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Abstract 
 
 Local air quality is one of the factors constraining the development of airports. In 
countries of the European Union where new, stricter regulations for emissions of 
nitrogen oxides (NOx) have been introduced since 2010, the limits of mean annual 
concentrations are already exceeded at certain ground monitoring locations of large 
airports. This research project investigates the possibility of practically abating the 
aircraft exhaust plume at take-off by placing an array of aerodynamic windbreaks 
(‘baffles’) in the runway end safety area close to the aircraft starting position. The thesis 
investigates whether an array of baffles in the path of the engine exhaust jet at take-off 
enhances the dispersion of the plume and causes it to separate from the ground. 
 
 The undertaken experimental investigation comprised sub-scale wind tunnel tests 
and full-scale field trials with a BAe 146-301 aircraft, performing take-off and landing 
cycles at Cranfield Airport. The initial wind tunnel experiments investigated the effect 
of a solid baffle row, placed in the path of a buoyant nozzle jet, on the development of 
the plume downstream. Using flow visualisation, the positive effect of the baffle row of 
promoting buoyant rise of the plume away from the ground was demonstrated 
successfully without the presence of wind tunnel flow. The investigation highlighted the 
importance of the distance of the baffles relative to the jet source on their effectiveness. 
In the presence of wind tunnel flow, the baffles caused an increased vertical spread of 
the plume downstream, but the plume was not observed to separate from the ground. 
 In preparation of the field trials, the spatial arrangement of the baffle array was 
investigated by means of wind tunnel drag measurements, performed with a skin-
friction balance. The experiments focused on key parameters such as the baffle slope 
angle and row spacing, favouring a configuration of three rows of baffles of increasing 
height. The results were observed to be independent of Reynolds number for Reynolds 
numbers above 18000, based on the largest baffle height and the exhaust jet velocity. 
Based on the wind tunnel measurements, full-scale baffle prototypes were designed and 
manufactured at Cranfield University and were deployed in the field trials. 
 Lidar and point sampler measurements during the field trials suggested that the 
plume had risen away from the ground on one occasion when the aircraft was located 
close to the baffles. A positive effect was shown in terms of reduced concentrations 
downstream of the baffles. This result was not replicated when the aircraft was further 
away from the baffles. 
 
 The subsequent wind tunnel experiments focused on replicating the field trials at 
1:200 scale in Cranfield’s Atmospheric Boundary Layer Wind Tunnel. The aircraft was 
represented at sub scale with a single stationary nozzle while the jet speed and buoyancy 
were modelled using similarity parameters such as the Froude number and the ratio of 
ambient and jet density. Mean concentration measurements were performed using a 



 
 

Flame Ionisation Detector method releasing methane as tracer gas. The effect of the 
baffles was observed to be mainly local in terms of reduced concentrations close the 
ground due to their sheltering effect. A more prolonged effect was found to be the 
increase of the plume’s vertical spread resulting in an increase in mean concentrations 
away from the ground. 
 
 Overall, the results of the sub-scale and full-scale experiments were inconclusive 
with regard to the ability of the baffle array to lift-off the plume. It appears that the 
parameters, which have a significant effect on the lift-off phenomenon, are the ambient 
wind speed and the engine starting position. Additional field trials with a sub-scale 
UAV gas turbine have been proposed to investigate further the differences in the 
obtained results. 
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A5 Reference area equal to the sum of the frontal areas of all five rows of 

baffles, A5 = 0.0489 m
2
 

b Spacing between rows or nozzle offset distance in Chapter 2.4, see 

Figure 2.9 

B Proportionality coefficient, see Equation 4.8 

b0 Sub-scale distance between nozzle exit and Runway 21 threshold, 
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B1, B2 Proportionality and exponential coefficients, see Equation 4.7 
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FM  Momentum flux, see Chapter 2.2.1 

Fr  Froude number, see definition in Equation 1.3 

Fr*  Modified Froude number, see Equation 2.13 

Ft  Total take-off thrust 

FT  Measured total drag force 

g  Gravitational acceleration, g = 9.80665 m/s 

g'  Reduced gravitational acceleration, g' = g(ρ∞ – ρj) / ρ∞ 

h  Baffle or fence vertical height, see Figure 5.1, or specific enthalpy in 

Equation 6.1 and Equation 6.2 

h'  Baffle slope height, h' = h / sin(α) 

H Plume vertical spread, see Figure 4.1 

H' Non-dimensional mean maximum plume vertical spread, see Equation 

4.2 

Iu turbulence intensity for equilibrium conditions, see Equation 3.23 

Je Jensen number, Je = h / z0 

k Proportionality coefficient, see Equation 4.9 

Kc Non-dimensional concentration parameter, see Equation 2.14 

l  Characteristic length or distance 

LCV  Lower Calorific Value, for Jet A-1 fuel LCV ≈ 43 MJ 

lb  Buoyancy length scale, see Equation 2.13 

lM  Morton length scale, see Equation 2.8 

lP  Length of balance plate 

Lp  Lift-off parameter, see Equation 2.10 

lws  Blower tunnel working section length, see Figure 4.14, lws = 381 mm 

m  Mass 

M  Molar mass 

M0  Specific momentum at the jet source 

Ma  Mach number, see definition in Equation 1.2 

ṁair  Air mass flow rate through fan 

ṁf  Fuel flow rate 

n  Number of baffle rows on plate, starting from largest 

N  Amount of substance, N = m / M 

p  Static pressure 

pt  Total pressure 

q  Dynamic pressure 

Q  Volumetric flow rate 

Q1-2  Rate of added heat, see Equation 6.1 and Equation 6.3 

r  Spacing of parallel jets (distance between nozzle centre lines, see 

Chapter 2.5) 

R Specific gas constant; for dry air R = 287 J/(kgK) 
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R0  Radius of first row of baffles downstream of nozzle 

R
2
  Coefficient of determination 

Ru Universal gas constant, Ru = 8.314 J/(molK) 

Re  Reynolds number, see definition in Equation 1.1 

Ri  Richardson number, see Equation 2.9 

s  Number of baffle rows on plate, starting from smallest 

S  Non-dimensional plume area, see Equation 4.1 

t  Time 

t0  Measurement period of time 

T  Absolute temperature 

u*  Friction velocity, see definition in Equation 2.11 

uz'(t)  Fluctuating component of wind speed at height z', see Equation 3.19 

and Figure 3.7 

U  Velocity 

U∞  Freestream velocity 

U1, U2  Maximum velocity and half maximum velocity respectively for a two-

dimensional wall jet, see Figure 2.2 

U10  Reference wind speed at 10 m height 

U40  Wind tunnel speed measured at 40 mm above the ground 

Uj Exit jet velocity 

Us Speed of sound, see Equation 1.2 

Uz  Mean wind speed at height z 

Uz'  Mean wind speed at height z' 

Uz'(t)  Instantaneous wind speed at any time t, measured at a height z', see 

Equation 3.19 and Figure 3.7 

V  Volume 

w  Baffle row width 

wn  Individual baffle width 

W  Plume lateral spread, see Figure 4.1 

W' Non-dimensional mean maximum plume lateral spread, see Equation 

4.3 

W1-2  Rate of work done, see Equation 6.1 

x  Longitudinal Cartesian coordinate 

x' Non-dimensional longitudinal distance along blower tunnel working 

section, see Figure 4.14 

xs  Longitudinal coordinate relative to a constant freestream 

y  Lateral Cartesian coordinate 

y0.5  Lateral position of the half maximum velocity of a three-dimensional 

wall jet, see Figure 2.5 

z  Height above ground 
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z'  Height above aerodynamic ground surface, see Figure 3.6; z' = z – zd 

z0  Roughness length, see Figure 3.6 

z0.5  Vertical position of the half maximum velocity of a three-dimensional 

wall jet, see Figure 2.5 

zd Zero-surface displacement, see Figure 3.6 

zh Gradient height, see Figure 3.5 

zmax  Vertical position of the maximum velocity Umax in the plane of 

symmetry of a three-dimensional wall jet 

 

 

Greek symbols 

α  baffle slope angle 

αs Screen angle of inclination, measured to the freestream direction; see 

Figure 4.17 and Figure C.9 

αv Screen angle of inclination, measured to the vertical; see Figure 2.16 

β Ratio of freestream velocity to exit jet velocity, β = U∞ / Uj 

γ Screen porosity, see Equation 2.15 

δ  Boundary layer thickness or two-dimensional wall jet thickness, see 

Figure 2.2 

δ1, δ2 Vertical location of the maximum velocity and half the maximum 

velocity respectively for a two-dimensional wall jet, see Figure 2.2 

Δp  Pressure drop across a porous screen, see Chapter 2.8 

ΔT  Absolute temperature difference, ΔT = Tj – T∞ 

Δρ  Density difference, Δρ = ρj – ρ∞ 

ε  Angle between wind tunnel flow and runway direction at sub scale, 

see Figure 7.1 

η  Parameter, see Equation 3.22; η = 1 – 6fcz' / u* 

θ1 Entry angle, measured to the freestream direction; see Figure 4.18 

θ2 Upwash angle, measured to the freestream direction; see Figure 4.17 

and Figure 4.18 

κ  Von Karman constant, κ ≈ 0.4 

λ  Scaling, λ = lM / lF 

Λ  Aspect ratio 

μ  Dynamic viscosity 

ρ  Density 

σu Standard deviation of the fluctuating component of wind speed in 

mean wind direction, see Equation 3.22 

τw  Local wall shear stress 

ν  Kinematic viscosity, ν = μ / ρ 

φ  Local angle of latitude 
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ψ Outflow angle, measured to the freestream direction; see Figure 2.16 

ψ' Flow angle at porous screen plane, measured to the freestream 

direction;  see Figure 2.16 

ω Angular velocity of the Earth based on a sidereal day, ω ≈ 7.29×10
-5

 

rad/s 

 

 

Subscript 

∞  Freestream 

1, 2  Control volume boundaries, see Figure 6.1 

air  Air 

b  Balance plate 

e  Edge of boundary layer 

F  Full scale 

He  Helium 

j  Jet (at nozzle exit at sub scale) 

M  Model 

max  Maximum 

mp  Merging point 

ref  Reference 
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“Anybody who has been seriously engaged in scientific work of any kind realises that over the 

entrance to the gates of the temple of science are written the words: ‘Ye must have faith’.” 

 

- Max Planck, Where is Science Going? (1932) 

 

 

 ٭ ٭ ٭ ٭
 

 

 

1 Introduction 
 

 Aviation has become an integral part of civilisation and human life. Every day 

approximately one hundred thousand commercial flights take off around the world, 

carrying millions of passengers and cargo (IATA, 2013). The demand for fast and 

efficient long-distance transport has made civil aviation a major international business, 

playing an essential role in the world’s commercial infrastructure (Poll, 2009). While 

safety still remains its primary objective, the immense growth of the civil aviation 

sector has brought forward other important issues, such as sustainability and 

environmental impact. 

 

 Civil aviation’s global mean annual growth rate, in terms of Revenue Passenger-

Kilometres
†
, is currently predicted between 5% and 6% (ICAO, 2012) and is expected 

to remain similar within the next 15 years by the world’s leading aircraft manufacturers 

(Airbus, 2007; Boeing, 2008). If correct, such predictions would mean air traffic 

doubling between 2010 and 2025 (Cheze et al., 2011). Furthermore, a long-term 

forecast by the International Air Traffic Association (IATA, 2011) predicts an increase 

of more than six and a half times in 2050, equal to about 16 billion passengers around 

the world. Such development would similarly increase the environmental impact of air 

transport and the competition within the airline industry, the former raising a major 

political concern in recent years. Thus, aviation technology is no longer concentrating 

on power and size, but has turned its attention to long-term aspects such as 

sustainability, cost-efficient operation and environmental responsibility. Reduction of 

____________________________ 
†

 Revenue Passenger-Kilometres (RPK) for a flight is defined as the number of revenue-paying passengers 

on board multiplied by the distance travelled (in kilometres). 

http://en.wikiquote.org/wiki/Science
http://en.wikiquote.org/wiki/Work
http://en.wikiquote.org/wiki/Faith
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noise and engine exhaust emissions, such as carbon dioxide (CO2), water vapour and 

nitrogen oxides (NOx), has become a priority for civil aviation organisations. For 

example, IATA, whose airline members carry out more than 90% of the world’s 

scheduled international flights, is committed to stop the growth of emissions of their 

aircraft by the year 2020 and “to halve emissions by 2050 compared to 2005 levels” 

(IATA, 2009). 

 

 This study is concerned with the environmental impact of aviation. It discusses 

the possibility of abating an aircraft exhaust plume during take-off and thus promoting 

its dispersion above the ground. The primary concern would be the short-term emission 

gases which affect local air quality, i.e. nitrogen dioxide (NO2) and, to a lesser extend in 

view of the EU annual limit, nitric oxide (NO). The experimental investigation 

addresses the aerodynamic behaviour and development of exhaust plumes in a 

controlled wind tunnel environment and relates this simulation to full-scale field trials 

with a BAe 146-301 aircraft at Cranfield Airport. 

 

 

1.1 Aircraft ground-level emissions 

 

 Compliance with local air quality regulations is one of the factors constraining the 

expansion of airports to meet the demands of the growing airline industry. For example, 

recent environmental reports on air quality at Heathrow (UK Department for Transport, 

2006; Heathrow Airport Ltd., 2011) and Frankfurt airports (Fraport AG, 2012) show 

that the EU limit on mean annual NO2 concentrations, i.e. 40 μg/m
3
 with 0% margin of 

tolerance from 1
st
 January 2010 (European Commission, 1999), is already exceeded in 

some of the monitoring locations around these airports. This could have serious 

implications on the recently re-proposed plans for construction of a third runway at 

Heathrow Airport (Heathrow Airport Ltd., 2013), which would increase passenger 

traffic by 55% to 60% until the year 2025 or 2029 depending on the approved expansion 

plan. A similar observation by the Netherlands Environmental Agency (MNP, 2011) on 

the air quality around Schiphol Airport shows that at the predicted traffic growth rates 

the NO2 limit would probably be exceeded by the year 2020. The individual 

contribution of air traffic is estimated by the MNP to be between 15 and 20% of the 

total NO2 emissions at Schiphol, including non-airport related traffic. The investigation 

also identifies similar trends for exceeding the annual limit of particulate matter 

emissions of 10 μm diameter or less (PM10) by 2020, however, the contribution of 

airport related traffic is estimated as only a few percent of the total emissions. The 

reduction of NO2 emissions resulting from ground-level operations can therefore be 

considered a primary target for major European airports with regard to meeting EU 

regulations concerning human health protection. 
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 If we consider only airport related ground-level emissions, aircraft are by far the 

largest source of pollution. For example, at London Gatwick Airport the NO2 emissions 

resulting from aircraft operation are more than 6 times greater than those estimated from 

airport related traffic on the designated road network and from airside vehicle operation 

(Gatwick Airport Ltd., 2009). This is attributed primarily to the take-off rolls, e.g. 

causing 46% and about 40% of the annual NO2 emissions respectively at Heathrow 

(Heathrow Airport Ltd., 2009) and Gatwick (Gatwick Airport Ltd., 2009) airports.  

 

 In view of this assessment, if the exhaust plume at take-off could be dispersed 

away from the ground in some way, this would reduce significantly the local NO2 levels, 

measured at the monitoring locations at ground level, and thus improve local air quality. 

 

 

1.2 Baffles concept 

 

 A research project, sponsored by the Engineering and Physical Science Research 

Council (EPSRC, 2009), has been proposed to investigate the possibility of improving 

local air quality at airports using practical abatement techniques to promote the rise of 

the aircraft exhaust plume away from the ground during take-off. The concept involves 

placing an array of windbreaks (‘baffles’) in the undershoot of the runway to remove 

sufficient horizontal momentum from the jet, thus allowing for buoyancy effects to 

become dominant as the jet develops away from the runway (Figure 1.1). It primarily 

targets the use of aerodynamic drag (of the baffles) and the high-temperature jet’s 

natural buoyancy to help the plume physically disperse in the local environment 

reducing the concentration of exhaust emissions close to the ground. For future 

reference, the terms ‘jet’ and ‘plume’ are used in this work to describe respectively the 

high-momentum engine exhaust jet close to the nozzle exit, and the developed jet 

further downstream where horizontal momentum has reduced significantly and the jet’s 

behaviour is dominated by turbulent mixing through entrainment of ambient air. 

 

 
Figure 1.1:  Baffle concept for reduction of engine exhaust jet momentum during take-off roll 

(schematic, side view) 

Runway end 

Aircraft exhaust at take-off 

Porous windbreaks 

(‘baffles’) 

Reduced jet 

momentum 

Buoyancy 

dominating the 

plume behaviour 
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 At take-off, the high-momentum exhaust jet is drawn towards the ground by the 

Coanda effect and stays attached as “the downward momentum flux from the 

entrainment of air from above tends to keep it there” (Bennett et al., 2013). After a 

certain travel time the vertical momentum due to buoyancy, counter-acting the Coanda 

effect, prevails and tends to lift the plume away from the ground. Such plume rise was 

observed in Lidar (Light Detection and Ranging) studies at Heathrow and Manchester 

airports (Bennett et al., 2013) and at Denver International Airport (Wayson et al., 2008) 

during take-off runs of commercial aircraft. Graham et al. (2008) reported that the 

plume of a modern high-bypass-ratio engine would rise on its own after a travel time of 

~80s when its natural buoyancy equalled the horizontal momentum of the jet. As 

observed by Kaiser (1977) and Meroney (1979) in independent simulations of buoyant 

gas released into moving air, ground level concentrations under a rising plume are very 

small with only a small residual part of the plume left behind. 

 Based on these observations, placing an array of baffles (effectively fences) 

directly in the path of an engine exhaust jet at take-off, and thus exerting an 

aerodynamic drag force on the jet, should drain some of its horizontal momentum 

reducing the time until the plume buoyancy becomes dominant. Such an arrangement 

would require positioning the baffles in the restricted area downstream of a runway 

threshold. Taking into consideration the landing angle of approach, restrictions for the 

height of the baffles as well as frangibility criteria (ICAO, 2006b) would be limiting 

factors in their structural design. This means that the exhaust jet height would be 

significantly larger than the baffles, leading to an arrangement of multiple rows of 

baffles, effectively acting as surface roughness elements. 

 

If successful, the project will not only offer an innovative solution to the growing 

issue with local air quality at airports and thus have an important scientific contribution 

to the civil aviation community, but this solution could be of significant practical 

importance for the following reasons. First, the simplicity of the concept accounts for 

cost-efficient design, implementation and operation, and second, such system could 

almost immediately be introduced at airports since it does not require any changes in air 

traffic operations or aircraft design, e.g. normally design improvements would take 

years before being introduced into a new generation of engines. 

 

 

1.3 Scientific motivation 

 

 Previously, the baffles concept and its potential practical importance to reducing 

exhaust emissions at ground level were highlighted. The governing physical phenomena 

of the baffles concept affecting the jet development are also of considerable scientific 

interest. The abatement method relies on the temperature and density differences 
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between the jet and the environment, creating an upward buoyancy force. Due to the 

entrainment of ambient air, the initial high buoyancy would reduce considerably as the 

jet travels away, which would consequently reduce the upward force targeted to lift the 

plume from the ground. The resulting development of the plume is to be investigated – 

whether a complete lift-off of the plume is possible or individual parts of the plume 

would separate from the plume. 

 Of particular interest in this research is whether an object (or an array of objects) 

in the path of the hightly buoyant jet would positively contribute to overcoming the 

downward momentum flux caused by the Coanda effect. The Coanda effect contributes 

to the attachment of jets in ground proximity to the ground surface, which results in a 

sigficantly greater lateral spread of the plume with distance away from the source. The 

presence of the object would reduce the jet horizontal momentum through the exerted 

aerodynamic drag and would deflect the jet exerting an upward momentum flux and 

aiding the buoyancy forces. 

 Another scientific interest of high importance would be the effects of ambient 

flow (wind) on the shear layer interaction and entrainment of ambient air by the jet as it 

develops downstream of the source. 

 

 

1.4 Aims and objectives 

 

 The proposed project involves researchers from four institutions, i.e. Cranfield 

University, Manchester Metropolitan University, the University of Cambridge and the 

University Southampton, collaborating for the planning and execution of field trials 

with a BAe 146-301 aircraft at Cranfield Airport. The specific area addressed in this 

study is concerned mostly with the aerodynamic design and wind tunnel modelling of 

the baffle arrays and the correlation of data from the field trials. The study aims to 

answer the following research question: 

 

Can an array of windbreaks (baffles) cause the plume of an aircraft at take-off to 

overcome sooner the Coanda effect and lift-off from the ground, thus enhancing the 

dispersion of the plume and reducing the exhaust emissions close to the ground? 

 

 

In order to provide a complete scientific answer to the above research question, the 

wind tunnel test programme and the field trials were planned according to the following 

objectives: 

 

1) Conduct preliminary wind tunnel tests to model a nozzle exhaust jet in ground 

proximity and study the plume behaviour downstream of the nozzle exit; using flow 
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visualisation, investigate whether a steady ‘lift-off’ of the plume (i.e. complete 

physical detachment from the ground surface) can be achieved in a controlled wind 

tunnel environment. 

 

2) Conduct wind tunnel measurements to investigate the influence of material porosity 

and angle of inclination to the freestream and Reynolds number on the separation 

streamline trajectory and shear layer development downstream of obstacles. 

 

3) Establish the mutual interference effects of surface mounted line-like structures 

embedded within a boundary layer. 

 

4) Plan and conduct full-scale measurements to obtain suitable data for validation of 

ABLWT measurements. 

 

5) Create a sub-scale model of the BAe 146-301 jet at take-off in Cranfield’s 8’×4’ 

ABLWT, accounting for the mass flow of the four turbofan engines and the plume 

buoyancy. Replicating the test conditions of the field trials in the ABLWT, perform 

gas concentration measurements to study the jet development. Conduct additional 

wind tunnel tests to study the velocity distribution in the near and far flow field of 

the baffles. 

 

6) Establish correlations between model and full scale and identify any occurring 

differences in the results. Based on the overall results, identify the effects of the 

baffles on the dispersion characteristics of the plume. 

 

 

1.5 Key sub-scale modelling issues 

 

 In design studies, sub-scale wind tunnel testing offers a significant advantage over 

full-scale tests in terms of costs and practicality. It enables engineers to experiment with 

design parameters and obtain important information on the aerodynamic behaviour of 

the targeted prototype models during every stage of the design process before 

manufacturing a full-scale product. Alternatively, theoretical and computational 

methods, the latter widely referred to as Computational Fluid Dynamics (CFD), are 

successfully used in calculations of well-known flow problems. In particular, the use of 

CFD in engineering problems has increased immensely over the past few decades with 

the rapid development of modern technology and increase in computational power. 

However, in many cases, CFD methods require code validation using experimental data, 

or are not yet able to calculate accurately complex flow problems, e.g. boundary layer 

transition, Atmospheric Boundary Layer (ABL) flows (Blocken et al., 2007), unless at 
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significantly higher cost in terms of computational time, which still remain unrealistic 

for commercial engineering application (Franke et al., 2004). Similarly, theoretical 

calculations are usually limited to specific cases of reduced flow variables and yield a 

simplified solution, strictly applicable in those cases. With this in mind, wind tunnel 

testing is often the only method capable of providing a complete range of detailed 

results, especially in the cases of investigating innovative engineering concepts. 

 

 The use of geometrically-scaled models requires flow similarity between full-

scale and wind tunnel cases. With regard to modelling of aeronautical flows with fixed 

model geometry, the most important similarity parameters are considered the Reynolds 

number and Mach number, relating respectively the inertial and viscous forces within a 

fluid, and the fluid inertia and elastic forces (Garry, 2009a). The Reynolds number Re, 

defined in Equation 1.1, is the primary similarity parameter in low speed flows, 

typically of Mach numbers less than 0.3 (Barlow et al., 1999, p. 11), where 

compressibility effects are small enough to be neglected. Its significance is mostly for 

boundary layer flows and viscosity-dominated flow phenomena e.g. flow separation, 

aerodynamic drag. The dynamic viscosity μ is calculated from the Sutherland’s Law, as 

given by Anderson (2001), p. 723 (see in Equation A.1 in Appendix A). 

 

 


Ul
Re    

Equation 1.1 

 

The Mach number Ma, defined in Equation 1.2 where Us is the speed of sound, is an 

important similarity parameter for modelling of high speed, compressible flows. In the 

current case, to assess the importance of the jet Mach number one has to take into 

account the location of the baffles and the accelerating jet source (engine during take-

off run) in the opposite direction of the jet flow. Due to turbulent mixing and the 

resulting entrainment of ambient air, the jet momentum downstream of the initial engine 

position would decay significantly before the jet reaches the baffles, i.e. its Mach 

number would reduce below 0.3. This estimation is based on field trials with a BAe 

146-301 aircraft at Cranfield Airport conducted in 2008 and 2009 and described by 

Graham (2009). In view of this, the jet Mach number is not considered a scaling 

parameter of primary interest in this research. 

 

 
sU

U
Ma    

Equation 1.2 
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 The natural buoyancy of the ‘hot’ exhaust jet plume within the surrounding 

ambient air requires further considerations regarding flow similarity between full scale 

and model. Since Reynolds and Mach number scaling does not take into account the 

effects of gravitational forces, these need to be accounted for using an additional scaling 

parameter – the Froude number Fr. It is defined as the ratio of inertial and gravitational 

forces and is the primary similarity parameter for dynamic tests “in which model motion 

as well as the aerodynamic forces are involved” (Barlow et al., 1999, p. 21). Its most 

common form used in engineering applications is shown in Equation 1.3. 

 

 
gl

U
Fr    

Equation 1.3 

 

 Wind tunnel modelling of flows, where at full scale the ambient wind close to the 

ground is playing an important part in the flow development, requires a geometrically 

scaled model of the Earth’s boundary layer (Garry, 2009b). The scale of the experiment 

is usually reduced considerably according to the wind tunnel arrangement, in order to 

match accurately the flow properties of the full-scale ABL and the modelled boundary 

layer in the working section. In practical terms, the vertical distribution of the mean 

velocity and the intensity and scale of the longitudinal component of turbulence are 

considered the most important flow parameters to reproduce (Barlow et al., 1999, p. 

654). Cranfield’s 8'×4' ABLWT facility was used in this study’s wind tunnel tests to 

model the Atmospheric Boundary Layer at 1/200
th

 scale. 

 

 Returning to Equation 1.1, it is reasonable to assume that the differences in 

temperature and density of the full-scale and modelled jet would not influence the 

Reynolds number similarity, as follows. A considerably higher (estimated) full-scale jet 

exit temperature would increase the jet dynamic viscosity μ, according to Sutherland’s 

law, reducing the full-scale Reynolds number compared to model. At the same time, the 

lower wind tunnel jet density ρ (reduced deliberately to account for the full-scale jet 

buoyancy, see Chapter 3.3) would reduce similarly the model Reynolds number. Thus, 

for a complete Reynolds number similarity the product of jet velocity and characteristic 

length Vl need to be the same at full scale and model. Estimating a factor of UF / UM ≈ 

10 at 1/200
th

 scale (lF / lM = 200), the full-scale Reynolds number is larger by three 

orders of magnitude. As in the course of the project work neither the available 

equipment nor the scale is likely to change significantly, Re scaling issues will remain 

an important consideration. For the less important Mach number similarity, the factor 

between full-scale and model Mach number is estimated to be less than 10, since the 

higher full-scale exhaust temperature would give a higher speed of sound. 
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At the same time, complete Froude number similarity is possible at such small scale 

since changes in U and l in Equation 1.3 have opposite effects on Fr. Assuming the 

same ratios UF / UM and lF / lM, as shown previously for Re, the model Froude number 

overestimates the full-scale one by a factor of only √2. 

 

 Apart from flow similarity, the jet modelling requires accurate representation of 

the take-off run. Due to constraints in the wind tunnel facility, only one nozzle can be 

used to model the exhaust jets of BAe 146-301’s four turbofan engines. Furthermore, 

the acceleration of the aircraft in opposite direction of the jet flow should be considered. 

This would require time-dependent measurements, since the jet source would be 

moving away from its initial position reducing the exhaust gas concentration 

downstream. At the same time, static measurements can be averaged over a sufficiently 

long time period. In further view of the planned measurements, at 1/200
th

 scale the 

ambient flow velocity and the jet velocity downstream of the baffles would be very low 

range (typically < 1 m/s). Additionally, the presence of the modelled highly turbulent 

ABL is expected to contribute considerably to the unsteady exhaust jet. 

 

 To summarise, the highlighted issues with regard to the small scale of the 

experiments and the wind tunnel restrictions in modelling the take-off run and 

performing time-dependent measurements require certain simplifications to be made in 

the adopted test procedure. These will be discussed in detail in Chapter 6.1. 

 

 

1.6 Thesis structure 

 

The outline of the thesis is presented below including a summary of the contents 

of each chapter. Starting with a literature review on the subject and a description of the 

methodology used, the experimental results are then presented in chronological order. 

 

Chapter 2 describes the review of published literature related to the subject of the 

research. It includes aircraft engine exhaust emissions, turbulent wall jets, 

buoyant flows, as well as aerodynamic characteristics of windbreaks and 

flow through porous screens. 

 

Chapter 3 gives an overview of the undertaken steps in the experimental 

investigation, as well as the measurement equipment and wind tunnel 

techniques used, including Pitot-static pressure and velocity 

measurements, flow visualisation, force balance measurements, Flame 

Ionisation Detector (FID) and Hot-Wire Anemometry (HWA). It also 
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includes the methods used to model the buoyant exhaust jet and the 

Atmospheric Boundary Layer. 

 

Chapter 4 describes the wind tunnel tests conducted to study the development of 

nozzle exhaust jets at sub scale and the possibility of causing the plume 

to physically detach from the ground surface (‘lift-off’). This chapter also 

includes pressure measurements and smoke visualisation tests used to 

determine the preliminary design parameters of the baffles. 

 

Chapter 5 presents the force measurements conducted to study the drag of various 

configurations of baffles, subjected to freestream and nozzle jet, in order 

to identify a suitable configuration for the full-scale field trials. 

 

Chapter 6 describes the BAe 146-301 exhaust jet sub-scale modelling, using the 

Steady Flow Energy Equation and similarity parameters in order to 

match the field trials conditions at 1:200 scale. It includes a detailed 

description of the ABL and wind tunnel arrangement. 

 

Chapter 7 presents the wind tunnel tests conducted after the field trials, including 

additional drag measurements, plume concentration measurements and 

velocity measurements. 

 

Chapter 8 gives an overview on the field trials undertaken with a BAe 146-301 

aircraft at Cranfield Airport in September 2011, including the individual 

baffle design, the test arrangement, and the results of the point-sample 

concentration and Lidar measurements, as presented in Bennett et al. 

(2013). 

 

Chapter 9 includes a discussion on the obtained results together with the drawn 

conclusions and suggestions future work. 

 

Appendix A gives additional equations. 

 

Appendix B includes historical data on NOx emissions of various airliners. 

 

Appendix C includes additional graphs and images of the initial experiments. 

 

Appendix D includes the preliminary baffle calculations. 

 

Appendix E includes additional graphs and images of the force balance experiments. 
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Appendix F presents the calculations of the modelled Atmospheric Boundary Layer at 

sub scale. 

 

Appendix G includes results and additional graph of the ABLWT experiments. 

 

Appendix H includes data, results and images of the field trials. 

 

Appendix I includes supplementary material for the planned UAV field trials. 

 

 



 
S. Velikov                                                                                                                       PhD Thesis 

- 12 - 

 

2 Literature review 
 

 With regard to the nature of this study’s problem, the review undertaken of 

published work is concerned primarily with jets in ground proximity (‘wall jets’), with a 

main focus on three-dimensional wall jets, buoyancy effects in fluids and dispersion of 

exhaust plumes. With regard to the baffles, a summary of the aerodynamic drag of 

fences and walls is given, as well as a review of flow through porous screens, 

considered suitable for the surface of the baffles facing the engine exhaust jet. Due to 

the environmental impact aspect of the project, a brief review of aircraft exhaust 

emissions is included in the beginning of this chapter. 

 

 

2.1 Aircraft engine emissions 

 

 Concerns about global warming over the past two decades have increased the 

public awareness of transport related emissions which contribute to the greenhouse 

effect, i.e. about 13% of all global greenhouse gas emissions (IPCC, 2007). The 

individual contribution of aviation is estimated to be around 3% of the total radiative 

forcing by all global human activity (Poll, 2009; IPCC, 2007). Gas turbine engines of 

commercial aircraft are designed to operate efficiently at cruise conditions throughout 

the majority of their life cycle. Exhaust emissions, resulting from the fuel combustion 

process, consist typically of 70% carbon dioxide (CO2), a little less than 30% water 

vapour (H2O), and less than 1% each of nitrogen oxides (NOx), soot particles, carbon 

monoxide (CO), volatile organic compounds (VOCs) and sulphur oxides (SOx) (FAA, 

2005). Generally, the first two are recognised to have an impact on global climate, while 

CO, VOCs and SOx emissions affect local air quality. NOx and particulates have both a 

local and global effect. The nature and impact of the individual emissions is discussed 

below with an emphasis on NOx. 

 

 

2.1.1 Carbon dioxide 

 

 Carbon dioxide is an unavoidable end product of the complete combustion of 

fossil fuels, which forms during the burning process as carbon present in the fuel is 

oxidised. Released carbon dioxide is long lived – it is absorbed primarily by plants, as 

well as slowly by the oceans, with a life time between 50 and 200 years, as reported by 

the United States Environmental Protection Agency (EPA, 2013a). The bulk of aircraft 

engine emissions, i.e. ~90% (FAA, 2005), occur at high altitudes during cruise and thus 
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exhaust CO2 accumulates in the upper troposphere and lower stratosphere. It has a direct 

impact on climate change since “CO2 molecules absorb outgoing infrared radiation 

emitted by the Earth's surface and lower atmosphere” (IPCC, 1999). This is linked to a 

steady increase in global surface temperature and rising sea levels. 

 

 

2.1.2 Water vapour 

 

 Water vapour is also a product of the complete combustion process and forms as 

hydrogen present in the fuel is oxidised. H2O emissions are short lived – residence time 

in the troposphere is controlled by the hydrological cycle reaching up to several days, 

while in the stratosphere it is longer, i.e. months to years, due to extreme dryness and 

slow turnover of air (IPCC, 1999). Therefore, the positive radiative forcing effects of 

aircraft H2O emissions on climate change are considered of less importance compared 

to the forming of contrails in the upper troposphere during flight. Persistent contrails 

can evolve into cirrus clouds, which contribute to the heating of the Earth’s surface 

through their optical properties – they allow sunlight to pass nearly unhindered while at 

the same time absorbing and reradiating infrared radiation emitted from the Earth’s 

surface (Lynch, 1996). In the lower stratosphere water vapour emissions are a source of 

HOx radicals which directly destroy ozone (O3) and interact with other chemical 

families which affect O3 loss (Tian et al., 2009). Furthermore, H2O emissions contribute 

to the formation of polar stratospheric clouds, the particles of which support chemical 

reactions forming chlorine, which in turn is a catalyst for ozone depletion (WMO, 2002). 

In both cases, the destruction of the ozone layer leads to enhanced incoming ultraviolet 

radiation. 

 

 

2.1.3 NOx 

 

 Nitric oxide (NO) and nitrogen dioxide (NO2), collectively referred to as NOx, 

form as a result of the combustion process, mostly from the oxidation of nitrogen, 

present in the combustion air, at high temperatures. Small amounts also come from the 

nitrogen content of the fuel (Rogers et al., 2002). The principal chemical reactions, 

known as the ‘Zeldovich mechanism’, take place at temperatures above 1300 °C and 

lead to the production of NO, a free radical, which is converted into NO2 when exposed 

to atmospheric oxygen (EPA, 1999). NOx emissions depend on the combustion chamber 

characteristics; typical values are about 14 kg per 1 tonne of burned kerosene in cruse or 

approximately 0.5% and 1.2% of the carbon dioxide and water vapour emissions 

respectively (Garry, 2009c). At high power settings, such as during take-off and cruise, 
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engines operate at high turbine exit temperatures promoting the chemical formation of 

NOx emissions. Hence, with regard to local air quality at ground level, they are by far 

the largest and most important pollutant from aircraft exhausts. Long-term exposure to 

NO2 is associated with lung function and respiratory symptoms (WHO, 2003). 

Furthermore, NOx emissions are influential in the chemistry of the atmosphere and 

contribute to the formation of ozone through a photochemical reaction with ambient 

VOCs (e.g. methane). On ground level, it is one of the air pollutants forming 

photochemical smog over densely populated cities, which is also associated with 

respiratory problems. In the troposphere, the production of short-lived ozone (a 

greenhouse gas) has an impact on global climate change through positive radiative 

forcing. At the same time, NOx emissions contribute to negative radiative forcing by 

decreasing tropospheric methane, which produces long-lived cooling effects of the 

Earth’s surface (Wild et al., 2001). In the stratosphere, nitrogen oxides are known to 

destroy ozone. However, as reported by Ravishankara et al. (2009), stratospheric NOx 

comes primarily from surface emissions of N2O, which is identified as the single most 

important ozone-depleting emission and is expected to remain so in the 21
st
 century. 

 

 

2.1.4 Soot, carbon monoxide, VOCs and SOx  

 

 As a result of the incomplete combustion of fuel, aircraft engine exhausts contain 

emissions of solid particulate matter, carbon monoxide and VOCs. Particulates consist 

mainly of unburned carbon, also known as soot, and volatile sulphate aerosols. The 

latter ones result from the condensation of sulphuric acid, which is formed together with 

SOx through oxidation of sulphur, present in trace amounts in aviation fuels (IPCC. 

1999). Most of the sulphur in the fuel is emitted in the form of sulphur dioxide (SO2), 

which is linked to adverse effects on the respiratory system, as reported by EPA (2013b). 

Both fine (PM2.5) and coarse (PM10) particles, classified as having a diameter of 2.5 μm 

and 10 μm or less respectively, are strongly associated with mortality due to cardio-

pulmonary and lung deceases and cancer (WMO, 2002). They also affect global climate 

mainly through formation of contrails and cirrus clouds, responsible for warming effects. 

 

 Like NOx, carbon monoxide plays an important role in the production of ozone in 

the atmosphere. However, since CO emissions from natural sources and non-aircraft 

anthropogenic activities are substantially larger than analogous NOx emissions, the role 

of aircraft CO emissions in ozone photochemistry, compared to NOx, is considered of 

significantly less importance (IPCC, 1999). With regard to human health, exposure to 

carbon monoxide reduces the oxygen supply to the internal body organs with potentially 

fatal consequences. Like carbon monoxide, aviation related emissions of VOCs come 

mainly from aircraft exhausts and airport related traffic, i.e. motor vehicles. They 
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consist of a wide range of hydrocarbon species, mostly non-methane hydrocarbons. 

Many species are carcinogenic, e.g. formaldehyde, and are therefore considered 

hazardous air pollutants (Rogers et al., 2002). Unlike all other aircraft engine emissions, 

only 10% of which are estimated to result from ground level operations, ground level 

emitted VOCs and CO are significantly higher, i.e. close to 30%, mainly due to the 

engine combustion inefficiency at low thrust settings during taxiing (FAA, 2005). 

 

 

2.1.5 Overview 

 

 In view of the above, it can be argued that reducing some emissions causes an 

increase in others and vice versa. In order to improve combustion efficiency and reduce 

engine size for a given thrust, commercial aircraft engines are designed to have high 

compressor pressure ratio and high turbine entry temperature. The latter promotes the 

chemical formation of thermal NOx, which increases exponentially with increasing 

flame temperature (Bussman et al., 2003). Similarly, improving engine efficiency also 

increases contrail formation (Poll, 2009). At the same time, carbon dioxide emissions 

depend on fuel burn rate and are reduced as engine efficiency increases. Emissions 

resulting from the incomplete combustion of fuel also reduce as combustion efficiency 

improves. For this reason, over the last few decades the progress made to reduce 

emissions of CO and VOCs has been considerably more compared to NOx (FAA, 2005). 

This is shown in Figure 2.1 using data for relative emissions per passenger-mile from 

the last three decades of the past century. Similar data, presented by Farber et al. (2008), 

shows that, although aircraft fuel consumption and CO2 emissions have reduced steadily 

over the last four decades, NOx emissions per kilogramme fuel burned have increased. 

When the same NOx emissions are considered per seat kilometre, a small improvement 

is evident due to combinations of both aircraft (airframe) and engine (fuel efficiency) 

improvements, which is consistent with the trends in Figure 2.1. The data is shown in 

Figure B.1 and Figure B.2 in Appendix B. 

 

 In conclusion, currently NOx emissions are of primary concern with regard to the 

impact of aviation on local air quality. This is because of their chemical formation as a 

result of high engine exhaust temperatures, as well as their relatively high emission 

index (produced emission mass per unit mass of fuel burned), compared to other air 

pollutants from aviation related emissions. 

 However, with regard to the aerodynamic sub-scale modelling in this work, the 

chemistry within the plume is not of primary concern, therefore the exhaust gases are 

not considered individually. They are collectively referred to as a ‘jet’ close to the 

nozzle exit, where the flow is dominated by the high momentum, and as a ‘plume’ 

further away from the nozzle, where the flow is dominated by turbulent mixing. 
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Figure 2.1:  Historical overview of the relative reduction of aircraft engine emissions per 

passenger-mile between 1976 and 1992, based on Boeing data (taken from FAA, 2005) 

 

 

2.2 Two-dimensional turbulent wall jets 

 

 The term ‘wall jet’ was originally introduced by Glauert (1956) to describe the 

flow case of a jet striking a solid flat surface at right angles and spreading out radially. 

To differentiate the above case from a flow blowing tangentially to a surface, Glauert 

further denotes these as ‘radial’ and ‘plane’ wall jets respectively. Typical examples of 

such flows are engine exhaust plumes at vertical and horizontal aircraft take-off 

respectively. The latter example represents the main topic of this work, therefore the 

tangential wall jet, considered of much greater interest here, is referred to from now on 

simply as a ‘wall jet’. 

 

 Depending on the nature of the flow one can generally distinguish two types of 

wall jets – laminar and turbulent. This is determined by the characteristics of the 

boundary layer at the flat surface, and the outer edge flow (see Figure 2.2 in Chapter 

2.2.1), which are influenced by the jet’s upstream history and physical properties. By 

constraining the flow in the spanwise direction one can further divide wall jets into two- 

and three-dimensional. The former case represents a wall jet of uniform velocity 

distribution in the spanwise direction. Flow cases include two- and three-dimensional 

laminar, turbulent (both forced and unforced) and transition wall jets at various nozzle 

positions with respect to the flat surface, as well as configurations with a perforated flat 

surface under applied blowing and suction and a flat surface with a pressure gradient. 
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2.2.1 Two-dimensional turbulent wall jets without an external stream 

 

 To introduce the two-dimensional wall jet concept, the elements and the 

appropriate nomenclature used are described briefly here. Figure 2.2 shows a schematic 

two-dimensional wall jet in quiescent surroundings, exiting from a nozzle of 

characteristic width d, positioned directly on the flat surface. The coordinates x and z are 

the horizontal distance downstream of the nozzle exit, also referred to as an orifice, and 

the height above the flat surface respectively. A uniform core of constant jet velocity 

equal to the mean exit velocity Uj is formed immediately downstream of the nozzle exit, 

extending to a few lengths d in the x direction. Further downstream the jet velocity 

decays with distance x as the jet spreads out in z direction. The mean horizontal velocity 

profile exhibits a local maximum U1, following the presence of a boundary layer at the 

surface, after which U(z) decreases to zero (wall jet in quiescent air) defining the jet 

boundary δ. A common reference point used in velocity profile calculations is the 

position δ2 of half the maximum velocity U2. Myers et al. (1961) describes the 

imaginary line δ1(x), connecting the positions of maximum velocity, as a boundary 

dividing the wall jet into an ‘inner layer’, assumed to behave like an ordinary turbulent 

boundary layer, and an ‘outer layer’ regarded as free jet. Such a hybrid structure 

accounts for the retarding of the jet due to frictional resistance near the wall and the 

entrainment of quiet fluid into the jet near the outer edge (Bakke, 1957). 

 

 
 

Figure 2.2:  Two dimensional wall jet without external stream – features and nomenclature 

(similar to Figure 1 in Myers et al., 1961) 

 

 

 The case of two-dimensional wall jet was first investigated by Förthmann (1936) 

using a blown jet exiting from a rectangular slot in a partially open wind tunnel working 

section layout (flow constrained in lateral direction). He concluded that “the flow 

follows a simple law of similitude”, i.e. all velocity data coincide in one profile over the 

entire range of x locations tested when plotted in terms of the local maximum velocity 
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versus the non-dimensional height z / δ2. The maximum velocity and the wall jet 

thickness were found to decay with x 
–

 
0.5

 and increase proportional to x respectively. 

Near the wall surface, Förthmann observed a velocity variation with the 1 / 7
th

 power of 

the wall distance, which is a commonly used approximation for turbulent boundary 

layer profiles of flat plates at moderate Reynolds numbers, based on flat plate length 

and freestream velocity, i.e. between 5×10
5
 and 10

7
 (Schlichting, 1979, Chapter 21). 

 

 Similar cases were investigated analytically by Tetevin (1948) for laminar jets and 

Glauert (1956) for laminar and turbulent wall jets, and experimentally by Bakke (1957), 

Sigalla (1958a), Sigalla (1958b) and Rajaratnam (1965) for turbulent wall jets. Other 

works by Schwarz & Cosart (1960) and Myers et al. (1961) show both analytical and 

experimental investigations for an extended range of distances and Reynolds numbers 

of 18 ≤ x / d ≤ 66 and 2.2×10
4
 ≤ [Re = ρU1δ / μ] ≤ 1.06×10

5
, and 12 ≤ x / d ≤ 180 and 

7.1×10
3
 ≤ [Re = ρUj d / μ] ≤ 5.65×10

4
 respectively. 

 Glauert (1956) divided the flow into inner and outer regions at the velocity 

maximum location δ1(x) and concluded that complete similarity of the flow could not be 

achieved at all locations downstream. However, when considered separately, the 

velocity profiles in the outer and inner region are respectively similar. The results of 

Glauert for maximum velocity decay and length scale variation with x, together with 

other published results, are listed in Table 2.1. For a radial wall jet, Glauert observed the 

same maximum velocity and wall jet thickness variations to be with x 
–

 

1.14
 and x 

1.02
 

respectively. They are in very good agreement with Bakke’s experimental results for a 

turbulent radial wall jet impinging and spreading out on a smooth flat surface, where 

these variations were determined to be with x 
 –

 

1.12
 and x

 0.94
 respectively. 

 

Table 2.1:  Comparison of published results for maximum velocity decay and thickness growth 

of two-dimensional wall jets 

 

Reference 
Decay of maximum 

velocity with 

Wall jet characteristic 

length scale 

Förthmann (1936) x
 –

 
0.5

 δ ~ x 

Tetevin (1948) 
x

 –
 
0.5

 

(laminar wall jet) 

x 
0.75

 

(laminar wall jet) 

Glauert (1956) x
i
 , – 0.45 ≤ i ≤ – 0.6 δ2 ~ x 

j
 , 0.9 ≤ j ≤ 1.0 

Sigalla (1958b) x
 –

 
0.5

 δ2 ~ x 

Schwarz & Cosart. (1960) x
 –

 
0.555

 δ2 ~ x 

Myers et al. (1961) x
 –

 
0.49 ± 0.03

 δ ~ x 
0.95 ± 0.03

 

Rajaratnam (1965) x
 –

 
0.5

 δ2 ~ x 

Newman (1969) x
 –

 
0.5

 (δ2 – δ1) ~ x 
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 It is evident that the length scale used to characterise the wall jet varies depending 

on the study undertaken. The reference length and velocity used to calculate Reynolds 

numbers also vary. Local Re are calculated with U1 and δ or (δ2 – δ1), rather than the 

more common use of Uj and d to account for the conditions at the jet source. It can be 

concluded that regardless of the turbulent wall jet type (radial or plane), its 

characteristic length scale is proportional to the distance downstream. In the laminar 

case of Tetevin (1948) the jet width increases with x
 0.75

, thus the growth rate is slower. 

 

 Myers et al. (1961) and Bradshaw & Gee (1962) concluded that the maximum 

velocity decay for a wall jet was the same as the one for a free jet (i.e. no surface 

present), thus highlighting the importance of the outer layer in the flow development. 

