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Abstract

This thesis aimed at the understanding and further development of

smoothed particle hydrodynamics (SPH). The first part described the

implementations of non-reflecting boundary conditions for elastic-

waves in SPH. The second part contains a stability analysis of the

semi-discrete SPH equations and a new method for stabilising basic

SPH in tension.
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Introduction

Smoothed particle hydrodynamics (SPH) is a technique for the numerical solution of par-

tial differential equations. It is meshfree and therefore has advantages over grid-based

methods in modelling many phenomena that undergo large deformations in a Lagrangian

framework. However, it has several important drawbacks; the particle discretisation in-

troduces an instability which most often manifests as an unphysical clumping of particles

under tension, leading to purely numerical fracture.

The implementation of boundary conditions is another weakness. SPH does not interpo-

late nodal values exactly i.e. it is not a projection operator and thus the imposition of

Dirichlet boundary conditions is complicated. Additionally, the ability of SPH to accu-

rately approximate derivatives near a boundary is retarded by a deficiency in the number

of particles used in the approximation.

Finally, SPH simulations can be more computationally intensive than a comparable finite

difference code. The main reasons being the additional cost of searching for and updating

a list of particle neighbours and the fact that numerical differentiation of a particular field

variable at a point requires the contribution of more neighbouring points than would be

used on a grid. These are the downsides of a meshfree method.

Each of the final three chapters in this thesis addresses in some way one of the three main

drawbacks listed above.

Chapter 1 consists of a general introduction to SPH and its terminology. Special attention

is given to the derivation of the kernel differentiation formulae and their application to the

1



conservation equations of continuum mechanics. The SPH conservation of mass equation

is derived in a moving reference frame and is found to automatically include a previously

ad hoc correction term. Finally a description of the Cranfield MCM (meshfree continuum

mechanics) code is given, in particular the time integration algorithm.

Chapter 2 starts with a detailed derivation of one of the most commonly used non-

reflecting boundary conditions (NRBCs) in other numerical methods. There follows the

details of the implementation and testing of the boundary condition in SPH.

Chapter 3 is a stability analysis of SPH. The semi-discrete SPH equations in 1D are

linearised and subjected to a stability analysis. An energy conserving form of SPH is

derived and is subject to a Lyapunov stability analysis, and conditions are given that

guarantee stability (in the Lyapunov sense) for the conservative equations.

Chapter 4 describes a novel method to stabilise basic SPH. The linear stability analysis

of the previous chapter is extended to include the proposed method. It is tested and

shown to be stable under tension.
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Chapter 1

Smoothed Particle Hydrodynamics

Smoothed particle hydrodynamics (SPH) is a meshfree particle method; instead of a mesh

the problem domain is discretised by a set of interpolation points. These points have no

fixed connectivity; their interaction is governed only by their proximity. The points are

referred to as particles because they have a mass and a velocity. Spatial derivatives are

approximated by analytical differentiation of special kernel functions centred at each par-

ticle. The particles’ velocity is identical to the material velocity i.e. the particles follow

the material. This and the absence of a fixed mesh means that SPH is a Lagrangian

method which is nevertheless tolerant of large deformations. SPH was first devised for

modelling gas dynamics in astrophysics by Gingold and Monaghan [31, 30] and indepen-

dently by Lucy [61]. Later SPH was applied to solid mechanics by Libersky [56, 81].

As well as continued use in astrophysics, further applications in continuum mechanics

include: free surface flows [1], multi-phase flows [72], impact [90, 18] and detonation .

1 Kernel approximation

The main distinguishing feature of SPH is the method by which derivatives are approx-

imated. Kernel differentiation does not require a computational grid and this is the

advantage of SPH over grid-based methods. The usual derivation of the kernel approx-

3



imation formulae [71, 57] is to approximate a function, or derivative of a function, with

an integral and then to approximate the integral as a volume-weighted sum. By the

definition of the Dirac distribution, for a function f : Ω→ R

f(x) =

∫
Ω

f(x′)δ(x− x′)dx′. (1.1)

By replacing the delta function with a suitable kernel function an approximation to f(x)

is obtained

f(x) ≈ 〈f(x)〉 =

∫
Ωx

f(x′)W (|x− x′| , h) dx′. (1.2)

We define Ωx to be the compact support of the kernel centered at x. The angled brackets

signify kernel approximation and h is a parameter as explained below. The kernel function

is chosen or constructed such that the following conditions are met:

1.
∫

Ωx
W (|x− x′| , h) dx′ = 1.

2. limh→0

∫
Ωx
f(x′)W (|x− x′| , h) dx′ =

∫
Ωx

f(x′)δ(x− x′)dx′, so that limh→0 〈f(x)〉 =

f(x).

3. W (|x− x′| , h) > 0 if |x− x′| < 2h and W (|x− x′| , h) = 0 otherwise.

Note also that the kernel is a function of |x− x′| and is therefore radially symmetric.

Equation (1.2) effectively replaces the original function value with a weighted average

or smoothed value. The parameter h is called the smoothing length because increasing

h dilates the compact support of the kernel and increases the smoothing effect of the

approximation.

The earliest SPH papers used a Gaussian kernel but later Monaghan proposed using

B-splines which have the advantage of compact support [67]. One of these is the cubic

B-spline,

W (r, h) =
c

h


1− 3

2
r2 + 3

4
r3 : r < 1

1
4
(2− r)3 : 1 ≤ r < 2

0 : r ≥ 2,

(1.3)

4



where r = |x−x′|
h

and c = 2
3
, 10

7π
or 1

π
in 1D, 2D or 3D, respectively. Unless otherwise

indicated, this is the kernel used throughout this work. Which of the many kernels that

have been devised is the best is still an open question. Fulk [29] analysed 20 different

kernels, including variations on Gaussian kernels, B-splines and kernels with two humps.

The bell-shaped kernels are reported to be better, but of those no one kernel is found

to be significantly superior (by the criteria described therein). A Wendland kernel is

reported to improve stability in a free surface flow simulation [62]. The improvement in

stability is linked to the Wendland kernel’s positive-definite Fourier transform by [19],

see also chapter 3 below where the same link is made indirectly.

1.1 Discrete approximation and consistency

An important consideration for any approximation is the order of consistency - defined

as the ability to reproduce exactly a polynomial function of a given order. The properties

defined above guarantee first-order consistency; a linear function is reproduced exactly,

〈ax + b〉 =a

=x︷ ︸︸ ︷∫
Ω

x′W (|x− x′| , h) dx′+b

=1︷ ︸︸ ︷∫
Ω

W (|x− x′| , h) dx′

=ax + b.

The second integral is equal to unity by construction and the first is equal to x because

the symmetry of the kernel about the point x means that (x− x′)W (|x− x′| , h) is an

odd function and therefore
∫

Ω
(x− x′)W (|x− x′| , h) dx′ = 0.

To approximate the spatial derivative of a function we begin with (1.2) but now approx-

imate the gradient of a function,

〈∇f(x)〉 =

∫
Ω

[∇f(x′)]W (|x− x′| , h) dx′. (1.4)

Integrating by parts (1.4) becomes

〈∇f(x)〉 = −
∫
Ω

f(x′)∇W (|x− x′| , h) dx′ +

∫
Ω

∇ [f(x′)W (|x− x′| , h)] dx′.

5



By the divergence theorem the second integral can be transformed into the surface integral∫
∂Ω

f(x′)W (|x− x′| , h) dS. The kernel has compact support so if, Ωx ⊂ Ω then the surface

integral will be equal to zero because W (|x− x′| , h) = 0 on ∂Ω. Therefore the kernel

approximation of ∇f(x) is

〈∇f(x)〉 = −
∫
Ω

f(x′)∇x′W (|x− x′| , h) dx′. (1.5)

In practice f is only known at a finite set of interpolation points {xi}i∈I , where I =

{1, . . . , N} is an index set. We will refer to the elements of I as particles. For example

we may write “particle i has position xi and velocity vi”. This provides a convenient

notation and is perhaps clearer than writing “the particle at xi etc..”. A particle i has

mass mi and density ρi so that a volume Vi = mi
ρi

can be defined. Only a subset of

the particles contribute to the approximation at each interpolation point. The particles

within this contributing subset (the neighbourhood) are referred to as neighbours. The

set of all the neighbours of particle i will be denoted by N(i) ⊂ I. This is defined as

N(i) = {∀j ∈ I s.t. |xi − xj| < 2h} i.e. those particles for which the kernel function

W (|xi − xj| , h) is non-zero.

In SPH the integral approximations (1.2) and (1.5) are in turn approximated by a volume

weighted sum. The discrete approximation of f at xi is therefore,

〈f (xi)〉 =
∑
j∈N(i)

f (xj)W (|xi − xj| , h)Vj, (1.6)

and of the derivative,

〈∇f (xi)〉 = −
∑
j∈N(i)

f (xj)∇jW (|xi − xj| , h)Vj. (1.7)

Where ∇i denotes differentiation with respect to the variable xi, i.e. in 3D ∇i =(
∂
∂x1i
, ∂
∂x2i
, ∂
∂x3i

)
. Henceforth the convention thatW (|xi − xj| , h)Vj = Wij will be adopted

and the arguments, xi, xj and h, and the particle volume, Vk, will only be referred to

explicitly if necessary for clarity.

Equation (1.7) can also be obtained by differentiation of (1.6) instead of direct from the

6



integral form: If r = |xi − xj| then

∇iWij =
d

dr
Wij∇ir =

d

dr
Wij

(xi − xj)
r

,

but

∇jWij =
d

dr
Wij∇jr =

d

dr
Wij
− (xi − xj)

r
.

Therefore the derivative of the kernel is anti-symmetric; ∇iWij = −∇jWij. The gradient

of (1.6) is then found to be equal to (1.7):

∇i 〈f (x)〉 =
∑
j∈N(i)

f (xj)∇iWij

= −
∑
j∈N(i)

f (xj)∇jWij by the anti-symmetry of the kernel derivative

= 〈∇if (x)〉 by equation (1.7).

In the remainder ∇Wkm = ∇kWkm i.e. if no indication is otherwise given, the gradient

will be assumed to be taken with respect to the first index in Wkm. Therefore equation

(1.7) will be written

〈∇f (xi)〉 =
∑
j∈N(i)

f (xj)∇Wij. (1.8)

1.2 Reproducing conditions

The discrete approximation, equation (1.6), is not zero-order consistent for a general

arrangement of particles. This is because normalisation and anti-symmetry are not nec-

essarily preserved by the discretisation i.e.
∑

j∈N(i) Wij 6= 1 and
∑

j∈N(i)∇Wij 6= 0. A

general quadratic polynomial function of a vector xi can be written

f (xi) = a+ b · xi + xi ·Cxi (1.9)

where a is a scalar, b is a vector, and C is matrix. A cubic polynomial would involve a

third-order tensor coefficient and higher order polynomials correspondingly higher order

coefficients. Denote the components of the vector xi as xαi for α = 1, 2, 3. We define a

7



pth-order tensor Tα1...αp so that a nth-order polynomial can be written as

f (xi) = T +
n∑
p=1

Tα1...αpx
α1
i . . . x

αp
i , (1.10)

where summation over repeated αi is implied. To derive the reproducing conditions we

substitute (1.10) into equation (1.6) and interchange the order of summation;

〈f (xi)〉 =
∑
j∈N(i)

f (xj)Wij

=
∑
j∈N(i)

{
T +

n∑
p=1

Tα1...αpx
α1
j . . . x

αp
j

}
Wij

=T
∑
j∈N(i)

Wij +
n∑
p=1

Tα1...αp

 ∑
j∈N(i)

xα1
j . . . x

αp
j Wij

 . (1.11)

It follows that if, for all i, ∑
j∈N(i)

Wij = 1, (1.12a)

∑
j∈N(i)

Wijx
α1
j = xα1

i , (1.12b)

and that for p = 2 to k ∑
j∈N(i)

Wijx
α1
j . . . x

αp
j = xα1

i . . . x
αp
i . (1.12c)

Then the first k terms of the nth-order polynomial (1.10) will be reproduced exactly. It

is of more interest here that the gradient of a function is accurately approximated. The

approximation 〈∇f〉 can be found by substituting (1.10) into (1.8),〈
∂f

∂xβi

〉
= T

∑
j∈N(i)

∂Wij

∂xβi
+

n∑
p=1

Tα1...αp

 ∑
j∈N(i)

xα1
j . . . x

αp
j

∂Wij

∂xβi


= T

∑
j∈N(i)

∂Wij

∂xβi
+ Tα1

 ∑
j∈N(i)

xα1
j

∂Wij

∂xβi

+ h.o.t

Therefore if the following conditions hold the gradient of a linear polynomial (in this case
∂f

∂xβi
= Tβ) will be evaluated exactly.

∑
j∈N(i)

∇Wij = 0 or
∑
j∈N(i)

∂Wij

∂xβi
= 0 (1.13a)
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and ∑
j∈N(i)

x⊗∇Wij = I or
∑
j∈N(i)

xα1
j

∂Wij

∂xβi
= δα1β. (1.13b)

1.2.1 Correcting for consistency

To restore zero-order consistency we can use Shepard functions; set

W̃ij =
Wij∑

k∈N(i) Wik

(1.14)

then ∑
j∈N(i)

W̃ij =

∑
j∈N(i) Wij∑
k∈N(i) Wik

= 1.

Alternatively the derivative can be corrected directly by the addition of an extra term,

due to Monaghan [68, 66], to equation (1.8),

〈∇f (xi)〉 =
∑
j∈N(i)

(f (xj)− f (xi))∇Wij. (1.15)

Note that the correction term is equal to zero in integral form

−
∑
j∈N(i)

f (xi)∇Wij ≈ f (xi)

∫
Ω

W (|xi − x′|) dx′ = 0.

With this correction applied any constant-valued function’s gradient will clearly be cor-

rectly evaluated to 0. This [71] is sometimes justified by writing

g∇f = ∇ (gf)− f∇g (1.16)

where g is a differentiable function chosen to suit the circumstances. Each derivative in

(1.16) is then approximated with equation (1.8). To get to (1.15), for example, set g ≡ 1.

As a derivation this is not particularly satisfying as it gives no clue why this should be

an improvement.

Correcting to enforce higher orders of consistency is always possible. Liu and Liu [57]

present a method that reproduces a polynomial of order n. In 1D the smoothing function

is taken as

Wij =
n∑

m=0

am (xi, h)

(
xi − xj
h

)m
(1.17)
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and the coefficients am are chosen to enforce the consistency conditions (1.12). In practice

this involves solving, in 1D, an n × n linear system for each particle at every time step.

Unfortunately the smoothing functions are not guaranteed to be symmetric or positive

definite which can produce unphysical behaviour such as a negative density. The repro-

ducing kernel particle method (RKPM) [58, 59] follows similar principles to (1.17); the

difference being that the original kernel function is modified by a correcting function to

reproduce a polynomial of a given order.

Moving least squares (MLS) is another method [20, 8, 51], capable of an arbitrary order

of consistency. Local approximations for each particle of the form 〈f〉 =
∑

i=1,n pi(x)ai(x)

are assumed, where n is the required order of the approximation. The pi(x) are elements

of a set of basis functions, for example, in 1D, to enforce second-order consistency pi ∈
{1, x, x2}. The ai are the coefficients found by minimising a functional for each particle

Ji =
∑
j∈N(i)

Wik

{(∑
k=1,n

pk (xj) ak (xi)

)
− f (xj)

}2

(1.18)

where f(x) is the function to be approximated. As an example, the simplest case is to

choose pi = 1 as the single basis function. Then (1.18) becomes

Ji =
∑
j∈N(i)

Wik (a (xi)− f (xj))
2 .

By differentiating with respect to a and setting the result equal to zero the optimal

coefficients (a) are found

dJi
da

= 2
∑
j∈N(i)

Wij (a (xi)− f (xj))

so that

a (xi)
∑
k∈N(i)

Wik =
∑
j∈N(i)

f (xj)Wij

a (xi) =
∑
j∈N(i)

f (xj)Wij∑
k∈N(i) Wik

=
∑
j∈N(i)

f (xj) W̃ij

exactly reproducing the Shepard function approximation from (1.14). In fact, it can be

shown [9] that the approximations obtained by enforcing the consistency conditions (1.12)

on the kernel in the manner of the RKPM are equivalent to MLS.
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A2h

B

C
Figure 1.1: Particle deficiency: Particle

A has a full set of neighbours and particle

C, on the boundary, is deficient. Particle

B, nominally on the interior, also has an

incomplete set of neighbours.

Instead of requiring consistency as an end in itself, some authors have derived first-order

consistent conditions as a consequence of requiring conservation of linear and angular

momentum [13] or of preserving the homogeneity and isotropy of space. From the latter,

normalised corrected SPH (NCSPH) [89] is derived. The resulting conditions are equa-

tions (1.12a) and (1.13b) and the kernel is modified to enforce these conditions. If W̃ij is

the corrected kernel from (1.14) then the normalised-corrected kernel is

∇̃W̃ij = ∇W̃ij ·

 ∑
k∈N(i)

xk ⊗∇W̃ik

−1

. (1.19)

This is the formulation that is used in the MCMa code and it is to be understood that

in subsequent chapters the first-order consistent method used is NCSPH.

aMeshless continuum mechanics, the Cranfield university SPH code.
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Figure 1.2: Approximation of f(x) = x3 near boundary using seven evenly-spaced par-

ticles from x = 0.0 to x = 6.0 with a smoothing length h = 2.0. Note that normalised

SPH uses the Shepard function kernel - equation (1.14).

1.3 Boundary conditions

Imposing boundary conditions in SPH can be difficult. In the first instance the “boundary”

in SPH is ambiguous. A computational mesh has a well-defined boundary and nodes on

it will remain there. In contrast, in SPH there is no fixed connection between particles

and the influence of the boundary extends into the interior (see figure 1.1). Additionally,

SPH does not interpolate nodal values exactly i.e. 〈f (xi)〉 6= f (xi) which means that

Dirichlet conditions cannot simply be prescribed on the boundary. Various strategies have

had to be invented to overcome these limitations. For example, the impostion of zero-

velocity wall-type boundary conditions can be achieved by using ghost particles [56, 81]

or by the creation of a repulsive force to prevent particles penetrating the boundary [69].

Another difficulty is that equation (1.2), i.e. kernel approximation, is only valid if the

kernel support is completely within the problem domain Ω. Otherwise the function being
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Figure 1.3: Approximation of f ′(x) = dx3

dx
near boundary using seven evenly-spaced

particles from x = 0.0 to x = 6.0 with a smoothing length h = 2.0. Note zero-order

correction from equation (1.15) applied to basic SPH.

approximated is effectively,

f̃(x) =


f (x) : in Ω

0 : otherwise.
(1.20)

This means that near a boundary there is a deficiency of particles and the approximation

behaves as if extra particles with a zero value exist outside of the domain. The resulting

inaccuracy in the approximation of a function and its derivative is illustrated in figures 1.2

and 1.3, respectively. Note how the approximation worsens closer to the boundary and is

only partly mitigated by using a higher order method - in this case linear least squares. For

a free surface this error actually approximates the correct zero-stress boundary condition.

This automatic treatment of free surface boundary conditions is very useful in many

applications and its absence is a drawback of higher order methods.

1
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1.4 Smoothing length

In SPH it is important that the smoothing length (h) is correctly chosen. If it is too

large the approximated field is over-smoothed and detail is lost, and the computation is

slowed as particles acquire too many neighbours. If h is too small then particles have

too few neighbours and accuracy suffers. A smoothing length of between one and two

times the particle spacing, ∆x, is generally regarded as striking the appropriate balance.

Given a uniform square grid of fixed particles ∆x can be defined unambiguously as the

smallest distance between two particles. However an initially uniform arrangement of

particles will soon become disordered. If the problem involves significant strain, using the

original smoothing length will result in particles with too many or too few neighbours. To

maintain accuracy and efficiency, various authors have proposed changing the smoothing

length to reflect changes in particle distribution.

The first papers describing SPH [31, 61] used a universal smoothing length, equal for

each particle, but allowed the length to change as the gas expanded or contracted. It

was later suggested [32, 43] that each particle’s smoothing length should change inde-

pendently to better reflect local changes in particle configuration and, by implication,

density. Hernquitz and Katz [43] modify the smoothing length so as to keep the number

of neighbours approximately constant throughout the simulation; a similar approach is

used in [75]. Instead of keeping the number of neighbouring particles constant Kitsionas

and Whitworth [50] use the total mass of the neighbours. This is done in combination

with a particle-splitting algorithm (see chapter 2) and they report that the alternative

approach gives much better results. One possible factor in the improvement may be

that the smoothing length will tend to vary more gradually from the coarser to the finer

sub-domains.

In [32] the authors set the smoothing length as inversely proportional to the number of

neighbours. More common [71, 14, 57] is using equation (1.21),

hi = h0
i

(
ρ0
i

ρi

)1/d

, (1.21)
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where hi and ρi are, respectively, the i particle’s smoothing length and density at the cur-

rent time and d is the number of dimensions. One more alternative [11] is to differentiate

(1.21) with respect to time and evolve the smoothing length with

dh

dt
= − h

dρ

dρ

dt
. (1.22)

Modification of the smoothing length as outlined above is intended to improve the accu-

racy of SPH by maintaining an optimal neighbourhood size for each particle. Formally,

if the smoothing length is to depend on position then extra terms must be included in

the gradient of the kernel;
dW

dx
=
∂W

∂x
+
∂W

∂h

dh

dx
. (1.23)

Analysis in [25] suggests that if the smoothing length varies on a scale close to h then

the extra, ∇h, term can safely be ignored, and this is the usual practice. However it has

been reported [42, 74] that large errors, especially in energy conservation, can arise when

the ∇h term is neglected and conservation improves with the addition of the extra term.

Others too have obtained better accuracy in a shock tube simulation [79] and for dam

breaking [14].

The density of a particle is calculated either directly by summation over the particle’s

neighbours,

ρi =
∑
j∈N(i)

mjWik(h), (1.24)

or via the continuity equation

ρ̇i =
∑
j∈N(i)

mj

ρi
(vi − vj)∇Wij(h). (1.25)

If the smoothing length and density are related then, for example, (1.21) together with

(1.24) or (1.25) are coupled non-trivially. Usually the smoothing length is updated using

the density at the previous time step, alternatively, the non-linear system can be approx-

imately solved using an iterative method [14, 79]. Increased accuracy is reported at the

cost of increased computational effort.
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An important consideration when using a variable smoothing length is the need to ensure

that particle interactions remain symmetric. In standard SPH the momentum equation

is

v̇i =
∑
j∈N(i)

mk

(
σi
ρ2
i

+
σj
ρ2
j

)
∇Wij(h). (1.26)

The anti-symmetry of (1.26) ensures conservation of linear momentum; a variable, particle

specific, smoothing length breaks this anti-symmetry and linear momentum is no longer

conserved. Two alternative methods are to replace ∇Wij (hj) with ∇Wij (hij) where hij

is symmetric, for example, hij = 1
2

(hi + hj)[25] or to average the kernel function directly

[43]

∇Wij (hi, hj) =
1

2
[∇Wij (hj) +∇Wji (hi)] . (1.27)

Other alternatives for a symmetric smoothing length are given in [57].

Adaptive SPH (ASPH) [77, 83] takes the idea of variable smoothing lengths a step further.

The scalar smoothing length is replaced with a tensor G. The normally spherical domain

of influence for each particle is replaced by an ellipsoid. This method is designed to

cope with uniaxial or otherwise highly non-uniform strains. A spherical support domain

expands or contracts uniformly. This may result in a deficiency of particles contributing

to the approximation perpendicular to the axis of greatest compression. The elliptical

domain is claimed to better reflect the changes in particle distribution and to improved

accuracy. The difficulties associated with a variable smoothing length apply equally to

ASPH. Particle interactions are made symmetrical using (1.27) and the effect of neglecting

the ∇h term is mitigated by periodically smoothing the smoothing tensor itself to ensure

that the variation of h is kept reasonably constant across a few smoothing lengths.

2 Implementation

For future reference this section will present the continuity equations and their SPH

discretisations followed by a brief description of the time integration algorithm used by

the Cranfield MCM SPH code.
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The conservation equations for mass, momentum and energy are, respectively:

ρ̇ = −ρ∇ · v, (1.28)

ρv̇ = ∇σ, (1.29)

ρĖ = σ : ∇v. (1.30)

These must be supplemented with a constitutive equation in order to be well-posed. The

next step is to approximate the spatial derivatives in the above equations in order to

derive the particle equations.

2.1 SPH spatial discretisation

Note that in this section (2) the particle volume Vi = mi
ρi

will be included in the formulae

explicitly.

2.1.1 Density

There are two options for updating the density in SPH. The first is to use a kernel

approximation,

〈ρi〉 =
∑
j∈N(i)

ρjWij
mj

ρj
=
∑
j∈N(i)

mjWij. (1.31)

Alternatively we can use the continuity equation and approximate the divergence of the

velocity using kernel differentiation;

〈ρ̇i〉 =
∑
j∈N(i)

(vi − vj) · ∇Wij
mj

ρj
. (1.32)

In practice the rate of deformation tensor (D) is needed to update the stress this is

approximated with

〈Di〉 =
1

2

(
Li + LTi

)
, (1.33)

where

Li =
∑
j∈N(i)

(vi − vj)⊗∇Wij
mj

ρj
.
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2.1.2 Momentum

Applying the kernel differentiation formula (1.15) to the conservation equation would give

a particle momentum equation of the form

〈v̇i〉 =
1

ρi

∑
j∈N(i)

mj

ρj
(σj − σi) · ∇Wij. (1.34)

However this is not often used as the forces between particles are not symmetric, violating

Newton’s third law. Therefore a symmetric form which conserves momentum locally is

preferred

〈v̇i〉 =
1

ρi

∑
j∈N(i)

mj

ρj
(σj + σi) · ∇Wij, (1.35)

or

〈v̇i〉 =
∑
j∈N(i)

mj

(
σj
ρ2
j

+
σi
ρ2
i

)
· ∇Wij. (1.36)

2.1.3 Energy

The continuity of energy equation is approximated with〈
Ėi

〉
=
σi
ρ2
i

:
∑
j∈N(i)

mj (vi − vj)⊗∇Wij. (1.37)

2.1.4 SPH formulated in a moving reference frame [88]

The corrections applied to the kernel differentiation formulae are in some sense arbitrary.

