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SUMMARTY

The extension of the recisctance network analogue method to the study

of a M.0.8.7. structure is deccribed. By mcanc of an iterative technique,
data regarding channel current, fileld distribution, surface charge and

poeition of pinch-off point az function 0; gate and drain voltagen can be
obtained which do not involve the usual 'gradual' channel approximation
Resulte for a particular device geometry are presented.

A discussion of a digital computer approach to the solution of semi-
conductor device current flow problems is included, together with preliminary
results.
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p(x), n(x)

hole/electron concentration

acceptor concentration within base

donor concentration at source and drain contacte.
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electron current density

total channel current

terminals currents at gate, drain, source and base.
diode saturation current

reciprocal of mean thermal energy per degree of {reedom.
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voltage
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RESEARCH PROJECT RU27-1

-

An analogue study of semiconductor device structures

-

Introduction

This report describes work carried out under the fterms of CVD
Contract RU 27-1 during the period from Octoover 1965 to December, 1966.
The presentation is divided into {wo parts. Part A consicste of a
detailed description of the application of the resistance network analogue
technique to the determination of the potential distribution and channel
current flow in a M.0.8.T. device and inéludes a set of results obtained

for a specific device geonetry of practical significance.

The resigtance network method offers the advantage over other methods
of analyeic of not being limited to the so-called 'gradual channel'
approxination, which was Tirst uced by Shockley( )in 1952 in the
discussion of Tield-eifect transistor action and which has formed the
bazic of practically all published studies of M.0.S5.T. devices. On
account of this difference, the model to be discusced is believed to
constitute a sgignificant improvement on earlier models in gpite of the
fact that practical limitations of the present resistance network impose

a nmuiber of restrictions to the accuracy of obtainable solutions.

Part B of thie report considers a numerical method for the solution

of the equation of current flow in semiconductors in their most general

(2)

approach to the formulation of a computing procedure of general applicability

Form. The Teasibility of the method is discuseed. A particular

and preliminary results obtained by its use are presented.



Part A Analogue study of M.0.5.T. structure
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I General

The principles underlying the application of resistance networks
to the cimulation of semiconductor systems in a manner involving the
correct reprecentation of the Boltzmamn terms governing the electron
and hole concentrations as functions of the local potential by means of
matched diode groups have been set oubt in a previous report(s)and elsewhere(4)
and will not be repeated here. Essentially, the method pernmits the
investigation of quasi-equilibrium situations (constant quasi~Fermi
levels) with a maximum of flexibility and eace of operation but requires
procedures of considerably increased complexity if current flow becomes
a gignificant factor in the determination of potential and carrier
distributions. In such cases, in addition to the potential, the values
of the quaci-Fermi levels at every point in the system have to be found

(! complete solution').

The method usged in the present investigation represents a compromise
between the two extremes of quasi-equilibrium methods and complete solution
nethods. It is based upon an iterative techniquef described in detail
in the following sections, which permits the inclusion of an electron
current componecnt along the oxide-semiconductor interface without the

necegsity of represciting electron quasi-Fermi levels eiplicitly.

The device chosen for the analogue study consisted of a silicon
M.0.S.T. ctrvucture which is currently under investigation at the Mullard
Rescarch Laboratories, Salfords, Redhill. The dimensions of this
transistor are shown in Figure 1. The insulating oxide layer of thickness
0.2 nicrone is formed on a cubstrate of p-type eilicon with a donor
concentration, ascumed uniform, of 6.7 X 10*2em™>. The source and drain

contacte, which are taken to consist of heavily doped n-type material, are

Thie technigue was first suggested by Dr. F. Berz of Mullard Research

Laboratories, Redhill, Surrey.



in contact with the bulk material along the interfaces shown. The
base contact to the bulk material is assumed to be ohmic. The device
ie of planar geomctry leading to a deccription in terms of the two-
dimensional model illustrated. The source-drain separation eguals 12

micirons.

The mode of operation to be analysed is the basic D.C. mode,
characterized by a base to source reverse voltage, hence essentially
zero base current, with positive gate and drain voltages. The
poeitively biassed gate will produce partial depletion of holes in the
base region adjacent to the oxide-semiconductor interface and will give
rise, for esufficiently high gate voltages, to a narrow inversion region
along thie interface. Thie provides the electron 'chamnel' involved in
the transport of electrons from source to drain electrode, corresponding
to a current of magnitude J. The situation iz characterized by the

conditions:;

Lb = G & =0§ ¥

o A > Vs; V{3 >V i =i, =7

3

(the subscripte b, g, s, d refer to base, gate, source and drain
respectively).

I{ recombination/generation processes in the base region are neglected
then current flow is solely due to the transport of electrons from source
to drain. This current flow may be described in outline by appealing to
sone intuitive knowledge of the field distribution within the device.

Thus if V? > Ud, then the field at all points along the silicon/oxide
interfaceuvill be directed into the bace region and thus the flow of

electrons will be alon; a surface channel. But if V_< V_ then although

d
57

an inversion layer will be formed near the source, it will 'pinch-off' as
the normal field to the surface decreases, and the current near the drain

will pass through the bulk material.

As indicated above an exact solution by the R N.W.A. (Recistance
Network Analogue) method for this kind of siructure which would involve the
gimulation of inversion in the channel region as well as of bulk depletion,

requires evaluation of hole and electron quasi-Fermi leveles at every point,



and is beyond the scope of the present R.N.W.A. In ite place use is
made of an iterative method to produce & self-consistent potential
distribution and surface current flow pattern. This procedure is
equivalent to replacing the partial differential equations corresponding

to the general current flow situation by a mathematical nodel which corres-

ponds to the iterative analogue solution procedure. This simplified
mathematical model is discussed in Section II. In Section III follows

a description of the R.N.W.A. configuration used. The results obtained
in this manner for the field distribution within the device and for
the drain current/drain voltage characteristics are collected together

and discussed in Section IV.

