from other type of steels. 

Of course, steel of different varieties (such as ferritic, austenitic and martensitic) 

are used in a number of applications across a range of different industries. In oil 

and gas industries for instance, pipelines steel are used to transport hydrocarbon 

product from one point to another. These pipelines are sometime laid over a long 

distance. These distance may be across border which may be either on onshore 

or offshore. The overriding principle and critical activities in maintaining safe, 

secure and reliable pipeline must be the implementation of an extremely robust 

pipeline management programme [7]. AISI 304L stainless steel is another form 

of steel which is extensively used in industries. This structural alloy is been used 

because of its superior low temperature toughness as well as good corrosion 

resistance.  Application of this types of steels include storing and transportation 

of liquefied natural gas (LNG). The boiling point of LNG is -162°C under 1 

atmosphere [8]. S275JR steel is also another form steel which is common among 

the low carbon steel grade. This structural alloys is suitable for many general 

engineering and structural applications especially in construction, maintenance 

and manufacturing industries. 

1.1.2 Welding 

In most of these applications mentioned above, it is vital to have a good joints 

which can allow transfer of load from one steel component to another. In most 

cases welding is generally the most common method of joining. The welding 

method reduced the corrosion problems often associated with fasteners. This 

process (welding) create most robust joint to the application. 

The most common and widely used welding processes are those which employ 

fusion. Fusion arc welding process relies on intense local heating at a joint where 

a certain amount of the parent metal is melted and fused with additional metal 

from the filler wire. This fusion arc welding is extensively been used in a number 

of construction industries, offshore structures and among others.  
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The main benefits of welding, as joining processes are:  creation of robust joint, 

flexibility in terms of setting up the equipment and low fabrication costs.  

Disadvantage of this process is that, the mechanical properties of the structural 

alloy are been alter as result of welding. This process also cause distortion and 

residual stresses in the welded structure, which to a large extend depends on the 

welding process. 

1.1.2.1 Welding Methods 

It is a structural requirement that the weld metal has over–matching strength in 

comparison to the parent material in most cases, so as to avoid design limitations. 

These requirements are possible to achieve under well controlled conditions 

using for example single wire mechanised gas metal arc welding (GMAW). Gas 

metal arc welding was and still the dominant pipeline welding technique [2]. The 

development of tandem GMAW in a narrow groove with two tandem torches in a 

single welding head has offers welding productivity three to four times higher than 

conventional single wire GMAW technique [2]. 

Depending upon the applications, plates of different thicknesses are used for the 

fabrication of components. In most of the applications, the plates are welded by 

using multi-pass welding methods. This technique creates a significant change in 

the microstructure and mechanical properties of the weld metal and heat affected 

zone as a result of the multiple thermal cycles introduced by successive pass. 

This also creates a variable distribution of residual stress field across the weld 

and through the material thickness. 

1.1.2.2 Weld Residual Stresses 

Stresses developed during welding are thermal stresses. These stresses are 

primarily cooling stresses with possibly superimposed transformation stresses 

[9]. These transformation stresses are formed due to transformation strains which 

occur during austenite to ferrite transformation. Of course, mechanically 

constrained thermal expansion and contraction leads to generation of residual 

stresses in the weld, with significant tensile residual stresses in and around the 

welded region. These residual stresses have a large tensile component in the 

longitudinal direction of the weld; whereas further away from the weld metal, the 
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stresses are slightly compressive balancing the tensile stresses that formed 

across the weld metal [10], [11]. 

The development of welding residual stresses is therefore influenced by many 

factors, which include material properties e.g. thermal expansion and contraction 

co-efficient. The effect of residual stresses in a welded structure includes 

distortion and amplification of the stress state which could affect the fatigue 

strength of the welded joint. Evaluation of residual stress is essential for process 

and quality control, design assessment and failure analysis since these stresses 

can impact on the performance of engineering components. The presence of 

tensile residual stresses have been reported to influence stress corrosion 

cracking and fatigue crack growth rates [10],[11],[12] [13].  

Compressive residual stresses on the other hand, could be beneficial for 

structural integrity. For example, compressive stresses are sometimes 

intentionally introduced to enhance the performance of a weld component [14]. It 

was also reported that tensile stress in multi-pass weld of austenitic stainless 

steel can be minimised by water-shower cooling during the final welding pass. 

[15] 

The in-built or “locked-in” character of residual stresses makes them challenging 

to measure. However, owning to wide range of applications of residual stresses 

measurement techniques in research and industry, a number of residual stress 

measurement techniques are found in literature [16]. Some of these 

measurement techniques are destructive (“relaxation”) while others are non-

destructive methods [17]. 

One of the good ways of determining residual stress fields non-destructively, is 

by using diffraction method. In this study, neutron diffraction was used to measure 

residual strain and analyse residual stress state. The main advantages of neutron 

diffraction over others is it high penetration depth. Neutron diffraction penetrate 

deep into all common polycrystalline engineering materials. The high penetration 

characteristic of neutron diffraction is useful for structural alloys of high average 

atomic number [18]. Majority of neutron strain-scanning instruments use a 

nuclear reactor as the neutron source, which produces a continuous flux of 
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neutrons over a range of wavelengths. Current examples of constant flux 

instruments include SALSA [19]. In this research, SALSA neutron diffractometer 

at the Institut Laue Langevin in France was used to measure the residual elastic 

strain, and then analysed them to understand the 3-dimensional residual stress 

state.  

Different techniques in the literature have been used to mitigate the effects of 

residual stress. These includes; post weld heat treatment, shot peening, 

modification of the structural configuration and the implementation of the thermal 

tensioning techniques [20],[21],[22]. Other method is vibratory stress relief (VSR) 

process. It has been reported that this method (VSR) reduce and redistribute the 

internal residual stresses of welded stainless steel structures by means of post-

weld mechanical vibration [23], [24]. The application of rolling to reduce weld 

residual stress and distortion for a thin plate has been in practice for years [25], 

[26], [27]. Recent research by Coules et al [28] and Altenkirch et al [29] has 

demonstrate that the post weld rolling methods was effective in reducing residual 

stresses in single pass welds. However, application of rolling on multi-pass welds 

has not yet been reported. 

1.1.2.3 Microstructure of Multi-pass Welds 

Multi-pass welds exhibit substantial heterogeneity in microstructure and 

significant differences in mechanical properties through the material thickness. 

This can be attributed to the complex nature of thermal cycling experienced by 

each pass as subsequent passes are deposited. Multi-pass welds also forms 

dendritic grain structure, which are repeatedly heated, resulting in segregation of 

alloying elements. Dendritic grain structure is weaker and segregation of alloying 

elements would result in formation of corrosion microcells as well as reduction in 

overall corrosion prevention due to depletion of alloying elements.  

It has also been reported that the dendrite growth (that is columnar or equiaxed 

growth) in a multi-pass weld has influence on mechanical properties of the weld 

[30] and microstructural features such as micro-segregation in the weld [31]. 

Creation of a refined and recrystallized microstructure was attempted in this 

research by applying post weld rolling followed by laser processing. It is expected 
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that refining of grains would improve the strength and toughness in the weld 

metal. 

There are no reported works in the literature concerning the application of post 

weld rolling followed by laser processing to mitigate residual stresses and create 

a refined and recrystallized microstructure. This research is therefore, a novel 

approach of applying post weld cold rolling method (local mechanical tensioning) 

followed by laser processing (application of thermal energy) in a multi-pass weld 

to modify the residual stress state as well as create a recrystallized grain 

structure. 

1.2 Motivation for the Research Project 

A number of investigations have been undertaken on how to mitigate weld 

residual stress [15], [22], [32] [33]. In aerospace industry for example, rolling 

between-roller (that is, passing the welded sample between two roller) techniques 

has been successful in reducing residual stress in single pass welds [34].  In 

multi-pass welds, no attempt has been made to apply rolling methods. The main 

motivation for this research is therefore, to apply post weld cold rolling method at 

the cap (final pass) as a means of stress mitigation and post weld cold rolling 

followed by laser processing as means to induce recrystallization of the cold 

rolled grains. Generation of this compressive stress state is beneficial in 

improving the structural integrity of a component as most of the in-service 

deterioration starts with a surface flaw. The generation of the recrystallized 

microstructure with large proportion of high angle grain boundaries would 

increase the strength and toughness of the material which is lower in as-welded 

dendritic grain structure state. 
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1.3 Research Question and Hypothesis 

The primary research questions to be addressed here are: 

 Optimised loading to induce sufficient strain to redistribute residual stress 

state.  

 Application of thermal energy to nucleate stress free grains, however, care 

should be exercised to ensure that the residual stress field is not reinstated. 

This proposed research is based on the theory that post weld cold rolling will 

significantly help in redistributing the residual stress state of the welded structure. 

The post weld cold rolling process will also induce strain in the weld metal which 

will create dislocations in the weldment. Post weld cold rolling followed by laser 

processing carried out will induce recrystallization of the cold rolled grains. Thus 

overall the microstructural characteristics and mechanical properties of the 

structural alloys will improve with the elimination of residual stress state. 

1.4 Aim and Objectives 

The aim of this research is to apply a novel technique of local mechanical 

tensioning (post weld cold rolling) followed by laser processing to improve 

structural integrity of multi-pass welds. 

In order to achieve the objectives in this research, two basic crystallised 

structures BCC and FCC were studied. In this studies, experiment was carried 

out and this involved three steps; welding was carried out by using Tandem 

GMAW DC process, the post weld cold rolling was performed using an in-house 

rolling device and finally, the post weld cold rolling was followed by laser 

processing using 8 kW (peak power) CW fibre laser. This aims at understanding 

the suitability of a novel processing to create a stress free weldment with 

recrystallized grain structure in the weld metal. 
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1.5 Thesis Structure 

In this work, after the post weld cold rolling of the samples, laser processing was 

carried out in two phases. The laser processing in the first phase was in transient 

heating mode while the second phase of the laser processing, was based on the 

observation made in the first phase of the experiment. 

It is therefore, based on this two separate experimental programme that the 

thesis structure was developed. With exception of the first two chapters 

(Introduction and Literature review), chapter three and four contains both phases 

of the experiment which are largely based on articles which have been, or 

intended to be published elsewhere. Chapter five contain only the second phase 

of the experiment based on the observation made in the two structural alloys. 

Chapter six contains the comparison studied of the three structural alloys. 

Chapter seven contains the conclusion and recommendation for future work.  

Therefore, this thesis structure is organised in 7 chapters and appendices as 

detail below. 

Chapter 1: Contains the background of the research, motivation for the research, 

the aim and objectives of the research and the thesis structure of the research. 

Chapter 2: Contains the literature review, which was focused on the main areas 

of this research which include the development of multi-pass weld, the 

microstructural changes and residual stress developed as a result of complex 

nature of thermal cycling experienced by each pass as subsequent passes are 

deposited, mitigation of residual stresses by rolling and formation recrystallized 

grains by heating process. 

Chapter 3: Application of local mechanical tensioning and laser processing to 

modify the residual stress state and microstructural features of multi-pass HSLA 

steel welds. 

Chapter 4: Application of local mechanical tensioning and laser processing to 

refine microstructure and modify residual stress state of a multi-pass 304L 

austenitic steels welds. 
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Chapter 5: Effect of cold rolling, laser processing and cold rolling after laser 

processing on microstructure and residual stress of multi-pass welds of S275 

structural steel. 

Chapter 6: Contains the comparison studied of the three structural alloys. 

Chapter 7: Conclusion and recommendation for future work. 
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2 Literature Review 

2.1 Multi-pass Welding 

Multi-pass fusion welding by a filler wire (welding electrode) is normally carried 

out to join thick steel sections used in most engineering applications. Welded 

joints in an installation, is the area of critical importance, since they are likely to 

contain a higher density of defects than the parent metal and their physical 

properties can differ significantly from the parent metal. 

These arc welding methods are widely used due to its simple assembly, 

operational simplicity, safety, operator skill requirement, and low price and high 

quality of the process compare to laser welding process. One of the processes 

used in multi-pass weld are briefly explained below. 

2.1.1 Pulse Current and Synergic GMAW 

This method of welding was developed in 1960’s by J.C. Needham [35]. It utilize  

current pulse from the power source to control transfer of the droplet of molten 

filler material in the arc, in order to produce a stable and spatter-free arc. This 

method was not effective at the early stage due to insufficient power source 

technolgy. With the advancement in power source and electronics in the 1970’s 

the method became more feasible. The technology used is known as synergic 

pulsed GMAW. Synergic indicate a method in such a way that the power source 

will authomatically select appropriate pulse parameter. Increesing or decreasing 

the wire feed speed, other parameters will adjust authomatically in order to 

maintain a suitable arc. However, if the these pulse parameters are not selected 

properly, defect in the weld may occur [36].  

Some of the advantage of this method include but not limited to [35]:  

i. The process is fully machanised and spatter free. 

ii. It is possible to perform positional welding with better performace. 

iii. A large wire diameter can be used: that will be less expensive and easier 

to feed. 
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iv. It is used within the normal spray arc range in order to provide better 

penetraion into the material. 

There are different types of multi-wire welding system available with various 

nomenclature in the world today. The most important consideration is that, multi-

wire welding can be performed using different principles [37] such as: the twin 

welding (one feeding unit) and the tandem welding (two feeding units and two 

power sources). 

2.1.1.1 Tandem Pulse Gas Metal Arc Welding 

GMAW is used by industry because of its increased rates of productivity as well 

as improvement in weld quality as compared to shielded metal arc welding 

(SMAW) [38]. 

Narrow groove tandem GMAW of high strength steels was first reported by 

Lassaline et al. [39]. In his experiment, he did not specified clearly whether the 

system will operate with one contact tip using two wires or two contact tips using 

single wire each. The two arcs, as shown in Figure 2-1, worked in close proximity 

with each other and by synchronising the pulse current waveform provided by the 

two power sources, the magnetic arcs blow effects were minimised [39]. 

Further investigation by Michie, K. [40]  show that, the two welding arc, as shown 

in Figure 2-2 works simultaneously in the same weld pool using the tandem Pulse 

Gas Metal Arc Welding (PGMAW) system for narrow groove welding of pipeline 

[40]. His research was first demonstrated at Cranfield University and he shows 

the potentiality of the application of the tandem PGMAW to pipeline girth welding. 

The deposition rate of the processes was found to be twice as compared to single 

wire welding processes. In addition, an excellent mechanical property was 

reported by the use of the tandem PGMAW process [39]. The feasibility of the 

processes was also demonstrated and tested by Hudson, M. G. [41] using x100 

pipeline steel. 
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Figure 2-1: Showing the twin-wire system with synchronised power sources [39] 

 

Figure 2-2: Showing the arrangements of the filler wires to ensure good sidewall 

fusion [39] 
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2.2 Narrow Gap Welding (NGW) 

2.2.1 Introduction  

In the recent years the demands for much thicker plate in manufacturing of 

welded structures has been on increased [42], [43]. This demand led to intensified 

efforts in search of a welding process for heavy wall fabrication. This efforts is in 

terms of quality and overall cost. In view of this, narrow gap welding has been 

consider as a promising technique. This techniques is expected to meet today’s 

requirements. The term narrow gap welding first appears in an article published 

half century ago [44]. Since then, the term NGW has become a standard term in 

the world of welding literature. This term described a definite concept in welding 

development. However, there is still some misunderstanding on the concept of 

NGW. Some authors describe the NGW concept by use of terms such as  groove, 

narrow groove, deep groove while others use the same terms to refer to welding 

process such as narrow gap electro-slag welding and narrow gap electron beam 

welding [43] [45]. In an attempt to clear this misconception of NGW, Malin, V. [43] 

summaries the feature of NGW as follows; 

i. NGW is not a welding process, it is a special bead deposition technique. 

ii. NGW is associated only with an arc welding process. For example, gas 

metal arc welding (GMAW) 

iii. NGW features a fixed bead deposition layout which is characterised by 

constant number of beads per layer (usually between 1 – 3 layers) which 

are laid one on top the other. 

iv. NGW requires a square groove only. However, a V or double V groove is 

also consistent with NGW concept, as long as a groove angle (usually very 

small) is provided for distortion compensation rather than for better access 

to the joint, and the fixed bead deposition layout is preserved. 

v. NGW is a property oriented technique and therefore requires low or 

medium heat input. 

Based on this features, narrow gap welding is define as “a property oriented bead 

deposition technique associate with an arc welding process characterised by a 
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constant number of beads per layer that are deposited one on top of the other in 

a deep, narrow square groove”. 

This technique describes welding within an essentially parallel sided joint (0-5o 

bevel angles are commonly used) [46] in thick material. Open and closed butt 

root preparations have been used, both with and without backing bar systems 

[41], [47]. NGW has been found to be an efficient method in multi-pass welding 

[48].  

Some of the advantages attributed to NGW when compared with other welding 

processes for thick joints are; (1) welding time reduction, (2) consumable costs 

are lower, (3) reduction in heat input which will improve the mechanical properties 

and reduce distortion and (4) reduction in the need for preheating and post-weld 

heat treatment [42],[45],[49]. 

The problems associated with NGW are high sensitivity to the formation of 

defects such as lack of sidewall fusion, undercutting and centre line cracking as 

a result of minor variation in welding conditions [45],[50]. Another problem 

associated with NGW is pore formation due to improper gas shielding and 

magnetic arc blow. 

2.2.2 Gas Metal Arc Welding- Narrow Gap (GMAW-NG) 

The welding process that was first used for NGW application is GMAW. GMAW 

is still the most commonly used with NGW techniques due to its ease of arc visual 

observation, relatively narrow groove, productivity, high welding quality and cost 

effectiveness [43]. Distortion and residual stress produced by GMAW-NG has 

been reported to be lower than that produced in comparable material thickness 

using other joining process [44],[47]. However, GMAW-NG is prone to defect 

formation in the side walls, intensive spattering and shielding gas deficiency. 

When compared to conventional GMAW, the real problem of GMAW-NG, which 

has been the major obstacle for it acceptance; is the difficulty in feeding the 

electrode and supplying a proper shielding gas coverage into a narrow and deep 

groove and obtaining well balanced arc heating between side walls and the 

bottom of the joint [50]. Several attempts have been made to overcome these 
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limitations. These include wire deposition strategy and torch design which has 

been proposed, developed and some of them used in industrial application since 

the introduction of narrow gap welding. A comprehensive review of most GMAW-

NG can be found in [43]. 

2.2.3 Welding Conditions for Using GMAW Narrow Gap 

It has been reported that GMAW-NG is much more sensitive to changes in 

welding parameters as compared to conventional GMAW [43]. This could be due 

to the operating condition of the NGW which operates in the close margins of a 

very narrow gap, and with restricted arc atmosphere convection as well as little 

loss of radiation heat during welding. 

One of the major welding parameters is the voltage. This voltage or perhaps arc 

length provides adequate depth of penetration [47], [51], [52] and process stability 

[53]. Lowering the arc voltage result in the side walls receiving inadequate heat, 

and lack of fusion is likely to occur. Short circuiting conditions, an unstable arc 

and spattering can also be observed when the arc voltage is low. Increasing the 

arc voltage tends to widen the fusion zone. However, if the arc length become 

too long (as a result of high voltage) relative to the gap width, the arc tends to 

scramble up the groove sidewalls, resulting in damaging  the contact tube  and 

making welding almost impossible. Figure 2-3 summaries the effect of arc voltage 

in the performance of GMAW-NG. 
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Figure 2-3: Effect of voltage on process stability and bead formation [43]. 

Current is also an important factor as it influences deposition rate, arc stability 

and bead geometry. Since current is a function of wire feed speed (wfs), as such, 

lowering the current decrease the deposition rate. In contrast, an increase in 

current results in deepening the arc penetration into the bottom of the joint much 

faster than into the sidewalls. This results in an unfavourable bead configuration. 

The travel speed of welding influences the heat input and consequently the weld 

pool flow. Therefore increasing the travel speed of welds lowers the heat input in 

the weld. However, excessive speeds can result in incomplete fusion into the 

sidewall due to insufficient heating of the wall [43]. On the other hand, lowering 

the weld travel speed creates a large weld pool which flows under the arc causing 

also incomplete fusion into the side walls [51], [54]. Therefore, weld travel speed 

should be set in accordance with welding parameters and keep the speed low 

enough to allow the operator to effectively control electrode position in the groove. 
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Another important factor is the choice of the shielding gases in GMAW-NG as it 

affects many aspects of the welding procedure. The shielding gas is usually 

selected on the basis of arc stability, shape of the bead and properties of the 

welded joint. Four (4) principal gases have been considered the most important 

in providing the gas shielding for welding in deep grooves [43]. These gases are; 

argon (Ar), carbon dioxide (CO2), Helium (He) and oxygen (O2). However, Ar + 

10 - 25%CO2 is the most commonly used shielding gas mixture for welding mild 

and low alloy steel with NGW. Mixtures of gases containing higher level of carbon 

dioxide [51], [52], Ar - 5%CO2 [55], Ar - 5%CO2 - 2%O2 [56] and mixtures 

containing Argon, Helium and carbon dioxide [57] have also been considered in 

GMAW-NG. Pure argon in conventional dc reverse polarity GMAW received very 

rare application in industrial steel fabrication due to its spattering metal transfer, 

arc radiation and high weld metal sensitivity to porosity formation. It is known that 

addition of carbon dioxide to argon affect both arc stability and bead shape. This 

explains why Ar + CO2 mixture is the most popular gas shield for GMAW-NG.  

In general, the welding conditions which are combination of welding materials, 

welding parameters and operating conditions are generally selected for a specific 

NGW technique on the basis of the following: welding position, allowable heat 

input, desired weld properties, distortion and other prerequisites.  

2.2.4 Characteristics of Weld Bead in NGW 

Arc and weld pool stability are guiding principles in maintaining high quality 

narrow groove welded joints. They are essential factors especially when welding 

around a fixed pipeline, where the effect of gravity changes the weld pool 

dynamics. Hence consistent and stable weld metal transfer is a prerequisite for 

sound joint completion [41]. Stricter control over bead shape is crucial, and in this 

regards, an understanding of fusion characteristics and welding parameters is 

extremely important. 

In NGW, the best form of bead shape is regarded as being slightly concave in 

nature. This concave nature of the bead shape ensures ease of fusion at the toes 

of each preceding weld bead.  
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The factor(s) which influences this bead shapes are include; 

i. Welding current/heat input/deposition rate 

ii. Arc voltage: the greater the arc length, the greater the voltage required to 

maintain that arc [58] 

iii. Electrode Polarity 

iv. Contact tip to workpiece distance (CTWD) 

2.3 Effects of Heat Input During Welding 

Heat input is an essential parameter of arc welding processes. It’s an important 

parameter because like preheating and interpass temperature, heat input 

influences the cooling rate. And as a consequence, it affects the mechanical 

properties and final microstructure of the weld metal and associated heat affected 

zone (HAZ). Heat input also determines residual stress distribution in a welded 

structure [59]. A lot of effort has been devoted in this area of welding metallurgy 

[10].  

A number of fundamental researches in the subject of generation of welding 

residual stress have been carried out but the complexity of the problem is caused 

by the thermal elastic plastic strain-stress cycles induced by the locally non-

uniform heat input [60], [61], [62]. The factors affecting welding residual stress 

and distortion can be classified as the material, fabrication and structure related 

factors. 

In summary, with respect to multi-pass welding, the temperature distribution that 

occurs, affects the material microstructure, mechanical properties and the 

residual stresses that will be present in the material after cooling to room 

temperature [63]. 

2.3.1 Inter-Pass Temperature 

The temperature of the material in the welded zone before the subsequent 

passes during a multi- pass weld is refer to as inter-pass temperature [64]. This 

temperature has strong influence on mechanical and microstructural properties 

of weldments. The strength of weld metal tends to reduce with high values of 

inter-pass temperature. However, where toughness of a material is required, 
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higher inter-pass temperatures improve toughness transition temperatures as 

well as provide finer grain structure [65]. The inter-pass temperature is reported 

to depend on the composition of the material as well as the cooling rate of the 

material [66]. 

A minimum specified inter-pass temperature is required in practice which is often 

equal to the minimum specified preheat temperature. The preheat temperature is 

the temperature to which the material is first heated, in order to avoid hydrogen 

cracking. According to Jones, J. E. and Luo, Y [67], preheating range depends 

on many factors. This factors include the chemical composition (particularly 

carbon content and level of alloying), the physical properties and the thickness of 

the weld material, electrode type, heat input and the level of standards required. 

With regards to the residual stresses and distortion that may develop during 

welding process, controlling preheat and inter-pass temperature will reduce the 

effect of residual stress and thus the metallurgical phases formed [68]. 

In summary, recent researches by [69],[70],[71], show that inter-pass 

temperature is important, as variations in yield strength of the weld metal were 

not due to compositional variations alone but also process parameters such as 

the weld metal inter-pass temperature which is an active determinant of the 

cooling rate. 

2.4 Metallurgy of Ferritic Steel 

Welded joint consist of three (3) regions. These are the weld metal (WM), heat 

affected zone (HAZ) and the parent metal (PM). A numbers of researchers have 

described microstructural constituents within steels and weld metals. This 

description lead to proposing various classification systems [72], [73], [74]. Due 

to heat input associated with the welding processes, several microstructural 

features are generated. These microstructural features often lead to confusion in 

describing the actual microstructure present. Due to this confusion in describing 

the actual microstructure, the international institute of welding (IIW) considered it 

as of utmost importance to unify the process of identifying various microstructural 

constituents [75]. These microstructural constituents are used in this research. 
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2.4.1 Weld Metal 

Multi-pass welding of ferritic materials involves the localised injection of high heat 

at the fusion zone. This heat is dissipated by conduction into the parent metal. 

The microstructure of the weld at each point is closely associated with the thermal 

cycle. Where a joint is welded in more than one pass (multi-pass), the 

microstructure of the first pass can be altered by the heat from subsequent 

passes. Where the temperature rises above Ac3, then complete transformation 

to austenite occurs which usually produces grain refinement [76]. This refined 

microstructure is normally associated with very good toughness. 

Predicting the microstructure reformation during the thermal cycles of welding is 

always difficult since both the mechanical properties and microstructure varies 

within different thermal cycles [77]. However, the final structure that is produced 

after cooling of weld metal is determined by phase transformation [78], [79], [80]. 

Figure 2-4 shows different phases of weld metal transformations during 

solidification to room temperature. 

It was reported by Babu, S.S, [81] that, as the weld cools from 2000oC to 1700oC, 

the dissolved oxygen and deoxidizing elements in liquid steel react. This reaction 

tends to form complex oxide inclusions (Figure 2-4 (a)). As it further cools from 

the temperature range of 1700oC to 1600oC, solidification to delta-ferrite (bcc 

phase) begins. This solidification then envelops the oxide inclusions as shown in 

Figure 2-4 (b).  At this temperature, this delta-ferrite transforms to fcc phase 

(austenite). As the cooling continues, (at the 1600oC to 800oC), austenite grain 

growth may occur (Figure 2-4 (c)). The austenite decomposes to bcc phase 

(different ferrite) morphologies as it cools from the temperature range 800oC to 

300oC, as shown in Figure 2-4 (d – g). 
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Figure 2-4: Weld metal showing the different phases of transformations during 

solidification at room temperature [81] 

Of course, cooling rate influences the phase transformations that a weld 

experiences. However, the cooling rate depends on the welding process used to 

make the weld [82]. A number of researcher have investigated effect of cooling 

rates [83], [84], [85], [86], [87], [88], and it was reported that different methods of 

cooling rates were used to achieve the result. 

The choices of filler wires when welding ferritic steel is important so as to achieve 

an appropriate balance between the strength and toughness of the weld. Good 

selection of filler wires will mitigate toughness related problems, for example, 

hydrogen cracking [89]. In multi-pass welds the composition of the first bead will 

differ from the second bead due to change in dilution level [13]. The influence of 

dilution on microstructure is reported to depend on mismatch between the 

composition of the filler wires and the parent metal. It was reported by Hunt, A.C 
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et al [90] that weld toughness was affected as a result of compositional changes 

due to dillution.  