Experimental velocity data by Sigalla (1958b) between 12 and 65 nozzle widths 

downstream, and Reynolds numbers between 3.5×10
4
 ≤ [Re = ρU1(δ2 – δ1) / μ] ≤ 7.5×10

4
, 

suggested the relationship U1 / Uj = 3.45(x / d) 
–

 
0.5

, also stated by Rajaratnam (1965). A 

similar data fit was calculated by Myers et al. (1961) with an exponent of – 0.49. A more 

recent publication by Shabayek (2011) states a proportionality factor of 3.50 (see 

Equation 2.1) and suggests that the velocity decay is independent of Froude number Fr, 

based on experimental results at low speeds in the range 3 ≤ Fr ≤ 8. 

 

 

5.0

1 50.3


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


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




d

x

U

U

j

  

Equation 2.1 

 

 Sigalla (1958b) showed the skin friction coefficient Cf, defined as the ratio of 

measured shear stress to exit jet dynamic pressure, to be a function of Reynolds number 

from 15 nozzle widths onwards, as follows: Cf = 0.0565(ρU1δ1 / μ) 
0.25

. Glauert (1956) 

used a similar formula near the wall with a proportionality factor of 0.045, based on 

empirical results of flow through a pipe, which underpredicted Cf compared to Sigalla’s 

0.0565. Bradshaw & Gee (1962) also measured shear stress and found the relationship 

Cf = 0.0315(Re 
–0.182

) for 3.0×10
3

 ≤ [Re = ρU1δ1 / μ] ≤ 1.5×10
4
. Schwarz & Cosart (1960) 

calculated the skin fiction as 0.01109 and observed it to be independent of downstream 

location, varying only slightly within their Reynolds number range of 2.2×10
4

 ≤ Re ≤ 

1.06×10
5
. They concluded that ‘the law of the wall’ method did not apply in the same 

manner for a wall jet as for a turbulent boundary layer, which contradicted the 

assumptions stated by Glauert and Sigalla. Similarly, Myers et al. (1961) observed that 

“the flat plate ‘law of the wall’ holds for the wall jet for y
+
 up to 30 but does not 

represent the wall jet over the extended y
+
 range (up to 1000)”, where y

+
 is the 

dimensionless wall distance, defined as 
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

yu
y


   

Equation 2.2 

 

In Equation 2.2, u* is the friction velocity and ν is the kinematic viscosity. Their shear 

stress measurements indicated 15% higher results compared to Sigalla (1958b), but 40% 

lower than those of Schwarz & Cosart (1960). 

 

 Both Schwarz & Cosart (1960) and Myers et al. (1961) concluded that the wall jet 

inner layer velocity profile is not described accurately by the commonly used 1 / 7
th

 

power law, adopted by Förthmann (1936), Glauert (1956) and Sigalla (1958a). 

Measurements in the inner layer showed the velocity varying with the 1/14
th

 power of 

the wall distance. Schwarz & Cosart (1960) suggested that this is due to the presence of 

the outer layer, modifying the flow structure of the inner layer. This was confirmed in 

more recent experiments by Hsiao & Sheu (1994) and Scarano et al. (1999), using Hot-

Wire Anemometry and Particle Image Velocimetry techniques respectively. They 

observed a double row vortical structure, shown schematically in Figure 2.3 (only two 

pairs of vortices), consisting of a primary vortex in the outer layer coupled with an 

induced secondary (counter-rotating) vortex in the inner layer with a phase shift.  

 
Figure 2.3:  Schematic illustration of double-row vortical structure in the near field of a two-

dimensional wall jet, observed by Hsiao & Sheu (1994) 

 

 

 Rajaratnam (1965) found that the velocity profiles scaled with U1 and δ2 at any 

location x / d ≥ 15 where the flow was fully established, and stated the approximate 

relationships δ1 ≈ 0.16δ2 and δ ≈ 2.25δ2 for the extent of the inner and outer layer 

respectively. He also investigated turbulent wall jets on rough surfaces, varying the 

height of the roughness elements up to 0.126d for Rej between 1.91×10
4
 and 1.02×10

5
, 

based on Uj and d. He found that increasing the surface roughness accelerated the decay 

of maximum velocity but did not affect the flow in the outer layer in terms of its length 

scale variation, which remained the same. This was also observed in recent 

investigations by Smith (2008) and Tachie et al. (2004). Similarly, Rostamy et al. 

(2011) reported that surface roughness did not affect the spread of the jet. 

Orifice 

z 

x 
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 Using experimental data, Lauder & Rodi (1981) calculated the outer layer growth 

rate of a two-dimensional wall jet in terms of δ2 (see Equation 2.3), and reported that its 

variation with Reynolds number was negligible. 

 

 002.0073.02 
dx

d
  

Equation 2.3 

 

Lauder & Rodi (1983) stated that the growth rate of Equation 2.3 is 30% smaller than 

the growth rate of a two-dimensional free jet, arguing that the difference is due to 

“damping of turbulent velocity fluctuations in the direction normal to the wall”. The 

same difference was observed by Rajaratnam & Subramanya (1967). 

 

 Narasimha et al. (1973) proposed using the jet momentum flux FM j (rather than Uj 

and d separately), equal to Uj 
2
d for a uniform exhaust jet, and the kinematic viscosity ν 

to scale the mean flow parameters for distances x / d ≥ 30, described as the fully 

developed flow region. They argued that the initial conditions are eventually ‘forgotten’ 

by the flow, while the momentum flux remains constant with x / d. This statement was 

not supported by George et al. (2000), arguing that the effects of the slot conditions can 

persist far downstream. The momentum scaling method was applied by Wygnanski et 

al. (1992), Abrahamsson et al. (1994), George et al. (2000), Tachie et al. (2004) and 

Rostamy et al. (2011). They calculated the maximum velocity decay and jet growth rate 

as a function of the non-dimensional parameter (xFMj / ν 

2
), obtaining similar results. 

Furthermore, Abrahamsson et al. (1994) found that, using momentum scaling, the 

results for maximum velocity decay and half-width growth become independent of 

Reynolds number Rej between 10
4
 and 2×10

4
, based on Uj and d. This was also 

observed by Wygnanski et al. (1992) for 5×10
3

 ≤ Rej ≤ 1.9×10
4
 and by Tachie et al. 

(2004) for 5.9×10
3
 ≤ Rej ≤ 1.25×10

4
. Their results experienced a considerable variation 

with Re when scaled with Uj and d. 

 Other experimental investigations by Schneider & Goldstein (1994) and Eriksson 

et al. (1998) showed that the mean flow characteristics scaled well with Uj and d, and 

observed consistent flow similarity for distances between 45 ≤ x / d ≤ 90 and 40 ≤ x / d ≤ 

150 respectively. No conclusions on the Reynolds number dependency of their results 

were reported. 

 

 Recently, Barenblatt et al. (2005) proposed that the outer and inner layers are 

separated by a third (mixing) layer, where the velocity is close to the maximum. They 

concluded that the scaling laws for the inner and outer layer are different and are 

strongly influenced by the width of the slot d. The maximum velocity decay was found 

to be U1 ~ x 
0.6

. The three-layer structure and incomplete similarity of the flow do not 
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agree with the findings of previous authors and have since been dismissed in a 

numerical investigation by Azim (2013), who observed a two-layer structure throughout 

the entire flow field with gradually decaying inner layer with x. 

 

 

2.2.2 Two-dimensional turbulent wall jets in an external stream 

 

 This section presents a review of previous work on two-dimensional wall jets in a 

uniform external stream, moving in the jet direction. Compared to the case of a wall jet 

in quiescent air, here the velocity does not decay to zero at the jet boundary away from 

the wall, but has the freestream velocity value U∞. 

 

 Bradshaw & Gee (1962) and Verhoff (1963) investigated turbulent wall jets with 

and without external flow. In their experiments, Bradshaw & Gee (1962) observed that 

the wall jet mixed slower with an external stream than with quiescent air due to slower 

entrainment of ambient fluid into the jet. They found the skin friction coefficient to be 

0.026(Re)
 – 0.18

 for Re = ρU1δ1 / μ for 1 < Uj / U∞ < 2. These values are lower compared to 

the still air case where they reported the relationship 0.0315(Re)
 – 0.182

. Verhoff (1963) 

presented both experimental and analytical results, highlighting the importance of the 

ratio of jet exit velocity to freestream velocity β = U∞ / Uj in the flow development. He 

introduced similarity functions to develop empirical solutions for the velocity profile 

downstream, restricted to U∞ / U1 ≤ 0.4. The results agreed well with experimental data 

for Uj / U∞ of 0.082 and 0.19, and Rej = 8.9×10
3
 based Uj on and d, showing high 

accuracy up to a minimum of 400 slot heights downstream. 

 

 Kruka & Eskinazi (1964) conducted a theoretical analysis by dividing the flow 

into an inner (wall) region and an outer (free-mixing) region. They performed 

experiments with freestream-to-jet-velocity ratios β between 0.055 and 0.485 up to 275 

slot widths downstream, varying Re = ρU1δ1 / μ between 3750 and 26270. Results 

showed that flow similarity existed separately in both regions for mean as well as 

turbulence quantities. However, the same scales did not apply to both regions. The drag 

coefficient Cf was found to decrease with Re and β, consistent with the results of 

Bradshaw and Gee (1962). For the length scales, the data for all values of β was found 

to fall under the relationships δ1 = 0.0109x and (δ – δ1) = 0.0601xs, where xs is the 

longitudinal distance relative to the constant freestream. The maximum velocity u1 and 

the maximum excess velocity (U1 – U∞) varied with x and xs respectively, raised to a 

power which in terms varied with β. 

 

 Harris (1965) used a similar approach, simplifying the expressions for the 

conservation of mass, momentum and energy and solving them with the aid of a digital 
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computer. An important assumption in his theoretical analysis was the ignored existence 

of an upstream boundary layer caused by the freestream at the wall, thus the freestream 

was assumed to have an inviscid flow velocity over the surface. The results were 

validated with experimental data over a range of jet Reynolds numbers Rej = ρUjd / μ 

between 5.9×10
3
 and 8.7×10

3
, and distances x / d between 100 and 900. The non-

dimensional inner layer thickness δ1 / d was reported to increase proportionally with       

x / d, having a constant of proportionality which varied with Rej. Similarly for the outer 

layer thickness, the relationship (δ2 – δ1) / d ~ β was found, for which two constants of 

proportionality were used, which varied with Rej, and x / d and β, respectively. For the 

velocity decay, the relationship shown in Equation 2.4 was found, which is similar to a 

wall jet in quiescent air with an added term accounting for β. The constants of 

proportionality C1 and C2 were calculated as functions of Rej and x / d respectively, with 

C1 varying between 3.6 and 4.0 for 10
3
 ≤ Rej ≤ 10

5
. 

 

 2
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1
1 C

d

x
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U

U

j
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

  

Equation 2.4 

 

 Other works by Kacker & Whitelaw (1968), Newman (1969) and Kacker & 

Whitelaw (1971) have investigated the wall jet in a moving stream with regard to 

boundary layer control. Newman (1969) reported that the calculations to prevent 

separation on a trailing edge flap, using a tangentially blown jet, are considerably 

affected by the upstream boundary layer caused by the freestream, thus disagreeing with 

the assumptions made by Harris (1965). He observed that results for different slot 

widths d collapsed on the same curve when scaled using an excess momentum 

coefficient, defined as ρUj(Uj – U∞)d / (0.5ρU∞
2
l). The characteristic length l for the case 

of boundary layer control on a trailing edge flap would be the aerofoil chord length. 

 Kacker & Whitelaw (1968) carried out experiments on mean flow properties and 

turbulence characteristics for values of β between 0.37 and 1.33 up to 150 slot heights 

downstream. They found a significant increase in static pressure near the nozzle exit 

followed by a steady decrease up to 100 slot heights downstream. Thus, the assumption 

of zero normal pressure gradient, applied for boundary layers, introduces a certain error 

for a wall jet beneath a moving steam close to the nozzle exit, which decreased with x. 

For β > 1 (wakelike flow), the total kinetic energy decreased with x near the nozzle exit 

and began to increase further downstream (150 slot heights) resembling a zero pressure 

gradient boundary layer. In the case of β < 1 (jetlike flow) between 50 and 150 slot 

heights the total kinetic energy was found to be approximately constant.  
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2.3 Three-dimensional turbulent wall jets 

 

 A three-dimensional wall jet is a jet which exits from a nozzle of finite length and 

flows tangentially to a surface. The flow is therefore only restricted in the direction of 

the surface, and the jet is free to spread in the lateral direction. A characteristic feature 

of a three-dimensional wall jet is the significantly larger spread parallel to the surface in 

the lateral direction compared to the spread in the vertical direction. This is shown in 

Figure 2.4a and Figure 2.4b using flow visualisation images of exhaust jets at different 

exit Reynolds numbers Rej. As observed by Liepmann & Gharib (1992) for a free jet, a 

potential core region is present close to the orifice where one can identify the formation 

of streamwise vortices, growing in size as they travel downstream and entrain ambient 

fluid (see Figure 2.4c). The vortices merge to form a large single vortex, which would 

break down abruptly shortly after into smaller structures. Similar flow mechanisms can 

be assumed at the free end of a three-dimensional wall jet, very close the nozzle. 

 

   
          side view            side view 

   
            top view             top view 

       (a)                  (b) 

 

(c) 

Figure 2.4:  Flow visualisation of three-dimensional exhaust jets in quiescent air: (a) turbulent 

wall jet at Rej = 1100, (b) turbulent wall jet at Rej = 4000, (c) circular free jet at Rej =5500  

(images (a) and (b) taken from Launder & Rodi, 1983; (c) taken from Liepmann & Gharib, 1992, 

arrow indicates a streamwise vortex at 3.5 nozzle diameters downstream) 
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 The notation used for a three-dimensional wall jet in quiescent air is presented in 

Figure 2.5 with a rectangular-shaped orifice of width d and length l, and a schematic jet 

velocity distribution in the transverse and vertical directions at an arbitrary location 

downstream of the nozzle exit (only one side of the symmetry plane xz shown). For the 

case of a circular orifice, d is used to denote the orifice diameter. The vertical and 

transverse coordinates, where the wall jet velocity is half the maximum value Umax, are 

denoted with z0.5 and y0.5 respectively. The velocity Umax refers to the local maximum 

mean velocity in the xz plane. Sforza & Herbst (1967) observed that the actual 

maximum velocity at any position x did not necessarily occur on the xz plane, and 

suggested that it was caused by a system of vortex rings, present in the outer layer, 

which induced additional velocities in planes parallel to the wall surface. The strength 

of the vortices was observed to decrease with distance x and eventually they merged and 

diffused completely due to viscosity and turbulence effects. 

 

 
Figure 2.5:  Three-dimensional wall jet without external stream – features and nomenclature 

(similar to Figure 1 in Sforza & Herbst, 1967) 

 

 

2.3.1 Mean flow characteristics 

 

 Küchemann (1949) conducted experiments of a round wall jet of exit diameter d 

beneath an external stream for freestream-to-jet-exit velocity ratio β = U∞ / Uj of 0, 0.25 

and 0.5. He observed that the horizontal jet spread decreased with increasing β. For a 

high freestream velocity, the peak in the velocity distribution is displaced in the positive 

z direction (away from the wall). The opposite effect was observed for a jet in still air – 

peak moving slightly towards the wall. 

Orifice 

Flat surface x 

(flow direction) 

z 

y 

z0.5 

zmax 

Umax 

0.5Umax 

0.5Umax 

y0.5 l 
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 Sforza & Herbst (1967) experimentally investigated the mean properties of 

turbulent, three-dimensional, incompressible wall jets in quiescent air for rectangular 

orifices of variable width-to-length ratios d / l, also referred to as eccentricity, keeping 

the orifice area constant. With regard to the velocity decay with distance downstream of 

the orifice, three characteristic regions of flow development were observed: 

 1) potential core region with a uniform velocity distribution of magnitude close to 

the mean jet exit velocity. 

 2) characteristic decay region, where the turbulent mixing from the lateral (far) jet 

boundaries has not yet permeated the entire flow field. For low d / l of 0.025 and 0.05 

the maximum velocity decay was found to be proportional to x 
–

 

0.41
 and to x 

–
 

0. 44
 

respectively, which is in good agreement with the results of Sigalla (1958) and 

Bradshaw & Gee (1962).  

 3) axisymmetric decay region, where the turbulent mixing is complete from all 

sides and the flow field is independent of the orifice geometry. The decay of Umax was 

found to be proportional to x
 – 1. 10

, which is characteristic for the two-dimensional radial 

wall jet investigated in Bakke (1957). For a square orifice (d / l = 1), the wall jet was 

observed to transition to a radial type already at 5d downstream, showing an absence of 

a characteristic decay region. 

The extent of the first two regions, as well as the velocity decay in the characteristic 

decay region, was observed to depend significantly on the orifice geometry. 

Padmanabham & Lakshmana Gowda (1991a) reached similar conclusions for orifices 

having the shapes of various segments of a circle. They found the potential core and 

characteristic decay regions to extend up to 5 ≤ x / d ≤ 6 and 20 ≤ x / d ≤ 40 respectively, 

where d is the width of the circle segment of diameter l (analogous to the rectangular 

shape shown in Figure 2.5) 

  

 The proposed three-region flow structure is qualitatively similar to the structure 

observed by Trentacoste & Sforza (1966) for free jets in a similar experimental 

investigation. They reported a decay of Umax ~ x
 – 1

 in the axisymmetric region, which is 

similar to the wall jet case of Umax ~ x
 – 1. 10

. These are shown in Figure 2.6, where the 

axisymmetric decay for both starts at x ≈ 30d (corresponding to x ≈ 10 inches in Figure 

2.6). This similarity is an indication that the retarding effect is caused primarily by the 

free shear due to mixing rather than the wall shear stress. The presence of the wall 

constrains the flow and results in a smaller rate of spread normal to the surface for a 

wall jet compared to a free jet, causing the flow to expand at a greater rate in lateral 

direction. Sforza & Herbst (1967) also observed flow similarity both normal and 

parallel to the wall in the axisymmetric decay region using the half maximum velocity 

coordinates z0.5 and y0.5 respectively. The growth rate dz0.5 / dx was found to be virtually 

the same for the conventional orifice cases of 0.025 ≤ d / l ≤ 1, while dy0.5 / dx was found 

to be dependent on d / l until the axisymmetric decay region. 
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Figure 2.6:  Maximum velocity decay in the symmetry plane for free jets and wall jets exiting 

from rectangular orifices of various eccentricity d / l (denoted with e) 

(taken from Sforza & Herbst, 1967) 

 

Horizontal axis shows the longitudinal distance from the orifice x (in inches; 1 inch = 25.4 mm); 

a multiplication factor of (3.16 / inches) would convert x into x / d, where d would be the width of 

a square-shaped orifice area of 0.100 sq. inches (d / l = 1), kept constant for all orifice shapes; 

Vertical axis gives the ratio of local maximum velocity to jet exit velocity at the plane xz 

 

 

 The velocity decay and growth rates of three-dimensional jets have been reported 

by other authors, whose results are presented in Table 2.2. Most velocity decay results 

agree well with the exponent of –1.1 suggested by Sforza & Herbst (1967). Velocity 

data for different orifice shapes was found to collapse reasonably well on the same 

curve when plotted versus x / A
 0.5

, where A is the orifice area (Rajaratnam & Pani, 1974; 

Narain, 1975; Padmanabam & Lakshmana Gowda, 1991a; Hall & Ewing, 2007a). Most 

authors reported complete flow similarity, scaling the vertical and lateral velocity 

profiles with Umax and z0.5 and y0.5 respectively. The results for the lateral and vertical 

growth rates vary considerably between authors. It can be concluded that the wall jet 

grows approximately 4 to 5 times faster in lateral direction, although higher values have 

been reported, i.e. 9 times by Davis & Winarto (1980). The vertical length scale z0.5 

increases linearly with distance from the orifice x, while the variation of the lateral 

length scale y0.5 with x is observed to be non-linear close to the orifice and linear further 

downstream. The start of the linear region has been reported to be 25d < x < 50d. 

 The expected Reynolds number range in this work at 1:200 scale would be 

between 5000 and 9000 for a circular jet, similar to the data by Newman et al. (1972). 
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Table 2.2:  Experimental results for velocity decay and growth rate of three-dimensional wall jets 
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 Law & Herlina (2002) also obtained data on gas concentration of neutrally 

buoyant wall jets using laser-induced-fluorescence flow visualisation and calculated a 

mathematical relationship for the decay of maximum concentration along the x axis for 

x / d > 20, shown in Equation 2.5. By calculating the concentration half-width length 

scale in the lateral and vertical directions, similar to y0.5 and z0.5 respectively, they 

observed that in each direction the concentration expanded approximately 1.5 times 

faster than the velocity. The ratio of lateral to vertical concentration growth rate was 

consequently the same as the ratio of (dy0.5 / dx) to (dz0.5 / dx), equal to 5.0. 

 

 

1

max 97.6













d

x

c

c

j

  

Equation 2.5 

 

 Reynolds number dependency studies for a defined jet Reynolds number of Rej = 

ρUjd / μ were performed by Newman et al. (1972), Law & Herlina (2002) and Agelin-

Chaab & Tachie (2011a) for circular nozzles, Launder & Rodi (1983) for a square 

nozzle, and by Rajaratnam & Pani (1974) for circular, rectangular, square, triangular 

and elliptic nozzles. Newman et al. (1972) reported no variation with Rej for 2.8×10
3
 ≤ 

Rej ≤ 1.64×10
4
, which can also similarly be concluded from the data of Rajaratnam & 

Pani (1974) for 5.95×10
4
 ≤ Rej ≤ 1.02×10

5 
and Law & Herlina (2002) for 5.5×10

3
 ≤ Rej 

≤ 1.37×10
4
. At the same time, a recent investigation by Agelin-Chaab & Tachie (2011a) 

for 5×10
3
 ≤ Rej ≤ 2×10

4 
suggests a significant dependency of the flow development on 

Reynolds number up to 50d for the decay of Umax and the jet growth rates dz0.5 / dx and 

dy0.5 / dx, and up to 20d for the velocity profile similarity.  

 At the same, Launder & Rodi (1983) reported significant Reynolds number 

dependence of the jet growth rate for lower Rej of 1.1×10
3
 and 4.0×10

3
 (see Figure 2.4a 

and Figure 2.4b for flow visualisation images). For these Rej the lateral growth was 

observed to be twice and more than three times the vertical growth rate respectively. 

 

 

2.3.2 Turbulence characteristics and flow structure 

 

 Turbulence measurements indicate that, with regard to streamwise turbulence 

intensity, flow similarity occurs at a certain distance downstream of the orifice. This 

distance was observed to be x / d ≥ 110 by Newman et al. (1972), x / h ≥ 60 by 

Padmanabam & Lakshmana Gowda (1991b), x / d ≥ 40 by Agelin-Chaab & Tachie 

(2011a), and x / A
 0.5

 ≥ 30 by Hall & Ewing (2007a). The values of x / d = 110, x / d = 60 

and x / d = 40 correspond to x / A
 0.5

 ≈ 124, 37 ≤ x / A
 0.5

 ≤ 67 and x / A
 0.5

 ≈ 45 respectively, 

calculated by taking into account the corresponding orifice areas used. These 
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differences highlight the influence of the orifice on the flow characteristics. The 

streamwise turbulence for a three-dimensional circular wall jet was reported by 

Newman et al. (1972) to be significantly higher (~ 50%) compared to a two-dimensional 

wall jet, a statement also supported by Abrahamsson et al. (1996). 

 

 Using flow visualisation, Newman et al. (1972) observed a strong divergence of 

the jet pathlines at the wall surface away from the plane of symmetry (see Figure 2.7). 

Similarly, based on velocity correlation measurements, Davis & Winarto (1980) 

concluded that the presence of the wall caused an interaction between its surface and the 

normal component motions towards the surface, which produced “strong out-flow 

motions along the plane in a symmetrical manner about the plane of symmetry”. They 

reported the existence of a large-scale motion in a plane perpendicular to the jet flow, 

indicated by higher levels of measured momentum transport in the lateral direction than 

in the vertical direction. This motion provides a physical mechanism for the increased 

mixing parallel to the surface and the resulting high lateral growth rate. 

 Reviewing the results of Newman et al. (1972) and Davis & Winarto (1980), 

Launder & Rodi (1983) emphasised the “substantial and sustained streamwise vorticity” 

created in a three-dimensional wall jet and recognised its importance in the jet’s 

anisotropic growth pattern. They identified the anisotropy of the Reynolds stresses in 

the plane at right angles to the flow as one of the potential source of the induced 

streamwise vorticity. The validity of this statement was confirmed in a computational 

investigation by Craft & Launder (2001), who attributed the large lateral growth rate 

entirely to the induced streamwise vorticity. 
 

 
 

Figure 2.7:  Flow visualisation of the surface pathline pattern of a circular three-dimensional wall 
jet (by Newman et al., 1972) 

 

 

 An experimental investigation by Iida & Matsuda (1988) also shows evidence of 

secondary flows, identified by the presence of two pairs of streamwise vortices located 

in a symmetrical arrangement with respect to the xz plane near the wall (z < zmax) and in 
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the mixing region (z > zmax) respectively (see small image in Figure 2.8a, where the 

vertical and lateral axes are Y and Z respectively, and zmax is denoted as Ym). The 

formation mechanism of these vortices was further investigated by Matsuda et al. 

(1990) for Rej = 1.6×10
5
 and by Ewing & Pollard (1997) for Rej = 2.5×10

4
, using Hot-

Wire Anemometry. They found the presence of a large-scale structure very much 

resembling a horseshoe vortex, which stretched and inclined progressively in the 

direction of the flow near the surface as it moved downstream (see Figure 2.8a). As a 

consequence of the inclination, the legs of the horseshoe vortex form counter-rotating 

quasi-streamwise vortices in the mixing region, identified by Matsuda et al. (1990) as 

the primary cause of the high lateral growth rate. 

 Ewing & Pollard (1997) modified the model suggesting that the structures shed by 

the circular jet were ring-like vortices which interacted with the wall, resulting in the 

centre of their base being raised off the surface while the outer edges of the base moved 

closer to the surface. This phenomenon resulted in the formation of two horseshoe 

vortices, one large near the jet edges and one smaller near the jet centre line, shown with 

solid and dashed contours respectively in Figure 2.8a. Such modification predicts both 

pairs of streamwise vortices observed by Iida & Matsuda (1988). Hall & Ewing (2007b) 

observed a similar pattern of a large horseshoe vortex, associated with the outer shear 

layers, and a smaller independent structure near the wall. 

 

         

    (a)       (b) 

 
Figure 2.8:  Proposed models of vortex structures in near-field region of a three-dimensional 

wall jet according to (a) Matsuda el al., 1990 and (b) Namgyal & Hall, 2013 

 
Y and Z in (a) and y and z in (b) denote the vertical and transverse axes respectively, differing 

from the notation shown in Figure 2.5 

 

 

 A recent investigation by Hall & Ewing (2010) for square wall jets of Rej = 9×10
4
 

showed that the large coherent structures were asymmetric with respect to the jet centre 

line. Their passage was associated with lateral sweeps of fluid across the entire span of 

the jet, causing the characteristic large lateral spread. 
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 Namgyal & Hall (2013) investigated a round wall jet of Rej = 1.2×10
5
 at x / d = 5 

using Particle Image Velocimetry attempting to link the formation of mean streamwise 

vorticity (secondary flow) and the unsteady vorticity of the coherent structures in the 

near field. They proposed a flow model, shown in Figure 2.8b, which predicts the 

development of instabilities within the large coherent vortex rings as they travel 

downstream, which would eventually form into coherent streamwise vortex structures 

away from the surface, similarly to a free jet. The smaller structures also form 

streamwise vortex pairs, bound close to the wall, which are not related to the vortices 

away from the wall, as observed by Hall & Ewing (2007b). Namgyal & Hall (2013) 

concluded that the coherent vortex structures, formed in the outer shear layers in the 

near-field region, did not contribute directly to the secondary flow in the plane at right 

angles to the flow. 

 

 

2.4 Offset jets 

 

 The term ‘offset jet’ describes a jet originating from an orifice, located at an offset 

distance of a few orifice diameters d above a flat surface. The features and characteristic 

regions are shown schematically in Figure 2.9 for a two-dimensional offset jet exiting 

from an orifice in a vertical wall (offset distance is denoted with b). Because of the 

offset, the jet travels a certain distance downstream before attaching to the surface. As it 

travels further, it would eventually acquire the flow characteristics of a wall jet, defining 

the longitudinal span of the attachment region, also called impingement region, and the 

start of the wall jet region. The region upstream of the attachment point is characterised 

by reverse flow. Compared to a free jet, the offset jet is drawn towards the surface by 

the Coanda effect, causing a downwards jet trajectory as illustrated in Figure 2.9. The 

Coanda effect is described by Giles (1977) as follows. Due to the presence of the wall 

surface, less fluid is available for entrainment on the surface side compared to the free 

side as the jet expands. This causes a partial vacuum or low pressure area between the 

surface and the jet, which tends to attract the jet towards the surface. 

 

 Rajaratnam & Subramanya (1969) and Pelfrey & Liburdy (1986) reported that 

downstream of a small developing sub-region within the wall jet region, the flow 

becomes independent of the offset distance. Both observed velocity profile similarity at 

a distance from the nozzle of x / d ≈ 20d. For an offset of 7d and Rej of 1.5×10
4
, Pelfrey 

& Liburdy (1986) reported that the jet attached at x / d = 13. In a similar investigation 

for an offset of 3d and Rej of 1.78×10
4
, Miller & Comings (1960) observed attachment 

at x / d = 7. In comparison, a turbulent free jet would have a half-width of 3d at x / d ≈ 12 

and 7d at x / d ≈ 30, calculated with a half-width spread angle of approximately 12 

degrees, given by Tollmien (1945). This difference can be attributed to the Coanda 
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effect and the associated downwards trajectory of the jet, causing the jet to attach earlier. 

Hoch & Jiji (1981) obtained results for the offset jet trajectory in a parallel freestream, 

varying the orifice offset at 3d, 5.7d and 8.7d and the ratio of ambient velocity to exit jet 

velocity β between 0 and 0.25. It is evident that up to 5.7d the attachment point is not 

influenced by the freestream velocity for the range of β tested, while at 8.7d the 

attachment is delayed further downstream. 

 

 More recent investigations on two-dimensional offset jets have been conducted by 

Nasr & Lai (1998) and Gao & Ewing (2008). Results by Nasr & Lai (1998) showed that 

the static pressure variation on the wall surface is independent of Reynolds number for 

Rej > 1.0×10
4
. They also obtained a relationship for the attachment distance variation 

with offset ratio, shown in Equation 2.6 where the nomenclature of Figure 2.9 is used. 

 

 

855.0

63.2 









d

b

d

xr , for b / d ≤ 20  

Equation 2.6 

 

 Gao & Ewing (2008) concluded that, based on the variation of jet half-width and 

maximum velocity, five regions in the flow development could be distinguished for 

small offsets (≤ 1.7d) – three within the attachment process (x / d ≤ 6), and two describing 

the development towards a wall jet. The developed wall jet region was observed to be at 

x / d ≥ 10. 

 

 

 

Figure 2.9:  Offset jet features and nomenclature, adapted from Agelin-Chaab & Tachie (2011b) 

 

 

 Considerably less research has been done on three-dimensional offset jets. 

McLean and Herring (1976) conducted experiments for a single circular jet at a surface 

offset of 3d and an array of eleven jets, placed uniformly in lateral direction at spacings 
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of 35d. They used a high exit jet Mach number of 0.89 at Rej ≈ 4.3×10
4
 and reported 

that the compressibility effects were limited primarily to the potential core region. For a 

single jet, the maximum velocity decay was observed to be Umax ~ x
 – 1.23

 between 100 ≤ 

x / d ≤ 200. The measured entrainment rate up to x / d ≤ 150 agreed well with results for 

a free jet, implying that the wall had very little effect on the total entrainment. For the 

array of jets, the entrainment rate was reported to fall below the values for a free jet as 

soon as adjacent jets began to merge, i.e. x / d ≤ 20. Two-dimensionality of the array of 

jets, in terms of mean flow characteristics, was observed at x / d ≥ 30. 

 

 Nozaki (1983) investigated the effects of nozzle shape and Reynolds number on 

the attachment of an offset jet for rectangular nozzles of aspect ratio between 1 and 8. 

Within the range 9.510
4
 ≤ Rej ≤ 1.02×10

5
, he observed no Reynolds number influence 

on the attachment flow for aspect ratios larger than 2. Furthermore, the flow behaviour 

of offset jets of nozzle aspect ratio larger than 3 was shown to be approx. two-

dimensional. For smaller aspect ratios, Nozaki (1983) proposed correction factors for 

calculation of the attachment distance downstream of the nozzle as a function of the 

offset distance, nozzle aspect ratio and Rej. 

 

 Davis and Winarto (1980) and Agelin-Chaab & Tachie (2011b) performed similar 

experiments with a circular nozzle at offsets between 0.5d and 4d. For Rej ≈ 1.7×10
5
, 

Davis and Winarto (1980) observed both the lateral and vertical growth rates to 

decrease and increase with increasing offset respectively. The values varied between 

0.32 ≤ dy0.5 / dx ≤ 0.23 and 0.037 ≤ dz0.5 / dx ≤ 0.046 for 0.5 ≤ b / d ≤ 4. Agelin-Chaab & 

Tachie (2011b) obtained the growth rates dz0.5 / dx = 0.055 ± 0.001 and dy0.5 / dx = 0.250 

± 0.005 for a Reynolds number range of 1.0×10
4

 ≤ Rej ≤ 2.0×10
4
. Both investigations 

confirmed only small differences in the growth rates up to b / d = 2, and reported a 

similar decay of maximum velocity: Umax ~ x – 1.15
 by Davies and Winarto (1980) and 

Umax ~ x
 – 1.18 ± 0.03

 by Agelin-Chaab & Tachie (2011b). The latter ones also observed the 

growth rates and maximum velocity decay to be nearly independent of Rej for x / d ≥ 73 

and b / d ≤ 2. For b / d = 1, 2 and 4, Agelin-Chaab & Tachie (2011b) reported the 

attachment distance downstream from the nozzle to be xr / d = 1.5, 3.2 and 6.4 

respectively, increasing linearly with b / d and remaining nearly constant within the 

Reynolds number range tested. These values are larger compared to the two-

dimensional offset jet values, calculated from Equation 2.6. 

 

 

2.5 Jet interaction 

 

 The multiple-engine exhaust jets of an aircraft taking off merge rapidly into a 

single jet as they travel downstream, as observed in Lidar measurements by Bennett et 
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al., 2010. Single take-off plumes are also evident in the Lidar data of Wayson et al. 

(2008). Following this assessment, it would reasonable to assume that the merged 

exhaust jet could be modelled with a single nozzle at sub scale. The interaction of 

parallel jets is discussed briefly in this section. 

 

 First, it is useful to define a criterion for the merging of multiple jets. With regard 

to concentration and velocity distribution, “the merger point is taken to be the shortest 

distance from the nozzles that the velocity profile has a single as opposed to double 

peak” (Baratian-Ghorghi et al., 2012, p. 258). This point indicates the beginning of the 

‘combined jet’ region, where the flow has the characteristics of a single jet. 

 

 Miller & Comings (1960) investigated the interaction between two parallel two-

dimensional jets, separated by an offset r (distance between the nozzle centre lines, see 

Figure 2.10 where it is denoted with 2b) of 6d at Rej = 1.78×10
4
. It was found that the 

jets merged at x / d = 12 downstream, forming a single jet which exhibited all mean flow 

characteristics of a single-jet flow. The jet convergence was caused by a sub-

atmospheric static pressure region between the individual jets at distances x close to the 

orifices. 

 

 Tanaka (1970) conducted experiments of two parallel two-dimensional jets at Rej 

between 4.29×10
3
 and 8.75×10

3
 and nozzle spacing r between 8.5d and 26.3d. He found 

the non-dimensional distance of the merging point xmp / d (see Figure 2.10) to vary with 

r / d as follows: xmp / d = 5.06(r / d)
0.27

 for r / d < 16 and xmp / d = 0.667(r / d) for r / d > 16. 

In a subsequent report, Tanaka (1974) showed that a single jet with one distinct velocity 

maximum formed downstream between 19d and 30d, or approximately 2.24r and 1.14r 

respectively, for the range of r / d tested. He also observed no Reynolds number 

dependence on the maximum velocity decay with x within the range Rej of tested. 

 

 Lin & Sheu (1991) investigated parallel two-dimensional jets at large spacings r 

between 30 and 40d and reported the same distance for the start of the combined region 

of 1.3r. Similar experimental investigations by Nasr & Lai (1997) for r = 4.25d and Rej 

= 1.1×10
4
, and Fujisawa et al. (2004) for r = 3d and Rej = 1.1×10

3
, showed a combined 

region starting at x / d ≥ 8 and x / d ≥ 6 respectively (both at approximately x / r > 2). 

Recently, Durve et al. (2012) reported x / r ≈ 3 for the start of the combined region. 

 

 It should be noted that the above results were reported for free jets. As discussed 

in Chapter 2.3, wall jets have a greater lateral spread compared to free jets, thus the 

merging would occur at a shorter distance from the jet exit plane. Based on the results 

for free jets, it would be safe to assume that the start of the combined region would be at 

x < 2r. 
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Figure 2.10:  Schematic diagram of the merging of two parallel two-dimensional jets 

(adapted from Nasr & Lai, 1997) 

 

Nomenclature used: ‘c’ at centre line (along x axis); ‘mp’ plane where jets merge, ‘cp’ plane 

where jets form a single jet of one velocity maximum at centre line; b denotes offset distance of 

wall from nozzle centre line for a single offset jet case (2b = 4.25d) 

 

 

2.6 Buoyant flows 

 

 The ability of an aircraft engine exhaust to rise in the surrounding air due to its 

natural buoyancy is the fundamental principle in the proposed baffles concept. 

Therefore a literature review on buoyant flows and their characteristics is presented in 

this section. 

 

 In general terms, buoyancy can be described as the capacity of an object to stay 

afloat or rise when submerged in a fluid. Examples in engineering include ships, 

submarines, hot air balloons, as well as buoyant exhaust plumes from chimneys, exhaust 

pipes etc. In the latter cases of heterogeneous flows, i.e. gases, or in general fluids, of 

different density, the plume tends to rise with a surrounding denser gas. The force 

exerted by gravity on each element of fluid is ρg per unit volume, where ρ is the local 

fluid density and g is the acceleration due to gravity, thus the buoyancy effects result 

from the variation of ρ from point to point in the fluid (Turner, 1973, p. 3). 

 

 Morton (1959) described the two limiting cases of a forced flow as ‘plume’ and 

‘jet’, referring respectively to the flow from a source of buoyancy and from a source of 

momentum only. A buoyant flow exiting a stationary source would have jet 
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characteristics close to the source, and plume characteristics further downstream as its 

buoyancy starts dominating the flow behaviour. Shabbir & George (1994) described the 

distance x (or height z for vertical plumes), over which the buoyancy overcame the 

initial momentum at the source, in terms of the Morton length scale lM, defined as  

 

2/1

0

4/3

0

F

M
lM   

Equation 2.7 

 

where M0 and F0 are the specific momentum and specific buoyancy at the source. 

Their analysis shows plume-like behaviour of a vertical forced jet at z / lM > 5. Dai et al. 

(1994) and Sangras & Faeth (1999) gave a relationship for lM, shown in Equation 2.8, 

for a uniform round jet, exiting with a velocity Uj from a source of diameter d, and an 

absolute difference between jet and ambient fluid density Δρ = |ρj – ρ∞|. 
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Equation 2.8 

 

 

2.6.1 Governing similarity parameters 

 

 Modelling of buoyant flows at reduced scale requires accurate scaling of the 

governing flow parameters such as buoyancy and flow induced pressures. Using 

dimensional analysis, Poreh & Hassid (1982) obtained similarity parameters in a 

theoretical investigation on ventilation and air exchange in buildings. With regard to 

buoyancy and momentum driven flow motion at low and moderate Mach numbers, 

these include the excess temperature ratio ΔT / T∞, the ratio Uj
 2

 / gl, which is the squared 

Froude number Fr
 2

 (see Equation 1.3), as well as Reynolds number Re and Prandtl 

number. The Prandtl number gives the ratio of momentum to thermal diffusivity 

independent of a length scale, thus it would have the same value in full-scale and model 

testing in air. Its effects were considered negligible Poreh & Hassid (1982). 

 

 With regard to buoyancy, two similarity parameters are used universally in flow 

modelling and are considered or primary importance in buoyancy-driven plume 

dispersion (Zhu et al., 1998). These are: 

 Froude number Fr, used primarily to describe the initial conditions of an exhaust jet 

at the source. Examples include the works of Sharp & Vyas (1977), Meroney (1979), 

Chen (1991), Dai et al. (1994), Hanna et al. (1998) and Kanda et al. (2006). 
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 Richardson number Ri, which represents the ratio of buoyancy to inertia terms 

(Turner, 1973, p. 12). It is used in studies of vertical exhaust jets and buoyant plumes 

(e.g. Miles, 1961; Subbarao, 1989; Wang & Law, 2002; Kaminski et al., 2005), as 

well as in atmospheric stability studies (e.g. Carlson & Foster, 1986; Yang et al., 

2007). 

 

 The general form of the Richardson number is shown in Equation 2.9, where l is a 

characteristic length scale and U is the relevant velocity scale (usually Uj in buoyant jet 

studies). Local Richardson number can be calculated with the local vertical velocity and 

a vertical (e.g. Miles, 1961) or radial (e.g. Kaminski et al., 2005) length scale. Miles 

(1961) described the Richardson number as the principal measure of stability when 

buoyancy forces dominated inertia forces (Ri > 1). 

 

 
2U

gl
Ri    

Equation 2.9 

 

 Generally, the Froude and Richardson numbers are related by Ri = 1 / Fr
 2
, since in 

both similarity parameters a velocity scale and a length scale is used. In buoyant flows 

where density differences are small, it is common to apply what is known as the 

Boussinesq approximation – density differences are considered negligible on the inertia 

forces and are accounted for only in the buoyancy term (Spiegel & Veronis, 1960), 

using the reduced gravitational acceleration g' = g(ρ∞ – ρj) / ρ∞. This is referred to as 

‘densimetric’ Froude or Richardson number. For small temperature differences, Poreh 

& Hassid (1982) and Gerz & Ehret (1997) use the ratio ΔT / T∞ to calculate g' instead of 

the excess density ratio (ρ∞ – ρj) / ρ∞. In this case, ΔT is the difference between jet and 

ambient absolute temperatures, and T∞ is the ambient absolute temperature. 

 

 Poreh & Hassid (1982) and Pournazeri et al. (2012) reported that after a certain 

minimum Reynolds number Re, the primary large scale characteristics of turbulent 

flows are similar and become independent of Re. This was also observed by Turner for 

buoyant flows at large values of Re, stating that the Reynolds number cannot “enter 

directly into the determination of the overall properties of a turbulent plume” (Turner, 

1973, p. 168). For non-buoyant external flows around bluff bodies, Reynolds number 

independence occurs for Re > 1.1×10
4
 (Cermak, 1975), based on a characteristic length 

scale of the body, while for turbulent buoyant flows this is expected to start at even 

lower values of Re (Schlichting, 1979, cited in Poreh & Hassid, 1982, p. 562). 

 

 For a buoyant jet in a freestream, Subbarao (1989), Sinclair et al. (1990) and 

Ramsdale & Tickle (2001) highlighted the importance of the co-flow-to-jet-velocity 
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ratio β = U∞ / Uj on the flow development and on the ability of a buoyant wall jet to 

detach from the wall surface (‘lift-off’). Hoult et al. (1969) identified the densimetric 

exit jet Froude number, calculated with the reduced gravitational acceleration, and the 

ratio of ambient wind velocity to exit jet velocity as the two primary scaling parameters 

in wind tunnel modelling of buoyant plume dispersion. They also reported that the 

Reynolds number could be neglected in comparisons of model and theory. 

 

 

2.6.2 Buoyant wall jets and lift-off 

 

 The case of buoyant jet near a surface has been investigated predominantly for 

environmental purposes, to study the dispersion of waste disposal and the released of 

pollutants by human industrial activity into the atmosphere and hydrosphere. Compared 

to non-buoyant wall jets, significantly less information has been reported on buoyant 

wall jets. Experimental studies have been performed mostly in water tanks (e.g. Sharp 

& Vyas, 1977; Wiuff, 1977; Sinclair et al., 1990; Chen, 1991), and in wind tunnels 

using buoyant gases (e.g. Meroney, 1979; Poreh & Cermak, 1988). Other studies by 

Briggs (1973) and Hanna et al. (1998) show a theoretical approach to parameterise the 

plume lift-off. 

 

 
 

Figure 2.11:  Schematic illustration of a buoyant wall jet in an ambient co-flow 

(taken from Sinclair et al., 1990) 

 

 The flow development of a buoyant wall jet in ambient co-flow is illustrated in 

Figure 2.11. If the initial jet buoyancy is relatively small, the jet would stay attached to 

the ground and diffuse like a non-buoyant wall jet. As its initial buoyancy is gradually 

increased, the jet tends to transport upward with enhanced vertical dispersion, compared 

to a non-buoyant jet, without a complete physical detachment from the surface (Sharp & 
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Vyas, 1977; Meroney, 1979; Hanna et al., 1998). Whether a buoyant jet would lift itself 

off the ground depends on the interaction between the vertical forces due to buoyancy 

and the pressures induced by the ambient flow velocities which keep the jet attached to 

the surface. This may be expected to happen at high source buoyancy and low ambient 

velocities (Meroney, 1979; Sinclair et al., 1990). 

 

 Buoyant wall jet lift-off is affected by various flow parameters. Sinclair et al. 

(1990) highlighted the influence of jet temperature, ambient and jet velocity, and source 

orifice shape. Briggs (1973) obtained a single lift-off parameter Lp, defined in Equation 

2.10, where l is the vertical length scale of the jet and u* is the friction velocity, defined 

in Equation 2.11 with the local wall shear stress τw and the fluid density ρ. A common 

approximation for estimating the friction velocity was given by Hanna et al. (1998):     

U / u* = 10. Due to lack of measurements, Briggs (1973) reported high uncertainty in 

calculating an accurate critical value of Lp for which lift-off occurs. Measurements by 

Meroney (1979) showed this to be 9 ≤ Lp ≤ 27 for point source jets, while Hanna et al. 

(1998) stated values of Lp ≥ 20. 
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Equation 2.10 
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Equation 2.11 

 

 Meroney (1979) conducted experiments with helium wall jets from line, area and 

point sources in a 1:375 scale neutral Atmospheric Boundary Layer (no thermal 

processes), developed over a roughness length z0 ≈ 4.6×10
-3

 m. His results showed that 

increased ambient wind velocity delayed lift-off. The ambient velocity Uref was 

measured at a reference height from the surface of 20 nozzle diameters, corresponding 

to 0.25 m. As depicted in Figure 2.12a, at β = Uref / Uj ≈ 0.14, corresponding to Uref = 

0.76 m/s, the helium jet detaches completely from the surface, leaving behind only 

small traces of low-concentration gas. This is not the case for β ≈ 0.33 or Uref  = 1.83 

m/s (see Figure 2.12b), where no lift-off from the surface is visible within the shown 

distance downstream. It should be noted that although there is coherent plume lift-off, 

individual buoyant eddies are able to propagate upwards. 

 

 Measuring the lift-off distance for various ambient velocities and jet volumetric 

flow rates, Meroney (1979) obtained the relationship 
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   5.1
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    

Equation 2.12 

 

where Fr* is the modified Froude number and x / lb is the non-dimensional lift-off 

distance, defined as the ratio of the measured longitudinal distance to lift-off x to the 

buoyancy length scale lb. The definitions of lb and Fr* are shown Equation 2.13, where 

Qj is the source volumetric flow rate and lref is a characteristic source width (i.e. 0.03 m 

for the point source arrangement). The empirical relationship of Equation 2.12 suggests 

that a buoyant jet would always eventually lift off, and the distance to lift-off 

downstream of the source increases with Fr*. 
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(a) 

 

 
(b) 

 

Figure 2.12:  Side view images of a buoyant wall jet of helium and smoke exiting from a point 

source in a scaled neutral Atmospheric Boundary Layer (Meroney, 1979) 

Co-flow velocity Uref of (a) 0.76 m/s and (b) 1.83 m/s (no lift-off), measured at a 

reference distance of 25 cm (y / d ≈ 20) above the wall surface 
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 Sinclair et al. (1990) performed experiments of buoyant wall jets from a line 

source in a co-flowing turbulent boundary layer. They highlighted the important role of 

the wall jet’s streamwise vorticity on the entrainment of ambient fluid near the wall, 

suppressing lift-off from the surface. The lift-off distance was measured for velocity 

ratios β = Uref / Uj between 0.1 and 0.5 at a constant ambient reference velocity Uref ≈ 

4.7 m/s, averaged over the height of the jet of 0.03 m. It was found that decreasing β 

increased the lift-off distance for low-aspect-ratio slot jets (also observed by Ramsdale 

& Tickle, 2001), which contradicts the results of Meroney (1979), who varied Uref at 

constant values of Uj. It can be concluded that while the velocity ratio β is important in 

modelling the flow, it is not sufficient to characterise the jet lift-off. 