II = Theory

- e e -

Ouwr model of the device neglects many features which are present
in the practical M.0.S.T., since it is felt either that their inclusion
docs not particularly contribute to the properties of the model, or that
the precisc details of their mcchanisms is not yet clear enough to warrant
their inclugion. Thus it is assumed that there is: .

(a) No recombination or trapping within the bace.

(b) Uniformity of impurity concentration within the base.

(¢) An abrupt transition between oxide and semiconductor regions

at the gate.

(d) No surface impurity states at the oxide/semiconductor interface.

IT.1. The ficld equations

e A S e B

Bace region

- —

In the absence of base current,ib, and of recombination, it may be
ghown that the hole current ie everywhere zero. Thus the hole

concentration is given by
p(x) = ngexp 8(* - ¢(x)) (1)

vhere ¢p - the quasi-firm level for holes - it conctant. The potential

distribution within the base, ¢,(x) is given by Poisson'e eguation
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Vo, = i, ¢ no) - e B, - 0@} (2

Ei1kq U

The electron curreni will be diverpenceless in the absence of recombination

and hole current, thus

V.4, = 0
and if
| = = (:J 1 = -
3, ep W¢ and n = n exp B(o, ¢n)
then
L g2 V6 V6 4+ Ve, Vd =0
B8 n_ =n'-n el e
(3) and (2) are the equations to be solved within the base region. They

are coupled and cannot in general be solved independently. although it may
be expccted that an iterative routine involving the altiernate solution of

(2) and (3), starting from a trial n(x) might converge, but this would

(a1

epend upon the effect of the elecirons upon the electrostatic potential

distribution.

Oxide Layer

The potential distribution within the oxide layer is a solution of the

Laplace eguation
V2%, = 0 (%)

It iz not nccessary to consider the behaviour of the Fermi-levels within

this region, the oxide being congidered a perfect insulator.
R :
Source and Drain n - regions

These are highly doped and if their junction with the base region
approaches an abrupt transition then to a good approximation the potential
of these regions ie constant and egual to the voltage applied. Due to the
high electron concentrations within the regions the Ferni level for
electrone may also be considered constant. Thus

I
i D
¢ = U = constant; ¢n = U = E‘%n E; {5)



The equations (5) may be considered as boundary conditions for the

golution of (2) and (%) within the base region.

II.2 Boundary conditions

Solution may be restricted to two regions, the base and oxide
regions. The boundary conditions are given in terms of the nomenclature
of Figure 2. In this figure the bold lines reprecsent surfaces at which
the potential is fixed i.e. the device contacts. The boundary conditions
pertaining at the remaining surfaces (corresponding to the dotted lines)
are as follows:

(i) end (ii):- field V¥, is tangential to the surface, i.c.

Y¢o.n = 0; this is the condition for no electrostatic flux-leakage.

(iii) and (iv):- these boundaries are artificial since the semi-

conductor ie homogeneous through the boundary. IfV¢;.n = O then

reflection symmetry iz chosen about the surface, a case vhich is
reasonable physically.

(v) The usual continuity conditions for electric fields apply at

this boundary, i.e.

kV®o.n = kK VO, .0 ;5 ¢y = %2 (6)

The boundary conditiones Ifor the electron Fermi level at the source
and drain contacte were mentioned in II.1l. Along all remalning boundaries
shown in Figure 2 the condition‘?&nzg = 0 will apply; thie iz the zero

current condition.

II.5 General

Exact analytic solutions of the problem in the above form may be
ruled out immediately, leaving only methods which involve solving the
finite difference foriulas of the equations of the gyctem. Even thie
would be difficult due to the small grid size necessary to adequately
represent a channel whosc width were many orders of magnitude narrower
than the dimensions of the device. This being =0 the further approximation
that the channcl be of negligible width has been made. As such the effect

of the channel upon the potential distribution iz represented as a gurface



charge at the oxide{semiconductor interface.

This will be a good approximation for drain voltages at which
! pinch~off! does not occur (Vé z Vﬁ), but vhen 'pinch-oli' occurs it
would scem nccessary to represent the electrons in transit between end of
channel and drain as bulk gpace charge. 1In fact in the analysis this
bulk electron charge has been neglected, but it iz quibte likely that ite
inclusion would have had little effect upon the results for two reasons.
Firstly the mobility of the carriers in the channel will be less than in
the bulk material, thus the density of electrons in the bulk will be
effectively reduced. Eecondly, the current flowing in the channel is
gpace charge limited whence the bulk electron charge would only affect the
channel current in so far as it alfecte the potential distribution along
the oxide/semiconductor surface. The model also excludes the effect of
diffusion upon the channel currcnc. It can be shown that the neglect of
the diffveion component of current, which is a common feature of most of
the published work in thie Ticld, does not significantly alter the total

current . A discucssion of this point is presented in Appendix A.

The problem is now in a form thei may be solved by the R.N.W.A.
The electrostatic potential function nuet satisfy the same boundary
conditions as diccussed in II.2 except at the interfacc between oxide
and semiconductor, where the boundary conditions become

1
- = q(x), =<P

K
| | [
(1) ®kV®1.n = kV05.n= L o, £ % B LT
(i) ¢1(x) = ¢5(x)
. Sl g ESP
3
(113 w2t = {
o r 0 > P

E

Two extra paramchers are introduced in the eguations (T). Theege are J -
the total current, and P - the pinch off point. Two more boundary conditions

are required to fix theze parameters for the device in a particular state.



