
Target Position and Trajectory Measurements

by Videogrammetry

College of Aeronautics Report 0208

ISBN 1 861 941 048

Dr. Stephen Hobbs

School of Engineering

Cranfield University

Cranfield

Bedford MK43 0AL

s.e.hobbs@cranfield.ac.uk

10 Nov 2003

i

Target Position and Trajectory Measurements
by Videogrammetry

College of Aeronautics report 0208
ISBN 1 861 941 048

Stephen E. Hobbs, Cranfield University, UK

Abstract

This report documents the algorithms, data processing and software for the
video photogrammetry (“videogrammetry”) system developed at Cranfield Uni-
versity. Cranfield’s system has been used successfully since 1999 on a range of
measurement projects. Videogrammetry typically uses two video cameras to
film the motion of target objects in stereo, and then with suitable image pro-
cessing and data analysis the targets’ 3d trajectories are measured to good
precision.
The main features of the Cranfield systems are that it is based on consumer

electronics devices (e.g. digital camcorders and PC’s), and that it is designed
as an experimental tool. Using consumer electronics provides good performance
at low cost. Its experimental character means that an expert user is required,
but does allow great flexibility. Current system performance derives from the
image resolution of 1 mrad per pixel over a field of view 720 by 576 pixels, and
a frame rate of 25 Hz.
Two areas of work are described: (1) the mathematical models and algo-

rithms used for calibration, position measurement and trajectory extraction,
and (2) the software tools written to manipulate images and process the data.
The model of the imaging system can be adapted for a wide range of appli-
cations, and is explicitly developed in this report for a single camera position
and pose calibration, a two-camera system calibration, and a measurement sys-
tem using two or more cameras (either the general non-linear case or a linear
approximation). The image calibration (which converts image coordinates to
geometrical angles of inclination and azimuth) is based on a 3rd order polyno-
mial and achieves an accuracy equivalent to better than 1 pixel. Trajectories
are obtained by either labelling targets or using kinematic rules. Two programs
(AVI1 and mfitvid) have been written for the videogrammetry system and are
described in outline (for a user and to support future development). Commercial
software provides the more general functions required by the system.
Experience with the videogrammetry system over a number of years gives

confidence in its performance. Example results are provided to illustrate the
type of measurements which are possible.

c©Copyright Cranfield University 2003. All rights reserved. No part of this
publication may be reproduced without the written permission of the copyright
holder.

i

ii

Contents

1 Introduction 1

1.1 Examples of Videogrammetry Applications 1

2 Model of the Video System 5

2.1 Camera Image Calibration . 6
2.2 The Basic Model . 6

2.2.1 Derivation of Camera Axes 7

3 Model Application and Inversion 9

3.1 Camera Position and Pose Calibration 9
3.1.1 Model Derivatives . 10
3.1.2 First-Guess Values . 13
3.1.3 Camera Parameter Measurement Uncertainty 13

3.2 Target Position Measurement . 15
3.2.1 Linearised Model . 15
3.2.2 Epi-polar Line Method . 16

3.3 Algorithm Coding . 18

4 Trajectory Extraction 19

4.1 Trajectory Measurement using Labelled Targets 19
4.2 Trajectory Measurement using Kinematic Rules 19

4.2.1 Form all plausible links 20
4.2.2 Edit links . 20
4.2.3 Remarks . 21

5 Practical Implementation 23

5.1 Experiment Design . 23
5.1.1 Target Identification . 23
5.1.2 Viewing Geometry . 24
5.1.3 Reference Points to Calibrate Camera Position and Pose . 24
5.1.4 Sychronisation . 24
5.1.5 Other Factors . 24

5.2 Image Filtering . 25
5.2.1 Temporal Filtering . 25
5.2.2 Spectral Filtering . 25
5.2.3 Correlation Mask . 25

5.3 Data Processing Sequence . 26

iii

6 Discussion and Conclusions 29

6.1 Further Work . 30
6.2 Acknowledgements . 31

Bibliography 33

A Camera Image Calibration 35

A.1 Calibration Model . 35
A.2 Methodology . 36
A.3 Calibration Results . 36
A.4 Standard Format for the Image Calibration Results 38

B Camera Position and Pose Calibration 43

B.1 Program mfitvid . 43
B.2 Simulation Input Values . 45
B.3 Solution Method . 46

C Program AVI1 49

C.1 System calibration . 50
C.2 Point tracking . 54
C.3 Target position calculation . 57
C.4 Target trajectory detection . 58
C.5 Utility functions . 62
C.6 Program structure . 64

iv

List of Figures

1.1 Example of motion measured for part of a wheat plant over a
period of 1 minute [4]. 2

1.2 Various projections of trajectories measured for two bubbles in-
side a low-speed vertical vortex [2]. 3

2.1 Video axes and angles for the imaging system model (camera i).
eij are the camera axes, and e′i2 and e′i3 are intermediate vectors
(corresponding to a camera with no “roll” about its viewing axis
ei1). The xyz coordinate system is that defined by the (position
and pose) calibration targets. 5

3.1 Symbols used in the derivation of the first order models for mea-
surement uncertainty. 13

3.2 Conceptual description of the epi-polar line solution method. A
point imaged in camera 1 corresponds, potentially, to a line in the
image of camera 2. The closest match between points in camera
2 and the line is assumed to correspond to the correct solution. . 17

4.1 This figure shows several targets detected in each frame (num-
bered 0 to 7). Position is actually measured in 3D but only 1
coordinate (along the y axis) is shown here for clarity. 21

4.2 First step of the trajectory extraction for the targets of Figure
4.1: all plausible links are formed between the targets found (only
links less than 1 unit long are deemed plausible). Isolated points
(e.g. due to noise) form no links and are excluded from further
analysis. 22

4.3 Second step of the trajectory extraction for the targets of Figure
4.1: only the most likely links (from Figure 4.2) are kept to make
the trajectories. The rule used to determine “most likely” is to
choose the link with smallest displacement. 22

5.1 Videogrammetry data processing steps showing the software tools
required at different stages. 27

6.1 Example annotated video frame from a videogrammetry experi-
ment produced using program AVI1. 30

A.1 Distribution of the error across the image from the calibration of
the SONY digital camcorder DCR TR7000E without any non-
linearity corrections. 39

v

A.2 Distribution of the error across the image from the calibration
of the SONY digital camcorder DCR TR7000E with 3rd order
non-linearity corrections. 40

vi

List of Tables

1 Symbols used in the report. viii

A.1 Coefficients of the 3rd order polynomials obtained with the digital
SONY camcorder . 37

A.2 Coefficients of the 3rd order polynomials obtained with the ana-
logue CANON camcorder . 37

A.3 Errors on the 3rd order polynomial for the 2 video camcorders . . 38
A.4 Example format of the ASCII file to store the image calibration

parameters (file imagecalwide0.txt). The values used are those
reported in Table A.1. 41

B.1 Main menu options for program mfitvid. The option labels are
only shown in abbreviated form. 44

B.2 Results analysis sub-menu options for program mfitvid. The
option labels are only shown in abbreviated form. 44

B.3 File xvec.txt, which contains the coordinates of the reference
points and defines the fundamental coordinate system used for
the measurements. xvec.txt must be in sub-directory ref0 of
video on drive C for the current version of mfitvid (version 1.10,
using video1 v1.2). 45

B.4 File datatest.txt, a test dataset for program mfitvid designed
to be used with reference point data of Table B.3. The data are
pairs of values for the tangents of the inclination and azimuth
angles of each of the four reference points. The x value is actually
an index which allows a vector model function to be used with
scalars as suggested in [3]. 45

B.5 First guess values used for the test data. 46
B.6 File testres.txt. 46

vii

Notation

a position of midpoint of camera baseline
ai position of camera i
Aik The numerator of the basic imaging equation for camera i and camera axis k
b the camera baseline (vector from camera 2 to camera 1)
b length of the camera baseline
Di The denominator of the basic imaging equation for camera i
eij direction of camera i’s jth unit axis
p position of the target being imaged
p0 position of a reference point in the measurement volume
p′ position of the target relative to p0

αi inclination of the target measured by camera i
αi0 inclination of the reference point for camera i
βi azimuth of the target measured by camera i
βi0 azimuth of the reference point for camera i
φb azimuth of the camera baseline
φi azimuth of the view axis of camera i
θb inclination of the camera baseline
θi inclination of the view axis of camera i
ψi rotation angle of azimuth direction for camera i about the view axis

(from the plane containing the view axis and the vertical)

Table 1: Symbols used in the report.

viii

Chapter 1

Introduction

Video photogrammetry (“videogrammetry”) is a practical method of measuring
the trajectory of a target in three dimensions and can be implemented using
consumer electronics equipment which provide high performance at low cost.
This report describes work on videogrammetry at Cranfield University, and in
particular documents the algorithms and software used to calibrate the system,
solve for 3D position of targets, and identify trajectories from a series of target
position measurements for multiple targets.
The method reported here has been in use since 1999 at Cranfield for ap-

plications which include monitoring the wind-driven motion of vegetation, air
traffic movements at Cranfield airport, suspended target motion, human loco-
motion, and trajectories of airflow tracers in wind tunnels. This experience gives
us a reasonable degree of confidence in the techniques and their suitability as a
research tool.
One function of this report is to act as a reference for the algorithms devel-

oped and thus they are described in full algebraic detail.
The fundamental limitations (e.g. measurement precision and rate) are de-

termined largely by basic imaging geometry and the performance of the camera
(including the effect of any data compression implemented). Digital camcorders
for consumer use typically have frame rates of 25 Hz (in Europe) and use the
DV compression format (nominal frame size of 720 columns by 576 rows, with
the image encoded using a digital cosine transform algorithm - similar to the
JPEG format). A typical shortest focal length setting for the lens (maximum
wide angle) corresponds to an angular “resolution” of 1 mrad per pixel.

1.1 Examples of Videogrammetry Applications

Sample results from projects where videogrammetry has been applied demon-
strate the system’s scope and capability. The algorithms presented here are
designed to track multiple targets simultaneously without needing extensive
user manipulation of the data.
Figure 1.1 shows measurements of the motion in the direction parallel to

the mean wind velocity of a wheat plant over a period of 1 minute. Several
labels were placed on the plants and then their motion was tracked while they
moved in the wind. These data allowed the effect of wind driven motion on

1

vegetation to be quantified for the first time. In general, videogrammetry allows
the dynamics of motion to be analysed numerically for objects which are often
difficult to measure by other methods.

Figure 1.1: Example of motion measured for part of a wheat plant over a period
of 1 minute [4].

Figure 1.2 shows the trajectories of a pair of bubbles used as airflow tracers
in a vortex generated inside a wind tunnel. This quantifies observations which
would otherwise only be available qualitatively. The figure also shows how it
is possible to visualise the motion afterwards based on the measurements: this
can be very helpful for analysing particular features of the motion.

2

Figure 1.2: Various projections of trajectories measured for two bubbles inside
a low-speed vertical vortex [2].

3

4

Chapter 2

Model of the Video System

The video system typically comprises two cameras viewing a measurement vol-
ume from different directions. This should allow the three-dimensional position
of targets in the volume to be measured. The model developed in this chapter is
based on a model of the geometry for a single camera which is then extended for
the case of two (or more) cameras. Figure 2.1 summarises the system geometry
and variables for a single camera.

i2

e’
i3

e
i1

ψi

ψi
e’

i2

ei2

e’
i3

e
i3

e
i1

e’

φ

θi

θi

x

y

z

i

Figure 2.1: Video axes and angles for the imaging system model (camera i). eij
are the camera axes, and e′i2 and e′i3 are intermediate vectors (corresponding to
a camera with no “roll” about its viewing axis ei1). The xyz coordinate system
is that defined by the (position and pose) calibration targets.

The model of the video system is geometrical, and is expressed using vectors
since this is a convenient notation. The vectors should be expressed using a
coordinate system for the measurement system. This system can be chosen
for experimental or calibration convenience. Note that the model developed in
this chapter assumes that the camera image coordinates (row, column) can be
translated into angles of inclination and azimuth using a calibration function
(this function is developed separately in Appendix A for the cameras used for
the experiments in 2000).

