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SUMMARY 

The e::tension of the resistance network analogue method to the study 
of a M.O.S.T. structure is described. 	By msans of an iterative technique, 
data l'egarding channel c=ent, field distribution, surface charge and 
position of pinch-off point as function of gate and drain voltagen can be 
obtained which do not involve the usual 'gradual' channel appr=imation 
Rssults for a particular device geometry are presented. 

A discussion of a digital computer approach to the solution of semi-
conductor device current flow problems is included, together with preliminary 
results. 
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List of symbols 

p(x), n(x) 	 hole/electron concentration 

NA 	
acceptor concentration within base 

N
D 	

donor concentration at source and drain contacts. 

n. 	 intrinsic carrier concentration 

..111 	 electron current density 

total channel current 

,
dI s , o 	

terminals currents at gate, drain, source and base. 

diode saturation current 

= 	 reciprocal of mean thermal energy per degree of freedom. 
lzT 

• , 0
n 	

hole and electron fermi levels. 
p 

0 	 electrostatic potential function 

ll 	 voltage 

✓ potential along semiconductor/oxide interface 

th. 
V. 	 potential of I node 

Vs, Vd, V5, Vb 	terminal voltage at grid, drain, source and base. 

e ragnitude of electronic charge 

K permittivity of free space 

dielectric constant 

Fin 
	

electron nobility 

P, S, D 	 position of pinch off point, source and drain along 
oxide/semiconductor inr,;erface 

L 	 oxide thickness 

th 
a, 	 charge on 

. node 
1. 

q(x) 	 charge distribution 

h fundamental mesh spacing 

fundamental resistance value. 
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RESEARCH PROJECT RU27-1 

An analogue study of semiconductor device structures 

Introduction 

This report describes work carried out under the terms of CVD 

Contract RU 27-1 during the period from October 1965 to December, 1966. 

The presentation is divided into two parts. Part A consists of a 

detailed description of the application of the resistance network analogue 

technique to the determination of the potential distribution and channel 

current flow in a M.O.S.T. device and includes a set of results obtained 

for a specific device geometry of practical significance. 

The resistance network method offers the advantage over other methods 

of analysis of not being limited to the so-called 'gradual channel' 

approximation, which was first used by Shockley(1)in 1952 in the 

discussion of field-effect transistor action and which has formed the 

basis of practically all published studies of M.O.S.T. devices. 	On 

account of this difference, the model to be discussed is believed to 

constitute a significant improvement on earlier models in spite of the 

fact that practical limitations of the present resistance network impose 

a number of restrictions to the accuracy of obtainable solutions. 

Part B of this report considers a numerical method for the solution 

of the equation of current flow in semiconductors in their most general 

-porm.(2) The feasibility of the method is discussed. A particular 

approach to the formulation of a computing procedure of general applicability 

and preliminary results obtained by its use are presented. 
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Part A 	Analogue study of M.O.S.T. structure 

General 

The principles underlying the application of resistance networks 

to the simulation of semiconductor systems in a manner involving the 

correct representation of the Boltzmann terms governing the electron 

and hole concentrations as functions of the local potential by means of 

matched diode groups have been set out in a previous report(3)and elsewhere(4)  

and will not be repeated here. Essentially, the method permits the 

investigation of quasi-equilibrium situations (constant quasi-Fermi 

levels) with a maximum of flexibility and ease of operation but requires 

procedures of considerably increased complexity if current flow becomes 

a significant factor in the determination of potential and carrier 

distributions. 	In such cases, in addition to the potential, the values 

of the quasi-Fermi levels at every :point in the system have to be found 

(1 
 
cormlete solution' ) . 

The method used in the present investigation represents a compromise 

between the two extremes of quasi-equilibrium methods and complete solution 

methods. 	It is based upon an iterative technique, described in detail 

in the following sections, which permits the inclusion of an electron 

current component along the oxide-semiconductor interface without the 

necessity of represcting electron quasi-Fermi levels e:1-plicitly. 

The device chosen for the analogue study consisted of a silicon 

M.O.S.T. structure which is currently under investigation at the Mullard 

Research Laboratories, Salfords, Redhill. 	The dimensions of this 

transistor are shown in Figure 1. The insulating oxide layer of thickness 

0.2 microns is formed on a suostrate of p-type silicon with a donor 

concentration, assumed uniform, of 6.7 X 1013am-3. The source and drain 

contacts, which are taken to consist of heavily doped n-type material, are 

This technique was first suggested by Dr. F. Berz of Mullard Research 

Laboratories, Redhill, Surrey. 
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in contact with the bulk material along the interfaces shown. The 

base contact to the bulk material is assumed to be ohmic. The device 

is of planar geometry leading to a description in terms of the two-

dimensional model illustrated. The source-drain separation equals 12 

microns. 

The mode of operation to be analysed is the basic D.C. mode, 

characterized by a base to source reverse voltage, hence essentially 

zero base current, with positive gate and drain voltages. The . 

positively biassed gate will produce partial depletion of holes in the 

base region adjacent to the oxide-semiconductor interface and will give 

rise, for sufficiently high gate voltages, to a narrow inversion region 

along this interface. This provides the electron 'channel' involved in 

the transport of electrons from source to drain electrode, corresponding 

to a current of magnitude J. The situation is characterized by the 

conditions: 

ib  . 0; ig  = 0; Vd  V ; V 
g0 

> V, ; 

(the subscripts b, g, s, d refer to base, gate, source and drain 

respectively). 

If recombination/generation processes in the base region are neglected 

then current flow is solely due to the transport of electrons from source 

to drain. This current flow may be described in outline by appealing to 

some intuitive knowledge of the field distribution within the device. 

Thus if V 	Vd, then the field at all points along the silicon/oxide 

interface will be directed into the base region and thus the flow of 

electrons will be alon:', a surface channel. But if V < Va 
 then although 

an inversion layer will be formed near the source, it will 'pinch-off' as 

the normal field to the surface decreases, and the current near the drain 

will pass through the bulk material. 