The justification is that without correction, kernel differentiation is not accurate. It is

possible to derive equation (1.32) without resorting to ad hoc correction if the equations

of motion are considered in a moving reference frame attached to a particular particle.

Consider a coordinate system attached to a particle i moving at velocity vi. In the

referential coordinate system the velocity of another particle, j, will be vRj = vj − vi , it

follows that vRi = 0. The total derivative of a function is

Df

Dt
=
∂f

∂t
+ v · ∇f.
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We define the referential derivative to be

D̃f

Dt
=
∂f

∂t
+ vi · ∇f

and therefore
Df

Dt
=
D̃f

Dt
+ vR · ∇f.

The continuity equation (1.28) can be written in terms of the referential derivative;

D̃ρ

Dt
= −ρ∇ · v − vR · ∇ρ

= −∇ · (ρv) + vi · ∇ρ. (1.38)

The uncorrected kernel approximation (1.8) of ∇ · (ρv) and ∇ρ can now be substituted

into (1.38) and we find,〈
Dρi
Dt

〉
= −

∑
j∈N(i)

ρjvj · ∇Wij
mj

ρj
+ vi ·

∑
j∈N(i)

ρj∇Wij
mj

ρj

=
∑
j∈N(i)

mj (vj − vi) · ∇Wij. (1.39)

Note that at the particle the referential and total derivative coincide, D̃ρi
Dt

= Dρi
Dt

. Thus the

correction term has appeared naturally in equation (1.39) without resorting to arbitrary

correction. For details of how the same idea can be applied to the momentum equation

and numerical examples with the resulting equations see [88].

2.2 Time integration

The MCM code uses an explicit leap-frog time integration scheme. As an explicit method

it is only conditionally stable and the time step (∆t) must be adjusted in order to satisfy

the CFL condition [73]. The integration scheme uses the time derivative of a variable at

an intermediate time step to advance the variable to the next time step,

fn = fn−1 + ∆tn−1/2ḟn−1/2

fn+1/2 = fn−1/2 + ∆tnḟn,
(1.40)
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where each superscript refers to the timestep at which f is known. To illustrate, consider

the wave equation in 1D
∂2u

∂x2
=
∂2u

∂t2
. (1.41)

Introduce supplementary variables s = ∂v
∂x

and v = ∂u
∂t

then (1.41) becomes

∂v

∂t
=
∂s

∂x
, (1.42a)

∂s

∂t
=
∂v

∂x
. (1.42b)

The kernel approximations of the spatial derivatives at timestep n and particle i are 〈sx〉ni
and 〈vx〉ni and the leap-frog scheme advances si and vi through time as follows;

v
n+1/2
i = v

n−1/2
i + ∆t 〈sx〉ni , (1.43a)

sni = sn−1
i + ∆t 〈vx〉n+1/2

i . (1.43b)

The wave equation is a special case of the equations solved by the full MCM code and the

algorithm is in essence as in equation (1.43). The general operation of the code proceeds

as algorithm 1.1 below (see [18] for full details).
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Algorithm 1.1 Leap-frog time integration in MCM
while current_time ≤ end_time do

Perform neighbour search

for i = 1 to Number of Particles do

Calculate 〈D〉n−1/2
i and 〈ρ̇〉n−1/2

i B Equations (1.32) and (1.33)

ρni ← ρn−1
i + ∆tn−1/2 〈ρ̇〉n−1/2

i B Update density

Calculate 〈σ̇〉n−1/2
i B Constitutive equation

σni ← σn−1
i + ∆tn−1/2 〈σ̇〉n−1/2

i B Update stress

Calculate ani B Equation (1.36)

end for

∆tn ← ∆tn−1; ∆tn+1/2 ← ∆tn−1/2

for i = 1 to Number of Particles do

v
n+1/2
i ← v

n−1/2
i + ∆tnani

xni ← xn−1
i + ∆tn+1/2v

n+1/2
i

end for

current_time← current_time+ ∆tn

end while
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Chapter 2

Non-Reflecting Boundary Conditions

1 Introduction

There are many problems where the natural domain of the problem is too large for com-

puter simulation to be practical. As a consequence, artificial boundaries (ABs) must be

introduced to truncate the computational domain. For example, in SPH an AB may be

used to simulate a continuous flow of fluid down a channel; particles are deleted at the

outlet and new particles are created at the inlet [55, 26]. In this chapter we seek to apply

an artificial boundary condition in SPH which can absorb elastic waves generated in the

interior of some domain. Artificial boundary conditions which are designed to absorb

incoming waves, not necessarily elastic waves, are often called non-reflecting boundary

conditions (NRBCs). Such a boundary condition is useful in, for example, seismology or

impact problems and could extend the applicability of SPH in these, and other, areas.

Note that boundary conditions in general, and NRBCs in particular, are not well devel-

oped in SPH, but where examples of NRBCs used in SPH (or other particle methods)

exist in the literature they will be mentioned where appropriate during the introduc-

tion. However there is an extensive body of theoretical, finite difference (FD) and, to a

lesser extent, finite element (FE) literature dedicated to NRBCs, for detailed reviews see

[34, 33, 86, 40].
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Figure 2.1: A domain Ω is restricted to Ωr and a NRBC must be applied. In (a) an

absorbing layer is situated outside Ωr that is designed to damp incoming waves. In (b) a

boundary condition is imposed on δΩr =
⋃4
i=1 Γi that is solved alongside the PDE defined

in the interior.

In figure 2.1 two general methods for constructing NRBCs are represented. In the first,

represented in figure 2.1a, an absorbing layer that is designed to damp waves entering

from the interior surrounds Ωr. To achieve the desired absorbtion at the boundary the

equations of motion inside the absorbing layer are modified in some way. In [78], an

SPH simulation of wave impact on a ship, an absorbing layer is implemented upstream

to absorb the wave after it has passed the ship. The boundary condition consists of a

sponge layer of particles where the velocity is linearly damped towards zero. This method

is easy to implement but requires the addition of a relatively thick layer of particles. The

difficulty inherent in absorbing layer formulations is that at the interface between Ωr

and the absorbing layer, outgoing waves will tend to produce spurious reflections. This

problem is solved by using a perfectly matched layer (PML) for which there are no

spurious interfacial reflections; PMLs are, theoretically, reflectionless. The PML method

was invented by Berenger [12] to absorb electromagnetic waves and has since been applied

to elastic waves [17, 2]. Consider an absorbing layer in the space x > 0 and a problem

domain in x ≤ 0, then the PDE inside the layer is modified to include damping terms
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applied only to the components of, for example, the velocity parallel to the x-axis. The

damping parameters can then be choosen to exponentially attenuate waves entering the

absorbing layer. Perfectly matched layers are reported to give good results even for the

absorption of surface waves [27].

For the second broad type of boundary condition, represented in figure 2.1b, there is a fur-

ther division between global and local boundary conditions. Global boundary conditions

are more accurate, even exact, but are only applicable for certain boundary geometries

e.g. spherical boundaries. In addition they are non-local in space and/or time, requir-

ing information from the whole boundary and previous time-steps. An example is the

Dirichlet to Naumann (DtN) map [48, 36] where the analytical solution of the PDE on

the exterior domain, i.e. in Ω \ Ωr, provides a boundary condition for δΩr. The require-

ment that the exterior problem be solved analytically restricts the boundary geometry;

in practice a circular or spherical boundary is used. Further, the condition is non-local

in space but it can be localised, though at the cost of no longer being exact, see [35] and

for elastic waves [41].

We finally consider local NRBCs; the approach used can be characterised as follows: the

problem domain Ω is truncated to Ωr and δΩr becomes an AB that is designed to absorb

outgoing (that is leaving Ωr) waves. Consider for example the 2D wave equation defined

on Ω ⊆ R2

∂2u

∂t2
=
∂2u

∂x2
+
∂2u

∂y2
for (x, y) ∈ Ω. (2.1)

In truncating the domain (2.1) is replaced by another problem:

∂2u

∂t2
=
∂2u

∂x2
+
∂2u

∂y2
for (x, y) ∈ Ωr

Lu = 0 for (x, y) ∈ δΩr,

(2.2)

where L is some differential operator. In principal the, as yet unspecified, PDE on

the boundary (Lu = 0) is solved alongside the interior problem. The hope is that the

solution obtained for (2.2) is sufficiently close to the solution for the original problem

(2.1). The advantage of local NRBCs is that there are no theoretical restrictions on
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the boundary geometry. They are also relatively easy to implement, computationally

inexpensive and, except for some more recent high-order implementations, do not require

any extra particles to be placed around the domain. There has been some previous work

done in SPH using local NRBCs. In [55] the authors apply a boundary condition based

on characteristic variables where at the boundaries appropriate characteristic variables

are prescribed. This method relies on the flow being quasi-one dimensional. A similar

method but applied to the shallow water equations is used in [87]. Finally in [23] the

authors implement, not in SPH but in the related vortex particle method, a non-reflecting

boundary of the Engquist-Majda (E-M) type (see § 1.1) for acoustic waves. Particle

deficiency near the boundary requires that a one-sided kernel is used near the boundary to

accurately calculate the derivative. It is a boundary condition of this type, due originally

to [16], which we apply to SPH in this chapter and detailed derivations are given below.

1.1 The Engquist-Majda NRBCs

This section will re-derive, in detail, a local NRBC which can absorb elastic waves. See

appendix A § 3 for an introduction to elastic waves. There is a close association between

the scalar wave equation and elastic waves and we therefore start by discussing NRBCs

for the wave equation in 1D and 2D. We give two derivations for the NRBCs for the

wave equation (in 1D and 2D). One follows the original derivation given by Engquist

and Majda in [24]. They first derive an exact, but non-local boundary condition which

is localised by approximation. The second follows the method given in [6] to derive a

NRBC for elastic waves; and [21] for electro-magnetic waves (Maxwell’s equations), and

for acoustic waves in a 2D flow (linearised Euler equations). This method is conceptually

simpler. The idea is to try and minimise the reflection coefficient of a incident plane wave

by choosing the coefficients of a linear constant coefficient boundary condition.
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1.1.1 One-dimensional wave equation

A particularly simple NRBC exists for the 1D wave equation which is local and perfectly

absorbing. We derive this condition in detail in order to introduce the ideas needed

when deriving a local NRBC in 2D. Consider the one dimensional wave equation on a

semi-infinite domain (−∞, 0];

∂2u

∂t2
= c2∂

2u

∂x2
with Lu|x=0 = 0. (2.3)

where L is an, as yet unspecified, differential operator. The task is to choose L in such a

way that there is no reflection. Or, equivalently, that a right moving wave (i.e. towards

x = 0) is absorbed by the boundary condition. A right moving harmonic wave with

amplitude A, angular frequency ω, and wave number k = ω/c has the form

u(x, t) = Aei(kx−ωt). (2.4)

We will show that the boundary condition defined by

L =
∂

∂x
− ik =

∂

∂x
− iω

c
, (2.5)

will absorb, perfectly, a wave of the form (2.4). First notice that multiplication of (2.4)

by −iω is equivalent to differentiation with respect to time ∂
∂t
;

∂

∂t
Aei(kx−ωt) = −iωAei(kx−ωt).

Equation (2.5) can therefore be rewritten;

L =
∂

∂x
+

1

c

∂

∂t
. (2.6)

It can be seen by substitution of (2.4) into (2.6) that L defined thus will cancel this right

moving wave. Indeed for any right moving wave of the form f(x− ct);

Lf(x− ct) = f ′ − 1

c
cf ′ = 0.

In anticipation of the 2D case to follow a general solution to (2.3) can be written as a

superposition of harmonic waves,

u(x, t) =

∞∫
0

A(ω)ei(
ω
c
x−ωt)dω. (2.7)
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The boundary condition for all ω is then

Lu|x=0 =
∂u

∂x
−
∞∫

0

i
ω

c
A(ω)ei(

ω
c
x−ωt)dω = 0. (2.8)

It can be confirmed easily that this will exactly cancel waves like (2.7) because

∂u

∂x
=

∂

∂x

∞∫
0

A(ω)ei(
ω
c
x−ωt)dω =

∞∫
0

i
ω

c
A(ω)ei(

ω
c
x−ωt)dω.

Note too that

∂u

∂t
=

∂

∂t

∫
A(ω)ei(

ω
c
x−ωt)dω = −

∞∫
0

iωA(ω)ei(
ω
c
x−ωt)dω. (2.9)

Comparison of the above with (2.8) reveals that the boundary condition may be rewritten

L|x=0 =
∂u

∂x
+

1

c

∂u

∂t
= 0 (2.10)

exactly recovering the boundary condition derived by considering only a harmonic wave

of a single angular frequency ω.

To illustrate further we consider the reflection coefficient of a harmonic wave incident to

x = 0. In general the solution will have a transmitted and reflected part so that

u(x, t) = AReik(x+ct) + AT eik(x−ct). (2.11)

where AR and AT are the amplitudes of the reflected and transmitted wave respectively.

As L is linear if it is applied at x = 0 we find,

Lu|x=0 = ARL
(
eik(x+ct)

)
+ ATL

(
eik(x−ct)) = 0. (2.12)

By definition the reflection coefficient is

R =

∣∣∣∣ARAT
∣∣∣∣ =

∣∣∣∣∣L
(
eik(x−ct))

L (eik(x+ct))

∣∣∣∣∣ .
To be perfectly absorbing the reflection coefficient should be zero. Therefore as L

(
eik(x−ct)) =

0, and L
(
eik(x+ct)

)
6= 0, the reflection coefficient R is equal to zero, indicating that no

reflection occurs.
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Figure 2.2: Plane wave incident to arti-

ficial boundary at x = 0.

1.1.2 Two-dimensional wave equation

We now consider the 2D wave equation defined on the space x ≤ 0, it will be seen that

in this case only an approximate local boundary condition can be found.

∂2u

∂t2
= c2∂

2u

∂x2
+ c2∂

2u

∂y2
with Lu|x=0 = 0. (2.13)

A plane harmonic wave moving has the form

u(x, y, t) = Aei(k·x−ωt). (2.14)

The wave vector k is defined;

k = kn =
ω

c
n. (2.15)

The vector n is the unit vector parallel to to phase velocity. The notation

n = (α, β) = (sin θ, cos θ)

will be used where θ is the angle between the x-axis and phase velocity. By substituting

(2.14) into (2.13) we find the dispersion relation,

ω2 = c2
(
k2

1 + k2
2

)
,

for the wave equation. Solving for k1;

k1 = ±
√
ω2

c2
− k2

2 = ±ω
c

√
1− β2. (2.16)
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The wave we wish to absorb is moving towards the right so k1 > 0 (or equivalently α > 0),

thus the positive root must be taken.

Using (2.16) equation (2.14) can be rewritten as a function of k2 and ω only;

u(x, y, t) = Aei
√
ω2/c2−k22x+ik2y−iωt. (2.17)

A boundary condition which exactly cancels (2.17) is, exactly as in to the 1D case above,

L =
∂

∂x
− i
√
ω2

c2
− k2

2 =
∂

∂x
− iω

c

√
1− β2. (2.18)

As in the previous section multiplication by −iω is equivalent to ∂
∂t

and therefore the

boundary condition is equivalent to

L =
∂

∂x
+

1

c

√
1− β2

∂

∂t
. (2.19)

For a wave arriving normal to the boundary β = 0 so the boundary condition is the same

as for the 1D equation. This boundary condition will only perfectly absorb waves that

hit the boundary at the “correct” angle.

To try to produce a NRBC that can absorb waves at any angle of incidence we can again

represent the solution to (2.13) as a superposition of harmonic waves.

u(x, y, t) =

∫∫
A (ω, k2) ei

√
ω2/c2−k22x+ik2y−iωt dω dk2. (2.20)

Note that certain restrictions are given for the function A(ω, k) in [24]. Therefore one

only needs to define L such that

L|x=0

∂u

∂x
−
∫∫

i
√
ω2/c2 − k2

2 A (ω, k2) ei
√
ω2/c2−k22x+ik2y−iωt dω dk2 = 0. (2.21)

Unfortunately this is not a local condition, nor does it reduce to one as in the 1D case.

Define the function that appears as the second term in the boundary condition (i.e. not
∂
∂x
) as P . Previously, equation (2.9), we had that

1

c

∂u

∂t
= P . (2.22)
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Therefore the locality of the boundary condition was recovered. Unfortunately a similar

operation where, for some differential operator D,

Du = P

so that

L =
∂

∂x
−D = 0

cannot be founda.

The problem is the square root (
√
ω2/c2 − k2

2). Faced with this, the authors of [24]

approximate the square root function by using a Padé expansion [10] having shown that

a Taylor expansion leads to an ill-posed boundary condition. Expanding iω
√

1− β2 in

powers of β2 one finds for the first- and second-order approximations:

1st- order:
∂

∂x
− iω

c

√
1− β2 =

∂

∂x
− iω

c
+O(β2) (2.23a)

2nd- order:
∂

∂x
− iω

c

√
1− β2 =

∂

∂x
− iω

c
+
iω

c

1

2
β2 +O(β4) (2.23b)

We now replace multiplication by −iω and iω
c
β by their equivalent operations - ∂

∂t
and

∂
∂y
, respectively, to find the boundary conditions. The first-order condition, is once again,

∂

∂x
+

1

c

∂

∂t
= 0. (2.24)

For the second-order condition, equation (2.23b) is first multiplied by − iω
c
;

−iω
c

∂

∂x
+

(
−iω
c

)2

− 1

2

(
iωβ

c

)2

= 0.

Multiplication is then converted to differentiation so that the second-order condition is

1

c

∂

∂x∂t
+

1

c2

∂2

∂t2
− 1

2

∂2

∂y2
= 0. (2.25)

A hierarchy of more accurate boundary conditions can be derived depending on how far

one takes the Padé expansion.

aObviously we exclude D = ∂
∂x .
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Figure 2.3: Incident and reflected wave

at artificial boundary (x = 0) for wave

equation.

The boundary conditions can also be derived directly, i.e. not through approximation of

an exact condition by considering the reflection of a harmonic wave from the boundary.

The procedure involves assuming the boundary condition has a particular form,

L =
∂

∂t
+ a

∂

∂x
+ b

∂

∂y
= 0. (2.26)

and then choosing the coefficient, a, to minimise the reflection. First, note that a wave

incident on a boundary, x = 0, will reflect at an angle such that the incident angle, θ,

and reflected angle, φ, are related by the formula

sin θ

sinφ
=
cref

cinc

, (2.27)

where cinc and cref are the incoming and reflected phase speeds. This relation is true

because the component of the wave vector perpendicular to the boundary must remain

constant [54]. In the present case cref = cinc so that the angle of incidence and reflection are

also equal (see figure 2.3). For elastic waves however the phenomenon of mode conversion

[47] (see also below) means that the incoming and reflected phase speeds may differ. The

solution at x = 0 can be written as the sum of an incoming/transmitted and reflected

plane harmonic wave,

u(x, y, t) = AT ei(k1x+k2y−ωt) + ARei(p1x+p2y−ωt), (2.28)
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where k and p are the wave vectors. By equation (2.27) k2 = p2. The dispersion relation

(2.16) implies that,

p2
1 + p2

2 = k2
1 + k2

2

and therefore p1 = ±k1. The positive root gives the incoming wave so for the reflected

wave p1 = −k1 and (2.28) becomes

u(x, y, t) = AT ei(k1x+k2y−ωt) + ARei(−k1x+k2y−ωt), (2.29)

Recall that by definition

k =
ω

c
(cos θ, sin θ) =

ω

c
(α, β) ,

so that when we apply the operator (2.26) to (2.29) we find

Lu|x=0 = AT

(
1 + a

√
1− β2

c
− bβ

c

)
+ AR

(
1− a

√
1 + β2

c
− bβ

c

)
= 0, (2.30)

where the common factor −iωei(k2y−ωt) has been cancelled. The reflection coefficient is

R =
∣∣AR/AT ∣∣ and we seek to choose a and b so that R = O(βn) for n as large as possible.

For the first-order condition the best that can be achieved is n = 2 [21]. We use the

approximation, familiar from the above,
√

1− β2 = 1 + O(β2) and find;

R =

∣∣∣∣ARAT
∣∣∣∣ =

∣∣∣∣∣1− a1
c
− bβ

c
+O(β2)

1 + a1
c
− bβ

c
+O(β2)

∣∣∣∣∣ . (2.31)

By inspection if a = c and b = 0 the numerator of (2.31) is O(β2) and the denominator

is O(1) so that R = O(β2) as required.

Higdon [44] showed that the pth-order E-M boundary condition is equivalent to(
∂

∂x
+

1

c

∂

∂t

)p
u = 0. (2.32)

For example, for p = 2, (2.32) is

∂2u

∂x2
+

2

c

∂2u

∂x∂t2
+

1

c2

∂2u

∂t2
= 0.

But u is a solution of the wave equation so that

∂2u

∂x2
=

1

c2

∂2u

∂t2
− ∂2u

∂y2
,
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and therefore

1

c2

∂2u

∂t2
− ∂2u

∂y2
+

2

c

∂2u

∂x∂t2
+

1

c2

∂2u

∂t2
=

1

c

∂

∂x∂t
+

1

c2

∂2

∂t2
− 1

2

∂2

∂y2
= 0.

This is the second-order E-M condition (2.25). In the same paper Higdon also introduced

a generalisation to (2.32); [
p∏
i=1

(
cosαi

∂

∂x
+

1

c

∂

∂t

)]
u = 0. (2.33)

This will absorb right moving waves hitting the boundary, x = 0, at any angle αi for

i = 1 to p. Clearly any plane wave

u = eiω(cos θx/c+sin θy/c−t),

will be annhialated by one of the factors in (2.33) if θ = αi for any i = 1 to p. It is

suggested that in this way a boundary condition may be tuned to account for a priori

knowledge of dominant wave directions. Note that the E-M boundary conditions are a

special case of (2.33) with αi = 0 for all i.

1.1.3 Boundary condition for a general configuration

Thus far we have always assumed that a right moving wave is incident to the a boundary

at x = 0, there is in fact no difference if we consider a boundary x = a, for some

constant a. For waves travelling from right to left or those incident from above or below

to a boundary y = a the boundary conditions must be modified in a straightforward way;

easily derived by reapeating the above analysis with the appropriate changes in the initial

assumptions. The changes necessary for the first-order E-M condition are illustrated in

figure 2.4.

The most general case is for a wave incident to a boundary surface defined by a normal

n = (n1, n2) = (cosφ, sinφ). In all of the derivations above we considered a right

moving wave with wave vector k = (k1, k2) and a reflected wave with wave vector p =

(−k1, k2). A simple way to derive the correct NRBC for the present case is to rotate k and
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Figure 2.4: Modification of

first-order E-M NRBC for the

sides of a rectangular domain.

p by φ degrees and calculate the action of the general first-order homogeneous boundary

condition (2.26) on the total displacement as above. First note that the rotated wave

vectors can be found by multiplication by the rotation matrix

Rφ =

cosφ − sinφ

sinφ cosφ

 =

n1 −n2

n2 n1

 .

Therefore the total displacement including the reflected and transmitted part is

u = AT ei((n1k1−n2k2)x+(n2k1+n1k2)y−ωt) + ARei(−(n1k1+n2k2)x+(−n2k1+n1k2)y−ωt). (2.34)

If the boundary condition is applied to (2.34) and all the common factors are cancelled

we find

AT
(
−1 +

a

c
(n1α− n2β) +

b

c
(n2α + n1β)

)
+ AR

(
−1− a

c
(n1α + n2β) +

b

c
(−n2α + n1β)

)
= 0, (2.35)

where k = (α, β). We once again use the approximation α =
√

1− β2 = 1 +O (β2) and

the reflection coefficient is

R =

∣∣∣∣ARAT
∣∣∣∣ =

∣∣∣∣∣ −1 + a
c

(n1 − n2β) + b
c

(n2 + n1β)

−1− a
c

(n1 + n2β) + b
c

(−n2 + n1β)

∣∣∣∣∣ . (2.36)

If a = cn1 and b = cn2 then the reflection coefficient is O (β2) and the general first-order

NRBC is
∂u

∂t
+ c (n · ∇)u = 0. (2.37)
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It will be seen that this agrees with the specific examples given in figure 2.4.

The high-order boundary conditions i.e. (2.32) or (2.33) with p ≥ 3 or 4 though offering

arbitrarily high accuracy are generally considered impractical because of the need to

approximate higher order derivatives. More recent papers however provide a means to

apply these conditions to an arbitrary order without calculating derivatives of higher than

second-order. This is done by introducing extra degrees of freedom into the calculaton,

either by defining extra non-physical variables on the boundary [34] or by adding extra

grid points around the outside of the domain [39]. Unfortunately accurate calculation of

even second derivatives in SPH can be difficult especially on the boundary.

1.1.4 P- and S-waves

A characteristic of elasticity in an infinte medium is that waves can propagate at two

distinct speeds. These are P-waves, with phase speed cp, and S-waves, with phase speed

cs where cp > cs. The displacements associated with P-waves are parallel to the phase

velocity, for S-waves the displacements are normal to the phase velocity. In addition

there can exist Rayleigh waves on the free surface of an elastic body with phase speed

cr < cs. Particles on the surface when a Rayleigh wave is propagating to the right follow

a counter-clockwise elliptical path. Further information on elastic waves can be found in

appendix A and the references cited there.

For reference the equations of linear elasticity can be written in the form

∂2u

∂t2
= c2

s∆u +
(
c2
p − c2

s

)
∇ (∇ · u) . (2.38)

Or in index notation
∂2ui
∂t2

= c2
s

∂2ui
∂xj∂xj

+
(
c2
p − c2

s

) ∂2uj
∂xi∂xj

. (2.39)

A plane P-wave has the form;

u = Aei(kp·r−ωt), (2.40a)
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Figure 2.5: Mode conversion of plane elastic waves on reflection from a boundary. In (a)

sin γ = cs
cp

sin θ and (b) sinφ = cp
cs

sin θ.

where the vector amplitude is parallel to the wave vector, A = |A| k̂p, and the “hat”

denotes the unit vector i.e. â = a/ |a|. Similarly for a plane S-wave, in 2D,

u = Bei(ks·r−ωt), (2.40b)

with B = |B| (t×k̂s) where t = (0, 0, 1) so that B = (−k2,s, k1,s, 0) is in the xy-plane and

perpendicular to the wave vector ks.