5

2.1 Camera Image Calibration

Underlying the models developed later in this report is a calibration of the image
which converts image coordinates (e.g. column and row number) to geometrical
viewing angles relative to the camera axes. Because of the form of the model
developed, it turns out that the calibration functions are most useful if given
in terms of tanα and tanβ rather than α and β directly (α and β are the
inclination and azimuth angles respectively of the imaged point relative to the
camera’s viewing axes). Appendix A describes the camera image calibration
method used and gives results for two cameras.
The calibrations are expressed as coefficients (ai or bi) of polynomials giving

the angles (inclination or azimuth) as a function of image coordinate (row or
column number relative to the image centre).

tanα = a0 + a1x+ a2y + a3x
2 + a4xy + a5y

2

+a6x
3 + a7x

2y + a8xy
2 + a9y

3 (2.1)

tanβ = b0 + b1x+ b2y + b3x
2 + b4xy + b5y

2

+b6x
3 + b7x

2y + b8xy
2 + b9y

3 (2.2)

2.2 The Basic Model

The target is at p, and the two cameras are at a1 and a2. Each camera (label
i = 1, 2) has three orthogonal unit vectors defined for the viewing axis (ei1),
the inclination (row) direction (ei2) and the azimuth (column) direction (ei3).
Each camera measures the inclination and azimuth angles of the target in its
own coordinate system. The unit axes for each camera can be expressed in
terms of three angles relative to the measurement system’s coordinate system;
these angles are the inclination (θi) and azimuth (φi) of the viewing axis, and
the roll angle (ψi) about the viewing axis of the camera’s azimuth direction from
the plane containing the view axis and the vertical. In terms of these angles the
unit vectors for camera i are,

ei1 = (cos θi cosφi, cos θi sinφi, sin θi) (2.3)

ei2 = (− sin θi cosφi cosψi + sinφi sinψi,

− sin θi sinφi cosψi − cosφi sinψi, cos θi cosψi) (2.4)

ei3 = (sin θi cosφi sinψi + sinφi cosψi,

sin θi sinφi sinψi − cosφi cosψi,− cos θi sinψi) (2.5)

Using these camera axes, the inclination (αi) and azimuth (βi) of the target
as measured by camera i are,

tanαi =
(p− ai) .ei2
(p− ai) .ei1

(2.6)

tanβi =
(p− ai) .ei3
(p− ai) .ei1

(2.7)

6

Note that it may be more convenient in general to calibrate the cameras to
give tanα, tanβ as the measurements of target position instead of the angles
directly.
The camera positions can be expressed in the model as shown here or using

the baseline between the cameras and the vector from the midpoint of the base-
line to the target. This second method is appropriate if a direct measurement
of the baseline length is available, since a direct measurement may be more
accurate than an estimate obtained by inverting the system model for a set of
calibration points. In terms of the baseline the camera positions are

a1 = a+ b/2 (2.8)

a2 = a− b/2 (2.9)

Thus

a =
1

2
(a1 + a2) (2.10)

b = a1 − b2 (2.11)

The baseline vector should be expressed in a form explicitly including its
magnitude,

b = b(cos θb cosφb, cos θb sinφb, sin θb) (2.12)

If this formulation is used then each camera’s position depends on six pa-
rameters and not just three as before. However, because b can be measured
directly this should give a slightly more accurate system calibration.

2.2.1 Derivation of Camera Axes

The camera axes given above are based on the following two intermediate unit
vectors (e′i2, e′i3) defined by the view axis and the measurement system’s verti-
cal axis. e′i2 is the intersection of the plane perpendicular to the view axis and
the plane containing the view axis and the measurement system’s vertical axis;
e′i3 is perpendicular to ei1 and e′i2.

e′i2 = (− sin θi cosφi,− sin θi sinφi, cos θi) (2.13)

e′i3 = (sinφi,− cosφi, 0) (2.14)

ei2 and ei3 are obtained by rotating the primed axes by ψ about the view
axis.

7

8

Chapter 3

Model Application and

Inversion

Several means of applying the basic video model are used.

• System calibration. The model is inverted using measurements made for a
set of calibration targets to estimate the camera positions and orientations.

• Position measurement. Using known camera positions and orientations the
model is inverted to estimate target position from a set of measurements
(e.g. using two cameras to find the target’s position in three dimensions).

• More general use. The basic equation could be used for any imaging
situation where camera image coordinates (expressed as angles) need to
be related to geometrical position of the target relative to the camera and
its attitude.

Model inversion for calibration or measurement is a non-linear problem in
general (a linearised form of the equations is presented in the previous chapter).
A standard way to invert a non-linear model is by maximum likelihood fitting
of the model to some measured data [3]. The Levenburg-Marquardt [3] method
used at Cranfield requires analytical expressions for the model, its derivatives
with respect to all the model parameters, and a good first guess for the param-
eters to be estimated. The next section lists all relevant model derivatives.

3.1 Camera Position and Pose Calibration

The model developed in chapter 2 is a “forward” model, which gives the image
coordinates of a target as a function of the camera position and pose. For the
camera position and pose calibration, position and pose have to be estimated
from measurements of image coordinates for a reference target - this is done by
inverting the forward model.
Several methods of model inversion are possible, and the one used here is

based on a non-linear least squares iterative minimisation procedure, Levenburg-
Marquardt minimisation [3]. To implement this algorithm requires definition of
a model (as is done in chapter 2) and its partial derivatives with respect to

9

all the model parameters. The next section gives the model and the partial
derivatives required.

3.1.1 Model Derivatives

The basic model equations for a single-camera system can be written

tanαi =
(p− ai) .ei2
(p− ai) .ei1

=
A2i

Di

(3.1)

tanβi =
(p− ai) .ei3
(p− ai) .ei1

=
A3i

Di

(3.2)

where

Aki = (p− ai) .eik (3.3)

Di = (p− ai) .ei1 (3.4)

Writing yi2 = tanαi and yi3 = tanβi, the derivatives of yik(k = 2, 3) with
respect to each of the model parameters for camera i are

∂yik
∂pj

=
eikj
Di

−
Aki

D2
i

(ei1j) (3.5)

∂yik
∂aij

= −
eikj
Di

+
Aki

D2
i

(ei1j) (3.6)

∂yik
∂θ

=

3∑

j=1

[
(p− ai)j

Di

∂eikj
∂θ
−
Aki

D2
i

(p− ai)j
∂ei1j
∂θ

]
(3.7)

∂yik
∂φ

=

3∑

j=1

[
(p− ai)j

Di

∂eikj
∂φ

−
Aki

D2
i

(p− ai)j
∂ei1j
∂φ

]
(3.8)

∂yik
∂ψ

=
3∑

j=1

[
(p− ai)j

Di

∂eikj
∂ψ

−
Aki

D2
i

(p− ai)j
∂ei1j
∂ψ

]
(3.9)

If the cameras positions are expressed in terms of the two-camera baseline
a,b then the derivatives are

∂yik
∂aj

=
3∑

l=1

∂yik
∂ail

∂ail
∂aj

(3.10)

∂yik
∂b

=

3∑

l=1

∂yik
∂ail

∂ail
∂b

(3.11)

10

∂yik
∂θb

=
3∑

l=1

∂yik
∂ail

∂ail
∂θb

(3.12)

∂yik
∂φb

=

3∑

l=1

∂yik
∂ail

∂ail
∂φb

(3.13)

Note that the attitude angles θ, φ, ψ are those for camera i, i.e. the angles
should be written θi, φi, ψi. The derivatives of the camera’s direction vectors
(again omitting the subscript i to indicate the camera) are

∂ei11
∂θ

= − sin θ cosφ (3.14)

∂ei12
∂θ

= − sin θ sinφ (3.15)

∂ei13
∂θ

= cos θ (3.16)

∂ei11
∂φ

= − cos θ sinφ (3.17)

∂ei12
∂φ

= cos θ cosφ (3.18)

∂ei13
∂φ

= 0 (3.19)

∂ei11
∂ψ

= 0 (3.20)

∂ei12
∂ψ

= 0 (3.21)

∂ei13
∂ψ

= 0 (3.22)

∂ei21
∂θ

= − cos θ cosφ cosψ (3.23)

∂ei22
∂θ

= − cos θ sinφ cosψ (3.24)

∂ei23
∂θ

= − sin θ cosψ (3.25)

∂ei21
∂φ

= sin θ sinφ cosψ + cosφ sinψ (3.26)

∂ei22
∂φ

= − sin θ cosφ cosψ + sinφ sinψ (3.27)

∂ei23
∂φ

= 0 (3.28)

∂ei21
∂ψ

= sin θ cosφ sinψ + sinφ cosψ (3.29)

∂ei22
∂ψ

= sin θ sinφ sinψ − cosφ cosψ (3.30)

∂ei23
∂ψ

= − cos θ sinψ (3.31)

11

∂ei31
∂θ

= cos θ cosφ sinψ (3.32)

∂ei32
∂θ

= cos θ sinφ sinψ (3.33)

∂ei33
∂θ

= sin θ sinψ (3.34)

∂ei31
∂φ

= − sin θ sinφ sinψ + cosφ cosψ (3.35)

∂ei32
∂φ

= sin θ cosφ sinψ + sinφ cosψ (3.36)

∂ei33
∂φ

= 0 (3.37)

∂ei31
∂ψ

= sin θ cosφ cosψ − sinφ sinψ (3.38)

∂ei32
∂ψ

= sin θ sinφ cosψ + cosφ sinψ (3.39)

∂ei33
∂ψ

= − cos θ cosψ (3.40)

If the camera positions of a two-camera system are written in terms of the
mean camera position (a) and the baseline (b) then the derivatives for camera
1 are

∂aij
∂aj

= 1 (3.41)

∂a11

∂b
=

1

2
cos θ cosφ (3.42)

∂a12

∂b
=

1

2
cos θ sinφ (3.43)

∂a13

∂b
=

1

2
sin θ (3.44)

∂a11

∂θ
= −

b

2
sin θ cosφ (3.45)

∂a12

∂θ
= −

b

2
sin θ sinφ (3.46)

∂a13

∂θ
=

b

2
cos θ (3.47)

∂a11

∂φ
= −

b

2
cos θ sinφ (3.48)

∂a12

∂φ
=

b

2
cos θ cosφ (3.49)

∂a13

∂φ
= 0 (3.50)

The derivatives for camera 2 are the same as those for camera 1 except that
all the derivatives with respect to the baseline change sign (i.e. ∂a21

∂b
= −∂a11

∂b
,

etc.). The angles θ, φ used here are the camera baseline orientation angles
(θb, φb).

12

3.1.2 First-Guess Values

Iterative solution methods must generally be initialised with good first-guesses
of the desired solution if the solution is to be efficient and to avoid secondary
minima.
For calibration, the model parameters are best estimated using a crude direct

measurement of the camera positions and attitudes.

3.1.3 Camera Parameter Measurement Uncertainty

The following sections provide simple relationships between the measurement
accuracy of the camera and the uncertainty in the estimate of the camera po-
sition or attitude parameters (the approximations used are correct only to first
order). The following figures illustrate the geometry assumed to derive these
simple estimates of measurement uncertainty.

camera

a

θ

P1

x
r

P2

(a) Range error

∆θ

b

P2

x

θ

y

r

P1

camera

(b) Lateral errors

Figure 3.1: Symbols used in the derivation of the first order models for mea-
surement uncertainty.

Radial distance from calibration targets

Consider a camera at a perpendicular distance x from two calibration targets
which are distance a apart laterally (r is the slant range to one target) . θ is
the angle between the lines of sight from the camera to the targets.

tan θ/2 =
a

2x
(3.51)

x =
a

2 tan θ/2
(3.52)

dx

dθ
=

−a

4 sin2 θ/2
(3.53)

sin θ/2 =
a

2r
(3.54)

13

δx '
dx

dθ
δθ (3.55)

=
−r2

a
δθ (3.56)

This gives the uncertainty in x due to errors in measuring θ.