Furthermore, shielding gases play important role in protecting the weld pool from 

atmospheric contamination during welding process [91],[92],[93],[94]. Hence 

suitable process of gas selection is necessary [95]. This is because in carbon and 

low-alloy steels, increasing the amount CO2 in the shielding gas results in high 

tensile strength and as a consequence reduces the ductility of the weld metal 

[96],[97]. Figure 2-5 shows a microstructure of a typical weld metal in low-carbon 

steels.                                                                                                

 

Figure 2-5: Showing micrographs of typical microstructure of weld metal in low-

carbon steels [10] 
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In the Figure 2-5 shown above, ‘A’, ‘B’, ‘C’ and ‘D’  ‘E’ , ‘F’ is representing the 

grain boundary ferrite, polygonal ferrite, widmanstatten ferrite, ‘acicular ferrite, 

upper bainite and  lower bainite respectively. 

2.4.1.1 Acicular Ferrite (AF) 

Acicular ferrite is widely recognized to be a desirable microstructure [6] due to its 

fine grain interlocking plates which are formed within the prior austenite grains 

[98], [99]. Acicular ferrite has microstructure that is superior in toughness and 

strength as compared to most of other transformation products. This 

microstructure appears to have the morphology of thin and lenticular plates [100] 

as shown in Figure 2-6. It is also generally known to have fine “grain size, high 

dislocation density and also high angle of grain boundaries” which serves as 

crack arresters [41]. The actual aspect ratio of these acicular plates has never 

been measured but in random sections, the plates are typically around the range 

of 10µm long and 1µm wide. Hence, the real aspect ratio is most likely to be 

smaller than 0.1 [6]. 

The transformation behaviours of acicular ferrite indicate that the volume fraction 

of AF increases with an increase in the amount of hot deformation [101]. Further 

investigation shows that AF form at nucleation sites within austenite grains such 

as dislocations [102], [103]. 

 

Figure 2-6: Predominately acicular microstructure [10] 
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2.4.2 Heat Affected Zone (HAZ) 

Heat affected zone microstructures are governed by the steel chemistry and the 

thermal cycle experienced. Increased in the alloy content, the peak temperature, 

and the cooling rate through the transformation temperature range will all promote 

the formation of different phase constituents in the microstructure. The thermal 

cycle at any point in the heat affected zone is dependent on the heat input and 

the distance from the fusion boundary. As this distance increases, the peak 

temperature and cooling rate through the transformation range are reduced. 

Hence, the microstructures are less affected, and the hardness comes closer to 

the parent metal [8]. 

However, Zalazar, M. [104], has investigated the HAZ of multi-pass welds. He 

has evaluated the microstructure that arises from pipeline steel weld by using 

multi-pass weld with low heat input. It was found out that, with the low heat input 

employed during the experiment, local brittle zones (LBZ) were still noticeable 

[104]. LBZ decrease the fracture toughness value. This local brittle zone is as a 

result of complex mechanism involving compositions of the steel and the thermal 

cycles during the welding process. In multi-pass welding therefore, there is a 

significant modification of the microstructure [105]. 

In the HAZ of multi-pass weld, as shown in the Figure 2-7, point A (see 

corresponding diagram on the right) has been reheated just below the Ac1 and is 

known as subcritical reheated coarse grain (SRCG) zone. The microstructure in 

the zone is said to be stress relieved. At point B, the reheating temperature was 

between the inter-critical temperature region which is between Ac1 and Ac3. This 

part is called the intercritically reheated coarse grain (IRCG) zone where partial 

re-austenitization occurs with high carbon contents. At this region there is a high 

tendency of forming brittle microstructures (M-A island).  It was reported by 

Zalazar, M.  [104], that depending on the welding process, this region normally 

exists at about 3 mm from the fusion line of the first pass. 

When the temperature crosses the Ac3 line as shown in the corresponding 

diagram (at point C), it is called the supercritically reheated fine grain (SCFG) 

zone. At this point, complete re-austenitization occurs, but the peak temperature 
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is not high enough to promote grain growth. Therefore, the microstructure 

becomes normalised or refined. At point D (see corresponding diagram) the 

reheating has moved above Ac3 line; the high temperature promotes grain 

growth. This region of the weld is referred to coarse grain (CG) zone, and 

produces a coarse grained microstructure. 

Clyde M.A [106] also developed a two-dimensional heat flow analysis equation 

to identify the metallurgical microstructures in the HAZ of a multi-pass weld. 

 

Figure 2-7: Sketch showing relationship between microstructure and thermal 

cycle in the HAZ. [107], [104] 

2.4.3 Microstructure of Multi-pass and Single Pass 

Multi-pass welds hold some excellent properties such as microstructural 

refinement, better toughness and lower residual stresses compared to single 

pass welds [108]. This is due to the fact that: 

i. The thermal cycle from subsequent passes refines the grains from the 

previous pass. 
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ii. The total heat input per weld pass is reduced, therefore grain growth is 

effectively reduced. 

iii. Previous passes provide some preheating effect that tends to extend the 

critical cooling time of Δt8/5 (Δt8/5 is the time taken to cool from 800℃ to 

500℃). 

iv. The subsequent passes have an annealing effect on the previous one, 

thereby relieving residual stresses from the previous passes. 

Figure 2-8 shows the comparison of the microstructure of a single pass and mutli-

pass welds.  

 

Figure 2-8: comparison of the microstructures of (a) single run and (b) multi-run 

welds [108] 

2.5 Stainless Steels 

2.5.1 Introduction  

Stainless steels which are also known as corrosion-resisting steels belongs to the 

iron-base alloys family which has excellent resistance to corrosion. These 

structural alloys are used for vessels, kitchen, building, and transportation due to 

their low temperature toughness as well as good corrosion resistance. Austenitic 

steel types are the most widely used stainless steels, which contain nominally 

18% chromium and 8% nickel. These materials exhibit an attractive combination 
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of good strength, ductility, toughness, superior resistance to high temperature 

corrosion properties and creep, excellent corrosion resistance and good 

weldability [109], [110]. Due to these attributes, this structural alloys are used in 

a number of industries such as thermal power generation, biomedical and 

petrochemical, automotive, and chemical engineering [111]. 

2.5.2 Weld Metal 

This structural alloys (austenitic stainless) are considered weldable [112], if 

necessary precautions are taken into consideration. However, due to the high 

heat during welding, when cooling to room temperature, several metallurgical 

phenomena occur. These metallurgical phenomena affect the physical properties 

of the structural alloy weld which will result in degradation of the welded joint. 

A number of researches has been conducted on the final microstructure of the 

weld metal of this structural alloys and the way this weld metal solidifies over the 

years. Based on the research, it was reported that, in austenitic stainless steel, 

four (4) solidification modes are possible [112], [113] [114], [115]. These modes 

are characterised based on the primary solidified phase. This are: 

i. Fully Austenitic phase (A). 

ii. Austenitic–Ferritic phase (AF) 

iii. Ferritic–Austenitic phase (FA). 

iv. Fully Ferritic phase (F).  

It was reported that A, AF and FA phases, are mostly associated with the 

austenitic grades, while the fully ferritic (F) is common in duplex stainless steel 

grades [116]. It was also reported by Elmer et al [116] that, in the case of the 

austenitic and austenitic–ferritic modes, delta-ferrite was the first phase to 

solidify, which will then transform into austenite. While in the case of austenitic–

ferritic and ferritic–austenitic modes, it was reported by Lippold, J. C. and Kotecki, 

D. J. [112] that, austenite, delta-ferrite and liquid (L) coexist.   

However, determination of the weld metal microstructure in austenitic stainless 

steel and the quantity of high-temperature delta-ferrite present in the weld metal 

results in many constitution diagrams. The current and most widely used 
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constitution diagram is the WRC- 1992 diagram [117]. This WRC-1992 diagram 

based it specification on chromium and nickel equivalents to specified 

solidification mode. It also uses the ferrite number (FN) to find out the quantity of 

ferrite that may be present in the weld metal [117], [112].  However, the more 

precise way of predicting of the weld metal microstructure is by the use of neural 

network analysis when compared to constitution diagrams [118] . 

In austenitic stainless steels, if solidification occurs in the austenitic phase mode, 

it was reported that, at least a little quantity of delta-ferrite in the weld metal is 

necessary to avoid hot cracking [119], [120]. It was also reported that, in this type 

of steels, cracks and fissures are potential points for corrosion [121]. 

However, δ-ferrite is usually between 3 to 9% in the weld metal. In order to 

maintain this percentage so as to minimise the effect of hot cracking [9], a change 

in the final composition of the weld has been suggested by many researchers. 

For example, Liao M. T et al [122] conducted a research using  GMA and FCA 

welding process using different shielding gas mixtures (argon+carbon dioxide) 

and the results show that an increase in percentage composition of carbon 

dioxide in the shielding gas mixtures, decreases the amount of δ-ferrite content 

in the weld metal.   

Other possible way of controlling the amount of δ-ferrite that may be present in 

the weld metal is by controlling the cooling rate, as proposed by Lin Y. C [123] 

and Silva C. C [124]. In this case, slow cooling rates would prolong ferrite to 

austenite transformation temperature range and as a consequence, a significant 

quantity of δ-ferrite will form into austenite. Cooling rates (particularly slow cooling 

rates) may result in precipitation phenomena, which may result in poor protection 

of the corrosion resistance of the structural alloys. However, controlling the 

temperature to stay for a long period of time is possible during multi-pass welding 

[125]. 

Some of the common precipitates in this structural alloys are the σ-phase [125], 

[126], the intermetallic χ-phase [127] and Laves phase Fe2Mo [128],[126]. These 

phases result in chromium depletion at the grain boundaries leading to 
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intergranular corrosion. This chromium depletion is called sensitisation [112]. The 

HAZ of the welded structures are mostly associated with is phenomenon. 

This structural alloy (stainless steel) has lower thermal conductivity and higher 

thermal expansion coefficients when compared to other steels such as carbon 

steels.  Proper additions some of elements (for example Nitrogen, Carbon dioxide 

or Hydrogen) in the shielding gas will increase the heat input. A high heat input, 

creates good weld penetration [129]. However, additions of hydrogen soften the 

weld metal, but when moderately added increase the tensile strength [130]. 

Due to high amount heat input during welding, residual stresses and distortion 

are formed in welded joints. It was reported that stress and deformation are 

inversely correlated [119]. “High stresses occur where deformation is restrained. 

On the other hand, low stresses occur where deformation is unrestrained”. 

As discussed in subsequent chapter, the presence of such tensile residual 

stresses can be detrimental to the service integrity of a welded joint [131]. In 

addition to a complex distribution of residual stress states, multi-pass welds also 

forms dendritic grain structures, which are repeatedly heated, resulting in 

segregation of alloying elements. Dendritic grain structures are weaker, and 

segregation of alloying elements would result in formation of corrosion microcells 

as well as reduction in overall corrosion prevention due to depletion of alloying 

elements. 

2.6 Deformation, Grain Microstructure & Recrystallization 

2.6.1 Deformation 

In simple terms, when a structural load is applied to a metal or other structural 

material, the effect results in change of shape in the material. The change in 

shape as a result of applied load is known as deformation. This deformation 

behaviour of metals is critical to the forming of engineering components. The two 

types of deformations are elastic and plastic deformation. The former occur at 

low stress and the material shape is recoverable after the stress is removed while 

the latter occurs at high stress and the material is not recoverable when the stress 
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is removed (permanent deformation). What is of interest in this research is the 

plastic deformation. 

During plastic deformation of polycrystalline materials, some new boundary 

structures are formed. These new boundaries composed of many dislocations 

[132], [133]. These boundaries subdivide the original grains into multiple 

elements which have different orientations from one another. As the strain 

increases, the evolution of these boundaries may lead to a clear subdivision of 

the initial grains [134]. In this case, an increasing misorientation between adjacent 

cells is often reported. 

Dislocation movement determines the ability of material to deform because strain 

and micro-residual stresses are developed as a result of stress field around 

dislocation. However, in steel, they occur due to some aids of the solute carbon 

atoms present at appropriate low temperature [135]. However, the dislocation 

density at small angle boundaries increases with plastic tensile strain [136].  It 

was also reported that stress decreases as dislocation density grow in small 

angle boundaries after cyclic elastoplastic deformation [136], [137], [138]. 

In summary, all the properties of a metal that are dependent on the lattice 

structure are affected by plastic deformation. The microstructure and texture 

which determines the mechanical behaviour reflected during plastic deformation.  

Hence, tensile strength, yield strength and hardness increases while ductility 

decreases during plastic deformation [139]. Fatigue contributes to failure in 

structural components; and dislocations play an important functions in the fatigue 

crack initiation [140]. 

2.6.2 Grain Microstructure 

Most mechanical properties of alloy depend on the grain structure. One of the 

mechanical properties that is influenced by the grain structure is the strength of 

the material [139]. Microstructure is characterised by the presence of grain 

boundaries. These grain boundaries are defects in the crystal structure. This 

defect tends to decrease the electrical and thermal conductivity of the material. 

At room temperature, the grain boundary affects the movement of dislocations 
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[141]. Small grains result in a large grain boundary area per unit volume in the 

microstructure. On the other hand, grain refinement (smaller grains) improves the 

strength of the material and vice versa. 

These defect (grain boundaries) create an obstacle to dislocation movement and 

dislocation build-up at the grain boundaries, resulting in the formation of 

macroscopic deformation hardening of the material. The macroscopic properties 

of structural alloys depends on the grain size and the grain boundaries 

arrangement [142]. 

2.6.3 Recrystallization 

Recrystallization is essential thermo- mechanical processing of metallic materials 

which is the device for the development of grain microstructures [141], [143]. This 

process is different from recovery and grain growth [144]. In recovery high angle 

grain boundaries do not migrate while in grain growth the driving force is only due 

to the reduction in boundary area. 

There are two type of recrystallization. The static recrystallization which is slow 

and the dynamic recrystallization which is faster and is driven by plastic slip 

deformation of the material. In other words, static recrystallization occur on 

heating the deformed material to elevated temperature while dynamic 

recrystallization occur during plastic deformation. 

In either case (static or dynamic), recrystallization occurs by growth of new grains 

of low dislocation density, which consume the surrounding cold-worked 

microstructure, effectively lowering the level of stored energy in the material. The 

nature of the recrystallization process is dependent on the extent of recovery, the 

rate of which is determined by the stacking-fault energy (SFE) of the material 

[145]. 

2.6.3.1 Measurement of Recrystallization  

The traditional technique of measuring recrystallization in deformed and partially 

annealed metals is by using optical metallography on sectioned samples and the 

operator’s judgment is based on the appearance of each region [145]. 
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Recrystallized grains are equiaxed with uniform colour while unrecrystallized 

grains shows deformed grains with irregular contrast. This method has spatial 

resolution of approximately 0.5 µm and with advancement in technological 

development, further methods such as Transmission electron microscopy (TEM), 

Scanning electron microscopy (SEM), Electron backscatter diffraction (EBSD) 

were developed and used.  

The use of TEM allows the study of individual dislocations at a spatial resolution 

of approximately 5 nm [145]. Contrast mechanism of SEM is similar to that of 

TEM, and although individual dislocation cannot be detected [146], small 

changes in orientation across low angle boundaries allow the imaged to be 

detected. However, the widely recognised technique used for quantitative 

metallography now is the EBSD and details are discussed by Humphreys F. J. 

[147]. Using this technique (EBSD), both the size of the grains, the orientation of 

the grains and the subgrains may be determined.   

2.6.3.2 Recrystallization Temperature  

A recrystallization temperature is a temperature at which a highly cold worked 

structural alloy will recrystallized within a given time. In other words, 

recrystallization temperature is the temperature at which 99% strain free grains 

are produced.  It has been reported that “recrystallization temperature of metal or 

alloy is between one-third and one-half of the absolute melting temperature 

(1540oC for steel), which depends on several factors, including the amount of 

prior cold work and the purity of the alloy [141]”. The greater the amount of prior 

deformation, the lower the temperature for the start of recrystallization since there 

will be greater distortion and more internal energy driving the recrystallization 

[139]. 

2.7 Residual Stresses 

2.7.1 Introduction  

In a multi-pass weld, the development of residual stress depends to a large extent 

on the response of the weld metal, heat affected zone and parent material to 
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complex thermo-mechanical cycles during welding. Mechanically constrained 

thermal expansion and contraction leads to generation of residual stresses in the 

weld, with significant tensile residual stresses in and around the welded region. 

These residual stresses have a large tensile component in the longitudinal 

direction; whereas further away from the weld metal, the stresses are slightly 

compressive also in longitudinal direction balancing the tensile stress state [10], 

[11]. 

Residual stresses in welding are thermal stresses which are primarily cooling 

stresses with possibly superimposed transformation stresses [9]. These 

transformation stresses are formed as a result of transformation strains which 

occur during austenite to ferrite transformation. The development of welding 

residual stresses is influenced by many factors, which include thermal, 

mechanical and material. The effect of residual stresses in a welded structure 

includes distortion and amplification of the stress state which could affect the 

fatigue strength of the weld [12]. The knowledge of residual stress in the weld 

would prolong the life time of welded joints [16].  

However, predicting this residual stress in welds involves the studies of 

interactions between various physical phenomena. These physical phenomena, 

include thermal expansion, phase change, material plasticity and microstructural 

change. However, all these phenomena: that is, plastic yielding of the weld metal 

across a temperature distribution which is induced by the welding process, upon 

cooling causes residual stresses [148]. 

2.7.2 Formation of Residual Stresses During Welding 

Weld-induced stresses are the typical example of detrimental residual stress in 

structural materials due to their effect and widespread occurrence. The formation 

of residual stresses during welding is as a result of large amount of non-uniform 

heat input inherent in most forms of welding process which cause thermal 

expansion and contraction in the weld. The thermal stress in weld causes a non-

uniform distribution of irreversible material deformation.  These deformations 
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sometimes remain in the material after it has cooled, leading to an internal and 

completely self-equilibrating stress field. 

Schematic illustration of residual stress formation is shown in Figure 2-9. As 

welding requires a large amount of heat to achieve a material bonding; high 

temperature causes thermal dilation of material, followed by lowering of the yield 

strength and eventually melting the material in the case of fusion welding [149]. 

On the other hand, material farther away from the weld pool remains at a 

relatively low temperature throughout as shown in section B–B in Figure 2-9. As 

the heated material begins to cooled, it solidified and hence tendency to contract, 

thus producing tensile stress as shown in section C-C of Figure 2-9. These result 

in a characteristic distribution of residual stress, with very large tensile stresses 

in the joint region which are balanced by compressive stresses elsewhere [10], 

[131], [150]. As the material is further cooled and contracted more, it produces 

higher tensile stresses near the weld centreline and farther away from the weld 

centreline is produces compressive stresses to balance the tensile stress (section 

D – D). 

In summary, the actual magnitude and orientation of the residual stresses 

formation will depend on the direction of the greatest thermal gradients 

encountered as the material cools and on the mechanical constraint applied to 

the cooling weld metal. 
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Figure 2-9: Showing residual stress formation in a weld [10], [151] 

2.7.3 Effects of Welding Residual Stresses 

Most of the mechanisms which result in failure of materials are because of the 

presence of tensile residual stress. Some of these effects include: Fracture and 

fatigue, Stress corrosion cracking and Distortion, which are briefly explain below. 

2.7.3.1 Fracture and Fatigue 

The presence of a tensile residual stress field combined with external loading 

modifies the stress intensity at crack tips which serve as initiation point for crack 

propagation [152], [153], [154], [155]. In weld fatigue lifetime, it is assumed that 

the effect of the mean stress applied during loading cycle are less compare to 

large tensile stresses  that may be present in the weld region [149]. 
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Residual stresses affect elastic fracture as well as high cycle fatigue, but they 

have much less influence over ductile failure due to the fact that they are rapidly 

accommodated by plastic deformation [156], [157].  

Cracks in case of fatigue mostly start at the surface of the material, requiring 

tensile stresses for propagation. Therefore, the presence of tensile residual 

stress in the surface of the material tends to facilitate fatigue cracking, while a 

compressive residual stress tends to prevent the crack opening and propagating 

[158]. 

However, a number of fatigue life improvement methods (for example shot 

peening) depend on modifying compressive residual stresses in risk prone zones. 

Of course, since residual stresses must be self-equilibrating, corresponding 

tensile stresses must also exist somewhere else. According to Coule, H. E [149], 

compressive stresses are only induced in a thin surface layer as shown in the 

example of shot peening, while it corresponding tensile stresses form further into 

the material. In comparing with welds, welding tends to result in large tensile 

residual stresses throughout the thickness of the weld with the compressive 

stresses form further away from the joint [159]. Due to difference shown, methods 

which induce compressive surface stresses as well as the methods which reduce 

stresses through the entire weld thickness are useful methods for improving 

fatigue life of welds. 

2.7.3.2 Stress Corrosion Cracking (SCC) 

These forms of cracking occur when chemical and mechanical forces are present 

to cause crack propagation throughout the affected area in the material. Stress 

corrosion cracking is a form of environmentally-aided material failure. Since both 

chemical and mechanical are the driving factors, only materials exposed to 

particular corrosive area and having an elements of mechanical stress are 

susceptible to stress corrosion cracking (SCC). Residual stresses generated 

during welding are in most cases enough to promote SCC in an environment 

where ordinarily it would have not occur; because there is insufficient mechanical 

driving force [13]. But according to  Fricke, S. et al [160], welding  induces stress 

concentration and increased metallurgical susceptibility to corrosion at the 
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welded joint and this causes problems in gas pipeline and nuclear components 

where welded joints are used in a corrosive environment [161], [162]. 

2.7.3.3 Distortion 

Residual stress fields within a material are internally self-equilibrating, and for 

these stress distributions to exist, there must be an internal incompatibility in 

strain [163]. Therefore, during manufacturing process, where residual stress are 

induced or relaxed as the case may be, there must be a corresponding 

inhomogeneous deformation so as to balance the effect. Of course, residual 

stresses in welding are associated with deformation which when allowed to pile-

up along the length of the weld can create visible distortion of a welded material. 

The most problematic effect of residual stress is distortion which according to 

Masubuchi, K.[151], little residual strain presents in the weld, can cause different 

modes of distortion. In thin-walled structures, apart from shrinkage and bending 

mode of distortion, welds in this material mostly produce large residual stress to 

cause buckling which can make distortion prediction and analysis difficult [164]. 

Figure 2-10 shows different forms of welding-induced distortion.  
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Figure 2-10: Various forms of welding- induced distortion [165] 

2.7.4 Classifications of Residual Stress 

Welding residual stresses arise as a result of compressive plastic flow ahead of 

the weld pool. The most common origins of this residual stress are those caused 

by; 

i. non-uniform plastic flow 

ii. sharp thermal gradients during welding and heat treatment operations 

Welding residual stresses should be balanced because the component is in 

equilibrium with a stress component inside it [17]. Residual stresses can therefore 
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be classified according to their length scale into three types [150] [17]. A 

corresponding schematic of these characteristic is shown in Figure 2-11. In this 

figure, the top row shows a polycrystalline material at three different length scales 

[166]. These sketches show the microstructural constituents, i.e. the grain size 

as well as the size of the precipitates from a second phase. While the lower row 

of the figure shows the corresponding stress component in the y-direction when 

scanning along the x-direction. 

 

Figure 2-11: sketch showing various classifications of residual stresses [150] 

As shown in this sketch, Figure 2-11 (a) is the type I stresses (σI) in a bent iron 

rod. The grey shown the plastically deformed region. Figure 2-11 (b) is the type 

II stresses (σII); the stresses are intergranular stresses. That is, stress form 

between the grains of the same material but with different orientation (for 

example, red and blue grain) and interphase stresses between the constituents 

of different materials (e.g. red and grey grain). Figure 2-11 (c) is the type III 

stresses (σIII) which is caused as a result of strain fields around defects. For 

example the defect is indicated by numbers say; (1) vacancy (2) interstitial atom 

(3) substitution foreign atom (4) interstitial foreign atom (5) edge dislocation and 

(6) small angle grain boundary. 
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Type I stresses (σI) are uniform over larger regions (that is over numerous grains). 

These are continuum level stresses that neglect the underlying microstructure 

and they equilibrate over a length scale comparable to the dimension of the 

component. These stresses are therefore called macro- stresses. Example of 

these stresses is shown in Figure 2-11 (a) where the iron rod was bent. The 

plastically deformed region is shown in grey colour. The inhomogeneous 

deformation of the iron rod left residual stresses in the material, which vary along 

the cross-section, and these residual stresses may either be compressive or 

tensile. 

Type II stresses (σII) are uniform on the level of the individual constituents. These 

are stresses between the grains of the same material but with different 

orientation. Figure 2-11 (b) is an example of type II stress with a microstructure 

taken from a plastically deform part of the iron rod. The grain in blue colour and 

the other grain in red colour are grains of the same material but have a different 

crystallographic orientation. 

Type III stresses (σIII) vary within the individual constituents. This occur as result 

of strain fields around lattice.  Figure 2-11 (c) shows some of these lattice defects. 

These are stresses occur as a result of heterogeneous behaviour at the atomic 

scale.  

Type II and III stresses are called microstresses since both vary on the scale of 

the microstructure. It is worth knowing that the real residual stress is given by the 

superposition of macro- and microstresses. 

2.7.5 Measurement of Residual Stress 

The strength, fatigue life and dimensional stability of a practical engineering 

component are greatly influenced by the presence of residual stresses. Knowing 

the size of the stresses is therefore essential, so as to take them into 

consideration during the design process. However, “locked-in” character of 

residual stresses developed especially during welding makes them challenging 

to measure. However, because of the wide application of residual stress 

measurement methods in both research and industry, a number of residual stress 
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measurement methods can be found in literature [16],[150],[167]. Some of these 

measurement techniques are destructive (“relaxation”) while others are non-

destructive methods [17]. 

However, there are three fundamental strategies of measurement which are:- 

i. Measuring the change in strain as residual stresses are relaxed by 

removal or cutting of material (destructive). 

ii. Measuring the interatomic spacing and comparing this to the spacing in an 

unstressed reference specimen (non-destructive). 

iii. Measuring the change in another physical phenomenon with which stress 

interacts. 

The practical application of the first strategy includes: contour techniques which 

provides area maps of residual stress measurement [168], [169], and the  hole 

drilling technique in which stresses are calculated backward from strain 

measurements made near a small hole as it is drilled [170]. All these techniques 

are relaxation method which are destructive in nature and is a subject of recent 

review by Schajer, G. S [167]. As the interatomic spacing in a crystalline material 

changes in response to applied stress, the second strategy stated above is 

possible to apply. Hence diffraction method can be used to measure the crystal 

lattice spacing, and of course, strain can be measured non-destructively in 

(polycrystalline) metals and ceramics. In this second strategy, stress can 

therefore be calculated after obtaining the strain. The third strategy uses, for 

example, changes in the sonic and magnetic properties of some materials to 

measure stress according to et al Gauthier. J. [235]. 

However, most researchers used neuron diffraction or high energy synchrotron 

X-rays to measure residual stresses produced by welding. This is due to the fact 

that the methods have been developed with high level of accuracy which can be 

used at a range of spatial resolutions. This method is conducive to the study of 

engineering structures and is briefly explained below. 
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2.7.5.1 Diffraction Techniques 

Diffraction method is one of the best ways of determined residual stress fields 

non-destructively. The diffraction techniques for measuring strain operate by 

inferring the crystal lattice spacing d of the sample material from the scattering 

angle Ɵ of radiation directed at it. These two quantities are related by Bragg's 

Law; (n ʎ= 2d sin Ɵ), where “ʎ” represents the wavelength of the incident 

radiation. The lattice spacing is then compared with a reference value d0 for a 

nominally unstressed sample of the same material. The difference in these two 

values is used to calculate the strain [150]. With knowledge of the strain in all 

directions and mechanical properties of the material, the stresses can be found. 