 

 Hanna et al. (1998) proposed using the local non-dimensional buoyancy flux to 

analyse lift-off. This is defined as gπH(ρ∞ – ρ) / (Uref
 2

ρ∞), where H is the local plume 

height and Uref is the effective wind speed over the plume. Such ‘local’ parameters 

enable the analysis of flows which experience changes in buoyancy (e.g. due to 

chemical reactions) as they move downstream of the source. The model of Hanna et al. 

(1998) was validated using measurements by Hall & Waters (1986) of buoyant flows 

exiting from buildings. It predicts ground-level concentrations at the centre line of a 

buoyant plume, initially from a source on the ground, as a function of the non-

dimensional buoyancy flux. 

 

 Recently, Aloysius & Wrobel (2009a) investigated numerically the dispersion 

characteristics of buoyant free jets and wall jets in a co-flow of 2.5 m/s (β = 0.031). The 

wall jet was found to rise from the surface at 55 nozzle diameters downstream. In a 

further numerical simulation, Aloysius & Wrobel (2009b) investigated the exhaust jet 

dispersion of an aircraft exhaust jet at take-off (headwind of 2.5 m/s) with a complete 

model of a Boeing 737 and a simplified model, consisting of two engines only. They 

reported that in the far field the flow was governed by counter-rotating streamwise 

vortices which created sinusoidal instabilities leading to break-ups of the plume and 

thus to its greater dispersion. The presence of the full aircraft geometry, compared to the 

simplified double-engine model, was found to enhance the effect of the streamwise 

vortices, also leading to greater plume dispersion. For the simplified model the plume 

was reported to lift-off from the ground at 363 engine diameters downstream of the 

engines, while for the complete model no lift-off was observed. 

 

 

2.6.3 Plume rise, entrainment and concentration 

 

 Plume dispersion has been studied mainly for environmental purposes to predict 

the concentration of pollutants from industrial and domestic chimneys, pool fires, 
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accidental releases of hazardous materials, etc. As reported by Bennett et al. (1992b), 

the rate of plume rise is determined by: the buoyancy and momentum of the emissions, 

the ambient stability and the ambient wind velocity at the plume height. Models and 

theories of the buoyant plume rise have been developed most notably by Morton et al. 

(1956), Hoult et al. (1969) and Briggs (1975). Assuming self-similarity within the 

plume and a ‘top-hat’ distribution, i.e. constant buoyancy force and velocity across the 

plume and zero outside of it, Morton et al. (1956) proposed that the entrainment 

velocity was proportional to a characteristic velocity at the height in question, usually 

the vertical velocity. This was adopted by Hoult et al. (1969), who reported the 

existence of two additive entrainment mechanisms for rising plumes: one due to the 

difference between plume velocity and the ambient wind velocity component parallel to 

the plume, and the other due to the ambient wind velocity component normal to the 

plume. They concluded that the resulting two entrainment parameters were universal 

constants. Recent investigations on the entrainment parameters have been done by 

Wang & Law (2002) and Kaminski et al. (2005). The latter ones reported that the 

entrainment of ambient air was larger in plumes than in jets, as a result of buoyancy-

induced turbulence. 

 

 For a neutrally stable laminar atmosphere, Briggs (1975) showed that the plume 

rise varied proportional to x
 2/3

, also known as the ‘x
 2/3

 law’, where x is the downstream 

distance from the plume source in the direction of the ambient wind. A relationship for 

the vertical plume trajectory, taken from Hanna et al. (1982) is shown in Equation A.2 

in Appendix A. Modifications of Briggs’s model have been proposed for example by 

Netterville (1990), to account for atmospheric turbulence effects, and by Bennett et al. 

(1992a) in an experimental investigation using Lidar measurements. Other mathematical 

models have been developed by Schatzmann (1979) for round buoyant jets in a 

stratified, flowing ambient fluid and Janicke & Janicke (2001) for dry and wet plumes 

in arbitrary wind fields. 

 

 The spatial distribution of exhaust gas concentration downstream of a plume or jet 

source is commonly modelled using Gaussian profiles (e.g. Hanna et al., 1982; Huber, 

1991; Bächlin et al., 1992). Such modelling accounts for the characteristic ‘bell-shaped’ 

lateral profiles in planes at right angles to the flow (see Figure 2.13 for an example of 

Gaussian data curve fit). In the absence of crosswinds, the profiles are symmetrical with 

respect to the flow centre line, where the maximum concentration occurs. Gaussian 

models are restricted to cases of flat, unobstructed terrain, uniform wind velocity and 

homogenous turbulence distribution, which do not usually occur within the 

Atmospheric Boundary Layer (Bächlin et al., 1992). Adjustments to the shape of the 

profiles can be made by modifying empirically the plume vertical and horizontal spread 

parameters to account for discrepancies in the above conditions. An example of a 
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Gaussian equation, as given by Bächlin et al., 1992, is presented in Equation A.3 in 

Appendix A. 

 

 

 
 

Figure 2.13:  Example of a Gaussian curve fit for a lateral concentration profile of a plume in 

open terrain, measured by McDonald et al. (1997) 

 
Vertical axis shows the non-dimensional concentration parameter Kc (see Equation 2.14); 

horizontal axis shows the non-dimensional lateral distance y/H; the choice of H in this case is a 

building height since the concentration measurements were performed in the presence of 

buildings as well as in open terrain; flow centre line is marked with a dashed line 

 

 

 In plume concentration analyses, it is common to normalise the measured mean 

values of concentration by the emission mass flow rate at the plume source (e.g. Hanna 

et al., 1982; Huber, 1991). In studies of plume dispersion in the presence of obstacles 

and buildings, similar data reduction has been used (e.g. Robins & Castro, 1977; 

McDonald et al., 1997; Mavroidis & Griffiths, 2001), obtaining a non-dimensional 

concentration parameter Kc. Its definition is shown in Equation 2.14 where c is the 

measured mean concentration, usually in parts-per-million (ppm), l is a characteristic 

length scale, usually the obstacle or building height, U is the measured velocity at the 

height l, and Qj is the source volumetric flow rate. 
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2.6.4 Plume dispersion through obstacles 

 

 In view of the proposed baffles concept, the dispersion of plumes in the presence 

of obstacles and buildings is of particular interest. Experimental investigations have 

been carried out on plumes in the near field of single objects (e.g. Robins & Castro, 

1977; Mavroidis et al., 2003) and arrays of obstacles and building models (see Figure 

2.14b) of various spacing (e.g. Bächlin et al., 1992; Davidson et al. 1996; MacDonald et 

al., 1997). 

 

 Robins & Castro (1977) performed a wind tunnel investigation the plume 

dispersion around single cubes and highlighted the importance of modelling accurately 

the approach flow characteristics on the flow development. They concluded that the 

maximum concentration is relatively insensitive to the ratio of obstacle height to 

boundary layer thickness. The obstacle height and boundary layer thickness were 

identified as the dominant flow length scales in the vicinity of the obstacle and far 

downstream respectively. Combining field trials and 1:100 scale wind tunnel tests (see 

Figure 2.14a for an example flow visualisation), Mavroidis et al. (2003) reported that 

the near-ground concentrations in the wake of an object were lower compared to open 

terrain and showed that they decreased with increasing height of the obstacle. They 

observed greater lateral dispersion rates in the field compared to the wind tunnel, which 

was also reported in a similar investigation by Higson et al. (1994). As a result, the 

obtained mean concentrations in the wind tunnel were larger by a factor between 1 and 

3. These discrepancies were attributed to the higher levels of large scale turbulence in 

the field.  

 

   

       (a)           (b) 
 

Figure 2.14:  Flow visualisation of plume dispersion in the near field of (a) a single cube 

(Mavroidis et al., 2003) and (b) an array of cubes (Mavroidis & Griffiths, 2001) (top view) 
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 Bächlin et al. (1992) compared wind tunnel measurements of gas dispersion 

around different building patterns with simple Gaussian models (see Equation A.3). 

They concluded that the Gaussian models did not accurately reproduce the lateral 

displacement of the plume when the wind was at an angle to the building pattern. 

 Field measurements by Davidson et al. (1995) highlighted the importance of the 

plume size relative to the overall size of the obstacle array. They reported no significant 

changes in the mean concentration if the plume was large relative to the array, although 

changes in the plume structure and the concentration fluctuations were observed. For 

relatively small plumes, the decay of mean concentration along the centre line and the 

plume’s lateral spread did not change significantly, while the vertical extend of the 

plume was observed to increase by 40-50% due to upward motion resulting from the 

reduction in mean velocity. These conclusions were shown to apply only if a significant 

amount of the plume was deflected above the array. The study was extended by 

Davidson et al. (1996) to 1:20 and 1:200 scales with similar results. They identified two 

mechanisms which determined the behaviour of the plume as it passed through the 

array: the divergence and convergence of streamlines as the flow moved around the 

obstacles and the changes in turbulence structure due to vortex shedding by the 

obstacles. They also highlighted that the effective lateral gap between the obstacles was 

inversely correlated with the plume’s increase in vertical height due to its influence on 

the streamlines divergence. 

 

 Enhanced vertical mixing was similarly observed by MacDonald et al. (1997) and 

Mavroidis & Griffiths (2001). MacDonald et al. (1997) described it as a deflection of 

the mean streamlines over the array, which lifted the plume centre of mass upwards. 

They also reported only similar mean centre line concentrations compared to a plume in 

open terrain and concluded that this is due to the enhanced vertical mixing and the 

reduction of mean velocity counteracting one another. Both MacDonald et al. (1997) 

and Mavroidis & Griffiths (2001) observed an increased lateral dispersion of the plume 

within the array, which decreased with distance downstream. 

 

 Lin et al. (2006) investigated the dispersion of odour from livestock through 

windbreaks. In contrast to the cases of building arrays, they also investigated the far-

field downstream, within approx. 60 windbreak heights, and the effects of windbreak 

porosity (see Equation 2.15 for definition of porosity). The windbreaks were found to 

enhance odour dispersion. Their effectiveness was increased when more dense (lower 

porosity) and when located closer to the odour source. The characteristics of windbreaks 

are discussed in the following section. 
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2.7 Aerodynamic characteristics of windbreaks 

 

 The physical principle of the baffles concept is that of reducing the exhaust jet 

momentum through aerodynamic drag, thus the baffles are effectively acting as 

windbreaks to the approaching exhaust jet. For this reason, a review of windbreaks and 

their characteristics is presented in this section. 

 The term ‘windbreaks’ refers to man-made structures, or very often plantations of 

trees and shrubs, used mainly for agricultural purposes in open areas where protection 

from the ambient wind is necessary (van Eimern et al., 1964). The sheltered zone 

behind the windbreak affects the microclimate and soil erosion, as well as plants and 

animals. Recently, the use of man-made windbreaks on bridges connecting open roads 

has been investigated as a method of reducing aerodynamic side forces on passing 

Heavy Goods Vehicles (Chu et al., 2013). 

 

 The velocity reduction by a windbreak is proportional to its vertical height h and, 

at the same time, the percentage reduction is, with small exceptions, independent of the 

ambient wind velocity (van Eimern et al., 1964). An important parameter of the shelter 

characteristics of windbreaks is their porosity, also historically referred to as 

‘permeability’ and ‘density’ by various authors (see definition in Equation 2.15). 

 

 
areafrontaltotal

flowthetolarperpendicuareafrontal)pen(o perforated
   

Equation 2.15 

 

Figure 2.15 presents a schematic illustration of the flow field around a solid (A) and a 

porous (B) windbreak, subjected to ambient wind. A solid windbreak causes a 

significant upward deflection of the flow and creates a large area of separated flow 

(‘recirculation bubble’) downstream, extending to a horizontal length of 5h to 6h to the 

flow reattachment point and characterised by high turbulence intensity (Guyot, 1995). 

As the windbreak porosity is increased, the ‘bleed flow’ through the windbreak surface 

increases, preventing the vortex formation. The resulting wind reduction is less and 

extends further downstream, compared to the case of a solid windbreak. Perera (1981) 

and Heisler & Dewalle (1988) observed the recirculation bubble to detach from the 

windbreak and move downstream for γ ≥ ~ 0.3. Lee & Kim (1998) reported the absence 

of recirculation flow downstream of a vertical, porous fence when γ ≥ 0.4 Guyot (1995) 

distinguished between ‘impermeable’ and ‘permeable’ windbreaks, having porosities of 

γ ≤ 0.25 and γ ≥ 0.25 respectively. He reported the respective extent of the shelter zone 

to be in the order of 12h and 20h. 
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Figure 2.15:  Flow field around (A) impermeable windbreak (B) permeable windbreak 

(taken from Guyot, 1995) 

 

 

 Historically, the case of a single flat plate mounted perpendicularly on a surface 

and subjected to a turbulent boundary layer has been investigated experimentally for 

different purposes. Wieghardt (1953) carried out experiments on small two-dimensional 

plates of various thicknesses to study their effect on the surface roughness in terms of 

additional drag of the plate measured with a drag balance. The two-dimensional drag 

coefficient CDn, based on the fence height h and the dynamic pressure of the flow over 

the fence height, was found to vary between 1.0 and 1.3 for fence thickness-to-height 

ratios < 1. Experimental results, summarised by Hoerner (1965, p. 5-7), give a similar 

drag coefficient of 1.25 for a two-dimensional small fence-type protuberance of zero 

thickness, and 1.20 for a body of square frontal area and thickness smaller than its 

height. Plate (1964) did further analysis of the data of Wieghardt (1953) and concluded 

that the body geometry alone is not sufficient to determine the value of CDn. He found 

the drag coefficient to be dependent on the ratio of plate height to boundary layer 

thickness, h / δ, and proposed the empirical relationship: 
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 Similar experimental investigations on single two-dimensional fences were 

reported by Good & Joubert (1968), Raju et al. (1976), Ranga Raju (1983) and Ranga 

Raju & Sharma (1997). Good & Joubert (1968) obtained correlations for the variation 

of drag with h in a smooth-wall boundary layer and found the flow-reattachment 

distance downstream of the fence to be 13h to 14h. Ranga Raju et al. (1976) recognised 

h / z0, the ratio of fence height to roughness length (z0 is defined by ESDU, 1982, see 

Chapter 3.4) also referred to as Jensen number, as a dominant parameter for the scaling 

of wind tunnel results in Atmospheric Boundary Layer (ABL) modelling. They defined 

a drag coefficient CD*, based on the skin-friction velocity, for which an empirical 

relationship as a function of only Cn and Jensen number was derived. Cn was observed 

to be independent of Jensen number within the range tested. Ranga Raju & Sharma 

(1997) extended this study to disturbed boundary layers where the disturbance was 

achieved with a second fence put upstream of the primary one and the distance between 

both as well as their heights ratio was varied. A separate investigation by Ranga Raju 

(1983), including two- and three-dimensional blocks of various thickness, concluded 

that the two-dimensional drag coefficient was independent of the block thickness for 

thickness-to-height ratios between 0 and 2. 

 

 Three-dimensional single fences of various aspect ratios, defined as the width-to-

height ratio, were investigated by Sakamoto and Arie (1983). They found the drag 

coefficient, based on the panel area w×h, to be minimum at an aspect ratio w / h = 5. 

This result was confirmed in separately conducted experiments by Holmes (1986) and 

Letchford (1986). For a single panel of w / h > 10, ESDU (1989) gives an area-averaged 

mean drag coefficient CF = 1.15, based on the hourly-mean wind speed at the top of the 

panel and the panel area w×h. Cook (1990) reported a similar drag coefficient of 1.2 for 

surface-mounted rectangular plates of w / h ≥ 2. 

 

 Raine & Stevenson (1977) investigated the flow around windbreaks of porosity γ 

(see Equation 2.15 for definition) between 0 and 0.5 and found that porosity of 0.2 gave 

the best overall reduction in mean leeward velocity. Guyot (1995), Santiago et al. (2007) 

and Dong et al. (2007) suggested an optimum porosity of 0.4, 0.35 and 0.2-0.3 

respectively, in terms of maximising the combination of wind reduction and extend of 

the shelter zone. In a more recent investigation, Dong et al. (2010) found the shelter 

efficiency to be related to the turbulent intensity of the flow in terms of sediment 

transport near the ground surface and observed that for γ > 0.2 the turbulence intensity 

and the vertical component of the leeward velocity are greatly reduced. 

 Chu et al. (2013) conducted a combined experimental and numerical investigation 

on the sheltering effects of porous windbreaks, mounted on both sides of road bridges, 

on passing Heavy Goods Vehicles. They found the influence on the side force 
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coefficient of the vehicle due to windbreak porosity to be negligible compared to the 

influence of the windbreak height. 

 

 Guan et al. (2003) proposed the use of ‘aerodynamic porosity’ γa, defined as the 

ratio of the approaching velocity to the velocity immediately downstream of the 

windbreak surface, for which the relationship γa = γ
 0.4

 was derived for γ ≤ 0.4. They 

obtained a relationship for the windbreak drag coefficient, shown in Equation 2.17, 

based on the approaching velocity at the height h of the windbreak and the windbreak 

frontal area w×h. Guan et al. (2003) concluded that for narrow windbreaks the use of 

aerodynamic porosity was more appropriate compared to the optical porosity γ. 

 

  8.1
108.1 aFC    

Equation 2.17 

 

 The shelter effects of an array of multiple rows of windbreaks – similar to the 

planned baffle arrangement – have been investigated mainly for protection of crops. A 

summary by van Eimern et al. (1964) of experimental data suggest spacings between 

20h and 30h to be favourable for efficient wind reduction and identifies the importance 

of factors such as windbreak shape and porosity, and prevailing wind direction and 

strength, on the choice of spacing The protective effect is reported to practically 

disappear for spacings below 10h. Data by Naegeli (1965) for rows of windbreaks of γ = 

0.5 show that reducing the rows spacing from 20h to 15h gives a reduction in mean 

velocity of 14%, while from 15h to 10h the reduction is only 7%. 

 Letchford & Holmes (1994) investigated the shielding effects occurring for a 

configuration of two identical walls placed at various distances parallel to each other. 

They observed a reverse direction of the wind loading on the main wall when the 

second wall is at a distance of less than 5h upstream. Robertson et al. (1996) reported 

lack of scientific data on the shelter of rows of walls of different height. Shelter factors 

for estimating net pressure coefficients have been published by the British Standards 

Institution (BSI, 1997). These are applicable for walls of equal height and in cases when 

the upwind wall is taller than the sheltered wall. 

 

 In the present investigation the baffles are subjected to a flow governed primarily 

by a wall jet of rapidly-decaying momentum downstream of its source due to 

entrainment of ambient air. This differs from the cases described above, where the 

ambient wind velocity does not decay naturally. For an efficient arrangement of several 

rows of baffles it is therefore necessary to increase the height and width of each row 

with distance away from the jet source. 
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2.8 Flow through porous screens 

 

 The initial experimental phase of this work included pressure drop measurements 

and visualisation of the flow in the near field of porous screens to determine the baffles 

preliminary design parameters and investigate the possibility of using a porous 

windbreak surface in the planned field trials. A short review of previous work on the 

subject is therefore included in this section, including mainly results on pressure 

distribution and observations of the flow behaviour around porous screens and gauzes 

of negligible thickness at various angles of inclination and porosity. The review, 

together with the pressure drop measurements was published as Gerova et al. (2013). 

 

 Taylor (1944) and Taylor & Davies (1944) conducted theoretical and 

experimental studies of the relationship between pressure drop coefficient Δp / q∞ (ratio 

of pressure drop across the screen to freestream dynamic pressure) and drag coefficient 

CDn, based on screen height and freestream velocity, for two-dimensional porous sheets 

and wire gauzes. They proposed the relationship 
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Equation 2.18 

 

The product γRe was used as similarity parameter and observed no Reynolds number 

dependency of the measured drag coefficients for γRe ≥ 1000. In this case, the screen 

Reynolds number Re is based on the freestream velocity U∞ and the mean wire or hole 

diameter of the screen, and γ is the screen porosity, as defined in Equation 2.15.  

 Koo & James (1973) proposed a mathematical model for a two-dimensional 

steady flow, replacing the porous screen with a distribution of sources, and modified the 

relationship of Equation 2.18, reported by Taylor and Davies (1944). Their 

experimental and numerical data showed good agreement up to pressure drop 

coefficients of 10. 

 

 Schubauer et al. (1950) measured the pressure drop across screens of porosity 0.2 

≤ γ ≤ 0.8 for angles of inclination α between 0 and 45 degrees, defined as the angle 

between the flow direction and the direction normal to the screen (see Figure 2.16). 

They found that Δp / q∞ was a function only of γ and the velocity component normal to 

the screen, equal to U∞cosα. Results for screens of γ ≥ 0.4 showed to be independent of 

Reynolds number for Recosα > 150. 

 

 Annand (1953) correlated available experimental results, including those of 

Taylor & Davies (1944) and Schubauer et al. (1950), and obtained a relationship 
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between pressure coefficient and porosity for 0.2 < γ < 0.8 and α = 0 degrees, shown in 

Equation 2.19. The dynamic pressure q is calculated with the flow velocity component 

U∞cosα perpendicular to the screen, and the coefficient C is a function of Reynolds 

number, asymptotically approaching the value of 0.56 for Re ≥ 400. A similar value of 

0.54 was reported by Pinker & Herbert (1967) for Re ≥ 800. The corresponding pressure 

drop coefficient for an inclined flow, based on the freestream dynamic pressure q∞, is 

given by (Δp / q∞) = (Δp / q)cos
2
α. Equation 2.19 was further adapted by Brundrett (1993) 

for very low Reynolds numbers, i.e. < 1, and for screens in a boundary layer. 
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Equation 2.19 

 

 In a review of experimental data, similar that of Annand (1952), Carrothers & 

Baines (1965) obtained the relationship (Δp / q) = 1.26γ / (1 – γ), where the pressure drop 

coefficient was taken to be independent of Re. Other reports by Laws & Livesey (1978) 

and Su & Huang (1991) also suggested negligible Reynolds number effects on the 

pressure drop coefficient for Re > 250 and Re > 1000 respectively. This is also evident 

from the data of Ito & Garry (1998) at Re > 400 for a mesh of γ = 0.37. Teitel et al. 

(2009) also highlighted that inertia forces became dominant at Re > 150 resulting in 

negligible viscosity effects. In general, for screens of lower porosity the threshold Re, 

after which Δp / q becomes independent of Re, is greater. The differences in the results 

can also be attributed to the mesh geometry and the experimental arrangement. 

 

 Reynolds (1969) developed a theoretical model to predict the deflection of duct 

flow passing through a gauze screen at an angle of inclination αv, measured to the 

vertical (see Figure 2.16). For screens of γ < 0.5, he proposed the relationship ψ' = 0.5ψ 

for ψ' < ψ < αv, where ψ and ψ' are the angles in the outflow and at the plane of the 

screen respectively, of the mean velocity vector to the freestream direction. For γ > 0.5, 

Reynolds suggested that the outflow angle and the angle at the screen are the same, ψ' = 

ψ. 

 

 Ito & Garry (1998) studied the flow pattern through a screen of γ = 0.37 for 

various angles of inclination and Reynolds numbers between 36 and 409, based on 

mesh monofilament diameter. Using smoke visualisation, they observed a uniform 

expansion of the flow downstream of the screen. They also obtained results for lift and 

drag coefficients using force measurements and integration of pressure distribution 

measurements, which were reported to be in very good agreement. The lift coefficient 

was observed to have a maximum value at αv = 45º, i.e. 0.55, which was more than half 
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of the lift coefficient value calculated from pressure distribution measurements on a 

solid flat plate at the same angle of inclination. 

 

 
Figure 2.16:  Schematic illustration of flow deflection when passing through an inclined porous 

screen 

 

 

 Miguel (1998) and Valera et al. (2005) obtained relationships between 

permeability and porosity for two-dimensional thin porous screens of various mesh 

geometry. The permeability is a measure of the ability of the material to allow fluid 

through its porous surface and relates the velocity normal to the screen and the pressure 

drop across the screen. Based on the results obtained for screens of both regular and 

irregular mesh geometry, Miguel (1998) concluded that the shape of the yarns and the 

mesh geometry had a negligible influence on the characteristics of the flow. His results 

do not seem to agree with those of Valera et al. (2005), who proposed a governing 

equation to calculate the pressure drop from the screen porosity and Reynolds number. 

 

 

2.9 Conclusions 

 

 The following conclusions were drawn from the literature review with regard to 

this study: 

 

 The mean flow characteristics of two and three-dimensional wall jets were reviewed 

in terms of jet growth rate, velocity decay and skin-friction coefficient. There seems 

to be some discrepancies in the experimental results reported for velocity decay and 

lateral and vertical growth rate of three-dimensional wall jets, as well as for the 

occurring vortex structures in the near field. This is mainly attributed to the different 

test conditions.  
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 Significantly more research has been done on wall jets in quiescent air compared to 

wall jets in an external stream (co-flow). There is lack of data on wall jets submerged 

in an Atmospheric Boundary Layer. 

 

 Offset jets exhibit wall jet characteristics after a certain (short) distance downstream, 

which is a function of the offset distance. Parallel jets tend to merge as they expand, 

forming one single (wider) jet, which justifies the use of a simplified model of a BAe 

146-301 exhaust jet at take-off, consisting of a single nozzle only. 

 

 The Froude number and the ratio of ambient wind velocity to exit jet velocity have 

been identified as the most important scaling parameters in sub-scale modelling of 

buoyant wall jets in a co-flow. The importance of the Reynolds number on the flow 

development reduces significantly if the tests are performed above a certain critical 

value, typically 11000 for buildings, based on the building height. 

 

 It has been suggested (Meroney, 1979) that a buoyant wall jet would always 

eventually rise from the ground surface, with its lift-off distance being a function of 

the flow Froude number (Equation 2.12). Attempts to define a universal lift-off 

parameter (Equation 2.10) have shown considerable discrepancies in the results for a 

critical value beyond which lift-off would occur. The effect of ambient wind is to 

delay the plume rise. No quantitative results on the effect of the ratio of ambient 

wind velocity to exit jet velocity have been reported. 

 

 Buoyant plume dispersion is enhanced within an array of obstacles. However, studies 

have been performed only in the near field at low flow velocities. The effects of the 

obstacles in the far field downstream have not been reported. 

 

 Studies on solid and porous windbreaks and configurations of multiple rows of 

windbreaks have suggested values for optimum porosity (i.e. 0.3) and spacing (i.e. 

20-30h) in terms of wind protection and extend of the shelter zone. Results of drag 

coefficient have been obtained for windbreaks submerged in turbulent boundary 

layer flows and Atmospheric Boundary Layer flows of constant freestream velocity. 

A major difference to this study is the naturally decaying velocity of the exhaust jet 

to which the baffles would be subjected. This would require baffle rows of increasing 

height h and optimum spacing to maximise their effectiveness. 

 

 Results for screens and meshes of different mesh pattern indicate little dependency of 

the pressure drop coefficient on the pattern, as long as it is homogenous and evenly 

spread on the surface. There is lack of results on the effects of screen porosity and 

angle of inclination on the flow deflection downstream of the screens. 
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3 Experimental methodology 
 

 In this study, an entirely experimental approach was adopted to support the BAe 

146-301 field trials at Cranfield Airport. The wind tunnel experiments were conducted 

in two stages, before and after the field trials respectively: 1) baffle arrangement and 

design of field trials experiment, and 2) replication of the field trials at sub scale and 

correlation of wind tunnel and full-scale results. This chapter presents a summary of the 

steps undertaken during the experimental investigation, the wind tunnel test techniques 

used and the methods of modelling the engine exhaust buoyancy and the Atmospheric 

Boundary Layer (ABL). 

 

 

3.1 Experimental approach 

 

 The steps in the experimental approach were indentified in order to provide a 

complete answer of the research question of the thesis.  These defined the following 

experimental test programme, consisting of five phases of separate experiments. 

 

 

Phase I: Plume behaviour and lift-off 

 

The initial phase consisted of 1:200 scale tests with an exhaust jet from a stationary 

nozzle, investigating the plume development downstream and the effects of jet 

buoyancy at the nozzle, wind tunnel flow (ambient wind), boundary layer characteristics 

and distance of the baffles (single row) to the nozzle. Additionally, the tests targeted to 

explore the possibility of the ground-based plume to overcome the Coanda effect and 

detach from the ground surface (‘lift-off’), investigating the factors constraining this 

phenomenon. 

 

 

Phase II: Flow through porous materials 

 

The original concept of the baffles included the possibility of using catalythic 

converters to reduce the pollution from the exhaust emissions. For this reason, the 

surface of the baffles facing the jet would have to be porous in order to allow some of 

the flow to pass through. The experiments of Phase II aimed to explore the aerodynamic 

properties of porous screens to be used for the baffles, investigating the effects of screen 

porosity and angle of inclination on the upwash angle of the flow downstream of the 
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screen. Since the baffles are acting effectively as windbreaks, the wake is characterised 

by periodically shed vortices (von Karman vortex street). In addition, the use of porous 

baffle surface aimed to reduce the structural load on the baffles due to the vortex 

shedding. 

 

 

Phase III: Force balance tests on baffle array configurations 

 

Next, the experimental programme continued by expanding the initial single baffle 

rown with configurations of multiple rows of increasing height with distance from the 

nozzle. The effects of the baffle array on the reduction in jet horizontal momentum were 

investigated in terms of measured total drag of the array. Configurations of baffles of 

three angles of inclination were tested varying the spacing between the rows, the 

number of rows and the row lateral shape. 

 

 

Phase IV: 1:200 scale experiment of a real engine with a modelled Atmospheric 

Boundary Layer 

 

The last step of the sub-scale experimental investigation involved modelling the take-off 

exhaust jet of a real engine in order to represent accurately the ambient wind effects and 

real atmospheric conditions. The purpose of the experiments was to identify the 

behaviour and development of the plume with and without the array of baffles in terms 

of local plume concentration and loca flow velocity, measured using Flame Ionisation 

Detector (FID) and Hot-Wire Anemometry (HWA) respectively. The representation was 

of an ALF502R-5 turbofan engine, powering the BAe 146-301 aircraft, which was used 

to perform the full-scale tests of Phase V. The atmospheric conditions and ABL of the 

full-scale tests were modelled. 

 

 

Phase V: Full-scale field trials 

 

The final step of the investigation consisted of full-scale field trials with a BAe 146-301 

performing take-off and landing cycles at Cranfield Airport. The tests were performed 

to obtain data of real take-off runs and correlate the results with the sub-scale results, 

thus providing a complete answer to the proposed scientific question and completing the 

targeted research. 
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3.2 Experimental methods 

 

3.2.1 Pressure, temperature and velocity measurements 

 

 Pressure measurements are essential for monitoring and assessment at a controlled 

flow environment in the wind tunnel working section during tests. A common method 

of determining the freestream velocity U∞ is by measuring the total and static pressures 

of the freestream with a Pitot-static tube. The velocity is then calculated with 
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Equation 3.1 

 

where the freestream density ρ∞ is calculated from the Ideal Gas Law (see Equation 3.4 

in Chapter 3.3), using ambient temperature and barometric pressure readings. 

 

 The above described calculation method was used predominantly in this study’s 

wind tunnel tests to calculate freestream velocity. The Pitot-static tube was connected to 

a Furness FC016 digital manometer, operating at a range of ±199.9 mmH2O (±1960.4 

Pa) with an accuracy of ±1% of reading. Atmospheric pressure was measured with a 

Druck DPI 141 resonant sensor barometer with a range of 800 to 1150 hPa absolute 

pressure and an accuracy of ±0.15 hPa. Temperature readings were taken from a RS-

2130WC digital thermometer with an accuracy of ±1 ºC. 

 

 Other pressure measurements were conducted to study the flow across porous 

screens (see Chapter 4.3.1). These measurements were made using working section wall 

mounted static pressure tappings, connected through external tubing to Omega PX139 

pressure transducers. As specified by the manufacturer, the repeatability of the 

measurements was ±0.3% of their full range of 0.3 psi (2068.4 Pa), giving a 

measurement error of ±0.0009 psi (±6.2 Pa). 

 

 Modelling dispersion of the exhaust plume with the Atmospheric Boundary Layer 

(ABL) at sub scale required matching the full-scale ratio of jet exit velocity to ambient 

wind velocity and thus operating the wind tunnel at very low velocities in the working 

section (i.e. U∞ < 1 m/s). At such velocities the Pitot-static tube did not provide the 

required accuracy, therefore velocity in the working section was measured with a 

Schiltknecht MiniAir6 Mini vane anemometer of a measurement range between 0.4 and 

20 m/s. Its accuracy is specified by the manufacturer as the greater of ±1.5% of reading 

or ±1.0% of the full range (i.e. ±0.2 m/s). 
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3.2.2 Exhaust plume visualisation 

 

 The initial experiments included using a laser light sheet flow visualisation 

method to study the behaviour of a buoyant exhaust plume from a single nozzle in 

ground proximity. The wind tunnel working section arrangement is shown 

schematically in Figure 3.1 and in Figure C.1 and Figure C.2 in Appendix C. The air 

flow was supplied to the nozzle from an external compressor and was mixed with 

smoke, which was chemically generated from burning oil and delivered through an 

electrically powered fan. A diverging laser beam (‘laser sheet’), reflected back from the 

smoke particles in the flow, was used to illuminate the plume in various planes 

perpendicular to the flow direction. Video images of the visualised flow were recorded 

with a digital camcorder, positioned sufficiently far downstream of the nozzle exit, in 

order not to interfere with the flow upstream. A Class IV Argon ion laser was used to 

deliver a beam of 514 nm wavelength (green light) through an optical fibre cable to a 

cylindrical plano-concave lens, which generated the light sheet. 

 

 
Figure 3.1:  Schematic illustration of the basic experimental arrangement for the plume 

visualisation tests (side view; not to scale) 

 

 

 The post-processing method consisted of dividing the recorded videos into 

individual frames, which were then passed through image-analysis software (i.e. 

Pixcavator IA v4.2) to separate digitally the plume from the background. The primary 

function of Pixcavator is to detect and capture objects by applying a threshold for 

different levels of grey to convert a grey scale image to a binary scale image (INPERC, 

2013). Objects are picked up using size and contrast criteria (threshold values) which 

are manually set by the user. Such analysis enabled quantitative data to be obtained on 

the plume area and its maximum vertical (height) and lateral (width) spread in terms of 

image pixels (see Figure 4.1 in Chapter 4.1). 
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 The analysis of a sequence of video images involved counting the number of 

pixels (output from Pixacavator) within the plume area for each extracted individual 

frame of the video and calculating an arithmetic mean value for all frames. Similarly, 

using the jet area boundaries defined by Pixcavator, the maximum plume height and 

width could be obtained. The contrast threshold was kept constant for all frames where 

possible and the size threshold was adjusted according to the local spread of the plume. 

The method of averaging made the results dependent on the number of frames per video 

used, especially at large distances downstream (> 65 nozzle diameters) where occurring 

unsteady phenomena within the jet caused the plume shape to change significantly from 

frame to frame (minimum time interval between frames being of 0.04 seconds). 

Therefore the influence of the number of frames per video used on the averaged results 

was further investigated at 129 diameters downstream (the largest distance from the 

nozzle exit where the laser sheet was positioned during the plume visualisation tests). 

Results for plume height, width and area were obtained for 30, 60 and 120 frames and 

showed a maximum relative difference of only 3.8% between 30 and 120. Therefore, 

averaging over 30 frames was considered sufficiently accurate for the purpose of the 

experiment and was used in all data analysis. 

 

 

3.2.3 Smoke tunnel flow visualisation 

 

 As part of the study on porous screens, two-dimensional flow visualisation tests 

were conducted at Cranfield University’s smoke wind tunnel. The working section 

arrangement is described in detail in Chapter 4.3.2 (see Figure 4.17 for a schematic 

illustration). The flow visualisation method consisted of injecting small quantities of 

smoke into the freestream at several uniformly-distributed vertical locations as it 

entered the wind tunnel working section, thus creating visible pathlines. The working 

section was illuminated with a lamp, allowing photographs of the observed flow 

patterns to be taken and analysed. 

 

 

3.2.4 Skin-friction balance 

 

 Drag measurements were conducted using a one-component force balance 

modified at Cranfield University from an existing custom-built design, intended for 

direct skin-friction measurements. It consisted of a rectangular plate, 1060 mm long, 

700 mm wide, inset flush with the working section floor. The plate is connected to a 

floating platform element, supported by strain gauged flexures, arranged in a standard 

Wheatstone bridge electrical circuit. A similar design was described by Winter & 
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Gaudet (1973). Loads applied on the plate results in a bridge output which is sampled at 

0.5 kHz by a PC driven data acquisition system. The output of the balance consists of 

mean values taken for a period of 10 seconds. A prior calibration of the balance 

established the measurement precision to be within ±0.01 N. 

 

 

3.2.5 Flame Ionisation Detector 

 

 Plume concentration measurements were performed using a flame ionisation 

method of detection, described by Halasz & Schneider (1961) and Littlebury (1981). It 

is a standard gas chromatography technique utilising a sensor, i.e. Flame Ionisation 

Detector, to detect a tracer gas in the plume. A schematic illustration of the basic FID 

measurement principle is shown in Figure 3.2. The sample gas flow from the 

measurement probe is delivered continuously to a flame inside the FID, sustained by 

separate regulated flows of fuel gas (hydrogen or a mix of hydrogen and helium) and 

oxidising gas (air). During the combustion process, any hydrocarbon components 

present in the sample would undergo a complex ionisation process forming ions and 

free electrons (Littlebury, 1981). The ions are attracted by the electrodes of a metal 

collector, causing electric current to flow across the collector plate. This current is 

proportional to the rate of ionisation and thus to the concentration of hydrocarbons in 

the sample flow. Typically, the sample gas consists of an inert carrier gas (e.g. nitrogen 

or helium) and a hydrocarbon gas used as tracer (e.g. methane). The FID calibration is 

performed with samples of known tracer gas concentration. 

 

 In this study, the FID used was a Signal Instruments 3000HM hydrocarbon 

analyser, measuring the concentration of organic molecules with a carbon-hydrogen 

bond present in the sample gas (Signal Instruments, 2014) in volume per volume parts 

per million (ppm). The flame was fuelled with a gas mixture of 60% helium and 40% 

hydrogen, while a mixture of 98% nitrogen and 2% methane, equal to a mole fraction of 

20000 ppm, provided the carrier and tracer gas respectively. The 3000HM model 

operates at measurement ranges between 0-4 ppm and 0-10000 ppm with a response 

time of less than 2 s at a sample flow rate of 2 l/min. The total response time of the FID 

measurement system, from the start of a measurement to the display of the sample 

reading, depends significantly on the tubing length used to connect the FID and the 

sampling probe in the wind tunnel working section. The accuracy of the FID, as 

specified by the manufacturer, is within ±1% of the used measurement range or within 

±0.2 ppm, whichever value is greater. During tests, the measurement range of the FID 

was alternated between 0-1000 ppm and 0-4000 ppm depending on the value of the 

obtained readings. The accuracy of the measurements was thus within ±10 ppm and ±40 

ppm respectively. 
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Figure 3.2:  Schematic illustration of a Flame Ionisation Detector, used in gas chromatography 

(not to scale) 

 

 

3.2.6 Hot-Wire Anemometry 

 

 Hot-Wire Anemometry is a measurement method involving an electrically-heated 

wire or film element, placed in the fluid flow of interest. Any changes in the flow 

conditions would change the element’s convective heat transfer and thus its electrical 

resistance, which in turn can be related to, for example the flow velocity. HWA is the 

principle research tool in most studies of turbulent gas flows, offering cost-efficient 

measurement of one, two or three components of the velocity vector at high accuracy 

(i.e. < 1%) and excellent spatial resolution due to the small size of the hot-wire sensor 

(Bruun, 1995, p. 1). The high frequency response of modern hot-wire anemometers 

makes them suitable for velocity measurements in flows of low to moderate turbulence 

intensity (~ 25 %). 

 

 The basic HWA instrumentation consists of a hot-wire sensor, a probe tube, 

including its support and cabling, an anemometer and an analogue-to-digital (A/D) 

converter connected to a computer, controlling the HWA operation. HWA sensors are 

typically tungsten wires of 5 μm diameter, welded to the prongs of the probe (see 

Figure 3.4a and Figure 3.4b for schematic examples). There are two main operating 

modes of hot-wire anemometers: at constant current (CC), where the electrical current 

across the wire is kept constant while the wire temperate varies, or at constant 

temperature (CT), where the wire’s electrical resistance and temperature are kept 

constant by varying the current. CT anemometers have more complex electrical circuit, 

but are much simpler to use than CC anemometers, therefore they are usually the 

Vent 

Fuel gas 

Air 

Signal output 

Collector plate 

Flame 

Tubing, connected to probe 

Ignitor 

Sample (carrier gas + tracer gas) 



 
S. Velikov                                                                                                                       PhD Thesis 

- 62 - 

 

preferred anemometer type for velocity measurements (Bruun, 1995, p.37). The 

operating principle of a CT anemometer is shown in Figure 3.3. The hot-wire is placed 

in a Wheatstone bridge opposite to a resistor of variable electrical resistance, which 

defines the operating resistance of the wire and thereby its operating temperature. An 

increase in the flow velocity would reduce the wire temperature and resistance, causing 

a change in the voltage output across the bridge. This voltage output is used by a servo 

amplifier to control the system voltage supply such that the original values of hot-wire 

temperature and resistance are maintained constant. The amplifier output is thus a 

function of the flow velocity. 

 

 
 

Figure 3.3:  Principle diagram of a constant-temperature (CT) anemometer 

(taken from Dantec Dynamics, 2002) 

 

 

 In this study, constant-temperature HWA with a single-sensor probe was used for 

two different purposes: 1) to measure the vertical profiles of mean velocity and 

turbulence intensity of the modelled Atmospheric Boundary Layer (ABL) at sub scale; 

2) for one-component velocity measurements of the flow field downstream of a buoyant 

nozzle jet at 1:200 scale with and without baffles. 

 A Dantec 55P14 hot-wire sensor (Figure 3.4a), oriented horizontally and at right 

angles to the flow, was used for the boundary layer measurements, while the velocity 

measurements of 2) were performed with a 55P13 sensor (Figure 3.4b), oriented 

vertically. In both cases, the probe was mounted on a three-dimensional traverse in the 

working section of the 8'×4' Atmospheric Boundary Layer Wind Tunnel (ABLWT), 

which allowed accurate, computer-controlled movement of the probe to the desired 

measurement locations. 
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   (a)        (b) 

 

 
(c) 

 

Figure 3.4:  Schematic illustration of (a) Dantec 55P14 miniature hot-wire probe for boundary 

layer measurements (isometric view, sensor and prongs only); (b) Dantec 55P13 miniature hot-

wire probe (not to scale); (c) Hot-Wire Anemometry (HWA) arrangement for velocity 

measurements (taken from Dantec Dynamics, 2002) 

 

 

 The measurements were performed at a sampling frequency of 1 kHz and a 

sampling period of 5 seconds, using a standard CT anemometry arrangement (Figure 

3.4c). More details on the operation and data analysis can be found in Dantec Dynamics 

(2002). The hot-wire probe was connected to a Dantec Dynamics StreamLine CT 

anemometer with a built-in signal conditioner for amplification and filtering of the CTA 

Flow, U 

Wire sensor 
Probe body 

1.25 mm 2 mm 

7.5 mm 

Connector pins 

Prongs 

Prongs 

Wire sensor 

1.25 mm 

Flow, U 

4 mm 

1.9 mm 



 
S. Velikov                                                                                                                       PhD Thesis 

- 64 - 

 

signal, which was located in the wind tunnel control room. The output signal from the 

anemometer was passed through an A/D converter and connected to a computer, where 

the HWA operation was controlled using the StreamWare application software. 

Temperature in the working section was measured with a Dantec 55P32 Thermistor 

probe, connected to the CT anemometer. This allowed corrections for temperature 

variation to be performed in situ during data reduction, within the software. 

 At the beginning of each test day, the CT anemometer voltage output was 

calibrated versus freestream velocity by applying polynomial curve fitting. The 

freestream velocity was measured with a Schiltknecht MiniAir6 Mini vane anemometer 

approximately at the working section centre line for a range typically between 0.18 and 

13 m/s. Calibration tests were repeated during the course of the day, if the temperature 

in the working section varied considerably (i.e. ≥ 5 ºC) from the temperature at the 

initial calibration. Calibration errors of the polynomial curve fitting method varied 

typically between 0 and ± 3%. 

 

 Regarding the accuracy of the HWA measurements, it should be noted that the 

tests at 1:200 scale were performed with an exhaust gas mixture of nitrogen, helium and 

methane and a freestream of air, to account for the full-scale jet buoyancy and the 

ambient wind respectively, while the calibration was performed in a freestream of air 

only. This issue are discussed in more detail in Chapter 7.2.2. 

 

 

3.3 Exhaust jet buoyancy modelling 

 

 At take-off, aircraft engines operate at the highest turbine entry temperature of the 

flight cycle. For a turbofan engine, the high temperature exhaust jet of the core flow and 

the ‘colder’ fan bypass flow mix as they travel downstream. This mixing is mostly 

influenced by the nozzle design and the engine bypass ratio, defined as the ratio of 

bypass mass flow to core mass flow. Enhanced mixing is a desired feature of modern 

turbofan nozzle designs as it has been reported to increase specific thrust, and reduce 

specific fuel consumption and noise (Sangai & Lakshmanan 2001; MacManus, 2009). 

Common nozzle designs include angled bypass flow, chevron nozzles and mixer 

devices for generating streamwise vortices (e.g. Cullom & Johnsen, 1977; DeBonis, 

2008). An example of enhanced mixing is shown in a numerical investigation by 

DeBonis (2008), who reported uniform velocity distribution across the mixed jet at 

distances greater than 7 fan diameters downstream of the nozzle exit. 

 In view of the above assessment, it is reasonable to assume that the core and 

bypass flow would mix quickly as they travel downstream. This would allow for an 

approximation of constant density and temperature within the mixed jet. 
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 The discussion in Chapter 2.6.1 on similarity parameters highlighted the 

importance of the Froude number Fr and the ratio of jet velocity to ambient wind 

velocity β for accurate sub-scale modelling of a buoyant jet or plume. To account for the 

buoyancy forces, arising from the differences at full scale between the high exit jet 

temperature and the ambient air temperature, Fr is usually calculated with the reduced 

gravitational acceleration g' = g(ρj – ρ∞) / ρ∞. This calculation in terms of the difference 

between jet and ambient density is convenient for wind tunnel testing, where it is 

common to use a less dense gas (e.g. helium) to represent the sub-scale jet instead of a 

high-temperature gas. In this study, the modelling method reported by Littlebury (1981) 

and Garry (1989) is used, where the density ratio (ρj / ρ∞) is considered a separate 

similarity parameter, together with Fr of Equation 1.3 and β. While Fr and β are used to 

scale the flow velocity and nozzle mass flow rate (see Chapter 6.1), the mass fraction of 

helium in the sub-scale jet is determined from the density ratio only, using the following 

calculation method: 

 

1) The primary modelling requirement is equality of the density ratio ρj / ρ∞ at full scale 

and in the wind tunnel, denoted with subscripts ‘F’ and ‘M’ respectively. 
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Equation 3.2 

 

In further analysis, the jet and ambient conditions are denoted with the subscripts ‘j’ 

and ‘∞’ respectively. At full scale, ‘j’ refers to the mixed jet conditions downstream 

of the engine, while for the wind tunnel model ‘j’ refers to the nozzle exhaust 

conditions. 

 

2) The full-scale exhaust jet and ambient air are assumed to obey the Ideal Gas Law 

 

 TNRpV u    

Equation 3.3 

 

where p is the gas absolute pressure, V is the gas volume, N is the amount of 

substance of gas, Ru is the universal gas constant, and T is the gas absolute 

temperature. With N = m / M, R = Ru / M and m = ρV, where m is the gas mass, M is 

the gas molar mass and R is the specific gas constant, Equation 3.3 can be written as 

 

 RTp    

Equation 3.4 
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For dry air at standard conditions, R is equal to 287 J/(kgK) (Anderson, 2001, p. 440). 

The properties of the full-scale exhaust jet are very similar to that of air, thus Rj ≈ R∞, 

which is a reasonable assumption for the mixed exhaust jet of a high-bypass-ratio 

engine. 