Lateral displacement wrt calibration targets

Consider a camera viewing two targets which are b apart along the line of sight,
with the camera distance x from the midpoint. The angle subtended by the two
points at the camera is

∆θ =
b sin θ

r
(3.57)

=
by

r2
=

by

x2 + y2
(3.58)

d∆θ

dy
= b

x2 − y2

(x2 + y2)2
(3.59)

'
b

x2
assuming xÀ y (3.60)

thus

δy, δz '
x2

b
δ∆θ (3.61)

This is the uncertainty in measuring y, z (the lateral position of the camera)
due to errors in ∆θ. Note that the lateral separation of the targets leads only
to a second order change in ∆θ.

Camera inclination and azimuth

The absolute position uncertainties can be converted directly to angular uncer-
tainties for the camera’s absolute inclination and azimuth by dividing the lateral
position uncertainty by the range to the calibration targets.

δθ, δφ =
δz, δy

r
'
x2

br
δ∆θ '

x

b
δ∆θ (3.62)

Note that in general the pointing uncertainty due to position errors is greater
than the direct angular resolution of the cameras.

Camera rotation angle

The uncertainty in the camera’s rotation angle (about its line of sight) is given
by the camera’s spatial resolution at the target divided by the linear separation
of the targets. Consider two targets (distance a apart) viewed in the image
plane with the camera a distance r from this plane.

δψ '
rδθ

a
(3.63)

14

3.2 Target Position Measurement

If the camera positions and poses are known and the image has been calibrated,
then it is possible to calculate the position of the target from measurements of
the target’s positions in the camera images available. The methods described
below assume two images are available, although both methods can be gen-
eralised to accept measurements from more than two cameras. Two solution
methods have been implemented:

• a Linearised model

• the Epi-polar line method

The linearised model requires an approximate solution for the target posi-
tion (about which the equations are linearised), and then the position can be
calculated in one step using linear algebra (a matrix multiplication). To use
this technique, a separate method of identifying pairs of points from the two
images must be implemented, i.e. the coordinates corresponding to the same
target but viewed in the two different cameras.
The epi-polar line method is less direct, but has the advantage of automati-

cally identifying pairs of points from the two images available even when many
targets are visible by both cameras.

3.2.1 Linearised Model

A linearised version of the model is useful in many measurement situations and
can be inverted directly to give target position as a linear function of the camera
measurements.
The assumptions (which are more or less equivalent) made to linearise the

equations are

1. The inclination and azimuth angles of the target relative to the cameras
axes are small (so small angle approximations can be used although this
is not really necessary).

2. The target position (p) is close to a reference position (p0) which lies in
the measurement volume close to the view axis of both (all) cameras (close
is defined relative to the distance from the camera to the target).

The first approximation need not be used to approximate tanα by α if the
camera is calibrated in terms of tanα rather than α. The target position can
be written p = p0 + p′, and then the system equations become,

tanαi =
(p0 + p′ − ai) .ei2
(p0 + p′ − ai) .ei1

(3.64)

=
p′.ei2

(p0 + p′ − ai) .ei1
+

(p0 − ai) .ei2
(p0 + p′ − ai) .ei1

(3.65)

tanβi =
(p0 + p′ − ai) .ei3
(p0 + p′ − ai) .ei1

(3.66)

=
p′.ei3

(p0 + p′ − ai) .ei1
+

(p0 − ai) .ei3
(p0 + p′ − ai) .ei1

(3.67)

15

If the assumptions hold then p′ is much smaller than p0− ai and can be ig-
nored in the denominator. The constants (corresponding to the angular position
of the reference point p0) can be written as offset angles giving,

tanαi − tanαi0 '
p′.ei2

(p0 − ai) .ei1
(3.68)

tanαi0 =
(p0 − ai) .ei2
(p0 − ai) .ei1

(3.69)

tanβi − tanβi0 '
p′.ei3

(p0 − ai) .ei1
(3.70)

tanβi0 =
(p0 − ai) .ei3
(p0 − ai) .ei1

(3.71)

These equations (for two or more cameras) have the form

b = Ap′ (3.72)

p′ = A−1b (3.73)

where b represents the measurements made using the cameras (and an offset
which depends on calibration constants and the arbitrary reference position p0)
and A is a matrix determined by the measurement system geometry. This
equation can be inverted using singular value decomposition techniques [3] to
give target position (p′) in terms of the target’s angular position measured by
the cameras (αi, βi).

3.2.2 Epi-polar Line Method

The epi-polar line technique uses the fact that a point target detected in one
image (image 1) can in general line anywhere along a line across the image
from the other camera (image 2). The coordinates of this line can be calculated
and then matches between the line and detected targets in image 2 are sought
(Figure 3.2).
Camera i has unit vectors ei1 (viewing axis), ei2 (inclination), and ei3 (az-

imuth). If in camera 1 (wlog) a point is detected at a given position (column,
row) then this corresponds to particular values of inclination (tanα1) and az-
imuth (tanβ1), so the target must lie somewhere along a line given by

p(λ) = a1 + λ(e11 + tanα1e12 + tanβ1e13) (3.74)

= a1 + λd (3.75)

where

d = e11 + tanα1e12 + tanβ1e13 (3.76)

For other cameras (i) in the system, this is imaged at a point with inclination
and azimuth given by

tanαi =
(p− ai).ei2
(p− ai).ei1

(3.77)

16

 1

 2

Target point

Camera 1 Camera 2

Image 1 Image 2

 1
 2

 +
 +

epi-polar line

Optical axes of cameras

Figure 3.2: Conceptual description of the epi-polar line solution method. A
point imaged in camera 1 corresponds, potentially, to a line in the image of
camera 2. The closest match between points in camera 2 and the line is assumed
to correspond to the correct solution.

=
(bi − λd).ei2
(bi − λd).ei1

(3.78)

= fi2(λ) (3.79)

tanβi =
(p− ai).ei3
(p− ai).ei1

(3.80)

=
(bi − λd).ei3
(bi − λd).ei1

(3.81)

= fi3(λ) (3.82)

bi = a1 − ai is the baseline between camera 1 and camera i.
Thus as the parameter λ (the range to the target from camera 1 along

direction e11) varies a line is drawn across the image in camera i; this is the
epi-polar line. The solution method is to vary λ between reasonable values
(minimum and maximum plausible ranges for example) and to look for the best
coincidence between the line and points in the image of camera i. It is assumed
that the solution is given by the point lying closest to the epi-polar line.
Note that this method simultaneously finds the position of the target and

matches up points from images of the different cameras. The linear solution
method does not match up points, but does make more “symmetrical” use of
the measurements. The epi-polar line method described here ensures that the
target position exactly satisfies the point measurement for camera 1 but may
only approximately satisfy measurements for other cameras, and is therefore

17

asymmetrical in its use of the measurements. An iterative method that used
the epi-polar line method to find an approximate solution and match points,
and then the linear method to improve the solution, should in principle give a
better solution although the improvement may not normally be significant.

3.3 Algorithm Coding

Careful structuring of the way the functions are implemented in software pro-
vides more robust and versatile code. Some of the issues to consider are

• The standard code written for camera position and pose calibration imple-
ments algorithms from [3], where the model function takes a scalar input
and returns a scalar value. In the calibration the inputs and outputs are
more naturally treated as vectors so the scalar algorithms are modified as
suggested by [3] to handle inputs and outputs which are vectors.

• For a conventional two-camera system with a baseline of about a metre
a few metres from the measurement volume, the derivatives should all
have approximately the same magnitude and so the numerical algorithms
should be well behaved. If the lengths have numerical values much greater
than 1 (e.g. several hundred metres) then the derivatives will no longer all
be approximately the same magnitude and there may be problems with
any matrix inversions required by the algorithms. (Such numerical prob-
lems often indicate situations where unrealistic measurements are being
attempted.)

18

Chapter 4

Trajectory Extraction

The algorithms described in chapter 3 give measurements of the positions of
targets at the time of each frame pair. For many applications, it is more useful
to know the trajectory of individual targets over a period of time. Obtaining
trajectories from individual measurements of position is not a trivial step. Sev-
eral methods could be used: this chapter describes one method (labelling the
targets) in outline and a second method (based on kinematic rules) in more
detail.

4.1 Trajectory Measurement using Labelled Tar-

gets

In principle it is possible to “label” each target uniquely (using the term “label”
in a general sense). The label may be by colour, size, correlation mask used for
tracking, or region of the image, for instance, and should allow the targets to be
uniquely identified. The position measurements can then be sorted using this
label, and then the trajectories are obtained as a sequence of positions for each
of the uniquely labelled targets.
If only a few targets are being tracked, or it is possible to arrange unique

labels, then this method is relatively simple to implement. Early applications of
the Cranfield videogrammety system used this method of obtaining trajectories.
With many targets this method becomes more difficult to use.

4.2 Trajectory Measurement using Kinematic Rules

An alternative method of measuring trajectories is to use information about the
kinematics of the tracked targets (e.g. position, velocity, etc.). This method
does not require the targets to be individually labelled or widely separated
and is suitable when several or many targets are to be tracked simultaneously.
The method has been used in more recent videogrammetry experiments. This
technique can be validated by using it for targets which have simple labels (as
described above), and then ensuring that each trajectory obtained corresponds
to a “target” which always has the same label.

19

The following three figures illustrate the kinematic rules method of trajec-
tory identification (Appendix C provides details of how the algorithm has been
implemented in software).
The starting point (Figure 4.1) is a set of measurements of target positions

for each frame pair. So that the method can be visualised in a two dimensional
figure, only one spatial coordinate is used in the figures (along the y axis), and
the x axis is used for time (frame number). In practice, all three coordinates of
the target’s position are used to calculate displacements, separations, etc. From
each frame pair, there may be several target position measurements: some will
be real while others may be spurious noise.
Two steps are used to extract trajectories:

1. Form all plausible links between target positions in adjacent frames.

2. Edit the links to keep only the most likely ones. The remaining links
constitute the trajectories sought.

4.2.1 Form all plausible links

The first step is to form all plausible links between positions measured in one
frame and those measured in adjacent frames. A “link” is the pairing of a point
in one frame with a point in an adjacent frame: each point can in principle
belong to several links (both forward and backward in time). “Plausible” here
means links that are shorter than a certain limit. A suitable limit can be
obtained based on the maximum feasible target speed multiplied by the time
between frames, plus a safety margin. Using this limit avoids the creation
of unrealistic links which will only be discarded later. Figure 4.2 shows all
plausible links for the targets of Figure 4.1, where the maximum link length is
1 (displacement along y axis). Isolated points form no links, and are discarded
at this stage.

4.2.2 Edit links

The next step is to edit the links, keeping only the most likely one for any target
in each frame. Many different rules could be applied to determine which is the
most likely link; possible rules include:

• smallest displacement

• smallest change in acceleration

• most similar “label” statistics

The rule applied in program AVI1 is currently (program version 0.36) to
choose the link corresponding to the smallest displacement. Figure 4.3 shows
the links remaining after this filter has been applied. Note that where the two
trajectories almost overlap, the multiple links have all been resolved. The links
which remain after this filter constitute the measured trajectories.
It is in principle possible for the algorithm’s results to depend on the order

in which it edits the links, which is unsatisfactory. For example, a given link
may be the shortest forward link from, say, point pn to point qn+1; however
this may not be the shortest reverse link from qn+1 since the reverse link to rn

20

may be even shorter. Hence, searching first with point p will choose the link
pn− qn+1 while searching first with point r would preserve rn− qn+1 and delete
pn − qn+1. To avoid this problem, a link pn − qn+1 should only be kept to form
part of a trajectory if it is simultaneously the shortest forward link from pn and
also the shortest reverse link from qn+1.

4.2.3 Remarks

In practice, because of measurement noise or temporary changes in viewing
conditions (e.g. lighting, aspect) it is common for a single real trajectory to
only be recorded as fragments. These fragments of trajectories currently have
to be edited manually to patch together an estimate of the real continuous
trajectory. (This task is significantly easier than creating the trajectories in
the first place.) It is possible to automate this partially, using estimates of the
target’s dynamics (e.g. minimise changes in acceleration or velocity) to identify
which fragments should be merged. It is practical to leave much of this task
to the user, since it is not generally too onerous and it would probably be very
difficult to define rules for the software to cope with all likely circumstances.