A complication of the reflection of elastic waves is that unless the wave vector is normal

to the boundary the reflected wave will be a combination of a P-wave and an S-wave

regardless of whether the incident wave was a pure P- or S-wave. The angle of reflection is

governed by equation (2.27). This phenomenon, known as mode conversion, is illustrated

in figure 2.5. By a generalisation of the pth-order boundary condition (2.33), in [45] Higdon

suggests the following boundary condition to absorb right moving waves at x = 0;(
∂

∂t
+ cp

∂

∂x

)(
∂

∂t
+ cs

∂

∂x

)
u = 0. (2.41)
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It is clear by substitution of (2.40a) or (2.40b) into (2.41) that it will perfectly absorb

a normally incident P-wave, S-wave, or a superposition thereof (by linearality of the

boundary condition). Clayton and Engquist [16] derive a first-order (and a second-order)

boundary condition for elastic waves in 2D. The first-order condition, for right moving

waves incident to x = 0 is; (
∂

∂t
+ cp

∂

∂x

)
u1 =0(

∂

∂t
+ cs

∂

∂x

)
u2 =0.

(2.42)

This is derived by assuming the first-order boundary condition will take the forma 0

0 b

 ∂u

∂t
+
∂u

∂x
= 0. (2.43)

They then perform a Fourier transform on equations (2.38) and (2.43). They approximate

the square root term that appears in the transformed elasticity equation and try to match

the coefficients of the two equations so that the boundary condition and the PDE are

both satisfied on the boundary. The boundary condition is then transformed back into

the time domain. The same procedure is used to find a second-order boundary condition; ∂2

∂t2
+

cp 0

0 cs

 ∂2

∂x∂t
+

 0 cp − cs
cp − cs 0

 ∂2

∂y∂t
+

1

2

 cp−2cs
cp

0

0 cs−2cp
cs

 ∂2

∂y2

u = 0.

(2.44)

The reflection coefficient for the first-order boundary condition for the wave equation is

of O(sin2 θ). We will show that (2.42) is 0(sin θ), however the boundary condition ∂

∂t
+

cp 0

0 cs

 ∂

∂x
+

 0 cp − cs
cp − cs 0

 ∂

∂y

u = 0, (2.45)

given in [84], can make the reflection coefficient O(sin2 θ) without resorting to second

derivatives.

We must consider four seperate coefficients; one for an incident P-wave and one for a

reflected P-wave (PP ), an incident P-wave and reflected S-wave (PS), an incident S-wave
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and reflected S-wave (SS), and finally an incident S-wave and reflected P-wave (SP ).

Consider a incident P- or S-wave with wave vector k with k̂ = (α, β) = (cos θ, sin θ).

For an incident P-wave the reflected P-wave will have wave vector kp with k̂p = (−α, β)

and reflected S-wave with wave vector ks with k̂s = (−ζ, η) = (− cos γ, sin γ) (see fig-

ure 2.5a). For an incident S-wave, the reflected P-wave has wave vector dp with d̂p =

(−ν, ξ) = (− cosφ, sinφ) and the reflected S-wave has wave vector ds with d̂s = (−α, β)

(see figure 2.5b). The total displacement at the boundary for an incident P-wave with

wave vector will be

u = A0

(
α

β

)
ei(k·r−ωt) + Ap

(−α
β

)
ei(kp·r−ωt) − As

(
η

ζ

)
ei(ks·r−ωt). (2.46a)

For an S-wave;

u = A0

(−β
α

)
ei(k·r−ωt) + Ap

(−ν
ξ

)
ei(dp·r−ωt) − As

(
β

α

)
ei(ds·r−ωt). (2.46b)

From equation (2.27) and α2 + β2 = 1 we find the relations

ν =

√
1− c2

p

c2
s

β2, ξ =
cp
cs
β,

ζ =

√
1− c2

s

c2
p

β2, η =
cs
cp
β.

(2.47)

In general applying a linear differential operator, L, to (2.46) gives, for u1 and u2,

Lu1 =AoF1 + ApF2 + AsF3 = 0

Lu2 =AoG1 + ApG2 + AsG3 = 0.
(2.48)

Where the functions F1, F2, and F3 are the result of applying L to the first component

(u1), of each harmonic wave in (2.46) and each G is defined analogously but applied to the

second component (u2). We can solve (2.48) for Ap/A0 and As/Ao to find the reflection

coefficients, note these apply equally to (2.46a) and (2.46b),∣∣∣∣ApA0

∣∣∣∣ =

∣∣∣∣G1F3 − F1G3

G3F2 − F3G2

∣∣∣∣ , (2.49a)

∣∣∣∣AsA0

∣∣∣∣ =

∣∣∣∣G1F2 − F1G2

G2F3 − F2G3

∣∣∣∣ . (2.49b)
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Equations (2.49) can be used to calculate the reflection coefficient for any, linear, bound-

ary condition. The calculation is simpler if it is remembered that the y-component of the

wave vector must remain constant so that a common factor of ei(k2y−ωt) may be cancelled

and x = 0 so that eik1x = 1. Finally recall from the above that for a harmonic wave

f(x, y, t) with wave vector k = ω
c
(α, β) the following operations are equivalent;

∂

∂t
f =− iω × f,

∂

∂x
f =

iωα

c
× f,

∂

∂y
f =

iωβ

c
× f.

If the boundary condition only contains derivatives of the same order, as is the case here,

then the term iω will be a common factor that can be cancelled.

Therefore for [16] we find for (2.46a) using the relations from (2.47) and the approximation√
1 + β2 = 1 +O(β2)

F1 = −α + α2 = O(β2) G1 =− β +
cs
cp
αβ = O(β2)

F2 = α + α2 = O(1) G2 =− β − cs
cp
αβ = O(β)

F3 = ζ +
cp
cs
ζη = O(β) G3 =η + η2 = O(β).

The above can be substituted into (2.49a) and it is found that the numerator is order

O(β3) and the denominator is O(β) so that overall PP = O(β2). For (2.49b) the reflection

coefficient is PS = O(β).

For (2.46b) we find

F1 = β − cp
cs
βα = O(β) G1 =α− α2 = O(β2)

F2 = ν + ν2 = O(1) G2 =− ξ − cs
cp
νξ = O(β)

F3 = β +
cp
cs
βα = O(β) G3 =α + α2 = O(1).

Similary to the previous case by substitution of the above into (2.49) we find that SP =

O(β) and SS = O(β2).
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Figure 2.6: Reflection coef-

ficient for incident P-wave.

Dashed lines are the P-wave

and solid lines the S-wave.

To compare the reflection coefficients for the various boundary conditions refer to figure

2.6.

2 Implementation

2.1 Identification of boundary particles

In order to apply boundary conditions in SPH it is obviously necessary to identify the

particles on the boundary. In SPH this must include not only the particles on the very

outside of the domain but also those near enough to be affected by particle deficiency

(see chapter 1 § 1.3). Moreover it is desirable for the identification of boundary particles,

and the calculation of the surface normals at those particles, to be automated as far as

possible. This relieves the necessity of including such information in the input file. And

allows, if desired, for the updating of boundary particles and their surface normals as the

computation progresses. For clarity all the particles on or near enough to the boundary

to be affected by particle deficiency will be referred to as boundary particles (BPs), the
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2h

Figure 2.7: Surface normal vectors

calculated for the top-right corner

of a rectangular domain, with reg-

ular particle arrangement, using

equation (2.51).

outer layer of particles will be referred to as outer boundary particles (OBPs) and the

BPs that are not OBPs are inner boundary particles (IBPs).

To identify boundary particles Randles and Libersky, in [81], assign the same integer, Ii,

to each particle i that make up a particular, distinct object or material. Then if

Ii 6≈
∑
j∈N(i)

IjWij, (2.50)

i is designated as a boundary particle. To approximate the surface normal they calculate

ei = 〈∇1〉 =
∑
j∈N(i)

∇Wij, (2.51)

then the normal is ni = −êi = −ei/ |ei|. This is an SPH approximation of the gradient

of a constant field and should, of course, be equal to zero. Instead of using (2.50) we have

found that |ei| can be used to find boundary particles. Indeed the error associated with

calculating 〈∇1〉 is greater than that associated with 〈1〉, thereby indicating boundary

particles more clearly. The exact criterion used is that i is a boundary particle if

〈ei〉 > C max
∀k
〈ek〉 . (2.52)
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Where C is a constant, by trial and error C = 0.75 is found to work well. This test will

only flag particles on the “true” boundary i.e. those particles in the very outer layer of

the domain. For stability reasons we must also definitively exclude some particles from

the boundary; those that are within the neighbourhood of an OBP but have full kernel

support. Particles are excluded if

〈ei〉 > Dmin
∀k
|ek| . (2.53)

Again by trial and error we use D = 10. Finally it is found that the boundary normal is

only accurately approximated for OBPs. Therefore once the OBPs have been identified

we must recalculate ei for all of the IBPs while excluding the OBPs from the calculation.

This identifies a second layer of particles further inside the domin than the OBPs but to

the outside of the rest of the domain. The surface normals can then be set for this second

layer. Similarly a third layer is identified by excluding the OBPs and the second layer

and recalculating ei. This is repeated untill all of the BPs, i.e. those affected by particle

deficiency, have had an accurate surface normal set. The whole procedure is outlined in

algorithm 2.1. In the next section the problems used to test the NRBCs will primarily

consist of 2D rectangular blocks with particles arranged on a regular grid, figure 1.3. For

problems of this nature the algorithm 2.1 is found to be especially accurate (for the initial

configuration at least) for two reasons:

1. The regularity of the grid in the initial configuration means that, for a non-BP i,

ei = 0

to within rounding error. Therefore the tolerance of the algorithm when identifying

non-BPs, and by implication BPs, is larger. In contrast, particle disorder introduces

errors, in the form of mis-identification of boundary particles, into the procedure.

2. On a straight edge of the regular grid, symmetry of the particle arrangement means

the surface normal, away from the corners, is calculated exactly (again to within

rounding error).
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Algorithm 2.1 Identify boundary particles
for i = 1 to Number of Particles do

ei ←
∑

j∈N(i)

∇Wij

end for

max← 0.75×max∀i |ei|
min← 10×min∀i |ei|
for i = 1 to Number of Particles do

if |ei| > max then

BP ← BP ∪ i B BP is the set of boundary particles

ni ← −êi
end if

for j ∈ N(i) \BP do

if |ej| > min then B Exclude particles with full neighbourhood

BN ← BN ∪ j B BN is the set of neighbours of boundary particles

end if

end for

end for

2.2 NRBC in SPH

For practical implementation of a NRBC in the SPH code we must first derive an expres-

sion for the boundary condition that is valid for a wave incident to a boundary defined by

the outward normal, n. In section 1.1.3 it was shown that the first-order E-M boundary

condition for an acoustic wave incident to a plane defined by a unit normal n is

∂u

∂t
+ c (n · ∇)u = 0. (2.37)

Analogously, for an elastic wave the general first-order E-M condition is the simultaneous

differential equation, (
∂u

∂t
+ cp (n · ∇)u

)
· n = 0 (2.54a)(

∂u

∂t
+ cs (n · ∇)u

)
· t = 0. (2.54b)
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Algorithm 2.2 Calculate boundary normals
while BN 6≡ ∅ do

for i ∈ BN do

ei ←
∑

i∈N(i)\BP
∇Wij B Exclude j ∈ BP from calculation

if |ei| > max then

ni ← −êi
BP ← BP ∪ i
BN ← BN \ i

end if

end for

end while

It may be seen by substitution of the appropriate normal vector, n, that the expected

boundary conditions are generated. For example, if n = (0, 1) then t = (1, 0) and (2.54)

becomes

∂u2

∂t
+ cp

∂u2

∂y
= 0

∂u1

∂t
+ cs

∂u1

∂y
= 0.

In general if a second-order boundary condition for a right moving wave incident to a

boundary at x = 0 is

∂u1

∂t
+G1 (ux,uy,uxx,uyy,uyx) = 0 (2.55)

∂u2

∂t
+G2 (ux,uy,uxx,uyy,uyx) = 0, (2.56)

for linear functions G1 and G2. Then for a boundary perpendicular to n, if the normal

derivative is un = (n · ∇)u and the tangental derivative is ut = (t · ∇)u, equation (2.55)

becomes; (
∂u

∂t
+G1 (un,ut,unn,utt,utn)

)
· n = 0, (2.57)(

∂u

∂t
+G2 (un,ut,unn,utt,utn)

)
· t = 0. (2.58)
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To summarise, to transform a boundary condition derived for a right moving wave incident

to a boundary at x = 0, to one appropriate for absorbing waves incident to a boundary

defined by an outward normal n, the following substitutions should take place:

∂

∂x
→ (n · ∇) = n1

∂

∂x
+ n2

∂

∂y
∂

∂y
→ (t · ∇) = n2

∂

∂x
− n1

∂

∂y

u1 → u · n

u2 → u · t.

For the first-order conditions that we will be considering below it is more convenient

to work with the velocity, v, rather than the displacement, u. The velocity gradient

is already calculated in the code, see algorithm 1.1 (on 21), and moreover the particle

displacements are not normally calculated. The boundary conditions is therefore differ-

entiated with respect to time, so that (2.54) becomes(
∂v

∂t
+ cp (n · ∇)v

)
· n = 0 (2.59a)(

∂v

∂t
+ cs (n · ∇)v

)
· t = 0, (2.59b)

where we have assumed that ṅ ≈ 0. Combining (2.59a) and (2.59b) we have

∂v

∂t
= −cp ((n · ∇)v · n)n− cs ((n · ∇)v · t) t, (2.60)

where we have used the fact that for any vector b = (b · n)n + (b · t) t. This boundary
condition gives a relationship between the partial derivative of the velocity with respect

to time, ∂v
∂t

and the velocity gradient. In SPH the momentum equation, (1.29), is defined

in terms of the material derivative,

v̇ =
Dv

Dt
=
∂v

∂t
+ v · ∇v. (2.61)

Re-arranging we have
Dv

Dt
− v · v =

∂v

∂t
,

46



which may then be substituted into (2.60) to find the particle acceleration;

Dv

Dt
= −cp ((n · ∇)v · n)n− cs ((n · ∇)v · t) t + v · ∇v. (2.62)

Consider again, the E-M boundary condition for a right moving wave incident to a bound-

ary defined by x = 0, (
∂

∂t
+ A

∂

∂x

)
u = 0, (2.63)

where A =
(
cp 0
0 cs

)
. The particle acceleration in this case is therefore, from (2.62),

Dv

Dt
= −A ∂

∂x
+ v · ∇v. (2.64)

Further if the particle velocity is normal to the boundary, v = |v|n = |v| (1, 0) and one

substitutes this into (2.64), we find,

Dv

Dt
= −A∂v

∂x
+ |v|n · ∇v =

−cp + |v| 0

0 −cs + |v|

 ∂v

∂x
. (2.65)

Therefore if the particle velocity is much smaller that the speed of sound the convective

term (v · ∇v), should be negligible, but (2.65) implies that at higher particle velocities

changing to the material derivative becomes more important.

2.3 Time integration

For the boundary particles the velocity gradient, L, is used to calculate the acceleration,

through equation (1.33). In the leap-frog scheme described in chapter 1§2.2 the particle

stress and velocity are held at different time levels, the derivative of one being used to

advance the other to the next time step. However, for boundary particles the NRBC

uses the velocity gradient, rather than the divergence of the stress, to calculate the

acceleration. It will be seen therefore that the acceleration and the velocity are held on

the same time level, see 2.3. This has deleterious consequences for the stability as the

velocity of each boundary particle is being advanced using the forward Euler method,

v
n+1/2
i = v

n−1/2
i + ∆ta

n−1/2
i , (2.66)
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Algorithm 2.3 Time integration for boundary particles
while current_time ≤ end_time do

Perform neighbour search

for i = 1 to Number of Boundary Particles do

Calculate 〈D〉n−1/2
i and 〈ρ̇〉n−1/2

i

ρni ← ρn−1
i + ∆tn−1/2 〈ρ̇〉n−1/2

i

Calculate 〈σ̇〉n−1/2
i B Constitutive equation

σni ← σn−1
i + ∆tn−1/2 〈σ̇〉n−1/2

i B Need σ for neighbouring particles to see

Calculate a
n−1/2
i B Uses 〈L〉n−1/2

i so at the half step

end for

for i = 1 to Number of Boundary Particles do

v
n+1/2
i ← v

n−1/2
i + ∆tna

n−1/2
i

xni ← xn−1
i + ∆tn+1/2v

n+1/2
i

end for

current_time← current_time+ ∆tn

end while

which is unconditionally unstable [73]. There are two solutions which stabilise the

method. The first, implied above, is that each boundary particle have neighbours which

are not themselves boundary particles. This is why when calculating boundary particles

those particles with a complete set of neighbours are not included as boundary parti-

cles. The disadvantge of this is that greater care must be taken in calculating boundary

particles.

An alternative time-integration method which is easy to implement is the upwind method

[73]. In practice this requires that when calculating 〈Li〉 for a boundary particle, only

particles further to the interior of the material should be used. Consider a 1D example

with all the particles numbered sequentially from left to right. If a particle i is part of

the NRBC absorbing waves moving to the right then

〈Li〉 =
∑
j<i

(vj − vi)⊗∇Wij. (2.67)
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However, one can see that calculated in this way Li will be approximated as if i were a

particle on the extreme end of the domain. Consequently the approximation will be poor

and every particle in the boundary will suffer from the same poor approximation. For

this reason the upwind type scheme must be used with a normalised kernel.

The cost of implementing the NRBCs are negligible if the identification of the boundary

particles is done only on initialisation. In the examples considered below the boundary

normals were calculated only once. The boundary in these examples does not deform

significantly and it is found that the minor deformation that does take place is more

deleterious to the accuracy of algorithm 2.2 than to the NRBC.

That said, all that is left for the NRBC is to calculate the acceleration using information

we already have, the velocity gradient, instead of having to solve the momentum equation.

Theoretically then the truncated solution should be more efficient than the same problem

run without a NRBC. This assumes that one is using a first-order boundary condition, a

second-order condition using the first and second derivatives of the displacement. Unless

we are using a higher order method for the main integration loop, the second-order

boundary conditions will surely be more expensive than solving the momentum equation.

3 Numerical examples

3.1 1D problems

This section presents a simple 1D test for the NRBC involving the propagation of an

elastic wave in a semi-infinite bar. Though simple, because in 1D the NRBC is the-

oretically perfectly absorbing, errors in the simulation can be attributed solely to the

discretisation. In particular, the approximation of spatial derivatives near a boundary

and the time integration scheme.

Consider the 1D wave equation on a semi-infinte bar in the domain x ≥ 0 with a free
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Figure 2.8: SPH: Velocity profile of particle

80. Solid line is the truncated solution with

100 particles. Dashed line is a reference

solution with 800 particles and no NRBC.

Number in upper right indicates number of

particles where NRBC is applied. Bottom

plot uses upwind time integration scheme

(see main text page 48).

boundary at x = 0,

utt = c2uxx

ux(0, t) = 0

ut(x, 0) =


0.01cm/µs : x < 0.35cm

−0.01cm/µs : x ≥ 0.35cm

(2.68)

with wave speed c =
√

E
ρ
. We discretise the first 1cm of x using 100 equally-spaced

particles, with particle spacing ∆x = 0.01cm, numbered sequentially from left to right -

particle 1 begins at x1 = 0.005cm and particle 100 at x100 = 0.995cm. To simulate the
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Figure 2.9: XSPH: Standard SPH with ve-

locity smoothing. Further details as in fig-

ure 2.8.

semi-infinte bar we apply the 1D NRBC to n particles at the extreme right end, so that

utt,i = −c 〈utx〉i (2.69)

where

〈utx〉i =
∑
j∈N(i)

(vj − vi)W ′
ij, (2.70)

and ux,i = vi.

To apply the initial condition the first 35 particles are prescribed an inital velocity of

0.01cm/µs and the remainder an inital velocity of −0.01cm/µs. A fixed smoothing length

of h = 1.3∆x is used. For comparison a reference solution is provided where the first 8cm
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Figure 2.10: NCSPH: First-order complete

version of SPH. Further details as in fig-

ure 2.8.

of the bar is simulated using 800 particles. The problem is not run long enough for waves

reflected from the right hand side of the “reference” bar to affect the first 100 particles.

This allows us to isolate the effect of the NRBC from other errors in the solution. Finally,

the simulation is repeated using XSPH (with velocity smoothing), NCSPH and, NCXSPH

(normalised corrected with velocity smoothing). For reference, the velocity is smoothed

before updating the particle positions with,

vi ← vi + ε
∑
i∈N(j)

(vj − vi)Wij, (2.71)

where ε is a smoothing factor, in this work ε = 0.1.

Figures 2.8-2.11 show the gross effect of varying the number of particles in the boundary
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Figure 2.11: NCXSPH: First-order com-

plete with velocity smoothing. Further de-

tails as in figure 2.8.

layer. With a smoothing length of h = 1.3∆x each particle has four neighbours, two

either side and consequently paticles 100 and 99 are deficient in neighbours. It is clear

from the top plot in each figure (1p) that the boundary condition is not effective. This is

no doubt caused by the fact that particle 99 “sees” the boundary and the incoming wave

is reflected to some degree.

Too many particles in the boundary layer are seen to cause an instability. That this

is due to the time integration scheme becoming in effect the forward Euler scheme, is

confirmed by the stability of simulation when a different scheme (the upwind see above)

is used with eight particles in the boundary layer. The upwind scheme is seen to be more
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#Particles Mean relative error (×102)

SPH XSPH NCSPH NCXSPH

Reference 0.3474 0.0300 0.2243 0.0056

1 5.9729 1.3790 3.2605 0.8531

2 1.5015 0.1808 1.3068 0.0867

3 1.7273 0.0763 1.5451 0.0726

4 X 0.1401 7.5314 0.0733

5 X X X 13.7708

Upwind 30.9198 3.0328 1.2380 0.1078

Table 2.1: Relative error at particle 80 for 3µs < t < 20µs. An X in the column indicates

the simulation became unstable.

stable but for basic SPH (figures 2.8 and 2.9) it is very inaccurate because the gradient

of the velocity for every particle in the boundary layer is approximated as inaccurately as

that for the very end particle. For NCSPH because the kernel is normalised, the upwind

scheme is not significantly worse than the basic algorithm. Smoothing the velocities has

a stabilising effect and improves the accuracy (see below).

Define the relative error of the velocity at time-step k and particle i to be

Ek
i =
|ut,i − 〈ut〉i|
|ut,i|

. (2.72)

To estimate the accuracy of the boundary condition we calculate the mean relative error

at particle 80 for all time-steps such that t > 3. The first 3µs are omitted because the

relative errors as the pulse is propagating through particle 80 are relatively large, and

differences between the reference and truncated solutions are then obscured. The results

of this calculation are shown in table 2.1 and the following can be ascertained:

• The best results for SPH and NCSPH are very similar. This is also true of XSPH

and NCXSPH. Though the normalised and corrected versions appear to be more
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forgiving in terms of accuracy and stability in regards to the thickness of the bound-

ary layer.

• Velocity smoothing improves the accuracy of the reference simulation and this car-

ries over to the truncated simulations.

• As is also apparent from the plots in figures 2.8 - 2.11 the upwind scheme is not

appropriate for a non-normalised kernel.

• In all cases, as expected, the reference simulation is more accurate than the best

achieved by the NRBC by between 2.5 to 13 times. This is despite the theoretically

perfect absorption. An obvious explanation of the difference is inaccuracies in the

approximation of the velocity gradient near the boundary - the probable cause of

the inferior accuracy of the upwind scheme. Another factor is that the wave may

propagate at a different sound speed in SPH than that predicted theoretically and

used in the boundary condition.

Smoothing length. We now investigate the effect of varing the smoothing length on

the efficacy of the boundary condition. Increases in h will obviously affect the number of

particles that should be included in the boundary layer as the influence of the boundary

extends further into the domain. For consistency we use NCSPH with velocity smoothing,

and include floor(2h/∆x) + 1 particles in the boundary layer. This coincides with the

optimum according to the previous test, where h = 1.3∆x, so floor(2h/∆x)+1 = 3. In all

other respects, save the change in the smoothing length, this test is exactly as described

above. It can be seen from 2.12 that the difference in the error between the reference

and truncated solutions remains fairly constant irrespective of smoothing length. This

indicates that the boundary condition is not dependent on a specific smoothing length

to maintain its accuracy.

55



Reference

NRBC

0

0.1

0.2

0.3
m
ea
n
re
la
ti
v
e
er
ro
r
×
1
0
−
2

1 1.5 2 2.5 3 3.5 4 4.5 5
h/∆x

Figure 2.12: Relative error at particle 80

for 3µs < t < 10µs for large reference

solution and for the truncated domain

(NRBC).

3.2 2D problems

We now investigate the performance of NRBCs in 2D. In this case they are not even the-

oretically able to absorb all incident waves. It is expected therefore that the performance

will be worse than in the 1D case above. As above we compare the truncated solution,

i.e. one with a NRBC, to a larger reference solution. This allows us to analyse directly

the effect of the boundary condition, and success may be judged by the difference seen

between the two solutions. In all cases the linear elastic material model was used with

density ρ = 7.8, Poisson ratio ν = 0.3, and Young’s modulus E = 2.1, all expressed

in units of grams, centimeters, and micro-seconds. Addionally it is to be understood,

given the results in 1D that unless otherwise stated all SPH simulations use NCSPH and

velocity smoothing.

Various NRBCs were introduced above, some of first-order i.e. requiring only first deriva-

tives in space. Others were of second-order i.e. requiring the approximation of second-

order spatial derivatives. Below we will consider first-order methods exclusively. This

is mainly because the author’s efforts to implement a second-order condition that is as

accurate and the first-order conditions have been in vain. This may be attributed to the

difficult task of approximating higher derivatives accurately in the presence of particle
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deficiency.

For reference we give the boundary conditions described above in their original version

and in pseudo-code to describe their actual implementation in SPH. Note that for each

particle i the gradient of velocity, Li, and the boundary normal, ni, is known when the

boundary condition routine is called. For clarity we give the original boundary condition

for a right moving wave incident to a vertical boundary.