 

3) To calculate the full-scale density ratio, the full-scale exhaust jet is assumed to have 

ambient static pressure p∞ after a certain travel distance downstream of the engine. 

Hence, from Equation 3.4, the following relationship is valid for p∞F = pj F: 

 

jFjFFF
TT    

Equation 3.5 

 

Solving for the density ratio, yields 
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Equation 3.6 

 

The assumption pj = p∞, referred to as ‘ideal expansion’ (see for example MacManus, 

2009), is used in simplified performance analysis of civil subsonic aircraft engines. It 

is a desirable condition in engine design in order to minimise thrust losses. Engines 

are designed to operate close to this condition during cruise, while at take-off the 

exhaust jet would be ‘under-expanded’ at the nozzle exit, i.e. pj > p∞. 

 

4) From Equation 3.3, with N = m / M, R = Ru / M and m = ρV, the density ratio of nozzle 

jet and ambient air in the wind tunnel can be expressed as follows: 
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Equation 3.7 

 

where Mair ≈ 28.96 g/mol is the molar mass of air and Mj is the average molar mass 

of the mixed nozzle jet. The nozzle jet would have approximately ambient 

temperature and static pressure, therefore the density ratio can be expressed as the 

ratio of the molar masses: 
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Equation 3.8 
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For a mole fraction of helium f in the mixed jet, consisting of helium and air, Mj is 

calculated with the molar mass of helium MHe ≈ 4 g/mol as follows: 

 

)1( fMfMM airHej   

Equation 3.9 

 

Combining Equation 3.8 and Equation 3.9 yields 
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Equation 3.10 

 

Thus, from Equation 3.2, Equation 3.6, and Equation 3.10, the mole fraction of 

helium is given by  
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Equation 3.11 

 

For an ideal gas, mole fraction and volume fraction are identical (Reible, 1998, p. 97), 

thus the volumetric flow rate of helium QHe can be calculated from the total nozzle 

volumetric flow rate QjM as 

 

fQQ jMHe   

Equation 3.12 

 

 

 To conclude, the above method allows for modelling the buoyancy of a high-

temperature jet with a jet of approximately ambient temperature, which is a mixture of 

air and a less dense gas (helium) to account for the buoyancy forces due to jet 

temperature difference. The sub-scale jet buoyancy modelling is based on equality of 

the ratio of jet and ambient density at full scale and model. In order to calculate the full-

scale jet density, two important assumptions are made: 1) the exhaust jet and ambient 

static pressures are equal at a certain distance downstream of the engine and 2) at that 

distance, the core and bypass flows are fully mixed, forming one jet of temperature TjF. 

For known ambient conditions and mixed jet temperature TjF, the mole fraction of 

helium f in the modelled sub-scale jet can be obtained from the above calculation 

sequence, assuming all gases used have ideal-gas properties. 
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3.4 ABL modelling 

 

3.4.1 Mean wind speed profile and turbulence intensity 

 

 Ambient winds are movements of air masses caused by differences in atmospheric 

pressure, occurring due to uneven heating of the Earth’s surface by the sun. Close to the 

surface, the wind characteristics are influenced greatly by the local landscape and the 

presence of obstacles such as trees, buildings etc., which exert a drag force on the 

airflow and generate turbulence. Additionally, the Earth’s surface absorbs solar 

radiation and re-radiates it in heat form to the surrounding atmosphere, resulting in a 

thermal surface-air interaction. Both effects are diffused through turbulent mixing as the 

vertical distance z from the surface increases. As a result, the wind velocity increases 

gradually with z until the surface effects become negligible at zh, called the ‘gradient 

height’ (see Figure 3.5), which defines the edge of the Atmospheric Boundary Layer 

(ABL). Modelling of the ABL is essential in civil engineering, where accurate 

calculations of the wind loads are required in structural analysis and building design. 

The ABL is commonly divided into an inner (surface) layer, starting from the surface 

and extending to nominally 10-20% of the ABL thickness, and an outer layer, extending 

to zh. Within the surface layer, the flow is dominated by friction forces and the Coriolis 

effect
§
 on the wind, caused by the rotation of the Earth, is not considered important. 

 

 The vertical extent of the ABL depends on the surface terrain and the wind speed. 

Figure 3.5 shows schematic examples of ABL mean wind speed profiles for urban (high 

surface roughness), suburban and level country terrain (low surface roughness), where 

the gradient height zh reduces with reducing surface roughness. For strong winds, 

defined as U10 > 10 m/s (U10 is a common reference velocity, measured at z = 10 m), the 

gradient height is typically between 500 and 3000 m (ESDU, 1982). For U10 > 10 m/s,  

the thermal effects can be neglected due to the dominance of mechanically-generated 

turbulence within the ABL (Cook, 1978; ESDU, 1982). This is referred to as ‘adiabatic’ 

or ‘neutral’ Atmospheric Boundary Layer. The mean vertical wind speed profile of a 

neutral ABL can be expressed mathematically using a power law (Barlow et al., 2009, 

p. 654; Lubitz & White, 2004, p 2), as shown in Equation 3.13, where the reference 

velocity Uref is usually taken to be U10 at zref = 10 m and the power-law exponent a 

depends on the surface roughness (see Figure 3.5). 

 

 

____________________________ 
§ 
The Coriolis effect is the apparent deflection of a moving object when viewed from a rotating frame of 

reference, such as the constantly rotating Earth. It is commonly described as a fictitious force, acting 

perpendicular to the axis of rotation and the direction of movement of the object. 
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Figure 3.5:  Atmospheric Boundary Layer profiles for different terrain, adapted from Plate (1971) 

Numbers represent velocity in percentage of the gradient wind velocity, shown as 100 

 

 

 A more common mathematical representation of the mean ABL wind speed 

profile is the logarithmic law. ESDU (1982) gives a method of estimating hourly-mean 

wind speeds in a neutral ABL (i.e. U10 > 10 m/s) by taking into account the height 

above the surface, the local terrain roughness, as well as changes in the terrain 

roughness upwind of the site of interest and probability of exceeding the wind speed. 

The method introduces two modelling parameters – the zero-plane displacement and the 

surface roughness parameter, illustrated in Figure 3.6: 

 The zero-plane displacement (zd) defines the boundary, called the ‘aerodynamic 

ground plane’, between the resolved part of the flow and the region of unresolved flow 

near the ground. The region of unresolved flow is typically within areas of buildings or 

dense vegetation, such as forests, where the flow is complicated and predictions of wind 

speed cannot be made with a sufficient degree of certainty. The zero-plane displacement 

is usually smaller than the average local obstacle height. ESDU (1982) gives only 

nominal values of zd, for example, 0 ≤ zd ≤ 2 for a wide range of terrain types from ice 

and calm open sea to open terrain of isolated trees and hedges. 

 The surface roughness parameter (z0) is a mathematical parameter in the 

logarithmic-law model of the ABL, which accounts for the retarding effect of the 

surface terrain on the wind speed near the ground. It is also a measure of the eddy size 
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at the ground (Simiu & Scanlan, 1978, p. 46). Within the logarithmic-law model the 

velocity becomes theoretically zero at z0, as can be seen from Equation 3.16. In practice, 

below z0 the wind speed profile does not follow the logarithm function.  

 

 
Figure 3.6:  Representation of the Atmospheric Boundary Layer (not to scale) 

 

 

 The physical height above surface z is commonly expressed as z = (zd + z' ), where 

z' is the height above the aerodynamic ground plane (see Figure 3.6). It should be noted 

that the notation used here differs from the one used by ESDU (1982), where only the 

height above the aerodynamic ground plane, denoted with z, is considered. It will be 

argued later in Chapter 6.2 that in an open terrain the zero-plane displacement can be 

considered to be approximately zero and thus z ≈ z'. 

 The structure of the surface layer can further be divided into a roughness sublayer, 

extending from the ground to z' = z0, and an inertial sublayer. Merlot (2010) summarised 

the flow characteristics of the surface layer as follows. Within the roughness sublayer 

the flow turbulence is affected predominantly by the structure of the roughness 

elements, making z0 the governing length scale. Turbulence is generated by both shear 

production and by the wake regions behind the roughness elements. Within the inertial 

sublayer (z' > z0), the shear production is considered negligible and the dominant 

turbulent process is the convection of large-scale eddies. 

 

 The method for determining the mean vertical wind speed profile, given in ESDU 

(1982), starts with assuming a wind speed Uz' ref at a reference height z', usually at z' = 10 

m, for a known location close to the location of interest. Examples of reference hourly-

mean wind speeds over a return period of fifty years in the UK are given in Figure 1 in 

ESDU (1982) for  uniform open  terrain (z0 = 0.03 m). The method then follows a 

sequence of calculations of correction factors using graphs developed from 
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experimental measurements for an ABL in equilibrium. An ABL is defined to be in 

equilibrium with the underlying surface when the wind speed profile does not vary with 

increasing fetch upwind, shown in Figure 3.6. In practice, this is achieved when the 

ABL is developed over a fetch of at least 100 km of approximately uniform terrain 

(ESDU, 1982, p. 7). The factors in the ESDU method account for step changes in the 

terrain roughness along the fetch, probability of exceeding the wind velocity magnitude 

and direction, and changes in the local topography. In the current study, the local site of 

the field trials, i.e. Cranfield Airport, which is to be modelled at sub scale, is surrounded 

by open country terrain of approximately even distribution from all sides, with little 

changes in terrain roughness in the prevailing direction of the mean wind velocity. 

Therefore, no correction factors were considered and a simplified model of the wind 

speed profile, based on data by Harris & Deaves (1981) and described in Appendix A of 

ESDU (1982), was adopted in this study. It is given by 

 
























 










 










 


















 









 


432

1
1

0 4

1

3

4

2
1ln

*

hhhh

z
z

z

z

z

z

za

z

z
a

z

zu
U


 

Equation 3.14 

 

where the following parameters are introduced: 

 mean wind speed at a height z' 

 gradient height zh = u* / (6fc) 

 Coriolis parameter fc = 2ωsin(φ), accounting for the wind deflection due to the 

Coriolis effect; fc depends on the local latitude angle φ and the angular velocity of 

the Earth, based on a sidereal day, ω ≈ 7.29×10
-5

 rad/s 

 friction velocity u*, defined in Equation 2.11 

 von Karman constant κ ≈ 0.4 

 empirical constant a1 ≈ 5.75 

 

 Equation 3.14 is an empirical model of the full ABL wind speed profile up to the 

gradient height. With respect to the planned measurements of this study, modelling the 

ABL at such heights is of little practical significance. For heights below 300 m, the 

second-order terms can be neglected, reducing Equation 3.14 to 
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Equation 3.15 

 

This can be further simplified for heights z' < 30 m, where the Coriolis effect on the 

wind speed can be neglected: 
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Equation 3.16 

 

With regard to the current study, a height of 30 m would equal to 150 mm at 1:200 scale, 

which is beyond the vertical height limit of the planned measurements at sub scale. Also, 

the largest row of baffles are planned to extend to a height of 2 m above the surface, as 

will be discussed in detail in Chapter 8.1, which equals to 10 mm at 1:200 scale and is 

well inside the 150 mm model boundary of the vertical wind speed profile. 

 

 At z' = 10 m, Equation 3.16 is written as 
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Equation 3.17 

 

where z0 is given in metres. Solving Equation 3.16 and Equation 3.17 for the velocity 

ratio Uz' / U10 yields: 
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Equation 3.18 

 

The obtained relationship gives a non-dimensional wind speed profile with height z', 

based on a reference wind speed at z' = 10 m, which is only a function of the surface 

roughness parameter z0. 

 

 As discussed in Chapter 1.5, the second important parameter in ABL modelling is 

the turbulence intensity of the flow. It is a measure of the wind speed fluctuations due to 

particle movement and the resulting high momentum convection within the ABL flow, 

leading to generation of turbulence. Theoretically, the velocity fluctuations would occur 

in all three dimensions within the flow, however, in practice only the component in the 

mean flow direction Iu is considered important. As shown in Figure 3.7, at a height z' 

the instantaneous wind speed in mean flow direction Uz'(t) can be represented by the 

sum of a mean wind speed component Uz' and a fluctuating component uz'(t): 
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Equation 3.19 
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The mean wind speed component Uz' is averaged over a certain period of time t0, 

usually taken to be one hour in meteorological studies. With Uz', the turbulence intensity 

Iu is defined as  
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Equation 3.20 

 

where the standard deviation σu is obtained by integrating the fluctuating component 

uz'(t) over the interval t0 as follows: 
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Equation 3.21 

 

 ESDU (1983) gives the following relationship, based on data by Harris & Deaves 

(1981) for an ABL in equilibrium 
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Equation 3.22 

 

where η = 1 – (6fcz' / u*). From Equation 3.20, the turbulence intensity can be expressed 

the product of two ratios 
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Equation 3.23 

 

where σu / u* is given in Equation 3.23 and u* / Uz' is obtained from Equation 3.16. The 

calculations of the modelled ABL at sub scale for the FID and HWA experiments are 

presented in detail in Chapter 6.2. 
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Figure 3.7:  Definitions of instantaneous wind speed, mean wind speed component and 

fluctuating component (adapted from Merlot, 2010) 

 

 

 To conclude, the above ABL modelling method is based on the empirical 

equations given in ESDU (1982) for the mean wind speed profile and ESDU (1983) for 

the turbulence intensity profile. It assumes a neutral ABL in equilibrium with the 

underlying local surface. The mean wind speed profile is assumed to follow a 

logarithmic law, which is restricted to heights up to 30 m, where the Coriolis effect on 

the mean wind speed is negligible. 

 

 

3.4.2 Sub-scale modelling devices 

 

 Modelling the Atmospheric Boundary Layer in sub-scale tests requires 

preconditioning the flow upstream of the wind tunnel working section in order to 

generate the desired geometrically-scaled velocity profile and high level of turbulence. 

The type of wind tunnel facility used for ABL modelling, called Atmospheric Boundary 

Layer Wind Tunnel (ABLWT), includes a flow development section between the 

settling chamber and the working section. Ideally, the sub-scale boundary layer should 

grow naturally over a long rough wall in order to give good match to the full-scale ABL 

in terms of mean and turbulent flow characteristics (Cook, 1978). In practice, the fetch 

required for such natural development is usually too long and cannot be provided by the 

test facility, requiring the use of ‘artificial’ methods. These are a combination of an 
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initial generation of turbulence through mixing devices and an intermediate fetch of 

roughened wall over which the boundary layer develops. 

 

 The arrangement of the flow development section consists commonly of a system 

of barriers and vortex generators, located at the start of the section, and roughness 

elements, distributed in a certain pattern on the remainder of the section floor. Examples 

of vortex generators and tripping rods are shown in Figure 3.8. The elliptic vortex 

generators, similar to the ones of Figure 3.8a, were first proposed by Counihan (1969) 

as an alternative to the triangular vortex generators, which had a tendency for an 

excessive momentum loss in the boundary layer region close to the wall and insufficient 

momentum loss in the region away from the wall. Elliptic vortex generators are 

commonly used in ABL modelling studies in Cranfield University’s 8'×4' ABLWT. 

 The roughness elements are typically solid blocks of the same size (see Figure 

3.9a), which varies depending on the turbulence length scale of the modelled ABL. 

Armitt & Counihan (1968) and Counihan (1969) used standard LEGO
®

 base boards 

with LEGO
®
 bricks to create the roughed floor of the flow development section. 

LEGO
®
 bricks have the advantage of being relatively small, thus fine adjustments can 

be made to the floor roughness and larger bricks can be created, if necessary, by 

building up on the existing pattern. 

 

 

       (a)        (b) 

 

Figure 3.8:  Examples of Atmospheric Boundary Layer (ABL) modelling devices (flow direction is 

from bottom right): (a) elliptic vortex generators; (b) rods and tripping bars 

(taken from Barbosa et al., 2002) 

 

 

 The distribution pattern and size of the roughness elements and the arrangement 

of the system of barriers and vortex generators varies depending on the wind tunnel 

facility used and on the flow characteristics of the full-scale ABL to be modelled. As 

described by Cook (1978), the choice of arrangement is largely made on the basis of 

intuition and experience from trial-and-error. While the components vary in shape and 

size between different methods of ABL simulation, their roles remain effectively the 

same. The barrier is used to provide initial momentum deficit and increase the depth of 

the boundary layer, while the vortex generators, located at a close distance downstream 
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of the barrier, increase the flow turbulence and thus provide the necessary mixing within 

the boundary layer. A coarse turbulence grid upstream of the barrier can also be used to 

generate additional turbulence. Examples of flow development section arrangements are 

shown in Figure 3.9a (without vortex generators) and Figure 3.9b (with triangular 

vortex generators). 

 

 
(a) 

 

 
 

(b) 

 

Figure 3.9:  Examples of development sections of Atmospheric Boundary Layer Wind Tunnels 

(ABLWT) by: (a) Cook (1978), including a barrier and a turbulence grid (flow direction is from 

top to bottom); (b) Barlow et al. (1999), including vortex generators (flow direction is from bottom 

left) 
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3.4.3 8'×4' ABLWT 

 

 Cranfield University’s low speed 8'×4' ABLWT, depicted schematically in Figure 

3.10, was used for the majority of the sub-scale tests conducted in this study. It has an 

open return circuit layout with a flow development section of 15 m length and a closed 

working section of 8 ft (2.4 m) nominal length and cross section of 8 ft by 4 ft (2.4 m by 

1.2 m). Tests can be conducted for freestream speeds between 0.5 and 16 m/s with and 

without a simulated boundary layer. In the latter case the freestream turbulence intensity 

in the working section is nominally less than 0.1%. The working section has a 360º 

floor-mounted rotating turntable, which allows models to be turned relative to the flow 

direction in crosswind simulations, and a computer-controlled three-axis traverse 

system for automatic three-dimensional movement of measurement probes. A separate 

high pressure system can be used to deliver suction or blowing, e.g. an exhaust jet, in 

the working section. The test capabilities of the 8'×4' ABLWT include measurement 

outputs such as pressure, velocity, forces and moments, gas concentration of a tracer gas 

using FID, as well as flow visualisation. 

 

 
Figure 3.10:  Schematic illustration of Cranfield University’s 8'×4' low speed Atmospheric 

Boundary Layer Wind Tunnel (ABLWT) (side view; not to scale) 

 

 

 In the course of this study, various experimental techniques were applied within 

the 8'×4' ABLWT. The measurement principles of these techniques were discussed in 

Chapter 3.2. The individual arrangement for each test is described in detail at the start of 

the corresponding chapter presenting the test results. 
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4 Initial experiments 
 

 The initial wind tunnel tests consisted of several sets of experiments designed to 

study the behaviour of an exhaust jet in a controlled wind tunnel environment, and the 

flow field in the near and far field of porous screens of different porosity and orientation 

to the flow direction. 

 

 

4.1 Exhaust plume visualisation 

 

 The flow development of an exhaust jet in ground proximity was first studied 

using flow visualisation. The experiments aimed 

 

 to visualise the exhaust jet plume beneath an external stream and identify any 

occurring trends in its behaviour, and 

 

 to determine whether steady ‘lift-off’ of an exhaust plume in ground proximity 

can be achieved in a wind tunnel environment. This was defined as the physical 

separation of the coherent plume from the ground (visible gap between plume 

and wind tunnel floor), resulting in changes in the vertical plume trajectory. 

 

 All plume visualisation experiments were conducted in Cranfield University’s 

8'×4' Atmospheric Boundary Layer Wind Tunnel (ABLWT) using the flow visualisation 

method described in Chapter 3.2.2 (see Figure 3.1 for working section arrangement). 

The Atmospheric Boundary Layer (ABL) was not modelled at this stage of the 

experiments. Boundary layer velocity profile measurements of the clean working 

section were performed at a later stage of this study during the force balance 

experiments and are described in Chapter 5.3. A circular nozzle of inner diameter d = 

6.2 mm was chosen to represent the mean exhaust jet diameter of a CFM56-family 

engine at 1:200 scale. This value has been reported by Cini (2008) as part of a literature 

survey on Boeing 737 and Airbus A320 aircraft. The nozzle was fixed at 12.5 mm 

above the working section floor, measured to the nozzle centre line, which is the mean 

engine height above the ground up to the fan axis of rotation of a BAe 146-301 aircraft 

at 1:200 scale. Nozzle flow rate measurements were taken with flow meters connected 

to the tubing. The digital camcorder was positioned at x = 1250 mm and 30 mm ground 

clearance to its lens centre line. The exhaust jet was illuminated with a laser sheet at 

various x locations (yz planes) between 3.2d and 129d. Images of the 8'×4' ABLWT 

working section are shown in Figure C.1 and Figure C.2 in Appendix C. 



 
   Chapter 4:  Initial experiments 

- 79 - 

 

 The arrangement of the tubing connection to the nozzle in the working section 

(see Figure 3.1 in Chapter 3.2 and Figure 4.4b) raised concerns about possible stem 

vortex interference effects on the exhaust plume. As a result of the finite span of the 

tube, the wind tunnel flow would form a three-dimensional horseshoe vortex 

downstream. Consequently, the wake would be governed by a pair of counter-rotating 

streamwise vortices creating a downwash effect, i.e. inducing a downward velocity 

component, when interacting with the nozzle jet. Such interference effects would 

counter-act the upward buoyancy component, which is fundamental to the baffles 

concept. Considerations were made to maintain a sufficient horizontal length of the tube 

connecting to the nozzle (see Figure 4.4a) in order to allow for the flow to reattach. 

Close to the ground, the vortex effects would dissipate due to the retarding effect of the 

wind tunnel floor surface. At the nozzle exit, the interference effects were assumed to be 

small due to the high momentum of the jet. Further downstream where the jet 

momentum is reduced signifcantly, the vortices are decayed and their influence on the 

jet development is considered negligible. 

 

 Tests were performed with a nozzle volumetric flow rate of 34 l/min (litres per 

minute), the maximum achievable flow rate with the available test equipment, which 

gave a mean exit jet velocity Uj = 18.8 m/s. The freestream velocity in the working 

section was U∞ = 5 m/s, giving a ratio of freestream velocity to exit jet velocity β = 

0.266. Two cases of exhaust jet were investigated: a ‘COLD’ case where a mixture of 

air at ambient temperature and smoke was used, and a ‘HOT’ case where helium was 

added to the mixture to simulate the buoyancy of an exhaust jet at high temperature. A 

full-scale exhaust jet density of ρjF = 1 kg/m
3
 was assumed at this initial stage of the 

investigation, which at standard pressure (i.e. 101325 Pa) gives an exhaust jet 

temperature of 353 K. The mole fraction of helium was then calculated from Equation 

3.11 as f = 0.19, giving a volumetric rate of helium QHe = 6.5 l/min. The jet Reynolds 

number, calculated with d and Uj, was Rej ≈ 5580 in the HOT case and Rej ≈ 7680 in the 

COLD case. In all above calculations the smoke flow in the jet was neglected, as it was 

considered small compared to the flow rates of helium and air. 

 

 The post-processing method of the results, discussed in Chapter 3.2.2, is 

illustrated in Figure 4.1. Results (in pixels) for plume area in the laser sheet plane and 

for maximum spread in lateral (W) and vertical (H) direction were obtained each video 

recording analysed and averaged over 30 frames per video. The jet area and diameter, 

observed at x / d = 3.2, were considered to be approximately equal to the nozzle exit area 

and diameter respectively, and were used to obtain non-dimensional results for plume 

area S, width W' and height H', as follows: 
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Equation 4.3 

 

 

    
 

Figure 4.1:  Flow visualisation post-processing method (example of an individual frame) 

 

 

 The results for non-dimensional plume area S are shown in Figure 4.2. No 

differences between COLD and HOT case were observed for x / d ≤ 50. For greater 

distances downstream the plume of the HOT case becomes progressively larger 

compared to the COLD case. It appears that initially S varies linearly with distance 

downstream until x / d ≈ 50. For 50 ≤ x / d ≤ 129d, S increases with (x / d) 2 reaching 173 

and 185 for the COLD and HOT case respectively. To estimate the precision of the 

results, a short statistical analysis was conducted at x / d = 97 and x / d = 129, taking 

several sets of 30 frames from the recorded videos and comparing the results. A 

maximum variation of approximately 10% (indicated by the error bars in Figure 4.2) 

was estimated at x / d = 129, where the largest plume spread was observed and thus the 

uncertainty in defining the plume boundaries was the highest. Such error analysis leads 

to the conclusion that although the HOT gas case appears to achieve greater plume area 

as d increases, the calculated values lie within or very close to the estimated error range. 

Thus, no buoyancy effects could be definitely demonstrated when modelling the 

exhaust jet with a mole fraction of helium f = 0.19. 

W 

H 

Area inside the plume boundary 
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Figure 4.2:  Variation of non-dimensional plume area with longitudinal distance downstream of 

nozzle exit for β = 0.266 

 

 

 The results for the variation of H' and W' with x / d, shown in Figure 4.3, agree 

qualitatively with other results reported in the literature and discussed in Chapter 2.3. 

The jet growth rate parallel to the wall is considerably greater than its growth rate 

perpendicular to the wall. For both length scales the obtained results are greater in the 

HOT case. It appears that the growth rates upstream and downstream of x / d = 50 can 

reasonably well be approximated by linear relationships. In Figure 4.3, a comparison is 

made with data from Davis & Winarto (1980) for ground clearance of the nozzle centre 

line of 2d and downstream distances as far as x / d = 65. The results compare well for 

both jet length scales albeit the results of Davis & Winarto (1980) have been carried out 

in quiescent air. The secondary (freestream) flow is expected to restrict the jet spread as 

the downstream distance from the nozzle exit increases and the wind tunnel velocity 

becomes greater than the local jet velocity. However, a quantitative comparison of 

growth rates downstream of x / d = 48 shows that these agree very well for W' (slope is 

approximately 0.240), whereas for H' the growth rate reported by Davis & Winarto 

(1980) is less than half the value obtained here. The error introduced from the choice of 

post-processing method for the characteristic jet scales was estimated similarly to the 

one of the plume area, obtaining an approximate value of  5 pixels at d = 129. This 

gives 6.7% relative error in H' and 2.8% in W'. Likewise the error bars indicate that the 

observed differences between HOT and COLD case cannot be strictly attributed to 

buoyancy effects. 

 

 A plot of the variation of plume aspect ratio with x / d, defined as λ = W' / H', is 

included in Figure C.3 in Appendix C. It appears that in both cases λ reaches a 
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maximum at x / d ≈ 100d, downstream of which the relative growth rate of the jet in 

vertical direction becomes greater. This could be an indication of the jet buoyancy 

characteristics, starting to affect its distribution in space. However, since this maximum 

was determined essentially by the results at x / d = 129, more data further downstream is 

required to validate this statement. The error analysis performed combining the errors of 

H' and W' confirms previous conclusions regarding the differences between COLD and 

HOT case. 
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Figure 4.3:  Variation of plume mean maximum width and height with distance downstream of 

nozzle exit for β = 0.266 

 

 

 Both the post-processing tools used and the choice of flow visualisation method 

show several disadvantages which have to be considered when discussing the accuracy 

of the obtained results. First, as was evident that during some of the tests the smoke 

flow rate reduced occasionally causing the visualised plume area to appear smaller than 
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in reality. Such time periods of the video footage were omitted during the post-

processing of the results. The choice of flow visualisation method also created 

difficulties as the laser beam pixels had to be digitally “removed” from each frame. 

Second and most important, defining the plume area boundary further downstream of 

the nozzle exit proved to be subjective even with an increased contrast level, thus all 

results for x / d = 129 should be considered with a tolerance of nominally 10%. With 

decreasing distance to the nozzle, this tolerance becomes of considerably smaller 

magnitude. Additionally, the available version of Pixcavator automatically applied a 

shrink factor of 2, blurring the plume boundaries and reducing the quality of the images. 

Finally, the method of averaging raises the question of how many frames from each 

recorded video are sufficient to obtain a representative result. However, compared to the 

tolerances discussed above, the error introduced by this method can be considered of 

small significance. 

 

 

4.2 Plume ‘lift-off’ visualisation 

 

 In the second stage of the exhaust plume visualisation tests, attempts were made 

to cause coherent plume lift-off by increasing the jet buoyancy and varying the wind 

tunnel speed. These experiments were conducted with thinner tubing to reduce the wake 

induced from the wind tunnel flow. As a consequence, the maximum achievable flow 

rate was 27 l/min, giving a mean exit jet velocity of 14.9 m/s and an exit jet Reynolds 

number of 6100 for the COLD case. The arrangement in the working section (Figure 

4.4) was modified by adding a wooden prism-shaped ‘deflector’ in the path of the jet, 

fixed to the working section floor so that it was symmetrically positioned in lateral 

direction with respect to the nozzle.  

 

 

(a) 

Nozzle 

Deflector (70 mm) Camcorder 

Laser sheet output 

(cylindrical lens inside casing) 

Pitot-static tube 

Tubing 
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(b) 

 

Figure 4.4:  8'×4' ABLWT arrangement for lift-off flow visualisation tests: (a) working section 

image (isometric view); (b) schematic illustration of working section (side view, not to scale) 

 

 

 Deflectors of two different widths (70 mm and 500 mm), both of the same height 

(12.5 mm) and slope angle (45º), were tested. In full-scale this would yield a height of 

2.5 m, widths of 14 m and 100 m respectively, and total inclined areas of 49.5 m
2
 and 

353.6 m
2
 respectively. The deflectors are referred to using their width in terms of the 

nozzle diameter, w / d = 11.3 and w / d = 80.6, respectively. The non-dimensional 

deflector position D, used in the results analysis, is defined as follows: 

 

 
diameter Nozzle

slong x axiposition aDeflector 
D   

Equation 4.4 

 

 

 In the first stage of the lift-off experiments, tests were conducted only with the 

short deflector (w = 70 mm). The lift-off criterion by Meroney (1979), presented in 

Equation 2.12 in Chapter 2.6.2, was applied to estimate the lift-off distance. The 

buoyancy length scale lb and the modified Froude number Fr* were calculated from 

Equation 2.13 using a reference length lref = 0.015 m and the freestream velocity U∞ as 

reference velocity. These parameters were estimated from Meroney’s experiments, 

where a characteristic source width of 0.03 m for lref, equal to approximately 2.4 times 

the nozzle diameter, and the ambient wind tunnel speed were used. The conducted tests 

are described below. 
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1) Air and smoke only (Fr* = ∞, since ρj = ρ∞), w / d = 11.3, D varied between 32 ≤ D 

≤ 97, constant freestream velocity U∞ = 5 m/s 

 The purpose of this initial test was to investigate solely the effect of placing a 

deflector in the path of a neutrally-buoyant jet. The laser sheet was moved in small 

increments of 4 nozzle diameters upstream and downstream of the deflector. Compared 

to a plain wall jet without deflector, no apparent differences in the vertical jet trajectory 

were observed. It appears that the entire plume is drawn in the deflector wake. Images 

for D = 64.5 are shown in Figure C.4 in Appendix C. A possible cause for such jet 

behaviour is the presence of a horseshoe vortex due to the finite span of the deflector.  

 

2) Air and smoke only (Fr* = ∞); no deflector; freestream velocity varied between 0 

≤ U∞  ≤ 5 m/s 

 As concluded from the literature review in Chapter 2.9, the presence of a 

secondary flow is considered to have a significant role on the possible plume lift-off at 

large distances downstream where the jet velocity is reduced. Therefore, the test under 1) 

was repeated without a deflector at lower wind tunnel speeds. Up to x / d = 16, the 

secondary flow effects of constraining the plume spread appear to be insignificant for 

all wind tunnel speeds tested. Downstream of x / d = 60, differences in the spread could 

be observed only between 0 and 3 m/s. If no secondary flow is present, the jet spreads in 

lateral direction at a considerably higher rate and stays attached to the surface, keeping 

approximately the same maximum height. This trend was observed up to the furthest 

distance tested, x / d = 129. Random frames from the recorded video footage, showing 

the plume at x / d = 64.5 for wind tunnel speeds of 0, 2 and 5 m/s, are presented in 

Figure C.5 in Appendix C. 

 

3) No deflector; wind tunnel off (Fr* = 0, since Uref = 0); helium flow rate QHe 

increased up to 9 l/min 

 The effects of increasing the natural buoyancy of the jet were investigated by 

gradually adding more helium in a still air environment. The flow rate of air and smoke 

was reduced accordingly in order to keep the overall flow rate 27 l/min. The observed 

jet behaviour was similar to the one stated under 2). No lift-off occurred within the 

tested distances x / d ≤ 129. At large distances downstream the maximum jet height 

appeared to increase as QHe increased, most certainly due to buoyancy starting to prevail 

as the jet momentum reduces. 

 

4) HOT (QHe = 9 l/min, f = 0.33, Fr* ≈ 95) and COLD (air and smoke, Fr* = ∞); w / d 

= 11.3, D varied between 32 ≤ D ≤ 97; constant freestream velocity U∞ = 2 m/s 

 As no changes in the vertical trajectory of the jet could be observed during the 

tests of 1), 2) and 3), a configuration of a buoyant jet and a deflector was tested. The 
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freestream velocity in the working was reduced to 2 m/s to compromise between the 

constraining effects at higher speeds and the jet aptitude to attach to the surface and 

spread in lateral direction when no secondary flow is present. Quantitative data were 

obtained from the recorded videos (Figure 4.5) by means of the Pixcavator post-

processing method used in Chapter 4.1. Using simple statistical analysis on 15 random 

frames of the video recording at the furtherst location x / d tested, the uncertainty of the 

obtained values for the mean maximum plume height and width was estimated to be 

approximately 6.5% and 4% respectively (see error bars in Figure 4.5). It appears that 

the differences in mean maximum height H' between the HOT and COLD case are very 

small and are within the estimated error bars. Downstream of x / d = 60, the lateral 

spread of the COLD case becomes greater compared to the HOT case (Figure 4.5b), 

with the observed differences exceeding the error range. It is also evident that moving 

the deflector closer to the nozzle exit increases the spread of the plume downstream in 

both vertical and lateral direction. 

 Calculations of the modified Froude number Fr* ≈ 95 and buoyancy length scale 

lb ≈ 1.6×10
-4

 give a lift-off distance of approximately 35 mm according to the criterion 

by Meroney (1979). Further analysis of the calculations shows that if the helium flow 

rate were reduced to QHe = 2 l/min (more than 4 times) and the remaining flow 

parameters were kept the same, the lift-off distance should increase only by a factor of 

approximately 2, according to Equation 2.12 and Equation 2.13. During the 

experiments of 3), where QHe was varied from 0 to 9 l/min, the plume was observed to 

be completely attached to the ground at such small distances downstream of the nozzle. 
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Figure 4.5:  Comparison of HOT (f = 0.33) and COLD case with a deflector (w / d = 11.3) at β = 

0.134 (U∞ = 2 m/s): (a) non-dimensional mean plume height; (b) non-dimensional plume width 

 

 

5) QHe = 9 l/min (f = 0.33); w / d = 11.3, D varied between 32 ≤ D ≤ 64; freestream 

velocity varied between 1 ≤ U∞ ≤ 5 m/s (12 ≤ Fr* ≤ 1478); Atmospheric Boundary 

Layer modelled at 1:200 scale 

 A further flow visualisation study of the exhaust plume was conducted in a 

simulated Atmospheric Boundary Layer at 1:200 scale, representing the suburban area 

of a major city. The ABL was modelled by placing 21 rows of roughness elements 

(100×100×50 mm) in the flow development section, placed 450 mm apart in a diamond-

shaped orientation (similar to Figure 3.9a in Chapter 3.4.2) starting approximately 2 m 

upstream of the nozzle exit position. The arrangement included a set of elliptic vortex 

generators, a castellated barrier and a turbulence grid, placed upstream of the roughness 

elements. Such arrangement is commonly used in Cranfield University’s 8'×4' ABLWT 

to model ABL at sub scale, for example in studies by Cini (2008) and Stein (2009) 

where more information can be found on the mean velocity and turbulence intensity 

profiles in the working section. Comparing the results for H' and W' (Figure 4.6) with 

the results of 4), shows a significant increase of the plume spread in both vertical and 

lateral direction as a consequence of the higher turbulence intensity of the boundary 

layer flow, however, again no lift-off was observed for x / d ≤ 129. With increasing 

freestream velocity and thus increasing β, the mean plume width W' reduces, while the 

mean plume height H' remains approximately the same (Figure 4.7), thus the freestream 
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flow constrains primarily the lateral spread of the plume within the range of β tested. 

For 12 ≤ Fr* ≤ 1478, the lift-off distances would be between 12 mm and 138 mm, 

according to the criterion by Meroney (1979). Again, no lift-off was observed. 

 

4

5

6

7

8

9

10

11

12

13

14

20 30 40 50 60 70 80 90 100

Non-dimensional distance, x  / d

N
o
n
-d

im
e
n
s
io

n
a
l 
m

e
a
n
 p

lu
m

e
 h

e
ig

h
t,

 H
'   D = 32

  D = 32; with ABL

  D = 48

  D = 48; with ABL

  D = 64

  D = 64; with ABL

β  = 0.134

w  / d  = 11.3

 f  = 0.33

D  = 32; with ABL

D  = 48; with ABL

D  = 64

D  = 64; with ABL

D  = 48

D  = 32

 
(a) 

8

10

12

14

16

18

20

22

20 30 40 50 60 70 80 90 100

Non-dimensional distance, x  / d

N
o
n
-d

im
e
n
s
io

n
a
l 
m

e
a
n
 p

lu
m

e
 w

id
th

, 
W

'   D = 32

  D = 32; with ABL

  D = 48

  D = 48; with ABL

  D = 64

  D = 64; with ABL

D  = 32; with ABL

D  = 48; with ABL

D  = 64

D  = 64; with ABL

D  = 48

D  = 32 β  = 0.134

w  / d  = 11.3

 f  = 0.33

 

(b) 

 

Figure 4.6:  Plume development downstream of a deflector (w / d = 11.3) in an Atmospheric 

Boundary Layer at β = 0.134 (U∞ = 2 m/s): (a) plume height H'; (b) plume width W' 
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Figure 4.7:  Variation of non-dimensional plume height H' and width W' with velocity ratio β 

downstream of a deflector (w / d = 11.3) in an Atmospheric Boundary Layer 

 

 

 From the first stage of the ‘lift-off’ experiments several important conclusions 

were drawn regarding the influence of the test parameters on the plume development: 

 

 First and most important, it appears that, even reduced to 1 m/s, the freestream 

velocity is too high, constraining the plume and not allowing its buoyancy to become 

dominant within the range of distances x / d tested. For a clean boundary layer in the 

working section (no ABL modelled), U∞ = 1 m/s gives a velocity Uref = 0.94 m/s at a 

reference height of 0.125 m from the ground, which is equivalent to 25 m at full 

scale. For the same ratio Uref / Uj at full scale, the full-scale wind speed is estimated 

to be 22 m/s, assuming a full-scale exit jet velocity of 345 m/s, reported by Cini 

(2008) in a review on CFM56 engines models. From meteorological data, published 

by the UK Department of Energy and Climate Change (DECC, 2014), the annual 

mean wind speed at Cranfield Airport (and UK Midlands) can roughly be estimated 

to be between 5 and 7 m/s, measured at 25 m above the surface – more than 3 times 

the equivalent wind speed of the one tested at sub scale. 

 

 For a helium flow rate of 9 l/min and no external stream, the plume does not keep its 

integrity downstream. Small parts were observed to separate from the top of the 

plume in a slow upward motion, indicating buoyancy dominance away from the wind 

tunnel floor. However, close to the surface the flow remained attached, thus no 
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coherent plume lift-off was observed. This suggests that lift-off possibly occurred 

further downstream of the range x / d tested. 

 

 Differences in the plume dimensions were observed when varying the deflector 

position downstream of the nozzle exit. Generally, when the deflector was positioned 

closed to the nozzle the plume downstream appeared to be larger. Relevant 

parameters in this case are the deflector position with respect to the jet velocity, and 

the deflector size relative to the plume size. 

 

 The lift-off criterion (Equation 2.12) by Meroney (1979) doesn’t seem to agree with 

the obtained results. For the test flow parameters, the lift-off criterion seems to 

predict lift-off distances very close to the nozzle, at which the plume was observed to 

be completely attached to the surface. An alternative theoretical method of predicting 

lift-off would be to use the lift-off parameter (Equation 2.10) suggested by Briggs 

(1973), which would require measurements of shear stress at the surface to calculate 

the friction velocity. 

 

 Based on these results, additional experiments were performed with the wider 

deflector of 500 mm width (w / d = 80.6). Videos were recorded at various x / d for two 

deflector positions D = 32 and D = 64 and two freestream velocities U∞ = 0.6 m/s (β = 

0.04) and U∞ = 1.8 m/s (β = 0.12). The total and helium nozzle flow rates were kept the 

same, at 27 and 9 l/min respectively. The camcorder was moved to 1800 mm (290d) to 

increase the tests range of distances downstream of the nozzle (x / d ≤ 226). 

 

 As with previous tests, no lift-off of the plume was observed in the working 

section. The wider deflector (w / d = 80.6) was estimated to have a width equal 11.7 and 

3.6 times the local jet plume width at D = 32 and D = 64 respectively; while for the 

narrower deflector (w / d = 11.3) these values were 1.6 and 0.5 respectively. When 

comparing both deflector cases for the same D and x / d (Figure 4.8), it is evident that 

the wider deflector produces a larger plume downstream, which is possibly related to a 

greater loss of jet momentum, resulting in increased entrainment of ambient air into the 

turbulent jet. Within the scope of the experiment, this effect is considerably greater 

when the deflector is further away from the nozzle (D = 64), while for D = 32 only 

small differences in the plume size far downstream of both deflectors (x / d = 161) can 

be observed. These trends are consistent with the results obtained during the first tests 

with regard to the deflector position relative to the nozzle exit and highlight the 

importance of the deflector size relative to the plume dimensions. The effect of reducing 

the freestream velocity on the size of the plume downstream of the deflector appears to 

be greater when the deflector is further away from the nozzle (D = 64). Again at large 

distances, the coherent plume stays attached to the ground with small parts separating 
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from the top of the plume possibly due to buoyancy effects, but no lift-off from the 

ground was observed within the range of distance tested. 
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Figure 4.8:  Comparison of non-dimensional plume area S downstream of a single deflector of 

width w / d = 80.6 or w / d = 11.3 at fan speeds of 50 and 100 rpm for: (a) D = 32; (b) D = 64 
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 It is evident that even at low wind tunnel velocities the plume spread seems to be 

restricted as the secondary flow becomes more dominant with downstream distance 

from the nozzle. For this reason, subsequent tests were performed with no wind tunnel 

flow. It should be noted that this configuration was not tested previously as the ‘wind 

tunnel off” tests were not extended further than a simple nozzle jet configuration 

without a deflector after the results of 3). When no deflector was present, no lift-off was 

observed between x / d = 129 and x / d = 177. Images of the plume at these distances are 

shown in Figure C.6a and Figure C.7a in Appendix C respectively. At x / d = 177, the 

coherent plume is still attached to the surface with small individual parts separating at 

the top. These are not entirely visible in Figure C.7a since they are above the laser sheet. 

 

 If a deflector is placed in the path of the jet, the plume eventually separates from 

the surface within the tested range of x / d. Images showing the plume development for a 

deflector positions D = 32 are shown in Figure 4.9 and Figure 4.10 (two images for 

each x / d). At x / d = 129, the plume downstream of the narrower deflector (w / d = 11.3) 

is still attached (Figure 4.9a), whereas in the case of the wider deflector (w / d = 80.6) it 

has just about separated from the surface (Figure 4.10a). At x / d = 177, the plume 

downstream of the narrower deflector also lifts off (Figure 4.9b), while the plume 

downstream of the wider deflector now ‘sits’ in the air above the laser sheet upper 

boundary and is not visible within the illuminated laser sheet plane. This occurs already 

at x / d = 145 (Figure 4.10b). Placing the deflector further downstream increases the 

plume lift-off distance. Images of the plumes downstream of both deflectors, positioned 

at D = 64, are shown in Figure C.6 and Figure C.7 in Appendix C. At x / d = 177, the 

plume downstream of the narrower deflector (w / d = 11.3) does not lift off unlike when 

the deflector is positioned at D = 32. The behaviour of the upper part of the plume 

seems to be dominated by buoyancy, increasing the overall height of the plume and 

causing some parts of it to separate, but the coherent plume is still attached to the 

surface (Figure C.7b). For the wider deflector (w / d = 80.6), the plume has just about 

separated at x / d = 177 and is still visible within the laser sheet plane (Figure C.7c).  

 

     

(a)  x / d = 129 
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(b)  x / d = 177 

 
Figure 4.9:  Plume ‘lift-off’ downstream of a deflector of width w / d = 11.3 at D = 32 without 

freestream (U∞ = 0 m/s) 

 

 

     

a)  x / d = 129 

 

     
b)  x / d = 145 

 

Figure 4.10:  Plume ‘lift-off’ downstream of a deflector of width w / d = 80.6 at D = 32 without 
freestream (U∞ = 0 m/s) 
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 An additional test was conducted for a configuration of two deflectors of 12.5 and 

17.5 mm height and each of 500 mm width, positioned parallel and downstream of each 

other at a front-to-front spacing of 12.5 mm. The first (smaller) deflector was positioned 

at D = 64. Such configuration was expected to give less aerodynamic drag due to the 

sheltering effect of the smaller deflector positioned upstream, which in turn was 

expected to delay lift-off. As can be seen in Figure 4.11, where the plume development 

is shown at four locations downstream, lift-off does not occur until approximately x / d = 

226. This is considerably further downstream compared to the separation point for the 

single deflector (w / d = 80.6) case of D = 64. These results, together with the lack of 

separation observed within the distances tested in the case where no deflector was 

present (Figure C.6a and Figure C.7a), show that drag exerted on a buoyant wall jet 

promotes its lift-off from the surface and confirms the physical principle of the baffles 

concept at sub scale. 

 

    
(a)  x / d = 129           (b)  x / d = 177 

 

    

(c)  x / d = 193           (d)  x / d = 226 

 

Figure 4.11:  Plume ‘lift off’ downstream of a configuration of two deflectors of the same width 
(w / d = 80.6) in succession, first at D = 64; U∞ = 0 m/s 
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 Repeatability runs were conducted to study any variations in the location of plume 

lift-off. On a few occasions the plume was observed to lift off, then re-attach and lift off 

again within a single test, as follows. The chaotic movement of flow segments within 

the turbulent plume causes an accidental contact of a small flow segment with the 

surface, which draws the coherent plume downward re-attaching it to the surface. It 

stays attached for an indefinite time period until separation occurs again. The 

repeatability of this process doesn’t seem to follow any regularity as generally the 

plume would remain detached. Within the time periods when the plume remained 

attached within the laser sheet plane, it was observed to lift off further downstream 

(without laser illumination), thus the separation point shifted backwards and forwards 

within the process of lift-off and re-attachment. This phenomenon is shown in Figure 

C.8 in Appendix C by means of several images representing a video footage time period 

of 17 seconds. It was recorded at x / d = 65 for a single deflector of width w / d = 80.6, 

positioned at D = 32. Previously, for this configuration the plume separation occurred at 

x / d ≈ 129 (see Figure 4.10a). 

 

 In conclusion, coherent plume lift-off was observed within the distances x / d 

tested only when no freestream was present; even a freestream velocity of 0.6 m/s (β = 

0.04) seemed to prevent the buoyant plume from lifting off. However, small flow parts 

were observed to detach from the plume as it progressed with distance downstream of 

the nozzle, indicating that lift-off possibly occurred further downstream of the range of 

x / d tested. During tests without freestream it was observed that, when reaching the 

ceiling of the working section, the separated plume started moving upstream causing 

flow re-circulation, depicted schematically in Figure 4.12. A possible cause for this 

phenomenon is the constraining effect of the working section walls, trapping buoyant 

gas masses inside without the presence of wind tunnel flow. 

 

 
Figure 4.12:  Schematic illustration of the time dependency of a jet plume 'lift-off'; flow 

recirculation in the working section (side view; not to scale) 

Nozzle 

Working section floor Deflector 

Working section ceiling 

No ambient wind 

Point of separation 

Recirculation 
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4.3 Measurements of flow through porous screens 

 

 The second part of the initial experiments was concerned with porous materials 

and their possible use as surface material for the baffles. The tests were conducted to 

investigate the two-dimensional flow in the near field of porous screens in order to 

determine preliminary design parameters such as slope angle of the baffles towards the 

jet and surface porosity of the baffles. The experimental test programme was divided 

into quantitative pressure measurements and qualitative flow visualisation tests in the 

near field of porous screens. 