Figure 4.1: This figure shows several targets detected in each frame (numbered
0 to 7). Position is actually measured in 3D but only 1 coordinate (along the y
axis) is shown here for clarity.

21

Figure 4.2: First step of the trajectory extraction for the targets of Figure 4.1:
all plausible links are formed between the targets found (only links less than
1 unit long are deemed plausible). Isolated points (e.g. due to noise) form no
links and are excluded from further analysis.

Figure 4.3: Second step of the trajectory extraction for the targets of Figure 4.1:
only the most likely links (from Figure 4.2) are kept to make the trajectories.
The rule used to determine “most likely” is to choose the link with smallest
displacement.

22

Chapter 5

Practical Implementation

A system based on the algorithms described here has been used in several appli-
cations. This chapter outlines some of the issues which affect the quality of the
measurements which can be made and is based on experience gained through
the different applications attempted.
The applications on which the system has been used so far include:

• Measurement of wind-driven wheat motion at various growth stages

• Aircraft trajectory measurement on approach to Cranfield airport

• Measurement of the motion of a suspended target

• Human walking gait measurement

• Tracking tracers in a vortex airflow

These applications have raised a number of issues to be considered in exper-
iment design and data processing. The system is an experimental system rather
than an operational measurement device and requires a reasonable degree of
operator skill to obtain good measurements.

5.1 Experiment Design

Good experiment design makes a difference to the quality of the measurements
obtained. The following sections discuss some of the most important factors
affecting the quality of the measurements.

5.1.1 Target Identification

The targets whose trajectories are to be measured need to be easily identifiable
in the images recorded. If any labels are attached to improve identification, the
labels should not affect the target’s behaviour, e.g. labels should be lightweight
and not too large.

23

5.1.2 Viewing Geometry

Camera viewing directions must keep the targets in view of at least two cameras
at any time for position measurements to be possible: this favours a geometry
where the viewing directions of the cameras are almost parallel so that the
target is seem from the same aspect by all cameras. At the same time, the
position measurements are most accurate if the viewing directions are as close to
orthogonal as possible. In practice, it is not often possible to satisfy both these
requirements simultaneously, and a compromise must be found. Geometries
which work satisfactorily have used angles of 30◦to 60◦between the cameras’
viewing directions.

5.1.3 Reference Points to Calibrate Camera Position and

Pose

At some time during the experiment, a calibration target must be in the field
of view of the cameras. In general it is easiest to use the same target for all
cameras; if separate references are used then the coordinate systems of the
different references must be related to each other. The reference target can be
removed from the measurement volume once it has been imaged. The position
and pose calibration does not need to be repeated unless the camera is moved
(changing the zoom / wide angle setting does not require recalibrating camera
position and pose).
A reference target must include a minimum of 3 points which span a plane

(i.e. which are not co-linear). In practice it is better to use more points, and the
points should span the field of view and also differ in range from the cameras (if
the points are all at the same range from the camera then the estimate of camera
position perpendicular to the viewing axis will be inaccurate). The larger the
proportion of the field of view occupied by the reference target, the better.

5.1.4 Sychronisation

The video files from the cameras must be synchronised in time as well as reg-
istered to the same spatial coordinate system (which the camera position and
pose calibration procedure achieves). To synchronise the videos, an event with
good time accuracy which is visible in both videos must occur.
Suitable methods of synchronising the videos are a clapper board (as used

in Holywood), switching room lights or a torch beam on or off, or a camera
flash. Note that if the event is too brief (e.g. a camera flash) then it is not
guaranteed to be seen by all cameras (as their shutters may have been closed at
the time of the flash). Commercial camcorders maintain frame rates accurately,
so that once cameras have been synchronised there is no need to repeat the
synchronisation within an hour or so unless a camera is stopped / paused and
then restarted.

5.1.5 Other Factors

Other relevant factors include the lighting conditions and target motion. Bright
uniform lighting is the easiest to work with. In low light levels the cameras’
exposure times increase which may blur images of moving targets.

24

Moving Targets

Moving targets can lead to image problems due to interlacing as well as blurring.
Interlacing may be a problem on cameras which do not use a progressive scan to
form the image, and so is sometimes a problem with consumer camcorders. The
problem arises because the image frame is actually recorded as two sub-frames
which are recorded at slightly different times, one made of the odd numbered
lines and the other of the even numbered lines. If the camera’s frame rate is
25 frame s−1 then the sub-frames are recorded 1/50s apart, and if the target
has moved significantly (measured in numbers of pixels moved) in this time the
two sub-frames will give an image of the target with jagged (vertical) edges.
Functions to un-interleave the image can be used (effectively creating a video
with a frame rate of 50 frame s−1 but with poorer vertical resolution); it is
usually easier to track targets using this higher frame rate video.

5.2 Image Filtering

Good filtering of the images to highlight the target relative to its background
significantly eases the data processing and improves the quality of the measure-
ments. Several forms of image filtering have been used.

5.2.1 Temporal Filtering

Where the background is largely static it is useful to be able to isolate changes
in the scene from the static background. This is easily done by subtracting
one image from an earlier one (taking care to ensure the result is expressed in
a format where all colour band signals are positive). Indoor experiments are
particularly suitable for this technique.

5.2.2 Spectral Filtering

A standard method of identifying a target is to mark it with a coloured label.
The label’s colour should differ significantly from any other colours found in the
scene, and the label should be large enough to occupy several pixels (at least
10, say).
The lighting and the camera’s exposure setting affect the colour recorded

by a camera, so the filter settings often need to be adjusted for the particular
colours recorded in an individual experiment.

5.2.3 Correlation Mask

A more sophisticated method of tracking an object through a sequence of images
is to use a correlation mask. A copy of a small section of the image including
the object is taken and then correlated with later frames in the sequence. This
method uses information about the colour and the shape of the target, and so
in principle should be more selective and avoid spurious targets. In practice, a
target’s properties can change as it moves due to variations in lighting across
the field of view and changes in aspect (i.e. the target is viewed from slightly

25

different directions as it moves), and these changes reduce the value of the cor-
relation. Correlation values of 0.5 or better generally correspond to satisfactory
matches between the mask and the object in the image.

5.3 Data Processing Sequence

There are several steps required to collect and process data to obtain measure-
ments of target trajectories. With the system currently in use at Cranfield,
several different programs are used; some are commercially available and oth-
ers have been written specially (notably the programs referred to as AVI1 and
mfitvid, described in appendices C and B respectively). Figure 5.1 shows the
various processing steps, including the three main tasks of (1) image calibration,
(2) camera position and pose calibration, and (3) filming and tracking targets.
Note that the diagram indicates which software tools are required for each of
the processing stages.
More details on the use of the programs are available in Appendices C and

B.

26

Camera Image
Calibration

tan(inclination,
azimuth) = f(col,row)

<IDL code>

Film reference frame
(or other calibration

points)

<field experiment>

Download video to
Quicktime DV file

Windows MovieMaker
Moto DV

Convert Quicktime DV
to uncompressed AVI

Premiere

Extract frames as
bitmaps

AVI1 (1.9)
(or Premiere, etc.)

Measure bitmap
(a) target colours

(b) calibration point
positions

Photoshop

Convert col, row to
tan(inc), tan(az) for
calibration points

AVI1 (1.1/2.1)

Calibrate camera
position and pose

mfitvid

Calculate target
positions

AVI1 (2.9)

Track targets
(inc. filtering to
improve target

contrast)

AVI1 (1.7/2.0, 2.3-2.8)

Identify trajectories

AVI1 (2.9)

Further analysis
Trajectory statistics,
target dynamics, etc.

<Excel, Matlab, ...>

Cranfield Videogrammetry System Data Processing

Create ASCII file of
calibration data for

automatic generation
of mfitvid input files

AVI1 (2.2)

Film targets

<field experiment>

Store target colours or
mask positions in

ASCII file

Figure 5.1: Videogrammetry data processing steps showing the software tools
required at different stages.

27

28

Chapter 6

Discussion and Conclusions

From experience over several projects, the methods described in this report
seem able to produce good quality measurements and are reasonably robust.
The current system is clearly an experimental rather than operational system;
however for research purposes it is very useful especially since it is based on
the use of consumer digital camcorders (e.g. Sony Digital 8 models) which are
readily available, robust, low cost, well-suited to fieldwork, and compatible with
current personal computers.
Practical issues have a large influence on the quality of the measurements

obtained (see Chapter 5). The fundamental accuracy achievable is determined
by geometry, based on the angular resolution of the cameras used. As a guide,
the camcorders used so far (Sony Digital 8) have a resolution of 1 mrad per
pixel when on the wide-angle zoom setting; this is expected to reduce by a
factor of 20 when used with the maximum optical zoom setting (because of the
DV image compression algorithm and other factors 1 mrad is unlikely to be the
strict “accuracy” of the cameras , but it is still a useful guide to the system’s
measurement accuracy).
The main application of the system uses a pair of cameras, however other

configurations may be appropriate in other circumstances. A single camera can
give good measurements if the targets’ motion is constrained in one dimen-
sion. Systems using more than two cameras are also feasible, although the data
processing is likely to be more complex.
A significant aspect of video analysis is that the user can see the events being

measured as well as analyse quantitative data measured from the video. This
is a major advantage of video recording of experiments and helps significantly
with data analysis, e.g. to validate interpretations of measurements. Program
AVI1 includes functions for editing video files to aid this process, for example
to merge two separate video files into one, or to annotate a video with plots of
quantitative data relating to the event filmed.
Figure 6.1 shows a frame from an annotated video file. Coloured targets were

attached to the aircraft’s nose, tail and a wingtip. These targets were tracked
and their locus calculated using the algorithms described in this report. The
frame shown includes the original image with white crosses added to show the
positions of the tracked objects, a filtered version of the image (almost wholly
black except for small areas where the markers were found) and the annotation
area which shows the experiment time in seconds and traces of the horizontal

29

coordinate of the aircraft’s nose (sinusoidal trace) and the size of the detected
target. An annotated video file like this is very helpful in understanding and
interpreting the measurements made, and leads to much less ambiguous findings
than would be the case if it were not possible to combine the video with results
from quantitative analysis.

Figure 6.1: Example annotated video frame from a videogrammetry experiment
produced using program AVI1.

6.1 Further Work

Future developments of the system are possible in several areas. Commercial
packages are available which provide measurement systems based on video tech-
niques. It is not currently the intention to compete directly with such packages;
the objective for the current system is to provide high quality measurements
based on readily available hardware (e.g. consumer electronics camcorders) in
a system suitable for research use and development.
The process of making measurements is lengthy and requires many steps and

several programs. The process could be simplified by some relatively straight-
forward integration of the different programs into a single piece of software. The
effort required could only be justified however for a project of significant size.
Current work uses the epi-polar line solution method since this simultane-

ously solves for position and matches targets in the two images. If the target
matching is known from some other source, then the linearized equations method
(sometimes referred to as the direct linear transformation) is faster and uses the
measurements more “symmetrically” (linearization does however give only an
approximate solution). A hybrid of the epi-polar line and linearized methods
could be developed to make optimal use of the measurements, although the
practical benefits of this hybrid method might not justify the effort required.
Validation of the technique has been only partially carried out. All tests

so far indicate that the measurements are of high quality with uncertainties
corresponding to the errors estimated. Many applications require accuracy for
relative, not absolute, position measurements, which significantly relaxes accu-

30

racy requirements. However, a thorough absolute validation of the technique is
desirable, and is not too difficult in principle.

6.2 Acknowledgements

The work presented in this report draws on experience and results from a number
of other people who have all made contributions to the Cranfield videogramme-
try system. I am pleased to acknowledge the help of Cedric Seynat, Andreas
Braunwart, Galder Bengoa, Mathieu Lalande, Tim Liggins (DataVision Ltd.),
Keith Morrison and Davide Guiraud.

31

32

Bibliography

[1] Finchman W.H., Freeman M.H., Optics, 9th Edition, Butterworth & Co
(Publishers) Ltd, 1980, ISBN 0 407 93422 7

[2] Lalande, M., Dust devils on Mars. SOCRATES placement report, School of
Engineering, Cranfield University, and ENSICA, Toulouse, September 2003.