For polycrystalline materials, the unstrained lattice parameter d0 can vary 

throughout the material due to differences in crystal orientation and intergranular 

microstresses. This means that the gauge volume (the volume of material over 

which diffraction occurs) must be sufficiently large compared with the 

microstructure of the material that the values are averaged. 

As stated in the above section, there are different types of diffraction techniques, 

but each technique has its own advantage and disadvantage. However, neutron 

diffraction was proposed to use in this research.  The main advantage of neutron 

diffraction over others is the high penetration depth in all common polycrystalline 

engineering materials (Figure 2-12). The high penetration depth characteristic is 

useful for alloys of high average atomic number [18]. Also, typical diffraction 

angles in neutron diffraction are much higher than those for laboratory X-ray and 

synchrotron X-rays, which makes it easier to measure strains in all directions, 

including normal to the sample's surface [171]. 

The majority of neutron strain-scanning instruments use a nuclear reactor as the 

neutron source, which produces a continuous flux of neutrons over a range of 

wavelengths. A monochromator is used to block out all but a small part of the 

spectrum. The monochromated neutron beam is directed at the sample, and the 

resulting diffraction pattern is scanned using movable detectors [172].  

Current examples of constant flux instruments include SALSA [19]. SALSA is a 

good residual strain-mapping equipment that are available at the Institut Laue 



 

44 

Langevin France. This equipment is available for public use.  It designed to 

accommodate all engineering component that can be mapped in terms of speed 

and the size.  

Detailed discussions of the neutron technique are given by [171], [173] while 

synchrotron diffraction was explained by [174]. 

 

Figure 2-12: Schematic showing capabilities of the different measurement 

methods [168]  

2.7.6 Methods of Modifying and Redistributing Residual Stress 

A number of techniques are available for modification or reduction of weld 

residual stress distribution. The peening process have been optimised for use on 

welded materials. There are welding specific methods of reducing residual 

stresses in existence (global mechanical tensioning) which are designed to work 

against residual stresses produced during welding. Global mechanical tensioning 

(GMT) has received increased attention over the years as cheaper and more 

effective ways of getting the best result are always sought in engineering practice. 
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However, to modify the presence of residual stresses in the weld metal, a 

permanent plastic deformation must occur so as to modify the residual stress 

state in the welded joints. This deformation can be achieved by using; 

i. An externally applied mechanical force. 

ii.  Inducing a solid state phase transformation. 

iii.  By application of thermal field. 

It is therefore possible to group the reduction of residual stress distribution into 

these three groups. 

In addition to the above mechanism, welding residual stress reductions have 

been further divided into: - Post-weld heat treatment, Control of heat input during 

welding, Peening, Vibratory stress relief, Localised cooling, rolling which are 

briefly explains below. 

2.7.6.1 Post-weld Heat Treatment 

This form of mitigation involves heating the material uniformly above ambient 

temperature to enable the residual stresses generated in the weld to relax 

automatically. This method is called post-weld heat treatment (PWHT), which is 

the most commonly accepted method of residual stress relief. This method has 

proven to be effective in a wide range of applications [175], [176], [177]. 

Experiments conducted by Smith, D. J et al [178]  using ferritic steel pipe of 84 

mm thickness are shown in Figure 2-13. The hoop stresses were tensile with 

exception of small part near the surface that is compressive, while the majority of 

the axial stresses across the pipe are tensile but compressive near each surface 

before post-weld heat treatment. After PWHT there was reduction in residual 

stress as shown in Figure 2-13.  

High temperature reduces the yield strength which causes the material to yield 

locally under its own internal stresses. However, cooling (in gradual and uniform 

condition) is normally used to prevent further stress formation after the stress has 

been relaxed. This method has been proved to be effective at reducing residual 

stress but is not applicable in all cases.  For instance, this method cannot be 

applied to dissimilar material welds because of the difference in their thermal 
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expansion coefficients. Application of PWHT is ineffective [179] in reducing 

residual stresses in dissimilar material and PWHT can also cause brittle failure 

[180]. 

 

Figure 2-13: Showing axial and hoop residual stress measurements [13]. 

2.7.6.2 Control of Heat Input During Welding 

The heat input per unit length of weld influence the distribution of temperature in 

the material [181] and this can affect the weld microstructure as well as the 

formation of residual stresses in the weld. Unfortunately, material bonding 

requires enough energy to fuse into each other. Hence, this limits the amount by 

which heat input can be reduced.  Another factor that limits the control of heat 

input is the welding process. In some welding process (laser for example), 

reducing the heat input will eventually cause transition of the process from 

keyhole to conduction mode. However, control of welding heat input can reduce 

the width over which plastic strain occurs [182], [183] but cannot prevent the 

formation of residual stress in weld. 
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Another way of controlling heat input is preheating of the weld region, which is 

aimed at reducing the temperature gradient around the weld bead. This process 

also causes residual stresses [184] in some cases and hot cracking. Preheating 

is a good process for materials (say, aluminium) that have a high thermal 

conductivity and fast cooling rates [68], [185]. Hence preheat cannot be 

considered a universally effective method of residual stress control. 

2.7.6.3 Peening 

This processes described impact or the propagation of shock waves to cause 

deformation. It is a form of stress modification techniques which can be used to 

induce a stress state near to the surface of a work-piece. However, they are often 

stated in the context of weld fatigue life [186], where a compressive surface stress 

state close to the weld toe can reduce the propagation of fatigue cracks. 

Research conducted by Hacini, L. et al [187], show that with hammer peening, it 

was possible to induce a significant state of compressive stress (radial to the 

impact location) in a steel sample, without producing any apparent external or 

internal cracking. In addition, Lah, N. A. et al [188] observed that, ‘the effect of 

the controlled shot peening (CSP) and skimming processes improved the fatigue 

life of the fusion weld by 50% on MMA-welded, 63% on MIG-welded, and 60% 

on TIG-welded samples’. In general, the effects of peening have been known to 

produce beneficial properties. 

2.7.6.4 Vibratory Stress Relief 

This technique utilizes motorised or electromagnetic equipment to vibrate the 

welded material strongly. The fundamental mechanism by which this techniques 

acts to reduce stresses is still a subject of discussion [189], [190]. Although, it 

was suggested by Walker, C. A. et al [191], that, this technique helps dislocation 

movement at the intragranular level. However, recent researches show that VSR 

is a localized cyclic plasticity phenomenon [192], and that the stress reduction 

strongly depends on the vibration's amplitude [193]. Despite recent advances in 

residual stress measurement techniques there is still insufficient published data 

on the topic of VSR. 
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2.7.6.5 Localised Cooling 

Localised cooling is aimed at reducing the final pattern of residual stress 

distribution generated in the weld metal, by manipulating the temperature 

distribution in the welded component. Recent research uses a trailing heat sink 

with respect to the welding torch to create a characteristic valley-shaped 

temperature distribution [194], [195], [196], (see Figure 2-14). Figure 2-15 shows 

an example of cooling device that can be used to achieve the localised cooling. 

Recent research to model the process shows that heat sink placed as close as 

possible behind the heat source has influence in reducing tensile stresses 

generated during weld [195], [197] [198].  

 

Figure 2-14: Temperature simulation profiles (a) showing the conventional arc 

welding; (b) showing the arc welding with trailing heat sink [195].  
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Figure 2-15: Showing design of nozzle which allow extraction of gas generated 

[198]. 

2.7.6.6 Rolling  

Application of localised high pressure rolling to the welded joints causes yielding 

of metal in the weld region, thereby, relieving the residual stresses that may exist 

in the region [29], [199]. This technique depends on causing plastic deformation 

of the weld metal. The rolling processes, compresses  the material in the direction 

normal to the weld’s surface, thereby causing it to expand in the plane of the 

weld, relaxing any tensile residual stresses in the plane. This process was 

achieved using a single narrow roller applied directly to the weld line [199],[59], 

[34]. However, a pair of roller to roll in between the weld line has also been 

described by Altenkirch, J. et al [29]. The disadvantage of this process is that; 

both sides of the weld must be accessible so that the underside of the weld may 

be supported during rolling. Research on in situ rolling (rolling during welding) 
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and post weld (rolling after weld) has also been carried out by Coules, H. E. et 

al,[11], [200] but the results show that, post-weld rolling gives a far greater 

reduction in the residual stress field as compare to in situ rolling as shown in 

Figure 2-16. 

 

Figure 2-16: Showing cross-sectional distributions of longitudinal residual stress 

(a) post-weld rolling; (b) in situ rolling [11] 

However, the influence of temperature of the material during rolling is of utmost 

importance to its final properties due to the differences in microstructure resulting 

from hot and cold work. Research carried out by Masubuchi, K. [151] indicates 

that an increased plasticity of the metal at elevated temperature allows for much 

greater strains. Kondakov, G. F.[34], has found experimentally that, application 

of hot rolling during welding in the temperature range 367-487oC and strains of 

10-23% resulted in superior mechanical properties of welded joints. 

2.7.6.7 Global Mechanical Tensioning 

A number of tensioning techniques have been tried and proved satisfactory as 

stress engineering method of controlling residual stress. The mechanical 

tensioning technique is believed to have relatively few parameters and can easily 
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be controlled in practice. For example, global mechanical tensioning requires only 

the determination of the load that should be applied in the direction of the weld. 

This method has a great influence in minimising the effect of local plastic strain, 

thereby reducing the longitudinal stresses [22], [32]. In addition, stress levelling 

techniques which need reasonably high tensioning loads are achieved by using 

post weld global mechanical tensioning techniques. This load on top of the weld 

would cause plastic deformation which will result in reduction of residual stress 

[33]. 

In situ global mechanical tensioning leads to reduction in residual stresses as 

summarised in [22]. Levels of the longitudinal tensile residual stresses are 

reduced as a result of plastic straining [22], [32].  

The disadvantages of global mechanical tensioning methods are that they cannot 

be applied to large structures, as the large structure would require very strong 

tensioning device to apply. It is interesting to note that mechanical tensioning is 

only applicable on linear and simple geometries. 

 The use of localised mechanical processes to create residual stress effects has 

long been in practice, and such methods include: hammer, shot and laser 

peening, cold rolling, cold forging, burnishing [151]. Details of some of the work 

using localised mechanical processes are summarised in [186],[187],[188]. 

2.8 Summary/Conclusion 

Welding of thick materials (pipeline steel) would introduce defect and varying 

distributions of residual stress field with changes in microstructural conditions. 

Research by Neeraj, T. et al. [201], shows tensile residual stresses formed more 

towards the cap (final pass) of the multi-pass weld and heat-affected-zone, which 

will be detrimental for crack propagation and structural integrity of the component. 

Therefore, it is essential to understand and characterise the residual stress 

distribution and device techniques to mitigate them. This would significantly 

improve the structural integrity and simplify its assessment procedures. 
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Of course, residual stress generated because of welding is a problem in 

engineering which affects multiple material and structural failure mechanisms.  

However, there has been a different approach to these problems based on 

different physical mechanisms, since stress formation during welding is affected 

by thermal, mechanical and material factors. The recent development of residual 

stress reduction skills is driven by the high cost and inherent limitations of 

conventional processes. Some techniques such as the rolling method and global 

mechanical tensioning have been proven capable of reducing residual stress  in 

a weld, but each of the techniques come with its own practical shortcomings. It is 

believed that with advancement in technology on daily basis, the shortcomings 

may likely be overcome. 

2.8.1 Motivation 

This literature review has critically looked into changes in microstructure and the 

formation of residual stress in multi-pass welds. Their effect has been identified 

and different ways of solving the issues have been proposed and applied. But 

there are no reported works in the literature concerning the application of post 

weld cold rolling followed by laser processing of weld metal in a multi-pass weld.  

The aim and objective of this research is to understand the suitability of this novel 

processing (application of local mechanical tensioning followed by laser 

processing) to create a stress free weldment with recrystallized grain structure to 

improve structural integrity of multi-pass welds. 
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3 Application of Local Mechanical Tensioning and Laser 

Processing to Modify the Residual Stress State and 

Microstructural Features of Multi-Pass HSLA Steel 

Welds  

3.1 Introduction 

In this research work, the experiments were carried out in two (2) phases. The 

first phase of the experiment involved three steps; welding was carried out by 

Tandem GMAW DC process, the post weld cold rolling was performed using an 

in-house rolling device and finally, the post weld cold rolling was followed by laser 

processing using 8 kW (peak power) continuous wave (CW) fibre laser. The laser 

processing in the first phase was in transient heating mode using a laser power 

of 3 kW with a travel speed of 0.3 m min-1 and laser spot dimension (beam 

diameter) of 20 mm. Figure 3-1 shows the schematic work flow in the first phase 

of the experiment. Microstructural observations, hardness scanning, tensile test 

and residual stress measurement were carried out after each step as shown 

Figure 3-1.  

 

Figure 3-1: Schematic showing the work flow of the first phase 
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3.2 Materials  

The grade of the pipeline steel plate is API 5L X100 pipeline steel plate (20 mm 

thick). This is a thermo-mechanically controlled processed (TMCP) structural 

alloy and has specified minimum yield strengths of 690 MPa [202]. Table 3-1 

shows the chemical compositions of the API 5L X100 pipeline steel plate which 

was analysed in Exova.. The carbon equivalent for structural steel indicates the 

weldability of the steel; in particular, the carbon equivalent is an indicator of the 

requirement for preheats to achieve ideal weld properties. Standard (DNV-OS-

F101) recommends that the carbon equivalent (CE) for a material should be 

calculated using the Pcm formula when the carbon content ≤ 0.12%, [203]. 

𝑃𝑐𝑚  =  𝐶 +
𝑆𝑖

30
+

𝑀𝑛

20
+

𝐶𝑢

20
+

𝑁𝑖

60
+

𝐶𝑟

20
+

𝑀𝑜

15
+

𝑉

10
+ 5𝐵 

(3-1) 

The standard also, recommends that for carbon content > 0.12%, the CE formula 

should be used. 

𝐶𝐸 =  𝐶 +
𝑀𝑛 + 𝑆𝑖

6
+

𝐶𝑟 + 𝑀𝑜 + 𝑉

5
+

𝑁𝑖 + 𝐶𝑢

15
 

(3-2) 

Carbon equivalent numbers less than 0.40 should not require preheat, because 

preheat and high interpass temperatures can have a negative effect on the 

mechanical properties. 

Table 3-1: Shows the chemical composition of the API 5L X100 pipeline steel 

plate 

 

3.2.1 Filler Wire 

The filler wire used was Union MoNi with a nominal diameter of 1.0 mm. The 

chemical composition of the filler wire is shown in Table 3-2. 
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Table 3-2: Shows chemical composition of the filler wire 

 

3.2.2 Shielding Gas 

The shielding gas used was 92% Ar and 8% CO2 at flow rate of 30 lit min-1. This 

gas was chosen because it had provided good results (mechanical properties, 

transfer characteristics and bead profile) in work carried earlier at Cranfield [204], 

[205]. 

3.3 Experimental Equipment  

The experimental equipment used in the research are divided into four (4) 

sections (that is, welding, rolling, laser processing and residual stress 

measurement) and are presented as given below. 

3.3.1 Welding 

Gas-metal arc welding (GMAW) which is also called Metal-inert Gas (MIG) 

welding process was used in this research and some of the equipment used in 

welding include but not limited to: Welding Jigs, Fronius trans-pulse synergic 

4000, RMS welding head oscillator. 

3.3.1.1 Welding Rig 

Figure 3-2, shows the linear welding rig used for tandem MIG welding process. 

This welding rig has a movable bed where samples are mounted. This movable 

bed can move in both left and right direction with a given speed. Once the sample 

is mounted, the welding torch is maintained in constant position, while the bed 

moves the sample in horizontal direction along the torch. 
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Figure 3-2: Welding rig with an RMS welding head oscillator 

The travel speed was achieved by using the calibration chart made by 

Theocharis, L. [38]. Figure 3-3 shows the chart.  

 

Figure 3-3: Travel speed calibration chart used [38] 

This Travel speed is in millimetre per minutes (mm min-1) and is plotted against 

the dial numbers of the control panel. 
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3.3.1.2 Tandem MIG Power Source 

Figure 3-4 shows the sets of Fronius TPS 4000 power sources (TransPuls 

Synergic) fully synchronised in a tandem mode which was used for the narrow 

groove welding. This machine has a capacity of delivering 300 A at 100% duty 

cycle.  At the top side of the machine are the welding setting where parameters 

such as wire feed speed, voltage, current, wire diameter, welding mode such as  

pulsed transfer mode, can be adjusted to achieve a particular purpose. This 

equipment is fully digitalised and equipped with microprocessors. Hence, during 

welding, the actual voltage and current reading are shown on the machine. 

 

Figure 3-4: Fronius TPS 4000 thermo power welding machines 

3.3.1.3 Weld Instrumentation 

Instruments used for monitoring welding parameters such voltage, current and 

wife feed speed, and the thermal cycles generated using a thermocouple are 

presented here.  
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3.3.1.3.1 Measurement of Welding Parameters 

Figure 3-5 shows the DL 750 Scopecorder used for the acquisition of transient 

welding current, arc voltage and wire feed speed. This device consists of twelve 

(12) channels which can be used at the same time to measure the welding 

voltage, current, wire feed speed and temperature using both R-type and K-type 

thermocouples. It is also capable of capturing data at a very high sampling rate. 

Up to 50,000 samples per second can be captured by this instrument. 

This instrument is connected to the welding sample using probes. The current 

probe was connected to the instrument on one end while the other end was 

clamped to the earth wire to measure the current. In the same way, the voltage 

probe was connected to the instrument on one end while the other end was 

clamped around the welding plate to measure the voltage between the power 

source and the plate. 

 

Figure 3-5: DL750 Scopecorder 

R-type (Pt-13% Rh) thermocouple was used in this research to measure the 

temperature of the weld metal. The R-type can capture temperature up to 1600°C 

[41]. The R-type was dipped into the molten weld pool while the other end was 

connected to the Scopecorder, which logs the temperature and time during 
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welding. These method was used to show the transformation point in each pass 

of the weld.  

3.3.1.4 Capacitance Discharge Welder 

Figure 3-6 shows the capacitance discharge welder SR-48 which was used to 

join the thermocouple tips. It also used to attach the thermocouples to the 

samples. This equipment is designed for the fast production of thermocouple 

junctions and other fine wire welds. This equipment has an output of 48 joules 

over two power ranges allowing for two wires of up to 1.1mm diameter each to 

be welded. 

 

Figure 3-6: Capacitance discharge welder 

3.3.1.5 Characterisation 

Instruments used for the microstructural characterisations as well as mechanical 

characterisations are described below. 

3.3.1.5.1 Metallographic Examination 

All the welded samples were prepared for metallography on the Buehler metaserv 

2000 and motopol automatic grinding machines. Four (4) grinding stages; 120, 

240, 1200 and 2500 grit papers were used.  6 μ diamond paste and 0.05 micron 

colloidal silica were used for final polishing of the samples. The following etchants 

were used after polishing API 5L X100 pipeline steel plate. 

i. 2% Nital (2% nitric acid in ethyl alcohol) for micrographs 

ii. 10%Nital (10% nitric acid in ethyl alcohol) for Macrographs  
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3.3.1.6 Micro Hardness Measurements 

Figure 3-7 shows the Zwick Roell micro hardness testing machine that was used 

in measuring the hardness of all the samples under investigation. This machine 

has an automatic hardness tester that uses a diamond indenter. It has two lenses, 

the 10 and 40 times magnifications. The machine is equipped with a table that 

moves in the x, y and z directions. 

 

Figure 3-7: Zwick Roell micro hardness testing machine 

In this experiment, the welded samples were cut, ground and polished according 

to standard metallographic procedures for microstructural observations and micro 

hardness tests. For micro hardness testing, 500 g load and 5 seconds dwell time 

was applied. Across and along the weld hardness scan was done with an interval 

of 1.0 mm within consecutive points. 

3.3.1.7 Tensile Test Measurement 

The all-weld metal tensile samples were machined from the welds samples in 

accordance to ASTM E8 / E8M – 08 standards. The equipment used was Instron 

5582 50 kN tensile test machine with Serial No. 5582-K5838 in Exova. The tensile 

tests were designed to ensure that the samples to be tested are taken as close 

as possible near the cap pass in longitudinal direction (welding direction of the 

plate) as shown in Figure 3-8 (a). This was done to find out the effect of rolling 

load applied and the laser processing after rolling on the samples, since both the 
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load and laser processing were applied at the cap pass only. Figure 3-9 shows 

how the samples were machined (close to the cap pass) before it was tested. 

 

Figure 3-8: Tensile test (a) All weld metal in longitudinal direction (b) dimension 

of tested sample 

 

Figure 3-9: Machined and tensile tested sample 

3.3.2 Rolling (In-House Rolling Device)  

The major components of the rolling system were the roller, roller fork assembly, 

crossbeam, oscillating mass, control panel, feed motor, main hydraulic system 

and vacuum clamping system. Figure 3-10 shows the rolling machine set-up. 

Details explanations on how this machine operates are given in section 3.4.2 of 

this thesis. 
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Figure 3-10:  (a) Rolling device set-up (b) Roller assembly 

3.3.2.1 Characterisation 

Instruments used for the microstructural characterisations as well as mechanical 

characterisations are the same as those used in section 3.3.1.5. 

3.3.3 Laser Processing 

Laser processing was done by using IPG YLR-8000 Fibre Laser. During laser 

processing, thermal cycles were monitored by instrumentation using 

thermocouples. After processing, the samples were tested for metallurgical 

characterisation and mechanical testing. 
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3.3.3.1 YLR-8000 Fibre Laser 

Figure 3-11 shows the photograph of IPG YLR-8000 laser system which is a 

diode-pumped continuous wave (CW) ytterbium fibre laser of near infrared 

spectral range. The IPG YLR-8000 has a high power fibre laser with a maximum 

output of 8 kW and has emission wavelength of 1.070µm [206]. Combinations of 

high power, ideal beam with quality fibre delivery give this system a unique 

identity. 

According to IPG Photonics [206], the laser is produced from an active optical 

fibre and semiconductor diode. This represent a fusion of the two most innovative 

and advanced laser technology [207].  

 

Figure 3-11: Showing (a) photograph of IPG YLR-8000 laser system (b) Laser 

head with the optical fibre 

3.3.3.2 Weld thermal Cycles Determination 

Thermocouples were used to measure the temperature-time relationship of the 

weld metal with the aid of a Scopecorder 750 instrument. Three holes were drilled 

through the plate thickness (from backing bar) to the weld metal into which K-

type thermocouples was placed. The thermocouples were placed at 0.5 mm, 2.0 

mm and 3.5 mm below the weld surface respectively (API 5L X100 pipeline steel 
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plate) as indicated in Figure 3-12. Laser travel speed of 0.3 m.min-1 was used in 

combination with laser powers of 1.5, 3.0, 4.0 and 6.0 kW. Figure 3-13 shows the 

photograph how the thermocouples were attached to the sample. 

 

Figure 3-12: Sketch showing thermocouple positions in weld metal cross-

section 

 

Figure 3-13: Photograph showing the laser head, scopecorder and 

thermocouple positions in weld metal 
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3.3.3.3 Characterisation 

Instruments used for the microstructural characterisations as well as mechanical 

characterisations are the same as those used in section 3.3.1.5. 

3.3.4 Residual Stress Measurement 

Owing to the neutron beam’s unique deep penetration and three dimensional 

mapping capabilities [172], neutron diffraction is widely used for stress 

measurements in a wide range of engineering structures. In this research, 

neutron diffraction was used, as it provides one of the few means of mapping 

residual stresses deep within the bulk of materials and components [17]. A 

neutron strain-scanning instrument was used. The majority of neutron strain-

scanning instruments use a nuclear reactor as the neutron source, which 

produces a continuous flux of neutrons over a range of wavelengths. A 

monochromator was used to block out all but a small part of the spectrum. The 

monochromated neutron beam was directed at the sample, and the resulting 

diffraction pattern is scanned using movable detectors [172]. Although the 

detectors are movable, they are not in motion when the measurement are 

performed. Neutrons are collected across a range of 2Ɵ and then, the data is 

fitted to find out the actual 2Ɵ. Current examples of constant flux instruments 

include Strain Analyser for Large and Small scale engineering Applications 

(SALSA) [19]. SALSA is a dedicated residual strain-mapping instrument available 

at the Institut Laue Langevin for public and it is specifically designed to speed up, 

and extend the size and complexity of engineering components that can be 

mapped. SALSA is therefore designed to be very flexible equipment suitable for 

many materials science and engineering applications (see Figure 3-14) [19]. 

Figure 3-14 shows the photograph of SALSA set-up. 
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Figure 3-14: Photograph of SALSA with ferritic and austenitic plate place on 

hexapod table. 

3.4 Experimental Method 

The experimental methods are divided into four (4) headings (that is, welding, 

rolling method and laser processing and residual stress experimental method) 

and they are described in the following section. 

3.4.1 Welding 

The dimension of the test piece is (300 x 150 x 20) mm which was machined out 

from the API 5L X100 pipeline steel plate. However, before the actual welding, 

trial welds were carried out. Details are presented below.  

3.4.1.1 Trial: Bead on Plate of API 5L X100 Pipeline Steel Plate  

A bead-on-plate weld was made using different welding parameters. Significant 

amount of information such as welding travel speed, the wire feed speed were 
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generated during the trial. This trials were essential to find out the possible ways 

of using different parameters to achieve the desired result. In this trial, different 

parameters such as travel speed and wire feed speed were used interchangeable 

so as to have good weld profile. Figure 3-15 shows the trial made on bead on 

plate. 

 

Figure 3-15: Trial bead on plate 



 

68 

3.4.1.2 Trial on Narrow Groove 

Trial welds were made on narrow groove. In this trial welding experiment, 

attentions were concentrated on finding the appropriate balance between the 

travel speed of the weld and the wire feed speed, as well as the oscillation width 

and the arc length used in the research. With wide oscillation width, the wire 

touches the plate side walls. As a consequence, this results in instability and 

undercut of the welds. On the other hand, inadequate oscillation width results in 

a lack of sidewall fusion. Figure 3-16 shows the trials made on narrow groove 

using the two welding touch. 

 

Figure 3-16: Trial made on narrow groove 

3.4.1.3 Tandem MIG Welding of API 5L X100 Pipeline Steel Plate  

The dimension of the test piece is (300 x 150 x 20) mm which was machined out 

from the API 5L X100 pipeline steel plate as stated earlier. A narrow groove edge 

preparation of 5° angle with backing bar (cut from the same material) was made 

as shown in Figure 3-17. The two plates to be welded were tacked together at 

both ends before commencing welding with a uniform gap of 5 mm between the 

plates. The tacking weld arrangement was given to the plates to minimize the 

effect of shrinkage and distortion. The welding sample was set and aligned in 1G 



 

69 

(down-hand) welding position and a total of six passes were made to fill the 

groove. 

 

Figure 3-17: API 5L X100 pipeline steel plate set-up with backing bar  

This welding process used has been developed and optimised [38]. As shown in 

Figure 3-18, it has two independent power sources and two independent feeding 

units. Each unit feeds a separate contact tip. During welding the lead arc 

determined the depth of penetration while the trail arc provide the final weld bead 

shape and reinforcement [37], [208]. Significant research on this welding process 

has been reported and can be found in [41], [48].  

 

Figure 3-18: (A) Fronius TPS 4000 thermo power supplies (B) Typical 

tandem GMAW torch [209] 



 

70 

Wire feed speed (WFS) and wire diameter with the metal deposition rate are 

related to each other as shown in equation (3-3). The heat input was calculated 

using equation (3-4).  