P is fixed by requiring that

- a(x) =0 (8)
=P

A condition for fixing J ie more complex and must be equivalent to the

continuity of clectron quasi~Fermi level at the source. This leads

to difficulties gince an electron Fermi Jevel ies meaningless in the

context of the present model. Instead an intuitive condition is applied.

At some point along the interface, gquite close to the source, the depletion

-

= )

layer will be of minimum width. At thic point X it ies acsumed that
the normal coumponent of field in the oxide is terminated exactly by the

electrons in the channel
(5,) = = Katto 352 |
WHyl = = kR0 3y | (9)

Thiz criterion may secm a little arbitrary, however it is borne out in
practice since the pinch off point ac defined by (8) coincides with the
electrostatic necutral moint on the oxide surface, which is what one

might expect in the practical device.

II.4 The Iterative Solution

e R

The problem has been reduced to that of solving the potential equations

in two regione; in the oxide

V%5 = 0 (10)
and in the cemiconductor
2 ¢ z
V3, = Rlno{NA - n4exp 5(¢p ¢l)} (1)

The conditiones at the boundaries of both regions are of a simple type
except at the common boundary of the two regions, (equatione (7), (8), (9).

However, these may be saticfied iteratively in the following manner.

Choose & itrial pinch off point P(O), a trial current J(O), and a
srial potential distribution V(O)(:{) viere 8 2 52 849, ' hen ihe

boundary conditlons of both regions are of a simple type, since the



complicated boundary conditione have been replaced by a simple Dirichlet
condition, and as we shall see the equations (10) and (ll) may be solved
directly by the analogue method yielding the potential distributions ¢,
and ¢ in the respective regions. The resulting surface charge

distribution q(o)(x) nay be found from (7)
q(o)(x) = no(n§z¢2 - K1V®,).n
and thus a channel current J(O)(x) defined
oV
(0)(yy = (0)(.y —2
Ix) =+ p (%) 5 (13)
(1)

A new trial current J

P
J(l) _ i J[~ J(o)(x)dx

T BP
S

end a new surface potential distribution along the channel V(l)(x) nay

ie defined by

be found by integration of (7iii).

(1) x~
(). -J dx
i) o - (x < P) (1%)
J; ' {x)

2

()

In general q

£ 0 and the end point of the channel may be
=
adjucted accordingly. The procedure is repeated until convergence resulte.

While no theoreticar proof for the convergence from a particular trial
solution, or of the uniqueness of the final solution can be offered, in
practice it was found that the different trial solutions, under otherwise

identical condltions led to the same final solwiion.

II.5 Trial Solution

It ie eseential to have good trial poterntial functions and current
values etc., if the number of ilerations are to be kept small. To this
(s)

end the following simple theory was used.
For a thin oxide layer:
V- V(x)

Vo i B Bt (15)
.
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and for a narrow channel
Kokg _V..?.E"_r.l = - Q(X) (16)
will hold so long as the field on the semiconductor side of the interface

is small as compared to that in the oxide. If the channel current is

constant then

J = q(X)ufyi (17)

Thus from (16), (17) and (18)

Bk
2 av
J =7 (Vv ~ vg) o (18)
Integrating (18) gives
1.5 JLx
2 LYV = S (20)
2 24 IJ.nKEK.O

e e G R S A e A e S e B

The trial current is determined from equation (20), using the
condition that the potential at the end of the chamnel is V.

-
BaE K0T 5
T="1 [EVD B VDVG] (21)

The V(x) which satisfies (20) is the trial potential distribution.

High Drain Voltages (vG < VD)

The pinch off pcint is deterained by the condition V = Vg, and gq(x)
falls to zero at this point as iz seen from (16). Equation (20) may be
used to deierminc the trial current if the pinch off point is known. Thus

- L Kok
(o]

J = - v

L0 g (22)

The trial potential distribution follows immediately from (20).



& 1l

It is apparent that no estimate of the pinch off point may be made on
this model, since the approximations (15) and (16) used in deriving the

expressions above become invalid at the pinch off point.

III - The Resistance Network Analogue

The approach to the problem, approximations and boundary conditions
have been dealt with, in the previous section, on the basis of a continuons
model. In this section the method of =olution by a resistance network
analogue is described. The design of the network is described only in

outline since it involves well established technigues.

IIT.1 Design Considerations

The solution of the Shockley-Poisson equation by means of a resistance
network has been described in last year's report. The analogue consists
of a recicstance network at whose nodes are injected two independent
currentes simuleting respectively the impurity space charge and carrier
space charge. The M.0.S.T. problem is simplified in that only the

majority carriers need be represented in the bulk semiconductor, i.e.

2 e
V30, Rlno'{NA - n,exp B ¢p~¢li}

I

eNA f ni
1l -expBld + n—-«-=¢o :}
K'J-Ko{ * L P NA 1:‘

sinh term elements' and the current generators representing

b3

and so the !

the impurity space charge may be replaced by simple diodes having

characteristice of the form

1=t (P -1).