[3] Press, W.H., Teukolsky, S.A., Vetterling, W.T., and Flannery, B.P.: 1992,
Numerical Recipes in C, Second Edition, Cambridge University Press: Cam-
bridge, 994 pp.

[4] Seynat, C., Quantification of the effect of wind driven wheat motion on SAR
interferometric coherence. PhD thesis, Cranfield University, 2000.

33

34

Appendix A

Camera Image Calibration

The calibrations reported here are based on the experiments and analysis of

Cédric Seynat.

Videogrammetry relies on being able to convert the natural image coordi-
nates (row, column) to geometrical angles (e.g. inclination and azimuth); the
camera image calibration is therefore fundamental to videogrammetry.
This appendix describes a model used to calibrate the camera images and

summarises the results of calibration experiments.

A.1 Calibration Model

The camera image calibration is expressed as coefficients of a function relating
the geometrical angles to the image coordinates.
The video camera lens distorts the image so that the square grid used for

calibration here appears as a characteristic barrel shape. This kind of image
defect is well documented, and it is proved in [1] that the difference between
the actual and aberrated height of an object is proportional to the cube of the
image height. If no distortion were present in the image then the column and row
number for a particular point would be proportional to the coordinates azimuth
and inclination of that point, respectively. With the introduction of distortion
in the image, the relation is no longer simple and needs to be modelled. With
the theoretical treatment presented in [1] it is in principle possible to relate
image coordinates to actual position, although this is not trivial.
Based on trials with several different polynomials and the analysis of [1],

the model form chosen for the calibration is a 3rd order polynomial in x and y
(x is the column number and y is the row number, both measured relative to
the centre of the image) (Equations A.1 and A.2) . α and β are the inclination
and azimuth angles respectively of the point relative to the camera axes. Ex-
periments show that this function (but not lower order polynomials) captures
typical distortions by fitting the calibration data with an error corresponding to
less than one pixel, which is roughly the measurement error for the coordinates
of the calibration points in the image. A higher order polynomial is unnecessary.
The calibrations involve the tangent of the angles rather than the angles

themselves because it is the tangent of the inclination or azimuth that is involved
in the model of the imaging system.

35

tanα = a0 + a1x+ a2y + a3x
2 + a4xy + a5y

2

+a6x
3 + a7x

2y + a8xy
2 + a9y

3 (A.1)

tanβ = b0 + b1x+ b2y + b3x
2 + b4xy + b5y

2

+b6x
3 + b7x

2y + b8xy
2 + b9y

3 (A.2)

The coefficients a0 and b0 are usually set to zero, thus forcing the camera’s
optical axis to pass through the centre of the image (x = y = 0).

A.2 Methodology

For the work at Cranfield, the image calibration has been performed for two
different camcorders (each set to its wide angle setting). The two cameras are
(1) SONY DCR-TR7000E (Digital 8 standard, using DV compression of the
digital image data) and (2) CANON UC-X50Hi (Hi-8 analogue format). For
the experiments, the camera is placed on a tripod at a known distance from
a reference grid which is imaged with the camera. The grid is composed of a
series of perpendicular lines precisely ticked. It was positioned so that lines on
the grid were horizontal and vertical (the vertical alignment was checked with
a plumb line). The camera itself was also carefully aligned vertically.
The grid-to-camera distance was measured from the grid to the inside edge

of focusing ring of the camera. Although in principle the ideal distance should
be measured from the focal plane of the camera, in practice this is not required
as long as the same reference point is always used during all work involving
measurements with the camera.
It is important to note that the grid images were taken with the zoom level

set to its minimum (i.e. maximum wide angle setting). Obviously if a zoom
is applied the relation between row and column number and inclination and
azimuth angles changes. Since the cameras do not apparently provide a quan-
titative value for the zoom level, it is recommended that it is always set to its
minimum or maximum when measurements are made.
A common origin for the reference grid and image was set to be at the cen-

tre of the image (thus defining the camera’s line of sight), since the inclination
and azimuth angles required are defined from this centre position. From mea-
surements of the calibration points’ positions the geometrical angles could be
calculated, and then a least squares routine was used to estimate the model
coefficients and fitting errors.

A.3 Calibration Results

The results of the calibration experiments are summarised in Table A.1 for the
digital SONY camcorder, and in Table A.2 for the analogue CANON camcorder.
These values are based on measurements made by Cedric Seynat with a slight

change to the reported range from the camera to the calibration target plane of
an extra 15 mm (this is to allow for the distance from the camera’s front lens
ring to the estimated optical centre of the lens). The ranges used to calculate
the tangent of the angles is thus 847 mm (= 832+15 mm) for the Sony camera,

36

Inclination coefficients Azimuth coefficients

a0 −3.80226.10−04 b0 9.89496.10−04

a1 −4.47296.10−06 b1 1.02754.10−03

a2 9.36606.10−04 b2 −1.38715.10−07

a3 7.00567.10−09 b3 −3.38471.10−08

a4 −2.85098.10−08 b4 3.36969.10−08

a5 3.49910.10−08 b5 1.14919.10−09

a6 9.08027.10−12 b6 2.41443.10−10

a7 2.18532.10−10 b7 1.20413.10−12

a8 −6.28508.10−12 b8 2.32910.10−10

a9 1.57032.10−10 b9 2.14570.10−11

Table A.1: Coefficients of the 3rd order polynomials obtained with the digital
SONY camcorder

Inclination coefficients Azimuth coefficients

a0 −4.76813.10−05 b0 −6.53703.10−04

a1 −3.64113.10−06 b1 1.32208.10−03

a2 1.21088.10−03 b2 2.97962.10−07

a3 5.96171.10−09 b3 −3.88573.10−10

a4 5.06823.10−09 b4 −1.08683.10−07

a5 −9.01054.10−08 b5 8.75926.10−09

a6 7.23817.10−12 b6 3.57502.10−10

a7 2.96875.10−10 b7 1.28913.10−11

a8 3.00965.10−11 b8 3.38045.10−10

a9 3.24447.10−10 b9 −3.95615.10−11

Table A.2: Coefficients of the 3rd order polynomials obtained with the analogue
CANON camcorder

and 805 mm (= 790 + 15 mm) for the Canon camera. Note also that although
the model fitted allows a0 and b0 to be non-zero, the calibrations actually used
ignore these small offsets, so that the camera’s optical axis is assumed to pass
through the centre of the image.
The average error εα and εβ in the estimation of the angles is calculated as

follows:

εα =

√(
̂tanα− tanαtrue

)2

εβ =

√(
̂tanβ − tanβtrue

)2
(A.3)

Here ̂tanα is the modelled value and tanαtrue is the true angle derived from
the measured positions on the grid; the bar denotes averaging. The error is
defined as the square root of the average square difference between the measured

37

and modelled tangent of the angle (α or β). The average is calculated over all the
data points used to calculate the fitting function. The same definition applies
to εβ .
For quantitative analysis the values of εα and εβ are compared to the average

change in tanα and tanβ corresponding to one pixel in the vertical and horizon-
tal directions respectively. For the digital SONY camcorder (D=832mm), one
pixel in the vertical direction corresponds to tanα=0.00096689 and one pixel in
the horizontal direction corresponds to tanβ=0.00107644 (i.e. approximately 1
mrad in each direction). For the analog CANON camcorder (D=790mm) these
values are tanα=0.00124918 and tanβ=0.00136535 (roughly 1.3 mrad).

εα εα εβ εβ

(absolute value) (in pixels) (absolute value) (in pixels)

Digital SONY camcorder

3rd ord. pol. 0.0006055 ≈ 0.63 0.0008942 ≈ 0.83

No distortion 0.002460 ≈ 2.54 0.003174 ≈ 2.95

Analog CANON camcorder

3rd ord. pol. 0.0007185 ≈ 0.58 0.0005817 ≈ 0.43

No distortion 0.002360 ≈ 1.89 0.003356 ≈ 2.46

Table A.3: Errors on the 3rd order polynomial for the 2 video camcorders

The 3rd order polynomial distortion function provides an improvement com-
pared to the no distortion case.
The final part of the analysis concerns the distribution of the error across

the image. For that purpose the difference between the true values of tanα and

tanβ and the estimated values ̂tanα and ̂tanβ is calculated at each point of
measurement on the grid. The data points on the grid are irregularly spaced,
so for plotting purposes with IDL a regularly spaced grid was generated from
the irregular data, using a smooth quintic surface (procedure ’tri-surf’ in IDL).
The results are plotted in Figures A.1 to A.2.
It is clear that the 3rd order polynomial corrects for the effect of image dis-

tortion, particularly at the edges of the field of view. The remaining errors after
correction are of the same order of magnitude or smaller than the measurement
noise. A similar result is obtained for the analog CANON camcorder.

A.4 Standard Format for the Image Calibration

Results

A simple ASCII file format has been defined to store the image calibration re-
sults, so that they can be read by the programs which need to use this informa-
tion. An example of the format is shown in Table A.4 (file imagecalwide0.txt).

38

(a) Inclination angle

(b) Azimuth angle

Figure A.1: Distribution of the error across the image from the calibration of the
SONY digital camcorder DCR TR7000E without any non-linearity corrections.

39

(a) Inclination angle

(b) Azimuth angle

Figure A.2: Distribution of the error across the image from the calibration
of the SONY digital camcorder DCR TR7000E with 3rd order non-linearity
corrections.

40

imagecalwide0.txt

Contains image calibration coefficients for the Sony camcorders in their wide-angle setting.

File contains one data line summarising the contents (# of cameras, # of coefficients, etc.)

then a line giving the image origin for each camera (origin col, origin row),

and then the lines giving coefficients of the polynomials used to model distortions for

each camera (inclination coefficients, then azimuth; excluding a[0] which is assumed to be 0).

All comment lines are at the head of the file and start with ’#’, data lines start with a white

space character.

#

S.E. Hobbs, 14.05, 9 Aug 2001

2 10

359.5 287.5 359.5 287.5

-4.47296E-6 1.02754E-3 -4.47296E-6 1.02754E-3

9.36606E-4 -1.38715E-7 9.36606E-4 -1.38715E-7

7.00567E-9 -3.38471E-8 7.00567E-9 -3.38471E-8

-2.85098E-8 3.36969E-8 -2.85098E-8 3.36969E-8

3.49910E-8 1.14919E-9 3.49910E-8 1.14919E-9

9.08027E-12 2.41443E-10 9.08027E-12 2.41443E-10

2.18532E-10 1.20413E-12 2.18532E-10 1.20413E-12

-6.28508E-12 2.32910E-10 -6.28508E-12 2.32910E-10

1.57032E-10 2.14570E-11 1.57032E-10 2.14570E-11

Table A.4: Example format of the ASCII file to store the image calibration
parameters (file imagecalwide0.txt). The values used are those reported in
Table A.1.

41

42

Appendix B

Camera Position and Pose

Calibration

This appendix discusses the second type of calibration required for videogram-
metry, which is a measurement of the position and orientation (“pose”) of each
of the cameras involved (the image calibration discussed in Appendix A is the
first type of calibration). The position and pose measurements for each cam-
era must all be expressed in the same reference system. Several methods of
measuring position and pose are available:

1. direct measurement

2. estimation by inverting image coordinates of a set of reference points

3. a combination of direct measurement and estimation by inversion

The image coordinate inversion method is in practice convenient for exper-
imental use in many situations. The program (mfitvid) used in Cranfield’s
experiments to estimate position and pose is described here along with some
test data used to validate the program.