1. The E-M first-order elastic boundary condition

∂u

∂t
+

cp 0

0 cs

 ∂u

∂x
= 0. (2.42)

for all boundary particles do

t[1] = ni[2]; t[2] = −ni[1]

dv = Li · ni
ai = −cp(dv · ni)ni − cs(dv · t)t + vi · Li

end for

2. The modified boundary condition given by [84],

∂u

∂t
+

cp 0

0 cs

 ∂u

∂x
+

 0 cp − cs
cp − cs 0

 ∂u

∂y
= 0. (2.45)

for all boundary particles do

t[1] = ni[2]; t[2] = −ni[1]

dv = Li · ni
ai = cp(dv · ni)ni + cs(dv · t)t + vi · Li
dv = Li · t
ai ← ai + (cs − cp)(dv · ni)ni + (cp − cs)(dv · t)t

end for
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(a) Straight compression (b) Skewed compression

A

B

(c) History particle loca-

tions

Figure 2.13: A 1cm×1cm elastic block. Initial velocity of all particles is either directed

towards the center with equal magnitude (a). Or all velocity vectors are rotated (taking

each particle as the origin) by π/8 radians (b). A NRBC is in place on all boundaries.

Discretisation uses regular grid of 50×50 particles. Material is linear elastic with density

ρ = 7.8, Young’s modulus E = 2.1, and Poisson’s ratio ν = 0.3 (units are grams,

centimetres and micro-seconds). For future reference the location of two particles A and

B are indicated in (c).

3. Higdon’s generalisation of E-M boundary conditions for the wave equation (2.33),

suggests that given a priori knowledge of the problem it may be possible to “tune”

the boundary condition. This is accomplished by using not the wave speeds cp and

cs of an incident wave, but the wave speed normal to the boundary i.e. if the wave

is travelling in the direction k̂ towards a boundary with normal n then, instead of

cp and cs, one would substitute k̂ · ncp and k̂ · ncs, respectively.

The next section will compare the above boundary conditions. For ease of reference they

will be called, in order of their definition above, the P-(for plain) boundary condition,

the M-boundary condition and the H-boundary condition. Plots below will be labelled

accordingly.
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3.2.1 Compression of a square elastic block

In this section we consider the problem of a square of particles each given an initial

velocity of equal magnitude, vo = |vo|. The velocity will either be directed directly

towards the centre, as in figure 2.13a, or slightly off centre as in figure 2.13b. If xm is the

position vector of the square and xmi = xm−xi, then the initial velocity of each particle

is

vi = v0x̂mi, (2.73)

in 2.13a, or

vi = v0

cosπ/8 − sin π/8

sin π/8 cos π/8

 · x̂mi, (2.74)

in figure 2.13b. We use the kinetic energy as a gross estimate of the effectiveness of the

boundary condition. In figure 2.13a the kinetic energy for the first case is plotted. In this

case we can see that the quantity reflected back into the domain, as a pecentage of the

inital kinetic enrergy, is low. The greatest deviation from the reference solution for the

P- and M-boundary conditions at around t = 1.5 is less than 0.25% of the initial kinetic

energy whereas the H-condition is considerably more. In figure 2.15a one can see that

the magnitiude of the velocity falls to zero, albeit with a spurious bump, this bump is

roughly the same size for both particles. Similarly the pressure, figure 2.15b, rises to an

equilibrium level and the boundary condition sustains the material under compression,

though it is not uniform across the material. For both particles the final pressure is too

high, but less so at particle B. The results for the “skewed” compression show that in

this case the boundary condition performs less well, more energy is reflected back into

the domain, figure 2.16. Also we find that the velocity of particles A and B do not go to

zero as they should, this is at least in part due to a residual rotation of the body. There

is more difference between the P- and M-boundary conditions with the kinetic energy.

This may have been expected due to the nature of of the test as the M-condition should

in theory be better at absorbing shear waves, see § 1.1.4.

In summary we may say that the P- and M-boundary conditions perform very similarly,
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with a slight advantage for the M-condtion in the skewed case, probably because of its

better theoretical ability to absorb S-waves. The H-condition is, perhaps surprisingly,

the worst even though we had perfect knowledge of the wave directions.

3.2.2 Compression of central disc only

We wish to compare the performance of the proposed NRBC with that available in the FE

program, LS-DYNA. The previous test is very convenient because the reference solution

is particularly simple, but it cannot be used for the comparison because of LS-DYNA’s

implementation of NRBCs. Specifically, they are implemented by applying a normal and

shear stress to the surface of the boundary elements [60]:

σn =− ρcpv · n

σt =− ρcsv · t.
(2.75)

We can see that the applied force will therefore be proportional to the velocity. For this

reason the previous test cannot be used as a fair comparison as the boundary is in motion

from the beginning. Equation (2.75) will apply a force to the boundary immediately and

the computed solution will not be as intended. Whether this behaviour is considered

correct is a matter of debate. In the previous test the hypothetical infinite space sur-

rounding the problem domain is supposed to be collapsing in on itself. The LS-DYNA

boundary conditions assume it is at rest. Nevertheless, in this section a test indentical

to that above, save that only particles/nodes within a distance of 0.25cm from the centre

of the square are in motion initially i.e. if the centre of the square is at xm, define the

vector xmi = xm − xi, then

vi =


v0x̂mi : |xmi| < 0.25

0 : otherwise
. (2.76)

We compare the results for FE and SPH for two different initial conditons: where the

speed of each particle within 0.25cm of the centre of the square is v0 = 0.01cmµs−1, and

where v0 = 0.05cmµs−1. A comparison of the speed and pressure at the particle A and B
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are given in figures 2.18 and 2.19, for the low and high speed versions respectively. One

can see that the SPH and FE results for each case follow a similar pattern. The plots are

not in perfect correspondence even at the beginning, say t < 0.5µs, when the boundary

condition cannot have affected the motion at the particles in question. Nevertheless one

can see that the FE and SPH results are broadly similar with perhaps the SPH particle

near the corner, B, being noticeably worse than the corresponding node.

3.2.3 Transient surface impact

In the previous sections a NRBC was applied to the whole of the domain boundary, sim-

ulating an infinite domain. In an infinite homogeneous domain there only P- and S-waves

to consider. For a semi-infinite domain the free surface introduces spacial difficulties,

specifically the existence of Rayleigh waves that can propagate along the free surface but

are exponentially damped towards the interior. For details see appendix A § 3.3, but in

brief they travel at a velocity cr < cs, and whereas the displacement of particles under the

action of a plane P- or S-wave is either parallel or normal, respectively, to the direction of

propagation. For a Rayleigh wave the displacement is a mix of both components. The-

oretically one could absorb an incoming Rayleigh wave with the Higdon-type boundary

condition,
∂u

∂t
+ cr

∂u

∂x
= 0. (2.77)

But P- and S-waves still propagate along the surface and will be spuriously reflected

because the wave speed cr is not appropriate for their absorption. Following equation

(2.33), one might then attempt, see [6], to use a condition which is a mix of the E-M

condition and (2.77);

(
∂

∂t
+ cr

∂

∂x

) ∂

∂t
+

cp 0

0 cs

 ∂

∂x

u = 0. (2.78)

Theoretically this will absorb all normally incident P-, S- and Rayleigh waves. Unfor-

tunately, it requires second derivatives and, if accurate approximation of the second-
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derivative on a boundary is difficult, it is harder still on the corner where the free surface

and the artificial boundary meet as particle deficiency is even more marked.

The problem considered here is described in 2.20. Essentially we truncate the reference

domain to create a “narrow” domain with a NRBC abutting the free surface to investigate

the absorption of surface waves. Or we create a “shallow” domain with a NRBC along

the bottom to investigate the absorption of body waves generated at the surface. We

consider two cases where the initial velocity of the “impact” is 0.1cmµs−1 and 0.5cmµs−1,

referred to as “slow” and “fast”, respectively. Note that in this case the boundary normal

vectors along the artificial boundary have been assigned manually so that on the vertical

boundary the normals are all n = (1, 0) and at the horizontal non-reflecting boundary

we have n = (0,−1).

Absorption of surface waves. Figures 2.21 to 2.23 plot the pressure and x-and y-

velocities of particles A and B. In all cases we can see, by the divergence of the dotted

line (representing the solution on the truncated domain without NRBCs) when the P-

wave first arrives from the truncated boundary. At this point there is little apparent

disturbance in the NRBC solution. This is not surprising as at the free surface the

problem is very much like that in the 1D case considered above where the boundary

condition was seen to perform very well. The plots of the x- and y-velocities (figures

2.22 to 2.23) however show clearly, especially for the y-velocity, the arrival of a spurious

reflection from the artificial boundary. This is not the P-wave, but the Rayleigh, and

possibly S-, wave first seen at particle B at around 2µs and then beginning to affect

particle A a micro second later. This is consistent with the approximate surface wave

speed of cr = 0.32cmµs−1 calculated using the formula (A.36) from appendix A § 3.3. We

can therefore conclude that the surface wave is absorbed quite poorly compared to the

P-wave. The deviation from the reference solution, though marked is not absurd, and

the boundary condition may find application when the exact behaviour of the surface

is not the main point of interest. It should be noted that the reference solution needed

40,000 particles to be large enough such that the waves reflected from the boundary did
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not reach the area of the truncated domain within the problem time. The narrow domain

has only 5000 particles (50 × 100) and the shallow domain to be discussed below only

3000 (30× 100).

Absorption of body waves generated at the surface. One can see from figures

2.24 and 2.25 that in general the boundary condition on the underside of the domain

successfully absorbs the wave generated at the surface. Particle C directly below the

impact shows that only a small reflection off the bottom has occurred, though a wave

returning to C after hitting the underside would have been normally incident to the

boundary and been absorbed well. As above the point where the dashed line deviates

from the grey line shows when the P-wave reflected from a free boundary would have

hit the particle. At this point the black line, associated with the NRBC only separates

marginally from the reference solution. The particle on the surface B also follows the

reference solution closely, whereas spurious reflections from the NRBC could have caused

it to deviate from the reference solution. At 3µs the pressure at surface particle B starts

to deviate from the reference solution. This is not a result of errors associated with the

NRBC but the P-wave reflected from the far vertical boundary returning.
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Figure 2.15: Time history plots at particles A and B. Plots on the left are taken at
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from the corresponding particles from the reference problem.

65



H

M

P

1 2 3 4
time (µs)

0

2

4

6

8

10

12

14

k
in
et
ic

en
er
g
y
×
1
0
−
7
(g

cm
2
µ
s−

2
)

Initial kinetic energy
= 3900× 10−7(g cm2µs−2)

Figure 2.16: Kinetic energy

square. Initial velocity of each

particle |vo| = 0.01cmµs−1,

with direction as in 2.13b

66



0

2

4

6

8

10

|v
|×

1
0
−
3
cm

µ
s−

1

0 1 2 3
time (µs)

HP

M

0 1 2 3
time (µs)

H
P

M

(a) Magnitude of velocity

M
P

H

0

1

2

3

4

5

6

p
re
ss
u
re

(G
P
a
)

0 1 2 3
time (µs)

M
P

H

0 1 2 3
time (µs)

(b) Pressure

Figure 2.17: Time history plots at particles A and B. Plots on the left are taken at
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Figure 2.23: Narrow domain. y-velocity at particles A (left column) and B (right column)

for slow (top row) and fast (bottom row) impact. Grey line is the reference solution, black

line is the solution with NRBCs and the dashed line is the solution from the truncated

domain with no NRBCs.
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Figure 2.24: Shallow domain. y-velocity at particles C (left column) and A (right column)

for slow (top row) and fast (bottom row) impact. Grey line is the reference solution, black
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Chapter 3

Stability Analysis of Semi-discretised

SPH

1 Introduction

A well documented flaw in the basic formulation of SPH is an instability due to the

particular nature of the space discretisation. Commonly this manifests as an unphysical

clumping of particles under tension which can in turn result in purely numerical fracture.

Many papers propose solutions to this problem but to the author’s knowledge only [7,

85, 5] have a performed a stability analysis of SPH, all of which have been von Neumann

analyses.

Total Lagrangian SPH (TL-SPH) [80, 89] reformulates conventional SPH in Lagrangian

coordinates with a fixed set of neighbours for each particle. A stability analysis [7] shows

that this formulation does not suffer from tensile instability. The disadvantage of a

Lagrangian kernel is that it deforms as the material deforms, potentially nullifying an

important advantage of meshfree methods. Monaghan introduced an artificial repulsive

force acting over relatively short scales in order to prevent clumping [70]. This has the

advantage of being relatively simple to implement, but careful tuning of parameters and

velocity smoothing are necessary to prevent instability in solids. Another solution is
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non-collocational SPH, first proposed by [22]. Stresses are calculated at a separate set of

particles located between the standard SPH particles. In 1D this approach successfully

removes tensile instability and has been extended to 2D in [82]. The difficulty in non-

collocational SPH is placing the stress particles correctly, as one moves from 1D to 3D

the complexity increases.

The first papers to analyse the stability of SPH were [85, 5]. Analysis is restricted to

equally spaced particles in 1D with Eulerian kernels. Swegle et al. [85] derive a sufficient

condition for SPH to be unstable; W ′′σ > 0. In tension (σ > 0) the position is unstable if

the particles are so arranged that a kernel’s second derivative is positive at neighbouring

particles.

In a von Neumann type stability analysis [73] the equilibrium state is perturbed with a

displacement field assumed to be of the form

ujn = ξne−ikx.

Here n refers to the time step, j is the particle index, and ξ is the amplification factor. If

|ξ| > 1 then the perturbation will grow and the solution is unstable. In some special cases

including, but not limited to, linear PDEs with constant coefficients, von Neumann sta-

bility analysis provides necessary and sufficient conditions for stability. For SPH however

the conditions derived only provide a necessary condition for stability, or equivalently,

a sufficient condition for instability. An intuitive explanation for the instability can be

-1 1x

F

Figure 3.1: See main text.

given as follows. In figure 3.1 there are three particles in a line, assuming a constant

stress the force on the centre particle for sufficiently small x is

F =σ [W ′ (−1, x) +W ′ (1, x)]

≈σ [W ′ (−1, 0) +W ′ (1, 0) + xW ′′ (−1, 0) + xW ′′ (1, 0)]

= 2σxW ′′ (1, 0) .
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If W ′′σ > 0 then the force, instead of acting to oppose the perturbation, reinforces

the particle’s motion. Additionally the forces in the discrete momentum equation are

modified to enforce compliance with Newton’s third law. Hence the particle at 1 will

feel an equal but opposite force towards the centre particle and they will tend to clump.

Obviously this does not replace a rigorous analysis.

Belytchko et al. [7] extended their analysis to SPH with Lagrangian kernels (Total La-

grangian SPH), non-collocational SPH and to a two dimensional case. Three distinct

modes of instability are identified: tensile instability as identified by Swegle, instability

due to the growth of zero-energy modes [85] and the instability present in the origi-

nal PDEs. Total Lagrangian SPH does not suffer from tensile instability. Neither does

non-collocational SPH in 1D, but the authors find that in 2D stability depends on the

careful placement of the stress or slave nodes. Non-collocational SPH eliminates zero-

energy modes and the authors state that a combination TL-SPH with stress point closely

mirrors the instability properties of the PDE.

Instability is not restricted to states of tension. A so-called pairing instability can arise

in fluid simulation especially when the number of neighbours is large [19]. The superior

performance of Wendland kernels for free-surface flows has been noted in [62]. In [19] a

linear stability analysis is performed and the superiority of Wendland kernels is linked

to the positivity of their Fourier transform. In the present analysis a similar conclusion

is reached i.e. that a kernel with a positive definite Fourier transform is generally stable

under pressure.

2 Linear and Lyapunov stability analysis

The momentum equation in SPH can take various forms [57] but a representative example

may be

v̇i =
∑
j∈N(i)

(
σi
ρ2
i

+
σj
ρ2
j

)
∇Wij. (3.1)
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If it is assumed that the RHS of (3.1) is a function of the particle displacements it is an

example of a particular second order N−dimensional differential equation

ẍi = fi (x1, . . . , xN) . (3.2)

The next sections, 2.1 and 2.2, present some selected general results pertaining to this

kind of ODE that will then be applied directly to SPH.

The usual first step in a stability analysis is to linearise the system about some equilib-

rium point. The resulting linear system is easier to analyse and information about the

behaviour of the original system near the equilibrium can be deduced. In section 2.1 it

will be shown that in the case of (3.2) the linearised system does not provide necessary

and sufficient conditions for the stability of the equilibrium. Nevertheless useful informa-

tion can be obtained from the analysis, specifically a sufficient condition for instability

(or equivalently a necessary condition for stability).

However a sufficient condition for stability can be derived via Lyapunov’s method if in

(3.2) the functions fi can be derived from a potential energy function i.e. fi = −∂U(x)
∂xi

.

And further, the conditions derived for stability and instability in this case completely

characterise the stability of the equilibrium position. That is to say, if a particular set of

conditions are met the equilibrium is stable, if not, it is unstable.

We restrict the analysis to a semi-discretised version of the governing equations (i.e. time

is continuous) so that the essential and special features of SPH can be understood in

isolation.

2.1 Linear stability analysis

Equation (3.2) is equivalent to the first-order system

v̇i = fi (x1, . . . , xN)

ẋi = vi.
(3.3)
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The result of linearising (3.3) about the origin is

v̇i =
∂f 0

i

∂xj
xj

ẋi = δijvj

(3.4)

where summation over a repeated index is implied and ∂f0i
∂xj

= ∂fi
∂xj

∣∣∣
x=0

is the gradient

evaluated at the origin. In block matrix form (3.4) isv̇

v

 =

0 A

IN 0

ẋ

x

 . (3.5)

Where A ∈ RN×N with components Aij =
∂f0i
∂xj

, IN is the N × N identity matrix and 0

is an N ×N matrix of zeros. Similarly x ∈ RN has components xi with the vectors ẋ, v̇

and v defined analogously. Define B =
(
0 A
IN 0

)
then the stability of the origin depends

on the eigenvalues of B [3, 49], specifically if λ ∈ σ (B) then:

1. If there exists a λ such that Re (λ) > 0, the origin is unstable.

2. If for all λ, Re (λ) < 0, the origin is asymptotically stable.

Theorem 3.1. The system 3.2 is unstable unless the matrix Aij = ∂fi
∂xj

is negative definite

or equivalently all of the eigenvalues of Aij are negative.

Proof. If C−1
11 exists the determinant of a block matrix

(
C11 C12
C21 C22

)
is [46]

det

C11 C12

C21 C22

 = det (C11) det
(
C22 −C12C

−1
11 C21

)
. (3.6)

The eigenvalues of a matrix B are the roots of the characteristic polynomial det (µI−B).

Applied to (3.5) i.e to a matrix B =
(
0 A
IN 0

)
, formula (3.6) gives

det (µI2N −B) = det (µIN) det
(
µIN − IN (µIN)−1 A

)
= µ det (IN) det

(
µIN −A (µ)−1)

= det
(
µ2IN −A

)
.
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We find therefore that the set of eigenvalues of B, denoted σ (B) consists of the positive

and negative square roots of the eigenvalues of A. That is if for all i = 1 . . . N , λi ∈ σ (A)

then

σ (B) =
{√

λ1, . . . ,
√
λN ,−

√
λ1, . . . ,−

√
λN

}
. (3.7)

Recall that if a single eigenvalue has a positive real part then the origin is unstable. If

λ = reiθ is an eigenvalue of A then µ = ±r1/2eiθ/2 are eigenvalues of B, the real parts are

therefore Re (µ) = ±r1/2 cos θ
2
. Clearly because the positive and negative square roots are

both eigenvalues one of the pair will have a positive real part unless cos θ
2

= 0 a. In this

case θ = π and λ = −r; all of the eigenvalues of A are real and negative or the system is

unstable.

Because the system is unstable, unless all of the eigenvalues of B have zero real-part,

an immediate corollary of the above is that (3.2) cannot be asymptotically stable at the

origin.

The requirement that ∂f0i
∂xj

be negative definite can be interpreted physically as follows.

For small perturbations

ẍi ≈
∂f 0

i

∂xj
xj.

If ∂f0i
∂xj

is negative definite then, by the definition of negative definiteness,

0 ≥ xi
∂f 0

i

∂xj
xj = xiẍi. (3.8)

Therefore, a necessary condition for stability is that for small displacements the projection

of the acceleration vector on the displacement vector is negative. Acceleration must not

act to reinforce the displacement.

Example 3.2 (Pendulum). The equation of motion of a pendulum is

ẍ = − sin (x) . (3.9)

aWe exclude the possibility that r = 0 on the grounds that a zero valued eigenvalue implies a singular

matrix.
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The pendulum is in an equilibrium position when the weight hangs directly below the

support (x = 0) or directly above (x = π). For example by linearising (3.9) about the

stable equilibrium x = 0 and writing as a system of first-order equations find;v̇
v

 =

0 −1

1 0

ẋ
x

 . (3.10)

In the notation of (3.5), I = 1 and A = −1 is negative definite. Conversely linearising

about the equilibrium x = π has A = 1 which is obviously positive definite and hence

unstable.

2.2 Lyapunov stability analysis

The definitions and theorems in this section are taken from [65], restated to remove

unnecessary generality b. The full statements can be found there as well as proofs of the

theorems.

Definition 3.3 (Dynamical system). A dynamical system is defined by mapping x =

x (t,x0) where x0 ∈ A ⊂ Rn is the initial condition drawn from a set of initial conditions

A and t ≥ 0. For a particular initial condition x0 then x (t,x0) is called a motion of the

system. The family of motions is the set S of all motions produced by all x0 ∈ A.

Definition 3.4 (Invariant set). If x0 ∈ X ⊂ A implies that x (t,x0) ∈ X for all t ≥ 0.

ThenX is an invariant set. In particular an equilibrium point is an invariant set consisting

of the single point xe.

An important example of an invariant set of a conservative system is {x : H (x) ≤ c},
where H is the Hamiltonian and c is some scalar constant.

Definition 3.5 (Stability). An equilibrium point, xe, of a dynamical system is stable if

for all ε > 0 there exists a δ(ε) > 0 such that |x(t)− xe| < ε when |x(0)− xe| < δ.
bFor example here we assume that t0 = 0 and that the state space of the motion is Rn with the usual

Euclidean norm rather than some general metric space.
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Below, if something is said to be stable it is to this definition of stability that we refer.

Theorem 3.6 (Lyapunov’s Theorem [65]). Assume without loss of generality that xe = 0.

Given a function v : Ωr → R, where Ωr = {x : |x| < r}. If for all x ∈ Ωr, where r is

arbitrarily small,

1. v (0) = 0,

2. v (x) > 0 if x 6= 0,

3. v̇ (x) ≤ 0.

Then the equilibrium, xe, is stable. The function v (x) is called a Lyapunov function.

Example 3.7 (Conservative System). A second-order ODE of the form

ẍi = fi (x) (3.11)

defines a dynamical system. Assume that fi (0) = 0 so that x = ẋ = 0 is an equilibrium

and that there exists a function U (x) such that fi = − ∂U
∂xi

. For such a system the energy

H = 1
2
ẋ · ẋ + U (x) is conserved by the motion of (3.11), i.e. Ḣ = ẋ · ẍ − ∇U · ẋ = 0

because ẍi = − ∂U
∂xi

. To investigate the stability of (3.11) it suffices to define a Lyapunov

function V (x, ẋ) = H|Ωr−H0 i.e. V is equal to the energy, restricted to a neighbourhood

of the origin, minus the energy present in the equilibrium position. Furthermore assume

U (0) is a local minimum of the potential so that U (x) > U(0) for all x ∈ Ωr. Referring

to the three conditions in 3.6 it is clear that V satisfies all the criteria and therefore the

origin is stable.

This example shows how a common criteria for stability, that the potential energy have

a local minimum [64], can be derived from Lyapunov’s theorem. The potential energy

actually has a local minimum at x = 0 if

1. ∂U
∂xi

∣∣∣
x=0

= 0 for all i = 1 . . . N .

2. Aij = ∂U
∂xixj

∣∣∣
x=0

is positive definite.
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Referring back to the previous section; if fi = − ∂U
∂xi

then the first item is simply the

requirement that x = 0 is actually an equilibrium. Recall that in the previous section

it was proved that unless ∂fi
∂xj

0
is negative definite the equilibrium will be unstable. As

Aij = ∂U
∂xixj

= − ∂fi
∂xj

0
it is possible to say that for a conservative system the negative

definiteness of ∂fi
∂xj

0
, or equivalently the positive definiteness of Aij, is a necessary and

sufficient condition for stability of the equilibrium point.

Theorem 3.8. The dynamical system (3.2) is conservative if and only if ∂fi
∂xj

=
∂fj
∂xi

, where

fi (x) = mẍi.

Proof. see Appendix 2.2

This theorem introduces the so-called integrability condition [52]. We show in the next

example that a particular, standard, set of SPH equations, a discretisation of (3.18), are

not integrable. Thereby showing that conservation of energy in SPH cannot be assumed.

Example 3.9 (Integrability of SPH equtions). We transform the PDE (3.18) into the

ODE:

üi =
1

ρ

∑
j∈N(i)

(σi + σj)W
′
ij (3.12a)

σi =E
∑
j∈N(i)

(uj − ui)W ′
ij. (3.12b)

Note the acceleration üi = fi (u) is a function of the particle displacements only. By

theorem 3.8 equation (3.12) is integrable if, and only if, ∂fi
∂uk

= ∂fk
∂ui

. To proceed, the

following formulae are needed: the derivative of the kernel gradient

∂Wmj

∂up
= W ′

mj (δmp − δjp) .

The stress

1

E

∂σm
∂up

=
∑

j∈N(m)

(δjp − δmp)W ′
mj + (uj − um) (δjp − δmp)W ′′

mj

= W ′
mp + (up − um)W ′′

mp − δmp

 ∑
j∈N(m)

W ′
mj + (uj − um)W ′′

mj,

 (3.13)
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and finally the acceleration, note that it is assumed that i 6= p as ∂fi
∂ui

= ∂fi
∂ui

.