The potential difference applied to the diodes in the R.N.W.A. is given

by
1, Ui
V=¢ +3ln-=-06;
pBT N,
where the nodes of the resistance network are at a potentizl ¢,;, and

1.
o, * %ﬁn 7~ is a constant potential.
A
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A non-uniform rectangular array of points was chosen to represent
the space of the device. The domain of the representative pointes is
divided into cells by corstructing normal bisectors between neighbouring

6)

pointe lying in the same principal plane. Congsider Poisson'se

equation;
V3% = - p

and integrating over the area of each cell then using Gauss's theorem

[Jor <[ o [

cell cell surface

A finite difference formula is constructed by summing the normal component
of field over the surface of the cell, and by assuming that the charge
of density p is uniform over the cell. Thus, using the notation indicated

in the figure

-6 ¢ o O b 6,0
{fl o . _2 ol hsthy +_{ - . é}hlgﬁz G po%(h1+h2)(h3+h4)
4

hy b 2 hs

Let a fundamental wvalue of resistance R be chosen, then if

- 2R - 2haR

B Listhy Heys hzthy
Ry &= .,2..@55. . R = _2.}_1.4.1:_{
2 = hyihs ° 4~ hp+ho

and

o0 (na#ho)(hatha)ely
L ]-“Q ‘_P\'- QR
then the finite difference equatiocn corresponding to the Shockley-Poisson
equation may be realised by a recictance network.
Similar principles are used in the choice of resistance values for

nodes at or near the surface. Thece are of two types, those of Tixed

potential or those at which the normal component of field is specified.



The condition at the Iinterface in the absence of surface charge are as

follows:

o/

(-32_- a¢
*2 3y "ngjl

or in terme of a finite difference equation

El ¢ b = E.L? O el
hl( o l) = hE( 2 O)
If the terminating resicstance values in the semiconductor and in the oxide
are R; and Rs respectively then il
_ hok,

Rz = thgRl
the boundary conditions at the surface will be satisfied. R; will be
Tixed by conditlions imposed one mesh spacing away from the surface and thus

Rz and the fundamental value of resistance in the oxide is also fixed.

In Figure 3 the network ie shown and the valuecs of resistance (in
megohne) is indicated. Since the potential is more or less constant
in the neutral region, the baze contact has been chifted towarde the gate,
g0 ac to economize on diode pgroups. In fact only about 200 matched diode
groupe were available which necessitated a coarser grid than would
otherwise have been deeirable. The grid is non-uniform rectangular being

finer in the region »f the channel than elsevhere.

-

Measurements have been made of the drain/source characteristic for
a gate voltage of 10 volts. The characteristic is shown in Figure (4).
For several of the measured points the potential and charge variation
along the channel is chowm (Figurc(S». The potential distribution in the
device is also shown for three reprecentative drain voltages (Figures (6),
(7) and (8)), and also the potential distribution is shown in the absence
of a channel (Figure (9)). In Figure (10)is showm a diagram of the device
cshowing the spatial dictribution of mecsh pointe; each mesh point is labelled

with a potential (in volts) as measured for a drain voltage of 20 volts.
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In Figure (11) the dependence of total electvon charge stored in the

channel upon drain voltage is chown.

A program  for the Pegasuc computer was written which used cubic
interpolation of the charge distribution along the channel and deduced
the trial potential function from the voltages along the mesch pointe of
the channel and their neighbours. A though this waes a succesg at
drain voltagec lower than the gate voltage, convergence was never
achieved for drain voltage higher than the gate voltage. Thie was
probably due to scatter in the neasured pointe giving rise to error growth.
However when the iteration procedure was carried through manually, drawing
a 'vest curve' through the measured value of q (x), convergence was
achieved to l% in the value of voltage at any mesh point in at the most

gix iterations.

Typically in the saturation region of an M.0.5.T. the drain
characteristic displays a constant positive slope, proportional to the
gate voltage. Thiz has been attributed to the movement of pinch-off
point towards the source electrode for drain voltages greater than the
gate voltage. Given that the maximum electron concentration occurs at
the source, then the maximum current would occur for a constant electron
concentration over the length of the channel, falling abruptly to zero at
the pinch off point, and an associated constant electric field VG/SPover

the length of the channel. The channel current would then be given by

Vé
5 2y il
Jmax = - en(8) SP

This eonfiguration can clearly never be achieved in practice however
it is our contention that at high drain voltages the maximum current can
be more nearly achieved than at lover drain voltages. Qur resulte on the
R.N.W.A. show that for drain voltazges between 10 and k0O volts and a gate
voltage of 10 volts there is a 19 decrease in channel length and a 43%
inerease in current, which would appear to substantiate our claim that the
value of the slope resistance is not brought about solely by decrease in

channel length.
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A further feature which may be of interest which cccurs in our
results, once again as a consequence of the two-dimensional nature of
the model, is the minimum of electron concentration, along the channel.
This moves towards the drain vollage and disappearsfor quite a low
drain voltage, however it would be of interest Lo determine ites presence
at a drain voltage of zero, when the electron fermi-level is constant
throughout the base region. It is poeesibly worthy of note that the

electron concentration at the source ie independent of drain voltage.

The equi-potential diagrams provide a measure of quality of the
approximation of neglect of transverse field in the integration of the
potential distribution carried out in much of the theoretical work
published. It ies seen that although the approximation might be quite
reasonable near the source at drain voltages lower than the gate voltage,
near the drain the approximation becomes invalid, even at drain voltages

lower than the pate voltage.

V. A Note on Drrors

The truncation error in a partial difference scheme for Poisson's
equation is well known and has been dealt with elsevhere. It is presumed
that the error ies not so large as to distort any feature of the potential
dietribution within the device and we chall not consider it further.

What is of a more serious nature is the error involved in the treatment

of the chamnel cn a discrete model.

I7 diffusion is neglected and the channel ic treated as a surface

charge then the curreant

. ov
=M S

ig precumed constani ~long the length of the channel. At the pinch off
point P, q(x) = 0 and at a point P-e, q(x) =-e€q’(P) thus g% = - g—-ga%rgj
and so long as q'(P) # » then gg'—*w at P, which is rather an "
undesirable consequence. Clearly it arises because of the form of the
approximations which are made, for at the end of the channel the current

does not abruptly terminate, but rather the carriers diffuse into the bulk
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material. This eingularity would be avoided if J = Q,x — P but the

distance BCNE which J tended from ite constant value to zero must be

(_T-, o
such that B;Qx[ ~ %2 in order that the model be consistent with behaviour
in the device. Since in the analogue the mesh spacing along the interface

is much greater than this, there is little point in making a correction

of this order.