B.1 Program mfitvid

mfitvid is written in Visual C++ as a 32-bit console application (i.e. it runs in
an MS-DOS window from the command line). Within the program, a sim-
ple menu structure is used. The functions available include the basic ones
needed to fit a non-linear model to data (maximum likelihood solution, using the
Levenberg-Marquardt algorithm) plus other functions to allow more extensive
investigation of the model and its inversion.
The program is based on a general model fitting program called modelfit

which uses algorithms described in [3]. The modelfit software has been used in
many applications since 1990 and within its limitations is reliable and robust.
The forward model within mfitvid takes a point’s position in 3-d as its input,
and returns the tangents of that point’s inclination and azimuth angles as its
output: it thus naturally takes a 3-component vector as input and returns a
2-component vector as output. The standard algorithms described in [3] are

43

modified as suggested in [3] to operate with vector inputs and outputs, and
require access to an external file containing the 3-d coordinates of the reference
points used in the calibration (file xvec.txt is an example of this external file
(see Table B.3 for its format)).
Table B.1 lists the main menu options for mfitvid.

Item Option Comments
0 Program help pages Brief notes about the program
1 Load data ... Loads data to which the model is fitted
2 List current data ...
3 Fit model ... Solves for the model parameters
4 Check evaluation ... Runs the forward model
5 Evaluate ... model ...
6 - as option 5 and write ...
7 Evaluate ... solution ...
8 1-d search ...
9 Fit the model ... subsets ... As 3, but repeats for subsets of the input data
Q Return to DOS Quit the program (‘Q’ and ‘q’ both work)

Table B.1: Main menu options for program mfitvid. The option labels are only
shown in abbreviated form.

To use the program to estimate camera position and pose, options 1 (Load
data into the program’s working array) and 3 (Fit model to the current data)
are used. Once a solution has been found, option 3 leads to a results sub-menu
(Table B.2).

Item Option Comments
1 single parameter
2 curvature and covariance
3 Calculate errors ...
4 principal results ... Format required by AVI1

5 full results ... As 4 plus covariance etc.
6 principle results tabulated ... As 4 but all in 1 row
7 curvature and covariance to file As 2 but written to file
8 repeat for different data
Q Return to main menu ‘Q’ and ‘q’ both work

Table B.2: Results analysis sub-menu options for program mfitvid. The option
labels are only shown in abbreviated form.

Of the different output formats available, option 4 of the results analysis sub-
menu generates an ASCII file formatted to be read directly by program AVI1.
This is convenient for calculating target positions. The next section presents a
test dataset used to validate mfitvid which also illustrates its operation. New
users can use these values to check that mfitvid is being run correctly.

44

B.2 Simulation Input Values

The following data have been used to test mfitvid.exe for the calibration of a
single camera system. The test data are stored in two files (datatest.txt and
xvec.txt) for use by the program. These files allow the correct operation of the
program to be tested and illustrate the data formats used. Currently, mfitvid
assumes that file xvec.txt is available in directory c:\video\ref0.
The test data (in file datatest.txt) were generated using the forward model

(menu option 4) of mfitvid with the camera model parameters set to position
= (5 m, 5 m, 1 m), and attitude φ = 3.9 rad, θ = −0.2 rad, ψ = 0.1 rad. The
positions of the calibration points are defined in file xvec.txt; this file should
be modified (but keep the same name) to use other calibration points.

ASCII file containing the vectors indexed by the modelfit variable x (default name xvec.txt).

First 4 lines are comments and are ignored.

First data line has two integers (number of components and number of points),

then there are number of points lines of data, each with number of components values.

3 4

0.000 0.000 0.000

1.000 0.000 0.000

0.000 1.000 0.000

0.000 0.000 1.000

Table B.3: File xvec.txt, which contains the coordinates of the reference points
and defines the fundamental coordinate system used for the measurements.
xvec.txt must be in sub-directory ref0 of video on drive C for the current
version of mfitvid (version 1.10, using video1 v1.2).

ASCII file containing test data to match the coordinate file xvec.txt for mfitvid.exe

Each data line has {x y sig}, where y = model (x) and sig is the uncertainty on y

S.E. Hobbs, 11.29, 8-May-00

0 0.05656 0.0005

1 -0.03259 0.0005

2 0.02976 0.0005

3 -0.14064 0.0005

4 0.05263 0.0005

5 0.07807 0.0005

6 0.19895 0.0005

7 -0.04764 0.0005

Table B.4: File datatest.txt, a test dataset for program mfitvid designed to
be used with reference point data of Table B.3. The data are pairs of values for
the tangents of the inclination and azimuth angles of each of the four reference
points. The x value is actually an index which allows a vector model function
to be used with scalars as suggested in [3].

45

B.3 Solution Method

To solve for the model parameters using program mfitvid.exe (menu option
3) a first guess has to be entered by the user. The first guesses used for the
example dataset are listed in Table B.5.

parameter value quantity
a[1] 4.0 x coordinate of camera position (m)
a[2] 4.0 y coordinate of camera position (m)
a[3] 4.0 z coordinate of camera position (m)
a[4] 4.0 camera azimuth (φ, rad)
a[5] 0.0 camera inclination (θ, rad)
a[6] 0.0 camera rotation angle (ψ, rad)

Table B.5: First guess values used for the test data.

Results for the test case are given in Table B.6. These results are in the
format suitable for input to program AVI1 when it is used to calculate target
positions, and were obtained using option 4 of mfitvid’s results analysis sub-
menu (Table B.2).

Results from modelfit, v 1.10, using video1 v1.2: single camera model (uses c:\video\ref0\)

Calculated on Fri Oct 17 16:32:09 2003

Source data file: testdat.txt in directory d:\video\test\

skipped 0 input records; used records 0 to 7 of 0 to 7

dof = 2, chisq = 0.000, p(X2>chisq) = 0.99995

n.b. SVD routines have deleted 0 (fit), 0 (error bounds) eigenvectors

IF the model gives a good fit, is linear about the solution,

and no eigenvectors have been deleted, the 1 standard deviation

single-variable uncertainties for the solution vector are:

a[1] = 4.9999, +/- 0.03299

a[2] = 5.0000, +/- 0.03311

a[3] = 0.9999, +/- 0.03607

a[4] = 3.9000, +/- 0.00668

a[5] = -0.2000, +/- 0.00525

a[6] = 0.1000, +/- 0.00312

Table B.6: File testres.txt.

mfitvid thus estimates the camera position as (5.00 m, 5.00 m, 1.00 m) with
uncertainties of about 3 cm, and its attitude as φ = 3.9000 rad, θ = −0.2000
rad, ψ = 0.1000 rad, with uncertainties of 3-7 mrad. These values agree well
with those used to create the test data as expected.
The uncertainties can be checked against the first order models developed

in chapter 3 and show satisfactory agreement.

46

In this case the model parameters are: δα = δβ = 5.10−4 rad, r = 7.1 m, a =
1.4 m, b = 0.7 m. The estimated uncertainties are:

δx = 0.018 m

δy, δz = 0.036 m

δψ = 2.5 mrad

δθ, δφ = 5 mrad

47

48

Appendix C

Program AVI1

This appendix documents some of the algorithms used in program AVI1 (written to
manipulate AVI files, and in particular to detect targets, track them, and calculate 3D
trajectories using stereo videogrammetry). The appendix can be used as a reference either
to understand the algorithms currently used, or to help develop improved versions.

The main stages in the data processing are:

1. Identify and track points of interest from a sequence of images.

2. Calculate the target position from the coordinates of points in images from 2 (or
more) cameras.

3. Identify trajectories that best link together the target positions measured.

Note that the word “target” can mean either the point identified in an image or the point
whose position has been measured in 3-d. The term “point” is generally used when
referring to the position in an image, and “target” when referring to a physical object whose
position is known or to be measured in 3-d. The program is written in C, and C data types
are used in the description of data formats.

System calibration

Two stages of calibration are (largely) assumed in this appendix, and are described briefly
in the first section here and in more detail in other parts of the report. These are:

1. Camera image calibration. It is assumed that the natural image coordinates
(column, row) can be converted into the corresponding angles (azimuth,
inclination) of the point away from the camera’s optical axis. This calibration
varies depending on the “zoom” setting of the lens.

2. Camera position and pose calibration. In order to determine target position from
the angular measurements it is necessary to know the positions and orientations of
the cameras involved. These can be estimated by imaging a set of points with
known positions in the user coordinate system (e.g. on a reference target).

The remaining sections of this report describe the three main stages of the data processing
(identified above).

 49

C.1 System Calibration

Two calibrations are required to use the videogrammetry system. The camera image
calibration needs to be performed only once for each camera (assumed to apply to all
models of the camera so far) and each focal length setting (currently only calculated for the
wide angle setting since this is most often used and the camera can reliably be reset to wide
angle after use at other settings).

The camera pose and position calibration needs to be performed each time the camera is
moved. A known reference target is used for this calibration; the reference target defines
the coordinate system in which the target position measurements are to be made.

C.1.1 Camera Image Calibration
It is assumed that the natural image coordinates (column, row) can be converted into the
corresponding angles (azimuth, inclination) of the point away from the camera’s optical
axis. This calibration varies depending on the “zoom” setting of the lens.

The calibration may be performed by taking an image of a grid of points for which the
angles of inclination and azimuth can be calculated and then finding the coefficients of a
least-squares fit of a function to convert image coordinates (column, row) into the angles
(expressed as tan(azimuth), tan(inclination)). (See Appendix A.)

C.1.2 Position and Pose Calibration
The following table lists the steps to be taken to calibrate the camera position and pose.
This process could in principle be automated, but for research use the current method is
adequate. Two custom programs are used: AVI1 and mfitvid (mfitvid is described in
Appendix B).

It is assumed that a suitable reference target has been filmed, and that the film has been
transferred to a file on the computer (AVI1 v 0.36 and earlier needs the video file format to
be .avi with video only, millions of colours, and no compression).

A good reference target is large enough to fill a significant portion of the image (10% or
more) and extends in all three dimensions. Theoretically, at least 3 non-colinear points are
needed, but in practice it is wise to use at least 5-6 points spread in inclination, azimuth and
range.

 50

 Step Remarks

1 Extract an image of the reference target as a
bitmap

AVI1 (option 1.9) can do this.

2 View the image (e.g. bitmap) with a program
able to read out the image coordinates of
points in the image

PaintShop Pro is suitable

3 Read off the image coordinates of all
reference points on the target, and record their
image coordinates and true position (in the
coordinate system defined by the reference
target) in an ASCII file with the format shown
below (e.g. c1poscaldata.txt).

It doesn’t matter where the image
origin is since AVI1 can adjust
for origins that are not lower left
corner.

PaintShop takes the upper left
corner as origin.

4 Prepare the input files required by mfitvid.
These files are (1) a data file, containing an
index (counts from 0), the measured reference
target positions as either tan(inclination) or
tan(azimuth), and the uncertainty on the
measurement, and (2) a file listing the
coordinates of the reference points used. Both
are ASCII files.

Because of the way mfitvid currently
works, it is necessary to place the coordinate
file in directory c:\video\ref0 (create
this if necessary) and for it to have the name
xvec.txt.

AVI1 (option 2.2) takes a file
such as c1poscaldata.txt as input
and creates the data file (e.g.
c1caldata.txt) and
coordinate file (must be
c:\video\ref0\xvec.txt)
needed for mfitvid.

A file containing the coefficients
of the camera image calibration
is required. The wide angle
calibrations for the Sony DCR-
TR7000E (Digital 8 camcorder)
is imagecalwide0.txt (see
below).

The datafile name is arbitrary but
the coordinate reference file
(xvec.txt) must have this
name and be in directory
c:\video\ref0. The sample
files created by AVI1 should be
renamed and moved to the right
directory as necessary.

5 Load the calibration data into the working
memory of program mfitvid

Run program mfitvid, and
choose option 1. Load all
available data points (skip none).

(Check whether an extra data
record has been created by listing
the data with mfitvid option
2.)

 51

6 Solve for the camera position and pose using
mfitvid.

mfitvid option 3 starts the
calculation; load all good data
records available (should be an
even number).

Unless you know one of the
camera coordinates, set all 6
parameters to “free” (flag = 1).
The program converges more
quickly and safely if you give a
good guess for the camera
position and pose (orientation /
attitude). These values should be
in the same coordinate system
and units as defined by the
reference target.

The program usually converges
in a few (<10) iterations. If the
errors have been correctly
specified and all other input data
are good then the chisq value
should be approximately the
same as number of degrees of
freedom (dof).

The results can be inspected
using option 1 of the results
analysis sub-menu.