As indicated above an exact solution by the R N.W.A. (Resistance 

Network Analogue) method for this kind of structure which would involve the 

simulation of inversion in the channel region as well as of bulk depletion, 

requires evaluation of hole and electron quasi-Fermi levels at every point, 
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and is beyond the scope of the present R.N.W.A. 	In its place use is 

made of an iterative method to produce a self-consistent potential 

distribution and surface current flow pattern. This procedure is 

equivalent to replacing the partial differential equations corresponding 

to the General current flow situation by a mathematical model which corres-

ponds to the iterative analogue solution procedure. This simplified 

mathematical model is discussed in Section II. 	In Section III follows 

a description of the R.N.W.A. configuration used. The results obtained 

in this manner for the field distribution within the device and for 

the drain current/drain voltage characteristics are collected together 

and discussed in Section IV. 

II - Theory 

Our model of the device neglects many features which are present 

in the practical M.O.S.T., since it is felt either that their inclusion 

does not particularly contribute to the Properties of the model, or that 

the precise details of their mechanisms is not yet clear enough to warrant 

their inclusion. Thus it is assumed that there is:.. 

(a) No recombination or trapping within the base. 

(b) Uniformity of impurity concentration within the base. 

(c) An abrupt transition between oxide and semiconductor regions 

at the 

(d) No surface impurity states at the o:cide/semiconductor interface. 

II.1. The field equations 

Bace region 

In the absence of base current,ib, and of recombination, it may be 

shown that the hole lurrent is everywhere zero. Thus the hole 

concentration is given by 

P(2) = niexp got)  oW) 
	

(1) 

where 4 - the quasi-firm level for holes is constant. The potential 

distribution within the base, 0/(x) is given by Poisson's equation 
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V201  . KI
e 

4-17 	 - n.exp P(0 - 4)1(x))-1 	(2) K°  A 

The electron current will be divergenceless in the absence of recombination 

and hole current, thus 

= 

j1.1-"2-eilnlW n  andll= 11.1exP P(01 - n) 

1 
V"i0n 	 V4  n-n 1:V0n = 0 

(3) and (2) are the equations to be solved within the base region. They 

are coupled and cannot in general be solved independently. although it may 

be expected that an iterative routine involving the alternate solution of 

(2) and (3), starting from a trial n(r) might converge, but this would 

depend upon the effect of the electrons upon the electrostatic potential 

distribution. 

Oxide Layer 

The potential distribution within the oxide layer is a solution of the 

Laplace equation 

v202 - 0 	 (4) 

It is not necessary to consider the behaviour of the Fermi-levels within 

this region, the oxide being considered a perfect insulator. 

Source and Drain n-roc:ions 

These are highly doped and if their junction with the base region 

approaches an abrupt transition then to a good approximation the potential 

of these regions is constant and equal to the voltage applied. Due to the 

high electron concentrations within the regions the Fermi level for 

electrons may also be considered constant. Thus 

0 = U= constant; 0 n = U- .1,Zn N 
n. 1 
	 (5) 

and if 

then 
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The equations (5) may be considered as boundary conditions for the 

solution of (2) and (3) within the base region. 

11.2 Boundary conditions 

Solution may be restricted to two regions, the base and oxide 

regions. The boundary conditions are given in terms of the nomenclature 

of Figure 2. In this figure the bold lines represent surfaces at which 

the potential is fixed i.e. the device contacts. 	The boundary conditions 

pertaining at the remaining surfaces (corresponding to the dotted lines) 

are as follows: 

(i) and (ii):- field 702 is tangential to the surface, i.e. 

7112.n = 0; this is the condition for no electrostatic flux-leakage. 
(iii) and (iv):- these boundaries are artificial since the semi-

conductor is homogeneous through the boundary. If 170/.n = C then 

reflection symmetry is chosen about the surface, a case which is 

reasonable physically. 

(v) The usual continuity conditions for electric fields apply at 

this boundary, i.e. 

KS.(12.n = KI7G/.n 
	

°I r°2 	 (6) 

The boundary conditions for the electron Fermi level at the source 

and drain contacts were mentioned in 11.1. Along all remaining boundaries 

shown in Figure 2 the condition VO .n = 0 will apply; this is the zero — n — 
current condition. 

11.3 General 

Exact analytic solutions of the problem in the above form may be 

ruled out immediately, leaving only methods which involve solving the 

finite difference formulae of the equations of the system. Even this 

would be difficult due to the small grid size necessary to adequately 

represent a channel whose width were many orders of magnitude narrower 

than the dimensions of the device. 	This being so the further approximation 

that the chain' .:1 be of negligible width has been made. As such the effect 

of the channel upon the potential distribution is represented as a surface 
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charge at the oxide/semiconductor interface, 

This will be a good approximation for drain voltages at which 

I pinch-off! does not occur (VG % VD), but when 'pinch-of=' occurs it 

would seem necessary to represent the electrons in transit between end of 

channel and drain as bulk space charge. In fact in the analysis this 

bulk electron charge has been neglected, but it is quite likely that its 

inclusion would have had little effect upon the results for two reasons. 

Firstly the mobility of the carriers in the channel will be less than in 

the bulk material, thus the density of electrons in the bulk will be 

effectively reduced. Secondly, the current flowing in the channel is 

space charge limited whence the bulk electron charge would only affect the 

channel current in so far as it affects the potential distribution along 

the oxide/semiconductor surface. The model also excludes the effect of 

diffusion upon the channel current. It can be shown that the neglect of 

the diffusion component of current, which is a common feature of most of 

the published work in this field, does not significantly alter the total 

current. 	A discussion of this point is presented in Appendix A. 

The problem is now in a form that may be solved by the R.N.W.A. 