It is clear that the solution of the finite difference scheme for
the channel will depend to some extent upon the choice of finite difference
formulae. Also for physically meaningful solutione the maximum component

of field along the channel is bounded

vd-vs

h

oV,
1
ox

<

where h is the mesh spacing. Thus the problem of infinite fileld

strength encountered in the continuous model cannot arise.
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Thies appendix parallels Sections II.4 and II.5 except that the

effect of diffusion is included.
Al - The Iterative Scheme

- S

Choose V(o)(x), J(O), P(O) then, as before, there will be an ascsociated

q O)(x) which may be measured on the analogue.

al®z) =k (ko2 - k901)n (1)

A current distridbution J(O)(x) may Le defined

(o) (o).
J(O)(x) - p’n {q(o)(}:) dav dx(X) o é; dg dx(ﬂ)} (2)

F&

and ite average,

P
J(l) _ é?u[-J(o)(x)dx
S

P
(o) 1
- q(o)fx) gza;—iil dx + “n fq(o)(s) - q(o)(P)]

- SP v B.sp
(3)
A new potential distribution V(l)(x) consistent with J(l) and q(o)(x)
is formed ( )
(1) _y o(0)ryy @) 1 ag"C
4 a “n{q (x) dx T B ax J
whence (1) . (o)
{53 g f‘x dx 1y {g !x}!
A (}C) - i ol o (}-l)
¥n Ox) P ik

O
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(1)

may be de’ined by q(o)(x) x—P(l) =0
or by some other suitable criterion J(l), V'1/(x) are defined by

A new pinch off point P

(3) and (%) and thue the iterative procedure may be repeated.

A2 - The Trial Solution

- -

The procedure is analagous to that in II.5and we tchall only quote

the resulte.

Low drain volt ages VD <V

_________________________ g
LK K j 1
S B L
J=z1s D" 2Vp (Vg + 6)} (%)
. VE(x) - 2V(x)(V + 3)
07y z (v £ &) o
D " “Dpe 3

High Drain Voltage V., > V

e T e

As in II.S it is impossible from such a theory to fix the pinch off

point P. However, given this point
B_KE
- Rh o Jy2,2 ”
v 2.L.SP{VG BVG} (7)

> g 2
- 2V(VG+£-V

S
SP Vc + % VG

(8)

It is sgeen that diffusion is only & minor effect in the mode of
operation which is being considered, since in this simple analysis a gate
voltage of V, + ;-excluding the effect of diffusion, ies equivalent to a

G B

gate voltage of VG if diffusion is included.
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Appendix B Solution with Annroximation of Equations of Electron Fermi
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- L

The quasi-Fermi level for electrons is shown in Section IT to

gatiefly the relationship

V3 o+ B(Ye.ve -~V ¥4 ) =0 (1)

The boundary conditions at source and drain are respectively:

]
2 . _v .1
4n E ¢ (D) =V, B{’ln :

CN

(2)

0. (8) =V -

-

o

and elsewhere over the boundary of itne bese region the normal component
of‘?ﬁn is zero, in particular this is true at the oxide/semiconductor

interface.

It is convenient at this ctage to make the transformation

6 = - %vﬁn % (3)

n

when (1) becomes
V37 - BVzY$ = 0 (4)

For drain voltagee lower than the gate voltage the channel extends from
gource to drain and to a good approximation the current flow is tangential
to the oxidefsemiconduetor interface. The channel is narrow and thus the

approximation that the electron Fermi-level is constant in the direction

normal to the interface is probably reasonable. Thus (4) becomes
d%z dz de
a2 " P dac{ ax ©
Xap
B/ == ax
a1 o ; L
and n e AeBQ(“
dx

&= AL/\eﬁ¢(x)dx + B
o)

wvhere A and B are constante of integration. Applying the boundary
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conditions (2) then

N, BV [ PPax x
i) woo l s Me —%—v———* + 2 (5)
< n' B¢1 n.
i e ax g
whence
% Bo
1, BT BV i x
6 (x) = = E-ﬁn g Jl + [e - 1] =% En ] (6)
g3 JTe7 ax
S
and -
-
3 K J ax
T el R R e S I
y=0 i J P dx
S
sy 1 526 << 0% 1 the ci 1 th the total
If it is assumed that S3x= 3}3 along the channe en e tota

electron density nt(x) may be found by integration.
324 . s(¢_¢n
= o = *
5}; KKQ NA p nie

The approximation is made that both acceptor and hole concentrations are
negligible in comparison with electron concentration near the oxide/

csemiconductor interface. Thus

32y en; P(e-e)
3y2 ke ©

@]

Integrating with respect to ¢ gives

2 en, B(e-o_)
%@f?) o
o

where ¢ is a constant of integration. Presuming boundary conditions
¢ (o

[¢]

and ¢(o) at the interface then

1/0eNE  1/ealelNE P <Py | po  Be(o)
5(537 =§<B—y-(_)'> +[§Knoe le =-e ]
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Now
CE

n. & = n(x, y)

i
and

. 35 D
n (x) = Lt h/\n(x,y)dy -{ 9 §2L91
o

Thus

ol

n, (x) =y Lt { [(Eiib(o)) en: e—ﬁd’r(ew_ e,%(o))] i g%_(g)_}
-2 [ G- *‘*“‘é‘iffl]% -3l