Deposition (mm3/sec) = Wire feed speed (mm/sec) × Area of wire (mm2) (3-3) 

 

Heat input = (Power x efficiency)/ (Travel speed) (3-4) 

 

The efficiency used in this research is 80% of the total heat input according to 

Kou, S [10]. 

Table 3-3 shows welds made using different welding parameters at constant 

CTWD (14 mm). 

Table 3-3: Welding parameters on narrow groove welds of API 5L X100 pipeline 

steel plate 
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3.4.1.4 Experimental Error in Tandem MIG Welding of API 5L X100 Pipeline 

Steel Plate  

In every research, experimental errors are very important in order to have some 

degree of confidence in the work carried out. Like any other research, 

experimental errors could be divided into set-up errors and system errors.  

Set –up errors could arise from; 

i. Welding travel speed. The travel speed of welding influences the heat 

input and consequently the weld pool flow. Hence appropriate balance 

between the welding travel speed and the wire feed speed are ensured to 

minimised the error. 

ii. Arc length used. The arc length has an effect on voltage, hence suitable 

oscillation width and the appropriate arc length were determined during 

the trial before the actual weld.  

During the hardness measurements, errors may occur due to the size of the 

sample as well as device holding the sample. Appropriate measured were taken 

to minimised error that may arise as a result sample size and device holding the 

sample. Diamond indenter which is in-built in the hardness machine is in most 

cases interrupted when the sample holding clamps are close to it. To minimise 

the errors that may arise, steps were taken to reduce the error.  

The welding power source and measurement instruments were calibrated before 

welding to avoid system errors. 

3.4.2 Local Mechanical Tensioning (Cold Rolling)  

3.4.2.1 Experimental Trials 

In this section, application of different rolling loads were tested. Rolling loads of 

50 kN, 100 kN, 120 kN and 150 kN were applied on each of the samples under 

investigation. This is to ensure that maximum and effective rolling load was used 

since the greater the amount of prior deformation, the lower the temperature for 

the start of recrystallization. After the trials, 150 kN was used for both API 5L 

X100 pipeline steel plate.   
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3.4.2.2  Post Weld Cold Rolling of API 5L X100 Pipeline Steel Plate 

The rolling device is capable of rolling with a constant force. The principle of 

operation of this rolling device is that it uses hydraulic cylinder. This hydraulic 

cylinder applies a vertical force through a single roller supported in a fork 

assembly. This vertical force applied by the cylinder is determined by the cylinder 

pressure. The roller is made from hardened BS 4659 BH13 tool steel. It has an 

effective width of 30 mm and its diameter is 100 mm.  

During the rolling operation, the welded plate was firmly fixed on the base plate 

of the rolling rig as shown in Figure 3-19 (a). The roller fork assembly is then 

lowered by the hydraulic cylinder to make contact with the sample and it is then 

translated by moving the entire crossbeam. The crossbeam has only one 

direction of movement which is the rolling direction as shown in Figure 3-19 (b). 

The control console controlled all functions of the rolling machine. See complete 

set up in Figure 3-10. 

 

Figure 3-19: (a) Photograph of the set-up (b) Sketch of rolling direction where 

red roller indicate starting position and yellow roller indicate the end position 



 

73 

In this experiment, post weld cold rolling was carried out on the capping pass of 

the multi-pass weld using a rolling load of 150 kN with constant travel speed of 

0.7 m.min-1. A flat roller was used and under all rolling conditions, the rolling force 

was applied on the capping pass of the weld metal. The roller did not touch the 

plate surface on either side of the weld.  As sketch in Figure 3-19 (b), the roller is 

released down so as to make contact with centre line of the weld metal at least 

30 mm from the start of the weld and raised 30 mm before the end of the weld 

metal. This is done to prevent the roller from sliding off which could damage the 

rolling rig.  

It is worth mentioning that, the rolling load in kN required in this experiment was 

pre-programmed into the rolling rig control station, by setting the pressure in Bar 

in accordance with the calibration graph shown in Figure 3-20 before rolling 

started. The relationship between the applied load and the cylinder pressure was 

generated by Harry, C. [149] and is presented in Figure 3-20. 

 

Figure 3-20: Relationship between roller load and cylinder pressure [149]  

3.4.2.3 Experimental Error in Local Mechanical Tensioning (Cold Rolling)  

Geometric alignment error (roller path, length of travel) were avoided by careful 

marking of the sample. These marks were made at the start and end part of the 

welded plate to determine the initial and the final position of the roller. Proper 

alignment of the centreline of the roller with the weld centreline were made to 

ensure that roller do not slip off to HAZ during rolling. 
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To minimised system error, proper calibrations (rolling load and travel speed) 

were made before the rolling start. 

3.4.3 Laser Processing  

In this section heat treatment was carried out using laser at specified laser power 

and travel speed. The laser processing in the first phase was in transient heating 

mode using a laser power of 3 kW with a travel speed of 0.3 m min-1 and laser 

spot dimension (beam diameter) of 20 mm. The choice of this laser parameter is 

explained in results and discussion (section 3.5). 

3.4.3.1 Laser Processing of API 5L X100 Pipeline Steel Plate 

An IPG YLR-8000 fibre laser machine was used for laser processing as shown 

Figure 3-21 . The principle was that the laser beam was transmitted to the laser 

head through an optical fibre of 300 µm diameter. Laser beam was collimated 

using a lens of 125 mm focal length. After collimating, a focussing lens of 250 

mm focal length was used to focus the beam. This would produce a spot size of 

0.61 mm at the focal point (Figure 3-22). However, the laser in this specific 

experiment was used to increase the temperature at a controlled rate, and so a 

defocussed beam of 20 mm spot size was used on the sample surface as shown 

in Figure 3-22. The vertical distance for defocussing was determined using a 

beam diagnostic system. The laser head was positioned at 10o angle to avoid 

any back reflection which could damage the lens. 

In order to determine the thermal cycle, three holes were drilled through the plate 

thickness (from backing bar) to the weld metal into which K-type thermocouples 

was placed. The thermocouples were placed at 0.5 mm, 2.0 mm and 3.5 mm 

below the weld surface respectively. Laser travel speeds of 0.2, 0.3, 0.4 m.min-1 

are used in combination with laser powers of 1.5, 3.0, 4.0 and 6.0 kW. The 

thermal cycles at different depth of the weld are shown in the results and 

discussion section.  
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Figure 3-21: Trial set-up of laser 

 

Figure 3-22: Schematic set-up of laser 
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3.4.3.2 Experimental Error in Laser Processing 

Proper steps were taken to minimise set-up errors. However, the most likely 

source of error is the position of thermocouple in the welds. This is due to the fact 

that the holes made to insert the thermocouple were drilled manually. Hence 

there is the likelihood of deviations from the set position. To minimize this error, 

an average of three different samples was taken. 

Another possibility is the error occurring in measuring the weld cooling times. The 

weld cooling time measured from the data obtained with these thermocouples 

might be affected by the holes drilled to attach the thermocouples inside the weld 

metal. Since these holes will create separation within the bulk material, which 

could affect heat transfer through conduction. However, the chances of such 

errors are minimised by positioning in different locations and keeping the 

diameters of the holes to 3 mm. The diameter of the thermocouple wire is 0.3 mm 

and insulator (ceramic) diameter is 2.4 mm. 

3.4.4 Residual Stress Measurement of API 5L X100 Pipeline Steel 

Plate 

Strain Analyser for Large and Small scale engineering Applications (SALSA) 

neutron diffractometer at the Institut Laue Langevin in France was used to 

measure the residual elastic strain [19]. The residual stress state was analysed 

from the measured elastic strain [210]. Measurements were made on the mid 

cross-sectional plane of a 280 mm sample (plane UVWX) shown in Figure 3-23. 

This was based on the assumption that the stress state in the middle will be from 

a steady state welding process. Longitudinal, transverse and normal strain were 

measured assuming these directions, by symmetry, to be the principal stress 

directions. 

The coordinate axes shown as L, T and N in Figure 3-23, represents the 

longitudinal direction which is parallel to the length of the weld, transverse 

direction which is perpendicular to the length of the weld and parallel to the plate,  

and normal direction is perpendicular to the length of the weld and perpendicular 

to the plate respectively. 
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The inter-planar spacing (d) of the {211} family of crystallographic planes was 

chosen for measurements of all the principal strain directions. The strain 

response of {211} family of crystallographic planes in the BCC lattice structure 

closely follows the macroscopic strain response over the measured gauge 

volume [19]. The measurements were made using a neutron incident beam of 

wavelengths, 1.62 Å, which gives a diffraction angle (2Ɵ) of 87.62o. 

However, it is important to note the two limits to the scattering angle: θ = 0 

degrees and θ = 90 degrees. When θ equal to 0 degrees, the rays are not 

changed in direction and path lengths are the same regardless of the positions of 

objects. When θ is exactly 90 degrees, the waves are reflected straight back at 

the source. 

 

Figure 3-23: Schematic diagram of the multi-pass welded plate 

Through-thickness scans were used for accurate positioning of the gauge volume 

within the plate. The gauge volume dimension was controlled by using slits in 

front of the in-coming beam and collimating the diffracted beam to maintain the 

through thickness resolution. An incoming beam of 2 × 2 mm2 was used for the 

longitudinal strain measurement while a 2 mm collimator was used for the 

diffracted beam to achieve the desired spatial resolution. For transverse and 
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normal strain measurement an incoming beam of 2 × 20 mm was used, with the 

assumption that the stress state and magnitude will remain constant in the 

welding direction. The increase in gauge volume along the welding direction, in 

these two directions, allows faster measurement with more grain sampling. More 

grain sampling reduce the neutron counting time. In other words, a larger gauge 

volume which result in more grain sampling means that there are more neutrons 

diffracting per second in the volume. 

The stress-free inter-planar spacing was measured using a comb sample of 

dimension 6 mm x 6 mm x 5 mm machined out from the parent plate by electrical 

discharge machining (EDM). The dimension of the individual comb would ensure 

relaxation of any macro residual stress field and will allow positional correction of 

the measured strain for compositional variation across the weld. The stress-free 

lattice spacing (𝑑0) were measured in all the three principal strain directions. 

The lattice spacing d is related to scattering angle θ by Bragg’s law as shown in 

equation (3-5). 

λ =  2dhklsin (
𝜃

2
) 

(3-5) 

 

Where 𝜆 is the wavelength of the neutron source. 

A Gaussian fitting routine was used to fit the intensity profile and precisely 

determine the peak position. The stress-free lattice spacing (𝑑0) measurement 

combined with the lattice spacing measurements were used to calculate strain 

(𝜀) using equation (3-6). 

εhkl  =  (
dhkl  − d0hkl

d0hkl
) 

(3-6) 

 

Where 𝜀 is strain, hkl is the measured crystal plane, d is the lattice spacing and 

d0 is strain- free spacing (measured in the same plane).  
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Once the strain is determined, the principal stress could be analysed using the 

Hooke’s law for three dimensional state of stress as shown in equation (3-7, using 

the appropriate elastic constants for the specific crystallographic plane. 

𝜎𝑖𝑖  =  
𝐸

(1 + 𝜐)
[𝜀𝑖𝑖  +  

𝜐

(1 − 2𝜐)
(𝜀11  +  𝜀22  +  𝜀33) ] 

(3-7) 

 

Where Ε and 𝜐 are the Young’s modulus and Poisson ratio respectively, and i, = 

1, 2, 3 indicate the directional component of stress and strain in an orthogonal 

coordinate system. Linearly elastic and isotropic material properties were 

assumed, and the plane-specific elastic constants used to calculate stress from 

measured strains (E = 225.5 GPa and 𝜐 = 0.28), were Kröner model predictions 

[172]. 

Note that the measurements of the residual strain were taken at 2, 10 and 18 mm 

below the plate surface on which the capping pass was laid as shown Figure 

3-24. In the measurement of the longitudinal direction, strains were measured 

with 3 mm step in the region between −36 mm and 12 mm position. This gives a 

total of 17 points with zero point inclusive in each line (say 2 mm). The time taken 

per point of measurement was 8 minutes. Hence for measurement at 2, 10, and 

18 mm below the weld surface; approximately 6.8 hours of neutron counting time 

was required for each plate sample (excluding d0 measurements).   

 

Figure 3-24: Sketch showing a cross section of the point of measurements 

(Transverse distance, each point is 3 mm apart) 



 

80 

3.4.4.1 Determination Lattice Parameter 

The most important parameter to be considered during the measurement of 

residual strain in welds is the positional variation of the stress-free lattice 

parameter (a0), to which the change in measured lattice parameter in the 

weldment is referred. Difference in a0 can be as a result of: 

i. Variations in the solute content of the lattice owing to the thermal cycling 

of the parent material in the HAZ. 

ii. Difference in composition due to the combine effect of parent metal and 

filler wire in the weld metal.  

Hence, good understanding of any lattice parameter variation with position in the 

weldment would provide appropriate residual strain measurement which in turn 

gives accurate residual stress measurement. 

3.4.4.2 Full Width at Half Maximum (FWHM) 

FWHM diffraction profiles are used to characterize different material properties. 

Analysis of diffraction peak profiles indicates that FWHM is sensitive to the 

changes in microstructure as well as stress–strain accumulation in the material. 

A number of researchers have identified various material properties through the 

FWHM of X-ray diffraction peaks. For example, it has been reported that, an 

increase in stacking faults and structural disorder widens the diffraction peaks 

[211] . Tung H-M et al [212] also report that increases in hardness and density of 

point defects affect the crystallinity and grain boundary mobility, which in turn 

causes a linear increase in the FWHM of diffraction peak. The presence of tensile 

stress in the material causes increase in the FWHM while relaxation of tensile 

stress cause reduction of FWHM [213]. “A decrease in FWHM with cyclic 

softening in a cold rolled high strength low alloy steel was observed while alloy, 

in hot rolled condition, exhibited a stable stress response accompanied with an 

increase in FWHM after fatigue cycling [214]”. 

All the data were obtained by using Large Array Manipulation Program (LAMP) 

software. Since changes in full width at half maximum of diffraction profile 

indicates plastic deformation, measurement of full width at half maximum 
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diffraction profiles enables one to see the effect of the load at the surface and 

through the thickness of the material.  

3.4.4.3 Experimental Error in the Residual Stress Measurement 

A potential source of error arises from d0 values. The use of inappropriate d0 

values due to weld shape variation can caused a change in the location of the 

maximum measured residual strain. 

Errors could also arise in the use of incorrect elastic constants (Young’s modulus 

and Poisson ratio), counting time, misalignment of diffractometer and specimen 

position. Hence, precise positioning and alignment of the sample to be examined 

in the diffractometer is necessary. It worth mentioning that spatial resolution of a 

neutron measurement depends on the gauge volume. Potential problem arise 

from inaccurate positioning of the gauge volume. 

This error is applicable to all the structural alloys presented in chapter 4 and 5 of 

this thesis. 

3.5 Results and Discussion  

This chapter present the results and discussion from the experiments conducted 

in the first phase of this research with their interpretations. Direct and indirect 

comparisons with earlier research work was also made.  

3.5.1 Welding  

Several trials were made as described in section 3.4.1 of this thesis. However, 

since welds were made in narrow groove, emphasis were placed on how to find 

appropriate balance between the welding travel speed and the wire feed speed, 

oscillation width as well as the arc length to be used. Observation of these trials 

on the narrow groove showed that given a wide oscillation width, the wire touches 

the plate side walls in the groove. This then resulted in instability and undercut of 

the welds. Using smaller oscillation width results in lack of sidewall fusion.  
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3.5.1.1  Tandem MIG Welding  

Narrow groove tandem MIG welding has been optimised at Cranfield University 

in the past decade. Research works carried out previously by [38], [41], [205], 

[48] have already designed appropriate welding procedure specifications using 

this welding process. In this particular research, appropriate welding parameters 

were selected based on the trials to achieve the designed results. The welding 

parameter used in this material is shown in Figure 3-25. The weld thermal cycle 

is shown in Appendix A.1.  

 

Figure 3-25: Welding parameters 

3.5.1.2 Hardness on As-Welded Sample 

Figure 3-26 shows the scan hardness of the six (6) deposited welds across the 

weld metal of as-welded sample, showing clearly that the root pass is harder than 

the cap pass. The higher hardness in the root pass may be due to dilution of the 
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weld metal by the parent metal. Figure 3-26 also shows that the maximum 

hardness occurred in the heat affected zone. The hardness in the weld metal is 

lower than that obtained HAZ, while the parent metal has the minimum hardness 

values. The high hardness profile at the HAZ observed in this research, is due to 

the HAZ hardening, which is the same with what has been reported by Eroglu 

[215] in his research work.  This high hardness at the heat affected zone has also 

been reported by Katsina [204] on welding of API X100 pipeline steel. High 

hardness value at the HAZ could also be attributed to the presence of martensite 

in the microstructure. The presence of martensite was caused by relative low heat 

input in the zone leading to high cooling rate. 

Hardness in weld matal is higher than the parent metal as shown in Figure 3-26. 

This increase in hardness at the fusion zone could be attributed to variation in the 

morphology of ferrite and martensite at the zones as well as compositional 

enrichment by the filler wire [216], [217]. 

 

Figure 3-26: Hardness profile across the weld metal of all the six passes in as-

welded sample. 

3.5.2 Post Weld Cold Rolling  

The in house rolling device was used in this research. Trials were also carried out 

before the actual experiment. Figure 3-27 shows the hardness profile from the 

different rolling loads used in experimental trials. The hardness values increase 
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with increasing load. In the result presented here, the rolling load of 150 kN was 

used for both the API 5L X100 pipeline steel plate and S275JR structural steel 

plate presented in chapter 5 of this thesis. It is important to mention here that the 

in-house rolling device used in this research was only capable of using a rolling 

load of 200 kN.  The maximum load was avoided to prevent unexpected friction 

between the roller and the weld metal. The choice of the load was also based on 

the assumption that the higher the deformation (high load) the lower the 

temperature to activate recrystallization. 

 

Figure 3-27: Hardness profile at different load  

3.5.2.1 Effect of Post Weld Cold Rolling on Hardness Profile 

Figure 3-28 shows the Vickers micro hardness measurement across the weld 

metal of the three processing condition. The processing conditions are the as-

welded condition, post weld cold rolling and laser processing condition 

Note that, the laser processing presented is for purpose of comparison. (The laser 

parameter are 3 kW laser power with the travel speed of 0.3 m.min-1 and the 

beam diameter of 20 mm which will be in section 3.5.3). 
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Figure 3-28: The hardness profile across the weld metal at the cap pass 

Figure 3-29 shows the Vickers micro hardness measurement along the weld 

metal of the three processing conditions. 

 

Figure 3-29: The hardness profile along the weld metal from cap to root pass 

Hardness values are lowest in the parent metal, but sharply increase in the heat 

affected zone, and at the weld metal, the hardness remains fairly uniform (Figure 

3-28). Post weld cold rolling increases the hardness value from 332 HV to 388 

HV at the weld metal. This effect of post-weld cold rolling is predictable, since 

work-hardening is an inevitable consequence of the plastic deformation induced 

during rolling.  
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Figure 3-29 shows a hardness that scan was performed from the reinforcement 

bead (cap pass) to the root pass. The effect of cold working was observed up to 

about 12 mm below the weld cap. Up to about 4 mm the effect is more 

pronounced and from 4-12 mm the effect is less pronounced. The as-welded 

plate shows an increase in hardness value from the cap to the root pass of the 

weld metal, which suggests that the root pass is harder than the cap pass (also 

see Figure 3-26). This increase from cap to root pass suggests thermal straining 

by successive passes. Again the grains at the cap pass are columnar grains not 

refined grains and these decreases the hardness value at the cap pass. 

Another possible reason could be strain induced by the root passes. This 

because the root passes were laid when the samples were cold. Therefore, the 

surrounding material would have quenched the bottom material. In other words, 

high hardness in the root pass can be explained with the fact that the root pass 

experience fast cooling resulted in small grain size thus increase in hardness 

value. 

The scattering of the hardness along the weld metal could be due to the absence 

of a controlled inter-pass temperature, since there is no particular temperature 

that was maintained in each pass. Some of the deposited layers were made when 

the temperature from the previous layer was high, while others were made when 

the temperature was low. Differences in this temperature could affect the 

hardness profile.  

Another reason could be associated with the placement of the indentations within 

the weld metal. Indentations placed within reheated weld metal will result in the 

hardness value being higher as compared to the non-reheated weld metal. In 

other words, the minor scattering in hardness could be due to micro-structural 

variation from re-heating by subsequent passes. It was also reported that re-

melting of columnar grains by subsequent reheated zone, could change the micro 

structure of the previous bead layer, thus reducing the hardness values [218]. 
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3.5.3 Post Weld Cold Rolling Followed by Laser Processing 

In this section, heat treatment trials were conducted in the API 5L X100 pipeline 

steel plate after the post weld cold rolling. The different trials were made (using 

different laser power combined with different travel speed) to give a reasonable 

amount of thermal energy to applied on the sample to activate recrystallization. 

This trials were also carried out to see how heat was conducted through the 

thickness (from cap to root pass) of the weld metal. 

Figure 3-30 shows the sketch of the influence of temperature on the grains size. 

 

Figure 3-30: The sketch showing the influence of temperature [141] 

Figure 3-31 shows the laser thermal cycle for a travel speed of 0.3 m.min-1 at a 

constant beam diameter of 20 mm, combined with four different laser powers. 

Other trials using the travel speed of 0.2 m.min-1 and travel speed of 0.4 m.min-1 

are shown in appendix A.2 
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Figure 3-31: Thermal cycles of laser powers of 1.5 kW, 3.0 kW, 4.0 kW and 6.0 

kW with travel speed of 0.3 m.min-1 at constant beam diameter of 20 mm 

 

Figure 3-32: Physical weld appearance (top view) of laser powers of 1.5 kW, 3.0 

kW, 4.0 kW and 6.0 kW with travel speed of 0.3 m.min-1  
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Figure 3-32 shows the physical weld appearance of laser powers of 1.5 kW, 3.0 

kW, 4.0 kW and 6.0 kW with travel speed of 0.3 m.min-1 at a constant beam 

diameter of 20 mm. The physical weld appearance using the travel speed of 0.2 

m.min-1 and travel speed of 0.4 m.min-1 at different laser power are shown in 

appendix A.2. The effect of the laser power of 6 kW with travel speed of 0.3 m.min-

1 at a constant beam diameter of 20 mm through the thickness is shown appendix 

A3. 

As shown Figure 3-31, the laser power of 3 kW at a travel speed of 0.3 m min-1 

was used. This is because, the peak temperature at 0.5 mm below the weld 

surface was approximately 759oC (1032 K).The selection of the temperature used 

on this material was based on the fact that: “the recrystallization temperature of 

metal or alloy is between one-third and one-half of the absolute melting 

temperature (1540oC for steel), which depends on several factors, including the 

amount of prior cold work and the purity of the alloy [141]”. 

3.5.3.1  Effect of Laser Processing on Hardness Profile 

Post weld cold rolling followed by laser processing resulted in softening of the 

weld metal up to about 12 mm below weld surface (Figure 3-29) but like 

hardening, the softening is also more pronounced up to 4 mm (388HV to 313HV).  

The combination of laser power and travelling speed used indicates that the 

thermal energy applied was not sufficient to supply enough energy for complete 

recrystallization as shown on the micrograph. This necessitates the second 

phase of the experiment presented in section 3.6. 
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3.5.4 Tensile Strength 

Figure 3-33 shows the all weld metal tensile tests taken close to the capping pass.  

All samples were taken in the longitudinal direction of the welds.  

 

Figure 3-33: Tensile test close to the capping pass 

Figure 3-34 shows the result of the all weld metal tensile tests of samples taken 

close to the root pass.  All samples were also taken in the longitudinal direction 

of the welds. 

 

Figure 3-34: Tensile test close to the root pass 
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3.5.4.1 Effect of Post Weld Cold Rolling on Tensile Strength 

Post weld cold rolling increases the proof strength (PS) by 10.5% and ultimate 

tensile strength (UTS) by 7.5% at the cap pass as shown in Figure 3-33, with 

corresponding reduction percentage elongation (10.5% - 4.8%). This is due to 

effect of cold working. This permanent deformation as a result of cold rolling, 

causes the dislocations (defects in the lattice structure) to pile up, which 

increases the strength of the material, while the ductility (percentage elongation), 

decreases with the effect of cold working. However, fracture becomes much more 

likely if the material is less able to plastically deform. Similarly, the tensile test 

taken close to the root pass (Figure 3-34), shows a similar trend as the cap pass 

when the post weld cold rolling was applied. 

However, it was observed that, the tensile strength obtained close to root pass 

(Figure 3-34), is higher than those obtained close to the cap pass indicating that 

tensile strength increases with the number of passes. Another possible reason is 

that, the plastic strains generated by thermal cycling, increase the yield strength 

at the root pass.  Since root pass had experienced a higher number of thermal 

cycles than cap pass, it is logical to expect that the contribution to the yield and 

tensile strength from this factor could be higher at the root pass. 

In this work also, it was also clear that an anisotropy of deformation occurred in 

the all-weld metal tensile tests (post weld cold rolled), as it can be observed by 

cross-sections of the fractured shown in Figure 3-35. This anisotropic 

deformation could be attributed to preferred crystallographic orientations of grains 

in the weld metal. The coordinate axes shown as TD and ND in Figure 3-35, 

represents the transverse direction and normal direction respectively. 
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Figure 3-35: Macrostructure of the cross section of fractured tensile sample 

(post weld cold rolled sample) 

3.5.4.2 Effect of Post Weld Cold Rolling Followed by Laser Processing on 

Tensile Strength 

Post weld cold rolling followed by laser processing decreases the PS by 7.5% 

and UTS by 11.5% and with corresponding increase the percentage elongation 

(4.8% -11.7%) close to the cap pass as shown in Figure 3-33. These decrease in 

PS and UTS can be associated with the formation of soft ferrite matrix in the 

microstructure of the annealed sample by cooling. However, at the root pass, post 

weld cold rolled followed by laser processing (Figure 3-34) shows an increase in 

PS by 0.5% and UTS by 0.3% with corresponding decreases the percentage 

elongation (4.5% - 4.2%) indicating that the heat applied by the transient laser 

processing was not sufficient to conduct through the thickness.  

3.5.4.3 Yield/Tensile Ratio 

The ratio of PS to UTS of a line pipe material is a measure of the margin of safety 

against failure by plastic collapse. This ratio also indicates the ability of a pipeline 

material to experience plastic deformation before failure. In a situation where yield 

strength is the same with the ultimate tensile strength, any plastic deformation of 

the pipeline material could result in rupture. However, with a difference between 

proof strength and ultimate tensile strength, the ability for the steel to exhibit cold 
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working provides some protection for the pipe against fracture, especially during 

laying of the pipeline material. 

It has been reported by Pisarski, H. G. [219] that small percentage of 

overmatching could be of benefit by allowing axial stress to exceed the Specified 

Minimum Yield Strength of the parent material. 

The API 5L requires a maximum PS/UTS factor of 0.93 for X80 pipe steel grade. 

High values of the yield to tensile ratio are expected as the material yield strength 

increases. In this research, the PS/UTS (Figure 3-33 and Figure 3-34) are 

summarised in the Table 3-4 below. All this values are within the SMYS according 

to report presented by British steel [220]. 