The electrostatic potential function must satisfy the same boundary 

conditions as discussed in 11.2 except at the interface between oxide 

and semiconductor, where the boundary conditions become 

q(x), 	< p 

K 	K -37/  2 . 11 = , t. 
0, 	x 	P 
	 (7) 

(ii) 01(x) - 02(x) 

< P 
64) (iii) p ci(x)s—  = ox 0, x > P 

Two extra paramer;ers are introduced in the equations (7). These are J -

the total current, and P - the pinch off point. Two more boundary conditions 

are required to fix these parameters for the device in a particular state. 



P is fixed by requiring that 

= 0 
x=P 

A condition for fixing J is more complex and must be equivalent to the 

continuity of electron quasi-Fermi level at the source. This leads 

to difficulties since an electron Fermi level is meaningless in the 

context of the present model. Instead an intuitive condition is applied. 

At some point along the interface, quite close to the source, the depletion 

layer will be of minimum width. At this point xo  it is assumed that 

the normal component of field in the oxide is terminated exactly by the 

electrons in the channel 

q(x0) = - K2K0 	
(9) 

This criterion may seem a little arbitrary, however it is borne out in 

practice since the pinch off point as defined by (8) coincides with the 

electrostatic neutral point on the oxide surface, which is what one 

might expect in the practical device. 

II.!. The Iterative Solution 

The problem has been reduced to that of solving the potential equations 

in two regions; in the oxide 

V20 2  = 0 

and in the semiconductor 

V2-13. =
Kilt° 	A 	

niexp p(4, 	cni)1 

The conditions at the boundaries of both regions are of a simple type 

except at the common boundary of the two regions, (equations (7), (8), (9). 

However, these may be satisfied iteratively in the following manner. 

Choose a trial pinch off point P(°), a trial current J
(0) and a 

trial potential distribution V(°)(x) where S < x < p(°). 	Then the 

boundary conditions of both regions are of a simple type, since the 

8 

(8) q(x) 



be found by integration of (7iii). 

- J(1)  f x dx 

n 	x 
V(i )(,:) (x < P) 	( 14 ) 

9 

complicated boundary conditions have been replaced by a simple Dirichlet 

condition, and as we shall see the equations (10) and (Ill) may be solved 

directly by the analogue method yielding the potential distributions 

and 02  in the respective regions. The resulting surface charge 

distribution q(0)/  kx) may be found from (7) 

q(0 )(x.) = Ko(KE02  Kyal).n 

and thus a channel current J(0)(x) defined 

3V 
µ q(°)(„) (13) 

A new trial current J(1)  is defined by 

J (1) 	1 	(°) j PJ 

and a new surface potential distribution along the channel V(1)(x) may 

In general q(°)(x)1 	A 0 and the end point of the channel may be 
.1) 

adjusted accordingly. The procedure is repeated until convergence results. 

While no theoretical proof for the convergence from a Particular trial 

solution, or of the uniqueness of the final solution can be offered, in 

practice it was found that the different trial solutions, under otherwise 

identical conditions led to the same final solution. 

11.5 Trial Solution 

It is essential to have good trial potential functions and current 

values etc., if the number of iterations are to be kept small. To this 

end the following simple theory was used.(5) 

For a thin oxide layer: 

V - V(x) 

L 
'74)2 .n 	g  (15) 
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and for a narrow channel 

K,It„ S74)9.ri = - q(x) 
	

(16) 

will hold so long as the field on the semiconductor side of the interface 

is small as compared to that in the oxide. If the channel current is 

constant then 

J 	v 
= ci(x )1111;-  

Thus from (16), (17) and (18) 

lin"t
L  o 
	dV J - 	(V - V ) dx 

Integrating (13) gives 

2 	- V V 
JLx  
µ 
n o 

(20) 

Low Drain Voltages (VG  > VD ) 

The trial current is determined from equation (20), using the 

condition that the potential at the end of the channel is VD. 

J 	L.ED L2 
- V V nK 1! o  	D 

1  2 	
DG 
	 (21) 

The V(x) which satisfies (20) is the trial potential distribution. 

High Drain Voltages (VG  < VD) 

The pinch off point is d.2ter.dined by the condition V Vg, and q(x) 

falls to zero at this noint as is seen from (16). Equation (20) may be 

used to determine the trial current if the pinch off point is known. Thus 

J 	
n 	

V
2 

	

2L.SP a 
	 (22) 

The trial potential distribution follows immediately from (20). 

(17)  

(18)  
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It is apparent that no estimate of the pinch off point may be made on 

this model, since the approximations (15) and (16) used in deriving the 

expressions above become invalid at the pinch off point. 

III - The Resistance Network Analogue 

The approach to the problem, approximations and boundary conditions 

have been dealt with, in the previous section, on the basis of a continuous 

model. In this section the method of solution by a resistance network 

analogue is described. The design of the network is described only in 

outline since it involves well established techniques. 

III.1 Design Considerations 

The solution of the Shockley-Poisson equation by means of a resistance 

network has been described in last year's report. The analogue consists 

of a resistance network at whose nodes are injected two independent 

currents simulating respectively the impurity space charge and carrier 

space charge. 	The M.O.S.T. problem is simplified in that only the 

majority carriers need be represented in the bulk semiconductor, i.e. 

v201  = 
KI
e
K (){NA   - niexp 0 4, p _0 1/ 

eNA r 	n. 
-) 1 - exp A 10 + 1?,n 	- 

K1K0 	 P 	NA 

and so the 'sinh term elements' and the current generators representing 

the impurity space charge may be replaced by simple diodes having 

characteristics of the form 

The potential difference applied to the diodes in the R.N.W.A. is given 

by 

V = t + ltn 

where the nodes of the resistance network are at a potential ti, and 
n. 1p 1 0 + -1 — is a constant potential. p 	41 N 
A 

n. 1 
- 

A 
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A non-uniform rectangular array of points was chosen to represent 

the space of the device. The domain of the representative points is 

divided into cells by corstructing normal bisectors between neighbouring 

points lying in the same principal plane.(6) Consider Poisson's 

equation; 

v24)  

and integrating over the area of each cell then using Gauss's theorem 

	