ρ
∂fi
∂up

=
∑
j∈N(i)

(
∂σi
∂up

+
∂σj
∂up

)
W ′
ij +

∑
j∈N(i)

(σi + σj)W
′′
ij (δip − δjp)

=
∑
j∈N(i)

(
∂σi
∂up

+
∂σj
∂up

)
W ′
ij − (σi + σp)W

′′
ip. (3.14)

The second term on the RHS of (3.14) is symmetric with respect to i and p due to the

symmetry of W ′′
ij. The integrability criterion is therefore satisfied if the first term is

also symmetric. Define the anti-symmetric function Gij = Wij + (uj − ui)W ′′
ij substitute

(3.13) into (3.14) rearrange and find,

∑
j∈N(i)

(
∂σi
∂up

+
∂σj
∂up

)
W ′
ij =

∑
j∈N(i)

W ′
ij

[
W ′
ip + (up − ui)W ′′

ip +W ′
jp + (up − uj)W ′′

jp

]

−
∑
j∈N(i)

W ′
ijδjp

 ∑
m∈N(j)

W ′
jm + (um − uj)W ′′

jm


=
∑
j∈N(i)

W ′
ij (Gip +Gjp)−

∑
m∈N(p)

W ′
ipGpm

=
N∑
j=1

[
W ′
ij (Gip +Gjp)−W ′

ipGpj

]
, (3.15)

in the last line the dummy index m is changed to j and the summation is taken over the

whole range. This makes no difference to the value of the sum as the truncated sum over

the neighbour particles is designed to exclude particles that give no contribution to the

total. To see that (3.15) is not symmetric imagine that a single particlem ∈ N (p)\N (i) c

is displaced and all other particles are unmoved. Consequently Gij = W ′
ij for all j 6= m

and
∑

mW
′
im (0) = 0. Therefore (3.15) becomes

N∑
j=1

W ′
ijGjp −W ′

ip

N∑
j=1

Gpm =
N∑
j=1

W ′
ijW

′
jp −W ′

ip

N∑
j=1

W ′
pj −W ′

ipumW
′′
pm. (3.16)

In the first sum on the RHS the only non-zero terms are where j is in the neighbourhood

of i and p, hence the substitution of W ′
jp for Gjp. The corresponding term from ∂fk

∂ui
,

cm is in the neighbourhood of p but not in the neighbourhood of i.
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formed by interchanging i and p in (3.15), is

N∑
j=1

[
W ′
pj (Gpi +Gji) +W ′

piGij

]
=W ′

pi

N∑
j=1

W ′
pj +

N∑
j=1

W ′
pjW

′
ji

= −W ′
ip

N∑
j=1

W ′
pj +

N∑
j=1

W ′
ijW

′
jp (because W ′

ij = −W ′
ji).

(3.17)

Equations (3.17) and (3.16) are not identical due to the term −W ′
ipumW

′′
pm and therefore

(3.12) are not integrable and the system defined does not conserve energy.

3 Equations of motion

3.1 Problem specification

For the propagation of longitudinal waves in an elastic rod the equations of linear elasticity

reduce to [53]

ρutt =σx

σ =Eux.
(3.18)

Where E is Young’s modulus and ρ is the rod’s density. Equations (3.18) can be re-stated

as a single, second-order PDE,

utt = c2uxx, (3.19)

i.e. the scalar wave equation with wave speed c =
√

E
ρ
. We will consider (3.19) on an

interval I = [a, b] with boundary condition u (a) = u (b) = ux (a) = ux (b) = 0.

If we multiply (3.19) by ut and integrate over I then,

1

c2

∫
I

uttutdx =

∫
I

uxxutdx

= [uxut]
b
a −

∫
I

uxutxdx.

(3.20)
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The second line follows by integration by parts and the boundary conditions dictate that

the first term is equal to zero. Equation (3.20) can therefore be rewritten in the form

d

dt

∫
I

(ut)
2 + c2 (ux)

2 dx

 = 0. (3.21)

The term within the square brackets is conserved; the first term is the kinetic energy and

the second the strain or potential energy. Therefore the PDE (3.19) defines a conservative

system. When discretising the equation using SPH if the resulting ODE also defines a

conservative system then the total energy is a natural candidate for a Lyapunov function.

3.2 Discretisation

The solution of the PDE is a function u = u(x, t). It exists in two dimensions x and

t. The phase space is infinite dimensional; u has a value at each of the infinite points

in the interval I. After discretisation the system is an ODE; the solution is a vector-

valued function of a single variable xi = xi(t) for i = 1 to N and its phase space is

2N -dimensionald. Therefore in the ODE these N functions of time play the same role as

the u = u(x, t) does in the PDE. Confusion can arise by the change in role of the letter

x from an independent variable to denoting (albeit with the addition of an index) the

solution. In the ODE the role of x is taken by the the index set {1, . . . N} i.e. space has

been discretised.

We discretise (3.19) as follows. The continuous interval I = [a, b] is represented by N

evenly-spaced particles labelled left to right from 1 to N . The position of the ith particle

is xi and its displacement is ui = xi−x0
i . Each xi and ui can be seen as the ith component

of vectors x and u, respectively. Similarly for the velocity u̇i and u̇. To represent the

boundary conditions sufficient particles are assumed to exist outside of the domain so

that all particles initially have a complete set of neighbours. These boundary particles

are fixed in their initial position for all t ≥ 0.

d2N rather than N because each ẋi is an element of the phase space.
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The different meanings of the operators ∂
∂x

and ∂
∂xi

should be noted. The former appears

in the PDE and is approximated using SPH, this is denoted by angled brackets so that

the approximation of the x-derivative of the displacement field at the location of the

particle i is 〈ux〉i. The approximation is a function of the particle positions {xi}Ni=1 and

it is legitimate therefore to calculate ∂
∂xi
〈ux〉i, but ∂

∂x
〈ux〉i = 0 because 〈ux〉i is not a

function of x.

Below we prefer to write the discretised equations in terms of the particles’ displacement

so that the equilibrium is at u = 0. This simply represents a shift in the origin of the

coordinate system. We have ui = xi − x0
i so

∂ui
∂xj

= δij and

∂

∂ui
g(u) =

∂

∂ui
g(u (x)) =

∂

∂xj
g(x)

∂xj
∂ui

=
∂

∂xi
g (x) .

Therefore ∂
∂xi

and ∂
∂ui

are equivalent. Strictly a different symbol should be used for

functions of different variables e.g. Wij = W (xi, xj) = M (ui, uj) but standard notation

(i.e. Wij for the kernel function) will be retined below as this is certainly clearer so long

as it is remembered that henceforth it is to be taken as a function of u instead of x.

3.3 Derivation of conservative equations of motion

Example 3.9 demonstrated that SPH is not in general conservative. However it is possible

to derive conservative equations by defining a potential energy function U and deriving

the forces fk via the formula fk = − ∂U
∂uk

. This will by construction conserve energy and,

if additionally U is invariant with respect to translation i.e. U (x) = U (x + s), linear

momentum is conserved by Noether’s theorem [4] e.

By analogy with (3.21) define the function

U (u) =
c2

2

N∑
i=1

(〈ux〉i + T )2 . (3.22)

eThis is of course only true if there are no external forces. If zero displacement boundary conditions

are enforced then, as this in effect introduces an external force, momentum will not actually be conserved.

89



The function 〈ux〉i is the approximation of the spatial derivative of the displacement

at the position occupied by particle i. The constant T has been added to admit the

possibility that the bar is pre-stressed. This is an ad-hoc addition but it can be justified

as follows. Comparison with (3.21) would have the whole term gi(u) = 〈ux〉i + T as the

“real” approximation of ux. Assuming that 〈ux〉|u=0 = 0 for all i then gi(0) = T , i.e. a

constant displacement gradient or, equivalently, a uniform expansion of contraction. It

is as if before t = 0 all particles, including any boundary particles, were displaced by

a factor of Txi resulting in a certain tension (or compression). Recall that the particle

displacement is defined as ui = xi−xi(0), that is with respect to the particle positions at

t = 0, so the “pre-history” is relevant only as a justification for the addition of a constant

in to (3.22).

Given U as given in (3.22) define fk = − ∂U
∂uk

then

fk = −c2

N∑
i=1

(〈ux〉i + T )
∂

∂uk
〈ux〉i . (3.23)

The total energy is

H =
1

2

N∑
i=1

(
v2
i + c2 (〈ux〉i + T )2) . (3.24)

This is conserved because

Ḣ =
N∑
i=1

viv̇i + c2

N∑
k=1

[
N∑
i=1

(〈ux〉i + T )
∂

∂uk
〈ux〉i

]
vk

=
N∑
k=1

(vkv̇k − fkvk) = 0

(3.25)

as required.

It is not strictly necessary for the stability analysis but we will now calculate the exact

form of fk to compare with conventional formulae. The form of 〈ux〉i is all important to

the final form of the approximation, a choice must be made and we take

〈ux〉i =
∑
j∈N(i)

(ui − uj)W ′
ij. (3.26)

The particle volume Vi = mi
ρi

is taken to be constant because the mass of each particle is

choosen to be equal to m and in line with the assumptions of linear elasticity the density
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is also assumed to be a constant ρ = 1. Therefore the particle volume term is subsumed

within the kernel. Define W ′
ij =

∂Wij

∂ui
so that

∂Wij

∂uk
= W ′

ij (δik − δjk) ,

this simply expresses the anti-symmetry of the derivative of the kernel and its dependence

on ui and uj, i.e. Wij is not a function of uk unless k = i or j. This correctly evaluates the

gradient of a constant displacement and is therefore invariant under uniform translation

and the equations of motion derived conserve momentum.

Define
〈
uTx
〉
i

= 〈ux〉i + T then, by equation (3.23),

fk = −c2

N∑
i=1

〈
uTx
〉
i

N∑
j=1

∂

∂uk

[
(uj − ui)W ′

ij

]
.

Apply the chain rule

fk = −c2

N∑
i=1

〈
uTx
〉
i

N∑
j=1

[
(δjk − δik)W ′

ij + (uj − ui)W ′′
ij (δik − δjk)

]
.

By the the property of the Kroneker delta symbol, i.e.
∑

m δmpum = up and changing the

order of summation,

fk =− c2

N∑
i=1

〈
uTx
〉
i

[
W ′
ik − δik

N∑
j=1

W ′
ij + δik

N∑
j=1

(uj − ui)W ′′
ij − (uk − ui)W ′′

ik

]
,

=− c2

{
N∑
i=1

〈
uTx
〉
i
[W ′

ik − (uk − ui)W ′′
ik] +

N∑
i=1

N∑
j=1

〈
uTx
〉
i

[
−δikW ′

ij + δik (uj − uk)W ′′
ij

]}
,

=− c2

{
N∑
i=1

〈
uTx
〉
i
[−W ′

ki + (ui − uk)W ′′
ki] +

N∑
j=1

〈
uTx
〉
k

[
−W ′

kj + (uj − uk)W ′′
kj

]}
.

Next using the facts that W ′
mp = −W ′

pm and W ′′
mp = W ′′

pm,

fk = c2

{
N∑
i=1

〈
uTx
〉
i
[W ′

ki + (uk − ui)W ′′
ki] +

N∑
i=1

〈
uTx
〉
k

[W ′
ki + (uk − ui)W ′′

ki]

}
.

If we define the function Gki = W ′
ki + (uk − ui)W ′′

ki the final formula for fk is

fk = c2
∑
i∈N(k)

[〈
uTx
〉
k

+
〈
uTx
〉
i

]
Gki. (3.27)

Note that Gki (0) = W ′
ki (0) and Gmp is anti-symmetric so that momentum is conserved

locally as in standard SPH.
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4 Stability of SPH

For a general system, whether derived from a potential or not, consider the equation for

the force on particle i. Take

fi = c2
∑
j∈N(i)

Sij (α)Hij. (3.28)

The positive constant c2 is irrelevent to the analysis and will henceforth be neglected.

Define, Sij (α) =
〈
uTx
〉
j

+ α
〈
uTx
〉
i
for various values of alpha this may correspond to,

1. The “plus” form: Sij(1) =
〈
uTx
〉
j

+
〈
uTx
〉
i
,

2. The “minus” form: Sij(−1) =
〈
uTx
〉
j
−
〈
uTx
〉
i
,

3. The uncorrected form: Sij(0) =
〈
uTx
〉
j
.

The function Hij stands in for the derivative of the kernel function. It may be a basic

kernel function, Hij = W ′
ij; or a corrected kernel, for example the Shepard function; or

the modified kernel Hij = Gij = W ′
ij + (ui − uj)W ′′

ij. Regardless we will assume that∑
i∈N(j)

H0
ij = 0, because the particles are regularly distributed or the kernel is normalised.

We must confirm that u = 0 is an equilibrium by showing that fi(0) = 0. The approxi-

mation of the displacement gradient, 〈ux〉, is given by (3.31) and therefore 〈ux〉i|u=0. For

the “minus” form of the momentum equation (3.28) becomes

fi = c2
∑
j∈N(i)

(T − T ) (α)H0
ij = 0

and for the “plus” and uncorrected forms we have, respectively

fi =c2T
∑
j∈N(i)

(α)H0
ij = 0,

fi =2c2T
∑
j∈N(i)

(α)H0
ij = 0.

Because
∑

i∈N(j)

H0
ij = 0.
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In example 3.7 it was shown that the gradient ∂f0i
∂uk

characterises the stability of the

equilibrium. To summarise, for a non-conservative function if − ∂f0i
∂uk

is not positive definite

the system is unstable. In addition if fi can be derived form a potential, i.e. the system

conserves energy, and if − ∂f0i
∂uk

is positive definite the equilibrium is stable.

∂f 0
i

∂uk
=
∑
j∈N(i)

∂S0
ij

∂uk
H0
ij +

∑
j∈N(i)

S0
ij

∂H0
ij

∂um
. (3.29)

Taking the first term we find∑
j∈N(i)

∂S0
ij(α)

∂uk
H0
ij =

∑
j∈N(i)

∂

∂uk
(〈ux〉j + T )Hij + α

∂

∂uk
(〈ux〉i + T )

∑
j∈N(i)

H0
ij

=
∑
j∈N(i)

∂

∂uk
〈ux〉j H0

ij.

(3.30)

All the other terms ar equal to zero because
∑

i∈N(j)

H0
ij = 0 and ∂T

∂uk
= 0. Differentiating

〈ux〉j =
∑

m∈N(j)

(um − uj)Kmj, (3.31)

where Kmj is the kernel,f equation (3.29) becomes,∑
j∈N(i)

∂

∂uk
〈ux〉j H0

ij =
∑
j∈N(i)

H0
ij

∑
m∈N(j)

∂

∂uk
[(um − uj)Kjm]

=
∑
j∈N(i)

H0
ij

 ∑
m∈N(j)

(δmk − δjk)K0
jm +

∑
m∈N(j)

(um − uj)
∂K0

jm

∂uk


=
∑
j∈N(i)

H0
ij

K0
jk − δjk

∑
m∈N(j)

K0
jm + 0

 =
∑
j∈N(i)

H0
ijK

0
jk.

(3.32)

We assume that
∑

i∈N(j)

K0
ij = 0 and use ∂ui

∂uj
= δij.

If, as is usually be the case, H0
ij = K0

ij = −H0
ji then

∑
j∈N(i)

H0
ijH

0
kj is negative definite:

Proof.

uiH
0
ijH

0
jkuk = −H0

jiuiH
0
jkuk = zjzj > 0 (where zj = H0

jkuk).

Where summation over repeated indicies is implied.
f Usually Kij = Hij but, as in the conservative equations derived above where Kij = W ′

ij and

Hij =W ′
ij+(ui − uj)W ′′

ij , for the sake of generality we consider that they may differ. Note however that

W ′
ij + (ui − uj)W ′′

ij

∣∣
u=0

= W ′
ij

∣∣
u=0

so that at the equilibrium the different kernel functions coincide.
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Unlike the first term, the second term in equation (3.29) depends on α:

∑
j∈N(i)

S0
ij(α)

∂H0
ij

∂uk
= S0

ij(α)
∂

∂uk

∑
j∈N(i)

Hij

∣∣∣∣∣∣
u=0

. (3.33)

If α = −1, the “minus” form, S0
ij(−1) = T −T = 0 then (3.33) is equal to zero. Equally if

the kernel is normalised, for example the Shepard function, then
∑

i∈N(j)

Hij ≡ 0 and (3.33)

will again be equal to zero. This result should be expected because by using S0(−1) or a

normalised kernel the approximation of the divergence of a constant stress field is exactly

correct so that the addition of a constant tension T to the approximation has no effect.

In contrast if α = 0 or 1 then equation (3.33) is

∑
j∈N(i)

S0
ij(0)

∂H0
ij

∂uk
= T

∑
j∈N(i)

∂H0
ij

∂uk
(3.34a)

or ∑
j∈N(i)

S0
ij(−1)

∂H0
ij

∂uk
= 2T

∑
j∈N(i)

∂H0
ij

∂uk
(3.34b)

respectively.

When (3.33) is not identically zero it is always possible to choose a value of T such that

− ∂fi
∂uk

is not positive definite.

Proof. The diagonal entries of a positive definite matrix must be positive (see Ap-

pendix A § 2.1 page 148). In particular the origin will be unstable if for any i = 1 . . . N

−∂fi
∂ui

= Bii + TCii < 0.

Therefore if Cii > 0 choose T > Bii/Cii or if Cii < 0 choose T < Bii/Cii.

First we consider the case when Hij = W ′
ij, we have

∂W ′
ij

∂uk
= W ′′

ij (δik − δjk) . (3.35)

Therefore

∑
j∈N(i)

∂W ′
ij

∂uk

∣∣∣∣
u=0

=
∑
j∈N(i)

W ′′
ij(0) (δik − δjk) = −W ′′0

ik + δik
∑
j∈N(i)

W
′′0
ij . (3.36)
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For the conservative version of SPH derived above Hij = W ′
ij + (ui − uj)W ′′

ij, and∑
j∈N(i)

∂

∂uk

(
W ′
ij + (ui − uj)W ′′

ij

)∣∣∣∣
u=0

=−W ′′0
ik + δik

∑
j∈N(i)

W
′′0
ij +

∑
j∈N(i)

(δik − δjk)W ′′0
ij

=− 2W
′′0
ik + 2δik

∑
j∈N(i)

W
′′0
ij . (3.37)

Define Aik = − ∂fi
∂uk

, combining the results from above we find:

The “minus” form: α = −1 . If the derivative of the kernel is anti-symmetric at the

equilibrium i.e. if H0
ik = −H0

ki, then

Aik = H0
ijH

0
kj (3.38)

is positive definite. Unfortunately, one cannot conclude that the system is stable based

on the positive definiteness of Aik, just that no necessary condition for stability has been

found by linearisation.

Normalised kernel. Similar to the last case, if H0
ik = −H0

ki then Aik will be positive

definite. Taking the Shepard function as an example, in general the anti-symmetry of the

derivative does not hold, i.e.

W̃ij =
Wij∑
lWil

6= Wji∑
lWjl

= W̃ji. (3.39)

But on a regular grid at u = 0 then W̃ 0
ik = −W̃ 0

ki, and Aik is positive definite. As above

no conclusion can be reached as to the stability or otherwise of the equilibrium in this

case, but the particular instability identified by Swegle does not appear.

The three remaining cases - the “plus” form, α = 1; the uncorrected form, α = 0; and the

conservative form from equation (3.27) - can be treated together. In each case

Aik =
∑

j∈N(i)

W ′0
ijW

′0
kj − nTδik

∑
j∈N(i)

W
′′0
ij + nTW

′′0
ik (3.40)

where n = 1, 2 or 4 if the uncorrected, “plus”, or conservative version, respectively, is

considered.
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It is possible to derive conditions for the kernel, dependent on T , to ensure that (3.40)

is positive definite. For the energy conserving version of SPH derived above this proves

that the equilibrium is stable. It is a fact of linear algebra that a linear combination of

positive definite matrices
∑

i aiAi is positive definite if ai > 0 for all i. Aik is a linear

combination of matrices. The first is positive definite as proved above. The second matrix

in (3.40) is of the form aI where I is the identity matix and is therefore positive definite

if T
∑

j∈N(i)

W
′′0
ij > 0. Finally for a particular kernel W ′′

km may be positive definite, negative

definite or indeed neither. Using the following theorem for certain special cases however

it can be shown that W ′′
km is negative definite.

Theorem 3.10 (Bochner [15]). Given a real valued function F (x) and a matrix A with

components Aij = F (xi − xj), where for k = 1 . . . n each xk ∈ X ⊂ RN is distinct. Then

A is positive definite if the Fourier transform of F is positive.

If the Fourier transform of a kernel function W (r), where r = ‖r‖2 has a positive Fourier

transform W̃ (s), then the Fourier transform of W ′′ (r) is −s2W̃ (s) which is negative

definite by the original assumption. Therefore by theorem 3.10, the matrix with compo-

nents Aij = W ′′ (‖xi − xj‖) is negative definite. As stated in the introduction one class

of kernel functions which have positive Fourier transforms are Wendland functions, see

[15] and also appendix A § 1.

Taking all of the above (3.40) will definitely be positive definite if (but not only if) all of

the following hold:

1. Wkm is a Wendland function or another function with a positive Fourier transform

(such as a Gaussian).

2. T < 0 so that TW ′′
km(0) is positive definite.

3. T
∑

mW
′′
km(0) < 0 as T < 0 this means that

∑
mW

′′
km(0) > 0.

This result supports the idea that Wendland kernels, or kernels with positive definite

fourier transforms, are inherently more stable in compression. If an energy conserving
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form of SPH is being considered then the above list constitutes a sufficient condition for

the origin to be stable. Another possibility is using a piecewise linear kernel (a “hat”

funtion) then all second derivatives (except for W ′′
ii) are equal to zero, and only the first,

positive definite, matrix in (3.40) remains. However this kernel is not generally used as

derivatives are not approximated accurately.

It is now possible to derive necessary conditions for the stability of the equilibrium

analagous to the classic Swegle [85] condition; TW ′′ > 0. By examining the principal

minors (definition A.2) of (3.40) we can derive necessary conditions for stability. First we

examine the diagonal elements, if any are negative then Aik cannot be positive definite

and the system must be unstable, note all functions should be understood to be taken at

u = 0. Therefore if

0 > Aii =
∑
j∈N(i)

W ′
ijW

′
ij − nT

∑
j∈N(i)

W ′′
ij + nTW ′′

ii =
∑
j∈N(i)

W ′
ijW

′
ji − nT

∑
j∈N(i)\{i}

W ′′
ij, (3.41)

or

nT
∑

j∈N(i)\{i}
W ′′
ij >

∑
j∈N(i)

W ′
ijW

′
ij, (3.42)

the system is unstable. If we assume that the particles only interact with their nearest

neighbours then (3.42) will be

nTW ′′
i,i+1 > (W ′

i,i+1)2. (3.43)

Swegle criterion. Compare equation (3.43) with that derived by Swegle which in the

notation of this chapter is TW ′′
i,i+1 > 0. If we assume that W ′′

i,i+1 > 0 then it may be

seen that the new condition (3.43) admtis the possibilty that the equilibrium may remain

stable under some degree of tension. The difference in the two conditions arises because

in [85] the approximation of the displacement gradient is different, specifically

〈
uTx
〉
i

= T +
K

2
(ui+1 − ui−1) , (3.44)

where K is the bulk modulus. Equation (3.44) is not how the displacement gradient is

calculated in SPH and it may not be extended to higher dimensions as the more realistic
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approximation used above. Nevertherless, if (3.44) is used in equation (3.29) with α = 0

then we find

∂fi
∂uk

=
K

2

∑
j∈N(i)

(δj+1,k − δj−1,k)W
′0
ij + T

∑
j∈N(i)

∂W ′0
ij

∂uk

=
K

2

(
W 0
i,k−1 −W ′0

i,k+1

)
+ T

∑
j∈N(i)

∂W ′0
ij

∂uk
.

(3.45)

If the above is not negative definite the equilibrium will be unstable, in particular if a

diagonal element is positive then instability is proved,

K

2

(
W ′0
i,i−1 −W ′0

i,i+1

)
+ 2T

∑
j∈N(i)

W ′′0
i,i+1 = KW ′

i,i−1 + TW ′′
i,i+1. (3.46)

The first term is always positive because the kernel, Wij, is symmetric and positive,

therefore if TW ′′
ik > 0 the equilibrium is unstable.

The condition (3.42) maybe refined somewhat by considering the determinant of the

second principal minors. Recall that the second principal minor is a matrix extracted

form a larger matrix by removing all but two rows and their corresponding columns i.e.

if row i is removed so is column i. A second principal minor of Aik is

AiiAi+1,i+1 − Ai,i+1Ai+1.i = A2
ii − A2

i,i+1 = (Aii + Ai,i+1)(Aii − Ai,i+1). (3.47)

Because Aij is symmetric so Ai,i+1 = Ai+1.i and also because of the regular arrangement

of particles all of the components on the same diagonal are equal - Ai,j = Ai+1,j+1 for

all i and j. If one or other (not both) of the factors in (3.47) are negative then Aij is

not positive definite and the system is unstable. We can assume that Aii > 0 lest the

system be unstable by (3.42). If Ai,i+1 > 0 then Aii + Ai,i+1 > 0 and if Aii − Ai,i+1 =

Aii− |Ai,i+1| < 0 the system is unstable. Similarly if Ai,i+1 < 0 then Aii−Ai,i+1 > 0 and

if Aii+Ai,i+1 = Aii−|Ai,i+1| < 0 and the system is unstable. Therefore a more restrictive

necessary condition for stability is;

∑
j∈N(i)

W ′
ijW

′
ij − nT

∑
j∈N(i)\{i}

W ′′
ij −

∣∣∣∣∣∣
∑
j∈N(i)

WijWi+1,j + nTW ′′
i,i+1

∣∣∣∣∣∣ < 0 (3.48)
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or

nT
∑

j∈N(i)\{i}
W ′′
ij >

∑
j∈N(i)

(W ′
ij)

2 −

∣∣∣∣∣∣
∑
j∈N(i)

WijWi+1,j + nTW ′′
i,i+1

∣∣∣∣∣∣ . (3.49)

It can be seen therefore that a system where (3.42) does not hold may still be unstable

by (3.49). If the particles only interact will their nearest neighbours then (3.47) becomes

(2(W ′
i,i+1)2 − 3nTW ′′

i,i+1)(2(W ′
i,i+1)2 − nTW ′′

i,i+1) < 0. (3.50)

Because
∑

j∈N(i)

WijWi+1,j = 0 in this case as one or other of the factors in each sum is equal

to zero. We may assume that the second bracket is positive because otherwise instability

is established by the first condition. Therefore for the nearest neighbour case we have;

nTW ′′
i,i+1 >

2

3
W ′2
i,i+1. (3.51)

This is only a small improvement on (3.43). It is possible to continue looking at further

principal minors to seek possible further refinement on the stability criterion (3.49) but

a different approach is to investigate the positive definiteness of Aij numerically. We do

this by checking the positive definitenessg of (3.40) for increasing values of T for a range

of smoothing lengths h. Figures 3.2c - d (page 110) plot the smallest value of T for a given

h that the matrix in equation (3.40) stops being positive definite and consequently the

equilibrium becomes unstable. For comparison in figures 3.2a - b give the value of T such

that the first criterion derived above (3.42) implies instability of the system. Note that

all of the plots in 3.2 were generated from equation (3.40) with n = 4, i.e. for the energy

conserving form and the vertical axis should be scaled appropriately for other values of

n. For example, if n = 2 then all values on the vertical axis should be multiplied by two.