 

 

4.3.1 Pressure drop measurements 

 

 The pressure drop across a porous screen is a measure of its aerodynamic drag, 

which in view of the baffles concept was a primary design parameter for the field trials 

arrangement. Porous screens are also used in sub-scale wind tunnel testing to represent 

the pressure drop across a heat exchanger in automotive aerodynamics. The obtained 

pressure measurements, combined with experimental data for honeycombs of various 

thicknesses, were published as Gerova et al. (2013). 

 The purpose of the pressure measurements was to obtain pressure drop data across 

screens of various porosities and at different inclination relative to the freestream. This 

was achieved by adapting an existing blower wind tunnel such that a porous screen 

could be mounted in the blown duct covering its entire cross section area. An image of 

the blower tunnel showing its main components is presented in Figure 4.13. A detailed 

schematic illustration, showing the pressure tappings arrangement, is presented in 

Figure C.9 of Appendix C. Sections 1 and 4 are fixed while 2 and 3 (the working 

section) are variable, depending on the angle of inclination of the screen relative to the 

freestream direction, denoted with αs. The arrangement of sections 2 and 3 for all angles 

tested is presented in Appendix C in Figure C.10 and Figure C.11, while the individual 

cross sections in the plane of the screen are shown in Figure C.12. 

 

All pressures were taken as differential pressure readings, referenced to a pressure 

pref, which was measured just upstream of the contraction as a pneumatic average 

pressure of a ring of static pressure tappings. Static pressure measurements were carried 

out at various positions both upstream and downstream of the screen. These tappings 

are aligned with the lateral centre line of the working section. At αs = 90º, the readings 

were pneumatically averaged values from the wind tunnel top and bottom tappings, 

while at all other angles individual top and bottom readings were taken. The freestream 

dynamic pressure was measured with a Pitot-static tube mounted on the working section 
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centre line upstream of the screen (see Figure C.9). The pressure tubes from the static, 

Pitot-static and reference ring pressure tappings were connected to Omega PX139 

pressure transducers, which were in turn connected to the input channels of a data 

acquisition (DAQ) hardware. Data was recorded on a computer using National 

Instruments LabView software and a custom DAQ programme written for the tests. 

 

 
 

Figure 4.13:  Open circuit layout blower tunnel, half of working section (αs = 90º) removed 

 

 

The measurements were conducted with screens inclined at 90º, 75º, 60º and 45º 

to the freestream. The wind tunnel speed U∞ was varied between 3 and 31 m/s. Within 

this range the velocity profile of the empty working section (no screen mounted) was 

measured at the lateral centre line and was found to be uniform (within ±1% of the 

mean value) for 90% of the working section height. Five different materials with 

porosity γ, defined in Equation 2.15 in Chapter 2.7, between 0.76 and 0.41 were tested. 

Most of the materials used had manufacturer data for their porosity. If this data was not 

available, the porosity was calculated either by measuring samples with a microscope or 

by taking photographic images of the screens against a single-colour background and 

using pixel-counting software, i.e. Pixcavator IA 4.2, to measure the ratio of mesh 

(material) pixels to background pixels. On these measured porosity values the tolerance 

was statistically estimated to be nominally ±0.03. 

 

The results for the longitudinal pressure distribution along the duct show a 

consistent trend which is qualitatively similar for all screens tested. Data for a screen of 

Contraction 

Reference pressure 

tappings 

Inlet (fan) 

Pitot-static 

tube 

Working 

section 

(half) 

2 1 
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porosity γ = 0.64 inclined at 90º and 45º are shown in Figure 4.14a and Figure 4.14b 

respectively, where the non-dimensional coordinate x′ is used to describe the 

longitudinal distance x from the start of section 2 of the working section relative to its 

total length lws. More example results are included Appendix C in Figure C.13 for γ = 

0.64 and angles of 75º and 60º, and Figure C.14 and Figure C.15 for γ = 0.41. The 

pressure drop across the screen increases with increasing wind tunnel velocity U∞. This 

is shown as variation with Reynolds number Re in Figure 4.14, where Re is defined in 

Equation 4.5. The average screen thickness, equal to 1 mm, was used as lref to calculate 

Re. 

 

 Re 







 reflU
  

Equation 4.5 

 

Downstream of the screen, the newly established lower static pressure remains constant 

until the end of the working section (x′ = 1) and then slowly increases with distance. 

The same trend is observed upstream of the screen. These changes in static pressure 

away outside of the working section are due to the variable cross section of the duct 

sections 1 and 4, which have corner fillets of longitudinally decreasing (with distance 

from the working section) cross section area. 

 

As a result of the duct-type working section arrangement, when the screen is 

inclined, differences in the top and bottom pressure distribution occur in close proximity 

to the screen. These differences become greater with increasing wind tunnel speed and 

screen angle of inclination. This occurs possibly due to a difference in the effective 

screen angle relative to the incoming flow (streamlines are aligned with the duct walls) 

between top and bottom of the working section. For all angles of inclination tested 

lower than 90º, the screen at the top is inclined with the flow direction and at the bottom 

it is inclined against the flow direction. This results in a noticeably greater pressure drop 

across the screen at the bottom (x′ = 0.8) compared to the one at the top (x′ = 0.2), as can 

be seen in Figure 4.14b. However, sufficiently far away from the screen (upstream of x′ 

≈ 0.1 and downstream of x′ ≈ 1) the pressures on top and bottom even out as the flow 

symmetry in vertical direction within the duct is restored, as evident from the data for 

angles of 75º, 60º and 45º, shown in Figure 4.14b as well as in Figure C.13, Figure 

C.14 and Figure C.15 of Appendix C. 
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Figure 4.14:  Longitudinal static pressure distribution in the working section across a screen of 

0.64 porosity at an angle of inclination of: (a) 90º and (b) 45º 

 
x-axis shows longitudinal distance along the wind tunnel centre line, non-dimensionalised by the 

working section length; the working section starts at x′ = 0 and ends at x′ = 1; y-axis shows the  
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pressure difference between the local static pressures (upstream and downstream of the 

screens) and the reference ring static pressure in the contraction. 

 

 

To evaluate the variation of pressure drop Δp with porosity at all four screen 

angles of inclination tested, Δp was calculated with measured static pressure values p at 

both ends of the working section (see Equation 4.6). This was sufficiently away from 

the screen to eliminate the previously-described effects on the pressure distribution at 

the top and bottom of the wind tunnel, caused by inclining the screen. For the purpose 

of non-dimensionalising the data obtained, a pressure drop coefficient Δp / q∞ was 

introduced as follows: 

 

 
   










q

pppp

q

Δp xrefxref 10  

Equation 4.6 

 

Idelchik (1994) describes the pressure drop coefficient of barriers distributed 

uniformly over tube or duct cross sections to be dependent on their porosity, shape 

(holes arrangement) and Reynolds number. Data presented by Idelchik (1994) for 

screens of various shape and porosity, suggest that Δp / q∞ becomes independent of 

Reynolds number (based on freestream velocity and screen thickness) for Re > 500. For 

the screens tested in the current experiments, the Reynolds number range was between 

nominally 200 and 2100. 

The variation of Δp / q∞ with Reynolds number for all screen angles of inclination 

tested is shown in Figure 4.15. It is evident that for materials with porosity greater than 

0.50, Δp / q∞ becomes virtually independent of Reynolds number for Re ≥ 500 (U∞ ≈ 8 

m/s) regardless of the mesh inclination, which is in good agreement with Idelchik 

(1994). The pressure drop coefficient variation for γ = 0.41 shows tendency to become 

constant at higher speeds outside the tested range. For a given porosity, Δp / q∞ reduces 

with angle of inclination, thus inclining the screen would reduce its aerodynamic 

loading, i.e. its aerodynamic drag. As evident from Figure 4.15, the drag-reduction 

effect of inclining the screen to the flow decreases as the screen porosity increases. For 

example, at Re ≈ 1280 (U∞ = 19 m/s) the pressure drop coefficient for γ = 0.41 is reduced 

by approximately 29% between 90º and 45º, while for γ = 0.70 this reduction is only 

13%. Generally, screens of high porosity (γ ≥ 0.64) show only small differences in their 

pressure drop coefficient variation with freestream speed and screen angle of inclination. 

Changes in αs have a considerably smaller effect on Δp / q∞ compared to screens of 0.50 

and 0.41 porosity. 
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Figure 4.15:  Variation of pressure drop coefficient with Reynolds number for mesh angles of 

inclination of 90º, 75º, 60º and 45º 

 

 

The measured variation of pressure drop coefficient with porosity for each screen 

angle of inclination is shown in Figure 4.16. For Re > 450 and porosity values of 0.41 ≤ 

γ ≤ 0.76, the pressure drop coefficient was found to vary with the power of the screen 

porosity as follows 

 

 2

1

B
B

q

Δp




 

Equation 4.7 
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where the proportionality constant B1 and the exponent B2 vary with αs and were 

obtained using exponential curve fitting of the form of Equation 4.7 and are given in 

Table 4.1 for all angles αs tested. The complete equations and their corresponding 

coefficients of determination R
2
 are shown in Figure 4.16. 

 

Table 4.1:  Proportionality and exponential coefficients for the variation of pressure drop 

coefficient with porosity 

αs ( º ) αs (rad) B1 B2 

0 0 0.192 -3.048 

15 0.262 0.193 -2.902 

30 0.524 0.182 -2.912 

45 0.785 0.177 -2.699 

 

 

It should be noted that at the lower end of the screen porosity range (γ ≈ 0.40), the 

pressure drop coefficient does not become completely independent of Reynolds number 

within the range tested. Consequently the accuracy of Equation 4.7 decreases for 

screens of such porosity. Additionally, it is evident that the mathematical relationships 

identified are not representative towards the high (γ = 0) and low (γ = 1) ends of the 

porosity range. In the latter case, where no screen material is present, the pressure drop 

should be theoretically zero, yet they yield a small positive value for Δp / q∞, equal to B1. 

 

 Idelchik (1994) and Hou et al. (2009) show two different empirical relationships 

for describing the variation of Δp / q∞, denoted as ‘resistance coefficient’, with porosity 

for screens placed normal to the flow within a duct. Comparing experimental and 

numerical data on a perforated plate, Hou et al. (2009) use the following equation 

 

 1
1

22


 Bq

Δp
 

Equation 4.8 

 

where the coefficient B varies with the porous material’s open area arrangement shape 

(holes distribution). For a circular holes arrangement, Hou et al. (2009) use B = 0.85. 

Although showing a qualitatively similar variation, Equation 4.8 overestimates the 

current experimental data at αs = 90º (Figure 4.16a) mainly due to the choice of B. For 

B = 1.17, Equation 4.8 shows very good agreement with the results for αs = 90º. 

 

Idelchik (1994) suggests the following empirical equation based on data obtained 

for circular metal wire screens with square-shaped holes 
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Δp
 

Equation 4.9 

 

where k = 1.3 for Reynolds numbers Re ≥ 500 based on freestream velocity and wire 

thickness. This is the case in the current experimental data for velocities U∞ > 8 m/s (Re 

≈ 550). Equation 4.9 is in an excellent agreement with the experimental data at αs = 90º 

(Figure 4.16a). Furthermore, by reducing the value of k appropriately (Figure 4.16b, 

Figure 4.16c and Figure 4.16d), Equation 4.9 also shows similar agreement to the 

experimental data for the inclined screens at 75º, 60º and 45º. 
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Figure 4.16:  Variation of pressure drop coefficient with mesh porosity for mesh angles of 

inclination of (a) 90º, (b) 75º, (c) 60º and (d) 45º 

 

 

4.3.2 Smoke visualisation 

 

 In addition to the measurements of pressure drop across screens located in a duct, 

the two-dimensional flow in the near field of ‘free’ screens, i.e. no duct present (see 

Figure 4.17), was investigated using the flow visualisation method outlined in Chapter 
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3.2.3. The arrangement of the 1500 mm long, 1100 mm high and 100 mm wide smoke 

tunnel working section is shown in Figure 4.17. The flow was restricted only to the 

working section xz plane of symmetry to create a two-dimensional flow field. The 

screens were fixed on two cylindrical struts of 13 mm diameter each positioned 300 mm 

apart on a removable turntable. The wind tunnel speed in the working section was 

measured with a Pitot-static tube, positioned well above the screens. Side-view images 

of the flow pathlines, illuminated by the working section lights, were taken with a 

digital camera, positioned at approximately half the working section height. 

 

 
Figure 4.17:  Schematic illustration of the smoke wind tunnel working section (side view, not to 

scale) 

 

 

 Screens of porosity γ = 0.80, 0.41, 0.35, 0.20, 0.15 and 0.10 were tested at 

freestream speeds U∞ = 3, 5 and 7 m/s, corresponding to Reynolds numbers Re, based 

on U∞ and lref = 300 mm, of 60000, 100000 and 140000. The screen chord length was 

used as reference length as it is the relevant scale in an external flow around flat plates 

and windbreaks (see Chapter 2.7). Ito & Garry (1998) used the same Re analysis and 

observed only small Reynolds number influence on the screen pressure distribution for 

Re > 163000. The screen angle of inclination was varied between 90º (perpendicular to 

the flow direction) and 0º in steps of 10º. 

 The analysis of the taken images investigated the orientation of the central 

pathline upstream and downstream of the screen relative to the freestream direction, 

denoted respectively as ‘entry angle θ1 and ‘upwash angle’ θ2. These concepts are 

elaborated graphically in Figure 4.18. The upwash angle is in the opposite direction of 

the flow deflection reported by Reynolds (1969), where the duct flow passing through 
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the screen is turned in the direction of inclination of the screen (see Figure 2.16 in 

Chapter 2.8). In the current case, the upwash resulted from the deflected flow around 

the screen, unrestricted in the absence of a duct, and was thought to be a measure of the 

vertical force, generated by the screen on the flow. The post-processing method 

consisted of measuring entry and upwash angles with a protractor on printouts of the 

taken images or in some cases digitally on a computer screen, using drawn lines and 

calculating the angle, when the quality of the printouts was not sufficient for accurate 

measurement. Another method, using pixel-counting software, was considered, however, 

it could not be applied consistently due to variation of the quality of the taken images. 

The measurement errors were estimated as ±0.5 deg for the screen inclination due to 

possible misalignment of the turntable during tests and an average of ±3 deg for the 

deflection angles. The latter one was based on statistical estimation from several 

repeated measurements. Screen porosity was measured using the method described in 

Chapter 4.3.1, with an estimated tolerance of ±0.03. 

 

   
 

Figure 4.18:  Smoke visualisation post-processing method; image of flow through a screen of 

0.35 porosity and 50º angle of inclination (flow direction from left to right) 

 

 

 Examples of flow visualisation images are shown in Figure 4.19 for various 

porosity and angles of inclination. The presence of the support struts affected the flow at 

both ends of the screen, displacing the nearby pathlines (Figure 4.19b). The central 

pathline, used to determine the entry and upwash angles, didn’t not seem to be affected 

by the struts, except at very low angles of incidence. For the screen of γ = 0.80, only 

small changes in the pathline orientation compared to the freestream were observed 

(Figure 4.19a) at all screen angles tested, thus the flow appears to be virtually 

independent of the angle of incidence. The entry and upwash angles at all αs for this 

screen were taken as 0. The screens of γ = 0.15 and γ = 0.10 were observed to behave 

similarly to a solid plate. In this case the majority of the airflow was deflected around 

the mesh, creating unsteady vortex shedding downstream similar to a von Karman 

vortex street. This resulted in a high oscillation of the entry flow pathlines, which 

Freestream 
direction Upwash angle θ2 

Screen angle αs 

Entry angle θ1 
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occurred at an increased frequency at higher wind tunnel speeds. Such unsteady 

phenomena would considerably increase the aerodynamic loading on the screen. In the 

taken flow visualisation images, the pathlines downstream of the screen were not visible 

as a result the shed vortices (Figure 4.19d). 

 

  
        (a)  γ = 0.80, αs = 60º, U∞ = 3 m/s      (b)  γ = 0.41, αs = 30º, U∞ = 3 m/s  
 

  

         (c) γ = 0.20, αs = 20º, U∞ = 7 m/s      (d)  γ = 0.10, αs = 45º, U∞ = 5 m/s  

 

Figure 4.19:  Examples of visualised flow pathlines for screens of various porosity and angle of 

inclination (flow direction from left to right) 

 

 

 Results for upwash angle variation with screen incidence for 0.41, 0.35 and 

0.20 porosity are plotted in Figure 4.20. It appears that the upwash angle θ2 reaches a 

maximum between 30º < αs < 50º, depending on the tested screen. At αs = 90º, all 

screens show only small changes in the orientation of the pathlines with respect to the 

freestream. The values for θ2 at αs = 0º were taken to be 0 in all cases. Generally, 

increasing the wind tunnel speed, and thus the flow Reynolds number, reduces the 

upwash angle. Plots of θ2 versus screen porosity (Figure 4.21) show that θ2 increases 

logarithmically with increasing porosity. The increase in upwash angle occurs possibly 

due to the deflection of the pathlines above and below the screen with increasing 

restriction of the flow through the screen. 
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Figure 4.20:  Variation of upwash angle (in degrees) with angle of inclination (in degrees) for 

screen porosity of: (a) 0.20, (b) 0.35 and (c) 0.41 
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Figure 4.21:  Variation of upwash angle (in degrees) with screen porosity for screen angles of 

inclination of: (a) 40º and (b) 50º 

 

 

 The maximum entry angle in all cases occurred between 40º < αs < 50º (Figure 

C.16 in Appendix C), which is in agreement with the results for the measured upwash 

angle. For all porosities other than γ = 0.80, as the screen angle of inclination increases 

from 0º, the entry flow aligns itself with the screen (entry angle θ1 increases). With 

decreasing screen porosity, and thus increasing restriction of the flow through the screen, 

only a few pathlines pass through the screen at low angles of inclination (αs ≤ 20º), 

while the rest are deflected above or below the screen (Figure 4.19c). 
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4.4 Discussion 

 

During the initial experiments of the research, the wind tunnel tests were 

conducted in two main directions: 1) to understand the behaviour of a sub-scale three-

dimensional buoyant jet in ground proximity, representing a full-scale engine exhaust at 

take-off, and to investigate the possibility of a lift-off of the coherent plume 

downstream where its natural buoyancy becomes dominant over its horizontal 

momentum; 2) to study the flow in the near field of porous screens of various porosity 

and angle of inclination to the freestream. The results of 2) were used to determine the 

preliminary design parameters of the baffles, such as porosity and slope angle, to be 

further investigated in subsequent tests and in the field trials. 

 

First, a three-dimensional buoyant wall jet from a single nozzle was investigated 

at 1:200 scale using laser sheet flow visualisation and modelling the jet buoyancy with 

the method outlined in Chapter 3.3. The ratio of freestream velocity to exit jet velocity β 

was varied up to 0.34 and the mole fraction of helium f in the jet up to 0.33, 

corresponding to a full-scale exhaust jet temperature of 403 K. Both increasing f and 

reducing β was found to increase the vertical spread of the plume downstream; 

individual parts of the top of the plume were observed to separate from the main plume 

body, which stayed attached to the ground within the range of tested longitudinal 

distances downstream of the nozzle exit. Reducing β also significantly increased the 

lateral spread of the plume. Modelling the Atmospheric Boundary Layer was also found 

to increase both the vertical and lateral spread of the plume. 

The observations made with regard to plume lift-off are in disagreement with the 

theoretical method for predicting lift-off distances by Meroney (1979). Within the range 

of tested longitudinal distances, a coherent plume lift-off was observed only under 

certain conditions: 1) no freestream and 2) a deflector present in the path of the jet. It 

was shown that increasing the deflector size (width) relative to the size of the plume 

reduced the downstream distance to lift-off. The baffles concept of promoting plume 

lift-off was demonstrated by comparing the plume at the same distance downstream of 

the nozzle without a defector in the jet path (no lift-off observed) and with a defector 

(plume separated from the surface). On a few occasions, the location of the point of 

separation from the surface was found to vary within the running time of the test. It was 

observed that the re-attachment of the plume was caused by an accidental contact of a 

part of the plume with the surface due to unsteady meandering in the plane at right 

angles to the flow. A probable cause of this effect is the constraining effect of the wind 

tunnel ceiling on the plume, leading to recirculation flow in the working section when 

no freestream is present. The following important conclusions with regard to the jet sub-

scale modelling were drawn: 
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 The ratio of freestream velocity to jet exit velocity is of high importance for the 

jet development with distance downstream and possible lift-off. Practically, 

scaling accurately the ambient wind speed of the field trials at 1:200 would 

mean operating the wind tunnel at its very low limit of steady freestream speed. 

 

 The position of the deflector relative to the nozzle exit plays a significant role 

in the plume development in terms of the deflector size compared to the plume 

size and in terms of the local jet velocity at the position of the deflector. In 

view of the BAe146-301 exhaust jet modelling, consisting of four individual 

jets merging as they travel downstream, the width of the baffles should be 

sufficiently wider than the local jet width. This would reduce the effect of any 

differences in the lateral spread of the full-scale four-engine jet compared to 

the sub-scale model where only a single nozzle is to be used. 

 

 

 The experimental results on the flow in the near field of porous screens showed 

consistent trends as the screen porosity and orientation were varied. The measured 

pressure drop across various screens, considered to be a measure of the screen drag 

coefficient, was found to decrease with porosity and angle of incidence. Thus, inclining 

the screen reduced the imposed aerodynamic loading by the jet. In view of the full-scale 

baffles, the jet would be unrestricted, i.e. free to flow around the baffles, thus the 

performed measurements in the duct blower tunnel overestimated the pressure drop. 

Any structural analysis based on this data would therefore be conservative. More 

importantly, it was observed that the pressure drop coefficient approached a constant 

value as the flow Reynolds number Re increased, which suggested Reynolds number 

independency of the results (in this case Re > 1200 based on freestream velocity and 

screen thickness). This is a positive result considering the small scale of the planned 

experiments, where complete Reynolds number equality with full scale cannot be 

achieved. 

 The upwash angle just downstream of an unrestricted screen was considered to be 

a measure of the vertical force (lift), which the screen exerts on the flow, and thus a 

desirable feature of the baffles in terms of adding vertical momentum to the exhaust jet 

buoyancy. Generally, the upwash angle increased with reducing porosity and was 

observed to reach a maximum value when the screens were inclined between 30º and 

50º, depending on the screen porosity. An important observation was the occurring 

vortex shedding downstream of screens of porosity γ < 0.20, similar to the flow around 

a solid flat plate. Considering the tolerance of the calculated screen porosity values, this 

is in agreement with the critical value of γ = 0.25, reported by Guoyt (1995) to classify 

‘impermeable’ and ‘permeable’ windbreaks (see Chapter 2.7). The value of 0.20 was 
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also reported by Raine & Stevenson (1977) for optimum reduction of mean leeward 

wind speed (γ = 0.20). 

 In view of the above, a material of 0.20 porosity was chosen for the baffle 

prototypes to be built for the field trials, aiming to provide the desired deflection of the 

flow upwards and at the same time reduce the aerodynamic load on the baffles and 

avoid vortex shedding (i.e. von Karman vortex street). Inclining the baffles was also 

considered, compromising between reduction in drag (and aerodynamic loading) and 

increase in lift, since the design of the baffle prototypes required them to have sufficient 

strength to withstand the strong jet blast and at the same time comply with the 

frangibility criteria for runway edge lighting, described in Chapter 8.1. The slope angle, 

together with the arrangement of the baffles in the field trials (i.e. number of rows and 

row spacing), were investigated in the next stage of the wind tunnel experiments, using 

force balance measurements. 
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5 Force balance measurements 
 

 Following the initial stage of the experiments, the design of the baffle 

configuration was approached with the choice of a skin-friction balance as a suitable 

design tool. This allowed the baffle shape and spatial arrangement to be optimised in 

terms of aerodynamic drag, which was considered the primary parameter within the 

mechanism of the baffle concept. The key parameters in the baffle configuration, such 

as baffle slope angle, number of baffle rows and separation distance between them, 

were investigated in a series of drag measurements, subject to this chapter. 

 

 

5.1 Experimental arrangement 

 

 In order to demonstrate the effect of the baffles, it was estimated that a 

momentum reduction, equivalent to about 25% of the total engine thrust, would be 

sufficient (Bennett, 2012). This was incorporated into a scoping calculation, based on 

drag coefficients of walls (ESDU, 1989) and inclined flat plates (Cook, 2010), and 

measurements at Cranfield Airport of the plume spread and velocity decay behind a 

stationary BAe 146-301 aircraft during engine power-up prior to take-off (Graham, 

2009). The calculation sequence is presented in detail in Appendix D1. The resulting 

initial (estimated) full-scale arrangement of five rows of baffles is shown in Table 5.1, 

where the downstream distance is taken from the piano keys of the runway (assumed 

aircraft starting position) and the baffles are inclined at a slope angle to the horizontal, α 

= 45º. The spacing was estimated at 12× the slope height h' of the row upstream, or 

approximately 17h, ensuring the baffles are located safely below the standard landing 

approach slope, i.e. 3º. 

 Given this configuration, the wind tunnel models were manufactured as wooden 

prisms at 1:50 scale with slope angles α equal to 45º, 60º and 90º, keeping the width and 

the vertical height constant for the respective row from 1 to 5, as given in Table 5.1. 

The width of each row w corresponds to the estimated width of the jet and results in an 

aspect ratio w / h of approx. 21 for each row. The dimensions of the models at 1:50 

scale are included in Figure E.1 in Appendix E. During tests the baffle rows were fixed 

to the balance plate with double-sided tape. It should be noted that the models are not 

representative for a typical windbreak shape, which is essentially an inclined flat plate 

or porous screen, due to their upright base. However, the purpose of this investigation 

was to obtain trends in the drag variation of various baffle configurations, not precise 

drag coefficients for estimation of drag forces in full scale. Therefore, these simplified 

models were considered suitable for the purpose of the tests. 
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Table 5.1:  Parameters of the provisional full-scale baffle calculation 

Baffle row 

no. 

Distance 

from engines 

[m] 

Estimated 

width of jet
*
 

[m] 

Slope 

height, h ' 

[m] 

Vertical 

height
**

, h 

[m] 

1 60.0 14.6 1.00 0.71 

2 72.0 17.6 1.20 0.85 

3 86.4 21.1 1.44 1.02 

4 103.7 25.3 1.73 1.22 

5 124.4 30.4 2.07 1.46 

 * Estimated from Lidar data during field trials at Cranfield (Graham , 2009) 

 ** The vertical height is given for a baffle slope surface inclined at α = 45º  

 

 

 The measurements were taken in the 8’×4’ Atmospheric Boundary Layer Wind 

Tunnel (ABLWT). The working section boundary layer (see Figure 5.4 in Chapter 5.3.1) 

was that which formed downstream of a clean flow development section, i.e. no 

roughness elements. The jet flow was simulated with a round nozzle of diameter 20 mm. 

Figure 5.1 shows a schematic of the arrangement for each of the cases considered. 

Images of the baffle models in the working section are shown in Figure 5.2. The first 

set of tests was performed at a freestream velocity of 14 m/s for all three types of baffles, 

varying the distance between the rows and the number of rows on the balance plate 

(Figure 5.1a). For the second set of tests, the nozzle was positioned at 60 nozzle 

diameters from the first row of baffles (Figure 5.1b). The jet flow of ambient air was 

supplied by an external compressor connected to the nozzle through plastic tube 

underneath the working section floor. It had an exit bulk velocity of Uj ≈ 57 m/s, 

equivalent to a Reynolds number, based on Uj and nozzle diameter, of nominally 75200. 

Tests were performed with both (β = U∞ / Uj = 0.05) and without freestream (β = 0) for 

configurations of three, four and five rows of baffles inclined at α = 60º. 
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(b) 

 
Figure 5.1:  Schematic illustration of the 8'×4' ABLWT working section arrangement for force 

balance measurements of an array of baffles at 1:50 scale, subjected to: (a) freestream, (b) a 

nozzle jet (side view, not to scale) 

 

 

 

 

 

 

 

 

 

 

 

 

         (a)       (b) 

 

 

 

 

 

 

 

 

 

 

         (c)       (d) 

 
Figure 5.2:  Images of the 8'×4' ABLWT working section for force balance measurements 

(a) freestream α = 90º (flow direction is from bottom left), (b) freestream α = 45º (flow direction is 

from bottom left), (c) nozzle jet α = 60º straight arrangement (flow direction is from left to right), 

(d) nozzle jet α = 60º arc-shaped arrangement (flow direction is from bottom to top) 
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5.2 Post-processing and repeatability 

 

 Given that the balance measures the aerodynamic load experienced by both the 

baffles and the plate on which they are mounted, measurements were also made on the 

plate in isolation to aid the subsequent data analysis as follows: 

 

1) A total drag-force coefficient CT is calculated from Equation 5.1 with the freestream 

density ρ∞ determined from the recorded ambient barometric pressure and temperature, 

and based on a reference area Aref of 0.0489 m
2
 (the sum of the projected frontal area of 

all five rows of baffles, calculated with the models’ width w and vertical height h). 

 

 
ref

T
T

AUρ.

F
C

2
50 

   

Equation 5.1 

 

 

2) The balance plate drag coefficient Cb, defined in Equation 5.2, is calculated. The 

average value for U∞ = 14 m/s (or q∞ ≈ 115 Pa) is Cb = 0.04. 

 

 
ref

b

b
AUρ.

F
C

2
50 

   

Equation 5.2 

 

 

3) The drag coefficient of the baffle models CD is calculated by subtraction: 

 

 bTD CCC    

Equation 5.3 

 

 

 This data reduction method assumes the same plate tare-drag coefficient Cb 

irrespective of the number of rows of baffles or their longitudinal position on the plate. 

It does not take into account the ‘loss’ of plate area due to being covered by the baffles, 

nor the changes in the flow structure and boundary layer over the free plate area due to 

the presence of the baffles. Additional runs were performed to investigate the effect of 

changing the position of the baffles on the plate for configurations of two, three and 

four rows. Relative differences in CD of up to 4% were observed, which were 

considered insignificant for the purpose of the tests. The differences in drag arise 

possibly due to the following flow development: a more forward position leaves the 

majority of free plate area downstream of the models and is therefore within their wake, 
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governed predominantly by turbulent vortex formations and associated reverse flow; 

when the models are at the back of the plate, its free frontal area is subjected to a fully-

developed turbulent boundary layer. The method was considered sufficiently accurate to 

obtain trends in the aerodynamic drag behaviour of the baffles. 

 

 Repeatability runs for various configurations of five rows of baffles at Reynolds 

numbers in the nominal range 10000 < Re < 26000, based on the measured freestream 

velocity and the vertical height of the largest baffle row h5, are presented in Figure 5.3. 

CT appears to approach a constant value as the freestream velocity increases and thus 

becomes independent of Reynolds number close to the test conditions (U∞ = 14 m/s 

corresponding to Re = 26000). 

 Figure E.2 in Appendix E gives an overview of the repeatability in terms of 

relative errors in CF and absolute force errors (in N) for the lowest (6 m/s) and highest 

(14 m/s) tested freestream velocity. These were calculated from the minimum and 

maximum measured forces within all runs of the appropriate configuration and 

freestream velocity. At 14 m/s, the relative errors for most data are within 1%. At 6 m/s 

the uncertainties increase as most relative errors are within 5%, with one set of data 

reaching 7.6%. Most absolute errors are within 0.02 N, indicating good repeatability 

even at low speeds. This is a positive conclusion for the application of the skin-friction 

balance in the planned nozzle experiments, where the exerted forces on the baffles 

would be considerably smaller due to the decay of the jet velocity with distance 

downstream. 

 The repeatability tests for the balance platform indicate similar absolute errors of 

up to approximately 0.03 N. 

 

 The choice of h5, equal to 29 mm, as characteristic length in the calculated 

Reynolds numbers of Figure 5.3, is due to its assumed role as a governing length scale 

in the flow field close to the baffles. It may be argued that the governing length scale 

would depend on the spacing of the rows. For example, if the rows are positioned close 

together, the taller rows would be in the wake of the smaller ones, thus the drag of the 

array would be determined mainly from the height of the first row. By all means, the 

drag forces on the baffles would be caused primarily by flow separation and the 

presence of a wake region downstream of each row. Returning to Figure 5.3, there 

seems to be little variation of the results with Reynolds number for Re > 18000. In view 

of the experiments planned at 1:200 scale, the Reynolds number at the nozzle can be 

assumed to be below 10000, and lower locally at the baffle array. Therefore, a Re 

dependency at 1:200 scale should be expected. However, the results shown in Figure 

5.3 can surely be regarded as positive, since the quoted Re at 1:200 scale and the 

observed limit value of Re = 18000 are of the same order of magnitude. In comparison, 

the Reynolds numbers at full scale and 1:200 scale differ by three orders of magnitude. 
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Figure 5.3:  Total drag coefficient vs. Reynolds number for repeated runs with various 

configurations of five baffle rows;  

 

x-axis shows the Reynolds number calculated with the freestream velocity and height h5 of the 

largest baffle row; y- axis shows the total force coefficient, calculated from Equation 5.1 

 

 

5.3 Results 

 

5.3.1 Drag of single baffles beneath freestream 

 

 Vertical profiles of the mean velocity in the empty working section were 

measured to determine the boundary layer development on the balance plate. The 

measurements were taken at three distances x from the start of the plate along the centre 

line, equal to 0.095lP, 0.5lP and 0.95lP, where lP is the length of the plate equal to 1060 

mm. The boundary layer thickness δ was determined by obtaining a numerical 

approximation of the variation of U with height z close to the measured freestream 

velocity using the Microsoft Excel function Trendline. The data is presented in a 

logarithmic plot in Figure 5.4, showing good linear fit. Using Trendline and Equation 

3.13, included in Chapter 3.4, the power-law exponent a was estimated to be 

approximately 1 / 8, varying slightlty depending on the location on the balance plate 

where the measurements were taken. It is in good agreement with the theoretical power 
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exponents of 1/7 and 1/9, used for a fully developed turbulent boundary layer on a flat 

plate at local Reynolds numbers, based on the freestream velocity and the distance from 

the plate’s leading edge, of 5×10
5
 < Re < 10

7
 and 10

6
 < Re < 10

8
 respectively (Garry, 

2008). The boundary layer measurements were used to estimate the velocity at the 

height of the individual baffle rows in the subsequent analysis. 

 

 
 

Figure 5.4:  Vertical boundary layer velocity profiles measured along the centre line of the empty 

8'×4' working section at 0.095lP, 0.5lP and 0.95lP 

 

 

 For a single baffle row, the drag coefficients CDn and CF are calculated from 

Equation 5.1 to Equation 5.3, based on a reference area equal to the corresponding 

projected baffle frontal area (w × h). To calculate CF, the drag coefficient CDn is 

multiplied with the squared ratio of freestream velocity to velocity at the corresponding 

baffle height h, taken from the measured velocity profile at x / lP = 0.5. As shown in 

Figure 5.5, the results compare well with the empirical formula of Plate (1964), 

obtained for 0.09 ≤ h / δ ≤ 0.50, even at lower values of h / δ. The formula is presented in 

Equation 2.16 in Chapter 2.7. 

 

 The calculated values of CF for baffles with a slope angle α = 90º remain 

approximately constant with h / δ, however they are considerably lower compared to 

those reported in ESDU (1989) and Cook (2010). The value of 1.20, stated by Cook, is 

a good approximation for the typical range of Jensen number for fences, i.e. between 10 
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and 1000. The Jensen number Je was defined in Chapter 2.7 as the ratio of fence height 

h to roughness length z0. If the boundary layer is developed over a smooth surface, as 

was the case for the boundary layer measurements, z0 is practically zero and Je = ∞. As 

shown by Cook (2010) using comprehensive data reported by Ranga Raju et al. (1976), 

CF reduces with increasing Jensen number (see Figure E.5 in Appendix E). Therefore, 

the lower values, obtained here for a boundary layer developed over a smooth surface, 

are justified. 
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Figure 5.5:  Drag coefficient vs. row-height-to-boundary-layer-thickness ratio for a single-row 

baffle of 90º, 60º and 45º slope angle 

 

 

5.3.2 Drag of arrays of baffles beneath a freestream 

 

 For configurations of multiple rows of baffles the drag coefficient was 

calculated using the same method of Equation 5.1 to Equation 5.3 with a reference area 

Aref of 0.0489 m
2
, equal to the sum of the projected frontal areas of each individual row. 

The front-to-front spacing between the baffle rows, b, was varied between 3.5h1 and 

21h1 (with each row a constant distance apart). Additional two cases of bi = 12h'i and bi 

= 15h'i, where the spacing increases progressively from row to row as the slope height 

h'i increases, were also tested. For the five-row configurations of the latter two cases 

and for b = 21h1 the first row had to be positioned upstream of the balance plate due to 

insufficient plate length. This was accounted for by measuring the drag of the first row 

individually in separate tests and adding it to the results. 

Plate (1964), Equation 2.16 

ESDU (1989) 
Cook (2010) 
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 For the five-row configuration, also referred to as ‘all 5’, the drag coefficient was 

observed to vary linearly with distance between the rows (see Figure 5.6). As b / h1 

increases towards infinity, the influence of the wake, caused by the rows upstream, and 

thus the interference drag between the rows should reduce to zero and the total drag of 

the configuration should asymptotically approach a constant value. The CD values at 

infinite non-dimensional spacing were obtained by measuring the drag of each row 

separately, and correspond to the sum of the resulting individual drag coefficients of the 

baffle rows. Figure 5.6 shows similar trends of CD with b / h1 for all three baffle angles 

tested. As with single rows (see Figure 5.5), inclining the baffle surface facing the flow 

reduces its drag. This effect is well known for single flat plates of width-to-slope-height 

ratio larger than 2 in freestream (ESDU, 1970). 
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Figure 5.6:  Drag coefficient vs. spacing for configurations of five rows of baffles inclined at 90º, 

60º and 45º in a freestream 

 

 

 The variation of drag coefficient with number of baffle rows is shown in Figure 

5.7, where s and n are the number of baffle rows starting from the smallest and the 

largest respectively. For example, s = 3 is a configuration of rows 1, 2 and 3, while n = 

3 is a configuration of rows 3, 4 and 5. At close distances (b / h1 = 3.5), the drag 

coefficient reduces as n increases from 1 to 5 due to the sheltering effect produced by 

the wake of the smaller rows upstream. At b / h1 = 7, CD remains approximately constant 

as n is varied, thus the (negative) interference drag of the rows upstream must equal 

approximately the incremental drag rise due to increase in row size. For greater b / h1, 
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CD increases with n. In both Figure 5.7a and Figure 5.7b, the infinity values for each 

number of baffles, both n and s, appear to be closer to the cases of b tested as the angle 

reduces from 90º to 45º, suggesting that inclining the baffles reduces the influence on 

the rows downstream by possibly reducing the extent of the wake. 

 Figure E.3 in Appendix E shows the results plotted as a percentage of the drag 

coefficient CD of the corresponding ‘all 5’ arrangement. The subscript ‘red’ indicates 

the reduced number of baffles in the configuration (less than 5). For all baffle angles 

and spacing between rows of b / h1 > 14, approximately 90% of the observed CD for the 

‘all 5’ configuration is achieved with rows 3, 4 and 5 only (i.e. n = 3). This number is 

approximately 95% if the four largest rows are present on the balance (n = 4). 

Considering the planning of the field trials, a three-row arrangement offered the most 

efficient solution when taking into account manufacturing, arrangement and operation. 

However, as the above measurements were performed under constant freestream flow in 

the working section, the question remains raised whether the same trends would occur if 

only a nozzle jet were present upstream. Due to the natural decay of jet momentum with 

distance, if the rows were too far apart, the large baffle rows downstream may become 

ineffective as they would be subjected to a lower jet velocity. If too close, they would be 

‘sheltered’ by the smaller rows upstream. This approach suggests that, in terms of 

maximising the drag of the baffle array, an optimum configuration with defined row 

spacing and number of baffle rows should exist. 
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Figure 5.7:  Drag coefficient vs. number of baffle rows in a freestream: (a) starting from the 

smallest adding rows downstream; (b) starting from the largest adding rows upstream 

 

 

5.3.3 Drag of arrays of baffles beneath an exhaust jet 

 

 After the experiments in a freestream, a decision was made to use baffle 

prototypes of α = 60º in the field trials. A baffle row inclined at 60º would add a vertical 

component, deflecting the plume upwards, and at the same time would give a greater 

drag compared to a row inclined at 45º. Furthermore, the possibility of using only three 

rows of baffles was explored by varying their longitudinal position relative to the nozzle. 

Therefore, the experiments in a nozzle jet were conducted with baffle models of α = 60º 

only. The configurations tested are shown schematically in Figure E.4 in Appendix E. 

The term ‘upstr’ denotes configurations where row 1 (2-5 upstr) or row 1 and 2 (3-5 

upstr) were removed from the balance and the remaining rows were moved one or two 

row spacings b upstream respectively, so that the first row in the path of the jet was 

always at a distance of 60d from the nozzle. 

Legend : 
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 The data for the nozzle jet case were calculated with the dynamic pressure of the 

jet at the nozzle exit and are shown as CD multiplied by a factor of 100 in Figure 5.8. 

When no freestream is present, the drag coefficient is seen to be a maximum for a 

spacing b / h1 ≈ 20 when the rows are moved upstream (first row moved to 60d) and b / 

h1 ≈ 15 when they are left in their initial position. The four-row ‘upstr’ configuration 

yields the largest drag coefficient. It appears that the larger rows further downstream 

become ineffective as the jet momentum decays naturally with distance due to ambient 

air entrainment and the presence of the baffles upstream. This is not the case when a 

freestream is present. Generally, under a combination of a freestream and jet the five-

row arrangement yields the largest drag coefficient. The effect of the freestream is to 

constrain the plume and reduce the entrainment of ambient air which in turn slows 

down the rate of decay of momentum of the jet with distance downstream. However, its 

direct contribution to the increase in the drag coefficients is relatively small. This 

conclusion was reached following separate drag measurements in the presence of 

freestream only, which was found to produce ~1/20
th

 of the total drag coefficient of the 

freestream and jet combination (the actual value varies depending on the number of 

baffles and their configuration). 
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Figure 5.8:  Drag coefficient vs. spacing for straight rows of baffles inclined at 60º, in a nozzle jet 
 

(a) configurations of baffle rows moved upstream, (b) configurations of first and second row of 

baffles removed 

 

CD is calculated with Aref and the nozzle exit velocity, and multiplied by a factor of 100 

upstr’ denotes the cases when all rows present are moved upstream so that the distance from 

the first row (row no. 2 in ‘2-5 upstr’ and row no. 3 in ‘3-5 upstr’) to the nozzle at the centre line  

remains constant at 60 nozzle diameters, see Figure E.4 in Appendix E 

 

 

 

Legend (a): Legend (b): 
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5.3.4 Arc-shaped arrays of baffles 

 

 Finally, a configuration of arc-shaped rows was investigated further for three rows 

of baffles (i.e. n = 3) of α = 60º to identify any effects on the drag coefficient. Two 

different radii R0 were tested in addition to the straight rows, considered effectively as 

arcs of infinite radius. The radius R0 was defined as the radius of the first row 

downstream of the nozzle exit. All subsequent rows were arranged as concentric arcs to 

the first row with a spacing distance b. For a ‘3-5 upstr’ configuration, R0 was the radius 

of row 3; for a ‘3-5’ configuration, it was the radius of row 1 (not present on the 

balance). The latter case is shown schematically in Figure 5.9; row 1 and 2 are not on 

the balance and are therefore depicted with dashed lines.  

 The results obtained generally show a small reduction in drag coefficient as R0 

reduces (see Figure 5.10), thus the straight rows appeared to be more efficient for the 

purpose of the field trials. However, from a practical viewpoint, a concentric arc 

arrangement was easier to map on the grass of the runway end safety area and – more 

importantly – due to the finite width of the rows, an arc shape gave a better chance of 

capturing the plume in case of strong crosswinds. This is due to the natural decay of jet 

momentum causing the jet to drift in a curved path sideways in the direction of the wind 

as it travels away from the engine. 

 

 
Figure 5.9:  Schematic of the circular baffle arrangement in the 8'x4' working section; top view 

(not to scale) 

Nozzle, d 
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Figure 5.10:  Drag coefficient vs. spacing for curved rows of baffles inclined at 60º in a nozzle jet 

(a) configurations of baffle rows moved upstream, (b) configurations of first and second row of 

baffles removed 

 

CD is calculated with Aref and the nozzle exit velocity, and multiplied by a factor of 100 

upstr’ denotes the cases when all rows present are moved upstream so that the distance from 

the first row (row no. 2 in ‘2-5 upstr’ and row no. 3 in ‘3-5 upstr’) to the nozzle at the centre line  

remains constant at 60 nozzle diameters, see Figure E.4 in Appendix E 

 

 

 

Legend (a): Legend (b): 
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5.4 Summary 

 

 The aerodynamic drag of arrays of surface-mounted rows of triangular-prism 

shaped baffles with 90º, 60º and 45º slope angle, subjected to a nozzle jet and 

freestream was measured at 1:50 scale using a skin-friction balance. Data were obtained 

by subtracting the drag of the skin-friction balance plate from the total drag measured, 

which showed excellent repeatability. This was found to be a sufficiently accurate 

method to investigate the variation of drag coefficient with number of baffle rows, their 

spacing and shape in terms of slope angle. Drag coefficients obtained for a single baffle 

of 90º slope angle were found to agree with trends suggested by previous investigations 

of fences.  

 

 When subjected to a freestream in isolation, similar trends in drag coefficient were 

observed for all three baffle slope angles. Reducing the angle was found to reduce the 

wake of the rows resulting in smaller downstream interference effects. Strong sheltering 

effects were observed for non-dimensional row spacings of b / h1 ≤ 7 when additional 

rows of baffles were placed upstream. Configurations of three and four of the largest 

baffle rows were found to give ~90% and ~95% respectively of the drag of the five-row 

configuration. At the test freestream velocity of 14 m/s, the results were observed to be 

practically independent of Reynolds number. 

 

 Under a combination of a freestream and nozzle jet, the three-row arrangement 

was also found to deliver the same results when both were located at the same distance 

from the nozzle. If located sufficiently downstream of the nozzle, the baffles 

experienced a maximum drag, thus at large spacing the large rows of baffles become 

inefficient as they are subjected to lower local velocity. The primary effect of the 

freestream was observed to reduce the entrainment of ambient air thus conserving the 

decaying jet momentum over a longer distance downstream of the nozzle.  

 An arc-shaped arrangement reduces the overall drag. It appeared, however, to be a 

better practical solution when considering the field trials arrangement. After taking into 

account the wind tunnel results, the final arrangement to be used in the sub-scale 

ABLWT experiments and full-scale field trials was changed to a three-row arrangement 

comprising rows 3, 4 and 5. While the aerodynamic efficiency of the baffles in terms of 

drag did not appear to be reduced greatly, a changing from a five-row to a three-row 

configuration would give a significant reduction in costs and time for manufacturing, 

transportation and operation during the field trials.  

 

 With regard to the subsequent ABLWT experiments, the observed Reynolds 

number independence of the obtained drag results for Re > 18000, based on the baffe 

row height h5, is of significant importance. It suggests that wind tunnel modelling of the 
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effects of the baffles does not require a complete Reynolds number equality in sub scale 

and full scale. Compared to the initial expectations of a significant Reynolds number 

difference, i.e. approximately three orders of magnitude, the results of the drag 

measurements show that experiments could successfully be perfomed at lower Reynolds 

numbers. The observed critical value of 18000 is in the same order of magnitude as the 

expected Reynolds numbers at 1:200 scale, which is a positive result with regard to 

achieving flow similarity with the adopted wind tunnel modelling techniques. At the 

same time, a complete Froude number equality between sub scale and full scale can be 

achieved. 

 

 Following this conclusion, the final stage of the sub-scale experimental research 

was conducted. In order to be able to obtain a good correlation between sub scale and 

full scale, a more accurate model of the exhaust jet was needed, taking into account the 

BAe 146 engine characteristics at take-off. 
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6 Sub-scale field trials model 
 

 The initial sub-scale plume visualisation tests (Chapter 4.2) highlighted the 

importance of the position of the baffle array relative to the jet source and the influence 

of the secondary flow (ambient wind) on the plume development and dispersion. 

Therefore, for an accurate representation of the field trials at sub scale, the following 

aspects need to be considered carefully: 

 Exhaust jet model 

 Representation of the ambient conditions of the field trials in the wind tunnel 

 Atmospheric Boundary Layer (ABL) model. 

 

This chapter describes the modelling issues, practical considerations and steps 

undertaken to obtain the exhaust jet and ABL models of the 8'×4' wind tunnel tests, in 

addition to the full-scale field trials. Chronologically, the field trials were conducted 

before the 8'×4' experiments, therefore the recorded full-scale parameters were used to 

create sufficiently accurate models in order to obtain a valid representation at sub scale. 