JIV20dT 	 pdT =P70 .ds 

cell 
	

cell 	surface 

A finite difference formula is constructed by summing the normal component 

of field over the surface of the cell, and by assuming that the charge 

of density p is uniform over the cell. Thus, using the notation indicated 

in the figure 

10 	
0 
2 	
—0 
0 h3.1-h4 { 3  0 	 

0 
4
-0 

 c;.
} 
 4.41 	 1 

h3  h4  2 - - p o h / 11-h2 )(h74-h4 ) o 
hi 	 h2 	2  

Let a fundamental value of resistance R be chosen, then if 

and 

R  = 211,11 
I  h3-Fh4  

_  
"3 — hi+h2 

R2  
h3+h4  

2h R 
R4 = 

1h1±21013±h41e_HA 
4n:KoR 

then the finite difference equation correspondinz to the Shockley-Poisson 

equation may be realised by a resistance network. 

Similar principles are used in the choice of resistance values for 

nodes at or near the surface. These are of two types, those of fixed 

potential or those at which the normal component of field is specified. 
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The condition at the interface in the absence of surface charge are as 

follows: 

LIL2 6$  K2 dy = K1  ;71  

or in terms of a finite difference equation 

h/  o 	- h2 	o 

If the terminating resistance values in the semiconductor and in the oxide 

are R1  and R2 respectively then if 

1121.5_3  R2 - K2 RI 111 

the boundary conditions at the surface will be satisfied. R1  will be 

fixed by conditions imposed one mesh spacing away from the surface and thus 

R2 and the fundamental value of resistance in the oxide is also fixed. 

In Figure 3 the network is shown and the values of resistance (in 

megohms) is indicated. Since the potential ie more or less constant 

in the neutral region, the base contact has been shifted towards the gate, 

so as to economize on diode groups. 	In fact only about 200 matched diode 

groups were available which necessitated a coarser grid than would 

otherwise have been desirable. The grid is non-uniform rectangular being 

finer in the region of the channel than elsewhere. 

IV Results 

Measurements have been made of the drain/source characteristic for 

a gate voltage of 10 volts. The characteristic is shown in Figure(4). 

For several of the measured points the potential and charge variation 

along the channel is shown (Figure (5)). 	The potential distribution in the 

device is also shown for three representative drain voltages (Figures (6), 

(7) and (8)), and also the potential distribution is shown in the absence 

of a channel (Figure (9)). 	In Figure (10) is shown a diagram of the device 

showing the spatial distribution of mesh points; each mesh point is labelled 

with a potential (in volts) as measured for a drain voltage of 20 volts. 
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In Figure(11)the dependence of total electron charge stored in the 

channel upon drain voltage is chown. 

A program, for the Pegasus computer was written which used cubic 

interpolation of the charge distribution along the channel and deduced 

the trial potential function from the voltages along the mesh points of 

the channel and their neighbours. Although this was a success at 

drain voltages lower than the gate voltage, convergence was never 

achieved for drain voltage higher than the gate voltage. This was 

probably due to scatter in the measured points giving rise to error growth. 

However when the iteration procedure was carried through manually, drawing 

a 'best curve' through the measured value of q (x), convergence was 

achieved to 1% in the value of voltage at any mesh point in at the most 

six iterations. 

Typically in the saturation region of an M.O.S.T. the drain 

characteristic displays a constant positive slope, proportional to the 

gate voltage. This has been attributed to the movement of pinch-off 

point towards the source electrode for drain voltages greater than the 

gate voltage. Given that the maximum electron concentration occurs at 

the source, then the maximum current would occur for a constant electron 

concentration over the length of the channel, falling abruptly to zero at 

the pinch off point, and an associated constant electric field Vpover 

the length of the channel. The channel current would then be given by 

V
G = - en(S)  

max 	 SP 

This configuration can clearly never be achieved in practice however 

it is our contention that at high drain voltages the maximum current can 

be more nearly achieved than at lover drain voltages. Our results on the 

R.N.W.A. show that for drain voltages between 10 and 40 volts and a gate 

voltage of 10 volts there is a l decrease in channel length and a 43% 

increase in current, which would appear to substantiate our claim that the 

value of the slope resistance is not brought about solely by decrease in 

channel length. 
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A further feature which may be of interest which occurs in our 

results, once again as a consequence of the two-dimensional nature of 

the model, is the minimum of electron concentration, along the channel. 

This moves towards the drain voltage and disappears for quite a low 

drain voltage, however it would be of interest to determine its presence 

at a drain voltage of zero, when the electron fermi-level is constant 

throughout the base region. It is possibly worthy of note that the 

electron concentration at the source is independent of drain voltage. 

The equi-potential diagrams provide a measure of quality of the 

approximation of neglect of transverse field in the integration of the 

potential distribution carried out in much of the theoretical work 

published. It is seen that although the approximation might be quite 

reasonable near the source at drain voltages lower than the gate voltage, 

near the drain the approximation becomes invalid, even at drain voltages 

lower than the gate voltage. 

V. A Note on Errors 

Tice truncation error in a partial difference scheme for Poisson's 

equation is well known and has been dealt with elsewhere. It is presumed 

that the error is not so large as to distort any feature of the potential 

distribution within the device and we shall not consider it further. 

What is of a more serious nature is the error involved in the treatment 

of the channel en a discrete model. 

If diffusion is neglected and the channel is treated as a surface 

charge then the current 

J = 

is presumed constant long the length of the channel. At the pinch off 

point P, q(x) = 0 and at a point P-e, q(x) =-Eql(P) thus ) 
	_ J 1/ 
2t: 	Pn ce(

1 
 P) 6V 

and so long as q' (P) A 0. then s--.-9 00 at P, which is rather an ux 
undesirable consequence. Clearly it arises because of the form of the 

approximations which are made, for at the end of the channel the current 

does not abruptly terminate, but rather the carriers diffuse into the bulk 
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material. This singularity would be avoided if J. -4 0,x -4 P but the 

fi 

r 

distance Ax ove which J tended from its constant value to zero must be 

such that 7.x ^-. kT  -- in order that the model be consistent with behaviour 
ox 	e 

in the device. Since in the analogue the mesh spacing along the interface 

is much greater than this, there is little point in making a correction 

of this order. 