Thie appendix shows that there existe an alternative procedure for

iteration upon the resistance analogue, since from an initial potential
distribution a surface charge distribution may be calculated, set up on
the analogue, and the procedure repeated. The procedure is not equivalent

to that used since the same assumption as to the electron charge distribution
are not made.
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The solubion of idealized modele of semiconductor devices has
undoubtedly contributed to progress both in design and in the evolution
of new types of device from earlier times up to the present. Solutions
of current flow and potential distributions provide insight into the
worlkings of existing devices whilet at the same time giving guide lines
in the design of future models. Theories of device operation, where
they exist, frequently have limited ranges of apolication brought about
by the approximations nccessary to their derivation. In general the
types of approximation in use are relatively few and well known, the
aim of each is to produce a linear problem for which quite freguently
analytic solutione exist. Typically these solutione could scarcely
be bettered within the terms of the model by any other method and it is
those problems which lie outside the scope of these analytic methods

at which this work i= aimed.

Our aim is to solve both time dependent and time independent situations.
However the latter are viewed as asymptotic solutions of the time dependent
equations. There are reasons for thie approach; as far as we know no-one
has solved the time independent current flow eguations without approximation
for any device model, however simple, without resort to approximation, even
in one dimension where the equations become ordinary differential equations.
It would seem that conventional methods of solving ordinary differential
equatione, numerically become highly unstable when applied to the
csemiconductor equations. The only method of solutions seems to be by the
correction of a trial solution according to some algorithm, of which the method
of finding the asymptotic solution of the time dependent equations may be

viewed as a varticular case.

In thie report one particular finite difference representation of
the time dependent equations is analysed and conditions are found for

ite stability and convergence in an approximate manner, the limitations
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of the method are also discussed. As an example the carrier distribution
within an abrupt symmetric p-n diode has been evaluated for the case

of slight reverse bias.

At present the investigation is far from complete and extensions
to the work will include the usze of alternative finite difference
representations; the extension to more than one spatial dimension; the
epeeding up of convergence when only the time independent solution is
of importance, and the extension to a non-uniform rectangular grid of

mesh points.

Following Gunn(l)(l958) we shall express the current and continuity
equations for electrons and holes and Poisson's equation for potential
distribution in normalized unite. The normalized unit of length L
and time T are closely related to the Debye length and dielectric
relaxation time of the intrinsic material, electron and hole concentrations
n, p are normalized to the intrinsic concentration n., and the electrostatic
potential ¢ is normalized to the mean thermal energy per degree of freedom

kT . . E : : :
=, In terms of rationalized m.k.s. units the normalized units are

e
given by
bl
kTKKO 2 2
L=<T-EI'1_>; T:-I-)'— (l)

L

and the equations of semiconductor transport are

u =+ b(1ie - V) (2)
u = -pY -Vp (3)
g% 8 M = LBy (%)
?t— ] J'(P -?_.Pp (S)
V% = -P +n =0 (6)

where uos E? are electron and hole fluxes; b is the ratio of electron

to hole mobility; L np are generation rates of electrons and holes
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respectively by all processes (excluding drift), and @ is tne net impurity
density. These equations are derived on the presumption that the device
may be represented by a system whose particles possess only an averaged
behaviour, and thus it will not ve expected that the solution of eguation

(2) - (6) will give any information with regard to noise.

A further simplification which has been made in the numerical solution
of these equations is with respect to the impurity charge density Q.
In practical systems this is a time varying guantity since the charge
on the traps and recombination centres fluctuate with carrier concentration,
and if it ie required to treat § as such then further conservation
equations of the type (4) (5), may be written for the different charge
states accounted for by the term @ in Poisson's equation. However, for

ease of computation, f has been treated as time=-independent throughout.

I1. The Finite Difference Scheme

If u is eliminated between (2) and (4) and u, between (3) and (5)

then
82=ﬁn+b{Vi -VnVeé - 1v3) {7
%%:xnwva_p + Vp V¢ + pV30 (3)

(7) and (8) are 'diffusion' equations of parabolic type for the electron

and hole density respectively, the eqguations are coupled by the electrostatic
field (E = - V¢) and the space charge density (p = -V3 ). The field

ie determined from (€).

V2¢=-D=R-P-Q (6)

(7) and (8) are solved as initial value prcblems. This involves a choice
of n and p at some initial time t = t_. The equations (7) and (8) are
golved by techniques and difference equations similar to those employed
in the numerical solution of the heat diffusion equation. At t = to and
subsequently at every stage in the procedure the electrostatic field may
be calculated by solution of (6). Thus (7) and (8) may be regarded as
having time and spatially dependent coefficients, E(x,t) and p(x,t), and



may be treated otherwise as though they were linear. It is clear

that a total of s=ix boundary conditions are necessary for the solution
of (6), (7) and (8), i.e. two for each equation. In the simplest

cage all three eguations present boundary value problems but there are a

large number of other possibilities upon which we shall not elaborate.