This also implies that the energy conserving version is less stable than the “plus” form

which is in turn less stable than the uncorrected form. The conclusions to be drawn from

the plots are:

• The analytically derived stability criterion (3.42) is an overestimate of the tension

required to destabilise the system by a factor of approximately 100.
gThis can be done by attempting a Cholesky factorisation of the matirix. If, and only if, it succeeds

the matrix is positive definite [37].
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• For context the magnitude of T required to induce instability is (recall from page 90

that T can be considered as an expansion factor) equal to that induced by the

stretching of a bar with an initial length of 1.0000 unit to less than 1.0005 units.

• For the various kernel functions a more stable “sweet spot” exists when the smooth-

ing length is between 1.2 to 2 times the minimum interparticle spacing, ∆x. (A.20).

• The performance of the various kernel functions do not differ markedly.

4.1 Conservative SPH

We now consider the special case of the conservative equations. In particular we wish to

derive conditions for the kernel function which lead to a stable equilibrium. The potential

energy is

U (u) =
1

2

N∑
j=1

(
〈ux〉j + T

)2

. (3.22)

then fi = − ∂U
∂xi

is

fi = −
N∑
j=1

(
〈ux〉j + T

) ∂

∂ui
〈ux〉j . (3.52)

And for the Hessian ∂2U
∂ui∂uk

= − ∂fi
∂uk

we have

∂2U

∂up∂uk
=

N∑
i=1

∂

∂up
〈ux〉i

∂

∂uk
〈ux〉i +

N∑
i=1

(〈ux〉i + T )
∂2

∂up∂uk
〈ux〉i . (3.53)

At u = 0 (3.53) reduces to

∂2U

∂up∂uk
=

N∑
i=1

∂

∂up
〈ux〉0i

∂

∂uk
〈ux〉0i + T

N∑
i=1

∂2

∂up∂uk
〈ux〉0i . (3.54)

The first matrix on the RHS of (3.54) is positive definite because it is the product of

a matrix with its transpose. Once again if the second matrix is not equal to zero then

some value of T can always be found to make the system unstable. The previous section

derived necessary conditions for stability for the case when this matrix is equal to zero,

we now proceed to derive conditions on the kernel Wij such the system will be stable

regardless of T .
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4.1.1 Stable kernel functions

Define a general form for 〈ux〉i;

〈ux〉i =
N∑
j=1

(uj − αui) W̃ ′
ij. (3.55)

The constant α is present for convenient exposition only and is either equal to 1 or

0 depending on whether the correction (−ui
N∑
j=1

W̃ ′
ij) is appled or not. The tilde over

the kernel (W̃ ) is there to indicate that the kernel function may have been modified or

corrected in some as yet unspecified way. For example the Shepard function kernel;

W̃ij =
Wij∑

m∈N(i)

Wim

. (3.56)

For u = 0 to be an equilibrium (3.52) must hold;

fk (0) = −c2T
N∑
i=1

∂

∂uk
〈ux〉i

∣∣∣∣
u=0

= 0. (3.52)

To check this first calculate
N∑
i=1

∂

∂uk
〈ux〉i =

N∑
i=1

N∑
j=1

∂

∂uk

[
(uj − αui) W̃ ′

ij

]
=

N∑
i=1

N∑
j=1

(δjk − αδik) W̃ ′
ij +

N∑
i=1

N∑
j=1

(uj − αui)
∂W̃ ′

ij

∂uk
. (3.57)

At u = 0 the second term is equal to zero and
N∑
i=1

∂

∂uk
〈ux〉i

∣∣∣∣∣
u=0

=
N∑
i=1

W̃ ′
ik(0)− α

N∑
j=1

W̃ ′
kj(0) =

N∑
i=1

(
W̃ ′
ik(0)− αW̃ ′

ki(0)
)
. (3.58)

If W̃ ′
ij(0) = W̃ ′

ji(0) and α = 1 then (3.58) will clearly be equal to 0. Or, if W̃ij(0) =

−W̃ji(0) and the particles are arranged reqularlyh so that
N∑
j=1

W̃ ′
ij(0) = 0. For a normal,

uncorrected, kernel the later case pertains. A symmetric kernel, and the consequent

anti-symmetry of its derivative, is almost a rule of SPH. This symmetry may be broken

however by the act of correcting. For example, in general

Wij∑
lWil

6= Wji∑
lWjl

.

hA regular grid can be defined to be an arrangement of particles such that for all particles i and for

all particles j ∈ N (i) there exists a particle k ∈ N (i) such that (xi − xk) = − (xi − xj).
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But given an initially regular arrangement of particles then, for some constant c,
N∑
j=1

Wij(0) =

c for all i. Therefore
Wij(0)∑
lWil(0)

=
Wji(0)∑
lWjl(0)

.

Assuming that an equilibrium exists calculate
N∑
i=1

∂
∂um∂uk

〈ux〉0i . By differentiating (3.57)

with respect to ∂
∂um

find;

N∑
i=1

∂

∂um∂uk
〈ux〉i =

N∑
i=1

(
∂W̃ ′

ik

∂um
− α∂W̃

′
ki

∂um

)
+

N∑
i=1

N∑
j=1

(δjm − αδim)
∂W̃ ′

ij

∂uk

+
N∑
i=1

N∑
j=1

(uj − αui)
∂W̃ ′

ij

∂uk∂um

The last term is zero. Rearrange the first two terms to find

N∑
i=1

∂ 〈ux〉i
∂um∂uk

∣∣∣∣∣
u=0

=
N∑
i=1

(
∂W̃ ′

ik

∂um
− α∂W̃

′
ki

∂um

)∣∣∣∣∣
u=0

+
N∑
i=1

(
∂W̃ ′

im

∂uk
− α∂W̃

′
mi

∂uk

)∣∣∣∣∣
u=0

. (3.59)

If a practical kernel function W̃ can be found such that (3.59) expression is zero then it

is proved above that the system thus defined would be stable.

A candidate is the Shepard function (3.56), but this does not work. It is evident that
N∑
j=1

Ŵij ≡ 1 and therefore ∂
∂uk

N∑
j=1

Ŵij ≡ 0 for all k and similarly for any higher derivatives.

Specifically ∂
∂ui

N∑
j=1

Ŵij =
N∑
j=1

Ŵ ′
ij ≡ 0. Consequently if W̃ is the Shepard function then

(3.59) is
N∑
i=1

(
∂W̃ ′

ik

∂um

)∣∣∣∣∣
u=0

+
N∑
i=1

(
∂W̃ ′

im

∂uk

)∣∣∣∣∣
u=0

.

Unfortunately, this is not identically zero because the sum is over the opposite index∑
i Ŵ

′
ij rather than

∑
j Ŵ

′
ij. Note that in this case the additional −αui term in the

original approximation is superfluous because using the Shepard function gives the exact

derivative for a constant displacement field. We now suggest some alternatives that are

stable for all T . This is not presented as a fully comprehensive list and each option has

disadvantages that may make it less useful.

1. Perhaps the simplest option is to use a kernel such that the second derivative is
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equal to zero then (3.58) will be equal to zero. For example a hat function

W (r, h) =
1

2h


1 + r

2h
−2h < r < 0

1− r
2h

0 < r < 2h

0 otherwise

. (3.60)

This function does not posses many of the properties thought desirable; the deriva-

tive is discontinuous and when using it to approximate a derivative all particles

within the neighbourhood contribute equally. The result is smoothed particle hy-

drodynamics absent smoothing.

2. The derivative of the Shepard function is

W̃ ′
ij =

W ′
ij

∑
lWil −Wij

∑
lW

′
il

(
∑

lWil)
2 . (3.61)

By summing (3.61) over j it is seen that
N∑
j=1

W̃ ′
ij = 0 as expected. Equation (3.61)

can be modified so that

W̃ ′
ij =

W ′
ij

∑
lWlj −Wij

∑
lW

′
lj

(
∑

lWjl)
2 . (3.62)

Then summing over i find

N∑
i=1

W̃ ′
ij =

∑
i

(
W ′
ij

∑
lWlj −Wij

∑
lW

′
lj

)
(
∑

lWjl)
2

=

∑
iW

′
ij

∑
lWlj −

∑
iWij

∑
lW

′
lj

(
∑

lWjl)
2 = 0.

Therefore with W̃ defined as in (3.62) and α = 0 the system will be stable because

then (3.59) is

N∑
i=1

∂W̃ ′
ik

∂um

∣∣∣∣∣
u=0

+
N∑
i=1

∂W̃ ′
im

∂uk

∣∣∣∣∣
u=0

=
∂

∂um

N∑
i=1

W̃ ′
ik

∣∣∣∣∣
u=0

+
∂

∂uk

N∑
i=1

W̃ ′
im

∣∣∣∣∣
u=0

= 0,

because the sums are identically zero.

This has a flaw however; it does not conserve momentum. To see this, recall that

linear momentum is conserved if the potential energy is invariant with respect to
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translation (see §3.3) . The potential energy is given by (3.22) and this is invariant

if, for all i, 〈ux〉i is. For the kernel function in question
∑

j∈N(i)

W̃ ′
ij 6≡ 0 so

∑
j∈N(i)

(uj + s) W̃ ′
ij 6=

∑
j∈N(i)

ujW̃
′
ij

and therefore momentum is not conserved.

3. If W̃ij is the ij element of a matrix then if it is the Shepard function the rows of

the matrix sum to zero. The consequence of this is that the approximation for

the displacement gradient (3.55) will be exact for a constant displacement/rigid

translation of the body and that momentum is conserved. If W̃ij is described by

equation (3.62) then each column sums to zero and we have shown above that the

system will be stable. Therefore if both the rows and columns of W̃ij sum to zero

the resulting system will be stable and conserve momentum.

It is possible to generate a matrix from W ′
ij with row and column sums equal to

zero by the following method (taken from [76]). Given an N ×N matrix Aij, define

Āi: = 1
N

N∑
j=1

Aij i.e. the mean of the entries in the ith row. Analagously define Ā:j

as the mean of the jth column. The first step is to modify each each row of Aij by

subtracting the row means from each row, in [76] this is referred to as a “row mean

polish”. Then the second step is to perform a “column mean polish” by subtracting

the column means, of the new matrix generated from the previous step, from each

column - see algorithm 3.1. After the whole procedure has been applied the rows

and columns will sum to zero. This is obviously the case for the columns as the

column mean polish is applied last. That the rows still sum to zero can be verified.

Define A1
ij as the result of “row polishing” Aij and A2

ij as the result of “column

polishing” A1
ij in terms of the original matrix A2

ij is

A2
ij = A1

ij − Ā1
:j = Aij − Āi: −

1

N

∑
l

(
Alj − Āl:

)
. (3.63)

If (3.63) is summed over j then∑
j

A2
ij =

∑
j

Aij −
∑
j

Āi: −
∑
j

(
1

N

∑
l

(
Alj − Āl:

))

104



Algorithm 3.1 Row and column mean polishing of matrix
for i = 1 to N do B Calculate row sums

for j = 1 to N do

Āi: ← Āi: + Aij

end for

end for

Āi: ← 1
N
Āi:

for i = 1 to N do B Row mean polish

Aij ← Aij − Āi:
end for

for j = 1 to N do B Calculate columns sums

for i = 1 to N do

Ā:j ← Ā:j + Aij

end for

end for

Ā:j ← 1
N
Ā:j

for j = 1 to N do B Column mean polish

Aij ← Aij − Ā:j

end for

=NĀi: −NĀi: −
1

N

∑
l

(∑
j

Alj −
∑
j

Āl:

)

=0− 1

N

∑
l

(
NĀl: −NĀl:

)
= 0.

Applied to the derivative of the kernel W ′
ij, the modified/corrected kernel is

W̃ ′
ij =W ′

ij −
1

N

N∑
p=1

W ′
ip −

1

N

∑
l

(
W ′
lj −

1

N

N∑
m=1

W ′
lm

)

=W ′
ij − R̄′i − C̄ ′j +

1

N

N∑
l=1

R̄′l.

(3.64)

R̄′i is the average of the ith row ofW ′
ij and C̄ ′j is the average of the jth column. Using

this kernel the system will be stable and conserve momentum. There is a major
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disadvantage however; the matrix W ′
ij is banded due to the compact support of the

kernel, reflecting the fact that particles only influence their neighbours. Equation

(3.64) potentially defines a fully populated matrix so it is possible W̃ ′
ij 6= 0 for

j 6∈ N(i). Apart from the consequent inefficiency in the computation the “action at

a distance” of a particle on another which is not close is unphysical.

4. Finally we show that a combination of a Shepard function and a column mean

polish also has the desired property - zero column and row means. First note that

if

W̃ij =
Wij∑
kWik

then

W̃ ′
ij =

W ′
ij

∑
kWik −Wij

∑
kW

′
ik

(
∑

kWik)
2

and therefore∑
j

W̃ ′
ij =

1

(
∑

kWik)
2

(∑
j

W ′
ij

∑
k

Wik −
∑
j

Wij

∑
k

W ′
ik

)
= 0.

The matrix with components W̃ ′
ij has rows that sum to zero. Now apply a column

mean polish as described above

Ŵ ′
ij = W̃ ′

ij −
1

N

∑
k

W ′
kj.

The column mean polish guarantees that
∑

i Ŵ
′
ij = 0, but summing over the rows

give ∑
j

Ŵ ′
ij =

∑
j

W̃ ′
ij −

1

N

∑
j

∑
k

W̃ ′
kj

=0− 1

N

∑
k

∑
j

W̃ ′
kj = 0.

Therefore the matrix has columns and rows that sum to zero. The same objection

raised above - that the kernel no longer has a compact support - applies here equally.

A stability analysis of SPH has been performed using semi-discrete equations, this iso-

lates the effect of the special feature of SPH; the spatial discretisation. The analysis
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was performed on standard versions of the SPH equations for linear elasticity in 1D by

linearisation. If the SPH equations are,

üi = fi(u), (3.65)

then it was found that the critical matrix with respect to stability is

Aik = −∂f
0
i

∂uk
. (3.66)

In particular if Aik is not positive definite then the system is unstable. For standard, non-

conservative, SPH if Aik is positive definite then no conclusion with regards to stability

should be drawn. It was found that if the momentum equation is 0th-order complete, the

divergence of a constant stress field is evaluated exactly, then Aik is positive definite and

hence a linear stabilty analysis does not indicate that tensile instability exists. This may

explain the greater stability observed in practice for corrected formulations e.g. NCSPH,

MLS or RKPM - although in chapter 4 it will be shown that in practice instability can

still occur.

For non-0th-order complete versions of the momentum equation a stability criterion,

nT
∑

j∈N(i)

W ′′
ij >

∑
j∈N(i)

W ′2
ij ,

was derived based on the first principal minor of (3.66). In contrast to the classic Swegle

result we found that instability could only be proven when the tension goes above a certain

critical value (assuming that
∑

i∈N(j)

W ′′
ij > 0). We calculated this value for varying values

of the smoothing length and a range of different kernel functions. By comparison, with

the critical values of T found by checking numerically whether (3.66) is positive definite,

it was found that the simple stability criterion overestimated the tension required to

induce instability. Furthermore, it was found that the level of tension required to induce

instability was quite small - equivalent to an expansion of the bar of around 0.05%.

Leaving aside the treatment of time as a continuous or discrete variable, fundamentally

the linear stability analysis performed above and the von Neumann analyses are equiv-

alent. Linear analysis can only provide necessary conditions for stability. In order to
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try to produce a sufficient condition for stablity we turned to Lyapunov’s method. The

disadvantge of this approach is the need to find a Lyapunov function for which there is

no general method. However a natural candidate for a Lyapunov function is the total

energy of a system, indeed the Lyapunov function can be thought of as a generalised

energy function. It was found that SPH as typically formulated is not integrable; the

force function cannot be integrated to find the potential energy. As such for normal SPH

the total energy is not available as a Lyapunov function. However a conservative version

of SPH was derived and it was shown by Lyapunov’s method that the equilibrium is

stable if (3.66) is positive definite. Further, that it would be positive definite for all T

if the kernel function W (|xi − xj| , h) is chosen such that, for all i and j and for all u;∑N
j=1 W

′
ij =

∑N
i=1 W

′
ij = 0. Suggestions are given for methods to construct such functions

though each has distinct disadvantages.

Although the stability results are only strictly applicable to conservative SPH, the lin-

ear stability analysis showed that conservative SPH is less stable in tension than non-

conservative SPH, requiring exactly half the tension to become unstable. This suggests

that conditions that imply stablity in conservative SPH may help stabilise ordinary SPH.

This is explored experimentally in chapter 4.

Finally a link between the positive definiteness of the Fourier transform of a kernel and

the absence of an instability in compression is made. The same link was derived, by a

different method, in [19] to explain the superior stability of Wendland kernels in fluid

simulation. No evidence has been found here to suggest that Wendland kernels are more

stable in tension than spline functions. In fact inspection of figure 3.2 suggests that they

may be slightly inferior, though this is not conclusive.

All of the stability results derived here and, to the author’s knowledge, elsewhere, apply

only to the stability of an equilibrium that has been perturbed by some arbitrarily small

amount. This limits the confidence one can have that the sufficient conditions derived

here guarantee stability in practice. This is especially pertinent for SPH where large

deformations of an initial configuration can be expected. Lyapunov’s method can be
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applied to more general invariant sets [65]. In particular for a conservative system, the

set {u : H(u) < c} whereH is the total energy is invariant. Future work may concentrate

on proving that an invariant set of this form is stable, thereby proving that, for example,

if the system is confined to a particular region of phase space, it will be stable.
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Figure 3.2: Plots generated using a system of 30 particles. The expressions for the

different kernel functions are given in appendix A § 1 with the proviso that here the

compact support for each kernel of equal size is Ωi = xi, xj |xi − xj|. The rows share a

vertical axis, and the columns a horizontal axis. The plots on the right share the legend.

Further details in main text on page 99.
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Chapter 4

Stabilised SPH

1 Introduction

Chapter 3 introduced the problem of tensile instability and derived energy-conserving

equations of motion, it was shown that a sufficient condition for the stability of these

equations is ∑
j∈N(i)

W ′
ij =

∑
i∈N(j)

W ′
ij = 0. (4.1)

This condition is equivalent to asking that a matrix Aij = W ′
ij has rows and columns

that sum to zero. In chapter 3§4.1.1 three suggestions were given for kernel functions

that obey the condition (4.1). Unfortunately each has distinct disadvantages that make

it unsuitable for practical application. The method described below is inspired by the

third item on that list (page 104) where the derivative of the kernel function is modified

as follows;

W̃ ′
ij = W ′

ij −
1

N

N∑
p=1

W ′
ip −

1

N

∑
l

(
W ′
lj −

1

N

N∑
m=1

W ′
lm

)
. (4.2)

It was shown that modified in this way the kernel passes the stability criterion (4.1). The

criterion strictly only applies in the specific context of equations derived from a potential

energy i.e. where the force on particle k is fk = ∂U
∂xk

. For example, using the modified
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kernel (4.2), we have

〈ux〉i =
∑
j∈N(i)

ujW̃ij, (4.3)

and the potential energy is defined to be

U =
c2

2

N∑
i=1

(〈ux〉i + T )2 . (4.4)

We now derive the expression for the force on particle k:

fk =c2

N∑
i=1

〈ux〉i
∂

∂uk
〈ux〉i

=c2

N∑
i=1

(
〈ux〉i W̃ ′

ik +
N∑
j=1

uj
∂W̃ ′

ij

∂uk

)
(4.5)

=c2

N∑
i=1

〈ux〉i W̃ ′
ik + c2

N∑
i=1

〈ux〉i
N∑
j=1

uj
∂W̃ ′

ij

∂uk
. (4.6)

First we calculate

∂W̃ij

∂uk
= W ′′

ij(δik − δjk)−
1

N

N∑
p=1

W ′′
ip(δik − δpk)

− 1

N

∑
l

(
W ′′
lj(δlk − δjk)−

1

N

∑
m

W ′′
lm(δlk − δmk)

)

= W ′′
ij(δik − δjk)−

1

N
δik

N∑
p=1

W ′′
ip +

1

N
W ′′
ik

− 1

N
W ′′
kj +

1

N
δjk
∑
l

W ′′
lj −

1

N2

∑
m

W ′′
km +

1

N2

∑
l

W ′′
lk

= W ′′
ij(δik − δjk)− δikĀ′′i +

1

N
W ′′
ik −

1

N
W ′′
kj + δjkĀ

′′
j .
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The last two terms on the penultimate line cancel and we define Ā′′i = 1
N

∑
pW

′′
ip. Next

multiply the above by uj sum over j∑
j

uj
∂W̃ij

∂uk
= δik

∑
j

ujW
′′
ij − ukW ′′

ik

− 1

N
δik
∑
j

ujĀ
′′
i +

1

N

∑
j

ujW
′′
ik

− 1

N

∑
j

ujW
′′
kj +

1

N
ukĀ

′′
k

= δik
∑
j

ujW
′′
ij − ukW ′′

ik − δikūĀ′′i + ūW ′′
ik

− 1

N

∑
j

ujW
′′
kj +

1

N
ukĀ

′′
k.

Where ū = 1
N

∑
k uk. Then multiply by 〈ux〉i and sum over i;∑

i

〈ux〉i
∑
j

uj
∂W̃ij

∂uk
= 〈ux〉k

∑
j

ujW
′′
kj − uk

∑
i

〈ux〉iW ′′
ik − ūĀ′′k 〈ux〉k

+ ū
∑
i

〈ux〉iW ′′
ik −

1

N

∑
j

ujW
′′
kj

∑
i

〈ux〉i +
1

N
ukĀ

′′
k

∑
i

〈ux〉i

= 〈ux〉k
∑
j

ujW
′′
kj − uk

∑
i

〈ux〉iW ′′
ik − ūĀ′′k 〈ux〉k

+ ū
∑
i

〈ux〉iW ′′
ik − 〈ux〉

∑
j

ujW
′′
kj + ukĀ

′′
k〈ux〉.

Where 〈ux〉 = 1
N

∑
i 〈ux〉i. Gathering terms and changing all the dummy varibles to i,

find∑
i

〈ux〉i
∑
j

uj
∂W̃ij

∂uk
=
∑
i

(ui 〈ux〉k − uk 〈ux〉i)W ′′
ik

+
∑
i

(
ū 〈ux〉i − 〈ux〉ui

)
W ′′
ik + Ā′′k

(
uk〈ux〉 − ū 〈ux〉k

)
.

(4.7)

Therefore fk is

fk = c2

[
N∑
i=1

〈ux〉i W̃ ′
ik +

N∑
i=1

(ui 〈ux〉k − uk 〈ux〉i)W ′′
ik

+
N∑
i=1

(
ū 〈ux〉i − 〈ux〉ui

)
W ′′
ik + Ā′′k

(
uk〈ux〉 − ū 〈ux〉k

)]
. (4.8)

113



Equation (4.8) is very unwieldy, and is likely to be extremly inefficient, not least because

every particle will contribute to fk. This non-locality is also incompatible with the finite

propagation of information in elasticity in particular and hyperbolic PDE in general. The

corrected kernel (4.2) was however the inspiration for the corrected momentum equation

presented in this chapter.

2 Corrected SPH momentum equation

It is not acceptable on physical principal for the momentum equation to acquire infor-

mation from distant particles instantly. Therefore we define the following local version

of the kernel,

Cij = ∇WijVj−
1

ni

∑
k∈N(i)

∇WikVk−
1

nj

∑
k∈N(j)

∇WkjVk+
1

ni

∑
j∈N(i)

1

nj

∑
k∈N(j)

∇WjkVk. (4.9)

Where ni is the number of neighbours of the particle i and Vk = mk
ρk

is the particle volume.

Note the similarity to (4.2). The corrected momentum equation uses this function as a

kernel;

fi = mai =
∑
j∈N(i)

σj
ρj
·Cij. (4.10)

Cij has non-compact support, for any j the third sum in (4.9) may be non-zero. The sum∑
j∈N(i), rather than

∑N
j=1, in (4.10) is important to ensure the approximation is local.

2.1 Stability

First note that Cij has the following properties:

1. Discounting particles near the boundary, if the initial configuration is regular then

Cij(0) = ∇Wij(0).

2.
∑

j∈N(i)

Cij ≡ 0
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Proof. Define S(i) =
∑

j∈N(i)

∇WijVj = − ∑
j∈N(i)

∇WjiVj then

∑
j∈N(i)

Cij =
∑
j∈N(i)

∇Wij −
1

ni

∑
k∈N(i)

∇Wik −
1

nj

∑
k∈N(j)

∇Wkj +
1

ni

∑
j∈N(i)

1

nj

∑
k∈N(j)

∇Wjk


= S(i)−

∑
j∈N(i)

1

ni
S(i)︸ ︷︷ ︸

=0

+
∑
j∈N(i)

1

nj
S(j)−

∑
j∈N(i)

1

ni

∑
j∈N(i)

1

nj
S(j)︸ ︷︷ ︸

=0

= 0.

where the particle volumes are included implicitly.

In the stability analysis of the previous chapter we considered the 1D wave equation.