 

 

6.1 Exhaust jet model 

 

  Generally, a full-scale exhaust jet at take-off is characterised by high 

momentum and temperature at the engine nozzle exit, which reduce as the jet progresses 

away from the source and entrains ambient air. The BAe 146-301 would initially 

produce four individual jets which would rapidly merge into a single jet before reaching 

the baffles. This can be observed from the Lidar data at 0.7º elevation (see Figure H.6a, 

Figure H.7a, Figure H.8a and Figure H.9a in Appendix F), obtained during the full-

scale field trials, which are subject to Chapter 8. As suggested by Graham et al. (2008), 

the initial four jets would interact and merge as they travel about a wing span distance 

downstream, forming a coherent plume. Bennett et al. (2010) also observed this during 

Lidar studies of multiple take-off runs, performed by commercial aircraft of various 

sizes and engine configurations. With regard to the sub-scale modelling of the BAe 146-

301 field trials, for practical reasons, only one nozzle can be used in the 8'×4' ABLWT 

arrangement. Following the above considerations and the observations on the merging 

of multiple jets in close proximity, discussed in Chapter 2.5, the choice of a single 

nozzle to represent the BAe 146-301 exhaust jet is justified. 

 

 Another important aspect of the sub-scale modelling of the take-off run is whether 

to use a stationary or moving nozzle. Ideally, an accelerated source should be used in 
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order to represent realistically the full-scale take-off run of a conventional civil aircraft. 

This would require instantaneous measurements to be taken in order to capture the 

starting plume. During the BAe 146-301 field trials, the take-off run was executed with 

a static burn of approximately ten seconds before the brakes were released and the 

aircraft was accelerated on Runway 21. Thus, the Lidar data showed the development of 

a jet from a stationary source. Furthermore, accelerating a sub-scale nozzle, positioned 

at an offset from the working section floor and connected to external tubing, would 

require additional practical considerations and equipment. In view of the above, a 

stationary nozzle was chosen as a source of the sub-scale jet. This is a key aspect of the 

field trials modelling in the 8'×4' ABLWT, described in this chapter. Further 

considerations of a possible moving source model are discussed in Chapter 6.1.4. 

 

 In addition to the jet source, the presence of the aircraft was also considered in the 

sub-scale model. During a static burn, the interaction between the wingtip vortices, 

formed normally as a result of the wing-generated lift, and the exhaust jet would be 

negligible. The wingtip vortices in this case would be generated by the ambient wind. 

Furthermore, the influence of the wake behind the streamlined aircraft body, as a result 

of the ambient wind, on the development of the high-momentum exhaust jet was also 

considered small. Therefore, a geometrically scaled model of the aircraft was not 

included in the 8'×4' ABLWT wind tunnel tests. For the proposed model of a single 

stationary source, the following key parameters were considered: 

 Jet momentum 

 Jet buoyancy 

 Nozzle position with respect to the baffles 

 Nozzle ground clearance 

 

The jet momentum and buoyancy are modelled in terms of the exit jet velocity and 

density respectively. As discussed previously in Chapter 3.3, the high exhaust jet 

temperature at full scale is modelled with a less dense gas in the wind tunnel. While the 

starting position of the aircraft engines for each sortie and their ground clearance are 

known, only limited information on the full-scale exhaust jet characteristics was 

recorded during the BAe 146-301 field trials. The method of obtaining the mean flow 

characteristics of the full-scale jet is described in the following section. 

 

 

6.1.1 Full-scale mixed jet parameters 

 

 The wind tunnel investigation focused on modelling the exhaust jet during the 

static burn, performed by the BAe 146-301 at the start of each sortie. The aircraft’s 

Flight Data Recorder (FDR) provided only information on the engines’ fuel flow rates 
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in addition to the known maximum thrust of each engine at full power, i.e. 31 kN (see 

Table 8.1 in Chapter 8.2). Therefore, the necessary full-scale flow parameters, such as 

jet exit speed and temperature, were calculated analytically and were then used to model 

the jet momentum and buoyancy respectively. 

 

 A suitable analytical method is to calculate the full-scale exit jet parameters from 

an energy balance across a control volume in the near field of a single engine (see 

Figure 6.1). The control volume is taken between two imaginary vertical planes ‘1’ and 

‘2’, where freestream (denoted with subscript ‘∞’) and fully-mixed jet conditions 

(denoted with subscript ‘j’) are present, respectively. It should be noted that the 

subscript ‘j’ is also used to describe the sub-scale jet characteristics at the nozzle exit, as 

in the model they are representative for the mixed jet conditions at full scale. This 

analytical method assumes that the speed and the temperature of the single jet are the 

same as those of the mixed jet of all four engines. More importantly, it assumes that the 

bypass and core flows are fully mixed at ‘2’. This was discussed in Chapter 3.3 as a 

reasonable assumption on the basis of recent examples of enhanced mixing through the 

application of mixing devices. 
 

 
Figure 6.1:  Schematic illustration of the control volume principle over an engine, used to 

estimate the fully-mixed exhaust jet properties 

 

 

 The energy balance across the control volume is taken using the Steady Flow 

Energy Equation (SFEE). Apart from the fully-mixed core and bypass flows at ‘2’, the 

following assumptions are made: 

 

1) The jet is assumed to obey the Ideal Gas Law. 

 

2) The jet static pressure at ‘2’ is equal to the ambient static pressure (pj = p∞). 

z2 z1 
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3) The jet specific heat capacity at constant pressure cp ≈ 1005 J/(kgK) is assumed to be 

constant, i.e. independent of the jet temperature. 

 

Across the control volume between ‘1’ and ‘2’, the SFEE can be written in the form 

 

 










  12

2

1

2

2
122121

2
zzg

UU
hhmWQ air

  

Equation 6.1 

 

where Q1-2 is the rate of energy transferred to the system as heat, W1-2 is the rate of work 

done by the system, ṁair is the total air mass flow rate through the fan, h is the specific 

enthalpy, U is the flow velocity and z is the vertical coordinate. In Equation 6.1, the fuel 

mass flow rate ṁf is neglected since it is considered small compared to ṁair. The 

nominal values of ṁair and ṁf for a single BAe 146-301 engine, operating at maximum 

thrust, are 87 kg/s (taken from IHS, 2011) and 0.378 kg/s (average value, recorded by 

the FDR) respectively, see Table 8.1. 

 

 Equation 6.1 can be simplified further with z1 = z2 (no movement in vertical 

direction, this no change in potential energy), W1-2 = 0 (no work done by the jet on the 

environment), and the following expressions for the specific enthalpy and the rate of 

transferred energy: 

 

 )( 1212 TTchh p    

Equation 6.2 

 

 LCVmQ f
21   

Equation 6.3 

 

where LCV is the Lower Calorific Value of the Jet A-1 fuel, equal to nominally 43 MJ. 

 

 The mixed jet velocity U2 can be calculated from the following Thrust Equation, 

obtained from a momentum balance over the control volume: 

 

 AppmUmmUF airfairt )()( 1212     

Equation 6.4 

 

where p1 and p2 are the ambient static pressure p∞ and the static pressure of the fully-

mixed jet pj respectively, and A is the control volume area at both ‘1’ and ‘2’. During 

the static burn, the velocity U1 upstream of the engine can be assumed zero, thus for an 

ideal expansion (p∞ = pj), Equation 6.4 is simplified to 
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 )( fairjt mmUF     

Equation 6.5 

 

where the subscript ‘j’ is used to describe the fully-mixed jet characteristics. With a 

take-off thrust Ft = 31 kN and a total mass flow rate of 87.378 kg/s, Uj is estimated to be 

356 m/s. 

 

 Using Equation 6.2, Equation 6.3 and Equation 6.5, and solving for the mixed jet 

temperature Tj, the SFEE becomes 
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Equation 6.6 

 

The exhaust jet density is then calculated from the Ideal Gas Law 

 

 
j

j
RT

p   

Equation 6.7 

 

where R is the specific gas constant for dry air R, equal to 287 J/(kgK). The choice of R 

is an assumption dictated primary from the unknown exact composition of gases in the 

exhaust jet and the high bypass ratio of the ALF502R-5 engines. 

 

 With estimated ambient temperature T∞ = 288 K and barometric pressure p∞ = 

1016 hPa, the full-scale jet temperature Tj and density ρj is calculated as 411 K and 

0.861 kg/m
3
 respectively. Thus, with the necessary values for the mixed jet speed, 

temperature and density at full scale, a sub-scale model of the jet, exiting from a 

stationary nozzle, can now be created. 

 

 

6.1.2 Sub-scale jet parameters 

 

 As discussed in Chapter 2.6.1, the most important scaling parameters for a 

buoyant plume in ambient wind are the Froude number Fr (see Equation 1.3), the 

Richardson number Ri (see Equation 2.9) and the ratio of ambient wind to jet exit speed 

U∞ / Uj. Since the Froude and Richardson numbers are related by Ri = 1 / Fr
 2

, an 

equality at full scale and sub scale of one of Fr or Ri would mean equality of the other 

as well. Therefore, the calculations in the sub-scale model are done on the basis of the 
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equality of U∞ / Uj and the jet Froude number Frj, defined in Equation 6.8, where d is 

the nozzle diameter. This method of sub-scale modelling has been reported by 

Littlebury (1981) and Garry (1989) for gas turbine exhaust plumes. It also includes an 

equality of the exhaust jet density ratio at full scale and sub scale, which was already 

addressed in Chapter 3.3. 

 

 
gd

U
Fr

j

j    

Equation 6.8 

 

 Another important parameter to be considered is the jet Reynolds number Rej (see 

Equation 1.1, where the nozzle diameter is the characteristic length scale). As 

highlighted in Chapter 1.5, the issue with the Reynolds number equality at full scale and 

sub scale is that Re is proportional to both the velocity and the length scale. Thus, at a 

reduced scale, the velocity needs to be increased proportionally, since there are no 

significant differences between the ambient conditions at full scale and sub scale. Such 

increase is not possible in the 8'×4' ABLWT experiments, neither at 1:100 nor at 1:200 

scale, therefore a full Reynolds number equality cannot be achieved. In view of this 

issue and considering the results of the force balance measurements (see Chapter 5.2), 

where the drag of the array of baffles was shown to be nearly independent of Reynolds 

number even at local speeds of less than 5 m/s, Rej was not used as scaling parameter in 

the sub-scale jet model. 

 

 With the full-scale mixed jet speed UjF, temperature TjF and density ρjF calculated 

from Equation 6.4, Equation 6.6 and Equation 6.7 respectively, the sub-scale jet 

parameters (denoted with subscript ‘M’) are obtained by matching the jet Froude 

number and the ratio of ambient wind speed and jet exit speed at full scale and model. 

With λ = lM / lF defined as the scaling of the wind tunnel experiment, where l is a 

characteristic length, the following relationships for the sub-scale jet speed and wind 

tunnel speed are obtained: 

 

 5.0jFjM UU    

Equation 6.9 

 

 5.0FM UU     

Equation 6.10 

 

It should be noted that, during the wind tunnel tests, only the volumetric flow rate was 

measured. Therefore, UjM is the average speed of a jet exiting with a volumetric flow 

rate QjM from a nozzle of diameter d. It is calculated from 
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 MjMjM AUQ    

Equation 6.11 

 

where AM is the nozzle area, equal to π(0.5d)
2
. 

 

 The necessary sub-scale volumetric flow rate QjM, representing the BAe 146-301 

exhaust jet, is scaled from the total full-scale mass flow rate of all four engines ṁF, 

using the Continuity Equation as follows: 

 

 2  MjFjFF AUm   

Equation 6.12 

 

Substituting Equation 6.9 and Equation 6.11 in Equation 6.12, yields the following 

relationship for the subscale volumetric flow rate: 
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 jF

F
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Q
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   

Equation 6.13 

 

Finally, the required nozzle diameter is calculated from Equation 6.11: 

 

 
jM

jM

U

Q
d



4
   

Equation 6.14 

 

 

 The values, obtained from the above calculation sequence for a jet model in 1:100 

and 1:200 scale, are presented in Table 6.1 in the following section together with the 

results of the jet buoyancy modelling calculations. 

 

 

6.1.3 Jet buoyancy modelling 

 

 The general method of modelling the high exhaust temperature of the full-scale jet 

was outlined in detail in Chapter 3.3. This section presents the additional calculations 

needed in order to account for the presence of methane (tracer gas) in the exhaust jet 

during the FID experiments. A mixture gas of 98% nitrogen and 2% methane was 

combined with a less dense gas (helium) to form a sub-scale jet of nominally ambient 

temperature and density lower than the ambient air density in order to match the ratio of 
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jet and ambient density at full scale and model (see Equation 3.2). Under the 

assumptions stated in Chapter 3.3, the sub-scale ratio of jet density ρjM to ambient air 

density ρ∞M equals the ratio of the jet molar mass MjM and ambient air molar mass Mair 

= 28.97 g/mol (see Equation 3.8). For a mole fraction of helium f in the sub-scale 

exhaust jet, MjM is expressed as 

 

 )1( fMfMM MeNHejM     

Equation 6.15 

 

where MHe = 4 g/mol and MN-Me = 27.77 g/mol are the molar masses of helium and the 

mixture gas of 98% nitrogen and 2% methane respectively. Analogous to Equation 

3.11, the mole fraction of helium is then given by 
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Equation 6.16 

 

 The results of the above presented methods for estimating the parameters of the 

modelled exhaust jet are shown in Table 6.1 for scaling of 1:100 and 1:200, considered 

for the 8'×4' ABLWT tests. The cases ‘Sortie 9’to ‘Sortie 12’ refer to the four take-off 

runs perfomed during the field trials. The corresponding measured full-scale ambient 

wind speed values, given in Table 8.3 in Chapter 8.5, are scaled with Equation 6.10. 

 

Table 6.1:  Summary of the calculated sub-scale jet parameters in 1:100 and 1:200 scale 

Sub-scale jet parameter λ = 1:100 λ = 1:200 

UjM 35.6 m/s 25.2 m/s 

U∞M 

Sortie 9 0.71 m/s 0.50 m/s 

Sortie 10 0.54 m/s 0.38 m/s 

Sortie 11 0.70 m/s 0.49 m/s 

Sortie 12 0.72 m/s 0.51 m/s 

QjM 243.5 l/min 43.0 l/min 

d 12.0 mm 6.0 mm 

f 0.314 0.314 

QHeM 76.4 l/min 13.5 l/min 

ρjM 0.848 kg/m
3
 * 0.848 kg/m

3
 * 

ṁjM 3.440 g/s * 0.608 g/s * 

* Calculated for typical wind tunnel ambient conditions: T∞ ≈ 290 K, p∞ ≈ 1000 hPa 
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 It is evident that 1:100 scale would require almost six times the amount of helium, 

nitrogen and methane compared to 1:200 scale. At the same time, at 1:200 scale the 

wind tunnel speed U∞M would be at the very low range of the vane anemometer 

available. The advantages and disadvantages are further discussed in Chapter 6.3. 

 

 

6.1.4 Moving jet source 

 

 For the subscale representation of the take-off run, a moving jet source was 

considered in the ABLWT experiments. The issues and aspects of such arrangement are 

briefly addressed here. 

 

 The main parameter to be scaled would be the linear acceleration of the nozzle 

from the starting position away from the baffle array. Using Froude number equality, 

analogous to the proposed scaling for the UAV turbine field trials in Chapter 8.8, the 

sub-scale acceleration would equal the full-scale acceleration of 3.1 m/s
2
 of the BAe 

146-301 (see calculations in Appendix I). In the opinion of the author, such acceleration 

at scaling λ of 1:100 and 1:200 would be too large to capture the effect of the moving 

source on the plume due to the significant difference in the relative movement between 

the source and the exhaust jet at full scale and sub scale (at sub scale the exit jet velocity 

is reduced by a factor of λ 

0.5
). Therefore, the tests could be executed at a considerably 

reduced acceleration. The main difficulties in preparing and executing the experiments 

with regard to the 8'×4' ABLWT working section arrangement and the measurement 

equipment used would be: 

 the space needed for the acceleration run 

 the additional equipment needed to move the nozzle 

 the required instantaneous measurements to capture the starting plume. 

 

First, the 2.4 m long working section of the wind tunnel does not allow for a sufficient 

distance on the floor to accelerate the nozzle. Upstream of the working section, the floor 

of the development section is covered with LEGO
®
 boards and small blocks, as 

described in the ABL modelling arrangement in Chapter 6.2, which would not allow 

movement of the nozzle on the floor. For example, with an acceleration of 3.1 m/s
2
, the 

distances travelled by an initially stationary nozzle would be 1.55 m, 6.20 m and 13.95 

m after travel times of 1 s, 2 s and 3 s respectively. If the acceleration is reduced to 1 

m/s
2
, the distances would be 0.5 m, 2.0 m and 4.5 m for the same travel times 

respectively. Furthermore, as the field trials took place in cross-flow conditions, i.e. the 

ambient wind direction was at an angle relative to the exhaust jet direction, the baffle 

array and nozzle had to be rotated relative to the longitudinal direction of the working 

section (see Figure 7.1 in Chapter Error! Reference source not found.), which is the 
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direction of the ambient (wind tunnel) flow. Therefore, the available distance for nozzle 

acceleration is significantly reduced and cannot be extended to the development section 

due to the angled Runway 21 centre line relative to the wind tunnel longitudinal 

direction and the presence of the wind tunnel side walls. 

 

 If a moving nozzle arrangement is to be implemented, another issue would be the 

equipment needed to achieve the necessary acceleration. In all static tests, the exhaust 

gas was fed to the nozzle via tubing through the working section floor, which would not 

be possible for a moving nozzle. Therefore, the tubing would need to be located inside 

the working section, for which care should be taken in order to minimise the tubing 

wake and its influence on the flow field downstream. The movement of the nozzle could 

be provided by a small support structure on wheels, mounted on rails and powered by 

an electrical motor. In all cases, attempts should be made to reduce the wake created by 

any additional equipment used. Alternatively, the starting plume could be simulated by 

stopping the nozzle flow with an additional valve, built in the tubing. Such arrangement 

would be simpler compared to the moving nozzle and would avoid the interference with 

the flow as a result of the additional equipment placed in the working section. However, 

it would be more complex in terms of execution and timing during the experiments as 

the operation of the valve has to be coordinated carefully with the measurements. 

 

 Finally, capturing the starting plume would require instantaneous, time-dependent 

measurements to be taken during the experiments. With regard to the available FID 

measurement equipment and the occurring lag in the concentration measurements, 

addressed in more detail in Chapter 7.1.2, this is the most important issue to be 

considered. The lag, i.e. delay in the response of the detector, is mainly due to the long 

tubing connecting the probe in the working section and the detector. The location of the 

detector outside of the control room is a key issue and needs to be reconsidered in order 

to shorten the tubing and the time response. Another important issue with regard to 

taking instantaneous measurements is the slow oscillation of the measured 

concentration values with time. This was thought to be mainly due to the high 

turbulence in the boundary layer close to the working section floor where the 

measurements were taken. 

 

 

6.2 ABL model 

 

 The method of calculating the mean velocity and turbulence intensity profiles of 

the Atmospheric Boundary Layer (ABL), as given by ESDU (1982) and ESDU (1983), 

was outlined in Chapter 3.4. The results of the ESDU calculations are presented here 
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together with the experimental arrangement of the 8'×4' ABLWT development section 

and the measured profiles in the working section. 

 

 First, the type of boundary layer over the particular terrain of interest needs to be 

determined. In the method by ESDU, this is defined with the roughness length z0. An 

overview of the types of terrain and the corresponding roughness lengths is given in 

Figure F.1 in Appendix F, reproduced from ESDU (1982). For Cranfield Airport, a 

roughness length of z0 = 0.03 m was chosen, characteristic for airport runways and level 

countryside with low vegetation. Approximate values for the zero-surface displacement 

zd are also given in Figure F.1. However, zd is strongly dependent on the density of the 

obstacles present and their orientation relative to the wind direction. It is usually 

considered in modelling of terrain where the presence of obstacles causes a significant 

portion of the flow close to the ground to be unresolved, such as areas of dense 

vegetation, forests and urban areas. In areas of low vegetation, the general obstruction 

height is very low and therefore zd is close to zero. Figure F.1 does not specify exact 

values of zd for such cases, stating that it varies between 0 and 2. Based on the above 

considerations, the zero-surface displacement is neglected in the calculations, therefore 

 

 zz    

Equation 6.17 

 

Following this assumption, all heights considered in the ESDU method are taken from 

the ground and the index z' is replaced by z in further notation used. 

 

 The Coriolis parameter fc, needed for the ESDU turbulence intensity calculations, 

is obtained from Cranfield Airport’s latitude of φ = 52.07º and the Earth’s angular 

velocity ω ≈ 7.29×10
-5

 rad/s: 

 

 rad/s1015.1)sin(2 5 cf   

Equation 6.18 

 

 With z0 and fc, the mean velocity Uz and turbulence intensity Iu were calculated 

from Equation 3.18, Equation 3.22 and Equation 3.23. The friction velocity u* was 

determined graphically by plotting Equation 3.16 (see Figure F.2 in Appendix F). The 

results are included in Table F.1 and Table F.2 in Appendix F for 1:100 scale and 1:200 

scale respectively. In order to obtain the profiles of Uz and Iu with height, the array of 

vertical points, used in the boundary layer measurements in the 8'×4' ABLWT working 

section, was taken. The experimental arrangement and the performed measurements are 

described below. 
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 The 15 m long development section of the 8'×4' ABLWT is arranged using a 

standard ABL modelling method (Figure 6.2), similar to the one described by Cook 

(1978) and to the method used in the initial experiments. The main difference is the use 

of considerably smaller roughness elements to allow for finer adjustments of the 

boundary layer profile. At the start of the section, a hardware configuration consisting 

of a turbulence grid, a 190 mm high castellated barrier and four elliptic vortex 

generators, arranged symmetrically along the wind tunnel depth, is used (see Figure 

6.2a and Figure 6.2c, right). After a short distance downstream of the elliptic vortex 

generators where the floor surface was smooth, the remainder of the development 

section floor was covered by LEGO
®
 boards with rows of roughness elements (15 mm 

long, 30 mm wide and 10 mm high LEGO
®
 blocks) to create the necessary long fetch of 

high surface roughness, over which the boundary layer is developed upstream of the 

working section. The roughness elements were arranged in a diamond formation, 

similar to the arrangement of Cook (1978), in rows of seventeen and eighteen LEGO
®
 

blocks with a lateral spacing of 127 mm and a longitudinal spacing of 400 mm between 

each row (Figure 6.2b and Figure 6.2c, left). It should be noted that the arrangement of 

the roughness elements was based mainly on previous experience and results of past 

experiments conducted in the 8'×4' ABLWT. Adjustments were made to the type of 

turbulence grid and castellated barrier position in order to obtain the best possible match 

of the mean velocity and turbulence intensity profiles with the ESDU calculations. 
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(b) 

 

 

    

(c) 

 

Figure 6.2:  Arrangement of the 8'×4' ABLWT development section for tests with modelled 

Atmospheric Boundary Layer (not to scale): (a) schematic of the start of the development 

section (side view), (b) schematic of the roughness elements arrangement (top view), (c) 

images of the development section just upstream of the working section (left) and of the elliptic 

vortex generators and castellated barrier upstream of the LEGO
®
 boards, in green, without 

roughness elements (right) 

 

 

 The boundary layer measurements were performed at the centre of the empty 

working section with a single-sensor hot-wire probe recording the mean velocity and 

the longitudinal component of turbulence. An array of forty vertical points above the 

working section floor was chosen in order to obtain sufficient data for the Uz and Iu 

profiles up to a height of 500 mm (see zM column of Table F.1 and Table F.2 in 

127 mm 

400 mm 

W
in

d
 t

u
n
n
el

 s
id

e 
w

al
l 

W
in

d
 t

u
n
n
el

 s
id

e 
w

al
l 

135 mm 

Row of 17 blocks 

(only 2 shown) 

Row of 18 blocks 

(only 3 shown) 

30 mm 

15 mm 



 
Chapter 6:  Sub-scale field trials model 

- 143 - 

 

Appendix F). The height intervals between the points were increased gradually as the 

height increased. The measurements were performed with a freestream speed of 

approximately 2 m/s, which is greater compared to the freestream speed (i.e. < 1 m/s) 

during the planned experiments replicating the field trials. The speed of 2 m/s was 

chosen in order to reduce the scatter in the recorded data. 

 

 The measured vertical profiles of mean velocity, expressed as the ratio of local 

velocity Uz to the velocity U10 at a reference height of 10 m at full scale, and 

longitudinal turbulence intensity Iu in the working section are compared in Figure 6.3a 

and Figure 6.3b to profiles calculated with the ESDU methods at 1:100 and 1:200 scale 

respectively. In both cases the velocity profile is well matched up to 50 m above the 

ground, except very close to the ground (below 5 m). At 1:200 scale, the velocity profile 

gives a slightly better match with the experimental data. 

 The measured turbulence intensity values close to the ground in both cases are 

considerably lower than the calculated ones. While at 1:200 scale the difference is 

smaller and there is a good match at heights between 30 and 50 m at full scale, no match 

is evident between the measured profile and the calculated one at 1:100 scale. 

 

 Overall, there is a considerable scatter in the data due to the low wind tunnel 

speed, however, the Uz / U10 and Iu profiles are clearly identified and seem to follow the 

shape of the calculated ESDU profiles. The measured turbulence intensity profile gives 

a significantly better match at 1:200 scale. At this scale, above heights of 50 m at full 

scale, the experimental data shows reduced values of Uz / U10 compared to the calculated 

profile. The opposite is true for the turbulence intensity data – the experimental values 

of Iu are larger compared to the calculated ones. As this only occurs at heights far from 

the ground-based jet and the baffles, these discrepancies were not considered of high 

importance. The major issue with respect to the baffles would be the considerable 

differences between the measured and predicted turbulence intensity values close to the 

ground (below 5 m at full scale where the baffles would be located). Attempts were 

made to increase the turbulence intensity close to the ground using different types of 

turbulence grids and by changing the position of the castellated barrier. The results 

shown in Figure 6.3 are the best possible match achieved from all attempted 

configuration changes with the used development section arrangement. It was 

considered to be sufficiently accurate for the simulation of the field trials at sub scale. 
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Figure 6.3:  Comparison of measured mean velocity and turbulence intensity profiles in the 8'×4' 

ABLWT working section with the profiles calculated using the method by ESDU: (a) 1:100 scale, 

(b) 1:200 scale 
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6.3 Discussion 

 

 In this chapter were presented the modelling methods used to replicate the BAe 

146-301 field trials at sub scale. The main issues were the lack of data on the full-scale 

exhaust jet characteristics, the choice of sub-scale jet source and the scale, i.e. 1:100 or 

1:200, of the 8'×4' ABLWT experiments. 

 

 Since no data on the key full-scale exhaust jet parameters, such as speed and 

temperature, necessary to model the jet at sub scale, were collected during the field 

trials, these had to be derived from the available data on the engines’ fuel flow rate and 

thrust. Therefore, a relatively simple analytical method was adopted, based on energy 

and momentum balance across an imaginary control volume around one engine. The 

main assumption made is the state of fully-mixed core and bypass flow several nozzle 

diameters downstream of the nozzle exit, the characteristics of which correspond to the 

one at the nozzle exit at sub scale. This assumption was justified with examples of 

modern engine nozzle designs and built-in devices promoting the mixing of the core and 

bypass flow (see Chapter 3.3). A further simplification was used to determine the jet 

velocity (Equation 6.5) from the total flow rate and the engine thrust. Both assumptions 

simplify the high-bypass-ratio turbofan engine to a turbojet engine analysis without 

accounting for the different characteristics of the bypass and core flows. Overall, the 

calculation method is suitable mostly due to its simplicity and quick analytical solution. 

The obtained jet velocity and temperature are approximate values needed to create a 

sub-scale model of the jet. Their accuracy is discussed briefly below with an example of 

another high-bypass-ratio engine. 

 

 Generally, engine manufacturers do not provide data on the exhaust jet. However, 

approximate values can be obtained from data sheets published by Airbus and Boeing 

on their aircraft characteristics, which are used for airport and maintenance planning. 

For example, for a PW4000 engine, used on the A330 family and A300-600 aircraft, 

Airbus (2014a) specifies an exhaust temperature of 300 ºF (≈ 422 K) and a jet velocity 

of 682 mph (≈ 305 m/s) at take-off power. The Pratt & Witney manufactured PW4000 

family of engines has a bypass ratio of 5.5 and a maximum thrust of ~250 kN, delivered 

at a fuel flow rate of 4.25 kg/s and an air mass flow rate through the fan of 802 kg/s. 

With these parameters, the velocity and temperature of the mixed exhaust jet are 

calculated as 310 m/s and 467 K from Equation 6.5 and Equation 6.6 respectively. 

There is a considerable difference between the calculated temperature and the one given 

by Airbus (2014a), however the velocity values are in good agreement. It should be 

noted that the PW4000 is a family of engines with variable thrust depending on the 

exact engine model, thus the above specified parameters are approximate values. 
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 Attempts were made to obtain data for other high-bypass-ratio engines used on the 

A320 family (data sheets published in Airbus, 2014b). Contours for the IAE V2500 

(bypass ratio ~ 5) and CFM56 (bypass ratio ~ 6) engine series specify maximum 

velocity values extending from the nozzle exit to 60 m downstream. In the opinion of 

the author, this does not represent the actual velocity distribution and is perhaps a 

conservative overestimation as the data are published to serve purposes of safe aircraft 

ground operation. However, the specified exhaust temperatures of 400 K and 425 K for 

the IAE V2500 and CFM56 respectively are similar to the calculated exhaust 

temperature of 411 K for the ALF502-R5 engine. Data available from Boeing’s online 

database (Boeing, 2014), for example for high-bypass-ratio turbofan engines on the 737 

and 747 families, proved unsuitable for the calculations since all jet velocity and 

temperature values are given for the area behind the aircraft’s tail where they are below 

approximately 110 m/s and 60 ºC respectively. 

 

 With regard to the sub-scale jet model, the main decisions taken are the use of a 

stationary jet source and a single nozzle to represent the four engines of the BAe 146-

301. The choice of a stationary jet source is predicated on the static burn, performed by 

the BAe 146-301 during the field trials prior to each take-off, and on the time-averaged 

Lidar results on the plume concentration. A moving source would be representative for 

an actual take-off run, however, it would require additional equipment and changes in 

the working section arrangement to allow acceleration of the nozzle away from the 

baffle array. Furthermore, considering the high turbulence intensity of the modelled 

ABL in the working section and the apparent lag in the FID equipment used, only time-

averaged concentration measurements could be performed successfully at sub scale. 

 

 The decision to use a single nozzle as the sub-scale jet source is based mainly on 

the practical issues of positioning four separate nozzles in the 8'×4' ABLWT working 

section. In terms of the general jet development downstream, this choice is justified due 

to the tendency of the multiple jets to merge into a single jet after a relatively short 

distance downstream. This was shown in Chapter 2.5 by means of experimental results 

found in the literature. Substituting a merged jet, originally from four separate sources, 

with a jet of the same total mass flow rate from a single nozzle, raises the question of 

the choice of the nozzle’s longitudinal position relative to the first row of baffles and its 

ground clearance in order to produce the same flow field at the array of baffles. From 

the experimental results presented in Chapter 2.4, the start of the wall jet region for a 

single nozzle jet, downstream of which the flow would become independent of the 

nozzle ground clearance, could be estimated to be at a distance of approximately 20 

nozzle diameters. This distance is significantly smaller than the scaled distance between 

the BAe 146-301 and the first row of baffles during Sortie 11, i.e. when the distance 

was the smallest (see Table 8.3 in Chapter 8.5). Therefore, the ground clearance was not 
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considered a parameter of primary importance. The position of the nozzle relative to the 

baffles was not investigated further due to the practical difficulties of positioning four 

nozzles. Ideally, the flow field downstream of the single-nozzle and four-nozzle 

configurations should be studied in order to determine the distance of the single nozzle 

to the first baffle row on the basis of the flow development. 

 In view of the above, the ground clearance and longitudinal position of the nozzle 

were scaled geometrically from the full-scale values (see Table 7.1 in Chapter 7.1.1 for 

the nozzle position). The full-scale ground clearance to the centre line of the engine 

nozzle was measured as 2.4 m on the actual aircraft at Cranfield Airport. 

 

 For the replication of the field trials in the 8'×4' ABLWT, scaling λ of 1:100 and 

1:200 was considered. Based on equality of the jet Froude number and ratio of ambient 

velocity to jet velocity at full scale and sub scale, the sub-scale jet velocity, nozzle 

diameter and flow rate were determined. With the calculated full-scale exhaust 

temperature, the mole fraction of helium was calculated by matching the ratio of jet and 

ambient density at full scale and model. The results for λ = 1:100 and λ = 1:200 were 

compared in Table 6.1. The main difference in terms of costs and practicality is the 

significantly larger nozzle flow rate at 1:100 scale, i.e. nearly six times larger than the 

one at 1:200 scale. Besides the apparent increase in costs for gas supplies such as 

methane, nitrogen and helium, the larger nozzle flow rate would increase significantly 

the amount of methane released in the environment during testing. Considering that the 

8'×4' ABLWT is located in a closed hangar, the released amounts of methane would be 

hazardous and therefore would require regular interruptions of the tests in order to keep 

the methane levels in the hangar within the allowed safe limit. Such procedures would 

increase considerably the amount of time needed to complete the tests and add more 

costs due to the additional wind tunnel running time, needed during the intermissions to 

reduce the methane levels. Another disadvantage of performing the tests at 1:100 scale 

is the less accurate representation of the Atmospheric Boundary Layer, in particular the 

considerably lower turbulence intensity values. At the same time, at 1:100 scale both the 

wind tunnel (ambient wind) velocity and the exit jet velocity are greater, which would 

create a greater drag force by the baffle array. Thus, at this scale it would be possible to 

perform further force balance measurements, replicating the exact baffle arrangement 

without a buoyant jet (f = 0). Furthermore, the greater wind tunnel velocity (~ 0.6-0.7 

m/s) would be easier to measure with the vane anemometer available, while at 1:200 the 

wind tunnel velocity (~ 0.4-0.5 m/s) would be at its very low measurement range. 

 

 Following the above considerations, a decision was taken to manufacture two sets 

of baffle models, in 1:100 and in 1:200 scale, which would be used in the planned force 

balance and FID measurements respectively. 
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7 ABLWT experiments 
 

 The last sub-scale experiments in the 8'×4' Atmospheric Boundary Layer Wind 

Tunnel (ABLWT) consisted of mean concentration and velocity measurements at 1:200 

scale using Flame Ionisation Detector (FID) and Hot-Wire Anemometry (HWA) 

methods respectively, and additional force balance measurements at 1:100 scale. The 

first set of experiments replicated the exact full-scale field trials arrangement and 

ambient wind conditions, described in detail in Chapter 8. These were complemented 

with additional FID and HWA measurements performed without cross flow, i.e. the 

wind tunnel (ambient wind) flow was in the direction of the nozzle jet. 

 

 

7.1 ABLWT measurements with cross flow 

 

 The first part of the ABLWT tests targeted the replication of the full-scale BAe 

146-301 aircraft field trials at 1:200 scale. The arrangements of Sortie 10, Sortie 11 and 

Sortie 12 of the field trials were chosed to be replicated, as they delivered the most 

reliable results of all sorties performed. These are described in the following section. 

Throughout the chapter, the three different arrangements are referred to as ‘Sortie 10’, 

‘Sortie 11’and ‘Sortie 12’ in oder to allow comparison with the corresponding full-scale 

cases. 

 

 

7.1.1 Test arrangement 

 

 The ABLWT experiments were conducted using more accurate models of the full-

scale baffles compared to the prism-shaped models of the force balance tests (Chapter 

5). The main concern with the previously used ‘wedges’ was the vertical rear side 

(‘base’), resulting in a different base pressure compared to an inclined flat plate. The 

new models (see Figure G.1a in Appendix G) were manufactured from 0.5 mm thin 

solid aluminium sheets, cut and bent to create a 15 mm long foot which was glued to the 

floor during tests using double-sided adhesive tape. The ground clearance of the full-

scale baffles (~260 mm) was not represented in the models due to practical difficulties. 

The dimensions and characteristics of the models at 1:200 scale, scaled down from the 

full-scale baffle dimensions (see Table 8.2 in Chapter 8.3), are shown in Table G.1 in 

Appendix G. It should be noted that the width of the individual baffles was not scaled 

directly from the full-scale individual width, i.e. 2.1 m. In order to reduce the time 

needed to arrange the baffle rows in the working section, the individual baffle models 
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were manufactured with a width of 21 mm, which was sufficiently small to follow 

accurately the arcs drawn on the balance plate. As the total width of rows A and C was 

not divisible by 21, three of the baffles of row A and one of the baffles of row C were 

manufactured with a width of 10.5 mm and were arranged symmetrically in the centre 

of each row. 

 

 The working section arrangement, shown in Figure 7.1a, was scaled at 1:200 

from the field trials arrangement (see Table 8.2 for the baffles arrangement and Table 

8.3 for the engine position on Runway 21). The development section was arranged as 

described in Chapter 6.2, giving the measured mean velocity and turbulence intensity 

profiles in the working section shown in Figure 6.2b. The nozzle and baffles were 

mounted on a 360º rotating turntable of 2 m diameter and were arranged symmetrically 

with respect to a line drawn through the centre of the turntable representing the runway 

centre line direction. For each sortie tested the turntable was rotated at an angle ε 

between the runway direction and the working section centre line, i.e. the wind tunnel 

(ambient wind) direction. The nozzle had an inner diameter of 6 mm and was positioned 

at 12 mm height to its centre and at a distance b0 along the runway direction from a 

point representing the runway threshold. The nozzle was approximately 10d long in 

order to ensure a smooth flow at the nozzle exit after passing the corner connecting the 

vertical delivery pipe to the nozzle pipe. The flow was provided through a drilled hole 

in the turntable by means of external tubing, passing through analogue flow meters in 

the wind tunnel control room. The accuracy of the flow meter readings was estimated to 

be within 2 l/min. The delivered flow at the nozzle exit had a flow rate of 43 l/min, 

giving an exit jet velocity of approximate 25 m/s in accordance with the sub-scale 

model results at 1:200 scale (see Table 6.1). 

 

 The baffle models were arranged in three arc-shaped rows with radii of 180 mm, 

266.5 mm and 370 mm for row A, B and C respectively, centred at a point, which 

represented the runway threshold. This point was chosen to be the origin of the 

coordinate system used with the x-axis in the nozzle jet direction along the runway line, 

the y-axis at right angles to the x-axis towards the Lidar location (see Figure 7.1a), and 

the z-axis in vertical direction at right angles to the working section floor. The Lidar 

location and azimuth lines are shown in Figure 7.1a to illustrate the horizontal area 

scanned by the Lidar during the full-scale field trials. The distance b0 along the runway 

line was 285 mm (47.5d), 120 mm (20d) and 190 mm (31.7d) for Sortie 10, Sortie 11 

and Sortie 12 respectively. Images of the tests replicating Sortie 10 and Sortie 12 (no 

baffles) are shown in Figure 7.1b and Figure 7.1c respectively. 
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 (b)              (c) 

 

Figure 7.1:  8'×4' ABLWT working section arrangement at 1:200 scale: (a) schematic of the 

replication of the field trials (top view, distances and angles shown as in Sortie 10), (b) image of 

Sortie 10 (isometric view, flow direction is  from top left); (c) image of Sortie 12 (isometric view, 

flow direction is from left to right) 

 

Lidar position and azimuths are shown only to illustrate the domain scanned by the Lidar during 

the field trials 
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 Three different working section arrangements were tested, representing Sortie 10, 

Sortie 11 and Sortie 12. The first two gave a comparison of the ‘baffles up’ case (baffles 

present) for different longitudinal positions of the jet source relative to the baffles. 

Sortie 12 was chosen to represent the ‘baffles down’ case (no baffles) over Sortie 9 

because of the virtually identical mean wind speed and ambient conditions with those of 

Sortie 11. The arrangement for each sortie was done by keeping the nozzle at the same 

position in the working section and by moving the baffles and rotating the turntable. 

Thus, the location of the runway threshold, i.e. the coordinate system origin, also 

changed between the three cases. Subsequently, all x-coordinates in this chapter are 

given from the corresponding runway threshold position for each case. The full-scale 

parameters, taken from the field trials arrangement (Chapter 8.5) and the full-scale 

exhaust model (Chapter 6.1.1), and the corresponding wind tunnel test parameters at 

1:200 scale are presented in Table 7.1. It should be noted that the full-scale exhaust jet 

temperature TjF = 427 K, corresponding to the mole fraction of helium in the sub-scale 

jet f = 0.344, is greater than the estimated value from Equation 6.6 of 411 K. This is 

because at the time of the tests the mole fraction of helium was estimated using the 

molar mass of air (28.97 kg/kmol), which is higher compared to the molar mass of the 

mixture of nitrogen and methane (27.77 kg/kmol). If the temperature 411 K is 

considered approximately correct, the simulated plume at 1:200 scale would have 

greater buoyancy compared to the full-scale one. From the Ideal Gas Law, the 

corresponding reduction in density of the full-scale exhaust jet is approximately 3.5 %. 

 

Table 7.1:  Full-scale and 1:200 scale test parameters for Sortie 10, Sortie 11 and Sortie 12 

 

Full scale Wind tunnel 

TjF = 427 K 

UjF = 356 m/s 

f = 0.347, QjM = 43 l/min 

UjM = 25 m/s 

Sortie 10 Sortie 11 Sortie 12 Sortie 10 Sortie 11 Sortie 12 

b0 57 m 24 m 38 m 285 mm 120 mm 190 mm 

U∞ 5.4 m/s 7.0 m/s 7.2 m/s 0.4 m/s 0.5 m/s 0.5 m/s 

ε 35º 36º 31º 35º 36º 31º 

 

 

7.1.2 Measurements and data post-processing 

 

 The concentration measurements were performed using the FID method and 

equipment described in Chapter 3.2.5. As the majority of the measurements were 

performed with two 3000HM hydrocarbon analysers, measuring the concentration at 

two spatial points at the same time, two separate probes were used. They were steel 
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tubes of 1 mm diameter and were mounted on a computer controlled over-head traverse 

system in the working section, providing precise movement in all three coordinate axes. 

The probes were fixed together on the traverse and were carefully aligned on the same 

vertical line with sufficient spacing between the orifices, i.e. 25 mm during the 

replication of the field trials. The orientation of the probe orifices was at right angles to 

the runway direction and initial jet direction. Each probe was connected to a 

hydrocarbon analyser through tubing passing through the ceiling of the working section. 

The hydrocarbon analysers were in turn connected to the computer in the control room, 

where all operations during testing were performed using a custom-designed LabView 

programme. The programme allowed manual input of the measured ambient 

temperature and barometric pressure, as well accurate time measurement of each test 

run from the moment of opening the valves of the containers which provided the helium 

and the mixture gas of nitrogen and methane. 

 

 The wind tunnel speed in the working section, U40, was measured with a 

Schiltknecht MiniAir6 Mini vane anemometer at a reference height above the wind 

tunnel floor of 40 mm, representing the full-scale ambient wind measurements during 

the field trials, taken at a height of 8 m. Examples of data recorded during simulations 

of Sortie 10 and Sortie 11 are shown in Figure G.2 in Appendix G. There is a 

significant scatter of the measured values as the targeted mean velocity was at the very 

low limit of the vane anemometer range (0.5 m/s), and even lower for Sortie 10 (0.4 

m/s). However, in the latter case the mean value of 0.4 m/s could be measured at 

virtually the same wind tunnel power setting, provided that the ambient conditions did 

not vary significantly. Therefore the measurements of the vane anemometer were 

considered sufficiently accurate. The presence of fluctuations in the flow was further 

increased by the relatively high turbulent intensity of the simulated boundary layer, 

especially close to ground, as was shown in Figure 6.3b. 

 

 The concentration measurements were taken on parallel lines downstream of the 

nozzle, oriented at right angles to the runway direction. Figure G.3 in Appendix G 

shows the generic grid of spatial points where the concentrations were measured. The 

longitudinal position of the lines (x coordinate) was different for each sortie, as the 

nozzle position relative to the coordinate system origin (b0) was different. The lateral 

coordinates close to the centre line were initially selected to match the position of the 

micro-monitors on the boundary fence during the field trials and were later extended in 

order to capture the plume. In both longitudinal and lateral direction, the extent of the 

measurement points was limited by the movement range of the traverse. The exact 

coordinates for each sortie are included in Table G.2 to Table G.13 in Appendix G. 

 At full scale, the Lidar measurements were performed at elevations of 0.7º and 

4.5º, for which the vertical heights were estimated from Figure H.10 of Appendix H to 
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be between 6.5 m and 8 m and between 22 m and 40 m respectively. These are for the 

scanned area just downstream of the baffle array and the area at distances about 250 m 

north and 400 m east of the Lidar position respectively. At 1:200 scale, the 

corresponding heights are between 30 mm and 42.5 mm, and between 110 mm and 200 

mm respectively. In order to create a homogenous grid of measurement points, the FID 

concentration measurements were performed at height levels of 25 mm, 50 mm, 75 mm 

and 100 mm (or 4.2d, 8.3d, 12.5d and 16.7d), differing from the elevated scanning 

planes of the Lidar. The heights of 25 mm and 50 mm were chosen to be just below and 

just above the limit heights of the 0.7º elevation scan. The heights of 50 mm and 100 

mm were considered sufficient to capture a possible lift-off of the plume. 

 

 Each test consisted of starting the wind tunnel and adjusting the speed in the 

working section, which was followed by starting the data sampling. After a time period 

of 15 seconds, the gas container valves were opened and the measurements were taken. 

Each test was performed for approximately 80 seconds at a sampling frequency of 50 

Hz to allow for sufficient data to be recorded. The calculation method is shown in 

Figure 7.2 by means of an example data set for one measurement point, where the 

recorded data are plotted against the elapsed time from the start of the data sampling. 

First, a mean value of the ambient concentration was calculated from the data recorded 

during the first 15 seconds, which was then subtracted from all subsequently measured 

values. The mean concentration was obtained by taking the geometric average of the 

newly-calculated values for a 30 second period between the 43
rd

 and the 73
rd

 second. 

These values were selected in order to allow sufficient time for the jet to reach the probe 

and for the probe samples to be detected by the hydrocarbon analyser. For several data 

sets, the start and end time of averaging period were varied in order to study their 

influence on the average value obtained. The calculated maximum deviations between 

±5 ppm and ±10 ppm (parts per million) were considered small with regard to the 

apparent fluctuations of the recorded data with time. 

 An alternative calculation method of obtaining the mean concentrations by 

numerically integrating the recorded data over the period of 30 seconds was also 

considered. Some results of this method indicated differences of up to only 0.5 ppm, 

regardless of the measured concentration values, therefore the simpler method of taking 

a geometric average was used. 

 

 A considerable lag in the measurements of approximately 10 seconds was 

observed, as shown in Figure 7.2, mainly due to the time needed for the probe sample to 

reach the hydrocarbon analyser. Further delay was created due to the movement of the 

flow from the containers to the nozzle and from there to the location of the probe. The 

fluctuations in the measurements and the lag in the tubing, connecting the probe and the 

hydrocarbon analyser, did not allow for instantaneous measurements of the starting 
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plume to be performed. At this stage, only mean concentrations could be obtained with 

the measurement method used. 
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Figure 7.2:  Example of data post-processing of measured concentrations for Sortie 10 (ε = 35º, 

b0 = 285 mm) at a random spatial point with coordinates (605, -240, 25), in mm 

x-axis shows the time passed from the start of the FID measurements, y-axis shows the 

measured concentration in parts-per-million (recorded data) 

 

 

 Additional tests were performed in order to study the repeatability of the obtained 

results. For measured concentrations within the rage of 300 to 1100 ppm, the 

repeatability was within nominally 50 ppm to 70 ppm, while below 100 ppm, it was 

within nominally 10 ppm. Generally, the repeatability of the results can be estimated to 

be within 10% of the measured value. 

 

 

7.1.3 Results 

 

 The obtained mean concentrations in parts per million (ppm), denoted with c, for 

the simulated static burn of Sortie 10, Sortie 11 and Sortie 12 are included in Table G.2 

to Table G.13 in Appendix G together with the corresponding spatial coordinates. The 

concentrations are presented in percent of the mole fraction of methane at the nozzle, cj, 

equal to 20000 ppm. The analysis of the results was done by comparing the measured 

concentrations at the boundary fence line (x / d = 84.2) and at lines perpendicular to the 

runway direction, located at equal distances from the nozzle position, (b0 + x) / d, for all 

three sorties. Only qualitative comparisons to the full-scale Lidar measurements (see 

Figure H.7 to Figure H.9 in Appendix H) could be made, as the Lidar data was not 
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directly available. Furthermore, the Lidar data was measured relative to the ambient 

concentration, while the wind tunnel experiments were performed with a known 

concentration at the nozzle exit, i.e. 20000 ppm. 