A finite difference scheme is set up by choosing a grid of points
spanning the domain of x for which solutions are sought. Let there be
N of these points labelled 1 .... N, separated by a constant difference
Ax. A constant step length in time At is chosen and the differentials
occurring in (6), (7) and (8) are replaced by their lowest order finite

difference eguivalents, thus, after some rearrangement

3 J
= . L EAx EVAX
. SR J At J i JF J 2 J i

ny . ny +4ﬁt(nn)i + btzgjg-{ni+l[1 # 45 ] + nini(Ax) _2] + ni_l[l s
(9)
J J
EAx T : EYAx
L) J, At J e T QURE (W 2 J i
P =P +ot(n)]+ (5&72'{Pi+1[l 2 ] Pi{pi(éx) +2] + Pi-lg +'§_"]:}
(10)
] P e e R S
Oler = 20 + 05 = (@x)3(m] - 2§ - 0]) = - (Ax)%
(12)
where

3oL fad L
B = - o [¢i+l ¢1-1]

In the equations above the superscripts denote the time variable
and the subscripts the spatial variable. Having chosen p;, ni for
(i=1....0N), (11) may be evaluated yielding ®., (i=1.... N) then
p?, n? may be evaluated from (9) and (10), when the cycle is complete and
the procedure may be repeated. The particular finite difference
representation chosen is not unique, however it is possibly the most simple
and has the decided advantage of being explicit. Other difference

representations will be considered in due course.




To find the conditions under which the 'exact' solution of the
difference equations approximates to the solution of the partial
differential equation, under the zame conditions, is the problem of
convergence. To find the conditions under which the numerical solution
of the difference equations approximates to the exact solution of the
difference equations is the problem of stability. (The difference
between the exact and numerical solution of the difference equation is
normally due to round off error). Both stability and convergence will
depend upon several factors, in particular these will include, boundary
and initial conditions and step lengthe Ax and At, and in a successful
golution of the problem Ax and At must be chosen, if possible, =0 as to

achieve gtability and convergence everywhere.

Because of the non-linearity of the difference equations, the
derivation of conditions upon the variable quantities mentioned above,
in order that stability and convergence do ensue, is probably impossible.
However, the realization that the physical system represented is almost
certainly well conditioned and that the difference equations provide a
close analogy to the way in which changes of state in the physical system
are brought about, relieve the difficulty, and it ie found that physically

realistic trial distributions and boundary conditions are well-conditioned

in a mathematical sease. However this does not help in the choice of step
lengths.
The criterion which fixes Ax is normally related to accuracy. Mesh

points must be sufficiently close together so that the finite difference
approximation to any particular differential involves little error. Bk i
only the asumptotic sclution is of interest then a knowledge of the bounds
of all the associated functions (e.g. p, %ﬁ, EE%, E, %%, sise) in the
asymptotic state will allow a reasonable choice of Ax, but if details of

the time dependent solution is required then a knowledge of these parameters
at all stages in the procedure becomes important. Usually the information

in either case will not be available and a reasonable guess of the minimum



-

step length must be substituted. For epeed of calculation Ax must be
kept as large as possible since the computing time required rises

approximately as (Ax)™>.

The best method of choosing a value of At igs by the Fourier method
of error analysis for linear difference equations. This is achieved by
linearizing the diffusion equations (9) and (10) by choosing that the

Tield and space charge density are constants over the domain in which

analysis is made. Thus the conditions for stability are really conditions
for a 'local stability'. It is typically found that for the mesh size

which is uced in practical calculatione that the approximation of
constancy of p and E ie not really valid, hcwever the resulte of this

analysis are co ucseful in practice that the method is justified.

(9) and (10) have the same form as
E ol . J J J
0y = ¢i + = [(1-7)¢i+l - (2+§)¢i + (1+7)¢i_l] (12)

if we linecarise the recombination term and include its effect in the §
of (12). We shall analyse the stability of this equation by the Fourier
method and draw some conclusions as to the stability and convergence of

(9), (10) ana (11).

IV. The Drror Analyeis

- am ————  on -

Because of the linearity of (12) an error will propagate according
to thie same difference scheme. At t =20 Fourier analysis may be made
of the error in the row of N mech pcints (we shall label the error as V)

1 iQ!n}:i
¥, = ZAne (13)

=1
n

The error will propagate according to the difference equation (12) and
it mey be shown that if no further errors are introduced for t > 0 then the

error at time t is given by

— B_(o )t ix x,
¥, = Zijﬁne R e B (14)

n
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It ie sufficient to consider the behaviour of the component of

(14), o g T Substituting this into (12)
F g s-{(l-?)e © o (2+t) + (147)e ~ }- (15)

The von Neumann condition for stability is that

emtl €1 (16)
and

eﬁﬁt

2 2
- [1+s{2 cos OAxX - ('§+2)]] + LePr3sin®oAx  (17)

In (16) the freguencies @ were not discussed, we shall now consider that

@ is a continuous variable and thus satisfy (16) in the most restrictive

caese.

Sy

Le sin OAx I:l-s(§+2) + 2s(1+72)cos orA.x:l

oAx = mrt, (n=0, £ 1, *2 ....)
s
1l-s(E+2
cos QX = 52 1+79)

Having found the corditions for the extrema of (17), the von Neumann

condition may be applied at these points.

Case I - sin OAx = O thus cos OAx = % ]
coe QAX = + 1
2

éﬁﬁt! = {1-st)?
and £>0,0% ¢ ¢ %

2

iemﬁﬁlif{§=0,m$s$+w (18)
g<o,§ssso
cos OAx = - 1

eBAt{E = [1-s(&+4)]?
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E >k, 0 g% h2
PAL| 2 . +E
and e €1 if48 ==k, ~0< g€+ (19)
£ <=L, E%E €< 0
1-s(t+2)
an T - = = ——
o R S §g(§15¢)
PALIZ ) 2o, 73(22-1)(1-s(8+2))%
e = I—J—..,‘?’ + (l+79_.)2 (20)
20 PAL| 2 : . ; . )
The condition that |e € 1 is more complicated in this case since

the limits of the range of s depend upon both £ and 7. However for

£ = 0 the conditions become

pstl . . ISR . 2
e Lif -3z<ss 2 3(3472) (2;)

For ¢ # O the conditions for stability may be written as

s_(&,7) < = < 8.(&,7) (22)

in which si(g,y) nay be obtained from (20). In Figure(3)S,(0,7) and S,(¥1,7)
are shown. It is seen that the limitations upon & in order that stability
nmight occur for large 7 is little affected by the actual value of & (at

least for [ |< 1, a condition which will normally hold in practice).