Table 3-4: Summary of the variation of 0.2% proof stress to ultimate tensile 

stress ratio 

Position of 

samples 

As-welded 

(PS/UTS) 

Post weld cold 

rolled 

(PS/UTS) 

Post weld cold 

rolled followed 

by laser 

(PS/UTS) 

Close to cap 

pass 

0.91 0.939 0.942 

Close to root 

pass 

0.91 0.937 0.938 

 

3.5.5 Metallographic Examination 

The macrostructure and microstructure of the weld samples under investigation 

are presented here. In this section, the as-welded, post weld cold rolled and post 

weld cold rolled followed by laser Processing are presented. 
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3.5.5.1 Macrographs 

Figure 3-36 shows macrographs of the three samples, that is, as-welded, post 

weld cold rolled and post weld cold rolled followed by laser processing. All the 

macrographs show good weld profiles with excellent penetration and good side 

wall fusion. The heat affected zones are also clearly shown. Internal defects such 

as porosity and solid inclusions were not detected in most of the welds except for 

Figure 3-36 (b). 

 

Figure 3-36: Macrographs of weld deposited layers of API 5L X100 pipeline 

steel (a) as-welded  (b) post weld cold rolled (c) post weld cold rolled followed 

by laser processing 

However, Figure 3-36 (b) shows some lack of side wall fusion and porosity at the 

second and third pass of the welds. These could be as result of the shielding gas 

used.  The CTWD or arc length used could also cause lack of side wall fusion in 

the welds.  

Inadequate shielding gas flow could be a possible cause of the porosity in the 

welds. Misalignment of the gas shroud is another potential cause of porosity in 

the welds.  Although Theocharis [38] suggested the use of 30 Litre/minute gas 

flow rate in his work to overcome the problem of porosity, which was used in this 

work, porosity was still evident in some of the welds made in this research. The 
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presence of porosity in this research could therefore be attributed to the fact that, 

when carbon monoxide (CO) and oxygen (O2) dissociated and dissolved in the 

weld pool, some percentage of these gases then react with iron (Fe) and 

deoxidants in the weld pool. Thus the remaining gas (CO) can become                     

trapped in the weld during the solidification which form the porosity. It was 

reported by Chung B.G. et al [221] that diffusion rate of the gas and solidification 

rate are function of porosity.  If solidification rate is faster than the diffusion rate 

of the weld pool, the carbon monoxide will be trapped in as porosity in the weld 

which could be the case in this research.  

Another possible cause of porosity could be the reaction of the weld metal with 

the anti-spatter spray since anti-spatter was used to spray in the shroud and 

around the weld plate before welding. Anti-Spatter Spray is non-flammable agent 

for the prevention of weld-spatter adhering to metal surfaces during the welding 

process. Maintenance of the correct CTWD was vital in ensuring a stable metal 

transfer of the correct arc length, in this research approximately 3 mm CTWD was 

ensured for correct arc length. 

3.5.5.2 Optical Microstructure 

Optical micrographs in Figure 3-37 compare the effects of post weld cold rolling 

on the weld microstructure. As-welded weld metal (cap pass) consists of 

heterogeneous mixture of acicular ferrite (AF), grain boundary ferrite (GBF), 

Sideplate ferrite (SPF) and polygonal ferrite (PF), fine bainitic ferritie which is 

typical for a low carbon steel weld. In welding of ferritic steel, competitive growth 

occurs between ferrite growing from the austenite grain boundaries and 

intragranularly nucleated acicular ferrite during austenite to ferrite transformation 

[222], [223]. Some factors that influence these transformations include the 

cooling rate, prior autenite grain size and density of intragranular inclusion [81], 

[224]. 
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Figure 3-37: Optical micrographs at cap pass (a) as-welded  (b) post weld cold 

rolled 

Post weld cold rolling followed by laser processing shows some changes in 

microstructure (change in phase) which resulted in lowering the hardness value 

(see Figure 3-38). However, the thermal energy applied was not sufficient to 

supply enough energy to sustain a complete recrystallization kinetic. 
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Figure 3-38: Optical micrographs at cap pass of post weld rolled followed by 

laser processing  

Figure 3-39 is the optical micrographs of as-welded showing the microstructures 

at the third pass, which include the HAZ, the fusion line and some part of the weld 

metal. This figure shows how the parent material responds to the welding thermal 

cycles, as well as phase formations that formed as a result of thermal cycles. 

From left to right of Figure 3-39 is weld metal, fusion line and HAZ of the third 

pass. 

 

Figure 3-39: Optical micrographs showing the change in phase transformation 
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3.5.5.2.1 Effect of Post Weld Cold Rolling on Microstructure 

Post weld cold rolling (weld metal at the cap pass) also consists of heterogeneous 

mixture of acicular ferrite, grain boundary ferrite, Sideplate ferrite and polygonal 

ferrite, fine bainitic ferritie which is typical for a low carbon steel weld. However, 

as shown in Figure 3-37 (b), post cold weld rolling has not shown any change in 

phase transformation since there is no change in temperature to create or alter 

phase composition. However, the formation of acicular ferritic in the welds are of 

great importance. This acicular ferrite is widely recognized to be a desirable 

microstructure [6] due to its fine grain interlocking nature [98], [99]. The formation 

of upper bainte is detrimental to weld toughness since its microstructure provide 

easy crack propagation path [10]. 

3.5.5.2.2 Effect of Post Weld Cold Rolling Followed by Laser processing on 

Microstructure 

As shown in Figure 3-38, there are significant changes in terms of carbon 

diffusion and aspect ratio of different phases. However, as stated before, this 

thermal energy applied was not sufficient to supply enough energy to sustain a 

complete recrystallization kinetic.  

3.5.5.2.3 Micrographs by Electron Backscatter Diffraction (EBSD) 

For further analysis of grain structure, the crystallographic characteristics of the 

weld metal were examined with electron back-scatter diffraction (EBSD) 

techniques. The EBSD crystal orientation maps are shown in Figure 3-40 and 

Figure 3-41. These micrographs were obtained from data collected over an area 

of 255 µm x 190 µm with step size 0.21 µm.  It is important to emphasize that the 

grid step size limits the size of the structure elements that can be analysed using 

EBSD. However, based on the step size used, the average grain size of the as-

welded sample was 12.18 µm at cap pass. When the rolling load (post weld cold 

rolling) was applied on the same position, the average grain size was found to be 

16.51 µm, similarly; average grain size of 10.15 µm was found when post cold 

rolling followed by laser processing was applied on the sample (see Figure 3-42).  

Among many other factors, grain boundary area poses as one of the major 

obstacles for movement of dislocations. Reduced grain size (10.15 µm), in laser 
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processed samples would, therefore, have the potential of improving the strength 

and toughness of the weld metal. 

 

 

Figure 3-40: EBSD micrograph of X100 pipeline steel at the cap pass of (a) as-

welded (b) post weld cold rolled samples. 
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The post weld cold rolled followed by laser processing obtained from EBSD 

shows the grains with different orientations (Figure 3-41).  

 

Figure 3-41: EBSD micrograph (cap pass) of post weld cold rolling followed by 

laser processing  

Mechanical properties of polycrystalline metals and alloys are very sensitive to 

their grain size. Table 3-5 shows the statistical distribution of the as-welded 

sample. The table shows that the average grain size increase from root pass to 

cap pass. The smaller grains at the root pass can be attributed to fast cooling rate 

at the root pass. 
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Table 3-5: showing the statistical distribution of the grain size 

 Root 

pass 

Fill 1 Fill 2 Fill 3 Fill 4 Cap 

Pass 

Ex (µm) 6.28 8.58 9.65 10.37 11.86 12.18 

σ2x (µm) 184.38 170.15 248.55 285.55 231.59 352.86 

σ  (µm) 13.58 13.06 15.77 16.90 15.22 18.77 

σ2x/Ex (µm) 2.16 1.52 1.63 1.63 1.28 1.54 

Xmin (µm) 1 1 0.73 0.58 0.73 0.73 

Xmax (µm) 337 149 105 92 58.77 89.79 

N (µm) 1799 982 118 112 95 100 

Raster (µm2) 222 x167 222 x 166 316 x234 407x304 316x225 317x225 

Step size (µm) 0.21 0.21 0.73 0.58 0.73 0.73 

Where: Ex = average grain size 

 σ2x = variance 

 σ = standard deviation 

X = each value in the data set 

N = number of value in the data set 

Figure 3-42 shows the average grain size of all the samples with post weld cold 

rolled sample having a longer average grain size.  

Its well known that refined grain size increases the strength of a polycrystalline 

material, post weld cold rolling followed by laser processing has reduce the grain 

size as shown Figure 3-42. 
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Figure 3-42: showing the average grain size at cap pass of all the three 

samples 

3.5.5.2.4 Pole Figure 

The {211} pole figures measured by the X-ray diffraction (XRD) obtained from the 

as-welded, post weld cold rolled and post weld cold rolled followed by laser 

processing are shown in Figure 3-43 and Figure 3-44 respectively. The pole 

figure shows that the texture intensity of the samples decreases as the sample 

was rolled and further decrease when post weld cold rolling followed by laser 

processing was applied, indicating that the texture was modified by grain 

reorientation induced by plastic deformation. 
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Figure 3-43: Crystallographic texture of the cap pass (a) as-welded (b) post 

weld cold rolling 



 

104 

The post weld rolling followed by laser processing further decrease the texture 

intensity of the samples as shown in Figure 3-44. 

 

Figure 3-44: Crystallographic texture (cap pass) of post weld cold rolling 

followed by laser processing 

3.5.6 Residual Stress Measurement 

Measurement was taken at 2 mm below the top surface. This region is almost at 

the fifth pass. This fifth pass will be affected by tempering from the deposition of 

the last layer (sixth pass), and the previous layer (fourth pass) welding will have 

had a preheating effect on the parent metal. These processes reform the 

microstructures of weld metal and HAZ, and also affect the internal stresses that 

may be formed. A multi-pass welding process amounts to performing a heat 

treatment on the microstructure of the weld zone and HAZ and, in most cases, 

due to an uneven distribution of welding thermal history, the multiple depositions 

result in modification of stress magnitude and distribution. 

However, the precise measurement of a stress-free reference lattice parameter 

is important when determining residual stress by neutron diffraction. The 

reference parameter variation as measured in the comb samples, for the 
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longitudinal directions as observed by monochromatic neutrons at the ILL in 

France is shown in Figure 3-45. 

 

Figure 3-45: Variation in the unstressed αFe {211} lattice spacing d0 measured. 

Measurement taken at (a) 2 mm (b) 10 mm (c)  18mm below weld surface 
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In this research, the residual stress analysed from the measurements of elastic 

strain showed a variation in residual stress across the weld at 2 mm below the 

weld surface (Figure 3-46). These are familiar distributions of longitudinal residual 

stress(𝜎𝑥𝑥) during welding, showing tensile stresses close to the weld line and 

slightly compressive further away from it. The transverse and normal residual 

stress are shown in Figure 3-47 and Figure 3-48 respectively. 

 

Figure 3-46: Longitudinal residual stress profile across the weld in specimens 

with different processing conditions (measured 2 mm below the top surface) 

 

Figure 3-47: Transverse residual stress profile in the weld with different 

processing conditions (measured 2 mm below the top surface) 



 

107 

 

Figure 3-48: Normal residual stress profile in the weld with different processing 

conditions (measured 2 mm below the top surface) 

3.5.6.1 Residual Stresses Across the Weld of As-welded Sample 

Figure 3-46 shows the distribution of the longitudinal residual stress distribution 

profile. As shown, both the weld zone and HAZ show mainly tensile stress (as-

welded). This stress, with a maximum value of 522 (+/-23) MPa at the weld metal 

centreline, was produced by not only longitudinal compressive plastic flow but 

also transverse compressive plastic flow. With increasing distance from the weld 

centreline as shown in the figures, the temperature declines sharply which lead 

to uneven heat input between the weld metal and base metal. These thermal 

contraction of the material in the high temperature zone is been restricted by the 

materials around it, resulting in the tensile stress. The variation in the stress 

profile of the weld metal can be attributed to the fact that the fusion zone is within 

the arc centre, and is predominately affected by the heat input, traveling speed 

and other welding parameters. 

Formation of residual stress and microstructure to a large extent are dependent 

on heat input, and in most cases, near the fusion boundary which is the HAZ, the 

size of the grains are found to be relatively coarser at high heat input (if the heat 

is sufficient to take the temperature above the AC3 line) and finer at low heat input 
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[225]. It was also reported that residual stresses were tensile near the welded 

region which has highest heat input, while at the lowest heat input region, the 

residual stress becomes compressive balancing the tensile stress [226]. This 

research has also confirmed the same phenomena. 

Figure 3-47 shows the distribution of transverse residual stress. It was observed 

that the transverse residual stresses are mainly tensile with a maximum value of 

183 (+/-20) MPa at the weld metal centreline.  As shown, this magnitude is lower 

than that of longitudinal stress direction. This could be attributed to the fact that 

during the cooling stage, solidification shrinkage is restrained by base metal in 

the transverse direction, which also contributes to the formation of the tensile 

stress after welding. Another possible reason of lower transverse stress could be 

the propagation of heat in transverse direction. Heat transfer is faster in 

transverse direction than in longitudinal direction, hence, the heat quantity 

transferred in transverse direction is more than in longitudinal direction which may 

also affect the stress distribution in the transverse direction. 

Figure 3-48 shows the distribution of the normal residual stress (as-welded). 

Comparing the normal stress value to the longitudinal and transverse residual 

stress, the stress in normal direction is smaller.  Maximum value obtained at weld 

centreline was 41 (+/-25) MPa. The weld zone shows tensile residual stress and 

the HAZ and base metal shows compressive residual stress. Further away from 

the weld centreline the stress decreases gradually and then declines to zero. This 

tensile residual stress was observed around the centreline of the weld because 

of the solidification of weld metal and constriction around the base metal. 

3.5.6.2 Residual Stresses through the Thickness of Weld (As-welded 

Condition) 

The residual stress analysed showed a reduction in magnitude from cap to root 

in the as-welded state (Figure 3-49). This diminishing in magnitude through the 

thickness of a multi-pass weld can be attributed to the fact that multiple passes 

result in thermal straining of previously laid pass from successive passes. The 

thermal cycling would cause macroscopic plastic deformation of previously laid 

passes. 
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Figure 3-49: Variation of peak residual stress magnitude through the thickness 

(measured at 2, 10, and 18 mm below the top surface) 

3.5.6.3 Effect of Post Weld Cold Rolling Through the Thickness 

As shown in Figure 3-46, post weld cold rolling (measurement was taken at 2 mm 

below the weld surface) has changed the longitudinal residual stress state 

causing it to become compressive around the weld metal (from peak tensile 

stress of 522 MPa to compressive stress of 205 MPa). Up to about 4 mm below 

the weld surface, compressive residual stress was observed (Figure 3-49). 

Application of rolling to the welded joints causes yielding of material in the weld 

region, thereby, redistributing the residual stresses that may exist in the region. 

These rolling processes compress the material in the direction normal to the 

weld’s surface, thereby causing it to expand in the plane of the weld, relaxing any 

tensile residual stresses in the plane. 

A flat roller of 30 mm width was used which determines the extent to which 

localized plastic strain is induced and thereby compressive longitudinal stress is 

generated (Figure 3-46,). However, the compressive zone width is narrower than 

the width of roller because the contact area of the roller is smaller compared to 

the width of roller. Hence rolling causes plastic deformation around that region of 

the weld which is approximately 17 mm in width.  
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It was observed that, at about 10 mm below the weld surface (Figure 3-49) the 

rolling load has little influence on the residual stress state of the weld. The rolling 

changes the peak tensile stress from 505 MPa to 405 MPa suggesting little 

impact of the rolling in this region. Similarly, at 18 mm below the weld surface 

(Figure 3-49); the rolling load did not show any insignificant change in the residual 

stress state. 

3.5.6.4 Effect of Post Weld Cold Rolling Followed by Laser Processing 

Laser processing after cold rolling (measurement was taken at 2 mm below the 

weld surface) has been shown to increase the longitudinal residual stress from 

compressive stress of 205 MPa to peak tensile stress of 770 MPa (Figure 3-46) 

indicating a low heat input but fast cooling condition of the material, thus 

generating inhomogeneous plastic deformation and tensile residual stresses.  

Similarly, at about 10 mm and 18 mm below the weld surface (Figure 3-49), 

application of laser processing to the rolled samples did not show any significant 

change in the residual stress state. This indicates that the heat conducted through 

the material at that region was not sufficient to cause in changes in the residual 

stress state. 

3.5.6.5 Full Width at Half Maximum (FWHM) 

Figure 3-50 shows the effect of FWHM on (a) as-welded sample at different depth 

(b) Post weld cold rolling at different depth and (c) the three samples 2 mm below 

weld surface.  
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Figure 3-50:  Effect of FWHM on plastic deformation at (a) as-welded at 2 mm, 

10 mm and 18 mm below weld surface (b) post weld cold rolling at 2 mm, 10 mm 

and 18 mm below weld surface and (c) The three samples at 2 mm below weld 

surface 
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FWHM indicate the plastic strain history of a crystalline structure. As shown in 

Figure 3-50 (a), the FWHM at 18 mm below the weld surface was higher than the 

FWHM at 2 mm below the weld surface. This is due to the fact that root regions 

experience more thermal cycles than any other region in the multi-pass weld. 

Thus, the root pass undergoes more thermal straining compared to cap pass. 

Similarly, in the post weld cold rolled sample, FWHM at 2 mm below the weld 

surface was higher because of the direct contact between local mechanical 

tensioning (roller)  and cap pass indicating more plastic deformation at that region 

(Figure 3-50 (b)).  

As the effect of the load applied by the roller diminishes through the thickness 

(Figure 3-50b), the peak FWHM reduces, indicating that FWHM is influenced by 

the work hardening effect of the rolling process. FWHM profile reduces when 

rolling followed by laser processing was applied (Figure 3-50(c)). This could be 

due to the thermal energy from laser which induces recovery and dislocation 

density reduces. 

3.5.7 Conclusion 

The effect of rolling was realized up to about 4 mm below the weld surface. 

Minimal grain refinement was observed at the cap pass when post weld cold 

rolling followed by laser processing was applied to the sample. The post weld 

cold rolling modifies the stress state and a compressive residual stress was 

formed below the weld metal. As the modification of stress state is achieved by 

localized plastic deformation an increase in hardness of the weld metal was also 

observed. Post weld cold rolling followed by laser processing resulted in 

formation of refined microstructure with strain free grains due to recrystallization. 

However, laser processing reinstated the as-welded residual stress state profile 

with even higher magnitude of peak stress. Following this observation, a further 

processing route was proposed, which form the second phase of the experiment. 

The peak tensile residual stress of the as-welded sample diminishes in magnitude 

through the thickness of a multi-pass weld. This is attributed to the fact that, 

multiple passes result in thermal straining of previously laid pass from successive 
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passes. The thermal cycling would cause macroscopic plastic deformation of 

previously laid passes. 

The analysis of FWHM data shows that the root pass of multi-pass welds undergo 

more deformation (as-welded sample) due to the fact that root regions experience 

more thermal cycles than any other region. These indicate that the root pass 

undergo more deformation, thus, FWHM was higher at the root pass compare to 

cap pass. Similarly, post weld cold rolling, resulted in an increase in FWHM at 2 

mm below the weld surface due to direct contact between local mechanical 

tensioning (roller) and the cap pass, indicating that FWHM is influenced by the 

work hardening effect of the rolling process. 

3.6 Second Phase of Experimentation 

This second phase of the experiment was based on the observation made in the 

first phase of the experiment, that post weld cold rolling followed by laser 

processing reinstated as-welded residual stress state profile with even higher 

magnitude of peak stress and also resulted in minimal refinement of 

microstructure. This indicated that the re-crystallisation is partial because the 

transient thermal cycle is not sufficient to supply enough energy to sustain the 

entire recrystallization kinetics. Based on this observation, a new laser 

processing was adopted.  

The new laser processing involves applying thermal energy for a prolonged 

period which would ensure full recrystallization of the grain structure.  

In order to overcome the problem of restoration of residual stress after laser 

processing of the post weld cold rolled samples as observed in the first phase of 

the experiment, further cold rolling was applied. This cold rolling after laser 

processing is to redistribute and eliminate the tensile residual stress state which 

would have formed during laser processing. Figure 3-51 shows the sketch of the 

work flow for the second phase. As shown in the sketch, the second phase of the 

experiment involved four steps; welding was carried out by Tandem GMAW DC 

process, the post weld cold rolling was performed using an in-house rolling 

device, the post weld cold rolling was followed by laser processing using 8 kW 



 

114 

(peak power) CW fibre laser and finally cold rolling after post weld cold rolling 

was followed by laser processing. 

 

Figure 3-51: Sketch of the work flow of the second phase 

In this second phase of experiment, the material and experimental equipment 

used in the first phase were used. 

3.6.1 Experimental Method 

The experimental methods are divided into five (5) stages (that is, welding, post 

weld cold rolling, laser processing, cold rolling after laser processing and residual 

stress measurement) and they are presented here. 

3.6.1.1 Welding 

The same principle of welding process used in section 3.4.1 was adopted in this 

second phase of the experiment.  

3.6.1.2  Local Mechanical Tensioning (Cold Rolling)  

The rolling method used in section 3.4.2 was applied in this section.   
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3.6.1.3 Laser Processing 

The new laser processing involves applying thermal energy for a prolonged 

period which would ensure full recrystallization of the grain structure and 

formation of new set of strain free grains. In order to understand the time-

temperature cycle required for full recrystallization, experiment using reheating 

furnace was carried out on post weld cold rolled samples.   

3.6.1.3.1 Experiment Using Reheating Furnace  

In these experiments, different temperatures were tried. Thermocouples were 

attached to each sample so as to differentiate between the furnace temperature 

and sample temperature. Each sample was heated and held for 60 s. 

Carbolite chamber furnaces was used for these trials so as to understand the 

time-temperature cycle required for full recrystallization of post weld cold rolled 

samples. This carbolite furnaces are designed under an ISO 9001:2008 standard. 

In this carbolte furnance, the silicon carbide heating elements was used, which 

are good heating element required in laboratory furnaces.  Figure 3-52 shows the 

Carbolite chamber furnaces used at Cranfield University. 

 

Figure 3-52: Carbolite chamber furnaces 
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3.6.1.3.2 New Laser Processing 

In the new laser processing, the same continuous wave (CW) laser was used as 

in first phase, but instead of transient heating mode, the post weld cold rolling 

samples were gradually heated by controlling the laser power at a large beam 

diameter of 110 mm. Figure 3-53 shows an experimental set up while Figure 3-54 

shows the schematic diagram for design laser set-up. The laser head was 

positioned at 25o angle to avoid any back reflection which could damage the lens. 

 

Figure 3-53: New laser experimental set-up 
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Figure 3-54: Schematic diagram for new laser set-up  

3.6.1.4 Further Cold Rolling After Laser Processing 

The same principle used in section 3.4.2 of this thesis was also applied here. 

3.6.1.5 Method of Residual Stress Measurement 

The SALSA neutron diffractometer at the Institut Laue Langevin in France was 

used in a similar condition as stated in section 3.4.4 to measure the residual 

elastic strain [19]. In this second phase, the following parameters are different 

from the first phase; 

1. The measurements in the second phase were made using a neutron 

incident beam of wavelengths, 1.6 Å, which gives a diffraction angle (2Ɵ) 

of 84.2o 

2. The measurements of the residual strain were taken at 3.5, 11.5 and 19.5 

mm below the plate surface on which the capping pass was laid 
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3.6.2 Results and Discussion 

The furnace experiment, new laser processing, cold rolling after laser processing 

and their effect on this structural alloy is presented in a comparative manner 

where ever possible. 

3.6.2.1 Experiment Using Reheating Furnace on API 5L X100 Pipeline Steel 

Plate 

The post weld cold rolled samples were heated on the furnace and their hardness 

and microstructure were checked before designing the new laser processing 

route. The size of the samples heated on this trial was 50 mm long by 40 mm 

wide by 20 mm thick. In these experiments, the samples were heated to different 

temperatures (600oC, 800oC, 900oC, 1000oC and 1200oC). A thermocouple was 

attached to each sample so as to differentiate between the furnace temperature 

and sample temperature. Each sample was heated and hold for 60 seconds. The 

thermal cycle at different temperatures are shown in Figure 3-55. The hardness 

profile and optical micrographs are also shown in Figure 3-56, Figure 3-57 and 

Figure 3-58 respectively.  
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Figure 3-55: Thermal cycles of furnace treatment at different temperature 

 

Figure 3-56: Hardness profile across weld metal (cap) at different temperature  

As shown in Figure 3-56, the hardness values across the weld metal decreases 

with increase in temperature. This reduction in hardness values is as a result of 

formation of other softer phases e.g. ferrite. 
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Figure 3-57:  An optical micrographs of the welds metal (cap pass)  

 

 Figure 3-58: An optical micrographs of the welds metal and HAZ (cap pass)  
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3.6.2.2 Conclusion for the Furnace Experiment 

The result in the furnace experiment shows that recrystallized grains can be 

formed after heating the API 5L X100 pipeline steel plate to 900oC. Based on this 

observation, the laser processing in the second phase of the experiment was 

designed. 

3.6.2.3 New Laser Processing 

In this phase the same CW laser was used as in first phase, but instead of 

transient heating mode the post weld cold rolled samples were gradually heated 

by controlling the laser power at a large beam diameter of 110 mm. The API 5L 

X100 pipeline steel plate was heated up to 900oC using identical laser 

parameters. The thermal cycle of the laser processing is shown in Figure 3-59. 

 

Figure 3-59: Thermal cycles of control laser power (heated to 900oC) at 

constant beam diameter of 110 mm 

The effect of the new laser processing on hardness, tensile strength, 

metallography and residual stress measurement are presented and discussed. 

3.6.2.3.1 Effect of the New Laser Processing on Hardness Profile 

Figure 3-60 shows the hardness measurement profile at the cap pass of the 

welds in the three processing conditions for purpose of comparison. 
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Figure 3-60: Hardness profile at the capping pass across the weld metal 

Figure 3-61 shows the hardness profile from the reinforcement bead (cap pass) 

to the root pass.  

 

Figure 3-61: Showing hardness scan position along the weld metal and the 

hardness profile 

This method resulted in softening of the weld metal throughout the entire 

thickness (Figure 3-61). Figure 3-60 shows the hardness measurement (HV0.5) 

across the capping pass of the welds. The hardness values drop from 388 HV to 

258 HV at the cap pass. This softening resulted in significant refinement of the 

grain structure. This grain refinement may improve the mechanical behaviour of 

the weld metal and also increase resistance to fatigue and fracture failure. In 
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other words, laser processing following cold rolling has resulted in refining of the 

cold worked grains, which will relax the strains and also allow diffusion of 

interlocked carbon atoms making a more tempered structure. 

3.6.2.3.2 Effect of the New Laser Processing on Tensile Strength  

Figure 3-62 shows a graphical representation of the all-weld metal tensile test.  

 

Figure 3-62: Tensile test for API 5L X100 pipeline steel plate close to (a) cap 

pass (b) root pass 

In this second phase, post weld cold rolling followed by laser processing shows 

a greater decrease in the PS by 18.8% and UTS by 18.5% and with 

corresponding increase the percentage elongation (4.8% to 18.5%) close to the 

cap pass as shown in Figure 3-62 (a). These decrease in PS and UTS can be 

associated increase in temperature. However, at the root pass, post weld cold 
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rolling followed by laser processing also shows a decrease in PS and UTS with 

corresponding increase in percentage elongation indicating that the heat applied 

by the laser processing was sufficient through the thickness to change the 

microstructural feature at the root pass which is a clear improvement on first 

phase of the experiment. 