It is clear that the solution of the finite difference scheme for 

the channel will depend to some extent upon the choice of finite difference 

formulae. Also for physically meaningful solutions the maximum component 

of field along the channel is bounded 

aVll 	
d s 

where h is the mesh spacing. Thus the problem of infinite field 

strength encountered in the continuous model cannot arise. 
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), k q 	x) which may be measured on the analogue. 

, \ q(0) = K(KPb2 Kiax).11 	 (1) 

Choose V(0)(x), J(0), P(0) then, as before, there will be an associated 
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5. 'Physical Processes in Insulated-Gate Field Effect Transistors!  

J.E. Johnson. 	Solid State Electronics L„ 861, 1964. 

6. !Resistance Network Analogues with Unequal on Subdivided Meshes', 

G. Liebmann, B.J.A.P., 	pp. 362 -366 (1954). 

Appendix A - The Surface Channel Approximation with  Diffusion 

This appendix parallels Sections 11.4 and 11.5 except that the 

effect of diffusion is included. 

Al - The Iterative Scheme 

A current distribution J(0)( x) may be defined 

J(°)(x) 	(o) dV(°)(,c) 1 d.71(°)(x)-1 
n
fq (x) 

dx 	 cbc 

and its average, j(1) 

(0)(x) *T(1) . Tif 	d_ 

P 
E kj 

P 
q 
(0)

(x) dv
dx 
()(xl 	r q(o)(s)  dx + .spL 

(2) 

q(0)(p)]  

(5) 
1 A new potential distribution V(1)(x) consistent with 3(1)  and a(0)  (x) 

is formed 

J(1) -µ  r q (
o)(x) -. 

riv(1) 	1 dq (c) 
L 

' dx 	dx  

whence 

( ) 	1
) 

v 1 (x) = dx 	1 

q( 	

p 
+ 

c))(x) 
(4) 
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, . A new pinch off point P(1) may be defined by q
(o) 

 kx) x=p(1) = 0 

or by some other suitable criterion J(1), V(1)(x) are defined by 

(3) and (4) and thus the iterative procedure may be repeated. 

A2 - The Trial Solution 

The procedure is analagous to that in 11.5 and we shall only quote 

the results. 

Low drain volt ages V
D 
< V

G 

	 jrv,2_ 2V (v + 1") 
2.L.SD t D 	D G 	j 

	

V2(x) 	2V(x)(VG 
 p 
+ 1) 

	

SD
D
2  - 	

1, 
2VD  (VG  + ') 

High Drain Voltage VD  > VG  

As in 11.5 it is impossible from such a theory to fix the pinch off 

point P. However, given this point 

- 
1.1
n
KK 
0 {

V  2 
	2  Tr J 	+  2.L.SP G P cD 

2V(VG +
p) -V

2 

SP - V + 2 V 
G 

It is seen that diffusjon is only a minor effect in the mode of 

operation which is being considered, since in this simple analysis a gate 

voltage of VG  + excluding the effect of diffusion, is equivalent to a 

gate voltage of VG  if diffusion is included. 

(7) 

(3) 



- 19 - 

Appendix B 	Solution with Approximation of Equations of Electron Fermi 

Level within the Base Region 

The quasi-Fermi level for electrons is shown in Section II to 

satisfy the relationship 

n 	
p(v(a.vcan ...vo--n 	) 	0 

-- 	--n (1)  

The boundary conditions at source and drain are respectively: 

1 -P n ,tn 	(n) V ; on -= D  13 	ni  4'n(s) _BTU - 	ni  

and elsewhere over the boundary of tae bo.se region the normal component 

of VO is zero, in particular this is true at the oxide/semiconductor 

interface. 

It is convenient at this stage to make the transformation 

(I) z  n 	p 

when (1) becomes 

v2z — p vz.vo 	 (4) 

For drain voltages lower than the gate voltage the channel extends from 

source to drain and to a good approximation the current flow is tangential 
to the oxide/seniconductor interface. The channel is narrow and thus the 

approximation that the. electron Fermi-level is constant in the direction 

normal to the interface is probably reasonable. Thus (4) becomes 

d2z 	dz deo 
d_77 - 13  a 7E7 = 0  x . r  di) 

and- 	o ax ,.,, AeWx) a 	-7-- = Ae ax 

Z = 
	
P(x)clx B 

O 

where A and B are constants of integration. Applying the boundary 

(2)  

(3)  
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conditions (2) then 

X R6  
N 	 fq  edx 	ND  

z(10 = D le D- 1 	 + n   
I 	n- L 	 D (34, 	. e dx 

whence 

( 5 ) 

1  
N F 	-13VD 

° 
- 	•tn -2 / 1  + [e n(x) 	ni L 

e"  
- 	

d o 

f e'i(1)(1x 
S 

 

(6) 

 

and 

 

el24  dx 
[e-f3VD 	1] 	 - 	 (7) 

fi)e5 dx 

 

 

electron density nt(x) may be 

If it is assumed that 

620
- 
 e 

y2 	KK NA- P 
0 

S 

< < 	along the channel then the total 

found Iv integration. 

p(o-on yl  
n. e 

6 241  

X2  

The approximation is made that both acceptor and hole concentrations are 

negligible in comparison with electron concentration near the oxide/ 

semiconductor interface. Thus 

620  en. p(o-on) 

i)? 	KK 0 

Integrating with respect to (1) gives 

coy en.
1 
 P(-011) 
RA C 2 37r.) = Kf7. I--

0  

where c is a constant of integration. Presuming boundary conditions 
a4(0 
y 

1(3-7,) 
60.2  1 (4)(o),)2 	eni 	PO

n  r po  

2 \. 	V13r 	173mit  e Le 

and 0(o) at the interface then 



Thus 

2 

eP41(°) 	- "(1)1°11 
nt(x) = 

—) 	