 

 Comparing the measurements at the boundary fence (Figure 7.3), only small 

differences in the peak concentrations are evident at the lowest height (z / d = 4.2). The 

peak value for Sortie 11 (c / cj ≈ 3%), is greater than those of Sortie 10 and Sortie 12 (no 

baffles), however, the nozzle was located considerably closer to the baffle array, i.e. 

27.5d and 11.7d closer compared to the nozzle position of Sortie 10 and Sortie 12 

respectively. The reductions in peak concentration for Sortie 10 and Sortie 11 are 

significantly smaller between z / d = 4.2 and z / d = 8.3, corresponding to full-scale 

heights zF of 5 m and 10 m, compared to the one of the jet without baffles (see Figure 

7.3a and Figure 7.3b). Thus, a significant part of the plume is deflected upwards by the 

baffles and its vertical spread is increased. This is consistent with the observations 

during the initial flow visualisation tests with a single baffle row, presented in Chapter 

4.2. In the case of Sortie 12, the plume appears to be close to the ground, as the 

concentrations reduce rapidly with height. Further away from the ground (Figure 7.3c 

and Figure 7.3d), particularly at z / d = 16.7, the concentrations are reduced considerably 

in the cases of Sortie 10 and Sortie 11, while in the case without baffles these are very 

close to zero. 

 

 Close to the runway line (y = 0), at - 10 < y / d < 10, the concentrations are greater 

for Sortie 12, in particular at the lowest measurement height z / d = 4.2 (Figure 7.3a). 

The measured profile appears to be shifted towards the runway line compared to the 

ones of Sortie 10 and Sortie 11. This is mainly due to the stronger cross flow in the 

cases of Sortie 10 and Sortie 11, i.e. larger angle ε between the wind tunnel flow and the 

runway line, which causes the plumes to drift in negative y direction in Figure 7.3a and 

Figure 7.3b. The cross flow effect is stronger on the measured plume of Sortie 10, due 

to its lower horizontal momentum, which has decayed over a longer distance. 
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            (a)             (b) 

 
            (c)             (d) 

 

Figure 7.3:  Mean plume concentrations, measured at 1:200 scale at x / d = 84.2 for Sortie 10, 

Sortie 11 and Sortie 12 at: (a) z / d = 4.2, (b) z / d = 8.3, (c) z / d = 12.5, (d) z / d = 16.7 

x-axis shows the lateral coordinates in nozzle diameters (negative values are plotted positive), 

y-axis shows the measured concentrations in percentage of the mole fraction of methane at the 

nozzle cj = 20000 ppm 

 

 

 Additional measurements at the boundary fence line were taken close to the 

ground at z / d = 0.4 (zF = 0.5 m). The lateral locations chosen were those of the air 
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quality sensors during the field trials, shown in Figure 8.5 in Chapter 8.4 and denoted 

with S1 to S6. Sensors S4, S5 and S6 were located on the windward side (relative to the 

ambient wind direction) of the extended Runway 21, i.e. in positive y-direction at sub 

scale, thus all concentrations were nominally zero. The measured mean concentrations 

at 1:200 scale at the locations of S1 to S4 are shown in Figure 7.4. It is evident that 

close to the ground the concentrations downstream of the baffles are reduced compared 

to the case of no baffles, thus the baffles provide a local sheltering effect within a 

certain distance downstream of the last row. Sortie 10 gives lower concentrations 

compared to Sortie 11, for which a possible explanation is the significantly closer 

distance of the nozzle to the baffles for Sortie 11. While at S3 the reduced 

concentrations can be partially caused by the drift of the plume in negative y direction 

for Sortie 10 and Sortie 11, the reduction at S2 concerns the concentration peak values 

and can be attributed primarily to the sheltering effect of the baffles. 

 

 
Figure 7.4:  Mean plume concentrations, measured at 1:200 scale at the micro-monitor 

locations on the boundary fence line at 2.5 mm height (z / d = 0.4) 

x-axis and y-axis as in Figure 7.3; additional axes are included, giving the measured mean 

concentrations in ppm and the lateral coordinates in mm; S1, S2, S3 and S4 denote the 

locations of the air quality sensors on the fence, shown in Figure 8.5 for the full-scale field trials 

 

 

 The measurements at z / d = 0.41 at the locations S2 and S3 are compared to the 

full-scale measurements of nitrogen oxide (NO) by the air quality sensors in Table 7.2. 

The full-scale NO values, taken from Bennett et al. (2013), have been obtained by 

integration of the summed measured values from all sensors over the time passage of 

the plume. A qualitative comparison shows that, at full scale, the concentrations during 

Sortie 10 were lower than those of Sortie 12, but higher than those of Sortie 11. The 

latter comparison does not agree with the measured concentrations in the wind tunnel, 
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where Sortie 10 gave the lowest concentrations of all three. In order to obtain a 

quantitative comparison of the reduction in concentration by the sheltering effect of the 

baffles, the measured values of Sortie 10 and Sortie 11 are given in percent reduction 

relative to the ones of Sortie 12. At S2, the sub-scale Sortie 11 gives a reduction of 

48.5% compared to Sortie 12, which is in excellent agreement with the full-scale value 

of 47.8%. At S3, there is a considerable difference between the calculated percentages 

at full scale and sub scale (21.6%). As will be discussed later when comparing the Lidar 

results to the wind tunnel measurements (see Chapter 8.7), this difference is caused by 

the drift of the plume in negative y-direction away from the runway line at sub scale, 

which is not present in the Lidar results (Figure H.8a in Appendix H). 

 

Table 7.2:  Comparison of wind tunnel and full-scale concentration measurements at z / d = 0.4 

at the boundary fence (x / d = 84.2) 

Sortie 

No. 

Wind tunnel, 1:200 scale Field trials 

Location on 

fence line 

x / d = 84.2 

z / d = 0.4 

Mean 

concentrations 

c [ppm] 

% 

reduction 

of 

Sortie 12 

Measured NO 

concentrations
*
 

[ppm] 

% 

reduction 

of 

Sortie 12 

10 
S2, - y / d = 6.5 123.3 75.3 % 

62.8 24.1 % 
S3, - y / d = 19.5 435.6 36.1 % 

11 
S2, - y / d = 6.5 257.4 48.5 % 

43.2 47.8 % 
S3, - y / d = 19.5 534.2 21.6 % 

12 
S2, - y / d = 6.5 499.4 - 

82.7 - 
S3, - y / d = 19.5 681.8 - 

 

*Values are summed over all point-sample sensors and integrated over the time passage of the plume 

 

 

 The variation of mean concentration with height at the boundary fence line is 

shown in Figure 7.5a and Figure 7.5b for the lateral positions y / d = - 6.5 (S3) and y / d 

= -19.5 (S2) respectively. For Sortie 10 and Sortie 12 the maximum concentration is on 

the ground, decreasing gradually with height, while for Sortie 11 at y / d = -19.5 the 

maximum is at a height of nominally 4d above the ground, or an approximate height of 

5 m at full scale. The location of the plume close to the ground in Sortie 12 is indicated 

by the considerably ‘flatter’ slope of the data in Figure 7.5b. As already discussed 

above, it is evident that the plume of Sortie 11 is deflected upwards and the 

concentrations are reduced in the region near the ground due to the sheltering effect of 

the baffle array. At the same time the plume of Sortie 10 appears to be deflected 

upwards as well due to the high concentrations away from the ground, however, the area 

close to the ground is not protected by the baffles as in Sortie 11. Thus, the effect of the 

baffles of deflecting the plume is stronger for a plume of greater momentum. This 

general conclusion is in agreement with the observations during the field trials, stated in 
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Bennett et al. (2013), of the increased efficiency of the baffles when the aircraft is 

located closer to the runway threshold, and is consistent with the findings of the initial 

exhaust jet experiments (Chapter 4). 

 

 
 

            (a)             (b) 

 

Figure 7.5:  Variation of mean plume concentration with height, measured at the boundary fence 

line (x / d = 84.2) for Sortie 10, Sortie 11 and Sortie 12: (a) -y / d = 6.5, (b) -y / d = 19.5 

x-axis shows the measured concentrations in percentage of the mole fraction of methane at the 

nozzle cj = 20000 ppm, y-axis shows the height from the ground in nozzle diameters 

 

 

 The effect of the baffles is further investigated at locations of equal distance from 

the nozzle, (b0 + x). At 131.7d (Figure 7.6a) and 148.3d (Figure 7.7a), corresponding to 

distances from the runway threshold of 134 m and 154 m at full scale respectively, the 

measured concentrations of Sortie 11 at z / d = 4.2 are lower compared to the ones of 

Sortie 10 and Sortie 12. However, as evident from the remaining plots of Figure 7.6 and 

Figure 7.7, the concentrations of both Sortie 10 and Sortie 11 reduce with height, thus 

the plume does not lift off. These results of Sortie 11 disagree with the Lidar 

measurements during the field trials (Figure H.8a in Appendix H), where downstream 

of the boundary fence line only small concentrations were observed between heights of 

approximately 6 m and 7 m (between 5d and 6d at 1:200 scale). From the differences in 

sub-scale mean concentrations of Sortie 11 and Sortie 12, it can be concluded that the 

plume dispersion during Sortie 11 is enhanced in vertical direction compared to the 

plain jet without baffles. Thus, there is a small positive effect of the baffles also further 

downstream, not just in the wake of the baffle array. In order to confirm this, further 
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measurements close to the ground are needed. These were done without cross flow (ε = 

0º) and are described in Chapter 7.2.1. 

 

 
            (a)             (b) 
 

 
            (c)             (d) 

 

Figure 7.6:  Mean plume concentrations, measured at 1:200 scale at (b0 + x) / d = 131.7 for 

Sortie 10, Sortie 11 and Sortie 12 at: (a) z / d = 4.2, (b) z / d = 8.3, (c) z / d = 12.5, (d) z / d = 16.7 

x-axis shows the lateral coordinates in nozzle diameters (negative values are plotted positive), 

y-axis shows the measured concentrations in percentage of the mole fraction of methane at the 

nozzle cj = 20000 ppm 
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            (a)                 (b) 

 
            (c)                 (d) 

 

Figure 7.7:  Mean plume concentrations, measured at 1:200 scale at (b0 + x) / d = 148.3 for 

Sortie 10, Sortie 11 and Sortie 12 at: (a) z / d = 4.2, (b) z / d = 8.3, (c) z / d = 12.5, (d) z / d = 16.7; 

x-axis shows the lateral coordinates in nozzle diameters (negative values are plotted positive), 

y-axis shows the measured concentrations in percentage of the mole fraction of methane at the 

nozzle cj = 20000 ppm 

 

 

 To conclude the analysis of the experiments replicating the field trials, contour 

plots of the measured mean concentrations were obtained, showing the plume 
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development behind the baffle array. In order to allow a direct comparison to the full-

scale Lidar data (see Figure H.7 to Figure H.9 in Appendix H), the measured values of 

c / cj in the ABLWT were plotted using their corresponding full-scale coordinates at 

heights zF equal to 5 m, 10 m, 15 m and 20 m (see Figure 7.8 and Figure 7.9). The 

coordinate system origin was placed at the Lidar location, shown schematically in 

Figure 7.1a, and the orientation of the Cartesian axes was so that the x and y axes were 

in east and grid north direction respectively. The contours of c / cj were created in 

Tecplot using a triangulation method to interpolate between the measured data points. 

Due to the limited set of data points, the contours show occasional discontinuities, in 

particular, close to the baffles where the measured concentration values change 

significantly within short distances, and between the last two measurement lines located 

at a considerable distance from each other (see Figure G.3 and Table G.2 to Table G.13 

in Appendix G for the sub-scale coordinates). 

 

 The obtained contours show the effect of the baffles within the complete 

measurement domain. The observed reductions in mean concentrations of Sortie 11 

compared to the ones of Sortie 12 at zF = 5 m (see Figure 7.6a and Figure 7.7a) are 

difficult to be identified with the contour scaling used in Figure 7.8, as their magnitude 

is relatively small. Furthermore, they were shown only when using longitudinal 

coordinates relative to the nozzle exit position. At the same time, the effect of deflecting 

the plume upwards and the influence of the nozzle position relative to the baffles on this 

effect are clearly visible in Figure 7.9 for zF = 15 m and zF = 20 m. Figure 7.8 and 

Figure 7.9 are further compared to the Lidar data in Chapter 8.7 discussing possible 

correlations and differences in the plume development in sub scale and full scale. 

 

 In conclusion, the sub-scale measurements of the plume have shown that the 

baffles have the effect of deflecting the plume upwards and increasing the 

concentrations away from the ground. In close proximity downstream of the baffle 

array, at the boundary fence, the concentrations are reduced due to the sheltering effect 

and the deflected plume upwards. The maximum concentration at the fence was not on 

the ground in the case of Sortie 11. Comparing the results for all three sorties at equal 

distances from the nozzle, Sortie 11 gives a small reduction in the mean peak 

concentrations, measured at the lowest height from the ground, i.e. z / d = 4.2. With 

regard to the results of Sortie 10 and Sortie 11, the dispersing effect of the baffles 

appears to be enhanced if the jet source is located closer to the baffle array. However, 

the plume was not observed to lift off within the distances tested, as the mean 

concentrations reduced with increasing height. The obtained results show no trend that a 

lift-off of the plume may occur further downstream of the distances tested. 
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Figure 7.8:  Contours of mean concentrations, measured at 1:200 scale at z / d = 4.2 and z / d = 

8.3 and plotted in full-scale coordinates (zF = 5 m and zF = 10 m) 
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Figure 7.9:  Contours of mean concentrations, measured at 1:200 scale at z / d = 12.5 and z / d 

= 16.7 and plotted in full-scale coordinates (zF = 15 m and zF = 20 m) 
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7.2 ABLWT measurements without cross flow 

 

 The experiments replicating the field trials were conducted at different nozzle 

positions and wind tunnel flow conditions, which made exact comparisons between the 

sorties difficult. Also, the tests focused primarily on measurements at heights close to 

the ones measured by the Lidar, scaled at 1:200, which did not include measurements 

very close to the ground. Therefore, additional measurements were conducted for cases 

with and without baffles at the same wind tunnel flow direction and speed, in order to 

allow a direct comparison of the cases and to demonstrate solely the effect of the 

baffles. The tests were conducted with the wind tunnel flow aligned with the runway 

direction and included FID mean concentration measurements and mean velocity 

measurements, using Hot-Wire Anemometry (HWA). 

 

 

7.2.1 FID measurements 

 

 The FID measurements without cross flow were executed in a similar manner to 

the one described in Chapter 7.1.1 and 7.1.2 at the same nozzle flow rate QjM and f. The 

arrangement was modified by aligning the runway centre line (x-axis of the coordinate 

system used) with the wind tunnel flow direction (see Figure G.4 in Appendix G). The 

origin of the coordinate system was defined on the ground at the nozzle exit position. 

Considering the positive results of Sortie 11, observed in the previous FID 

measurements, the nozzle was placed at the position of Sortie 11 at b0 = 20d (120 mm) 

relative to the runway threshold. In order to minimise the effect of the wind tunnel flow, 

the tests were performed at the smallest stable wind tunnel velocity U40 at 40 mm above 

the ground, of 0.4 m/s. Initially, the same array of three baffle rows was used, centred at 

the runway threshold with radii of 180 mm, 266.5 mm and 370 mm respectively. 

 Additional tests were performed with a baffle array of three rows of double 

height, centred at the runway threshold with radii of 180 mm, 480 mm and 690 mm 

respectively (see Table G.14 in Appendix G). The radii were determined from Large 

Eddy Simulation results on the velocity flow field by Spanelis (2013), in order to reduce 

the sheltering effect of the first and second row. Further tests were performed with a 

straight row C of Table G.14, placed at right angles to the jet direction at the runway 

threshold. Images of the working section arrangement are shown in Figure 7.10. 

 

 The measurements were taken predominantly at the runway centre line at heights 

between z / d = 0.5 and z / d = 35 and longitudinal distances x from the nozzle exit of up 

to 200d. Lateral distances of up to y / d = 40 were also tested to study the lateral spread 

of the plume. The results were obtained using the post-processing method of Figure 7.2. 
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Figure 7.10:  Images of the 8'×4' ABLWT working section during FID and HWA experiments at 

1:200 scale without cross flow: (a) FID measurements with original baffles (flow direction is from 

top left), (b) HWA measurements with original baffles (flow direction is from top left); (c) HWA 

measurements with double baffles (flow direction is from bottom left), (d) FID measurements 

with row C at the runway threshold (flow direction is from bottom left) 

 

 

 Results along the runway line at z / d = 1 above the ground (Figure 7.11) show 

that the mean concentrations downstream of the baffle array of Sortie 11, referred to as 

‘original baffles’, are lower compared to the plain jet (no baffles) at distances between 

90d and 110d from the nozzle. At x / d > 110, corresponding to full-scale distances 

greater than 132 m, the concentrations downstream of the original baffles are higher and 

the difference becomes increasingly greater with x. Thus, the baffles provide only a 

short-distance sheltering effect downstream of the last row. These results do not agree 

with the results of the replication of the field trials, where the positive effect was 

observed as far as 148d at z / d ≈ 4. The single baffle row at the runway threshold (x / d = 

20d) gives significantly lower concentrations compared to the plain jet, however, the 

effect gradually diminishes with x. At the furthest distance tested, x / d = 200, the single 

row and the array of double-height baffles, referred to as ‘double baffles’, give 

approximately the same concentrations as the plain jet. 

(a) (b) 

(d) (c) 
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Figure 7.11:  Variation of mean concentrations with distance from the nozzle exit (x  / d) on the 

runway line (y / d = 0) 

 

 

 Plots of the measured concentrations at the runway line versus height above the 

ground (Figure 7.12) show that, at all distances tested, the original baffles give higher 

concentrations above z / d = 3 compared to the plain jet. Thus, there is an increased 

spread of the concentrations in vertical direction downstream the baffle array, which 

was shown by the results of the replication of the field trials as an increase in vertical 

spread of the plume in comparison to the case without baffles. The vertical height of the 

plume is considerably greater between distances of x / d = 90 and x / d = 150 compared 

to the plain jet, however, its maximum height (i.e. ~ 22d) does not vary significantly 

between x / d = 90 and x / d = 200. 

 The double baffles and the single baffle row at the runway threshold show 

qualitatively similar results in terms of increased concentrations in vertical direction. 

Overall, neither of the baffle configurations causes the plume to a lift-off. In terms of 

reduced concentrations close to the ground, the single baffle row at the runway 

threshold gives the best reduction for x / d < 200. 

 

 The apparent spread of the concentrations in vertical direction close to the xz 

plane is evident from the lateral shape of the plume. Figure 7.13 shows the half-width 

plume contours of c / cj in planes perpendicular to the flow direction at x / d = 170. These 

were obtained with the same method, used for Figure 7.8 and Figure 7.9. The plume of 

the plain wall jet (Figure 7.13a) is ‘flat’, i.e. has a low aspect ratio, and exhibits similar 

concentrations at the edges and close to the xz plane. At the same time, the plumes 

downstream of the original and double baffles (Figure 7.13b and Figure 7.13c 

respectively) have a large concentration gradient in lateral direction, i.e. high 

concentrations close to the xz plane and lower concentrations at the plume edges. 
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Figure 7.12:  Variation of mean concentrations with height (z / d) on the runway line (y / d = 0) 
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(a) 

 

 
 

(b) 

 

 
 

(c) 

 

Figure 7.13:  Contours of FID measured mean concentrations at x / d = 170 without cross flow: 

(a) no baffles, (b) original baffles, (c) double baffles 
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 Figure 7.13c and Figure 7.13b can be considered to represent the development of 

the generic plume shape at right angles to the flow. Although the concentrations were 

measured at the same distance from the nozzle, the relative distances to the last row of 

baffles were different, i.e. at 35d downstream of the double baffle array and at 88.3d 

downstream of the original baffle array. The upwards deflected plume by the baffle 

array has an increased maximum height compared to a wall jet and shows significantly 

higher concentrations close to its symmetry plane (i.e. 0 ≤ y ≤ 10d in Figure 7.13c), 

resembling a bell curve. Further downstream, the plume becomes flatter with increased 

concentrations towards its edges (Figure 7.13b). It should be noted that in the case of 

Figure 7.13c, a larger deflection is expected due to the double height of the baffle array, 

increasing the maximum height further. 

 

 Overall, the FID measurements without cross flow showed similar development 

of the plume to the one observed in the experiments replicating the field trials. However, 

the small positive reduction of plume concentration, reported previously for Sortie 11, 

was not identified at distances x / d > 110, corresponding to 132 m in full scale. 

 

 

7.2.2 HWA measurements 

 

 The FID concentration measurements without cross flow were supported by 

measurements of mean velocity using Hot-Wire Anemometry. The exact same 

arrangement of the working section was used (see Figure G.4 in Appendix G), 

substituting the FID probe on the traverse with a Dantec 55P13 hot-wire probe. The 

method of operation of the hot-wire anemometer was described previously in Chapter 

3.2.6. The measurements were performed at similar spatial points to ones of the FID 

measurements at a frequency of 1 kHz and a sampling time of 5 seconds. The sampling 

time was minimised in order to reduce the time for execution of the tests without 

significantly affecting the results. The repeatability of the results was checked regularly 

during tests and was determined to be within 0.15 m/s. Since all measured mean 

velocities U are given in terms of the jet velocity at the nozzle Uj, equal to 25 m/s, the 

quoted repeatability of U / Uj is within 0.006. 

 

 The calibration of the hot-wire anemometer was done in the wind tunnel 

freestream using the Schiltknecht MiniAir6 Mini vane anemometer. As all 

measurements were performed in the presence of helium in the plume, an attempt was 

made to quantify the influence of the helium on the hot-wire output. This was done at 

the nozzle exit by measuring the mean velocity of a jet of helium (UjHe), i.e. f = 1, and of 

a jet of air (UjAir) within a range of UjAir between approximately 2 m/s and 13 m/s. These 

measurements are plotted in Figure 7.14, showing a good linear fit. From the linear fit, 
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the maximum increase in the HWA measured velocity values due to the presence of 

helium in the plume is quantified as approximately 13 %. It should be noted that the 

used flow meters did not allow accurate measurement of the volumetric flow rate below 

an exit velocity of 2 m/s, therefore the line was extrapolated to the origin of the 

coordinate system of Figure 7.14. In reality, the fraction of helium in the plume 

downstream of the nozzle, where the measurements were performed, was significantly 

smaller than 1. Therefore, its influence on the measured velocities was neglected. 
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Figure 7.14:  Correlation of Hot-Wire Anemometry data for air and helium 

 

 

 Figure 7.15 shows the variation of measured mean velocity with x along the 

runway centre line. Close to the ground at z / d = 1, the reduction of velocity at x / d = 90 

due to presence of the original baffle array is significant, i.e. ~ 89 % compared to the 

natural velocity decay of the plain jet (no baffles). The array of baffles is located 

between 50d ≤ x / d ≤ 81.7d, therefore x / d = 90 is within the recirculation zone of row 

C. A smaller reduction of ~ 29 % is evident at the furthest measurement point, x / d = 

170. The corresponding reductions at a height of z / d = 3, equal to nominally two times 

the height of row C, are ~ 46 % and ~ 23 % at x / d = 90 and x / d = 170 respectively. The 

velocity decay of the plain jet, calculated at z / d = 1 to be approximately U ~ x
-0.98

, 

agrees reasonably well with the results found in the literature (see Table 2.2). 

 The case of a single baffle row at the runway threshold shows a smaller reduction 

of mean velocity close to the ground at x / d = 90 compared to the original baffles, while 

at x / d = 170 the reduction is greater. 
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Figure 7.15:  Variation of mean velocity with longitudinal distance from the nozzle (x / d) on the 

runway line (y / d = 0) at: (a) y / d = 3, (b) z / d = 3 

 

 

 The measured concentrations at the runway line are plotted versus height above 

the ground in Figure 7.16. The observed reduction in mean velocity is evident for 

heights below 5d at all distances x tested. The local maximum velocity downstream of 

the original baffle array at all distances x occurs at an approximately constant height 

above the ground, i.e. between 5d and 7d, while the local maximum velocity of the plain 

jet is generally very close to the ground. This is an indication of the deflection of the 

plume and increased vertical spread, observed during the FID measurements. It is also 

supported by the increased velocities above z / d = 7 downstream of the baffle array. The 

cases of the double baffles and the single baffle row at the runway threshold show a 

significant reduction in mean velocity at z / d < 5, however, the plume is not observed to 

lift-off. 

 Additional velocity measurements at x / d = 170 and lateral stations between y / d = 

0 and y / d = -40 are included in Figure G.5 in Appendix G. For the plain jet, they show 

only small reduction in the measured mean velocity below z / d = 5 between y / d = -20 

and y / d = -30, compared to the original and double baffle arrays. This is consistent with 

the presence of higher concentrations towards the edges of the plain jet plume and with 

the ‘flat’ shape of the plume (see Figure 7.13a). 

 

 Overall, the FID and HWA measurements show good agreement with regard to 

the effect of the baffles of increasing the vertical spread of the plume. Although the 

baffles cause a significant reduction of jet momentum close to the ground, neither of the 

three baffle configurations causes a lift-off of the plume. 

(a) (a) 
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Figure 7.16:  Variation of mean velocity with height (z / d) on the runway line (y / d = 0) 
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7.3 Further force balance measurements 

 

 Since no lift-off of the plume was observed from the mean concentration and 

velocity measurements at 1:200 scale, additional force balance measurements were 

performed to investigate whether the arrangement of the baffle array delivers the 

targeted total drag, estimated as 25 % of the total take-off thrust force. These 

experiments completed the sub-scale investigation within the thesis work. In order to 

obtain repeatable measurements, i.e. sufficiently large drag values registered by the 

skin-friction balance, the size of the baffles was changed to a 1:100 geometric scale. 

The arrangement and results of the experiments are described below. 

 

 The models used were geometrically identical to the models of the 8'×4' ABLWT 

experiments. Their dimensions were doubled to give a 1:100 geometric scale (see Table 

G.15 in Appendix G for dimensions and characteristics). The individual baffle models 

were manufactured with a width of 42 mm, which was small enough to follow 

accurately the arcs drawn on the balance plate. As the total width of rows A and C was 

not divisible by 42, three of the baffles of row A and one of the baffles of row C were 

manufactured with a width of 21 mm and were arranged symmetrically in the centre of 

each row. Images of the baffle rows on the skin-frction balance are shown in Figure 

7.17b, Figure 7.17c and Figure G.1b of Appendix G. 

 

 The working section arrangement of the force balance tests, shown in Figure 

7.17a, was similar to the arrangement of the 8'×4' ABLWT experiments. The 

development section was arranged as described in Chapter 6.2. The baffle arcs were 

drawn on the balance plate with radii of 360 mm, 535 mm and 740 mm for row A, B 

and C respectively, centred at a point on the floor centre line representing the runway 

threshold. The distance b0 along the centre line from the nozzle exit to this point was 

570 mm (47.5d) and 240 mm (20d) for Sortie 10 and Sortie 11 respectively. In 

accordance with the sub-scale model results (see Table 6.1), a nozzle of diameter d = 12 

mm was used, delivering a neutrally-buoyant jet (f = 0) at a flow rate of 244 l/min and 

giving an exit velocity of approximately 36 m/s. The nozzle was positioned at 24 mm 

vertical distance from the ground to the nozzle centre line and was approximately 10d 

long in order to ensure a smooth flow at the nozzle exit after passing the corner 

connecting the vertical delivery pipe to the nozzle pipe. Due to practical difficulties of 

turning the balance, all force measurements were performed without cross flow. With 

regard to Sortie 10 and Sortie 11, there is virtually no difference between the measured 

mean wind directions (see Table 8.3), thus aligning the wind tunnel flow with the 

runway direction is expected to have a similar effect on the drag results of both cases. 
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(a) 

 

   
(b)              (c) 

 

Figure 7.17:  8'×4' ABLWT working section arrangement for force balance measurements at 

1:100 scale: a) schematic of Sortie 11 (top view, turntable not shown); b) image of Sortie 10 

(isometric view, flow direction is from bottom left); c) image of Sortie 11 (isometric view, flow 

direction is from bottom right) 

 

 

 The tests were performed at a wind tunnel velocity in the working section, 

measured at 80 mm above the ground, of 0 m/s, 0.5 m/s and 0.7 m/s. The height was 

scaled at 1:100 from the height of the van mast, i.e. 8 m, at which the ambient wind 

speed and direction were measured during the field trials. Repeatability tests were 

performed in order to study the precision of the balance. Additional measurements were 

taken at higher velocities up to 5 m/s to study the effect of the ambient flow. During 

tests, the nozzle position was fixed and the baffles were moved on the balance plate (see 

Figure 7.17b and Figure 7.17c), thus there was no need to take measurements of the 

balance plate alone at different nozzle positions, as was done in the previous force 

balance tests. As discussed in Chapter 5.3, only minor variations in the drag of the array, 

subjected to a freestream (wind tunnel) flow, were observed if the whole array is moved 
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on the balance plate, therefore this was not studied further here. Readings of the ambient 

temperature and barometric pressure were taken for each test and were used to calculate 

the jet density ρj from the Ideal Gas Law. The jet thrust was then calculated with: 

 

 
4

2
2 d

UUmF jjjjMt


    

Equation 7.1 

 

With Uj = 36 m/s and an average jet density of 1.158 kg/m
3
 determined from the 

recorded temperature and pressure readings during the tests, the jet thrust was calculated 

as approximately 0.170 N. 

 

 The total drag FT (baffles and plate) and the balance plate drag Fb, measured 

during three separate tests, are presented in Table 7.3 for the baffles and nozzle 

arrangement of Sortie 10 and Sortie 11. The results are significantly lower than the ones 

measured during the first force balance tests, however, they show excellent repeatability 

within 0.004 N. Although during the calibration tests the balance precision was 

determined to be within ±0.01 N, the current results show consistency for even lower 

measured forces. The results of the additional tests performed without wind tunnel flow 

and at different velocities for the nozzle configurations of Sortie 10 and Sortie 11 (see 

Table G.16 and Table G.17 in Appendix G) show similar repeatability and are 

consistent with the trend of an increase drag with increased in wind tunnel velocity. 

 As evident from the results of Table 7.3, the closer position of the nozzle and 

greater wind tunnel velocity of Sortie 11 give a significantly higher drag, estimated to 

be about ~37% of the jet thrust, compared to the ~26% for Sortie 10. In both cases, the 

percentage is larger than the targeted 25 %, thought to be sufficient to demonstrate the 

effects of the baffles on the plume dispersion. Evidently, the measured percentage 

values would be lower if the direction of the ambient wind did not coincide with the jet 

direction. If the wind tunnel velocities for the two nozzle positions are exchanged, i.e. 

0.7 m/s for Sortie 10 and 0.5 m/s for Sortie 11 (see Table G.17), the drag of the baffles 

for Sortie 10 rises considerably to 30.4 %, while in the case of Sortie 11 it reduces only 

to 35.6 %. Thus, in terms of increased drag, the ambient wind has a stronger effect 

when the nozzle is positioned farther from the baffles. If we consider the measured drag 

results of the configurations of Sortie 10 and Sortie 11 both at 0.7 m/s and compare 

them to the drag results without wind tunnel flow (Table G.16), the percentage values 

reduce from 30.4% to 23.8% for Sortie 10 and from 36.8% to 32.3% for Sortie 11. If in 

both configurations the wind tunnel velocity is reduced from 0.5 m/s to 0 m/s, the 

corresponding reductions are from 25.9% to 23.8% for Sortie 10 and from 35.6 % to 

32.3% for Sortie 11. 
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 As the wind tunnel velocity is increased up to 5 m/s (see Figure G.6 in Appendix 

G), the measured drag becomes independent of the nozzle position. This indicates that 

the dynamic pressure, to which the array of baffles is subjected, comes predominantly 

from the wind tunnel flow. 

 

Table 7.3:  Measured drag for Sortie 10 and Sortie 11 at 1:100 scale without cross flow 

Measurements 
b0 = 570 mm 

(Sortie 10) 

b0 = 240 mm 

(Sortie 11) 

Wind tunnel (ambient wind) velocity at z = 80mm 0.5 m/s 0.7 m/s 

Total measured drag, FT 

Test 1 0.073 N 0.093 N 

Test 2 0.074 N 0.091 N 

Test 3 0.075 N 0.095 N 

Measured balance plate drag Fb 

Test 1 0.031 N 0.032 N 

Test 2 0.030 N 0.030 N 

Test 3 0.030 N 0.032 N 

Average baffles drag in % of jet thrust
*
 25.9% 36.8% 

* Percentage values are calculated by converting the measured forces into dimensionless coefficients in 

order to account for the changes in ambient pressure and density during the tests. If calculated directly 

from the measured forces, differences up to 0.2 % were observed. 

 

 

 Attempts were made to quantify the drag of the baffles subjected to a wind tunnel 

velocity only, i.e. 0.5 m/s and 0.7 m/s measured at z = 80 mm. Due to the very low 

dynamic pressure, the exerted force on the baffles were also very small, approximately 

0.002 N or 1.2 % of the jet thrust, which is lower than the quoted repeatability. While 

this value could not be measured accurately, it would be safe to conclude that the 

increase in drag is not due to the added dynamic pressure of the ambient wind, but is 

caused predominantly by the secondary effect, observed during the flow visualisation 

tests and during the previous drag measurements (Chapter 4 and Chapter 5 

respectively). It is to reduce the entrainment of ambient air and thus reduce the jet’s rate 

of spread, predominantly in lateral direction in case of a wall jet. As a consequence, the 

rate of velocity decay with distance downstream of the nozzle is reduced. Thus the 

ambient wind contributes positively to the drag of the baffles, subjected to an exhaust 

jet, and allows more momentum to be taken away from the jet. At the same time, higher 

ambient wind would keep the wall jet attached to the ground due to its greater 

horizontal momentum above the ground-based plume. 
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8 BAe 146-301 field trials 
 

 This chapter of describes the full-scale field trials performed to complement the 

sub-scale wind tunnel test programme. The full-scale trials were conducted with a BAe 

146-301 aircraft, performing 12 take-off runs at Cranfield Airport (52º 4' 20'' N, 0º 37' 

0'' W). Lidar, acoustic and point-sample air quality measurements were performed in 

collaboration with researchers from Manchester Metropolitan University, University of 

Southampton and University of Cambridge. The outcome and conclusions were 

published as Bennett et al. (2013). This chapter includes a summary of the preparation, 

execution and results of the field trials. 

 

 

8.1 Baffle prototypes 

 

 The wind tunnel results of Chapter 4 and 5 provided sufficient information for the 

aerodynamic design of the baffles in terms of baffle porosity, number of rows and row 

spacing and orientation with respect to the runway. In full-scale, the rows were to be 

composed of individual baffle prototypes of certain width. Regarding the mechanical 

design of the prototypes, the following key features were targeted, in order of priority: 

 

1) Compliance with the failure mode and frangibility criteria, specified by the 

International Civil Aviation Organization (ICAO, 2006a) for structures 

located in the Runway End Safety Area (RESA). The RESA is defined as the 

“area symmetrical about the extended runway centre line and adjacent to the 

end of the strip primarily intended to reduce the risk of damage to an 

aeroplane undershooting or overrunning the runway” (ICAO, 2006a, p. 1-2). 

At the same time, the prototypes should be able to withstand the jet blast from 

the four BAe 146-301 engines.  

 

2) The design should provide a relatively quick and easy way to erect and 

deflate the baffle prototypes, since planned tests included measurements with 

and without baffles. In the latter case, the prototypes are to be laid flat on the 

grass with their base still fixed to the ground. Such design would reduce the 

time between take-off runs and at the same time reduce the manpower 

required to erect and deflate the prototypes. 

 

3) The prototypes should be relatively quick to assemble, as they would be 

transported in parts to the testing site and assembled prior to the first test. 
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4) The design should take into account the limited storage space available for 

the prototypes before and after the trials. Recyclable materials for the baffle 

rigid components should be considered in order to reduce overall cost. 

 

 Dividing the rows into individual baffles satisfied one of the possible failure mode 

criteria, described in ICAO (2006b, p. 4-2) as ‘windowing’. It refers to the collapse of a 

part of the structure on impact with the aircraft, which ‘opens a window’ for the aircraft 

to pass through. In terms of frangibility, ICAO (2006b, p. 4-9) gives the following: 

 

“4.9.2 Yield device. Each elevated light fixture should have a yield point near the point 

or position where the light attaches to the base plate or mounting stake. The yield point 

should be no more than 38 mm above the ground surface and should give way before 

any other part of the fixture is damaged. The yield point should withstand a bending 

moment of 204 J without failure but should separate cleanly from the mounting system 

before the bending moment reaches 678 J.” 

 

In order to be conservative, the maximum permissible width wn max of the individual 

baffles of each row was calculated with a bending moment of MB max = 600 Nm about 

the base of the baffle (see Figure D.1 in Appendix D.1 for a schematic illustration of the 

wind loading on the baffle). The calculation sequences for the baffle wind loading and 

the resulting wn max are shown in Appendix D.1 and D.2 respectively. The estimated 

values for wn max for the field trials are discussed further in Chapter 8.3. 

 

 The baffle prototypes were designed in collaboration with Manchester 

Metropolitan University and were manufactured at Cranfield University. Example 

images of a single baffle from row C (see Figure 8.4 and Table 8.2 for row designation) 

are shown in Figure 8.1. The main features include: 

 

 An A-frame made from four aluminium tubes of 38 mm diameter (nominal 

wall thickness 3 mm). At the joints the frame rigidity was achieved by means 

of aluminium Kee-Lite connectors. 

 

 A porous mesh (γ = 0.20), made of plastic windbreak material, mounted on the 

frame by means of sewn pockets in all four sides. The ground clearance to the 

bottom of the screen (i.e. ~ 260 mm) was kept approximately constant for all 

three baffle sizes. 

 

 Two aluminium feet made from U-section channels (50 mm wide, 38 mm high 

and 500 mm long); two pivot pins linking the frame (uprights) to the feet 

allowed the frame to rotate freely and fold near flat; each foot was held in 
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position with two 200 mm long steel pegs driven into the ground through pre-

drilled holes in the channel base. 

 

 Two aluminium angle stays holding the frame at the required angle α to the jet 

efflux and preventing it from folding flat; each stay was linked to a wooden 

foot through a pivot pin which allowed it to rotate freely and lie flat on the 

ground when frangible pins were removed and the baffle was stowed. The 

wooden feet were held in place with steel pegs, similarly to the baffle feet. 

  

 Two frangible shear pins (size M6) linking the stays and uprights; the shear 

pins were designed to fail at a bending moment about the baffle base (pivot pin 

connection) of 600 Nm, resulting in the baffle folding near flat on the ground; 

prior to the field trials, failure tests were performed with known weights, 

attached to the top of the frame. 

 

 The yield points (i.e. the shear pins), as defined by ICAO (2006b, p. 4-9), were 

located close to the top of the baffle, much higher than the defined maximum height of 

38 mm. This was necessary, since only failure of the pivot pin at the feet would not 

necessarily give the desired flat folding of the baffle if the shear pin connecting the 

upright and stay didn’t fail. 

 

 With the above prototype design, all targeted design features were addressed. The 

height of the U-channel feet above the ground was kept sufficiently small, so that they 

would not be a hazard for ambulances and fire engines driving over the baffles in case 

of an airport emergency operation. This was necessary since the prototypes would be 

left lying flat on the ground at the test site for the duration of the field trials (~10 days 

period). The choice of aluminium frame provided the necessary rigidity and at the same 

time fulfilled the requirement for a relatively lightweight structure, facilitating the 

transportation and installation of the baffle prototypes. The frames can also be recycled 

to keep the overall material costs low. It should be noted that, the presence of metallic 

objects, such as the baffles, in proximity of the runway could interfere with the airport’s 

Instrument Landing System (ILS) and generally restrictions apply, see for example 

Transport Canada (2010). At Cranfield Airport, ILS is available for Runway 21 only, 

therefore the localiser antenna array is located at the opposite runway end and is 

sufficiently far from the baffles. The glide slope antennas are also sufficiently far at 

approximately 300 m from the piano keys of Runway 21, thus the transmitted beam 

would pass above the height of the baffles (minimum vertical angle of 1.25º, equal to a 

height of approximately 6 m at the piano keys). 
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Figure 8.1:  Design features of the baffle prototypes used in the field trials 
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8.2 BAe 146-301 aircraft 

 

 The field trials were conducted with a BAe 146-301 aircraft (Figure 8.2), based at 

Cranfield Airport. It is an atmospheric research aircraft, part of the Facility for Airborne 

Atmospheric Measurements (FAAM), which is the result of a collaboration between the 

Natural Environment Research Council (NERC) and the Met Office (FAAM, 2014). 

The FAAM BAe 146-301 is an aircraft measurement platform with a wide scope of 

research applications including tropospheric chemistry measurements, boundary layer 

and turbulence studies, studies of weather systems and cloud dynamics etc., for which 

specific measurement instruments are used on board (FAAM, 2014). Of interest for the 

field trials were the primary data recording systems, such as the Flight Data Recorder 

(FDR), providing information on the aircraft’s speed as well as the engine exhaust 

temperature and fuel flow rate.  

 

 
 

Figure 8.2:  FAAM BAe 146-301 atmospheric research aircraft (taken from FAAM, 2014) 

 

 

 The FAAM aircraft is a modified BAe 146, originally manufactured as a model 

100 and later extended to a 300 model (registration: G-LUXE), see Figure H.1 and 

Table H.1 in Appendix H for the aircraft’s dimensions and weight, as well as some 

performance characteristics. The FAAM BAe 146-301 has four Honeywell ALF502R-5 

high-bypass turbofan engines. Some useful ALF502R-5 characteristics are included in 

Table 8.1. Of particular interest for the exhaust jet sub-scale modelling are the 

maximum thrust and the air and fuel mass flow rates. The ground clearance of the 
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engines, taken to the fan axis of rotation, was measured when the aircraft was parked at 

Cranfield Airport with empty fuel tanks. The average ground clearance for the inboard 

and outboard engines was estimated to be approximately 2.5 m. 

 

Table 8.1:  Honeywell ALF502-R5 engine specifications (IHS, 2011) 

Length 1615 mm 

Dry weight 606 kg 

Fan diameter 1022 mm 

Maximum thrust 31 kN 

Specific fuel consumption 41.4 kg/(kNhr) 

Bypass ratio 5.7:1 

Mass flow rate (through fan) 87 kg/s 

Fuel flow rate (during static burn) 0.378 kg/s * 

* Mean value from the recorded data by the BAe 146-301 Flight Data Recorder during the field trials 

 

 

8.3 Field trials arrangement 

 

 The field trials took place at Cranfield Airport between September 14
th

 and 21
st
 

2011 and consisted of twelve take-off and landing cycles (sorties) of the BAe 146-301: 

six with deflated baffles (‘baffles down’) and six with erected baffles (‘baffles up’) in 

the RESA of Runway 21 (see example images in Figure 8.3). During each sortie the 

aircraft would taxi to the starting take-off position, where it would perform a static burn 

for a nominal 10 s at full thrust with the brakes on before starting the take-off run. After 

take-off, the aircraft would fly a circuit and land. Sufficient time was allowed between 

sorties for the aircraft brakes to cool down and for the baffles to be erected (or deflated). 

 

  

Figure 8.3:  FAAM BAe 146-301 during field trials, September 2011: (a) starting take-off run, 

baffles deflated (image by Bennett, 2012), (b) during landing approach, baffles erected (image 

taken from Bennett et al., 2013) 
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 Based on the wind tunnel results of Chapter 5, the baffles were arranged in three 

arc-shaped rows of spacing equal to 12 times the slope height of the previous row. The 

parameters for each row are given in Table 8.2. The centre of arc was placed at the 

intersection of the runway threshold (line of runway end lights) and the extension of the 

runway centre line (see Figure 8.4a). Using a rope of the corresponding arc radius, the 

arcs were marked on the grass with a temporary spray paint and the baffles were fixed 

to the ground in a flat (deflated) position in the days leading up to the tests. The width 

of the individual baffles was determined as 2.1 m, using the method outlined in 

Appendix D.2 (see Equation D.8) with MB max = 600 Nm. It should be noted that at the 

time this estimation was made, the position and arrangement of the baffles in the RESA 

were not yet determined from the wind tunnel tests. Therefore, the value of 2.1 m was 

based on calculations for the originally-proposed arrangement of five straight rows of 

slope angle α = 60º to the horizontal and spacing of 12 times the slope height of the 

previous row, where the first row was located 60 m from the edge of the runway piano 

keys. For the three-row configuration, an individual baffle width of 2.1 m would be 

sufficient if the jet source was located on the runway at a distance of 24 m from the 

edge of the piano keys (or 60 m from the runway threshold). 

 The rows consisted of eighty-four individual baffles in total: twenty-three, twenty-

eight and thirty-three for rows A, B and C respectively. For each row this gives a total 

edge-to-edge distance perpendicular to the runway direction of nominally 2.5 times the 

predicted jet width at the corresponding position, assuming the jet source is at the edge 

of the piano keys. Originally, all rows were designed with α = 60º, however, during the 

course of the field trials the angle was changed to 40º, 50º and 60º starting from the 

smallest row respectively. The change was necessary due to structural failure of the 

shear pins of the first two rows as a result of the strong jet blast. Possible reasons for the 

structural failure could be an underestimation of the jet speed by the method presented 

in Appendix D or the adopted new location of the three-row baffle configuration 

compared to the original five-row configuration, which is closer to the runway threshold. 

 

 With regard to the longitudinal arrangement of the baffle rows, for the duration of 

the tests the runway threshold was displaced by 150 m to ensure sufficient clearance 

(i.e. > ~8 m) between the baffles and the typical 3º approach surface (see Figure 8.4b). 

 

Table 8.2:  Parameters of the baffle rows for the BAe 146-301 field trials 

Baffle 

row label 

Arc 

radius 

[m] 

Slope 

height 

h' [m] 

Vertical 

height 

h [m] 

No. of 

individual 

baffles 

Slope 

angle 

α [º] 

Individual 

baffle width 

[m] 

A 36.0 1.4 0.90 23 40 2.1 

B 53.3 1.7 1.30 28 50 2.1 

C 74.0 2.0 1.73 33 60 2.1 
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Figure 8.4:  Schematic illustration of the field trials arrangement in the Runway End Safety Area 

(RESA) of Runway 21 at Cranfield Airport (not to scale): (a) top view, (b) side view 

 

 

8.4 Measurement equipment 

 

 Measurements during the field trials were performed to investigate: 1) the 

dispersion of the exhaust plume, 2) the exhaust jet speed behind the baffles and 3) any 

occurring acoustic effects. Cranfield University was not directly involved in performing 

the measurements therefore the measurement equipment and procedures are only briefly 

discussed here. The majority of the information included is based on the published 

article, i.e. Bennett et al. (2013), where more details can be found. 

 

 The exhaust plume dispersion was measured using Lidar scans, point-sample air 

quality sensor nodes and optical particle counters. The Lidar uses a Nd:YAG frequency-

tripled laser with a 9 ns pulsed output of 355 nm wavelength (eye-safe), and has a 

spatial resolution of 5 m. During the field trials, the Lidar vehicle (see Figure H.3 in 
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Appendix H) was located at nominally 5 m north (grid north) and 178 m west of the 

intersection of the runway threshold and the runway centre line (see Figure 8.5; 

additional satellite image of the area around the runway is shown in Figure H.4 in 

Appendix H). The laser source of the Lidar vehicle is located at 3 m above the ground. 

Scans were performed for elevations of 0.7º and 4.5º typically at azimuths between 

79.5º and 40º relative to grid north in successive shots of 0.5º steps, i.e. 80 shots per 

scan (see Figure 8.5, where the two azimuth angles are shown with arrows starting from 

the Lidar positions). The 4.5º elevation angle was chosen in order to capture any 

occurring lift-off of the exhaust plume from the ground. The total scanning time for 

each test, including scans at both elevation angles, was about 10-11 seconds. 

 

 The point-sample sensor nodes, developed at the University of Cambridge, 

consisted each of three electrochemical cells for detection of CO, NO and NO2, and 

supplementary electronics, GPS and GPRS, the latter allowing for transmission of 

recorded data in near real time over the mobile telephone network (Bennett et al., 2013, 

p. 2349). Six nodes, denoted with ‘S’ in Figure 8.5, were deployed along the boundary 

fence, located at 101 m from the runway threshold along the extension of the runway 

centre line. Air quality measurements were also taken with two Osiris particle counters, 

which use an optical scattering measurement technique to size and counter aerosol 

particulate matter (PM), giving results for PM10, PM2.5 and PM1 (Bennett et al., 2013, p. 