Table 4-3-6: Sowing the Tensile test of the samples 

samples UTS (MPa) 0.2%PS %EL 

As-welded 780 738 10.5 

Post weld rolled 844 802 4.8 

Post weld rolled followed by 

laser treatment 

700 651 18.5 

As shown in Figure 3-62, PS/UTS of samples close to the cap pass are 0.91, 0.93 

and 0.93 for as-welded, post weld cold rolling and post weld cold rolling followed 

by laser respectively.  The PS/UTS measured close to the root pass are 0.90, 

0.93 and 0.95 for as-welded, post weld cold rolling and post weld cold rolling 

followed by laser respectively.  All this values are within the SMYS according to 

report presented by British steel [220]. 

3.6.2.3.3 Optical Microstructure 

The as-welded  and  post weld  cold rolled samples which consist of 

heterogeneous mixture of acicular ferrite (AF), grain boundary ferrite (GBF), 

Sideplate ferrite (SPF) sometimes called widmanstatten ferrite, and polygonal 

ferrite are shown in Figure 3-63 are compared. While, post weld cold rolling 

followed by laser processing shows a typical ferrite (F) and pearlite (P) structure 

(see Figure 3-64). 
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Figure 3-63: Optical micrographs at cap pass (a) as-welded  (b) post weld cold 

rolling 
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Post weld cold rolling followed by laser processing shows a typical ferrite (F) and 

pearlite (P) structure (see Figure 3-64 (a)). For purpose of comparison, parent 

metal is shown in Figure 3-64 (b). 

 

 

Figure 3-64: Optical micrographs at (a) cap pass of  post weld rolling followed 

by laser processing (b) parent metal 
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Post weld cold rolling followed by laser processing (Figure 3-64) produce a typical 

ferrite (F) pearlite (P) structure. This process produced the expected coarse 

grained ferrite-pearlite microstructure; the coarse grains being caused by the long 

time at high temperatures (900oC). As the temperature is high, phase 

transformation occurs and created a ferrite- pearlite structure associated with 

cooling of low carbon materials. Although, in most cases, pearlite regions are 

generally associated with the solidification boundaries, more noticeably in high 

heat input welds where initial segregation is probably greater. 

For further analysis of grain structure, the crystallographic characteristic of the 

weld metal was examined with the electron back-scatter diffraction (EBSD) 

techniques (Figure 3-65). 

 

Figure 3-65: EBSD micrograph (cap pass) of  post weld rolled followed by laser 

processing heated to 900oC 

These grain orientation maps were acquired from data produced over an area of 

255 µm x 190 µm with step size 0.21 µm. The average grain size was found to 
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be 5.2 µm. This generation of the recrystallized microstructure with large 

proportion of high angle grain boundaries would increase the strength and 

toughness of the material which is lower in as-welded dendritic grain structures 

[10], [108]. 

3.6.2.3.4 Residual Stress  

Due to the nature of heat flow in a welding process, large magnitude tensile 

residual stresses are formed parallel to the welding direction and close to the 

weld zone. In this section, the discussion is focussed on the longitudinal direction. 

Figure 3-66 shows the variation in the unstressed αFe{211} lattice spacing d0 

measured, and Figure 3-67 shows the longitudinal residual stress profile 

analysed from the measurements of elastic strain. The transverse and normal 

residual stress are shown in appendix A4. The as-welded sample was not 

measured in this second phase but as-welded used in the first phase serves as 

a reference sample since the same welding parameters are used in 

manufacturing the weld.  Post weld cold rolling presented here is to confirm it 

effect as stated in the first phase. 

As shown in Figure 3-67, post weld cold rolling has modified the longitudinal 

residual stress to compressive, confirming the effect of post weld cold rolling 

observed in the first phase. However, post weld cold rolling followed by laser 

processing (measurement was taken at 3.5 mm below the weld surface) has 

change the compressive residual stress (155 MPa) obtained during post weld 

cold rolling to peak tensile stress (139 MPa). Although this effects is not surprising 

since the same effect were observed in the first phase of the experiment. What 

is noticeable here is the reduced tensile stress when compared the value 

obtained in the first phase. This could be attributed to the fact that, the second 

experiment was heated for a long period and this gives room for expansion during 

cooling as compared to the first phase of the experiment whose heating was on 

transient mode. Another possible reason is the interaction time associated with 

the two experiment; the first phase was heated for four seconds, whereas the 

second phase was heated for sixty seconds (see Figure 3-59) which is likely to 

be the effect. 
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The interaction time is calculated using equation (3-8). 

𝑇𝑖 =  
𝑑

𝑣
 

(3-8) 

Where d is the beam diameter and v is the travel speed. 

As expected, post weld cold rolling followed by laser processing then cold rolled 

has changed the longitudinal residual stress state once again to become 

compressive around the weld metal (from peak tensile stress of 139 MPa to 

compressive stress of 74 MPa in Figure 3-67). The presence of this compressive 

stress component would likely inhibit crack propagation across the weld under 

longitudinal fatigue loading. 

 

Figure 3-66 : Variation in the unstressed αFe {211} lattice spacing d0 measured 

(measured 3.5 mm below the top surface) 
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Figure 3-67 : Residual stress profile across the weld in the sample (measured 3.5 

mm below the top surface) 

3.6.2.3.5 Conclusion 

The new laser processing in this second phase of experiment has demonstrated 

that full recrystallization of the grain structure and formation of new set of strain 

free grains can be achieved.  

The cold rolling after laser processing has redistributed and eliminated the tensile 

residual stress state formed during laser processing of the post weld cold rolled 

samples observed in the first phase of this experiment. 
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4 Application of Local Mechanical Tensioning and Laser 

Processing to Refine Microstructure and Modify 

Residual Stress State of a Multi-pass 304L Austenitic 

Steels Welds  

4.1 Introduction 

Austenitic stainless steel types are the most widely used stainless steels which 

contain nominally 18% chromium and 8% nickel. This material exhibits an 

attractive combination of good strength, ductility, toughness, excellent corrosion 

resistance and good weldability [109], [110]. Due to these attributes, this type of 

structural alloy is used in a variety of industries such as thermal power generation, 

biomedical and petrochemical, automotive, and chemical engineering [111]. 

In this research, the experiments were also carried out in two (2) phases. The 

first phase of the experiment involved three steps;  

i. Welding which was carried out by using Tandem GMAW DC process 

ii. The post weld cold rolling in structural alloy was performed using an in-

house rolling device and finally, 

iii. The post weld cold rolling was followed by laser processing using 8 kW 

(peak power) CW fibre laser. 

The laser processing in the first phase was in transient heating mode using a 

laser power of 1 kW with a travel speed of 0.3 m min-1 and laser spot dimension 

(beam diameter) of 20 mm. Figure 4-1 shows the schematic work flow in the first 

phase of the experiment. Microstructural observations, hardness scanning, 

tensile test and residual stress measurement were carried out after each step as 

shown Figure 4-1. 
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Figure 4-1: Sketch of the work flow of the first phase 

4.2 Materials  

AISI 304L grade of austenitic stainless steel plate (12 mm thick) was used and 

chemical compositions of the austenitic stainless steel plate is shown in Table 

4-1. 

Table 4-1: Showing chemical composition of AISI 304L austenitic stainless steel 

plate 
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4.2.1 Filler Wire 

The filler wire used for austenitic steel was Lincoln MIG 308L Si with a nominal 

diameter of 1.0 mm. The chemical composition of the filler wire is shown in Table 

4-2. 

Table 4-2: Showing chemical composition of austenitic steel filler wire 

 

4.2.2 Shielding Gas 

The shielding gas used was 98% Ar and 2% O2 at flow rate of 30 lit min-1.  

Weldment properties strongly depend on the shielding gas. This is because 

shielding gas dominates the mode of metal transfer. The GMAW process uses 

four basic modes (Short-circuit Transfer, Globular Transfer, Spray Transfer Mode 

and Pulse-Spray Transfer) to transfer metal from the electrode to the workpiece. 

Each mode of transfer depends on the welding process, the welding power 

supply, and the consumable, and each has its own distinct characteristics and 

applications). The choice of this gas was based on the experiment carried out by 

Yilmaz R. [227]. 

4.3 Experimental Equipment 

The experimental equipment used in this structural alloy is the same as those use 

in API 5L X100 pipelines steel plates (see chapter 3) except for the 

metallographic examination.  

In this case, all the welded samples were prepared for metallography on the 

Buehler metaserv 2000 and motopol automatic grinding machines. Four (4) 

grinding stages; 120, 240, 1200, 2500 grit papers were used.  6 μ diamond paste, 

3 μ diamond paste and 0.05 micron colloidal silica were used for final polishing 

of the samples. The samples were electrolytically etched using the following 

condition:  
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i. Electrolyte used is the oxalic acid (10 g) + Distilled water (100 ml), 

ii. 6 V cell voltages were used. 

iii. Etching time: 60 seconds. 

All the etched samples were examined using an optical microscope, energy 

dispersive X-ray spectroscopy (EDS) and electron back-scatter diffraction 

(EBSD). 

4.4 Experimental Method 

The experimental methods are divided into four (4) headings (that is, welding, 

rolling method, laser processing and residual stress experimental method) and 

they are presented here.  

4.4.1 Welding 

The dimension of the AISI 304L austenitic stainless steel plate for making the 

welds are 300 x 150 x 12 mm thick. However, before the actual welding, trial 

welds were performed. Details are presented below.  

4.4.1.1 Trial: Bead on Plate of 304L Austenitic Stainless Steel Plate  

Bead-on-plate was made using different welding parameters. In this trial, 

significant amount of information such as welding travel speed, the wire feed 

speed were generated as austenitic stainless steel grades are considered 

weldable if necessary precautions are taken into consideration. This bead on 

plate welds were made to purposely capture the weld bead profile before applying 

it on the narrow groove welds.  This trial was also helpful in identifying suitable 

welding parameters to be used during the real multi pass welds. Figure 4-2 shows 

the different bead on plate trials that were made using different parameters to 

achieve the desired result.  



 

135 

 

 

Figure 4-2: Trial made on austenitic stainless steel plate 
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4.4.1.2 Tandem MIG Welding of Austenitic Steel Plate 

Trial welds were made on narrow grooves before the actual welding. In this trial 

welding experiment, welding parameters such as welding travel speed, the wire 

feed speed as well as oscillation width, and the welding arc length were carefully 

examined. Figure 3-16 in chapter 3 of the thesis, shows a similar trials made on 

narrow groove using the two welding touch. 

In austenitic stainless steel plate, the same welding preparation as that of API 5L 

X100 pipeline steel plate was maintained. The dimension of this sample was 300 

x 150 x 12 mm. The backing bar was cut from the same material. However 

because of the thickness of the austenitic stainless steel plate used compare to 

the thickness of API 5L X100 pipelines steel plates, a total of three passes were 

required to fill the groove. Table 4-3 shows the welding parameters at constant 

CTWD (14 mm) and Figure 4-3 shows the sketch of preparation of the austenitic 

stainless steel plate. 

Table 4-3: Welding parameters on narrow groove welds 

 

The wire feed speed (WFS) is related to wire diameter and metal deposition rate 

as shown in equation (4-1). The calculation of heat input is shown equation (4-2). 

Deposition (mm3/sec) = WFS (mm/sec) × Area of wire (mm2) (4-1) 

 

Heat input = (Power x efficiency)/ (Travel speed) (4-2) 
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The efficiency used in this research is 80% of the total heat input according to 

Kou, S [10]. 

 

Figure 4-3: 304L stainless steel plate set-up with backing bar 

4.4.1.3 Experimental Error in Tandem MIG Welding of Austenitic Steel 

Plate 

The same source of error as shown in section 3.4.1.4 of the thesis. 

4.4.2 Local Mechanical Tensioning (Cold Rolling)  

4.4.2.1 Post Weld Cold Rolling of 304L Austenitic Stainless Steel Plate 

After the different trials described in section 3.4.2.1, a rolling load of (100 kN) was 

applied and the same principle as in section 3.4.2.2 was used. The lower rolling 

load of 100 kN was used instead of 150 kN used in API 5L X100 pipeline steel 

plate due to ductile nature of the material which make it easier to deform. Hence, 

using high rolling load in this material can create a friction between the roller and 

weld metal. The deformity ability of austenitic steel is higher than the ferritic steel 

because of the greater number of active slip planes in austenitic steel. In other 

words, lattice structures with closely packed planes (austenitic steel) allow more 

plastic deformation than those that are not closely packed (ferritic steel) [141]. 

4.4.2.2 Experimental Error in Local Mechanical Tensioning (Cold Rolling)  

The sources of errors stated in section 3.4.2.3 are also applicable in this structural 

alloy. In addition, the rolling load used can constitute source of error. For 

example, high rolling load create ripple and cumulate weld in front of the roller 

due to ductile nature the material thereby impede the rotation of the roller. 
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4.4.3 Laser Processing of 304L Austenitic Stainless Steel, 

The same principle of laser processing used in section 3.4.3.1 was applied in this 

structural alloy. However, unlike the laser power of 3 kW used in section 3.4.3, 

the transient heating mode using a laser power of 1 kW with a travel speed of 0.3 

m min-1 and laser spot dimension (beam diameter) of 20 mm was used. The 

choice of this laser parameter is explained in results and discussion section 

(section 4.5). 

4.4.3.1 Experimental Error in Laser Processing of 304L Austenitic 

Stainless Steel 

The sources of error stated in section 3.4.3.2 are also used in this structural alloy. 

4.4.4 Method of Residual Stress Measurement of 304L Austenitic 

Stainless Steel, 

SALSA neutron diffractometer at the Institut Laue Langevin in France was also 

used to measure the residual elastic strain. In this structural alloy, measurements 

were made at the centre of the cross-sectional plane of 200 mm sample (plane 

PQRS) as shown in Figure 4-4 with the assumption that, the stress state at the 

centre of the sample represent the original weld samples. The coordinate axes L, 

T and N shown in Figure 4-4, represents the longitudinal direction, transverse 

and normal direction respectively. 

The lattice spacing (d) of austenite {311} family of crystallographic plane was 

chosen for measurements of all the principal strain directions, since this plane 

gives the macroscopic average strain over the measured gauge volume [19]. The 

measurements were made using a neutron incident beam of 1.62 Å wavelength, 

which gives a diffraction angle (2Ɵ) of 95.99o. A through-thickness scan was used 

to position the gauge volume accurately. In longitudinal measurements, the 

gauge volume of 2 × 2 × 2 mm3 was used to achieve the desired spatial 

resolution. In transverse and normal directions, the gauge volume of 2 × 20 × 2 

mm3 was used in measurements.  The increase in gauge volume along the 

welding direction was with assumption that the stress state would remain the 

same over the length of the welds. Increase in gauge volume result in more grain 

sampling leading to reduction in counting times for transverse and normal 
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measurements. The measurements were taken at 2, 6 and 10 mm below the weld 

surface. 

 

Figure 4-4: Schematic diagram of the multi-pass welded sample 

The stress-free lattice spacing was also measured using comb of dimension 6 

mm x 6 mm x 5 mm samples machined out by electrical discharge machining 

(EDM). This comb dimensions are assumed to be small enough to relax any 

macroscopic stress within the comb. Figure 4-5 and Figure 4-6 shows how the 

comb samples were machined. 
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Figure 4-5: Sketch showing (a) side view (b) Comb 

 

Figure 4-6: Electrical discharge machining (EDM) of  (d0) 

The stress-free lattice spacing (𝑑0) measurements were taken in the three 

directions corresponding to the sample coordinate axes, and these values were 

interpolated to yield representative (𝑑0). Data from the measurements were 



 

141 

analysed using LAMP software. LAMP has an in-built Gaussian fitting routine 

which was used to fit the raw data and determine the peak position precisely. 

Note that, to have good spatial resolution, appropriate gauge volume must be 

defined. However, as shown in Figure 4-7, the gauge volume are defined by 

incident and receiving collimators and the neutrons were counted in a position 

sensitive detector (PSD). Measurements of strain components along the principal 

directions (longitudinal, transverse and normal) were made by an alignment of 

the sample. This is necessary so that the corresponding direction was along the 

scattering vector as indicated in Figure 4-7 [171], [228].  

It worth mentioning here that the scattering vector is the bisector of the primary 

(beam into sample) and secondary (beam out of sample) neutron beams and 

must be aligned with the strains in the direction being measured. 

The same equations used in calculating the strain and the stress stated in section 

3.4.4.1 were used in this section, using the elastic constants values of E= 200 

GPa and 𝜐 = 0.29 [229]. 

 

Figure 4-7: Sketch of strain measurement 
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Figure 4-8 shows the longitudinal measurement of the austenitic stainless steel.  

 

Figure 4-8: SALSA set-up (longitudinal measurement of the austenitic stainless 

steel) 

4.4.4.1 Full Width at Half Maximum  

The same principle applies as explained in section 3.4.4.1.2. 

4.4.4.2 Experimental Error in Residual Stress Measurement of 304L 

Austenitic Stainless Steel, 

The same source of errors which occur in section 3.4.4.2 applies in this section.  

4.5 Results and Discussion  

This section present the results and discussion from the experiments conducted 

in first phase of this research with their interpretations. Direct and indirect 

comparisons with earlier research works were also made.  



 

143 

4.5.1 Welding 

4.5.1.1 Tandem MIG Welding 

The result of the trials made on narrow groove shows that too wide or small 

oscillation width can result in the following weld defects; 

i. Instability and undercut of the welds. 

ii. Lack of sidewall fusion.  

Welding travel speed influences the heat input and weld pool flow. Hence, 

increasing the weld travel speed lowers the heat input in the weld as vice versa. 

However, excessive speeds also result in incomplete fusion into the sidewall due 

to insufficient heating of the wall.  Figure 4-9 shows the welding parameters used 

on this structural alloy. 

 

Figure 4-9: Welding parameters used for 304L stainless steel plate 
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4.5.1.2 Hardness on As-Welded Sample 

Figure 4-10 shows the effect of the passes on the weld metal. In this figure, the 

root pass showing higher hardness compare to cap pass suggesting thermal 

straining by successive passes. 

As show in Figure 4-10, during welding and subsequent cooling of material, 

residual stresses are generated in weldments due to differential heating and 

cooling rates [109],[151]. When this material is cooling after welding, the stresses 

generated may exceed the yield strength, causing plastic deformation and work 

hardening in the weld metal. Since the root regions experience more thermal 

cycles than any other region, they undergo more thermal straining. The enhanced 

plastic deformation in the root regions is responsible for the high hardness values 

observed in the root pass. The increase in hardness at the root pass (as-welded) 

could also be attributed to increase in chromium content in weld metal which is 

about 20.43 wt % at the root pass (the root pass weld metal in this research was 

analysed using EDS), since high chromium content combining with niobium 

presence in the weld metal increases solid solution strengthening. 

HAZ in the as-welded sample is also harder than the base metal. This is due to 

the strain-hardening of the HAZ.  

 

Figure 4-10: Hardness profile of 304L austenitic steel (as- welded) across the 

weld metal  
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4.5.2 Post Weld Cold Rolling 

The rolling load of 100 kN was used based on the reason(s) stated in section 

4.4.2.2. 

4.5.2.1 Effect of Post Weld Cold Rolling on Hardness Profile 

A hardness scan was performed from the cap pass to the root pass as shown in 

Figure 4-11, while Figure 4-12 shows the hardness scan across the weld metal. 

The effect of cold working was observed throughout the entire thickness of the 

material when a load of 100 kN was applied (Figure 4-11). Up to about 4 mm 

below the cap, the effect was very significant. The effect of cold working observed 

throughout the entire thickness of 304L stainless steel could be attributed to the 

closely packed crystal structure and large number of active slip systems in the 

FCC alloy.  

Hardness in the weld metal can also be because of formation of strain-induced 

martensite as result of cold deformation. Although a number of researches have 

been carried out on the formation of martensite in stainless steels as a result of 

cold working [230], [231],[232], it was not clear in literature about the amount of 

plastic deformation that could introduce martensite in stainless. However, in this 

research, it can be deduced that cold working is mainly responsible for the 

increase in hardness of the weld metal.  

 

Figure 4-11: showing (a) hardness scan position along the weld metal (b) 

hardness profile 
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Figure 4-12: (a) hardness scan position across the weld (b) hardness profile 

4.5.3 Post Weld Cold Rolling Followed by Laser Processing 

Different trials were made using different laser power combined with different 

travel speed before the appropriate laser parameters were used. Figure 4-13 

shows thermal cycles of a travel speed combined with different laser powers at 

constant beam diameter. Other trials are shown in appendix B.1.1. 

 

Figure 4-13: Thermal cycles of laser powers of 1.0 kW, 1.5 kW and 3.0 kW with 

travel speed of 0.3 m.min-1 at constant beam diameter of 20 mm 
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Laser power of 1.0 kW with the travel speed of 0.3 m.min-1 was used (Figure 

4-13). As shown in the figure, the peak temperature of the 1.0 kW at 0.5 mm 

below the weld surface using a travel speed of 0.3 m.min-1 was approximately 

537oC (810 K). The selection of the temperature also based on the fact that: the 

recrystallization temperature of metal or alloy is reported to be between one-third 

and one-half of it absolute melting temperature (1540oC for steel) [141]. 

4.5.3.1 Effect of Post Weld Cold Rolling Followed by laser processing on 

Hardness Profile 

The application of the laser after post weld cold weld rolling shows a decrease in 

hardness values (307HV to 280HV) at the cap pass (Figure 4-11). This 

diminished hardness value could be attributed to changes in microstructural 

phases as result of the applied thermal energy. Although, the thermal energy 

applied was not sufficient to supply enough energy to sustain a complete 

recrystallization kinetic as it was evident in the change in grain sizes measured 

(see Figure 4-19). 

4.5.4 Tensile Strength 

Figure 4-14 shows the all weld metal tensile tests taken close to the capping pass. 

 

Figure 4-14: 304L Austenitic steel tensile test close to the capping pass 
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4.5.4.1 Effect of Post Weld Cold Rolling on Tensile Strength 

Figure 4-14 shows both ultimate tensile strength (UTS), 0.2% proof strength (PS) 

and percentage elongation (%EL). Post weld cold rolling increase both PS and 

UTS, and decreases the ductility (%EL). As shown in Figure 4-14, post weld cold 

rolling brought about 35% increase in proof strength (393 MPa to 534 MPa) with 

corresponding reduction in percentage elongation (50.5% to 37.5%) in the fusion 

zone. Of course one of the main mechanism by which plastic deformation takes 

place is the movement of dislocations by slip planes. The post weld rolling 

increases dislocation density which restricts the slipping of dislocations. In other 

word, plasticity of the material reduces due to cold working. This results in 

lowering of ductility and increase the strength. 

4.5.4.2 Effect of Post Weld Cold Rolling Followed by Laser Processing on 

Tensile Strength  

As shown in Figure 4-14, Post weld cold rolling followed by laser processing 

brought about a decrease in proof strength (534 MPa to 496 MPa) and slight 

increase in percentage elongation (37.5% to 39.5%). This indicates that some of 

the stored internal strain energy was relieved as a result of enhanced atomic 

diffusion at higher temperature. An effective indication of recrystallization can be 

drop in proof strength [139] due to releasing of internal energy; the higher the 

amount of prior deformation, the lower the temperature to initiate recrystallization, 

as the activation energy gap needed to initiate recrystallization would be less. 

4.5.4.3 Yield/Tensile Ratio 

As stated earlier, PS/UTS is only a convenient means of expressing a material's 

ability for plastic deformation. Thus, other related characteristics should also be 

considered. For instance, the interaction between strain hardening, toughness, 

ductile tearing resistance, and overall global deformation needs to be considered, 

especially when assessing the practicality of using the PS/UTS ratio as a 

measure of plastic strain capacity of cracked components. 
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The PS/UTS ratio obtain in this research is within acceptable limits as it was 

reported that present design codes permit the PS/UTS ratio to vary between 0.70 

and 0.93 [233].  

4.5.5 Metallographic Examination 

The macrostructure and microstructure of the 304L austenitic stainless welds are 

presented here. 

4.5.5.1 Macro Structures of the Welds 

Figure 4-15 shows macrographs of the three samples. All the macrographs show 

an excellent weld with good penetration and good side wall fusion and porosity 

free welds. These could be attributed to the proper use of shielding gas and 

maintenance of the correct CTWD which was vital in ensuring a stable metal 

transfer of the correct arc length. 

 

Figure 4-15: Macrographs of weld bead profiles of 304L austenitic steel (a) as-

welded  (b) post weld cold rolled  (c) post weld cold rolled followed by laser 

processing 

4.5.5.2 Micro Structures of the Welds 

4.5.5.2.1 Optical Microstructures 

Figure 4-16 shows the optical microstructures of the capping pass of the three 

samples consist of austenite and ferrite structures. These structures are as a 
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result of both the solidification behaviour and subsequent solid-state 

transformations which are controlled by both composition and weld cooling rates. 

Under normal conditions, austenitic stainless steels will exhibit a single phase 

that is maintained over a wide temperature range. However, austenitic 

microstructure containing a small amount of ferrite is less crack (solidification 

cracking) sensitive compared to a fully austenitic microstructure [112]. Figure 

4-16 (a), shows a dendritic and columnar grains structure. This is attributed to the 

fact that, during solidification of the weld metal, grains tends to grow in the 

direction perpendicular to pool boundary. This dendritic solidification of the weld 

metal often leads to segregation of alloying elements within the grain structures 

which would result in formation of localised region with reduced corrosion 

protection. It was also reported that columnar growth influences mechanical 

properties [30] and microstructural features, such as microsegregation [31]. The 

post cold rolling shown in Figure 4-16 (b) has modified the grain structure. It was 

observed that the deformation cause by cold rolling does not initiate any 

measurable transformation. This is because austenite is a stable phase and the 

cold working did not bring any change in temperature. 

Post weld cold rolling follower by laser resulted in refining the grains as shown in 

Figure 4-16 (c). This refine grains would increase the strength and toughness of 

the material which is lower in the as-welded state due to the formation of dendritic 

grain structure. 

 



 

151 

 

Figure 4-16: Optical micrograph of 304L stainless steel at the cap pass (a) As-

welded (b) Post weld cold rolling (c) Post weld cold rolling followed by laser 
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4.5.5.2.2 Micrographs by Electron Backscatter Diffraction (EBSD) 

For further analysis of the grain structure, the crystallographic texture of weld 

metals were obtained by EBSD. The pole figure plots are shown in Figure 4-17 

and Figure 4-18. These textures were acquired from data obtained over an area 

of 316 µm x 234 µm with step size 0.73 µm.  It is important to emphasize that the 

grid step size limits the size of the structure elements that can be analysed using 

EBSD. However, based on the step size used, the average grain size of the as-

welded sample was 14.81 µm at cap pass. When the rolling load was applied on 

the same position, the average grain size was found to be 19.78 µm, similarly an 

average grain size of 11.00 µm was found when post weld cold rolling followed 

by laser processing was applied on the sample at the same position (Figure 4-19). 

Among many other factors, the grain boundary area poses as one of the major 

obstacles for movement of dislocations. Although, there are no significant 

changes in the grain sizes, the reduced grain size (11.00 µm) in laser processed 

samples would, therefore, have the potential to improve the strength and 

toughness of the weld metal and also limit Cr segregation which would result in 

formation of corrosion microcells. It was also evident that in as welded sample, 

the grain size increase from root pass to cap pass. The root pass, fill 1 pass and 

the cap pass have the grain sizes of 4.20 µm, 10.37 µm and 14.81 µm 

respectively (Figure 4-20). This could be attributed to the fact that thermal cycles 

from subsequent passes refine the grains from the previous pass.  It can be 

added that subsequent passes have a stress relieving effect on the previous 

pass, thereby relieving residual stresses from the previous passes. 
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Figure 4-17: Pole figure of the cap pass (a) as-welded (b) post weld cold rolling  
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Figure 4-18 shows the pole figure of the post weld cold rolling followed by laser 

processing at cap pass. 

 

Figure 4-18: Pole figure of the post weld cold rolling followed by laser 

processing at cap pass 

Figure 4-19 shows the average grain size at different processing condtions. the 

post weld cold rolled followed by laser processing has a reduced grain sizes.  