2en. Lt o 0.(0))2 	e y Q0 
e 	L \TY 	PKK

0 
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p(4, —co
n

) 

1 
n.e 	 n(x, y) 

Now 

and 

n
t
(x) = Lt 

y co 
f

y 

n(x,y)dy = Lt 
Y 0 

Kit 

e 

1 

n(x 	
KK

) 	r es 	
2 

2en(x 

0 

This appendix shows that there exists an alternative procedure for 

iteration upon the resistance analogue, since from an initial potential 

distribution a surface charge distribution may be calculated, set up on 

the analogue, and the procedure repeated. The procedure is not equivalent 

to that used since the same assumption as to the electron charge distribution 

are not made. 
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Part B. A Numerical Method for the solution of the Semiconductor 

Current Flow Equations 

I. General 

The solution of idealized models of semiconductor devices has 

undoubtedly contributed to progress both in design and in the evolution 

of new types of device from earlier times up to the present. Solutions 

of current flow and potential distributions provide insight into the 

workings of existing devices whilst at the same time giving guide lines 

in the design of future models. Theories of device operation, where 

they exist, frequently have limited ranges of application brought about 

by the approximations necessary to their derivation. 	In general the 

types of approximation in use are relatively few and well known, the 

aim of each is to produce a linear problem for which quite frequently 

analytic solutions exist. Typically these solutions could scarcely 

be bettered within the terms of the model by any other method and it is 

those problems which lie outside the scope of these analytic methods 

at which this work is aimed. 

Our aim is to solve both time dependent and time independent situations. 

However the latter are viewed as asymptotic solutions of the time dependent 

equations. There are reasons for this approach; as far as we know no-one 

has solved the time independent current flow equations without approximation 

for any device model, however simple, without resort to approximation, even 

in one dimension where the equations become ordinary differential equations. 

It would seem that conventional methods of solving ordinary differential 

equations, numerically become highly unstable when applied to the 

semiconductor equations. The only method of solutions seems to be by the 

correction of a trial solution according to some algorithm, of which the method 

of finding the asymptotic solution of the time dependent equations may be 

viewed as a particular case. 

In this report one particular finite difference representation of 

the time dependent equations is analysed and conditions are found for 

its stability and convergence in an approximate manner, the limitations 
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of the method are also discussed. As an example the carrier distribution 

within an abrupt symmetric p-n diode has been evaluated for the case 

of slight reverse bias. 

At present the investigation is far from complete and extensions 

to the work will include the use of alternative finite difference 

representations; the extension to more than one spatial dimension; the 

speeding up of convergence when only the time independent solution is 

of importance, and the extension to a non-uniform rectangular grid of 

mesh points. 

/ Following Gunn(1)  0.958) we shall express the current and continuity 

equations for electrons and holes aild Poisson's equation for potential 

distribution in normalized units. The normalized unit of length L 

and time T are closely related to the Debye length and dielectric 

relaxation time of the intrinsic material, electron and hole concentrations 

n, p are normalized to the intrinsic concentration ni, and the eleCtrostatic 

potential 4) is normalized to the mean thermal energy per degree of freedom 
kT 
-. 	In terms of rationalized m.k.e. units the normalized units are 

given by 
1 

kTKK 
L= 	; e n. 

L2  T = 
D 

(1) 

and the equations of semiconductor transport are 

u
n 
= + b(rV4) - on) 

u = - pV4) - V-o 

. Tr - V u t n -n 

= p ••• at 	V 
-

.0 -p 

-p + n 

where u 
n 
 , up  are electron and hole fluxes; b is the ratio of electron 

- 
to hole mobility; g

n
, A

p 
are generation rates of electrons and holes 

ran 
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respectively by all processes (excludinc2; drift), and n is tne net impurity 

density. These equations are derived on the presumption that the device 

may be represented by a system whose particles possess only an averaged 

behaviour, and thus it will not be expected that the solution of equation 

(2) - (6) will give any information with regard to noise. 

A further simplification which has been made in the numerical solution 

of these equations is with respect to the impurity charge density n. 

In practical systems this is a time varying quantity since the charge 

on the traps and recombination centres fluctuate with carrier concentration, 

and if it is required to treat n as such then further conservation 

equations of the type (4) (5), may be written for the different charge 
states accounted for by the term 2 in Poisson's equation. However, for 

ease of computation, 0 has been treated as time-independent throughout. 

II. The Finite Difference Scheme 

then 

If un  is eliminated between (2) and (4) and u between (3) and (5) 

dr' 
Ft- = rtri  bNi21.  -On.V0 - 1.1720 	 (7) 

- 5 	V2p -I- la .17(1) 	pV21' 	 (8) 

(7) and (8) are 'diffusion' equations of parabolic type for the electron 
and hole density respectively, the equations are coupled by the electrostatic 

field (E = -ve9) and the space charge density (p = -02th). 	The field 

is determined from (6). 

v20  = mp=n-pm a 	 (6) 

(7) and (8) are solve' as initial value problems. 	This involves a choice 
of n and p at some initial time t = to. The eauations (7) and (8) are 
solved by techniques and difference equations similar to those employed 

in the numerical solution of the heat diffusion equation. At t = to and 

subsequently at every stage in the procedure the electrostatic field may 

be calculated by solution of (6). Thus (7) and (8) may be regarded as 

having time and spatially dependent coefficients, E(x,t) and p(x,t), and 
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may be treated otherwise as though they were linear. 	It is clear 

that a total of six boundary conditions are necessary for the solution 

of (6), (7) and (3), i.e. two for each equation. 	In the simplest 
case all three equations present boundary value problems but there are a 

large number of other possibilities upon which we shall not elaborate. 