Because of this independent tendency for the conditiones of stability as
defined by Case I and Case II above, it will be convenient to distinguish
instability as being of £ or Y-type. Figure(z)shows the region of &
stability and figure(ﬁ)the region of ¥ stability. In all solutions the
steplength ratlio s must be chosen such that the difference equation is both

7 and & - stable.

It ic seen that there is no region of E-stabilty for any value of =
for - 4 € £ € 0 and that for £ € - I the region of stability corresponds to
s < 0. This result for § < O is unfortunate however, it is believed that inherent

in the difference equations are other types of stability caused by the coupling
of electron and hole flow. This we have not yet been able to analyse,
however it iz felt that the results of this analysie does not represent the

whole truth for § < 0. Confirmation of this is provided by some recent
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resulte (not given here) in vhich recombination/generation effects

were excluded. In this case, according to the results of the above
analysis, instability must occur in either the hole equation or

electron according to the cign of the space charge. However for s < %
there were none of the usgual signs of instability, and it seems likely
that stability in either the electron or hole equation (in terms of the
results of this analysis) is a sufficient condition for overall stability,
though more work is required to test this hypothesis. Having proved the
circumstances under vhich stabllity occurs, it followc that convergence occurs
under the same conditions. (Lax's theorem). John (1952) and Richtmeyer
(1957) have considered the same linear difference equation dbut have been
concerned only with stability and convergence under the assumption that
7,E — 0 whilst = remains finite. Currently we are trying to find the
conditions for convergence of the linearized equation (12) by the matrix

method in the range - 4 € € € 0, but this work is incomplete.

The Abrupt p-n Junction

The carrier profiles within an abrupt p-n junction are shown in
Figure (1B) These results arc obtained as an asymptotic solution of the
time dependent equations. The mesh size Ax = 2 x 1072, At = 1.5 x 10 *
was chosen giving a mesh ratio ﬁ§£72 of 0.375. The doping on either side
of the junction is symmetric with |Q[= 107°. Generation/recombination
effecte are provided by a recombination centre which was choszen as being
centre of the band and having equal trapping constants @ for holes and

elcctrons. Thus

ant(np - 1)

= ﬁp T n+ p+ 2
where n, is the trap density, assuned uniform over the domain. The choice

was made @ = 10, n, = 10 giving a minority lifetime in the bulk of 1072

t ,
and an associated minority carrier diffusion length 10" t.  The “charge

on the recombination centres is neglected in Poisson's equation.

The boundary conditions were chosen as follows:-
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¢ = 11.8155, ¢; = 0

N
BaP) # Dby & 1
91=DN=0
vhere the subescripte 1, N refer to p and n-type boundaries. The trial

solution was given by

n.p, = 2; n,

;P -8, =0 {1 = 2, ... Nel)

1

The number of mesh pointe gpanning the x domain was 100, and 1,000
iterations were performed to achieve the results shown in figure 1B.
After this time the maximum proportional rate of change of carrier
concentration per interval of timezﬁt,(—fig), was less than 0.01%. The
ratio b of electron to hole mobility is unity and thus the profiles

possess the symmetry n(x) = p(- x).

L]

‘This model was chosen for speed and convergence and clearly does not
attempt to simulate a practical device, as is seen where the dimensionless
units are converted into practical unite using data for silicon. The
reculte obtained also gave complete information regarding current
distrivution, generation rate, electric field and potential distribution.
We have omitted to give these here because of certain inaccuracies in the
computed solution all of which may easily be remedied. The inaccuracies
are due to:-

(a) The step length Ax is too large to give an accurate finite difference
representation in the space charge region.

(b) Poisson's equation was solved using a double integration by the
trapezoidal rule. This was inaccurate in the region of the Jjunction.

For these reasons it is best not to draw any physical conclusions from

the solution, which was included only to demonstrate the feasibility of

eolving junction problems.
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A method has been described for the solution of one-dimensional time
varying semiconductor current flow problems and results have been presented
in a sinple case. Approximate conditions for stability of solution
have been discussed. Below we summarize the conditions under which
solution may be difficult under existing circumstances. Two types of
difficulty are expected. The first is the absence, in a particular
problem of either stability on convergence. The second is more trivial,
the amount of computer time required may render the solution impractical.

A way of alleviating this second difficulty is by the use of a non-uniform
rectangular mesh with respect to its spacing both in x and t directions.
The number of mnesh points necesgsary is immediately reduced and it is likely
that the average step length in time At may be increased, hence reducing
the amount of computation. The first diificulty may probably be removed
by the use of alternative difference formula, though it is likely that all

problens may be solved by the use of sufficiently small sten lengths.
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FIG 6 POTENTIAL DISTRIBUTION IN MOST WITH DRAIN VOLTAGE CF 5 VOLTS



FIG 7 POTENTIAL DISTRIBUTION 1IN MOST WITH DRAIN VOLTAGE OCF 10 VOLTS
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FIG 9 POTENTIAL  DISTRIBUTION IN MOST WITH DRAIN VOLTAGE OF 20 VOLTS

IN THE ABSENCE OF A CHANNEL
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FIG. 11 TOTAL ELECTRON CHARGE IN CHANNEL
AS A FUNCTION OF DRAIN VOLTAGE
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FIG. B2 REGION OF £-SlaBiLITY (SHADED) FIG. B3 REGION OF ¥-STABILITY (SHACED)