7 Create the position and pose calibration output
file ready for use by AVI1.

Option 4 of mfitvid’s results
analysis sub-menu creates the
results file in the correct format
(can be read by program AVI1
when calculating target
positions).

The results should be checked for
reasonable-ness; there is often
good agreement with the guessed
positions, but it is possible to
obtain “mirror image” or other
false solutions (if the first guess
was poor).

Table. Steps required for the camera position and pose calibration using programs AVI1
and mfitvid.

 52

% Camera position calibration data file.
% For camera 1, wheat expts 2000 jun 02, film c1jn02z02
%
% Exactly 9 comment lines (ignored, % prefix optional), then line with number of points
% followed by 1 data line for each point giving label (string <= 19 char, no white space),
% x y z values of point in user units and then col and row values for that point in the
% image, values separated only by spaces. Row uses top left as origin (Paintshop).
%
% S.E. Hobbs, 25 April 2003
 6
 A 0.000 0.220 0.280 337 181
 B 0.000 0.000 0.280 385 226
 C 0.310 0.000 0.280 576 187
 D 0.310 0.220 0.280 512 148
 E 0.000 0.000 0.000 399 386
 F 0.310 0.000 0.000 574 339

Table. Example of ASCII file (c1poscaldata.txt) recording the positions of reference target points for the
camera position and pose calibration in the format required by AVI1 to create the files for input to mfitvid.

imagecalwide0.txt
Contains image calibration coefficients for the Sony camcorders in their wide-angle setting.
File contains one data line summarising the contents (# of cameras, # of coefficients, etc.)
then a line giving the image origin for each camera (origin_col, origin_row),
and then the lines giving coefficients of the polynomials used to model distortions for
each camera (inclination coefficients, then azimuth; excluding a[0] which is assumed to be 0).
All comment lines are at the head of the file and start with '#', data lines start with a white
space character.

S.E. Hobbs, 14.05, 9 Aug 2001
 2 10
 359.5 287.5 359.5 287.5
 -4.47296E-6 1.02754E-3 -4.47296E-6 1.02754E-3
 9.36606E-4 -1.38715E-7 9.36606E-4 -1.38715E-7
 7.00567E-9 -3.38471E-8 7.00567E-9 -3.38471E-8
 -2.85098E-8 3.36969E-8 -2.85098E-8 3.36969E-8
 3.49910E-8 1.14919E-9 3.49910E-8 1.14919E-9
 9.08027E-12 2.41443E-10 9.08027E-12 2.41443E-10
 2.18532E-10 1.20413E-12 2.18532E-10 1.20413E-12
 -6.28508E-12 2.32910E-10 -6.28508E-12 2.32910E-10
 1.57032E-10 2.14570E-11 1.57032E-10 2.14570E-11

Table. Image calibration coefficient file (imagecalwide0.txt) for the Sony DCR-TR7000E camcorder at its wide
angle setting. This is used by AVI1 to convert image coordinates to angles of inclination and azimuth.

Results from modelfit, v 1.07, using video1 v1.1: single camera model (uses c:\video\ref0\)

Calculated on Fri Apr 25 11:24:07 2003
Source data file: c1testdat.txt in directory c:\video\ref0\
skipped 0 input records; used records 0 to 11 of 0 to 12
dof = 6, chisq = 104.479, p(X2>chisq) = 2.911854e-020

n.b. SVD routines have deleted 0 (fit), 0 (error bounds) eigenvectors

IF the model gives a good fit, is linear about the solution,
and no eigenvectors have been deleted, the 1 standard deviation
single-variable uncertainties for the solution vector are:
a[1] = -0.3832, +/- 0.02205
a[2] = -1.3223, +/- 0.01660
a[3] = 0.8629, +/- 0.02141
a[4] = 1.3260, +/- 0.01627
a[5] = -0.4560, +/- 0.01397
a[6] = 0.1125, +/- 0.00969

Table. Example results file from program mfitvid, suitable for input to AVI1.

 53

C.2 Point Tracking

The first task in processing the video data is to identify points in each image and then track
them through a sequence of images. Two methods have been used: a colour threshold or a
correlation mask.

C.2.1 Colour Threshold
This method defines a cuboid in colour space (blue, green, red components) and checks
whether each pixel’s colour is within this region. The result is a simple binary value (0 for
colour outside the chosen region, 1 for an acceptable colour match).

In practice, this method requires careful tuning of the mean colour and bounds around the
mean. It is difficult to account for changing lighting conditions as a target moves. Initial
investigations of alternative colour representations (e.g. one that identifies colour brightness
/ intensity separately) have not yet shown any significant improvement on the simple
thresholds.

It is useful to use some form of low-pass filter on the image after colour thresholding to
associate outlier pixels with nearby clusters. Otherwise, spurious single pixel points are
detected near to clusters associated with “real” points. The point position reported is
usually calculated as the centroid of each cluster found.

C.2.2 Correlation Mask
A rectangular region of the image from the first frame is chosen. The correlation between
this region (the mask) and portions of each later frame is calculated, and the maximum
correlation is taken to be the point of the mask in the later frames. The correlation uses
information from all three colour bands.

An option to allow the mask to be updated with the best correlation found is available, but
this tends to lead to wandering of the mask relative to the desired point. A hybrid between
a frozen and a changing mask may be possible and could deal with situations where, say,
the visible mask shape changes as the target moves in the image.

Results so far suggest that the correlation mask is generally more reliable than the colour
threshold although it is computationally more intensive (less than an order of magnitude
more computation).

C.2.2.1 Correlation mask input parameters
Option 2.4 of AVI1 (v 0.34) takes the correlation mask parameters from an external ASCII
file. This is useful if many targets are being tracked, or if analysis has to be repeated
several times. An example input file for correlation mask parameters (caml7t0.txt) is given
below.

 54

Target parameter data file for AVI1 correlation mask tracking

Data from LIRMM expts 10 Apr 2002, initial image frame 0 of camleft7.avi (watch, shoulder, knee)

The first 9 lines are comment lines (prefixed with #) to be discarded; then 1 line with the
number of targets followed by 1 line for each target using the following format:
<centre col> <centre row> <col half-size> <row half-size> <correlation step size> separated by spaces

S.E. Hobbs, 14.03, 01 May 2002
4
591 478 6 6 1
572 325 8 8 1
595 322 6 6 1
569 193 5 5 1

Table. Example input file (caml7t0.txt) defining the AVI1 correlation mask parameters.

Note that the ASCII file parameters are slightly more versatile than the direct user input in
that the mask does not need to be square.

C.2.3 Image column, row origin convention
Images stored in the avi file format have their origin at the bottom left corner. Therefore
column indexes the image from left to right, and row indexes from bottom to top (both
counters starting at 0).

Some graphics programs (e.g. Paintshop) take the image origin as the top left corner, and
the row therefore needs inverting to be compatible with the avi convention.

C.2.4 Results Format
Two data formats are used to pass results for the point tracking. The earliest was based on
an array of float, while more recent work uses a struct.

C.2.4.1 float array

Point number target_list[point][0] target_list[point][1] target_list[point][2]

0 Number of points in this
image

<not used> <not used>

1 col row size

2 col row size

3 col row size

… col row size

Nmaxtarg col row size

 55

Note that target_list[0][0] contains the total number of points stored, and that points are
numbered from 1. The struct method numbers points from 0, and when targets are
detected, targets (with position measured in 3d) are numbered from 0 also.

C.2.4.2 struct
A point_position_record struct is defined to store data specific to an individual frame, and
then a frame_points_record is used to store information about the frame and each point
detected in the frame. It is generally easier to modify data formats based on struct than on
arrays, and the format can be naturally tailored to the type of data to be stored rather than
forcing all parameters to a single type (e.g. float).

C.2.4.2.1 point_position_record

The point_position_record struct is used to record all information about a single point in an
image.

float float float float short

col row correlation size mask_num

C.2.4.2.2 frame_points_record

The diagram below shows the frame_points_record and the associated
point_position_record arrays.

Frame short short point_position_record

0 flag N_point *ppr → ppr[0..pmax]

1 flag N_point *ppr → ppr[0..pmax]

2 flag N_point *ppr → ppr[0..pmax]

… flag N_point *ppr → ppr[0..pmax]

fmax flag N_point *ppr → ppr[0..pmax]

Note that because of the use of pointers to struct in AVI1 to allow the structure sizes to be
set at run-time (and so have more memory available), it is necessary to reserve space first
for fpr[0..fmax] and then separately to reserve space for fpr[frame].ppr[0..pmax] for each
frame = 0 .. fmax.

 56

C.3 Target Position Calculation

The algorithms used in AVI1 to calculate target position from the point positions measured
in each of two images are described in chapter 3 (epi-polar line method).

C.3.1 Data Format
Several data formats are used by the position calculation algorithm within AVI1 either for
data input or for output.

C.3.1.1 Data Input
The point data from the original images are stored either in a float array
(ipos[0..fmax][0..pmax][0..2]) or in the frame_points_record array fpr[0..fmax] (see section
C.2.4.2 above). The following diagram shows how ipos (the float array format) is defined
and used.

Each cell of the array (below) is actually a vector of 3 floats. For targets 1..pmax (≤
Nmaxtarg) the vector is used to store point information as:

float float float

ipos[frame][point][0]

col

ipos[frame][point][1]

row

ipos[frame][point][2]

size / correlation

Vector ipos[0][0] is used as:

ipos[0][0][0]

n_points

ipos[0][0][1]

of frames stored

ipos[0][0][2]

max # of targets
(Nmaxtarg)

i.e. the values used to size the whole float tensor are stored in the first vector.

Vector ipos[frame][0] is used as:

ipos[frame][0][0]

of points detected in this
frame (n_points)

ipos[frame][0][1]

<blank>

ipos[frame][0][2]

<blank>

 57

The float tensor (array of float*) is used as shown below.

Frame↓ Point→ 0 1 … Nmaxtarg

0 <see above> point data point data point data

1 <see above> point data point data point data

2 <see above> point data point data point data

… <see above> point data point data point data

fmax <see above> point data point data point data

C.3.1.2 Results Output
Formats used for the position results are described below (as input formats for the target
trajectory detection, section C.4.1).

C.4 Target Trajectory Detection

From a sequence of target positions measured in 3D space as a function of time, it is useful
to identify positions that relate to the same target, and thus measure the target’s trajectory.
The algorithm described here uses kinematic information (e.g. it may assume that if there
are positions which do not change much from one timestep to the next then these
correspond to the same physical target and therefore form part of that target’s trajectory).
“Label” information is also available, e.g. colour or target size, and this can be used to
check the integrity of the trajectories identified by these kinematic methods (i.e. if the
trajectory really does correspond to a single physical object then the label information
should not change significantly within the trajectory).

C.4.1 Input Information
The input information is assumed to be a set of records (one record per frame pair) giving
the positions of all the targets (up to Nmaxtarg) positions measured from each pair of
frames.

Target_position_record

Target position
record:

x y z λ t

Set of 5 float values: (x, y, z, λ, t)

 58

Frame record

The components of each frame record are: long integer (Ntarg, number of targets
measured), then Ntarg Target_position_record (<tpr>, up to a maximum of Nmaxtarg).
Nmaxtarg-Ntarg blank Target records follow, padding the frame record to a standard size.

Frame 0 Ntarg0 Target_position_record
(tpr)

<tpr> … total of Nmaxtarg
Target records per frame
record; fill up frame
record with blank targets

<tpr>

Frame 1 Ntarg1 <tpr>

Frame 2 Ntarg2

Frame N NtargN

Using a formal record structure makes it easy to update the structure if it is desired to
incorporate new information (e.g. size, colour or mask identification for the target).

C.4.2 Identification of Trajectories
Several steps are followed to identify trajectories. Chapter 4 describes the algorithm’s
principles; this section describes the data structures used in its implementation within
AVI1.

The steps to identify trajectories are: (1) form all simple links (a “link” is defined in chapter
4, it is a pair of position measurements one time step apart), and (2) edit the links by
keeping only the most plausible to leave a set of trajectories.