A finite difference scheme is set up by choosing a grid of points 

spanning the domain of x for which solutions are sought. Let there be 

N of these points labelled 1 .... N, separated by a constant difference 

AX. A constant step length in time At is chosen and the differentials 
occurring in (6), (7) and (8) are replaced by their lowest order finite 
difference equivalents, thus, after some rearrangement 

At 	 i  [ = n
j 
+ At(g 

n  )
i  b( )22 tn1.+ 3[1 + nirn i(Ax)2-2] + n 

2 	iL- 	 -1 1  

(9)  

EiAx 	 - 
+ AtOr)1 	

2 P  
+ 	At 	j  [1- i  I - p1 P ii(Ax)2+2] 1:11_1  

p 

	

	 ,-  2L  (Ax)i+1 2 

(10)  

- 24' + (1) 	(Ax)2(n1 	- P.1) 	(642o1 
1+1 	1-1 

(u)  

where 

Ej 	1 [4,j 
PAY_ J-1-1 i-11 

In the equations above the superscripts denote the time variable 

and the subscripts the spatial variable. Having chosen pt, nt for 

(i = 1 .... N), (11) may be evaluated yielding 0i, (i = 1 	N) then 

e may be evaluated from (9) and (10), when the cycle is complete and 
the procedure may be repeated. The particular finite difference 

representation chosen is not unique, however it is possibly the most simple 

and has the decided advantage of being explicit. Other difference 

representations will be considered in due course. 
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III. Stabi3ity and Convergence 

To find the conditions under which the 'exact' solution of the 

difference equations approximates to the solution of the partial 

differential equation, under the same conditions, is the problem of 

convergence. To find the conditions under which the numerical solution 

of the difference equations approximates to the exact solution of the 

difference equations is the problem of stability. 	(The difference 

between the exact and numerical solution of the difference equation is 

normally due to round off error). Both stability and convergence will 

depend upon several factors, in particular these will include, boundary 

and initial conditions and step lengths Ax and At, and in a successful 

solution of the problem Ax and At must be chosen, if possible, so as to 

achieve stability and convergence everywhere. 

Because of the non-linearity of the difference equations, the 

derivation of conditions upon the variable quantities mentioned above, 

in order that stability and convergence do ensue, is probably impossible. 

However, the realization that the physical system represented is almost 

certainly well conditioned and that the difference equations provide a 

close analogy to the way in which changes of state in the physical system 

are brought about, relieve the difficulty, and it is found that physically 

realistic trial distributions and boundary conditions are well-conditioned 

in a mathematical selse. However this does not help in the choice of step 

lengths. 

The criterion which fixes A:: is normally related to accuracy. Mesh 

points must be sufficiently close together so that the finite difference 

approximation to any particular differential involves little error. If 

only the asumptotic solution is of interest then a knowledge of the bounds 
(1211 	dE 

of all the associated functions (e.g. p, 	, 
	

E, dx'  ....) in the dxax" 
asymptotic state will allow a reasonable choice of Ax, but if details of 

the time dependent solution is required then a knowledge of these parameters 

at all stages in the procedure becomes important. Usually the information 

in either case will not be available and a reasonable guess of the minimum 
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step length must be substituted. For speed of calculation Ax must be 

kept as large as possible since the computing time required rises 

approximately as W)-3. 

The best method of choosing a value of At is by the Fourier method 

of error analysis for linear difference equations. This is achieved by 

linearizing the diffusion equations (9) and (10) by choosing that the 

field and space charge density are constants over the domain in which 

analysis is made. Thus the conditions for stability are really conditions 

for a 'local stability' . It is typically found that for the mesh size 

which is used in practical calculations that the approximation of 

constancy of p and E is not really valid, however the results of this 

analysis are so useful in practice that the method is justified. 

(9) and (10) have the same form as 

4 ,1+1 . 	s  [(1_7 W 	(2-1-00 	(1+YW 	12) i+1 	 I-11 (  

if we linearise the recombination term and include its effect in the g 

of (12). We shall analyse the stability of this equation by the Fourier 

method and draw some conclusions as to the stability and convergence of 

(9), (10) and (11). 

IV. The Error Analysis 

Because of the linearity of (12) an error will propagate according 

to this same difference scheme. At t = 0 	Fourier analysis may be made 

of the error in the row of N meLh points (we shall label the error as lif) 

n 
A e 

ianx i (13) 

The error will propagate according to the difference equation (12) and 

it may be shown that if no further errors are introduced for t > 0 then the 

error at time t is given by 

n
(an)t ia x. 

= 	An
e 	 rl 1 	 (_4) 

n. 
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It is sufficient to consider the behaviour of the component of 

	

(14), e teiax. 	Substituting this into (12) 

	

e t 	1 + 	 - (24.0 	(1-1-7)e 	(15) 

The von Neumann condition for stability is that 

= 1 	 (16) Pt 

and 

    

 

eft 2 
= [1+sr.2 cos OAx - 2))]

2  
+ 4s2Y2sie2cx (17) 

   

In (16) the frequencies a were not discussed, we shall now consider that 

a is a continuous variable and thus satisfy (16) in the most restrictive 

case. 

Ph.. 
26,x) 	= 4s sin c660c [1-s(g+2) 	2s(1+72)cos aLx] 

. 0 if 
a6..x 	(n=0, ± 1, ± 2 

1- cos aLx 1-s(g+2)  
2s(l+7 ) 

....) 

Having found the corditions for the extrema of 

condition may be applied at these points. 