 

Figure 4-19: Showing the average grain size at different processing conditions 



 

155 

Figure 4-20 shows the average grain size of  the as-welded sample.  As shown, 

the grain sizes increases from the root pass to cap pass. 

 

Figure 4-20: Showing the average grain size of each pass in the as-welded 

sample 

4.5.6 Residual Stress Measurement 

The reference parameter variation as measured in the comb samples, for the 

longitudinal directions as observed by monochromatic neutrons at the ILL in 

France is shown in Figure 4-21. 

 

Figure 4-21: Variation in the unstressed austenitic {311} lattice spacing d0 

measured (measured at 2, mm below the top surface) 
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The variation in residual stress distribution across the weld metal at 2 mm below 

the weld surface is shown in Figure 4-22. These are the longitudnal residual 

stress(𝜎𝑥𝑥) distribution showing tensile stresses close to the weld centreline and 

slightly compressive further away from it to balance the tensile stress. The 

discussion here is focussed on the longitudinal direction due to the fact that the 

largest residual stresses are expected parallel to the welding direction. However, 

transverse and normal direction are presented for purpose of comparison in the 

different processing conditions. 

 

Figure 4-22: Residual stress profile across the weld metal with different 

processing conditions (a) Longtudinal (b) Transverse (c) Normal direction 



 

157 

4.5.6.1 Effect of Post Weld Cold Rolling Through the Thickness 

A flat roller of 30 mm width was used, which determines the extent to which 

localized plastic strain is induced, and thereby generation of compressive 

longitudinal stress (Figure 4-22 (a)). However, the compressive zone width is 

narrower than the width of roller because the contact area of the roller is smaller 

compared to the width of roller. Hence rolling causes plastic deformation around 

that region of the weld which is approximately 20 mm in width. 

As shown in Figure 4-22 (a), post weld cold rolling has changed the longitudinal 

residual stress state causing it to become compressive around the weld metal 

(from peak tensile stress of 395 MPa to compressive stress of 80 MPa). 

Application of rolling to the welded joints causes weld metal to yield thereby 

relieving the residual stress that exists in the region.  In other word, these rolling 

processes compress the material in the direction normal to the weld’s surface, 

thereby causing it to expand in the plane of the weld, relaxing any tensile residual 

stresses in the plane. 

It was evident that at about 6 mm below the weld surface (Figure 4-23), the rolling 

load has a significant influence on the residual stress state of the weld (changing 

the peak tensile stress from 319 MPa to 50 MPa). These suggest that the closely 

packed atoms of the FCC crystal make it easier to deform through the thickness 

which enables the reduction in the residual stress to extend through the 

thickness. Deformability of austenitic steel is higher than the ferritic steel because 

of more active slip planes in the austenitic steel.  

Similarly, at 10 mm below the weld surface (Figure 4-23), the rolling load changes 

the residual stress state (peak tensile stress from 208 MPa to 74 MPa) suggesting 

some impact of the rolling in this region. It can therefore be deduced from this 

work that post weld cold rolling was effective in modifying the residual stress. 
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Figure 4-23: Variation of peak residual stress magnitude through the thickness 

(measured at 2, 6, and 10 mm below the top surface) 

4.5.6.2 Effect of Post Weld Cold Rolling Followed by Laser Processing 

Laser processing after cold rolling has been shown to increase the longitudinal 

residual stress from compressive stress of 80 MPa to 479 MPa (Figure 4-22(a)). 

This indicates a high thermal input and non-uniform cooling of the welded plate, 

thus generating inhomogeneous plastic deformation and tensile residual 

stresses. 

With reduced heat input below the weld surface (6 mm) a change in the 

longitudinal residual stress state was observed, modifying the peak tensile stress 

from 50 MPa to 220 MPa (Figure 4-23). This could be attributed to low thermal 

conductivity and high coefficient of thermal expansion of the austenitic steel. 

Similarly, at about 10 mm below the weld surface (Figure 4-23), application of 

laser processing to the cold rolled samples reinstated residual stress distribution 

profile to as-welded state. This indicates that the heat conducted through the 

material at that region was not sufficient to cause any changes in the residual 

stress state. 
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4.5.6.3 Full Width at Half Maximum (FWHM) 

Figure 4-24 shows the effect of FWHM on (a) an as-welded sample at different 

depth (b) Post weld cold rolling at different depth and (c) the three samples at 2 

mm below weld surface.  

 

Figure 4-24:  Effect of FWHM on plastic deformation at (a) As-welded at 2, 6, 

and 10 mm below weld surface (b) Post weld cold rolling at 2, 6 and 10 mm 

below weld surface (c) The three samples at 2 mm below weld surface 
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FWHM values of the diffraction peaks were obtained from Large Array 

Manipulation Program (LAMP) software.  As stated earlier, FWHM indicates the 

plastic strain history of a crystalline structure. Hence as shown the in the as-

welded sample (Figure 4-24 (a)), the FWHM at 10 mm below the weld surface 

was higher than the FWHM at 2 mm below the weld surface. Since the root 

regions experience more thermal cycles than any other region, the root pass 

undergo more thermal straining compare to cap pass. Figure 4-24 (b) shows a 

significant increase in FWHM profile at the cap pass when the cold rolling was 

applied to the weld metal. This shows that the FWHM increases with hardening 

(increasing plastic deformation). Of course, because of the direct contact 

between the cap pass and the roller, the cap pass of the weld experience more 

deformation as compared to passes below the cap pass. In addition, as the effect 

of the applied load by the roller diminishes through the thickness (Figure 4-24 

(b)), the peak FWHM decreases, indicating that FWHM is influenced by the work 

hardening effect of the rolling process. FWHM profiles were reported not only to 

be influenced by plastic deformation but it is also sensitive to residual stress [214]. 

However, the FWHM profile reduces when the post weld cold rolling followed by 

laser processing was applied (Figure 4-24 (c)). This means there was a lot of 

dislocation when laser processing was applied.  

4.5.7 Conclusion 

Very minimal grains refinement was observed at the cap pass of multi-pass welds 

when post weld cold rolling followed by laser processing was applied to the 

sample. These refine grains (average grain size of 11.00 µm) in laser processed 

samples would limit Cr segregation which would result in the formation of 

corrosion microcells as well as a reduction in overall corrosion prevention due to 

depletion of alloying elements. 

The post weld cold rolling modifies the tensile residual stress state, and a 

compressive residual stress was formed below the weld metal. As the 

modification of stress state is achieved by plastic deformation, 31% increase in 

ultimate tensile strength and 36% increases in proof strength with corresponding 
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reduction in percentage elongation (50.5% to 37.5%) in the fusion zone was 

observed. 

Post weld cold rolling followed by laser processing resulted in the formation of a 

refined microstructure. However, from the grain structure it is clear that re-

crystallisation is not complete because the transient thermal cycle is not sufficient 

to supply enough energy to sustain the complete kinetics. However, laser 

processing reinstated as-welded residual stress state profile with even higher 

magnitude of peak stress.  

Peak tensile residual stress of the as-welded sample diminishes in magnitude 

through the thickness of a multi-pass welds. This is attributed to the fact that, 

multiple passes result in thermal straining of previously laid pass from successive 

passes. The thermal cycling would cause macroscopic plastic deformation of 

previously laid passes. 

The FWHM in this experiment shows an increase with increase in plastic 

deformation (post weld cold rolling). 

4.6 Second Phase of Experimentation 

Based on the observation made in the first phase of the experiment (section 

4.5.7), that post weld cold rolling followed by laser processing reinstated as-

welded residual stress state profile with even higher magnitude of peak stress 

and also resulted in minimal refinement of microstructure, the second phase of 

the experiment was considered necessary to perform. In this second phase, new 

laser processing route was adopted.  

The new laser processing involves applying thermal energy for a prolonged 

period which would ensure that grain structures are fully recrystallized with 

formation of new set of strain free grains.  

Cold rolling after laser processing was also adopted so as to redistribute and 

eliminate the tensile residual stress state which would have formed during laser 

processing. Figure 4-25 is the schematic showing the work flow for this phase. 

As shown in the sketch, the second phase of the experiment involved four steps; 
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welding was carried out by Tandem GMAW DC process, the post weld cold 

rolling was performed using an in-house rolling device, the post weld cold rolling 

was followed by laser processing using 8 kW (peak power) CW fibre laser and 

finally cold rolling after post weld cold rolling was followed by laser processing. 

Note that in this second phase, the same material and equipment used in the 

first phase were used. 

 

Figure 4-25: Sketch of the work flow of the second phase 

4.6.1 Experimental Method 

The experimental methods are divided into five (5) stages (that is, welding, post 

weld cold rolling, laser processing, cold rolling after laser processing, residual 

stress measurement) and they presented here. 

4.6.1.1 Welding 

The same welding process used in section 4.4.1 was used. 

4.6.1.2  Local Mechanical Tensioning (Cold Rolling)  

The principle of rolling used in section 4.4.2 was applied in this section.   
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4.6.1.3 Laser Processing 

The new laser processing involves applying thermal energy for a prolonged 

period which would ensure that grain structures are fully recrystallized. In order 

to understand the time-temperature cycle required for full recrystallization, an 

experiment using reheating furnace was carried out on post weld cold rolling 

samples.  

In this reheating furnace experiment, different temperatures were tried. 

Thermocouples were attached to each sample so as to differentiate between the 

furnace temperature and sample temperature. Each sample was heated and 

hold for 60 s. 

4.6.1.3.1 New Laser Processing 

In the new laser processing, the same continuous wave (CW) laser was used as 

in first phase, but instead of transient heating mode the post weld cold rolling 

samples were gradually heated by controlling the laser power at a large beam 

diameter of 110 mm. Figure 3-53 and Figure 3-54 in chapter 3 section 3.6.3.3.2 

of this thesis shows an experimental set up and schematic diagram for new laser 

set-up respectively. The laser head was positioned at 25o angle to avoid any back 

reflection which could damage the lens. 

4.6.1.4 Cold Rolling After Laser Processing 

Rolling has been performed under identical set up and principles as described in 

section 4.4.2.2, of this thesis. 

4.6.1.5 Method of Residual Stress Measurement 

The principle used in section 4.4.4.1 was used here except that the following 

parameters are different from those used in first phase; 

1. The measurements were made using a neutron incident beam of 

wavelengths, 1.6 Å, which gives a diffraction angle (2Ɵ) of 93.2o 

2. The measurements of the residual strain were taken at 3, 7 and 11 mm 

below the plate surface on which the capping pass was laid 
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4.6.2 Results and Discussion 

4.6.2.1 Experiment Using Furnace Treatment on 304L Austenitic Stainless 

Steel 

In this experiment, the samples were also heated inside the furnace and their 

hardness and microstructure were check before designing the experiment using 

laser. The size of the samples heated on this trial was 50 mm long by 40 mm 

wide by 12 mm thick. In these experiments, different temperatures (800oC, 

900oC, 1000oC and 1200oC) were tried. Each sample was heated and hold for 

about 60s. Figure 4-26, Figure 4-27 and Figure 4-28 shows the thermal cycle, 

hardness profile and the optical micrographs respectively. 

 

Figure 4-26: Thermal cycles of furnace at different temperature 
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Figure 4-27: Hardness profile across weld metal (cap) at different temperature 

 

Figure 4-28: Optical micrographs of the welds metal of 304L (cap pass) 
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4.6.2.2 Conclusion for the Furnace Experiment 

The furnace experiment result showed that a recrystallized grain was formed 

after heating 304L austenitic stainless steel up to 800oC. Based on this 

observation, the laser processing in the second phase of the experiment was 

designed. 

4.6.2.3 The New Laser Processing 

In this phase the same CW laser was used as in first phase, but instead of 

transient heating mode the post weld cold rolling samples were gradually heated 

by controlling the laser power at a large beam diameter of 110 mm. The 304L 

austenitic steel was heated to 800oC using identical laser parameters. 

The thermal cycle of the laser processing are shown in Figure 4-29 for 304L 

austenitic steel plate. 

 

 

Figure 4-29: Thermal cycles of control laser power (heated to 800oC) at 

constant beam diameter of 110 mm 

The effect of the designed laser processing on hardness, tensile strength, 

metallography and residual stress measurement are presented and discussed. 
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4.6.2.3.1 Effect of Laser Processing on Hardness Profile of 304L Austenitic 

Stainless Steel 

For the purpose of comparison, the hardness profile of as-welded, post weld cold 

rolled, post weld cold rolled followed by laser processing and cold rolling after 

laser processing are presented. 

A hardness scan was performed from the reinforcement bead (cap pass) to the 

root pass as shown in Figure 4-30. The effect of cold working was observed 

throughout the entire thickness of the material when a load of 100 kN was applied. 

The designed laser processing applied after post cold weld rolling shows a 

significant decrease in hardness values (307HV to 241HV) at the cap pass and 

the effect continues throughout the thickness. This Indicates that the thermal 

energy applied was sufficient to supply enough energy to sustain a complete 

recrystallization kinetic as is evident in EBSD micrograph shown in Figure 4-34. 

The cold rolling after laser processing once again show the effect of cold working 

which would be beneficial in terms of residual stress modification. 

Figure 4-31 shows the hardness distribution at the cap pass of the welded 

samples with different processing conditions. Figure 4-31 (a) shows the 

indentation point or hardness scan position (measurement at 1 mm below the 

plate surface) on the sample while Figure 4-31 (b) shows the hardness profile. 

The heat-affected zone (HAZ) in all the samples were harder than the base metal. 

This could be attributed to the strain-hardening of the HAZ. 
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Figure 4-30: Showing (a) hardness scan position along the weld metal and (b) 

hardness profile 

 

Figure 4-31: Hardness profile at the capping pass across the weld metal of the 

four different samples  

4.6.2.3.2 Effect of Laser Processing on Tensile Strength  

Tensile properties of the all-weld metal samples tested are shown graphically in 

Figure 4-32. This figure shows the different processing conditions. For the 

purpose of comparison, post weld cold rolling followed by laser processing 

brought about a decrease in proof strength (534 MPa to 496 MPa) and slight 

increase in percentage elongation (37.5% to 39.5%) in the first phase (Figure 

4-14). This new laser processing shows a further decrease in proof strength (534 

MPa to 370 MPa) and an increase in percentage elongation (37.5% to 42.11%) 

as shown in Figure 4-32. 
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Figure 4-32: Tensile test of the 304L austenitic steel samples 

This indicates that, some of the stored internal strain energy was relieved as a 

result of enhanced atomic diffusion at higher temperature. An effective indication 

of recrystallization can be a drop in proof strength [139] due to releasing of 

internal energy; the greater the amount of prior deformation, the lower the 

temperature to initiate recrystallization, as the activation energy gap needed to 

initiate recrystallization would be less. 

However, the application of cold rolling after laser processing shows an increase 

in UTS (513 MPa to 641 MPa) and PS (370MPa to 520 MPa), with corresponding 

decrease in ductility (42.11% to 39.50%) as shown Figure 4-32,  indicating the 

effect of cold working after laser processing. This effect of cold working would be 

helpful in terms of residual stress relaxation. 
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4.6.2.3.3 Micrographs by Electron Backscatter Diffraction (EBSD) 

In this new laser processing, the grain structure was studied using EBSD 

techniques. For the purpose of comparison, the as-welded and post weld cold 

rolling samples are presented. Figure 4-33 shows the crystallographic texture of 

the cap pass of both as-welded and  post weld cold rolling samples obtained from 

EBSD. These micrographs were obtained from data collected over an area of 316 

µm x 235 µm with step size 0.729 µm. Each colour indicates the orientation of 

the grains. 

The analysis of grain structure using EBSD shows a dendritic grain structure in 

as-welded and post welded cold rolling samples (Figure 4-33). This dendritic and 

columnar grains structure could be attributed to the fact that during weld metal 

solidification, grains tends to grow in the direction perpendicular to pool boundary. 

This dendritic solidification of the weld metal often leads to segregation of alloying 

elements within the grain structures which would result in formation of localised 

region with reduced corrosion protection. Columnar grain growth was reported to 

influence mechanical properties [30] and microstructural features, such as 

microsegregation [31]. However, based on the step size used, the average grain 

size of 5.10 µm was found when post weld cold rolling followed by new laser 

processing was applied on the sample at the same position (see Figure 4-37). 

This value was lower than that obtained in the first phase (Figure 4-19). Among 

many other factors, grain boundary area poses as one of the major obstacles for 

movement of dislocations. This reduced grain size (5.10 µm), in laser processed 

samples would, therefore, have the potential of improving the integrity of the weld 

metal. This is true since generation of the recrystallized microstructure with large 

proportion of high angle grain boundaries would increase the strength and 

toughness of the material which is lower in the as-welded dendritic grain structure 

state [10] [108]. 
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Figure 4-33: EBSD micrographs of 304L austenitic steel at the cap pass of  (a) 

as-welded (b) post weld cold rolling 
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Figure 4-34 showing the presence of twin and a clear grains with different 

orientations after laser processing. 

 

 

Figure 4-34: EBSD micrographs of 304L austenitic steel at the cap pass of (a) 

post weld cold rolling followed by laser processing (b) cold rolling after post 

weld cold rolling followed by laser processing 
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Figure 4-35 shows the {311} pole figures measured by XRD obtained from the 

as-welded, post weld rolled. The texture intensity of the samples decreases as 

the sample was rolled and further decrease when post weld rolled followed by 

laser processing was applied. 

 

 

Figure 4-35: Pole figure of the cap pass (a) as-welded (b) post weld cold rolling  
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Figure 4-36 shows the pole figure of the post weld cold rolling followed by laser 

processing at cap pass. 

 

Figure 4-36: Pole figure of the post weld cold rolling followed by laser 

processing at cap pass 

 

Figure 4-37: Showing the average grain size at the cap pass of the different 

processing conditions 
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Changes in texture intensity of the samples were observed when different 

processing condition were applied (Figure 4-35 and Figure 4-36). The change is 

more pronounced in this sample (austenitic stainless steel) compare to low 

carbon steel for structural pipeline (ferritic steel). This confirm that, the texture 

can be affected by grain reorientation induced by plastic deformation. 

4.6.2.3.4 Residual Stress  

Figure 4-38 shows the variation in the unstressed austenitic {311} lattice spacing 

d0 measured and Figure 4-39 shows the residual stress profile analysed from the 

measurements of elastic strain. The post weld cold rolling sample measured 

(residual stress) in first phase is used as a reference sample since the same 

welding parameters are used in making the weld (see Figure 4-22).  In Figure 

4-22 which is reproduce in (Figure 4-39 (a)), post weld cold rolling has changed 

the longitudinal residual stress state causing it to become compressive around 

the weld metal (from peak tensile stress of 395 MPa to compressive stress of 80 

MPa). 

As shown in Figure 4-39 (b), post weld cold rolling followed by laser 

(measurement was taken at 3.5 mm below the weld surface) has change the 

compressive residual stress (80 MPa) obtained during post weld cold rolling  to 

peak tensile stress (536 MPa). Although this effects is not surprising since the 

same effect were obtained in first phase of this research. 

However,  further cold rolling after post weld cold rolling followed by laser 

processing has changed the longitudinal residual stress state once again to 

become compressive around the weld metal (from peak tensile stress of 536 MPa 

to compressive stress of 162 MPa in Figure 4-39 (b). The presence of this 

compressive stress component would likely inhibit crack propagation across the 

weld under longitudinal fatigue loading which is essential for structural integrity of 

an engineering or structural component. 

As stated earlier, the largest residual stresses are expected parallel to the welding 

direction and close to the weld zone. Hence,  the discussion above was focussed 

on the longitudinal direction. However, transverse and normal direction are 



 

176 

presented in appendix B.3.1. For the purpose of comparison through the 

thickness, the measurement at 7 mm below the surface is shown in appendix 

B.3.2. 

 

Figure 4-38 : Variation in the unstressed austenitic {311} lattice spacing d0 

measured (measured 3 mm below the weld surface) 
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Figure 4-39 : Longitudinal Residual stress profile across the weld in sample with 

different processing conditions (a) as-welded and post weld cold rolling at 

measured 2 mm below the weld surface (b) post weld cold rolling followed by 

laser and further cold rolling after processing post weld cold rolled followed by 

laser processing measured 3 mm below the weld surface 

4.6.3 Conclusion 

The second phase of this experiment has demonstrated that a complete 

recrystallized microstructure with compressive state of stress can be formed 

when a further cold rolling is applied on the laser processed, recrystallized 

microstructure. 





 

179 

5 Effect of Cold Rolling, Laser Processing and Cold 

Rolling After Laser Processing on Microstructure and 

Residual Stress of Multi-pass Welds of S275 

Structural Steel 

5.1 Introduction  

S275 is also another form of steel which is common among the low carbon steel 

grade. This structural alloy is suitable for many general engineering and structural 

applications especially in construction, maintenance and manufacturing 

industries.  

This experiment using this material (12 mm thick S275 Structural Steel) was 

based on the observation made on the two structural alloys (20 mm thick API 5L 

steel and 12 mm thick 304L austenitic steel) in this research. In both 20 mm thick 

steel plate and 12 mm thick plate used, up to 4 mm below the weld surface, the 

post weld cold rolling was effective in modifying the residual stress. In this 

particular material, the residual stress was measured was analysed at 6.5 mm 

and 10.5 mm below the weld surface. The transient mode of laser processing 

applied in the two structural alloys reinstated as-welded residual stress profile 

with even higher magnitude of peak stress, and also resulted in minimal 

refinement of microstructure. In this material, a new laser processing was 

adopted. The new laser processing involves applying thermal energy for a 

prolonged period which would ensure full recrystallization of the grain structure. 

Further cold rolling after laser processing was also adopted to redistribute and 

eliminate the tensile residual stress state which would have formed during laser 

processing. Hence, this experiment aim at comparing the effect of the different 

processing conditions through the thickness of the materials. 

5.2 Materials  

The material used in this experiment was the S275JR structural steel plate (12 

mm thick) and chemical compositions of the S275JR structural steel plate are 

shown in Table 5-1. 
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Table 5-1 shows the chemical compositions of the S275JR structural steel 

 

5.2.1 Filler Material 

The filler material used was Union MoNi with a nominal diameter of 1.0 mm and 

the composition of the filler wire is shown in Table 5-2. 

Table 5-2: Shows chemical composition of the filler material 

 

5.2.2 Shielding Gas 

The shielding gas used was 92% Ar and 8% CO2 at flow rate of 30 lit min-1. This 

gas was chosen because it had provided good results (mechanical properties, 

transfer characteristics and bead profile) in work carried earlier at Cranfield [204], 

[205]. 

5.3 Experimental Equipment 

The experimental equipment used in this structural alloy is the same as those use 

in API 5L X100 pipelines steel plates (see chapter 3). 

5.4 Experimental Method 

In this material this phase of the experiment involved four (4) steps, which are; 

i. Welding which was carried out by using Tandem GMAW DC process. 

ii. The post weld cold rolling using an in-house rolling device. 

iii.  The post weld cold rolling was followed by laser processing using 8 kW 

(peak power) CW fibre laser. 
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iv. Cold weld rolled after laser processing of the post weld cold rolled. 

5.4.1 Welding 

The same welding process used in section 3.4.1 was applied in this section. 

Except for the difference in the plate thickness. The dimension of the S275JR 

structural steel plate for making the welds are 300 x 150 x 12 mm thick.  

5.4.2  Local Mechanical Tensioning (Cold Rolling)  

The principle of rolling method used in section 3.4.2 was also applied in this 

section.   

5.4.3 Laser Processing 

The laser processing in this chapter involves applying thermal energy for a 

prolonged period which would ensure full recrystallization of the grain structure. 

In this laser processing, the same continuous wave (CW) laser was used as 

explain in section 3.3.4 of this thesis, but instead of transient heating mode, the 

post weld cold rolling samples were gradually heated up to 900oC using identical 

laser parameters, by controlling the laser power at a large beam diameter of 110 

mm. The thermal cycle of the laser processing is shown in Figure 5-1. 

 

Figure 5-1: Thermal cycles of control laser power (heated to 900oC) at constant 

beam diameter of 110 mm 
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5.4.4 Cold Rolling After Laser Processing 

The principle of cold rolling used in section 3.4.2 of this thesis was also applied 

here. 

5.5 Residual Stress Measurement Method 

The principle used in section 3.4.4 was used here except that the following 

parameters are different; 

1. The measurements were made using a neutron incident beam of 

wavelengths, 1.6 Å, which gives a diffraction angle (2Ɵ) of 84.2o 

2. The measurements of the residual strain were taken at 2.5, 6.5 and 10.5 

mm below the plate surface on which the capping pass was laid 

The same equation used in calculating strain and stress in section 3.4.4 in these 

thesis are used here, which are reproduced in equation (5-1) and (5-2). 

εhkl  =  (
dhkl  − d0hkl

d0hkl
) 

(5-1) 

 

Where 𝜀 is strain, hkl are the coordinate planes, d is the lattice spacing and d0 is 

strain- free spacing (measured in the same plane).  

The principal stress can be analysed once the strain is determined using the 

Hooke’s law for three dimensional state of stress as shown in equation (3-7, using 

the appropriate elastic constants for the specific crystallographic plane. 

𝜎𝑖𝑖  =  
𝐸

(1 + 𝜐)
[𝜀𝑖𝑖  +  

𝜐

(1 − 2𝜐)
(𝜀11  +  𝜀22  +  𝜀33) ] 

(5-2) 

 

Where Ε and 𝜐 are the Young’s modulus and Poisson ratio respectively, and i, = 

1, 2, 3 indicate the component of stress and strain (relative to chosen to the 

principal strain directions). Elastic constants values of E = 225.5 GPa and 𝜐 = 

0.28 [11] are used to calculate stress from measured strains. 
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5.6 Results and Discussion 

This section present the results and discussion of the experiment carried out with 

their interpretations.  

5.6.1 Tandem MIG Welding 

Tandem MIG welding was also used. The dimension of the test piece was (300 x 

150 x 12) mm3 which was machined out from the S275JR structural steel plate. 

A narrow groove edge preparation of 5° angle with backing bar (cut from the same 

material) was made as shown in Figure 5-2. The two plates to be welded were 

tacked together at both ends. The gap between the tacked edge was 5 mm. The 

welding sample was set and aligned in 1G (down-hand) welding position and a 

total of four passes were made to fill the groove. Figure 5-2 shows the welding 

parameter used for this structural alloy. 

 

Figure 5-2: Welding parameter for the S275JR Structural Steel 
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5.6.2 Hardness and Tensile Strength Distribution 

Figure 5-3 shows the hardness measurement across the cap pass of weld and 

through the thickness of weld for the four processing conditions while Figure 5-4 

shows graphically the tensile strength profile. 

 

Figure 5-3: Hardness profile (a) capping pass across the weld metal (b) through 

thickness of weld 
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Figure 5-4: Tensile test of the S275 structural steel (cap pass) 

5.6.2.1 Hardness on As-Welded Sample 

Figure 5-3 shows the hardness measurement across the cap pass of weld and 

through the thickness of weld for the four processing conditions (as-welded and 

post weld cold rolling, post weld cold rolling followed by laser, and cold rolling 

after post weld cold rolling followed by laser). Figure 5-3 (a) shows a maximum 

hardness occurring at the heat affected zone, followed by the weld metal. The 

parent metal has the minimum hardness values. This high hardness at the HAZ 

is caused by the presence of martensite in the microstructure. The presence of 

martensite was as a result of the high cooling rate experienced at the zone.  

However, the hardness recorded at weld metal of the as-welded sample was 3% 

higher than that obtained in the API 5L X100 pipeline steel plate.  This could be 

attributed to high percentage of carbon content in this structural alloy (0.14%C) 

as compare to 0.06%C in the API 5L X100 pipeline steel plate shown in chapter 

3 of this thesis. Small amount of carbon content (for example, say 0.1% or more) 

significantly increases the strength and hardness level of steel. Increase in 

hardness is attributed to interstitial solid solution hardening alongside, metastable 

phases (e. g. Fe3C) being formed above 0.008% carbon at room temperature. 