Under the assumptions made there equation (4.10) becomes

fi = c2
∑
j∈N(i)

(
〈ux〉j + T

)
Cij, (4.11)

where we use

〈ux〉j =
∑

m∈N(j)

(um − uj)W ′
jm. (4.12)

It was shown in chapter 3 § 2.1 that if the matrix with components ∂fi
∂uk

is not negative

definite then the system will be unstable. For equation (4.11) we find

1

c2

∂fi
∂uk

=
∑
j∈N(i)

Cij(0)
∂

∂uk
〈ux〉j + T

∂

∂uk

∑
j∈N(i)

Cij

=
∑
j∈N(i)

W ′
ij(0)

∂

∂uk
〈ux〉j

∣∣∣∣
u=0

+ T
∂

∂uk

∑
j∈N(i)

Cij

∣∣∣∣∣∣
u=0

=
∑
j∈N(i)

W ′
ij(0)

∂

∂uk
〈ux〉j

∣∣∣∣
u=0

+ 0.

Where we have used the fact thatCij(0) = ∇Wij(0) on a regular grid, and that
∑

j∈N(i)

Cij ≡
0. That the remaining term is in fact negative definite was established in chapter 3 §4.

Emphasising once again, unless the system is conservative, if ∂fi
∂uk

is negative definite then

no conclusion can be reach in regards to stability. However if it is not negative definite

the system is guaranteed to be unstable for some T . The next section will investigate

numerically the stability of the method
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Figure 4.1: Swegle stability test. The

solid black particles are fixed and all of

the other particles are free to move. The

center, grey, particle is given a small ini-

tial velocity. The material is held under a

uniform pressure, either positive or nega-

tive.

2.2 Swegle test

Swegle et al. [85] introduced a simple numerical stability test to demonstrate the phe-

nomenon of tensile instability. This problem will be used here as a simple numerical

stability test for modified or corrected SPH formulations. In particular we compare the

basic, normalised-corrected and, total Lagrangian forms of SPH with the new method

proposed above.

The problem is set up as in figure 4.1. The material is subject to a uniform volume strain

ξ = V
V0
, so that Vo is the volume where the stress would be zero. Figure 4.2 shows how

given an inital velocity perturbation of v0 = 10−10cmµs−1 (the initial minimum particle

spacing is 0.01cm) the kinetic energy can grow exponentially.

In particular SPH and NCSPH are seen to be unstable in tension, ξ > 1.0, which can be

somewhat mitigated by smoothing the velocity. For NCSPH this is particularly interesting

as the stability analysis of the previous chapter showed that the stability matrix, − ∂fi
∂uk

,

is positive definite. This highlights the limitations of the linear stabiltity analysis.

In contrast the new method proposed here is seen to be stable in tension. Unfortunately

we seem to have exchanged one mode of instability for another. The instability reappears

under compression. The author cannot offer an explanation for this effect. We showed
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Figure 4.2: Evolution of the kinetic energy for indicated SPH formulations, ξ = V/V0 is

the volume strain. The initial kinetic energy is in the graph’s units 5× 10−23.

above be a linear analysis (in 1D) that just as for NCSPH the stability matrix is positive

definite. But, just as for NCSPH, in practice the stability of the linearised system does

not carry over to the non-linear system.

2.3 Stabilised SPH

Given two methods, one stable in tension and the other in compression, the obvious

solution is to switch between the two. For the purposes of this chapter the scheme

described below will be called stabilised SPH (S-SPH). The following explanation will

assume a 2D problem.
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The ordinary SPH momentum equation is,

ai =
∑
j∈N(i)

(
σi
ρi

+
σj
ρj

)
∇Wij. (4.13)

Define a correction term,

gi = −
∑
j∈N(i)

(
σi
ρi

+
σj
ρj

) 1

ni

∑
k∈N(i)

∇Wik +
1

nj

∑
k∈N(j)

∇Wkj −
1

ni

∑
j∈N(i)

1

nj

∑
k∈N(j)

∇Wjk

 .

(4.14)

This has the form of the basic SPH momentum equation but with the kernel replaced by

the last three terms of (4.9). The symmetry term σi
ρi

has been added for consistency with

the ordinary SPH momentum equation.

In stabilised SPH then, the acceleration is,

âi =


ai : In compression

ai + gi : In tension
. (4.15)

It remains only to provide a criterion for what is meant by “in compression” and “in

tension”. The most obvious choice is

âi =


ai : if pi ≥ 0

ai + gi : if pi < 0

. (4.16)

Where pi is the calculated pressure at the i particle. But this is found not to work in

general, though it does for the Swegel test above. Instead, denoting the components of

vectors with greek letters, we have

âi,α =


ai,α : if

∑
j∈N(i)

σj,αα ≤ 0

ai,α + gi,α : if
∑

j∈N(i)

σj,ββ > 0

. (4.17)

Conservation of momentum There is no guarantee that the method described will

conserve linear momentum. The fact that the momentum equation at each particle can

change independently suggests that we should not expect conservation of momentum due
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Figure 4.3: To give boundary particles the

“correct” number of neighbours. Parti-

cles to the interior are counted twice, and

particles on the same boundary level are

counted once. Particles towards the exte-

rior are not counted. Numbers on the far

left refer to the boundary level see chap-

ter 2.

to the anti-symmetry of the inter-particle forces, as is seen with basic SPH. Therefore

we symmetrise the particle-particle interactions as the algorithm proceeds (see algorithm

4.2).

3 Implementation

The proposed method requires little modification to the basic integration algorithm. One

is only required to calculate the row and column means at each time step, calculate the

correction criteria (4.17) and apply if necessary.

We calculate the row and column means, 1
ni

∑
j∈N(i)

WijVj and 1
nj

∑
i∈N(j)

WijVi, respectively,

once for each time step before solving the momentum equation, see algorithm 4.1. An

extra wrinkle in the implementation is that care must be taken with particles near the

boundary. To see why note that in (4.9) the extra terms are approximately equal to zero;∑
j∈N(i)

∇Wij ≈ 0. However near a boundary, particle deficiency means that this correction

term will become very large, which will lead to large errors in the approximation. For

this reason the kernel is normalised on the first time-step in the manner of a Shepard

function. The following expression is substituted into (4.9)

∇W̃ij =

∇Wij

∑
k∈N(i)

W 0
ik −Wij

∑
k∈N(i)

∇W 0
ik( ∑

k∈N(i)

W 0
ik

)2 . (4.18)
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Algorithm 4.1 Calculate row and column means
for i = 1 to Number of Particles do

Vi = mi/ρi

for j ∈ N(i) do

Vj = mj/rhoj

row_mean[i]← row_mean[i] + Vj∇Wij B Using (4.18) for the kernel

column_mean[i]← column_mean[i] + Vi∇Wji

end for

end for

row_mean[i]← row_mean[i]/ni B ni and nj calculated as in figure 4.3

column_mean[i]← column_mean[i]/ni

mean_mean[i] =
∑

j∈N(i)

column_mean[j])/ni

The
∑

k∈N(i)

W 0
ik and

∑
k∈N(i)

∇W 0
ik are stored for use on all subsequent time steps. This

has the effect of simulating a full neighbourhood for the boundary particles. With this

modification we have now that Cij(0) = ∇Wij(0) for all i and j. One further point in

regard to the boundary particles is that when calculating the mean 1
ni

∑
k∈N(i)

∇W̃ik when

i is near to the boundary the number of neighbours should be amended to once again

simulate a full neighbourhood. Figure 4.3 should make the procedure clear; the concept of

boundary levels is explained in chapter 2 when discussing the implementation of NRBCs.

The complete stabilised SPH alogorithm for the momentum equation can now be given

(algorithm 4.2). Note in algorithm 4.2 that regardless of the state of tension the correction

is not applied to particles on the very outer layer. Not excluding these particles causes

the outer particles to become disordered. One final point is that velocity smoothing

(XSPH) must be used to maintain stability. Without velocity smoothing the particles on

the boundary become disordered and this disorder spreads through the domain, figure

4.4.

The extra computational effort required above that for a basic SPH simulation can be

split into two parts. The extra initialisation cost due to needing to identify boundary
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Algorithm 4.2 Stabilised SPH
B Sij = σi

ρi
+

σj
ρj

.

B Here BP is the set of particles on the outermost layer of the material.

Call algorithm 4.1

for i = 1 to Number of Particles do

Calculate sum[1] =
∑

j∈N(i)

σj,11, and sum[2] =
∑

j∈N(i)

σj,22

for j ∈ N(i) do

gij = −Sij · (row_mean[i] + column_mean[j]−mean_mean[i])

fij = Sij · ∇WijVj

if sum[α] > 0 or i ∈ BP then

gij,α = 0

end if

ai ← ai + 0.5(fij + gij)

aj ← aj − 0.5(fij + gij) B Symmetrise particle-particle interaction

end for

end for
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(a) t = 2.25 (b) t = 3.75 (c) t = 4.21

Figure 4.4: Stabilised SPH without velocity smoothing - for problem described in §4.1.1.

particles and initalise the normalisation constants in equation (4.18). Done only once,

neither of these is particularly time-consuming. During the main loop of MCM the

only extra routine is essentially algorithm 4.1, called before the momentum equation is

solved. A crude timing experiment where the cpu time required to call the basic and the

modified momentum equation routine 100 times, estimate the modified routine at roughly

1.8 times the computational cost. Solving the momentum equation of course consumes

only a fraction of the whole time taken by the integration loop.

4 Numerical examples

4.1 Symmetrical impact

To assess the accuracy as well as the stability of the method we consider two impact

problems. In this section we consider a symmetrical impact, 4.5, and compare the results

obtained to the LS-DYNA 3D FE package. The problem is set up as in figure 4.5. The

material is treated as a single piece rather than, the perhaps more practical case of,

separate impacting plates because we do not wish for the comparison with the FE results

to be influenced by differences in the contact algorithm.
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Initial velocity: v0 = (0,−v0)

Initial velocity: v0 = (0, v0)

1cm

1cm
50 nodes/
particles

50 nodes/
particles

A

Figure 4.5: A single material given an initial velocity distribution as indicated, v0 =

± 0.06cmµs−1 i.e. we test two cases. The base units for the problem are grams, cen-

timetres, and microseconds. We use a linear elastic material model with initial density,

ρo = 7.8; Young’s modulus, E = 2.1; and Poisson’s ratio, ν = 0.3. Unless otherwise in-

dicated the smoothing length is 1.3∆x, where ∆x is initial minimum particle separation.

Particle A, is that for the plots in figures 4.7 and 4.9.

4.1.1 Initial compression

For the impacting plates, figure 4.7 shows that TL-SPH and S-SPH are very similar. Both

are more closely aligned with the FE solution than basic SPH or NCSPH. Basic SPH in

particular shows an extreme divergence from the FE solution. This is due to particles

clumping and the beginnings of numerical fracture, as can be seen in figure 4.8(b). To a

lesser degree, the NCSPH also shows the beginnings of numerical fracture, figure 4.8(c).

S-SPH on the other hand remains stable, figure 4.8(a).
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(a) Stabilised (b) Basic (c) Normalised-corrected

Figure 4.6: Particle positions for symmetric impact at time t = 3.05µs. Time only

approximately equal as instability/particle clumping causes the stable time step to reduce.

4.1.2 Initial expansion

If the initial velocities are reversed from the previous test, so the material is expanding

at the beginning, consequently this is an even more severe test of stability under tension.

Basic SPH and NCSPH both fail completely in this case as can be seen from figure 4.9, in

particular the kinetic energy for both formulations reach a relatively steady state as the

two halves separate, seen in 4.8. The FE, TL-SPH and S-SPH solutions all continue to

oscillate. Figure once again shows the close correspondance between TL-SPH and S-SPH

and their agreement, in outline, with the FE solution. That the FE solution seems to run

slightly ahead of SPH can be accounted for, at least partly, by the collocation of nodes

and particles in their initial configurations. This was done for easy comparison but if the

“real” boundary in SPH is taken to be located some small distance from the outer layer

of particles, then the SPH simulations are arguably of slightly larger blocks.

4.2 Asymmetrical impact

In this section we consider a test desgined to highlight the problem of numerical fracture

in SPH. In most respects save the dimensions, this test is identical to the previous case,

though only the case of an initial impact is considered. A characteristic of this problem is

the strain the bar is subjected to as the displacement wave propagates and reflects from
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the two free ends. The total length of the bar over time is shown in 4.11. We can see

that both SPH and NCSPH fail and continue to expand. Figures 4.12a and 4.12b show

the numerical fracturing of the bar. S-SPH however remains stable, with only a slight

deviation from the TL-SPH solution, showing up after 20µs. This may be related to the

particle re-organisation which develops slowly from around that time. The end result

may be seen in figures 4.12c and 4.12d. The exact cause of this clumping is unknown at

present, it may be a zero energy mode exited by the oscillation near the impact site.

4.3 Transient surface load on clamped beam

We now consider an impact-like problem where a rectangular block of particles is fixed

at both ends. A section of particles half way between the two ends is prescribed an

initial velocity in the negative y-direction of 0.3cmµs−1. Figure 4.14, shows that the

displacement of the beam as calculated by S-SPH, TL-SPH and FE are in close agreement

wheras the basic SPH has failed due to tensile instability, figure 4.15. NCSPH is close to

failure, 4.16. S-SPH in figure 4.17 and 4.18 show close agreement.
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Figure 4.7: For vo > 0 - the top and

bottom half are initially moving together.

Plot of global kinetic energy, pressure and

resultant velocity at particle/node A indi-

cated in figure 4.5. Legend and x-axis are

shared by all three plots.
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(a) Stabilised (b) Basic (c) Normalised-corrected

Figure 4.8: Particle positions for at time t = 1.6µs where the top and bottom half of the

plate are initially moving apart. Time only approximately equal as the stable time-step

varies between the different simulations.
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Figure 4.9: For vo < 0 - the top and bot-

tom half are initially moving apart. Plot

of global kinetic energy, pressure and re-

sultant velocity at particle/node A indi-

cated in figure 4.5.

v0 = (− |v0| , 0)v0 = (|v0| , 0)0.3cm

3cm

150 nodes/
particles

15 nodes/
particles

Figure 4.10: Asymetrical impact. The physical properties of the material are identical to

that in figure 4.5.
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Figure 4.11: Length of bar in asymmetrical bar impact.

(a) Basic SPH t = 7.01µs (b) NC-SPH t = 7.51µs

(c) S-SPH t = 30.545µs (d) S-SPH - closer view

Figure 4.12: Particle configuration after impact. Figure (d) is a closer view of figure (c),

showing some particle clumping. Note that the particles in (c) and (d) where made to

appear smaller then those in the other figures to make the clumping clearer.

v0

Figure 4.13: The physical dimensions and discretisation are as in figure 4.10. The ends

are fixed by applying a zero displacement condition to the first and last five, vertical,

layers of particles, next to the boundaries.
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Figure 4.14: y-displacement of the bottom surface of the midline of the beam in 4.13 The

physical properties of the material are identical to that in figure 4.5.

t = 5

t = 10

t = 15

t = 20

Figure 4.15: Basic SPH. Particle displacements after transient load on a clamped beam.

t = 5

t = 10

t = 15

t = 20

Figure 4.16: NC-SPH. Particle distribution after transient load on a clamped beam.
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t = 5

t = 10

t = 15

t = 20

Figure 4.17: S-SPH. Particle distribution after transient load on a clamped beam. Shades

indicate whether the correction has been applied; The shades form darkest to lightest

respectievly that the correction is active in the x and y-direction, just the y-direction,

just the x-direction, or finally not at all.

t = 5

t = 10

t = 15

t = 20

Figure 4.18: FE. Particle distribution after transient load on a clamped beam.
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Conclusion

Two weaknesses of SPH are that it is computationally expensive compared to, for example,

FE and it is unstable. This thesis has addressed both of these problems, albeit for the

former, indirectly.

A well established NRBC used in finite differences for elastic waves has been applied to

SPH and its performance assessed. The primary method used was the compression of an

elastic square. Variations on first-order conditions where tested. The E-M condition was

found to perform remarkably well considering its simplicity and negligible computational

overhead. The problem of a transient surface load was considered, and it was found

that body waves, generated from the surface can be absorbed well by a NRBC applied

to the underside of a domain. This may have applications in simulating, for example,

impact on “deep” bodies. Surface waves however are absorbed less well, though depending

on the application the level of error is not excessive and may be acceptable. SPH lags

behind other computational methods in this area, the E-M boundary conditions were first

described in the 1970s, and future work in this area may follow the historical development

of NRBC in other fields by introducing better absorbing layers, perhaps based on the

perfectly matched layer. Alternatively if the problems with particle deficiency leading

to poor approximation of derivatives can be overcome, then the arbitrarily high-order

boundary conditions, descibed for example in [34], may be implemented.

Tensile instability is a hinderance to wider exploitation of SPH in solid mechnincs. A

stability analysis of SPH has been performed using the semi-discrete equations. This

isolates the effect of the special feature of SPH; the spatial discretisation. A linear analysis
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was performed in 1D on standard versions of the SPH equations for linear elasticity.

Necessary conditions for stability were derived that differ from the Swegle criteria by

allowing for the possibility of some tension before instability is bound to appear. It

was found that if the momentum equation is 0th-order complete i.e. the divergence of a

constant stress field is evaluated exactly, then the lnearised system is stable. This may

explain the greater stability observed in practice for corrected formulations e.g. NCSPH,

MLS or RKPM - although it was shown in the following chapter that instability can

still occur, in particular NCSPH whilst certainly more stable that basic SPH definitely

exhibits tensile instability. This highlights the limitations of a linear analysis, which can

produce only necessary conditions for stability.

Leaving aside the treatment of time as a continuous or discrete variable, fundamentally

the linear stability analysis performed above and the von Neumann analyses performed

by others are equivalent. In order to try to produce a sufficient condition for stablity

we turned to Lyapunov’s method. The disadvantge of this approach is the need to

find a Lyapunov function for which there is no general method. However a natural

candidate for a Lyapunov function is the total energy of a system; indeed the Lyapunov

function can be thought of as a generalised energy function. It was found that SPH as

typically formulated is not integrable; the force function cannot be integrated to find

the potential energy. As such for normal SPH the total energy is not available as a

ready made Lyapunov function candidate. However a conservative version of SPH was

derived and it was shown by Lyapunov’s method that the equilibrium is stable when

the kernel function W (|xi − xj| , h) is chosen such that, for all i and j and for all u;∑N
j=1 W

′
ij =

∑N
i=1W

′
ij = 0. This constitutes a sufficient condition for the stabilty of

SPH, or at least a conservative version of it.

Although the stability results are only strictly applicable to conservative SPH, the linear

stability analysis showed that a conservative version of SPH is less stable than non-

conservative SPH, requiring exactly half the tension to become unstable. This suggests

that conditions that imply stablity in conservative SPH may help stabilise ordinary SPH.
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All of the stability results derived here and, to the author’s knowledge, elsewhere, apply

only to the stability of an equilibrium that has been perturbed by some arbitrarily small

amount. This limits the confidence one can have that the sufficient conditions derived

here guarantee stability in practice. This is especially pertinent for SPH where large

deformations of an initial configuration can be expected. Lyapunov’s method can be

applied to more general invariant sets [65]. In particular for a conservative system, the

set {u : H(u) < c} whereH is the total energy is invariant. Future work may concentrate

on proving that an invariant set of this form is stable. The geometry of the potential

energy/Lyapunov function is all important, exploring this analytically or numerically may

provide further insight into the stability of SPH.

Finally a new way to stabilise SPH was described; S-SPH. By switching between two

formulations, two unstable methods combine to become one stable method. The results

of varous validation tests show its stability and accuracy is comparable to TL-SPH.

The advantage of the present method is that it is Eulerian and is potentially of wider

applicability than TL-SPH where the particle neighbourhoods are fixed, limiting the

possibilties for modelling extreme deformations without “re-meshing”. Further work to

extend the method to be first-order consistent and to conserve angular momentum would

be of interest. We only considered elastic solids but it may also be of use in fluids and

other materials and this should also be investigated.
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Appendix A

Additional mathematics

1 SPH kernel functions

For reference we give some alternative kernel functions where r = |x− y| /h and c is a

normalisation constant. First B-spline functions of increasing order [57]:

Cubic B-Spline.

W (r, h) =
c

h


1− 3

2
r2 + 3

4
r3 : r < 1

1
4
(2− r)3 : 1 ≤ r < 2

0 : r ≥ 2,

(A.1)

Quartic B-Spline.

W (r, h) =
c

h



(
r + 5

2

)4 − 5
(
r + 3

2

)4
+ 10

(
r + 1

2

)4
: r < 1

2(
5
2
− r
)4 − 5

(
3
2
− r
)4

: 1
2
≤ r < 3

2(
5
2
− r
)4

: 3
2
≤ r < 5

2

0 : r ≥ 5
2
,

(A.2)
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Quintic B-Spline.

W (r, h) =
c

h



(3− r)5 − 6 (2− r)5 + 15 (1− r)5 : r < 1

(3− r)5 − 6 (2− r)5 : 1 ≤ r < 2

(3− r)5 : 2 ≤ r < 3

0 : r ≥ 3,

(A.3)

If we introduce the notation (a)+ = min {0, a} then the above can be written more

concisely

W (r, h) =
c

h

[
(3− r)5

+ − 6 (2− r)5
+ + 15 (1− r)5

+

]
. (A.4)

Gaussian. Many variations on a Gaussian kernel exist (see [29]). For example,

W (r, h) = ce−(r/h)2 . (A.5)

This has infinte support but may be truncated, i.e. assumed to be zero for all r > α, for

some constant α.

Wendland Kernels. TheWendland functions form a heirarchy of compactly supported

“bell-shaped” functions. They are distinguished by the fact that their Fourier transform

is always positive definite. See [15] and [19] for details. Two, of many, examples given in

[19] are

ψ(r)2,1 =c(1− r)3
+(1 + 3r), (A.6)

ψ(r)3,2 =c(1− r)5
+(1 + 5r + 8r2). (A.7)

2 Theorems and definitions for stability analysis

2.1 Miscellaneous matrix definitions and theorems [46]

The following definitions will assume all matrices and vectors have only real entries but

this is sufficient for our needs.
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Definition A.1 (Positive/negative definite matrix). A positive definite matrix is any

matrix A such that x · Ax > 0 for all non-zero vectors x. If strict inequality is not

obtained i.e. xT · Ax ≥ 0, then A is positive semi-definite. If −A is positive (semi-)

definite then A is negative (semi-)definite.

Definition A.2 (Principal sub-matrix and principal minors). A principal sub matrix

of a square matrix A is a matrix formed by deleting a proper subset of the rows and

corresponding columns of A i.e. if the ith row is deleted so must the ith column. The

principal minors are the determinants of the principal sub-matrices.

The following well known facts are pertinent to the following stability analysis:

1. The eigenvalues of a symmetric matrix are all real.

2. A symmetric n×n matrix A is positive (semi-)definite if and only if λi > 0 (λi ≥ 0)

∀λi ∈ σ (A).

3. A symmetric n×n matrix A is negative (semi-)definite if and only if λi < 0 (λi ≤ 0)

∀λi ∈ σ (A).

4. Every principal sub-matrix of a positive definite matrix is positive definite.

5. All of the principal minors of A are positive if, and only if, A is positive definite.

6. The principal minors of a negative definite matrix are negative if the corresponding

sub-matrix has an odd number of rows and positive otherwise.

2.2 Proof of theorem 3.8

Note that if fi = − ∂U
∂xi

then Ḣ = 0, i.e. the system is conservative. If fi = − ∂U
∂xi

then,

because partial differentiation commutes (Poincaré Lemma),

∂fi
∂xj

=
∂2U

∂xj∂xi

=
∂2U

∂xi∂xj
=
∂fj
∂xi

.
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Conversely, conservation of energy requires that the force F does no net work if the point

x (t) moves around a closed countour; the system should not gain or lose energy if it

returns to its initial state. That is,
∫
∂D

∑N
i=1 fidxi ≡ 0. If ∂fi

∂xj
=

∂fj
∂xi

then,∫
∂D

N∑
i=1

fidxi =

∫
D

N∑
i=1

(
N∑
j=1

∂fi
∂xj

dxj

)
dxi

=

∫
D

∑
i<j

[(
∂fi
∂xj
− ∂fj
∂xi

)
dxjdxi

]
= 0.

The sum
(∑

i<j

)
is taken over all pairs (i, j) such that 1 ≤ i < j ≤ n. The first line follows

from Stokes’ formula,
∫
∂D
ω =

∫
D

dω [28], and the definition of exterior differentiation;

df =
∑N

i=1
∂f
∂xi

dxi. The second line uses the skew-symmetry of the exterior product

dxidxj = −dxjdxi and the inital assumption that ∂fi
∂xj

=
∂fj
∂xi

.

3 Elastic waves

This section is a brief overview of elastic waves in infinite and semi-infinite isotropic

media, specifically pressure waves, shear waves, and surface (Rayleigh) waves the main

references used are [53, 47, 38]. The assumption throughout is that the displacement u

does not vary in the z-direction so that we are, in effect, considering two dimensions (x

and y) only. We will first consider the scalar wave equation to introduce plane harmonic

waves. It is by considering the behaviour of these waves, incident to a boundary, that

the NRBC will be introduced (following [21]).

3.1 The wave equation

3.1.1 1D wave equation

First consider the 1D wave equation

∂2u

∂t2
= c2∂

2u

∂x2

u(x, 0) = f(x) and u̇(x, 0) = 0.

(A.8)
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The solution to (A.8) is [38]

u(x, t) =
1

2
f(x− ct) +

1

2
f(x+ ct). (A.9)

Therefore the initial displacement is propagated, without distortion, to the right (f(x−
ct)) and to the left (f(x+ ct)) at phase speed c. A harmonic wave is a solution of (A.8)

that is a wave of a single frequency;

u(x, t) = Aeik(x−ct) = Aei(kx−ωt). (A.10)

A is the amplitude, k = 2π
λ

is the wave number, λ is the wavelength, c = ω
k
is the phase

velocity, and ω is the angular frequency. Harmonic waves are often used to analyse wave

phenomena because they can make the problem easier and more general solutions can be

constructed by superpostion [38].