Case I - sin CtAx = 0 thus cos aLx = ± 1 

cos CeAx = + 1  

(17), the von Neumann 

     

ef3At 2 
(1-sg)2  

   

and > 0, 0 4 .7, 4 

{lePat12  5 1 if t = 0, — c s = + 

g < 0, 
2- 4 s 4 0 

cosy=-1  

ei3Ati 
2 = [1-S(+4)]2 

00 
	 (18) 
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2 	 4÷E 
1 if 	= 	- co 	s ▪  + co 

< - 4, 2 	
s 4  0 

1-s(E+2)  
22(1-1-7 

2 = 44272  72(72- 
1)(1-s(t+2))2 

(1+72)2  

and e
r3At 

  

e
13dt 

Case II - cos oixx - 

(19)  

(20)  

The condition that eMt 
 2 

1 is more conmlicated in this case since 

    

the limits of the range of s depend upon both E and y. However for 

g = 0 the conditions become 

1 	37'2+1  ele6t 1, 1 if - 2-77 s 	-a 2Y (34 7 -) 

For t A 0 the conditions for stability may be written as 

s_(7) = s = S+(t,7) 

in which S+(t,7) may be obtained from (20). 	In Figure(3)S4.(0,71) and s+(±1,y) 

are shown. 	It is seen that the limitations upon s in order that stability 

might occur for large y is little affected by the actual value of g (at 

least for It < 1, a condition which will normally hold in practice). 

Because of this independent tendency for the conditions of stability as 

defined by Case I ant' Case II above, it will be convenient to distinguish 

instability as being of t or 7-type. Figure(2)shows the region of E 

stability and figure(3)the region of y stability. In all solutions the 

stepiength ratio s must be chosen such that the difference equation is both 

7 and t - stable. 

It is seen that there is no region of t-stabilty for any value of s 

for - 4 . E E 0 and that for t 	- 4 the region of stability corresponds to 

s < 0 This result for t < 0 is unfortunate,however, it is believed that inherent 

in the difference equations are other types of stability cawed by the coupling 

of electron and hole flow. This we have not yet been able to analyse, 

however it is felt that the results of this analysis does not represent the 

whole truth for t < 0. Confirmation of this is provided by some recent 

(21)  

(22)  
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results (not given here) in which recombination/generation effects 

were excluded. 	In this case, according to the results of the above 

analysis, instability must occur in either the hole equation or 

electron according to the sign of the space charge. However for s < 

there were none of the usual signs of instability, and it seems likely 

that stability in either the electron or hole equation (in terms of the 

results of this analysis) is a sufficient condition for overall stability, 

though more work is required to test this hypothesis. Having proved the 

circumstances under which stability occurs, it follows that convergence occurs 

under the same conditions. 	(Lax's theorem). John (1952) and Richtmeyer 

(1957) have considered the same linear difference equation but have been 

concerned only with stability and convergence under the assumption that 

yA -4 0 whilst s remains finite. Currently we are trying to find the 

conditions for convergence of the linearized equation (12) by the matrix 

method in the range - 4 = t Lc 0, but this work is incomplete. 

The Abrupt p-n Junction 

The carrier profiles within an abrupt p-n junction are shown in 

Figure(1H). These results arc obtained as an asymptotic solution of the 

time dependent equations. The mesh size Ax = 2 x 10 2, At = 1.5 x 10-4  
At was chosen giving a mesh ratio TE;27, of 0.375. The doping on either side 

of the junction is symmetric with 11/1= 10-3. 	Generation/recombination 

effects are provided by a recombination centre which was chosen as being 

centre of the band and having equal trapping constants a for holes and 

electrons. Thus 

= 	- n + p + 2 

where nt 
is the trap density, assumed uniform over the domain. The choice 

was made a = 10, nt = 10 giving a minority lifetime in the bulk of 10
-2  

and an associated minority carrier diffusion length 10 1. TheZ.Charge 

on the recombination centres is neglected in Poisson's equation. 

The boundary conditions were Chosen as follows:- 

an
t(np - 1) 
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N 
= 11.8155, 01  = 0 

niol  nlioN  = 1 

PI = 13N 

where the subscripts 1, N refer to p and n-type boundaries. The trial 

solution was given by 

n pI  = 2; n. - pi  -.= 0 
	

(i = 2, ..., N-1) 

The number of mesh points spanning the x domain was 100, and 1,000 

iterations were performed to achieve the results shown in figure IB. 

After this time the maximum proportional rate of change of carrier 
f concentration per interval of time At,(7E;), was less than 0.01%. The 

ratio b of electron to hole mobility is unity and thus the profiles 

possess the symmetry n(x) = p(- x). 

This model was chosen for speed and convergence and clearly does not 
attempt to simulate a practical device, as is seen where the dimensionless 

units are converted into practical units using data for silicon. The 

results obtained also gave complete information regarding current 

distribution, generation rate, electric field and potential distribution. 

We have omitted to give these here because of certain inaccuracies in the 

computed solution all of which may easily be remedied. The inaccuracies 

are due to:- 

(a) The step length Ax is too large to give an accurate finite difference 

representation in the space charge region. 

(b) Poisson's equation was solved using a double integration by the 

trapezoidal, rule. 	This was inaccurate in the region of the junction. 

For these reasons it is best not to draw any physical, conclusions from 

the solution, which was included only to demonstrate the feasibility of 

solving junction problems. 
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VI. Summary 

A method has been described for the solution of one-dimensional time 

varying semiconductor current flow problems and results have been presented 

in a simple case. Approximate conditions for stability of solution 

have been discussed. Below we summarize the conditions under which 

solution may be difficult under existing circumstances. Two types of 

difficulty are expected. The first is the absence, in a particular 

problem of either stability on convergence. The second is more trivial, 

the amount of computer time required may render the solution impractical. 

A way of alleviating this second difficulty is by the use of a non-uniform 

rectangular mesh with respect to its spacing both in x and t directions. 

The number of mesh points necessary is immediately reduced and it is likely 

that the average step length in time ❑t may be increased, hence reducing 

the amoun of computation. The first difficulty may probably be removed 

by the use of alternative difference formula, though it is likely that all 

problems may be solved by the use of sufficiently small step lengths. 
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