The Hardness scan along the weld metal (Figure 5-3 (b)) shows an increase in 

hardness value from the cap to the root pass of the weld metal, indicating that 

the root pass, is harder than the cap pass. The higher hardness in the root pass 
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is as a result of thermal straining since the filler wire is enriched with other solid 

solution strengthening elements.  

5.6.2.2 Effect of Post Weld Cold Rolling on Hardness and Tensile Strength 

Distribution  

Post weld cold rolling increases the hardness value from 341 HV to 400 HV at 

the weld metal. This is due to effect of cold working which tends to strengthen the 

material due dislocation movements and dislocation generation within the crystal 

structure. Figure 5-3 (b) shows a hardness scan that was performed from the 

reinforcement bead (cap pass) to the root pass. The effect of cold working was 

also observed throughout the entire thickness. However, up to about 4 mm the 

effect is more pronounced, after that, from 4-10 mm the effect is less pronounced. 

However, between 10 – 12 mm the hardness is slightly higher than the middle 

part of the weld which could be attributed to reaction from the backing bar. The 

effect of rolling load here is similar to the effect of rolling load observed in 20 mm 

thick API 5L pipeline steel where the effect of same rolling load (150kN) reaches 

up to 12 mm below the capping pass (Figure 3-29).  

Post weld cold rolling increases the ultimate tensile strength by 6% (881 MPa – 

932 MPa) and proof strength also increase by 10% (783 MPa – 863.3 MPa), with 

corresponding reduction in percentage elongation (11% - 9%) as shown in Figure 

5-4. One of the ways in which plastic deformation occurs is the movement of 

dislocations. The post weld cold rolling increases dislocation density, which 

restricts the slipping of dislocations which in turn results in increased the strength 

and reduces the ductility of the weld metal. In this research, it is shown that post 

weld cold rolling lead to increases in proof strength as well as increase in 

hardness (Figure 5-3) in the fusion zone (cap pass). 

5.6.2.3 Effect of Post Weld Cold Rolling Followed by Laser Processing on 

Hardness and Tensile Strength Distribution 

Figure 5-3 shows the hardness measurement across the cap pass of weld and 

through the thickness of weld for different processing routes. The laser 

processing resulted in softening of the weld metal throughout the entire thickness. 

At the weld centreline, the hardness values drop from 400 HV to 278 HV at the 
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cap pass. This resulted in nucleation of strain-free grains from the cold-worked 

metal matrix at points of high lattice strain energy. As a consequence, the 

hardness also decreases. 

Post weld cold rolling followed by laser processing brought about a 9% decrease 

in UTS (932 MPa – 851 MPa) and 8% decrease in PS  863 MPa – 791 MPa) and 

slight increase in percentage elongation (9% to 13%), (see Figure 5-4). This 

change in strength and ductility which is influenced by microstructure could be 

explained based on the fact that some of the stored internal strain energy was 

relieved as a result of enhanced atomic diffusion at higher temperature.  It was 

reported by Avner, S. H [139] that an effective indication of recrystallization can 

be a drop in proof strength due to releasing of internal energy. 

5.6.2.4 Effect of Post Weld Cold Rolling Followed by Laser Processing 

then Cold Rolling on Hardness and Tensile Strength Distribution 

As shown in Figure 5-3, at the weld centreline of the weld metal, the hardness 

value increases from 278 HV to 310 HV at the cap pass, indicating the effect of 

work hardening after laser processing. This cold working lead to hardening of the 

weld metal and there by relax the residual stress. 

Further cold rolling after post weld cold rolling followed by laser processing 

brought about further increase (2%) in both UTS and PS with corresponding 

reduction in percentage elongation (13.1% -12.6%).  The increase in hardness 

and strength is less in cold rolling after laser process because, the matrix was 

very tough and have high plasticity. This indicates that, this novel technique is 

effective in improving the strength and microstructure of the weld. 

 

5.6.3 Metallographic Examination 

The welds macrostructure and microstructure of the samples are presented 

below. In this section, the as-welded, post weld cold rolling, post weld cold rolling 

followed by laser processing and cold rolling after post weld cold rolled followed 

by laser processing are presented. 
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5.6.3.1 Macrostructure 

Figure 5-5 shows macrographs of the three samples, that is, as-welded, post weld 

cold rolled and post weld cold rolled followed by laser processing. The profile of 

the weld bead, the root penetration and weld bead reinforcement are clearly 

shown. As shown, defects, for example lack of side wall fusion, porosity, solid 

inclusion etc., are not observed. 

 

Figure 5-5: Macrographs of weld deposit layers and weld bead profiles of S275 

structural steel (a) as-welded  (b) post weld cold rolling  (c) post weld cold 

rolling followed by laser processing 

Macrographs assessments show an excellent weld with good penetration, good 

side wall fusion and porosity free welds (Figure 5-5). It was reported by Norrish, 

J [93] that, the addition of up to 8% CO2 to argon gives a slightly improved bead 

shape, with the “wine glass” penetration which was confirmed in this research 

since the shielding gas used was 8% CO2 and 92% Argon. Another possible 

reason for the good profile is the maintenance of the correct CTWD which was 

vital in ensuring a stable metal transfer. 

5.6.3.2 Optical Microstructure 

Figure 5-6 shows optical micrographs of both as-welded  and  post weld cold 

rolled samples, which consist of martensitic microstructures due enriched solid 

solution strengthening element in both the parent metal and the filler wire. For 
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example, silicon (high percentage in the weld metal) which is a powerful ferrite 

strengthener when compared with other alloying elements promotes 

considerable hardness through solid solution. 

 

 

Figure 5-6: Optical micrographs at cap pass (a) as-welded  (b) post weld cold 

rolling 
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Figure 5-7 shows optical micrographs of post weld cold rolled followed by laser 

processing as well as post weld cold rolling followed by laser processing then 

further cold rolling. As shown, both structures are are predominately ferrite (F) 

structure while pearlite (P) is evenly distributed. 

 

 

Figure 5-7: Optical micrographs at cap pass (a) post weld cold rolling followed 

by laser processing (b) post weld cold rolling followed by laser processing then 

cold rolling 
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5.6.3.3 Micrographs by Electron Backscatter Diffraction (EBSD) 

EBSD techniques were used for further analysis. Figure 5-8 shows the 

crystallographic texture of the cap pass of both as-welded and  post weld cold 

rolling samples obtained from EBSD. These micrographs were obtained from 

data collected over an area of 538 µm x 401 µm with step size 0.437 µm. 

 

 

Figure 5-8: Micrograph obtained from EBSD of S275 structural steel at the cap 

pass  (a) as-welded (b) post weld cold rolled 
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Figure 5-9 shows a clear grains with different orientations after laser treatment 

and then cold rolled. 

 

 

Figure 5-9: Micrograph obtained from EBSD of S275 structural steel at the cap 

pass of (a) post weld cold rolled followed by laser processing (b) cold rolled  

after post weld cold rolled followed by laser processing  
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Grain size is well known to be most significant metallographic measurement of 

microstructural feature. This is due to the fact that grain sizes are directly related 

to the mechanical properties of the material. These micrographs were obtained 

from data collected over an area of 538 µm x 401 µm with step size 0.437 µm. 

The as-welded and post weld cold rolled samples have dendritic grains structure 

with low angle grain boundary. The post weld cold rolling followed by laser 

processing and the cold rolling after post weld cold rolling followed by laser 

processing have refine grains and high angle grain boundaries. However, based 

on the step size used, the average grain size of 4.81 µm was found when post 

cold rolling followed by laser processing was applied on the sample. The post 

weld cold rolling followed by laser processing then, cold rolling shows a slight 

change in average grain size of 4.93 µm. Although this changes are very minimal, 

it could still influence the mechanical properties of the weld metal. 

5.6.4 Residual Stress Measurement 

In residual stress determination by neutron diffraction, the precise measurement 

of a stress-free reference lattice parameter is vital. It was reported by Rogante M 

[234] that, even a small error of 0.1% in stress-free reference lattice parameter 

(d0) can cause a significant error in calculation of the strain which in turn affects 

the successive stress analysis. In order to obtain accurate measurement of the 

d0, the stress-free reference should reflect any change of lattice parameter owing 

to thermal processing history of the component. In fusion-welded material for 

example, the compositional and microstructural variation across the weld caused 

by the thermal cycle of welding should be taken into account when determining 

the residual stress. It was reported [234] that a local change in solute content of 

the parent alloy can cause significant changes in the stress-free lattice parameter. 

Therefore, it is necessary to correct the measured strain point-by-point by a 

stress-free reference for each spatial location across the weld.  For example, HAZ 

of plate is corrected by HAZ of a d0 sample machined from the plate. 

The reference parameter variation as measured in the comb samples, for the 

longitudinal directions as observed by monochromatic neutrons at the ILL in 

France is shown in Figure 5-10 and Figure 5-11 respectively. 
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Figure 5-10 : Variation in the unstressed αFe {211} lattice spacing d0 measured. 

Measurement taken at 2.5 mm below weld surface (a) as welded (b) post weld 

cold rolling 
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Figure 5-11 : Variation in the unstressed αFe {211} lattice spacing d0 measured. 

Measurement taken at 2.5 mm below weld surface (a) post weld cold rolling 

followed by laser (b) post weld cold rolling followed by laser than cold rolling 
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Figure 5-12 shows the distribution of the longitudinal residual stress distribution 

profile. The measurement was taken at 6.5 mm below the weld surface. As 

shown, both the weld zone and HAZ show mainly tensile stress (as-welded). This 

stress, with a maximum value of 488 MPa at the weld metal centreline, was 

produced by longitudinal compressive plastic flow. 

 

 

Figure 5-12 :Stress distribution across the weld metal of the samples with 

different processing conditions (measured 6.5 mm below the weld surface) 

5.6.4.1 Effect of Post Weld Cold Rolling on Residual Stress Distribution 

In this section, the discussion is focussed on the longitudinal stress direction. This 

is because, the large magnitude of tensile residual stresses are formed parallel 

to the welding direction.  

Post weld cold rolling as shown in Figure 5-12 has modified the longitudinal 

residual stress state by modifying the tensile stress formed around the weld metal 

(from peak tensile stress of 488 MPa to peak compressive tensile stress of 184 

MPa). The post weld cold rolling to the welded joints causes yielding of material 

in the weld region. This cold rolling resulted in hardening of the weld metal and 

thereby relax the residual stress. Since any stress field applied by external 
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loading is superimposed upon the distribution of residual stress, the modification 

of this residual stress from tensile to compressive stress component would likely 

prevent crack propagation that may be present across the weld under longitudinal 

fatigue loading. 

5.6.4.2 Effect of Post Weld Cold Rolling Followed by Laser Processing on 

Residual Stress Distribution 

Post weld cold rolling followed laser processing has shown an increase in the 

longitudinal residual stress from peak compressive stress of 184 MPa to peak 

tensile stress of 462 MPa at the weld centreline (Figure 5-12). This was observed 

in the previous experiment (section 3.5.6.4 and section 4.5.6.2 of this thesis). 

However, what is not immediately clear is the tensile stress which did not balance 

out with compressive stress anywhere in the profile. This can be attributed to 

large laser beam diameter (110 mm) used since the measured area is entirely 

within the heated zone. Another possible reason could be that the post weld cold 

rolling samples was heated for a long period of time, as a result it gives room for 

expansion during cooling, thus, resulted in reduced tensile stress profile. 

5.6.4.3 Effect of Cold Rolled After Post Weld Cold Rolling Followed by 

Laser Processing on Residual Stress Distribution 

Post weld cold rolling followed by laser processing then cold rolling, has modified 

the longitudinal residual stress state once again, by modifying the tensile stress 

in the weld metal (from peak tensile stress of 462 MPa to peak compressive 

stress of 184 MPa as shown in Figure 5-12.  This further cold rolling after laser 

processing has demonstrated that a complete a compressive state of stress can 

be formed using these techniques. 

5.6.4.4 Full Width at Half Maximum (FWHM) 

FWHM in diffraction profiles is used to characterize different material properties. 

For example, it is used to indicate the plastic strain history of a component. Figure 

5-13 shows the effect of FWHM at cap pass of the different processing conditions.  

As shown in the figure, post weld cold rolling sample (FWHM at 2.5 mm below 

the weld surface), was higher because of the direct contact between local 

mechanical tensioning (roller) and cap pass indicating more plastic deformation 



 

198 

at that area. This shows that FWHM is influenced by the work hardening effect of 

the rolling process. Post weld cold rolling followed by laser has reduced the 

FWHM peak indicating softening of the material by laser processing. 

 

Figure 5-13:  Effect of FWHM on the four processing condition at s 2.5 mm 

below the weld surface of the weld 

5.6.5 Conclusion 

Significant grain refinement was observed at the cap pass of multi-pass welds 

when post weld cold rolling followed by new laser processing was applied to the 

sample. These refined grains would, therefore, have the potential of improving 

the strength and toughness of the weld metal.  

Although the laser processing reinstated the as-welded residual stress state 

profile with even higher magnitudes of peak stress, cold rolling after laser 

processing has modified the tensile residual stress state, and a compressive 

residual stress was formed below the weld metal. 

 As the modification of stress state is achieved by plastic deformation, 31% 

increase in ultimate tensile strength and 36% increases in proof strength with 
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corresponding reduction in percentage elongation (50.5% to 37.5%) in the fusion 

zone was observed. 

It was shown that FWHM increase with increase in plastic deformation in this 

research.  
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6 Comparison Between the Three Structural Alloys 

Studied 

This chapter compared the effect of the different processing condition (as-

welded, post weld cold rolling, post weld cold rolling followed by laser and cold 

rolling after post weld cold rolling followed by laser) used in the structural alloys 

studied in this research. 

6.1 Residual Stress Distribution 

6.1.1 Effect of Post Weld Cold Rolling on Residual Stress 

The effects of the applied rolling load through the thickness of the three structural 

alloys are presented below. 

In the three structural alloys (measurement at 2 mm below the weld surface) post 

weld cold rolling modify the residual stress from tensile to compressive. For 

example, in API 5L X100 pipeline steel, the effect modified the peak tensile stress 

of 522 MPa to compressive stress of 205 MPa. In 304L austenitic stainless steel, 

measured in the same position, post weld cold rolling also modify the residual 

stress from tensile to compressive (Peak tensile stress of 395 MPa to 

compressive stress of 80 MPa). The similar behaviours were observed in S275 

Structural steel. 

At 6 mm below the weld surface, there was no measurement taken for API 5L 

X100 pipeline steel. However, in 304L austenitic stainless steel and S275 

Structural steel, the effect of post weld cold rolling were observed. It modify the 

tensile residual stress from 319 MPa to 50 MPa in 304L austenitic stainless steel 

while  in S275 Structural steel, the effect modify residual stress from tensile stress 

of 488 MPa to compressive stress of 184 MPa. 

Measurement at 10 mm below the weld surface, the effect modified the tensile 

stress from 505 MPa to 405 MPa for API 5L X100 pipeline steel while minimal 

effect was observed in both 304L austenitic stainless steel and S275 Structural 

steel. 
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At 18 mm below the weld surface, there was no significant effect of rolling to 

modify the stress in API 5L X100 pipeline steel.  

6.1.2 Effect of Post Weld Cold Rolling Followed by Laser 

Processing on Residual Stress 

The effect of post weld cold rolling followed by laser processing was carried out 

in two phases. The first phase was on transient heating mode and it effect through 

the thickness is shown below. 

In the three structural alloys (measurement at 2 mm below the weld surface) post 

weld cold rolling followed by laser processing, reinstated as-welded residual 

stress state profile with even higher magnitude of peak stress. In API 5L X100 

pipeline steel, post weld cold rolling followed by laser processing change the peak 

compressive stress of 205 MPa to tensile stress of 770 MPa while in 304L 

austenitic stainless, the effect change the peak compressive stress of 80 MPa to 

tensile stress of 479 MPa. Similarly, in S275 Structural steel, the effect modify the 

compressive stress to tensile stress. 

At 6 and 10 mm below the weld surface, only minimal effect were observed in all 

the structural alloys. 

However, in the second phase of post weld cold rolling followed by laser 

processing (measurement at 3 mm below the weld surface), the effect reinstated 

as-welded residual stress state profile in all the structural alloys studied. 

6.1.3 Effect of Cold Rolling After Post Weld Cold Rolling Followed 

by Laser Processing on Residual Stress 

Further cold rolling after laser processing has redistributed and eliminated the 

tensile residual stress state formed during laser processing in all the three 

structural alloys. Generation of this compressive stress state is beneficial in 

improving the structural integrity of a component as most of the in-service 

deterioration starts with a surface flaw. 
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6.2 Hardness Distribution 

6.2.1 Effect of Post Weld Cold Rolling on Hardness Profile 

The effect of post weld cold rolling on hardness distribution through the thickness 

of the three structural alloys are presented below. 

At distance between 0 – 4 mm below the weld surface, a significant effect of cold 

working was observed in all the structural alloys. In API 5L X100 pipeline steel 

hardness values increase from 332 HV – 388 HV, while in 304L austenitic 

stainless, the hardness values increase from 224 HV – 292 HV. Similarly, in S275 

Structural steel the hardness values increase from 343 HV – 400 HV. 

At distance between 4 – 12 mm below the weld surface minimal effect of cold 

working was observed in the three structural alloys. 

At distance between 12– 20 mm below the weld surface, no effect of cold working 

was observed in API 5L X100 pipeline steel. 

6.2.2 Effect of Post Weld Cold Rolling Followed by Laser 

Processing on Hardness Profile 

The effect of post weld cold rolling followed by laser processing was carried out 

in two phases.  

The effect of laser in the first phase (transient mode) at a distance between 0 – 4 

mm below the weld surface, reduces hardness values from 388 HV – 313 HV in 

API 5L X100 pipeline steel while in 304L austenitic stainless, the hardness values 

reduces from 292 HV – 281 HV. The hardness values of S275 Structural steel 

was not studied in this first phase. 

At distance between 4 – 12 mm below the weld surface minimal of the laser 

processing was observed in the three structural alloys. 

Distance between 12– 20 mm below the weld surface no effect of laser 

processing was observed in API 5L X100 pipeline steel. 

In the second phase of the laser processing, a significant effect of laser 

processing was observed in all the three structural alloys. In API 5L X100 pipeline 
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steel, the effect reduces the hardness values from 388 HV – 258 HV while in 304L 

austenitic stainless, the hardness values  reduces from 292 HV – 245 HV in the 

same position (0 – 4 mm below the weld surface). Similarly, in S275 Structural 

steel the hardness values reduces from 400 HV – 278 HV in the same range 

below the weld surface. 

In all cases, post weld cold rolling followed by laser processing have resulted in 

refining of cold worked grains which will relax the strains and also allow diffusion 

of interlocked carbon atoms making a more tempered structure. 

At distance between 4 – 12 mm below the weld surface, minimal effect of the 

laser processing were observed in the three structural alloys. The hardness 

values of API 5L X100 pipeline steel reduces from 366 HV – 342 HV while in 304L 

austenitic stainless, the hardness values reduces from 250 HV – 221 HV.  At the 

same position, hardness values of S275 Structural steel reduces from 382 HV – 

320 HV. 

At a distance between 12– 20 mm below the weld surface, a minimal effect of 

laser processing was observed reducing the hardness values of API 5L X100 

pipeline steel from 390 HV – 386 HV. 

6.3 Microstructure 

6.3.1 Effect of Post Weld Cold Rolling on Microstructure 

Dendritic and columnar grains structures were observed at the cap pass of the 

three structural alloys when the samples were cold rolled.  

6.3.2 Effect of Post Weld Cold Rolling Followed by Laser 

Processing on Microstructure 

The effect of post weld cold rolling followed by laser processing was carried out 

in two phases. The first phase which was on transient heating mode, minor grain 

refinement was observed at the cap pass of all the structural alloys. This indicates 

that recrystallization is not complete because the transient thermal cycle is not 

sufficient to supply enough energy to sustain the complete kinetics. 
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In the second phase of the laser processing, significant grain refinement was 

observed at the cap pass of all the structural alloys. This recrystallized 

microstructure with large proportion of high angle grain boundaries would 

increase the strength and toughness of the material which is lower in as-welded 

dendritic grain structure state. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 





 

207 

7 Conclusion and Future Recommendation 

This chapter is divided into two part. General conclusion and future 

recommendation for further research. 

7.1 General Conclusion 

In this research, redistribution of residual stress magnitude and profile and the 

microstructural characterisation were studied and compared in three multi-pass 

welded structural alloys after cold rolling and laser processing. These three alloys 

are; API 5L X100 pipeline steel plate (20 mm thick), S275JR structural steel plate 

(12 mm thick) and 304L austenitic stainless steel plate (12 mm thick). 

In order to achieve the research aim and objectives; after post weld cold rolling, 

the laser processing was carried out in two phases. The laser processing in the 

first phase was in transient heating mode. While, in the second phase, laser 

processing involves applying thermal energy for a prolonged period. Also in the 

second phase, further cold rolling after laser processing was applied. From this 

experiment, it can be concluded that; 

 In residual stress analysis of all the structural alloys studied, the stress 

variation in as-welded state, showed diminishing longitudinal peak stress 

magnitude through the thickness from cap to root pass. 

 Post weld cold rolling was effective in redistributing the stress field. Up to 

4 mm below the capping pass in API 5L X100 pipeline steel plate, post 

weld cold rolling modifies the stress state from tensile to compressive 

across the weld centre line. While in 304L austenitic stainless steel, post 

weld cold rolling was effective in modifying the residual stress distribution 

throughout the entire thickness. Up to 6.5 mm below the capping pass in 

S275JR structural steel, post weld cold rolling modifies the stress state 

from tensile to compressive across the weld centre line. 

 Post weld cold rolling followed by laser processing in both transient heating 

mode and prolonged period, in all the three structural alloys reinstated the 

as-welded residual stress magnitude and distribution. 
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 Further cold rolling after laser processing has redistributed and eliminated 

the tensile residual stress state formed during laser processing. 

Generation of this compressive stress state is beneficial in improving the 

structural integrity of a component as most of the in-service deterioration 

starts with a surface flaw. 

 Microstructural characterization in the first phase (transient heating mode) 

showed minor grain refinement near the capping pass for all the structural 

alloys. While the microstructural characterization in the second phase 

(prolonged period of heating) shows a full recrystallization of the grain 

structure and formation of new set of strain free grains at the capping pass 

of all the three structural alloys. The generation of the recrystallized 

microstructure with large proportion of high angle grain boundaries would 

increase the strength and toughness of the material which is lower in as-

welded dendritic grain structure state. 

 The recrystallized grain structure is particularly important in the 304L 

austenitic stainless steel. This is because the change in dendritic structure 

to a kind of equiaxed grains structure will limit the Cr segregation in the 

welds which would have resulted in formation of corrosion microcells as 

well as reduction in overall corrosion prevention due to depletion of 

alloying elements. 

 With respect to mechanical properties, in the post weld cold rolling 

condition, hardness distribution in all the structural alloys showed a 

significant evidence of plastic deformation at the cap pass of the weld 

metal.  

 The post weld cold rolling results in an increase in ultimate tensile strength 

and proof strength with corresponding reduction in elongation in the fusion 

zone of all the alloys. Laser processing after cold rolling reverted back the 

as-welded conditions with reduction of the ultimate tensile strength and 

proof strength and corresponding increase in elongation. 

 In summary, this novel processing clearly demonstrates the improvement 

of structural features that can be obtained in traditional welded structural 

alloys. However, optimisation of the post weld cold rolling and laser 
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processing would be required for different alloy systems. It would be 

advisable to consider the material’s work hardening characteristics, and 

the effects of deformation on metallurgical and constitutive properties, if 

post weld cold rolling is to be applied.  

7.2 Recommendations for Further Work 

 Modelling of thermal fields will be required to find the effect of post weld 

cold rolling followed by laser processing on residual stress distribution 

through the thickness of multi-pass welds. This will give a comprehensive 

understanding of this novel processing. 

 Experiment should be conducted on ferritic and austenitic steel pipe so as 

to determine the effect of this novel processing on the hoop stresses as 

well as axial stresses of the pipe. 

 Further experimental study should be carried out in other materials e.g., 

titanium. 

 Modelling should be carried out in the way the thermocouples are been 

attached to the sample. This will give accurate determination of the 

temperature through the thickness of the multi-pass welds. 

 Beam shaping of the laser beam diameter will be recommended to 

ensure that the heating is within the weld metal. 

 Compared thermal – mechanical finite element model of this novel 

processing. 
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APPENDICES 

Appendix A : API 5L X100 Pipeline Steel Plate (20 mm 

thick) 

A.1 Appendix: Welding Thermal Cycles of the Six Passes  

 

 

A.1.1 : Welding thermal cycles of the six deposited layers 
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A.2 Appendix: Laser Thermal Cycles and Welds Appearance 

 

A.2.1 : Thermal cycles of laser powers of 1.5 kW, 3 kW, 4 kW and 6 kW with 

travel speed of 0.2 m.min-1 at constant beam diameter of 20 mm 

 

A.2.2 : Physical weld appearance of using different laser power with travelled 

speed of 0.2 m.min-1 at constant beam diameter (20 mm) 
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A.2.3 : Thermal cycles of laser powers of 1.5 kW, 3 kW, 4 kW and 6 kW with 

travel speed of 0.4 m.min-1 at constant beam diameter of 20 mm 

 

A.2.4 : Physical weld appearance (top view) of using different laser power with 

travelled speed of 0.4 m.min-1 at constant beam diameter (20 mm) 
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A.2.5 : Thermal cycles of laser powers of 1.5 kW and 2.0 kW with travel speed 

of 0.3 m.min-1 and 0.4 m.min-1 at constant beam diameter of 20 mm 

 

A.2.6 Thermal cycles of laser powers of 1.5 kW and 2.0 kW with travel speed of 

0.3 m.min-1 and 0.4 m.min-1 at constant beam diameter of 30 mm 
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A.3 Appendix: Effect of Laser Power Through the Thickness 

 

A.3.1 (a) As welded (b) showing the effect of laser powers of 6kW with travel 

speed of 0.3 m min-1 at constant beam diameter of 20 mm 
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A.4 Appendix: Effect of Laser Power on Residual Stress 

 

A.4.1 Residual stress profile across the weld in specimen (measured 3.5 mm 

below the top surface), (a) Transverse (b) Normal direction 
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Appendix B : AISI 304L Austenitic Stainless Steel Plate 

(12 mm thick) 

B.1 : Welding Thermal Cycles  

 

B.1.1 Thermal cycles of laser powers of 1.0 kW and 3.0 kW with travel speed of 

0.4 m min-1 at constant beam diameter of 20 mm 
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B.2 : Optical Micrograph 

 

 

 

B.2.1 Optical micrograph of 304L stainless steel of the three pass in as-welded  
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B.3  Effect of New Laser Power on Residual Stress of 304L 

Stainless Steel 

 

B.3.1 : Residual stress profile across the weld in sample with different 

processing conditions (measured 3 mm below the top surface) 

The behaviour of the residual stress profile is due to the fact that, the 

measurement are within the heated zone. The laser beam diameter was 110 mm 

hence the stress could not balance to zero. 
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B.3.2 Residual stress profile across the weld in sample with different processing 

conditions (measured 7 mm below the top surface) 
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Appendix C : S275JR Structural Steel (12 mm thick) 

C.1 Effect of Processing Condition on Residual Stress of S275 

Structural Steel 

 

C.1.1 Residual stress profile across the weld in sample with different processing 

conditions (measured 10.5 mm below the top surface) 

 