C.4.2.1 Form all plausible links
In general it may be possible to form a great many links, but many may not be physically
plausible (e.g. because they correspond to motion at a speed much greater than is possible
for the target). A maximum acceptable speed corresponds to setting a maximum acceptable
link displacement.

The process of forming all plausible links is implemented in AVI1 as finding two targets in
contiguous frames which are within the displacement threshold defined by the user. If
several links are within the threshold store the closest M <= Nlinkmax. The algorithm is:

For frame 0 to N-1 (of 0..N), for each target in frame nframe,

(a) calculate ranges to all targets in frame nframe+1

(b) order ranges

(c) find links shorter than dmax (up to Nlinkmax)

(d) store the forward and reverse link information for the relationship

 59

The following diagram illustrates the relating of target positions to make links, and then
creating trajectories from chains of links.

User-defined displacement threshold: |-----------|

 T1 T2 T3 T4 T5

Frame 0 o o o o o

Frame 1 o o
o

o

Frame 2 o o o o o

Frame 3 o o o o
o

 o

…
o

o

o

 o

 o o o o

 o
o

 o o

Etc.

The 5 targets of frame 0 are shown schematically (T1..T5). All but T5 have neighbours
within the user-defined displacement threshold – isolated targets like T5 will be discarded
and do not contribute to a trajectory. The trajectories started by T1 and T2 touch in frames
2 and 3, so multiple links can be formed. The link editing stage of trajectory detection has
to decide which links to keep and which to break.

The link information is stored in a separate array.

Frame 0 Ntarg in
frame 0

Target_link
record

Target_link
record

… total of Nmaxtarg
Target_link records per
frame record; fill up
frame record with blank
targets

Target_link
record

Frame 1 Ntarg1 Target

Frame 2 Ntarg2

Frame N NtargN

Target_link record

of forward links
(Nflink ≤
Nmaxlink)

Forward links (first
Nflink of Nmaxlink
are used)

of reverse links
(Nrlink ≤
Nmaxlink)

Reverse links (first
Nrlink of Nmaxlink are
used)

 60

If the number of forward links is 0 and the number of reverse links is ≥1, then this is the
end of a chain.

If the number of reverse links is 0 and the number of forward links is ≥1 then this is a chain
start.

Link record

Target number (in the forward or reverse frame; note
that the frame number is implicitly set by the base
frame number and the sense of the link – forward or
reverse)

Displacement between the two ends
of the link

C.4.2.2 Find all trajectories
The next step of the trajectory formation algorithm is to find all trajectories using the link
information available.

The algorithm is:

• Search the links array, from frame 0 to Nframe-1 for each target that starts a link.

• Follow the chain to its end (edit all branches to prevent duplication of targets).

• Store the links by recording the starting point (frame, target number) and length of
the trajectory (number of frames).

(Note that a more general routine that would allow all possible links to be followed would
be much more complex to implement and would probably not solve many real problems.
What problems remain with the simple method proposed can be solved with some operator
intervention.)

C.4.2.2.1 Edit all branches

In principle it is possible for a target position to be linked to several positions in adjacent
frames (for either the forward links or the reverse links). In this case it is necessary to
remove all but the most plausible forward and reverse links. The method is:

• If there’s a branch, choose the strongest link (criteria = smallest displacement, or
smallest change in acceleration ~ “jerk”) and break all other links (count and
record all links broken as a check on the algorithm). Apply this for all cases where
there are >1 forward or >1 reverse links.

If the end of a link is found, store the result (starting point, length of chain), increment the
count of trajectories found, and then search for the next starting point.

The format for storing the results of the trajectory search process is:

 61

Array (0..Nmaxtarg x Nframe / 2) of results record (array [0..2] of long)

Row 0 N_count_trajectory (≤
Nmaxtarg x Nframe)

<blank> <blank>

Trajectory 1 Frame number of start
of trajectory

Target number in
frame of start of
trajectory

Length of
trajectory (≥ 2)

Trajectory 2

Trajectory
N_count_trajectory

Row Nmaxtarg x Nframe
/ 2

<blank> <blank> <blank>

(Note that the way this algorithm focuses only on the branch points implies that the
topography of the links away from a branch point is not significant for tracking a target.)

C.4.2.3 Output the trajectories found
The final step in identifying trajectories, is to generate an ordered list of the trajectories
found.

The method used is to search the list of targets (start points, lengths) and order by
(increasing) start frame / target number for the link. Write out the results in a format ready
for plotting (in Excel (list trajectory number, frame number, target number in first frame,
position coordinates as columns, with a blank row between targets) initially, or Matlab or
IDL for example).

• The trajectory array points to the start of each trajectory in the link array;

• The position coordinates are in the input target position array and are pointed to by
the link array.

C.5 Utility Functions

AVI1 includes a variety of utility functions. These give more ways of manipulating video
data or simplify some aspects of data processing. The utility functions include:

 62

Function Description

Image annotation Allows an annotation area to be added to the foot of the
video to show signal traces etc.

File copying (with filtering) Various methods of copying AVI files are provided,
including applying images filters for visualization.

Frame rate control The playback rate of a video can be controlled (option
1.5)

File creation for mfitvid The files needed by mfitvid can be created automatically
(including applying camera image calibrations) from
basic ASCII input files.

File merging Two video files can be combined into one, for example
to show simultaneous views from different cameras.

The following sections describe these utility functions.

C.5.1 Image annotation
An avi video file can be annotated with a plot area showing signal traces synchronized with
the video (see Figure 6.1, chapter 6 for an example). This is a powerful way of illustrating
phenomena and of analyzing behaviour, for example anomalous features of the data can be
explored by combining the quantitative signals with the original video to allow more
detailed study.

The program help option (main menu option 0) describes the format of the ASCII file used
to input signal data to create the footer area containing the signal traces.

C.5.2 AVI file copying / filtering
.avi files can be copied or filtered (including copying a portion of the image for a subset of
the original video frames). These operations can be combined with several image filtering
operations. The filters available include:

• any linear combination of colour bands

• a cuboid can be defined in colour space to binary filter pixels in the images

• a correlation mask can be used

• the difference between frames can be calculated to detect change relative to a
static background

Good filtering of the images helps significantly for the target tracking routines.

 63

C.5.3 Frame rate control
Option 5 from the utilities sub-menu allows the frame rate to be changed from its default
value. This is useful for setting a more convenient frame rate (usually to replay a sequence
at slower than the real-time rate).

C.5.4 Automatic creation of mfitvid input files
Two ASCII input files are required by mfitvid.exe. These files are xvec.txt and the “data”
file (containing an index referring to the input vector and output vector component, the
signal, and the uncertainty on the signal). These files can be created manually or using
option 2.2 of AVI1. An example of the camera position and pose calibration data required
by option 2.2 (file lcamposcaldata.txt) is given below. This method automates tasks such as
converting col, row coordinates into tan(inclination, azimuth) and writing the ASCII files
with their strict format requirements. The next stage of program development may be to
integrate the calibration function of mfitvid within AVI1.

% Camera position calibration data file.
% For left camera, LIRMM expt 10 April 2002.
%
% Exactly 9 comment lines (ignored, % prefix optional), then line with number of points
% followed by 1 data line for each point giving label (string <= 19 char, no white space),
% x y z values of point in user units and then col and row values for that point in the
% image, values separated only by spaces.
%
% S.E. Hobbs, 16 April 2002
 6
 O 0.000 0.000 0.000 272 475
 A 0.500 0.000 0.000 487 467
 B 0.528 0.000 0.318 500 318
 C -0.028 0.000 0.318 259 318
 D 0.500 0.500 0.020 435 426
 F -0.028 0.510 0.318 241 313

Table. File lcamposdaldata.txt: example of the data format for AVI1 to create input files for position and pose
calibration using mfitvid.

C.5.5 File merging
Two video files can be merged into one, e.g. to combine the two stereo views available into
just one file. This allows the two views to be shown conveniently in a way which preserves
their synchronization. The two files may be combined “portrait” or “landscape”, and by
repeating the operation several times it is possible to create a two-dimensional array of
views. Figure 6.1, chapter 6, is an example of file merging in the landscape mode.

C.6 Program Structure

AVI1 is written using Visual C++ (version 6.0) as a 32-bit console application (i.e. it runs
as if from a MS-DOS window). Menus are used to make the various options available,
either directly from the main menu or using sub-menus for a group of related functions.
The following table shows the current menu structure.

 64

It is planned to develop a full MS Windows application version of AVI1: the version
numbers for this will start with 1.00. All functions will be preserved and additional
functionality is anticipated (e.g. the ability to handle avi files with formats other than the
uncompressed, no sound track standard currently assumed).

Main Menu Option Sub-menu Option Remarks

0. Program help pages <no options> Hardly used so far.

1. Utility functions 1. Convert row,col to incl,az Checks image calibration;
similar to but not identical
to 2.1.

 2. Examine the avi file header

 3. Examine the avi file footer

 4. Create new blank avi file

 5. Change the playback rate

 6. Test font functions

 7. Edit the filter parameters Same as 2.0

 8. Print histograms of colour
band intensities

 9. Export frame as bitmap image

2. Target tracking
functions

0. Edit the filter parameters

 1. Check the image calibration
functions

 2. Create files needed by mfitvid Creates ASCII input files
needed – data and reference
files.

 3. Tracks using correlation mask

 4. <as 3 but takes mask
parameters from external ASCII
file>

 5. Tracks using colour
thresholding method

Uses older and slower float
array to store image data

 65

 6. <as 5 but doesn’t write cross-
hairs>

 7. Finds the centre of a label in
an AVI file (thresholding
method)

Uses the faster char array to
store image data

 8. <as 7 but without writing
cross-hairs to the avi file>

 9. Position solution using epi-
polar line method

3. Read an AVI file and
write frame data to a
text file

<no options>

4. File filtering /
copying functions

0. Fast copy of avi file without
filtering options

 1. Copy or filter avi file

 2. Take the difference between
frames

 3. Uninterleave avi half-frames

5. Annotate an avi file <no options>

6. File merge functions 1. Merge files landscape

 2. Merge files portrait

 3. Create a red/green “3d” file

Table. Program AVI1 version 0.34 menu structure.

The data analysis flow for Cranfield’s videogrammetry system based largely on the
operations available within program AVI1 are shown in the following diagram.

 66

Camera Image
Calibration

tan(inclination,
azimuth) = f(col,row)

<IDL code>

Film reference frame
(or other calibration

points)

<field experiment>

Download video to
Quicktime DV file

Windows MovieMaker
Moto DV

Convert Quicktime
DV to uncompressed

AVI

Premiere

Extract frames as
bitmaps

AVI1 (1.9)
(or Premiere, etc.)

Measure bitmap
(a) target colours

(b) calibration point
positions

Photoshop

Convert col, row to
tan(inc), tan(az) for
calibration points

AVI1 (1.1/2.1)

Calibrate camera
position and pose

mfitvid

Calculate target
positions

AVI1 (2.9)

Track targets
(inc. filtering to
improve target

contrast)

AVI1 (1.7/2.0, 2.3-2.8)

Identify trajectories

AVI1 (2.9)

Further analysis
Trajectory statistics,
target dynamics, etc.

<Excel, Matlab, ...>

Cranfield Videogrammetry System Data Processing

Create ASCII file of
calibration data for

automatic generation
of mfitvid input files

AVI1 (2.2)

Film targets

<field experiment>

Store target colours or
mask positions in

ASCII file

vidreport appendix C.doc/pdf, 23/10/03

 67

	vidreport appendix C.pdf
	System Calibration
	Camera Image Calibration
	Position and Pose Calibration

	Point Tracking
	Colour Threshold
	Correlation Mask
	Correlation mask input parameters

	Image column, row origin convention
	Results Format
	float array
	struct
	point_position_record
	frame_points_record

	Target Position Calculation
	Data Format
	Data Input
	Results Output

	Target Trajectory Detection
	Input Information
	Identification of Trajectories
	Form all plausible links
	Find all trajectories
	Edit all branches

	Output the trajectories found

	Utility Functions
	Image annotation
	AVI file copying / filtering
	Frame rate control
	Automatic creation of mfitvid input files
	File merging

	Program Structure