3.1.2 2D wave equation

In higher dimensions the wave equation is

∂u

∂t
= c2∆u. (A.11)

The higher dimensional analog of harmonic waves are plane harmonic waves. A plane

wave is a wave where all points on a plane normal to the direction of propagation have

the same motion, see figure A.1. A plane harmonic wave has the functional form

u = Aeik(n·r−ct). (A.12)

It is easy to verify that this is indeed a solution of (A.11):

∂2u

∂x2
= −n2

1k
2u

∂2u

∂y2
= −n2

2k
2u

∂2u

∂t2
= −k2c2u,

therefore by substitution of the above into (A.11) find

−k2c2u+ k2c2
(
n2

1 + n2
2

)
u = k2c2u× (−1 + (1)) = 0,

as required.
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n · r− c t

x

y

r

n

Figure A.1: Plane wave: All points

along the plane n · r − ct =constant

undergo the same motion. The

wave propagates with phase velocity

c = cn, i.e. in the direction n with

speed c.

3.2 Pressure and shear waves

The equations of linear elasticity are [47]

ρ
∂2u

∂t2
= µ∆u + (λ+ µ)∇(∇ · u), (A.13)

where λ and µ are the Lamé constants.

Helmholtz representation. The Helmholtz representation [63] of a vector field is

u = ∇φ+∇×G where ∇ ·G = 0. (A.14)

The vector is split into the sum of the gradient of a scalar potential φ and the curl of a

vector potential G. The additional condition on the vector potential ∇ ·G = 0 makes

the representation unique. Note that in (A.14) the vector u is split into a divergence-free

(solenoidal) part, ∇×G, and an irrotational part, ∇φ. Therefore u can also be written

u = ul + ut (A.15)

where ut = ∇×G and ∇ · ut = 0; and ∇φ = ul and ∇×ul = 0.

The fact that two distinct types of elastic waves exist can be derived using the Helmholtz

representation of a vector. First substitute (A.14) into (A.13);

ρ
∂2 (∇φ+∇×G)

∂t2
= µ∆ (∇φ+∇×G) + (λ+ µ)∇(∇ · (∇φ+∇×G)).
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By interchanging the order of differentiation and using the identity ∇ · ∇ = ∆ and the

fact that ∇ · ∇×G = 0 the above equation becomes

ρ∇∂
2φ

∂t2
+ ρ∇× ∂

2G

∂t2
= µ∇∆φ+ µ∇×∆G + (λ+ µ)∇∆φ.

Finally by grouping terms we find

∇
(
ρ
∂2φ

∂t2
− (λ+ 2µ) ∆φ

)
+∇×

(
ρ
∂2G

∂t2
− µ∆G

)
= 0. (A.16)

This equation will be satisfied if both bracketed terms vanish i.e.

∂2φ

∂t2
− (λ+ 2µ)

ρ
∆φ = 0, (A.17a)

∂2G

∂t2
− µ

ρ
∆G = 0. (A.17b)

Equations (A.17) are both wave equations but with different phase speeds. For equation

(A.17a) the phase speed is cp =
√

(λ+ 2µ)/ρ, this type of elastic wave is called a pressure

or longitudinal wave, abbreviated to P-wave. For equation (A.17b) the phase speed is

cs =
√
µ/ρ, this is a shear or transverse wave (S-wave). Note that as µ > 0 it is always

true that cp > cs, P-waves are faster than S-waves. Note that neither cp nor cs depend on

k; the P- and S-waves are non-dispersive - all waves, regardless of frequency, propagate

at the same speed. Equation (A.13) can be rewritten in terms of cp and cs;

∂2u

∂t2
= c2

s∆u +
(
c2
p − c2

s

)
∇(∇ · u). (A.18)

Plane elastic waves [53]. Suppose that a plane wave is travelling along the x axis so

that the u (x, t) = (u1, u2) is a function of x and t only. With this assumption all the

spatial derivatives in (A.18) bar ∂
∂x

are equal to zero. Equation (A.18) then reduces to

∂2u1

∂t2
= c2

p

∂2u1

∂x2
, (A.19a)

∂2u2

∂t2
= c2

s

∂2u2

∂x2
. (A.19b)

Therefore the displacement in a P-wave (A.19a) is parallel to the phase velocity and for

an S-wave, equation (A.19b), the displacement is perpendicular to the phase velocity.
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3.3 Surface waves

The last type of elastic wave to be considered is the Rayleigh wave. These propagate

along the free surface of an elastic material but are damped towards the interior so that

their action is essentially confined to the surface. The derivation below is a combination

of that given in [53] and [38]. Consider a semi-inifinite body existing in the region y < 0,

so that the free surface is on the x-axis. The solution is the sum of a divergence-free

(ul = ∇×G) and curl-free vector ut = ∇φ. We assume they are plane waves propagating

along the x-axis in the positive x direction and have the form,

ut = ∇φ = ∇
(
f(y)ei(kx−ωt)

)
(A.20a)

ul = ∇×G3 = ∇×
(
g(y)ei(kx−ωt)

)
. (A.20b)

From §3.2 we know that φ and G are solutions of the wave equations (A.17). Note

that because we assume a plane wave only the z component of the vector potential (G3)

contributes to the total displacement

Proof.

∇×G =

(
∂G3

∂y
− ∂G2

∂z
,
∂G1

∂z
− ∂G3

∂x
,
∂G1

∂y
− ∂G2

∂x

)
. (A.21)

We assume that u is not a function of z so that ∂Gi
∂z

= 0 for all i and the third component

of (A.21) can be ignored. Therefore

u =

(
∂φ

∂x
+
∂G3

∂y
,
∂φ

∂y
− ∂G3

∂x

)
, (A.22)

and only G3 contributes.

The first step is to substitute φ = f(y)ei(kx−ωt) into (A.17a) to obtain an equation for

f(y);

∂2φ

∂t2
− c2

p∆φ =
∂2f(y)ei(kx−ωt)

∂t2
− c2

p∆f(y)ei(kx−ωt)

=

(
−f(y)(−iω)2 − c2

pf(y)(ik)2 − c2
p

∂2f

∂y2

)
ei(kx−ωt)

=

(
f

(
k2 − ω2

c2
p

)
− ∂2f

∂y2

)
ei(kx−ωt) = 0.
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This equation is satisfied if f(y) is the solution of the differential equation

∂2f

∂y2
=

(
k2 − ω

c2
p

)
f = α2f. (A.23)

Therefore

f = Ae±αy (A.24)

where A is a constant. Bearing in mind that a surface wave is sought, the possibilities

for the behaviour of f(y) are:

1. If α2 < 0 then the roots would be imaginary and the solution would be periodic.

2. If f = Ae−αy then f would increase exponentially towards the interior.

3. If f = Aeαy then f would decrease exponentially towards the interior.

Clearly only the last option is acceptable so that

φ = Aeαyei(kx−ωt). (A.25)

Exactly the same argument as above can be made after substituting (A.20b) into (A.17b)

to show that

G3 = Beβyei(kx−ωt), (A.26)

where β2 = k2 − ω2

c2s
. The displacement, u, is therefore

u = ∇φ+∇×G =
(
iAkeαy +Bβeβy , Aαeαy − iBkeβy

)
ei(kx−ωt). (A.27)

It remains to calculate the phase speed cr = ω
k
and the amplitude ratio A/B. These

can be found from the zero-traction boundary condition on y = 0. The stress (σ) and

displacement are related via the following equations, in index notation,

σij = λεkkδij + 2µεij (A.28)

εij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
, (A.29)
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where summation is implied over repeated indicies. The zero-traction condition requires

that σijnj = 0, in this case nj = δj2 i.e. it is the unit vector parallel to the y-axis.

Therefore, as σijδj2 = σi2, the boundary conditions require that,

σ12 = 2µε12 = 0

σ22 = λεkk + 2µε22 = 0.
(A.30)

We substitute (A.27) into the boundary conditions (A.30) and find, first for σ12,

σ12|y=0 = 2ikAα +B(β2 + k2) = 0, (A.31)

where the common factors µ and ei(kx−ωt) have been divided out. By definition cr = ωk,

so

α2 = k2 − ω2

c2
p

=k2

(
1− c2

r

c2
p

)
,

β2 = k2 − ω2

c2
s

=k2

(
1− c2

r

c2
s

)
,

β2 + k2 =k2

(
2− c2

r

c2
p

)
.

And (A.31) can be rewritten

σ12|y=0 = 2iA

√
1− c2

r

c2
p

+B

(
2− c2

r

c2
s

)
= 0. (A.32)

For σ22 the boundary condition is

σ22|y=0 = λA(α2 − k2) + 2µ
(
Aα2 − ikBβ

)
= 0. (A.33)

We use the identities,

α2 − k2 =− k2 c
2
r

c2
p

λ =− µ
(

2− c2
p

c2
s

)
,

rearrange (A.33), and cancel any common factors. Then

σ22|y=0 =Ak2

((
2− c2

p

c2
s

)(
c2
r

c2
p

)
+ 2

(
1− c2

r

c2
p

))
− ik22B

√
1− c2

r

c2
s

=A

(
2− c2

r

c2
s

)
− i2B

√
1− c2

r

c2
s

= 0. (A.34)
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Equation (A.32) and (A.34) form a system of homogeneous equations. For a non-zero

solution to exist the determinant of the matrix of coefficients must have zero a determinant

i.e.

det

2i
√

1− c2r
c2p

2− c2r
c2s

2− c2r
c2s

−i2
√

1− c2r
c2s

 = 4

√
1− c2

r

c2
p

√
1− c2

r

c2
s

−
(

2− c2
r

c2
s

)2

= 0. (A.35)

This is the frequency equation and can be written as a cubic equation in
(
cr
cs

)2

[38]. Note

that, as with the P- and S-waves, the Rayleigh wave’s phase speed is independent of

frequency and is non-dispersive. Of the six roots obtained, five can be always be rejected

[38]. Obviously half will be negative, one of ±
(
cr
cs

)
, of the remaining three, either only

one will be real or, of the three real roots, only one will be small enough to satisfy the

condition that β > 0 and be real. Incidentally, this condition also implies that cr < cs

because

β = +k

√
1− cr

cs
∈ R ⇒ cr < cs.

The surface waves are slower that S- and P-waves. In practice solving the cubic equation

may be complex but an approximation is given in [38];

cr ≈ cs
0.87 + 1.12ν

1 + ν
, (A.36)

where ν is the Poisson ratio.

Finally the amplitude ratio A/B can be found from (A.34) (or (A.32));

A

B
=
i2
√

1− c2r
c2s

2− c2r
c2s

. (A.37)

Introduce the notation ψ = 2− c2r
c2s

then

A

B
= 2i

β

kψ
. (A.38)

The displacement can now be written in terms of a single constant A

u|y=0 = A

(
ik + 2i

β2

kψ
, α + 2

β

ψ

)
eik(x−crt). (A.39)
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phase velocity cr

t

x

Figure A.2: Displacement of

points on a free surface under

the action of a Rayleigh wave. A

point describes an ellipse as the

wave propagates. Not to scale -

illustrative only.

Define a(k) = Ai
(
k + 2i β

2

kψ

)
and b(k) = A

(
α + 2 β

ψ

)
and take the real part of (A.39);

u|y=0 = ( a(k) sin (k(x− crt)) , b(k) cos (k(x− crt)) ) . (A.40)

For fixed x a point on the free surface y = 0 will describe an ellipse - counter-clockwise

if the wave is propagating in the positive x direction. This is seen clearly in figure A.2.

158



Appendix B

Input files

There follows two representative input files for MCM and for DYNA. Note that the initial

velocities and the definition of the boundary conditions were hard-wired into the code as

needed.

** **

** PROBLEM TITLE (MAX = 78 CHARACTERS) INPUT VERSION **

** Âň Âň **

Narrow domain for NRBC test 2

*******************************************************************************************

** **

** CONTROL CARDS **

** **

*******************************************************************************************

** **

** CARD 1 - PROBLEM DEFINITION **

*AXIS TYP MATS STRTPARTS MAXPARTS **

** Âň Âň Âň Âň Âň **

2 1 1 5000 5000

** ----------------------------------------------------------------------------------- **
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** CARD 2 - TIME CONTROL **

** ENDTIM TSSFAC DTINIT DRSF **

** Âň Âň Âň Âň **

4.0 0.8

** ----------------------------------------------------------------------------------- **

** CARD 3 - OUTPUT FILE CONTROL **

** DTSTATE PLOT DTHIST HISPARTS TRNS PROB RSRT RUN **

** Âň Âň Âň Âň Âň Âň Âň Âň **

0.05 3 5.000E-02 0 0 100 0 0

** ----------------------------------------------------------------------------------- **

** CARD 4 - INPUT AND INITIALIZATION OPTIONS **

*FLES VELS MASS H RO&E **

** Âň Âň Âň Âň Âň **

1 1 0 0

** ----------------------------------------------------------------------------------- **

** CARD 5 - ANALYSIS OPTIONS **

*CTYP CTS VUD SYM NLCR NPX NPY NPZ NSRC NDET L/NL **

** Âň Âň Âň Âň Âň Âň Âň Âň Âň Âň Âň **

0 0 1 1 0 0 0 0 0 0 0

** ----------------------------------------------------------------------------------- **

** CARD 6 - INTERPOLATION OPTIONS **

*SMOL KERN NEIG **

** Âň Âň Âň **

0 1 40

** ----------------------------------------------------------------------------------- **

** CARD 7 - OPTIONS (BLANK AT THIS TIME) **

** **

** Âň Âň Âň Âň **
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** **

*******************************************************************************************

** **

** MATERIAL CARDS **

** **

*******************************************************************************************

** **

** ################################################################################# **

** **

** MATERIAL 1 **

** **

** ################################################################################# **

** **

** CARD 1 - MATERIAL CONTROL CARD **

**MID MTYP RO EOS AVIS QBVC LBVC **

** Âň Âň Âň Âň Âň Âň Âň Âň Âň **

1 1 7.8 1.5 0.06

** ----------------------------------------------------------------------------------- **

** CARD 1a - MCM MATERIAL OPTIONS **

** TOTMASS INITIALH MINROLIM MAXROLIM **

** Âň Âň Âň Âň **

15.6 0.0260 0.0 0.0

** ----------------------------------------------------------------------------------- **

** CARD 2 **

**-------------Material Identification (72 Characters MAX)-------------- **

** Âň **

block 1

** ----------------------------------------------------------------------------------- **

** CARD 3 - YOUNG’S MODULUS **
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** Âň **

2.1

** ----------------------------------------------------------------------------------- **

** CARD 4 - POSSION’S RATIO **

** Âň **

0.3

** ----------------------------------------------------------------------------------- **

** CARD 5 - YIELD STRESS **

** Âň **

** ----------------------------------------------------------------------------------- **

** CARD 6 - TANGENT MODULUS **

** Âň **

** ----------------------------------------------------------------------------------- **

** CARD 7 - HARDENING PARAMETER **

** Âň **

** ----------------------------------------------------------------------------------- **

** CARD 8 - BLANK **

** **

** ################################################################################# **

*******************************************************************************************

** **

** PARTICLE COORDINATES & PARTICLE INFORMATION **

** **

*******************************************************************************************

** **
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** PARTICLES: 2D CARTESIAN (axis option = 2) **

** NID BC X Y MID **

** Âň Âň Âň Âň Âň **

1 0 1.000e-002 1.990e+000 1

2 0 3.000e-002 1.990e+000 1

3 0 5.000e-002 1.990e+000 1

4 0 7.000e-002 1.990e+000 1

5 0 9.000e-002 1.990e+000 1

6 0 1.100e-001 1.990e+000 1

7 0 1.300e-001 1.990e+000 1

8 0 1.500e-001 1.990e+000 1

9 0 1.700e-001 1.990e+000 1

10 0 1.900e-001 1.990e+000 1

......................................CONT...........................

4986 0 7.100e-001 1.000e-002 1

4987 0 7.300e-001 1.000e-002 1

4988 0 7.500e-001 1.000e-002 1

4989 0 7.700e-001 1.000e-002 1

4990 0 7.900e-001 1.000e-002 1

4991 0 8.100e-001 1.000e-002 1

4992 0 8.300e-001 1.000e-002 1

4993 0 8.500e-001 1.000e-002 1

4994 0 8.700e-001 1.000e-002 1

4995 0 8.900e-001 1.000e-002 1

4996 0 9.100e-001 1.000e-002 1

4997 0 9.300e-001 1.000e-002 1

4998 0 9.500e-001 1.000e-002 1

4999 0 9.700e-001 1.000e-002 1

5000 0 9.900e-001 1.000e-002 1
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** **

*******************************************************************************************

** **

** INITIAL PARTICLE VELOCITIES (Impact Velocity of 200 m/s) **

** **

*******************************************************************************************

** **

** NID VX VY **

** Âň Âň Âň **

1 0.0 .5

5000 0.0 .5

** **

*******************************************************************************************

** **

** SYMMETRY PLANES **

** **

*******************************************************************************************

** **

** CARD 1 **

** XMIN XMAX YMIN YMAX ZMIN ZMAX **

** Âň Âň Âň Âň Âň Âň **

1 0 0 0 0 0

** ----------------------------------------------------------------------------------- **

** CARD 2 **

** XMINPOS XMAXPOS YMINPOS YMAXPOS ZMINPOS ZMAXPOS **

** Âň Âň Âň Âň Âň Âň **

0.0

** ** **

*******************************************************************************************
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** ---END--- **

*******************************************************************************************
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This is the keyword file for the FE NRBC test.

*KEYWORD memory=75m

*TITLE

$# title

test

*CONTROL_BULK_VISCOSITY

$# q1 q2 type btype

1.500000 0.060000 0 0

*CONTROL_TERMINATION

$# endtim endcyc dtmin endeng endmas

4.000000 0 0.000 0.000 0.000

*DATABASE_BINARY_D3PLOT

$# dt lcdt beam npltc psetid

0.100000 0 0 0 0

$# ioopt

0

*BOUNDARY_NON_REFLECTING

1 0.000 0.000

*PART

$# title

block

$# pid secid mid eosid hgid grav adpopt tmid

1 1 1 0 0 0 0 0

*SECTION_SOLID

$# secid elform aet

1 0 0

*MAT_ELASTIC

$# mid ro e pr da db not used
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1 7.800000 2.100000 0.300000 0.000 0.000 0

*INITIAL_VELOCITY_NODE

$# nid vx vy vz vxr vyr vzr

1 0.000 0.000 0.000 0.000 0.000 0.000

2 0.000 0.000 0.000 0.000 0.000 0.000

3 0.000 0.000 0.000 0.000 0.000 0.000

4 0.000 0.000 0.000 0.000 0.000 0.000

5 0.000 0.000 0.000 0.000 0.000 0.000

6 0.000 0.000 0.000 0.000 0.000 0.000

7 0.000 0.000 0.000 0.000 0.000 0.000

8 0.000 0.000 0.000 0.000 0.000 0.000

9 0.000 0.000 0.000 0.000 0.000 0.000

10 0.000 0.000 0.000 0.000 0.000 0.000

...............................CONT............................................

667 0.000 0.000 0.000 0.000 0.000 0.000

668 0.000 0.000 0.000 0.000 0.000 0.000

669 0.000 0.000 0.000 0.000 0.000 0.000

670 0.000 0.000 0.000 0.000 0.000 0.000

671 0.018220 -0.046560 0.000 0.000 0.000 0.000

672 0.014560 -0.047830 0.000 0.000 0.000 0.000

673 0.010620 -0.048860 0.000 0.000 0.000 0.000

674 0.006467 -0.049580 0.000 0.000 0.000 0.000

675 0.002172 -0.049950 0.000 0.000 0.000 0.000

676 -0.002172 -0.049950 0.000 0.000 0.000 0.000

677 -0.006467 -0.049580 0.000 0.000 0.000 0.000

678 -0.010620 -0.048860 0.000 0.000 0.000 0.000

679 -0.014560 -0.047830 0.000 0.000 0.000 0.000

680 -0.018220 -0.046560 0.000 0.000 0.000 0.000

681 0.000 0.000 0.000 0.000 0.000 0.000
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682 0.000 0.000 0.000 0.000 0.000 0.000

...............................CONT.........................................

713 0.000 0.000 0.000 0.000 0.000 0.000

714 0.000 0.000 0.000 0.000 0.000 0.000

715 0.000 0.000 0.000 0.000 0.000 0.000

716 0.000 0.000 0.000 0.000 0.000 0.000

717 0.000 0.000 0.000 0.000 0.000 0.000

718 0.000 0.000 0.000 0.000 0.000 0.000

719 0.026320 -0.042510 0.000 0.000 0.000 0.000

720 0.023200 -0.044290 0.000 0.000 0.000 0.000

721 0.019700 -0.045960 0.000 0.000 0.000 0.000

722 0.015810 -0.047430 0.000 0.000 0.000 0.000

723 0.011580 -0.048640 0.000 0.000 0.000 0.000

724 0.007071 -0.049500 0.000 0.000 0.000 0.000

725 0.002378 -0.049940 0.000 0.000 0.000 0.000

726 -0.002378 -0.049940 0.000 0.000 0.000 0.000

727 -0.007071 -0.049500 0.000 0.000 0.000 0.000

728 -0.011580 -0.048640 0.000 0.000 0.000 0.000

729 -0.015810 -0.047430 0.000 0.000 0.000 0.000

730 -0.019700 -0.045960 0.000 0.000 0.000 0.000

731 -0.023200 -0.044290 0.000 0.000 0.000 0.000

732 -0.026320 -0.042510 0.000 0.000 0.000 0.000

733 0.000 0.000 0.000 0.000 0.000 0.000

-------------------------------CONT....................................

4994 0.000 0.000 0.000 0.000 0.000 0.000

4995 0.000 0.000 0.000 0.000 0.000 0.000

4996 0.000 0.000 0.000 0.000 0.000 0.000

4997 0.000 0.000 0.000 0.000 0.000 0.000

4998 0.000 0.000 0.000 0.000 0.000 0.000
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4999 0.000 0.000 0.000 0.000 0.000 0.000

5000 0.000 0.000 0.000 0.000 0.000 0.000

*SET_SEGMENT

$# sid da1 da2 da3 da4 solver

1 0.000 0.000 0.000 0.000

$# n1 n2 n3 n4 a1 a2 a3 a4

1 2 2502 2501 0.000 0.000 0.000 0.000

2 3 2503 2502 0.000 0.000 0.000 0.000

3 4 2504 2503 0.000 0.000 0.000 0.000

4 5 2505 2504 0.000 0.000 0.000 0.000

5 6 2506 2505 0.000 0.000 0.000 0.000

6 7 2507 2506 0.000 0.000 0.000 0.000

7 8 2508 2507 0.000 0.000 0.000 0.000

-------------------------------CONT----------------------------------------------

2000 2050 4550 4500 0.000 0.000 0.000 0.000

2050 2100 4600 4550 0.000 0.000 0.000 0.000

2100 2150 4650 4600 0.000 0.000 0.000 0.000

2150 2200 4700 4650 0.000 0.000 0.000 0.000

2200 2250 4750 4700 0.000 0.000 0.000 0.000

2250 2300 4800 4750 0.000 0.000 0.000 0.000

2300 2350 4850 4800 0.000 0.000 0.000 0.000

2350 2400 4900 4850 0.000 0.000 0.000 0.000

2400 2450 4950 4900 0.000 0.000 0.000 0.000

2450 2500 5000 4950 0.000 0.000 0.000 0.000

*ELEMENT_SOLID

$# eid pid n1 n2 n3 n4 n5 n6 n7 n8

1 1 51 52 2 1 2551 2552 2502 2501

2 1 52 53 3 2 2552 2553 2503 2502

3 1 53 54 4 3 2553 2554 2504 2503
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4 1 54 55 5 4 2554 2555 2505 2504

5 1 55 56 6 5 2555 2556 2506 2505

6 1 56 57 7 6 2556 2557 2507 2506

7 1 57 58 8 7 2557 2558 2508 2507

8 1 58 59 9 8 2558 2559 2509 2508

9 1 59 60 10 9 2559 2560 2510 2509

10 1 60 61 11 10 2560 2561 2511 2510

11 1 61 62 12 11 2561 2562 2512 2511

12 1 62 63 13 12 2562 2563 2513 2512

----------------------------------------CONT-------------------------------------

2396 1 2494 2495 2445 2444 4994 4995 4945 4944

2397 1 2495 2496 2446 2445 4995 4996 4946 4945

2398 1 2496 2497 2447 2446 4996 4997 4947 4946

2399 1 2497 2498 2448 2447 4997 4998 4948 4947

2400 1 2498 2499 2449 2448 4998 4999 4949 4948

2401 1 2499 2500 2450 2449 4999 5000 4950 4949

*NODE

$# nid x y z tc rc

1 0.0100000 0.9900000 0.0100000 3 7

2 0.0300000 0.9900000 0.0100000 3 7

3 0.0500000 0.9900000 0.0100000 3 7

4 0.0700000 0.9900000 0.0100000 3 7

5 0.0900000 0.9900000 0.0100000 3 7

6 0.1100000 0.9900000 0.0100000 3 7

7 0.1300000 0.9900000 0.0100000 3 7

8 0.1500000 0.9900000 0.0100000 3 7

9 0.1700000 0.9900000 0.0100000 3 7

10 0.1900000 0.9900000 0.0100000 3 7

--------------------------CONT-------------------------------------------------
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4987 0.7300000 0.0100000 0.0300000 3 7

4988 0.7500000 0.0100000 0.0300000 3 7

4989 0.7700000 0.0100000 0.0300000 3 7

4990 0.7900000 0.0100000 0.0300000 3 7

4991 0.8100000 0.0100000 0.0300000 3 7

4992 0.8300000 0.0100000 0.0300000 3 7

4993 0.8500000 0.0100000 0.0300000 3 7

4994 0.8700000 0.0100000 0.0300000 3 7

4995 0.8900000 0.0100000 0.0300000 3 7

4996 0.9100000 0.0100000 0.0300000 3 7

4997 0.9300000 0.0100000 0.0300000 3 7

4998 0.9500000 0.0100000 0.0300000 3 7

4999 0.9700000 0.0100000 0.0300000 3 7

5000 0.9900000 0.0100000 0.0300000 3 7

*END

*COMPONENT

1 0.769000 0.004000 0.110000 0.000 0 0 0

Part 1

*COMPONENT_PART

1 1

*COMPONENT_END
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