2350). These measurements were taken at a height of 1.35 m above the ground. Each 

Osiris particle counter was mounted on a tetrapod support structure, also including a 

vane anemometer for wind speed measurements at a height of 2.1 m. The structures 

were positioned at two locations 1 m from the fence at its runway side – one on the 

extension of the runway centre line and one at 32.5 m from the centre line in order to 

capture the laterally-displaced plume due to the prevailing west-south-westerly ambient 

wind during the field trials (see Figure 8.5). 

 

 The acoustic measurement equipment included Bruel & Kjaer 2250 sound level 

meters, monitoring the noise level at six locations (numbered 1 to 6 in Figure 8.5) 

behind the boundary fence, a Norsonics environmental noise recorder, located near the 

runway threshold to monitor the acoustic strength of the aircraft noise, and a high-

power omnidirectional acoustic source providing a reference for monitoring changes in 

noise propagation (Bennett et al., 2013, p. 2351). 

 

 Other equipment used included a camcorder to record each take-off and landing 

and, most importantly, the aircraft starting position, and four run-of-wind anemometers 

located on the boundary fence (see Figure H.4 in Appendix H). 
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Figure 8.5:  Schematic illustration of the deposition of the instruments during the field trials 

(taken from Bennett et al., 2013) 

 

The aircraft starting position for each sortie is denoted with #; the six air quality sensor nodes 

are denoted with S; the sound level meters are numbered 1 to 6, the acoustic source is located 

beside S4 

 

 

8.5 Test conditions 

 

 As discussed in Chapter 8.3, during the first take-offs with extended baffles (i.e. 

Sortie 2 and 3), the strong jet blast led to structural failure of the central baffles of rows 

A and B, i.e. located close to the extension of the runway centre line. In subsequent 

sorties, the baffle arrangement was changed to the one of Table 8.2 and the aircraft take-

off starting position was moved further away from the runway threshold. Taking this 

into account, the recorded data of the last test day (i.e. Sortie 9 to 12) were considered 

most reliable in terms of test arrangement, favourable ambient conditions and quality of 

the measurements performed. These were used in the modelling and replication of the 

field trials at sub scale, described previously in Chapter 6 and 7 respectively. 

 

 The test conditions of Sortie 9 to 12 are shown in Table 8.3. Ambient temperature 

and barometric pressure readings were obtained from the meteorological database of 

Cranfield Airport. The ambient wind speed and direction were measured every 10 s by 
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the Lidar vehicle mast anemometer and wind vane respectively at 8 m above the ground. 

The values given in Table 8.3 are the averaged values over the duration of the take-off 

run for each sortie. The ambient wind direction was measured relative to magnetic north, 

which for Cranfield Airport is nominally 3º west of grid north. Runway 21 is oriented at 

211º to grid north, thus the ambient wind angle relative to the Runway 21 centre line is 

obtained by subtracting 214º from the value given in Table 8.3 (see Figure H.5 in 

Appendix H for a schematic illustration explaining the angular relationships). It should 

be noted that the wind direction value for Sortie 11, i.e. 250º, differs by 2º from the 

value quoted for the same sortie in Bennett et al. (2013). The estimated engine position, 

given in Table 8.3, is relative to the runway threshold along the runway centre line. 

 

Table 8.3:  Test conditions for Sortie 9 to 12 during the BAe 146-301 field trials  

Sortie 

No. 
Baffles 

Ambient 

temperature 

[ºC] 

Ambient 

pressure 

[Pa] 

Wind 

speed* 

[m/s] 

Wind 

direction** 

[º] 

Engine 

position*** 

[m] 

9 down 12.5 101600 7.1 239 57 

10 up 14.5 101600 5.4 249 57 

11 up 14.5 101550 7.0 250 24 

12 down 15.5 101500 7.2 245 38 

* Measured at 8 m above the ground at Lidar vehicle location 

** Measured relative to magnetic north at 8 m above the ground at Lidar vehicle location 

*** Longitudinal (along centre line) position on Runway 21 relative to the runway threshold 

 

 

 From Table 8.3, it is evident that Sortie 10 and Sortie 11 were performed at 

practically the same averaged wind direction, however, the ambient wind speed was 

considerably higher in the case of Sortie 11. Given the expected influence of the 

ambient wind on the plume behaviour, a comparison between both sorties would not 

necessarily show the influence on the plume dispersion of the distance between the jet 

source and the baffles, which is significantly closer in the case of Sortie 11. At the same 

time, Sortie 11 and Sortie 12 were performed at approximately the same ambient wind 

speed, thus a direct comparison showing the effect of the baffles should be possible. 

The difference in ambient wind direction (≈ 5º) in the two cases is considered of less 

importance given the width of the baffles relative to the estimated plume lateral spread. 

 

 

8.6 Results 

 

 With regard to this sub-scale study, only the performed Lidar scans and air quality 

measurements are of high importance. A brief summary of the results, as presented in 



 
   Chapter 8:  BAe 146-301 field trials 

- 189 - 

 

Bennett et al. (2013), is included in this section, while a comparison to the wind tunnel 

experiments is provided in Chapter 8.7. The final averaged Lidar data of each sortie 

from 9 to 12 for both elevation angles of 0.7º and 4.5º, provided by Bennett (2012), are 

plotted in Figure H.6 to Figure H.9 in Appendix H, including the basic schematic 

arrangement in the RESA of Runway 21. 

 

 Comparing the averaged Lidar scans of Sortie 11 and 12 for the low elevation of 

0.7º (see Figure 8.6), it is evident that the concentrations behind the array of baffles are 

reduced considerably when the baffles are erected. For example, at 0.7º elevation and 

initial height of the laser source of 3 m the height of the scans above the intersection of 

the boundary fence and the extension of the runway centre line is approximately 6 m 

(see Figure H. in Appendix F for the calculated contours of Lidar scanning height at 

elevation of 0.7º and 4.5º). At 4.5º elevation, the observed plume concentrations for 

Sortie 11 appear to be higher compared to Sortie 12 (see Figure H.8b and Figure H.9b 

in Appendix H). Furthermore, the plume of Sortie 12 appears to be located close to the 

ground with only small individual parts detected at 4.5º elevation, while in case of 

Sortie 11 a coherent plume of small concentrations can be detected downstream of the 

boundary fence between heights of 26 m and 36 m, estimated from Figure H.10b. 

 

 
 

Figure 8.6:  Comparison of averaged Lidar results for Sortie 11 (baffles up) and Sortie 12 

(baffles down) for an elevation of 0.7º (taken from Bennett et al., 2013) 

 

Coordinates are given in east (x) and grid north (y) direction relative to the Lidar position; plot 

contours are given as excess concentration relative to the measured ambient concentration 
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 Comparing Sortie 9 and 10 (Figure H.6 and Figure H.7 in Appendix H), the 

plume concentrations near the baffles at 0.7º elevation appear to be reduced in the case 

of Sortie 10 as the plume is deflected upwards. However, further away from the baffles 

the concentrations appear to be the same at 0.7º and slightly higher at 4.5º in the case of 

Sortie 10. Bennett et al. (2013) concluded that the effect of the baffles in reducing near-

surface concentrations is extremely sensitive to the distance between the jet source and 

the array of baffles. The analysis showed that in the case of Sortie 10 the jet had already 

lifted far enough from the ground for the baffles to be no longer fully effective (Bennett 

et al., 2013, p. 2350), while in the case of Sortie 11 the jet had been still close to the 

ground. At the same time, the plume of Sortie 10 was also observed to remain coherent 

at 4.5º elevation (see Figure H.7b), similarly to Sortie 11, while no coherent plume was 

observed at this elevation in the cases without baffles (Sortie 9 and Sortie 12). 

 

 The measurements of the point-sample air quality sensors (see NO data column of 

Table 8.4) are consistent with the Lidar results with regard to the baffle effectiveness 

between Sortie 10 and Sortie 11. The detected NO concentrations are significantly 

lower in the case of Sortie 11, i.e. nearly half the concentrations recorded during Sortie 

12, and are similar for Sortie 9 and 10. At the same time, the peak values of particulate 

matter, measured by the Osiris particle counters, do not show the same trend (see Table 

8.4). The data for PM10 show clearly a significant reduction when the baffles are present 

(both Sortie 10 and Sortie 11), however, the results for PM2.5 and PM1 are inconclusive 

as they also show low values in the case of Sortie 12. From all three cases, Sortie 10 

appears to give the lowest peak values of particulate matter. 

 The vane anemometer measurements at the boundary fence and 2.1 m height 

above the ground also show significant reduction in wind speed for Sortie 10 and Sortie 

11. The higher value for Sortie 11 is due to the closer starting position of the aircraft 

and the higher ambient wind speed. 

 

Table 8.4:  Lidar and air quality measurements for Sortie 9 to 12 (data from Bennett et al., 2013) 

Sortie 

No. 
Baffles 

Lidar, peak 

values*  

Osiris, peak values** NO 

data*** 

[ppm] 
Wind speed 

[m/s] 

PM10 

[μg/m
3
] 

PM2.5 

[μg/m
3
] 

PM1 

[μg/m
3
] 

9 down 0.47 46.4 47.92 16.61 6.70 69.5±0.6 

10 up 0.47 22.4 10.11 5.24 2.08 62.8±0.5 

11 up 0.27 26.0 12.35 7.27 2.70 43.2±0.4 

12 down 0.66 44.8 63.15 6.18 2.74 82.7±0.6 

* Peak values above the Osiris unit close to the intersection of the boundary fence and the extended 

runway centre line 

** Data measured by the Osiris unit located close to the intersection of the boundary fence and the 

extended runway centre line; PM data are measured aerosol peak values above the background values 

*** Values are summed over all point-sample sensors and integrated over the time passage of the plume 



 
   Chapter 8:  BAe 146-301 field trials 

- 191 - 

 

 The acoustic measurements showed that the presence of the baffles yielded a 

modest acoustic benefit of ~2 dB along the extended runway centre line, attributed to 

their shielding effect, i.e. creating an acoustic barrier (Bennett et al., 2013, p. 2351). 

This is a positive result since noise reduction is not considered of primary importance 

within the baffles concept. In fact, the acoustic measurements were performed mostly to 

identify whether any negative effects in terms of ambient noise occur due to the 

presence of the baffles. 

 

 

8.7 Discussion 

 

 As stated in Bennett et al. (2013), the performed measurements during the field 

trials appear to be conclusive on the positive effect of the baffles on the plume 

dispersion, provided that the baffles are located sufficiently close to the starting position 

of the jet source. This is in agreement with the conclusions of the sub-scale wind tunnel 

tests. In practice, it would require the aircraft starting position for the take-off run to be 

as close as possible to the runway threshold for the array of baffles to be effective. This 

is usually the case for large, heavy aircraft which wish to use all of the available runway 

distance and which in turn also have a greater impact on local air quality. If the baffles 

concept is to be implemented in practice, the individual baffles must be sufficiently 

robust to withstand the strong jet blast and at the same time they need to comply with 

the statutory frangibility criteria in case they are stuck by an aircraft. During the field 

trials, after the occurred structural failure during Sortie 2 and Sortie 3, the necessary 

robustness was achieved by using stronger shear pins, increasing the prescribed 

maximum bending moment of 600 Nm. For a permanent installation, the array needs to 

consist of narrower baffles in order to distribute the wind loading on a larger number of 

individual baffles and thus reduce their individual wind loading whilst maintaining the 

same baffle height. 

 

 Considering the practical relevance of the performed measurements, it should be 

noted that during the field trials the aircraft was allowed a 10 s static burn prior to 

starting the take-off run in order to produce a jet exiting from a stationary source and 

thus to allow more time for the measurements to be performed and to be able to identify 

the effect of the baffles more clearly. Such measurements during a static burn are not 

entirely representative for a typical aircraft take-off run, where the jet source accelerates 

away from the baffles, making them less effective. In practice, the effect of the baffles 

would be mostly on the initial jet blast. At the same time, the performed static burn and 

averaged Lidar scans allow for a simplified take-off run representation at sub scale, 

using a stationary nozzle and taking averaged concentration measurements. 
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 In terms of data correlation, the available Lidar results are relative to the 

background (ambient) concentrations, measured prior to each sortie, while the 

conducted Flame Ionisation Detector (FID) measurements at sub scale provided point-

sample concentration data in parts per million (ppm) of a tracer gas in the exhaust 

plume. Therefore a complete correlation is not possible, however, the Lidar results 

provide important information on the plume lateral spread and near-surface 

concentrations, showing the effect of the baffles. Comparing Figure H.7a (Sortie 10) 

and Figure H.8a (Sortie 11) to Figure 7.8, close to the ground, there is a noticeable 

difference between the lateral location of the plume at full scale and sub scale relative to 

the extended runway centre line. The Lidar measurements during Sortie 11 show that 

the plume was approximately symmetrical to the extended runway centre line at the 

boundary fence. This is due to the close position of the aircraft relative to the baffle 

array and the resulting exhaust jet of greater velocity at the fence, not affected 

significantly by the ambient wind. At the same time, the sub-scale measurements show 

a displaced plume towards the leeward side of the runway line (relative to the ambient 

wind direction). Thus, at this location and height, the ambient wind at sub scale (wind 

tunnel flow) has a more significant influence on the plume compared to the ambient 

wind at full scale. As the ratio of ambient wind velocity to jet velocity was matched at 

full scale and sub scale at the jet source, a possible explanation for this difference would 

be a greater velocity decay with distance downstream of the sub-scale nozzle jet 

compared to the engine jet. This would increase the ratio of ambient wind velocity to 

local jet velocity at sub scale, resulting in a possible drift of the plume from the centre 

line in the direction of the cross flow. 

 

 Further comparisons between full scale and model can be made in terms of the 

lateral spread of the observed plume, i.e. at right angles to the runway direction. At sub 

scale, the edges of the plume were difficult to estimate from Figure 7.8 and Figure 7.9, 

therefore the y coordinates of zero concentration were extrapolated numerically from 

the measured concentrations. At the boundary fence line, i.e. 101 m from the runway 

threshold, the lateral spread of the plume is estimated to be 73 m and 81 m for Sortie 11 

and Sortie 12 respectively. The corresponding values at full scale are 39 m and 42 m, 

estimated from the plots of Figure H.8a and Figure H.9a respectively. For Sortie 12 in 

full-scale, a lateral spread of 54 m was also calculated at 86 m from the runway 

threshold. There is a significant difference between the estimated values at full scale and 

model, i.e. the sub-scale plume appears to be approximately double in size. Therefore, 

they were further compared to the typical values for the lateral spread of a three-

dimensional wall jet, found in the literature and listed in Table 2.2 in Chapter 2.3. For a 

distance x from the source, the half-width of a wall jet in lateral direction is estimated to 

be between 0.25x and 0.3x. Thus, at a distance of 139 m, i.e. the distance of the 

aircraft’s engines from the fence during Sortie 12, the estimated lateral spread would be 
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between approximately 70 m and 83 m. This is in good agreement with the calculated 

sub-scale lateral spread. However, it appears that the Lidar data shows a much narrower 

plume. Furthermore, from Figure H.9a it is evident that the lateral spread of the plume 

decreases between 86 m and 101 m from the runway threshold. In general, the plumes 

detected by the Lidar do not exhibit the expected lateral growth rate. In the opinion of 

the author, the Lidar plots do not show the low concentrations near the edges of the 

plume, therefore the estimated lateral spread is not representative for the complete 

plume. 

 

 While the measurements during Sortie 9 to 12 were successful in terms of the 

quality of the data and the robustness of the baffle arrangement, two possible issues 

should be mentioned: 1) There are no additional measurements to confirm the 

repeatability of the favourable results of Sortie 11 in terms of reduction of near-surface 

concentrations; 2) The ambient wind influence on the results is not taken into account 

when comparing Sortie 10 and Sortie 11 to determine the effect of the source distance to 

the array of baffles. The importance of the latter is highlighted by the lower ambient 

wind speed during Sortie 10, which would have a smaller suppressing effect on the lift-

off of the jet compared to the higher ambient wind speed of Sortie 11. The strong 

influence of the secondary (ambient) flow on the jet development and possible lift-off 

was also observed during the initial experiments (see Chapter 4). With regard to 1), 

additional Lidar measurements were planned at Cranfield Airport using a sub-scale 

baffle array and an Unmanned Aerial Vehicle (UAV) model gas turbine, mounted on a 

trailer. These are described in the following section. 

 

 

8.8 UAV turbine field trials 

 

 The positive outcome of the BAe 146-301 field trials and the observed differences 

between Sortie 10 and Sortie 11 aroused further interest to investigate the influence of 

the distance between the baffles and the jet source on the baffles’ effectiveness. Further 

full-scale measurements were not possible due to the high cost and limited availability 

for hiring the BAe 146-301, therefore additional field trials were planned with sub-scale 

baffle models and a small gas turbine, used primarily on radio-controlled UAVs. To 

date, two unsuccessful attempts to conduct Lidar measurements with this arrangement 

were made at Cranfield Airport due to adverse weather conditions and problems with 

the UAV gas turbine and the measurement equipment. This section includes a brief 

description of the planned test arrangement and a summary of the key scaling issues to 

be addressed. 
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 The available engine is an Olympus HP gas turbine (see Figure I.1 in Appendix I), 

manufactured by AMT Netherlands, with a maximum thrust of 230 N. More 

specifications are included in Table I.1 in Appendix I. The engine is started using flows 

of compressed air and propane, delivered from external cylinders via two separate 

tubing systems, to spin the compressor and to ignite the burning process respectively. 

Once started, the engine is fuelled with a mixture of 95% kerosene and 5% AeroShell 

500 synthetic turbine oil, delivered by a small electric pump. At maximum thrust, the 

engine has a total mass flow rate of 0.45 kg/s for a fuel consumption of 0.64 kg/min. 

The turbine operation is controlled remotely with an automatic Electronic Control Unit 

(ECU). More information on the Olympus HP can be found in AMT Netherlands (2014). 

 

 During tests, the Olympus HP and the auxiliary equipment, needed for its 

operation, are mounted on a trailer at nominally 0.75 m ground clearance to the exhaust 

nozzle centre line. This distance is the smallest ground clearance that could be achieved 

with the planned test equipment, since the turbine has to be mounted safely on a 

wooden support fixed to the trailer body. Another issue with the trailer to be used is the 

presence of a large wake downstream which would interfere with the exhaust jet. The 

wake can be reduced by using a smaller trailer or alternatively its influence can be 

minimised by performing the tests at low ambient wind or with the baffles arrangement 

angled, creating a cross flow. However, the latter two cases are of little practical 

significance since low-wind conditions would not represent a realistic environment to 

demonstrate the effects of the baffles and a cross flow would deflect the exhaust plume 

away from the baffles. If dynamic tests are to be considered, where the take-off run 

would be simulated by an accelerating ground vehicle pulling the trailer away from the 

baffle array, the wake behind the turbine would be enhanced by the presence of the 

vehicle and its movement relative to the ambient air. 

 

 Further issues with the experimental arrangement would be the measurement 

equipment to be used and the appropriate scaling of the experiment with regard to the 

full-scale BAe 146-301 trials. The plume dispersion measurements are to be performed 

with the same Lidar, which during the BAe-146 trials had a range resolution of 5 m. At 

the reduced scale of the experiment, such resolution would not be able to capture 

sufficient details of the exhaust plume (see predicted jet width in Table I.2 in Appendix 

I, as given by Bennett, 2012). Therefore, efforts were made to reduce the Lidar 

resolution to 1.2 m using an onboard digitiser card (Bennett, 2012). To create a visible 

exhaust jet, which is advantageous for the Lidar detection, a modest quantity of low-

volatility oil would be injected at the UAV turbine exit through a simple Venturi system. 

Since the Lidar requires a measurement distance of 250-300 m between its position and 

the plume, a suitable location was proposed at the eastern end of Cranfield Airport’s 

taxiway (see Figure I.2 in Appendix I). With the exhaust jet path and baffle array 



 
   Chapter 8:  BAe 146-301 field trials 

- 195 - 

 

aligned at the taxiway in direction of Runway 03, as shown in Figure I.2, the Lidar van 

would be located close to the intersection of the runway and the taxiway. Such 

arrangement is adopted due to the predominant south-westerly winds at Cranfield 

Airport. In case of cross winds, the arrangement can be turned into the cross wind and 

the Lidar can be moved towards the south-eastern end of the airport. The only 

foreseeable issue in such case would be any vegetation (< 0.5 m) surrounding the 

taxiway, which would obstruct the Lidar measurements close to the ground.  

 Aside from the Lidar measurements, plans are made for velocity profile 

measurements downstream of the baffle array using a Pitot-rake of 15 probes, located at 

nominally 10 cm intervals and connected to Omega PX139 pressure transducers. The 

data acquisition and data processing systems are to be powered using an external battery. 

 

 The main issue of the UAV trial arrangement is to determine the scaling of the 

baffle models, resulting from the smaller thrust of the engine used (230 N) compared to 

the total thrust of the BAe-146 engines (124 kN) during the full-scale field trials. A 

possible scaling parameter would be the jet Froude number, identified in Chapter 2.6 as 

one of the governing similarity parameters in buoyant flows. Using Froude number 

equality, a geometric scaling λ ≈ (ṁM / ṁF)
0.4

 can be obtained with the calculation 

sequence included in Appendix G, where ṁM / ṁF  is the ratio of the total engine mass 

flow rates at sub scale and at full scale. With ṁF = 349.5 kg/s (all four ALF502-R5 

engines) and ṁM = 0.45 kg/s, the calculated scaling is approximately 1:14.3. It should be 

noted that in the calculation sequence a geometric similarity is assumed between the 

UAV turbine and a fictive single engine, which would combine the mass flow of all 

four full-scale engines. 

 Another method of determining the size of the baffles is to scale them relative to 

the estimated plume size, as proposed by Bennett (2012). During the BAe 146-301 field 

trials, the baffle vertical heights were typically 0.015Δz, where Δz is the estimated 

plume height at each baffle row. With full-scale slope heights of 1.0 m, 1.7 m and 2.0 m, 

this scaling method yields model slope heights of 9.9 cm, 12.3 cm and 15.2 cm 

respectively. The corresponding values using Froude number scaling (λ = 1:14.3) are 9.8 

cm, 11.9 cm and 14.0 cm, thus both methods yield similar scaled values. The second 

method was adopted for the provisional baffle models. 

 

 Further scaling issues would arise if dynamic tests are to be performed, where the 

jet source is accelerated away from its initial position. Using Froude number equality 

the sub-scale acceleration would equal the one at full scale (see derivation in Appendix 

I), which during the BAe 146-301 trials was approximately 3.1 m/s
2
. Another method of 

calculating the sub-scale acceleration is on the basis of the mass of the jet (Bennett, 

2012), which estimated a sub-scale acceleration of 0.9g, i.e. nearly three times the full-

scale acceleration and too large to be considered. An acceleration of 3.1 m/s is more 
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realistic, however, still practically not achievable by a ground vehicle pulling a trailer. It 

is evident that if dynamic tests are to be conducted, the jet source acceleration would be 

limited by the ground vehicle’s performance characteristics. 

 The aim of the UAV trials is to confirm the results of the full-scale field trials and 

to demonstrate further the positive effect of the baffles on the exhaust plume dispersion, 

investigating the influence of the distance between source and baffles in a controlled 

experiment. For this purpose, the original full-scale arrangement is modified as follows. 

First, the baffle array consists of straight rows of simple wooden plates, all inclined at 

60º to the horizontal and arranged laterally at right angles to the jet (see Figure I.2 and 

Figure I.3 in Appendix I). The baffles can be arranged relatively easy using a rope with 

knots to mark the distances between each row. Second, a fourth, smaller row is added 

closer to the jet source (see Figure I.3) – due to the simple baffle models used, adding 

another row is not as expensive as it would have been in the full-scale trials. The 

distances between the rows are not scaled down from the full-scale arrangement, but are 

determined from the predicted point of the jet reaching the ground and the start of the 

expected buoyant rise without the baffles present, which are 4 m and 8 m respectively 

(Bennett, 2012). The spacing is nominally 8.3 times the slope height of the previous row. 

The arrangement parameters are shown in Table I.2 of Appendix I. 

 

 To date, two attempts were made to conduct the UAV trials with the above 

arrangement – in November 2012 and July 2013. No measurements could be performed 

due to adverse weather conditions and issues with the Lidar and the UAV turbine. Plans 

have been made for a third attempt in 2014, however, their fulfilment depends on the 

available funding by the team of researchers from Manchester Metropolitan University, 

performing the Lidar measurements, and the availability of the UAV engine, which is 

owed by the Department of Aerospace Sciences of Cranfield University. 
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9 Conclusion 
 

 The principle aim of the research project was to explore the possibility of using 

aerodynamic baffles to enhance the dispersion of the aircraft exhaust plume at take-off 

and thus improve local air quality at airports. The thesis work focused primarily on the 

design and sub-scale modelling of the baffles, using a variety of wind tunnel testing 

methods. This final chapter includes a general discussion on the key findings and issues, 

followed by the reached conclusions and suggestions for future work. 

 

 

9.1 Summary 

 

 The general concept of this work consists of placing an array of windbreaks 

(‘baffles’) in the runway end safety area, which should remove sufficient horizontal 

momentum from the high-temperature exhaust jet at take-off, allowing its vertical 

momentum due to buoyancy to become dominant and lift the exhaust plume away from 

the ground (‘lift-off’). Such buoyant rise would reduce the concentration of exhaust 

emissions at ground level.  

 In view of the above, the planned wind tunnel experiments were conducted in two 

stages. First, during the initial stage, the effects of the baffles on the flow development 

were studied using flow visualisation. Additional wind tunnel tests were performed to 

study the flow field around porous screens in order to obtain preliminary design 

parameters of the baffles, such as slope angle and porosity, i.e. the ratio of the open area 

to the total area of the screen. Second, the aerodynamic drag of various baffle 

configurations was measured with a one-component force balance, in order to identify a 

suitable configuration to be tested at full scale using baffle prototypes. 

 

 The initial flow visualisation experiments with a plain wall jet (no baffles) showed 

that increasing the jet buoyancy, i.e. by adding helium to the nozzle flow, and reducing 

the ratio of freestream velocity to exit jet velocity β both increased the vertical spread of 

the plume. Reducing β also significantly increased the lateral spread of the plume. At 

increased buoyancy, parts of the top of the plume were observed to separate, however 

the main plume body remained attached to the ground.  

 Additional tests were performed with a single baffle row in the path of the jet and 

a lift-off of the coherent plume, i.e. complete detachment from the working section floor 

surface, was observed only under the following conditions: 

 no freestream (β = 0) and 

 a baffle row present in the path of the jet. 



 
S. Velikov                                                                                                                       PhD Thesis 

- 198 - 

 

 

Without the baffle row and at β = 0, no lift-off was observed within the rage of tested 

longitudinal distances (up to 177 nozzle diameters). The baffle concept of promoting the 

lift-off of the plume was demonstrated by comparing the plume at the same distance 

downstream of the nozzle without a baffle row in the path of the jet (no lift-off observed) 

and with a baffle row in the path of the jet (the plume was observed to separate from the 

surface). Overall, the velocity ratio β and the position of the baffle row relative to the 

nozzle exit were observed to have a significant role in the development of the plume 

with distance downstream. 

 The experimental results on the flow in the near field of porous screens showed 

that the pressure drop coefficient of the screens, representative for their aerodynamic 

drag, approached a constant value as the flow Reynolds number increased, suggesting 

Reynolds number independency. This was a positive result in view of the small scale 

(1:200) of the planned wind tunnel experiments, where complete Reynolds number 

equality could not be achieved. The flow visualisation experiments showed that 

significant vortex shedding occurred downstream of screens of porosity smaller than 

0.20, similarly to the flow around a solid flat plate. In view of this, a material of 0.20 

porosity was chosen for the baffle prototypes, in order to reduce the aerodynamic load 

from the jet blast and t avoid vortex shedding. 

 

 In order to obtain an optimum baffle configuration to be tested at the full-scale 

field trials, the drag of various configurations of baffle rows, subjected to a freestream 

and a nozzle jet, was measured with a one-component force balance. The measurements 

were performed with straight and arc-shaped baffle rows, orientated perpendicular to the 

flow direction. Configurations of three, four and five rows of progressively increasing 

height were considered for the field trials. The method was found to be sufficiently 

accurate to investigate the trends of drag behaviour with number of baffle rows, their 

spacing and slope angle. 

 The drag results showed only small variations with freestream Reynolds number 

for Re > 18000, based on the baffe row height h5. This is of significant importance as it 

suggests that precise sub-scale wind tunnel modelling of the effects of the baffles can be 

performed at a significantly lower Reynolds number compared to full scale, while at the 

same time a complete Froude number equality at sub scale and full scale can be 

achieved.  A complete Reynolds number equality at sub scale and full scale was not 

possible due to the low scale of the wind tunnel experiments. In a freestream, a three-

row configuration of spacing between the rows equal to 12 times the slope height of the 

previous row was found to exhibit ~ 90% of the drag of the corresponding five-row 

configuration. In a combination of a freestream and nozzle jet, the same results were 

observed if the first row of each of the configurations was located at the same distance 

from the nozzle. In order to minimise the costs for manufacturing of the baffle 
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prototypes and to reduce the time and costs needed for transportation and preparation of 

the field trials arrangement, the three-row configuration was favoured over the initially 

proposed five-row configuration. Since no significant differences in the drag results 

were observed between the arc-shaped and straight rows, the arc-shaped configuration 

was favoured as it is advantageous in case of cross winds. 

 

 With an identified baffle configuration to be tested, the effects of the baffles were 

first investigated in full-scale field trials, which were later replicated in sub scale in 

Cranfield University’s 8'×4' Atmospheric Boundary Layer Wind Tunnel. Additional 

wind tunnel tests were conducted with a modified arrangement in order to expand the 

scope of the experiment. 

 

 Following the results of the force balance tests, baffle prototypes were designed in 

accordance with the failure mode and frangibility criteria, specified by the International 

Civil Aviation Organization (ICAO, 2006a) for structures located in the runway end 

safety area. Apart from complying with the regulations, the design was also concerned 

with the need for a relatively quick and easy way to erect and deflate the prototypes. 

 The baffle prototypes were tested during field trials at Cranfield Airport in 

cooperation with researchers from other academic institutions in the UK. The tests 

consisted mainly of dispersion measurements, using Lidar scans, particle counters and 

air quality sensors, of the exhaust plume of a BAe 146-301 aircraft performing take-off 

and landing cycles (sorties). The measurements were taken during 10 seconds of static 

burn (brakes engaged) before each take-off. Reliable results were collected from four 

sorties – two with the baffles erected (Sortie 10 and Sortie 11) and two with the baffles 

deflated (Sortie 9 and Sortie 12). The Lidar measurements show reduced concentrations 

close to the ground and downstream of the baffles only during Sortie 11 when the 

aircraft was located closer to the baffle array. The positive results of Sortie 11 were 

confirmed by the air quality measurements of nitrogen oxide downstream of the baffles. 

The peak values measured by the particle counters were lower for Sortie 10 compared to 

Sortie 11. However, both values were considerably lower compared to the ones of 

Sortie 9 and Sortie 12 

 While the results of Sortie 11 and Sortie 12 appear to be conclusive about the 

enhanced dispersion of the plume near the ground, caused by the baffles, there are no 

additional measurements to confirm this. The unfavourable results of Sortie 10 also 

indicate that the aircraft would need to be located very close to the runway threshold in 

order for the baffles to be effective. Such starting position is normally requested by 

large aircraft which require a longer take-off distance. With regard to the applicability 

of the baffles, they would need to be sufficiently robust to withstand the strong jet blast. 

During the first sorties of the field trials, the shear pins failed as a result of the strong 
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blast, which led to the baffle rows collapsing. For this reason, during Sortie 11 the 

baffles were already reinforced with stronger shear pins. 

 It should also be noted, that the results of the field trials to a large extent show the 

effect of the baffles following a static burn of 10 seconds, which cannot be considered 

entirely representative for the standard take-off run. 

 

 In view of the above considerations, based solely on the results of Sortie 11, the 

applicability of the baffles at present time is not possible without an infringement of the 

ICAO regulations. Furthermore, in the opinion of the author, the results of Sortie 11, as 

accurate as they may be, cannot be considered conclusive without verifying their 

repeatability by means of additional results. Therefore, further tests are needed in order 

to assess accurately the effect of the baffles with regard to their applicability at airports. 

 

 Two attempts were made to conduct additional, sub-scale field trials with a UAV 

model gas turbine. Due to adverse weather conditions and issues with the equipment 

used, no measurements could be performed. The planning and progress made to date are 

described in Chapter 8.8. 

 

 In order to replicate the field trials in sub scale, the temperature and exit velocity 

of the BAe 146-301 exhaust jet were calculated with an analytical method, applying the 

Thrust Equation and the Steady Flow Energy Equation across a control volume around 

the engine. It assumed fully-mixed jet conditions shortly downstream of the exit nozzle. 

The method was applied to a PW4000 engine, for which contours of temperature and 

velocity downstream of the engine were available at Airbus (2014a). The calculated exit 

velocity showed excellent agreement, i.e. less than 2% difference, while the exit 

temperature was overestimated by approximately 10%. By all means, the calculated 

temperature and velocity with such method would be representative for a turbojet 

engine of the same mass flow rate, fuel consumption and maximum thrust. 

 The aircraft was modelled in sub scale with a single, stationary nozzle providing 

the jet. While the use of a stationary nozzle is justified by the performed static burn 

during the field trials, the choice of single nozzle to model a merged jet of initially four 

single jets was necessary for practical reasons. Ideally, the single-jet and merged-jet 

development with distance from the nozzle should be studied and compared in terms of 

velocity decay and plume growth rates in lateral and vertical direction in order to 

determine a suitable position of the single-jet nozzle relative to the baffle array. 

 The full-scale exhaust jet was modelled in the wind tunnel according to the 

method by Littlebury (1981) and Garry (1989). The sub-scale calculations were done by 

means of three similarity parameters: the jet Froude number, the ratio of jet density to 

ambient density and the ratio of ambient wind velocity to jet exit velocity. Due to the 

low scale of the experiments, the Reynolds number could not be equalled in full scale 
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and sub scale. A positive result with regard to this issue was observed during the drag 

measurements of the baffle configurations, where only minor variations of the results 

with Reynolds number were evident. The nozzle flow rate and diameter were calculated 

from the total mass flow rate of the BAe 146-301 engines. 

 The Atmospheric Boundary Layer profiles of mean velocity and turbulence 

intensity were calculated in sub scale using the methods of ESDU (1982) and ESDU 

(1983). A good match of the calculated and measured mean velocity profile in the 

working section was obtained, except very close to the ground. The measured 

turbulence intensity profile showed considerable differences compared to the ESDU 

calculations up to heights corresponding to 40 m at full scale. In the initial plume flow 

visualisation experiments, the size of the plume was shown to increase considerably if 

the turbulence intensity of the boundary layer was increased significantly by modelling 

the Atmospheric Boundary Layer. The lower measured turbulence intensity values close 

to the ground compared to the ESDU profile are considered to have an effect on the 

development of the plume. 

 

 Sortie 10, 11 and 12 were replicated at 1:200 scale in terms of the aircraft engine 

position relative to the baffle array and the recorded ambient speed and direction. Mean 

concentration measurements were performed at locations downstream of the baffles as 

far as 200 nozzle diameters d, using a Flame Ionisation Detector (FID) method. 

 The results at 1:200 scale show higher mean concentrations of Sortie 11 compared 

to Sortie 10 and 12 at all heights from the ground between 4.2d and 16.7d at the 

boundary fence line. Very close to the ground, at 0.4d, Sortie 11 has significantly lower 

concentrations compared to Sortie 12. At equal distances from the respective nozzle 

position, Sortie 11 gives a small reduction in the peak concentrations at 4.2d, compared 

to Sortie 10 and Sortie 12. This was observed at 132 and 148 diameters downstream of 

the nozzle, corresponding to full-scale distances of 134 m and 154 m from the runway 

threshold respectively. At greater heights, the concentrations are higher compared to 

Sortie 10 and Sortie 12. 

 Thus, it can be concluded that the effect of the baffles is predominately to increase 

the vertical spread of the plume, giving higher concentrations away from the ground. By 

comparing Sortie 10 and Sortie 11, it was found that this effect was stronger if the 

source was located closer to the baffles, which is in agreement with the general 

conclusions of the field trials. It appears that there is a small positive effect of the 

baffles also further downstream, observed up to 148 nozzle diameters. The plume of 

Sortie 11 was not observed to lift off within the distances tested, thus the positive Lidar 

results could not be reproduced in sub scale. 

 A qualitative comparison of the contours of mean concentrations with the Lidar 

data shows a noticeable difference in the lateral position of the plume of Sortie 11 

between full scale and sub scale. The full-scale plume is oriented approximately 
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symmetrical to the extended centre line, while the sub-scale plume is shifted in the 

direction of the ambient wind. Thus, the ambient wind seems to have a more significant 

influence on the sub-scale plume. A possible explanation for this could be a greater 

velocity decay of the sub-scale nozzle with distance downstream, compared to the 

engine jet. In such case, the ratio of ambient wind velocity to local jet velocity would 

increase with distance from the nozzle at sub scale, affecting considerably the 

development of the flow and the accuracy of the model. 

 

 Finally, in the experiments without cross flow the mean concentrations and 

velocities were measured at the runway centreline. The FID measurements showed the 

sheltering effect of the baffles, reducing the concentrations on the runway line and 

extending to a downstream distance of 110 diameters (132 m in full scale). The plume 

downstream of the baffle array was found to have a bell shape, as a result of the 

increased vertical spread and higher concentrations away from the ground in close 

proximity to the plane of symmetry of the plume. A single baffle row, located at the 

runway threshold, was also tested and was found to reduce considerably the mean 

concentrations up to 200 nozzle diameters. It was not observed to cause lift off of the 

plume. 

 Measurements of mean velocity showed that although the baffle array increased 

the concentrations on the runway line downstream of 110 diameters, the reduction in 

velocity downstream of the array continued until 170 diameters (furthest measurement 

point) and possibly beyond. 

 

 

9.2 Conclusions of work 

 

 Coming back to the aims of the thesis, the experimental investigation aimed to 

answer the following research question: 

 

Can an array of windbreaks (baffles) cause the plume of an aircraft at take-off to 

overcome sooner the Coanda effect and lift-off from the ground, thus enhancing the 

dispersion of the plume and reducing the exhaust emissions close to the ground? 

 

 

The following conclusions were reached from the conducted research: 

 

 The baffle concept of promoting the rise of a ground-based buoyant jet was 

demonstrated successfully in the wind tunnel. The presence of a baffle row causes 

the plume to separate from the surface after a shorter travel distance. However, 



 
   Chapter 9:  Conclusion 

- 203 - 

 

lift-off was shown to occur only in tests without the presence of wind tunnel flow. 

Thus, the baffles concept was found to be significantly dependent on the ambient 

wind speed. 

 

 The full-scale Lidar measurements during Sortie 11 showed low concentrations 

close to the ground downstream of the baffle array, which was attributed to a lift-

off of the plume and thus highlighted the positive effect of the baffles on the 

emissions dispersion away from the ground. An attempt was made to reproduce 

this in 1:200 scale, however, no lift-off was observed. The observed shift of the jet 

position with respect to runway line, compared to the symmetrical orientation of 

the jet in the Lidar images, suggests a stronger wind effect in sub scale, which 

would constrain the buoyant plume. 

 

 In sub scale, the effect of the baffles on the plume concentrations was observed to 

be mainly local with regard to the reduction of mean concentrations. The 

concentrations close to the ground are reduced downstream of the last row due to 

the sheltering effect of the baffle array and the vertical extent of the plume is 

increased. This leads to increased concentrations away from the ground, which 

were observed to persist far downstream. After a certain distance downstream, the 

reduced concentrations on the ground become higher than those of the plain jet. 

 

 A small positive effect of the baffle array was observed for Sortie 11 compared to 

Sortie 12 in terms of mean peak concentration as far as 148 diameters downstream 

(154 m from the runway threshold in full scale). 

 

 Overall, the results of the full-scale and sub-scale investigations seem to be 

inconclusive with regard to the applicability of the baffles at full scale. The sub-

scale model indicates only local effects in proximity of the baffles, while the full-

scale measurements, based on one particular measurement, suggest a positive 

effect if the aircraft is located sufficiently close. Additional field trials are 

recommended to attempt to replicate the positive full-scale result. 

 

 

9.3 Future work 

 

 Based on the results of the full-scale Lidar measurements and the wind tunnel 

experiments at 1:200 scale, further field trials were planned at Cranfield Airport with an 

Unmanned Aerial Vehicle (UAV) model gas turbine providing the exhaust jet. The tests 

would attempt to repeat the successful results of Sortie 11 in terms of reduced exhaust 

emissions close to the ground, replicating the full-scale field trials with a similar baffle 
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arrangement in a smaller scale. To date, two attempts were made to perform the tests, 

both of which were unsuccessful due to adverse weather conditions and issues with the 

test equipment. The planned test arrangement was discussed in Chapter 8.8 together 

with the proposed scaling of the baffle models and some practical issues with regard to 

the Lidar measurements. During the first two attempts, only static tests were planned, as 

they required a simpler test arrangement and less demanding execution procedure. 

While the results of such tests would contribute significantly to the research work, of 

decisive importance in future attempts would be to conduct tests with an accelerating or 

moving source away from the baffle array, in order to model an aircraft take-off run. 

 

 With regard to future wind tunnel experiments, the accuracy of the jet model 

should be considered of high importance in order to reproduce the correct jet 

development at sub scale. If a multiple-engine configuration is modelled with a single 

nozzle, the flow development of both the single-nozzle and the multiple-nozzle jets 

should be studied and compared in terms of jet development and velocity decay with 

distance downstream. Based on this comparison, the distance between the single nozzle 

and the baffle array should be determined such as to give the correct multiple-nozzle jet 

dimensions and velocity at the location of the baffle array. Furthermore, care should be 

taken when modelling the ambient wind at sub scale in order to represent accurately its 

effect on the jet development. As was shown in this investigation, the ambient wind 

plays a key role in preventing the plume from lifting off. 

 Additionally, more accurate jet source models could be considered, such as a 

moving nozzle in order to simulate an aircraft take-off run. The effect of the moving 

nozzle on the jet development should be studied in order to determine a suitable rate of 

acceleration. Such arrangement would also require performing instantaneous 

measurements in order to capture the starting plume. The issues observed in this 

investigation, preventing the execution of such measurements, were the lag in the 

measurement equipment and the high turbulence intensity within the modelled 

Atmospheric Boundary Layer. Attempts to minimise the lag in the measurement 

equipment should be made, however, more importantly, it should be accurately 

quantified and accounted for in the post-processing of the measurements. With regard to 

the high turbulence intensity, the fluctuations in the measured data could be used to 

draw conclusions on the peak concentrations and their probability of occurrence. For 

such analysis, the Atmospheric Boundary Layer should have a good match at full scale 

and sub scale in terms of the mean velocity and turbulence intensity profiles in the 

working section. 

 Finally, extending the domain of the measurements could prove important in 

observing a plume lift-off, for example, Aloysius & Wrobel (2009b) reported a lift-off 

distance of 363 diameters downstream of the engines in a numerical investigation of an 

exhaust jet at take-off. Due to constraints in the movement of the traverse, in this 
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investigation the maximum distance tested was 200 nozzle diameters from the nozzle 

exit, or 240 m at full scale. When considering the possibility of installing arrays of 

baffles at airports, their impact on the local air quality should be demonstrated over 

significantly larger distances. 
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Appendix A: Additional equations 
 

 

Sutherland’s Law (Anderson, 2001, p. 723) 
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  μ dynamic viscosity (kg/(ms)) 

  μ0 reference dynamic viscosity, equal to 5107894.1   kg/(ms) 

  T absolute temperature (K) 

  T0 reference absolute temperature, equal to 288.16 K 

 

 

 

‘2 / 3 law’, plume trajectory near source (travel distance of ~ 50 m) (Hanna et al. 1982, 

p. 13) 
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Equation A.2 

 

  F0 initial buoyancy flux (m
4
/s

3
), equal to gQp(Tp – T∞) / Tp, where Qp is 

the initial volume flux from the source, Tp is the initial plume absolute 

temperature, T∞ is the ambient absolute temperature at the initial 

height of the source 

  M momentum flux (m
4
/s

2
), equal to the product of the plume volume flux 

and plume velocity 

  x distance downstream of the source (m) 

  z vertical distance to plume centre line measured from the initial source 

height (m) 

  u ambient wind velocity (m/s) 

  β proportionality factor; β = R / z, where R is the plume radius. β = 0.6 

for buoyant plumes 
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Gaussian plume equation, used commonly for calculations of concentrations caused by 

stationary sources, i.e. power plants, chimneys (Bächlin et al., 1992, p. 2726) 

 

  222222
/)(5.0/)(5.0/5.0

2
zzy hzhzy

yz

j
eee

U

Q
c






  

Equation A.3 

  c pollutant concentration (ppm) 

  h effective emission height above the ground (m) 

  Qj source volumetric flow rate (m
3
/s) 

  U mean wind speed affecting the plume (m/s) 

  y lateral coordinate (m) 

  z vertical coordinate (distance above ground) (m) 

  σy lateral dispersion coefficient (m) 

  σz vertical dispersion coefficient (m) 
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Appendix B: NOx emissions 
 

 
 

Figure B.1:  Aircraft NOx emissions vs. year of entry into service (taken from Faber et al., 2008), 
y-axis: Emissions Index (EI) – grams NOx produced per kilogramme of fuel burned 

 

 
 

Figure B.2:  Aircraft NOx emissions in grams per seat kilometre offered (SKO) vs. year of entry 
into service (taken from Faber et al., 2008) 
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Appendix C: Initial experiments 
 

 

Figure C.1:  Experimental arrangement of the 8'×4' ABLWT working section for laser flow 

visualisation 

 

 

Figure C.2:  8'×4' ABLWT working section prior to starting a flow visualisation test (laser beam 

switched on) 

Nozzle 
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Camcorder 
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Figure C.3:  Variation of plume aspect ratio with non-dimensional longitudinal distance 

downstream of nozzle exit for β = 0.266 

 

 

    
 (a)  x / d = 64.5       (b)  x / d = 68.5 

 

(c)  x / d = 76.4 

 

Figure C.4:  Effect of placing a deflector (w / d = 11.3) at D = 64 in the path of the jet 
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      (a)  U∞ = 0 (β = 0)       (b)  U∞ = 2 m/s (β = 0.134) 

 

(c)  U∞ = 5 m/s (β = 0.335) 

 

Figure C.5:  Effect of wind tunnel speed on the spread of the plume in the yz plane; x / d = 64 
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(a)  no deflector 

 

     

(b)  deflector, w / d = 11.3 

 

    

(c)  deflector w / d = 80.6 

 

Figure C.6:  Effects of placing a deflector in the path of the jet at D = 64 without freestream (U∞ 

= 0 m/s); x / d = 129 
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(a)  no deflector 

 

    

(b)  deflector w / d = 11.3 

 

    

(c)  deflector w / d = 80.6 

 

Figure C.7:  Effects of placing a deflector in the path of the jet at D = 64 without freestream (U∞ 

= 0 m/s); x / d = 177 
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Figure C.8:  Plume separation and re-attachment at x / d = 65 downstream of a deflector of 

width w / d = 80.6 at D = 32; U∞ = 0 m/s (progression in time is from left to right for a time span 

of 17 sec) 
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Figure C.9:  Schematic illustration of the blower tunnel arrangement for pressure drop 

measurements (all dimensions in mm; side view; not to scale) 
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(a)  αs = 90º 

 

 
(b)  αs = 75º 

 

Figure C.10:  Schematic drawing of the variable blower tunnel working sections for (a) 90º and 

(b) 75º, to illustrate the pressure tappings locations used to establish the screen pressure drop 

(all dimensions in mm; side view; not to scale) 
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(a)  αs = 60º 

 

(b) αs = 45º 

 

Figure C.11:  Schematic drawing of the variable blower tunnel working sections for (a) 60º and 

(b) 45º, to illustrate the pressure tappings locations used to establish the screen pressure drop 

(all dimensions in mm; side view; not to scale) 
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     (a)  αs = 90º         (b)  αs = 75º 

 

 

  

 

     (a)  αs = 60º         (b)  αs = 45º 

 

Figure C.12:  Schematic drawing of the cross sections along screen plane of the variable blower 

tunnel working sections for all screen angles tested (all dimensions in mm; side view; not to 

scale) 
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Figure C.13:  Longitudinal static pressure distribution in the working section across a screen of 

0.64 porosity at an angle of inclination of: (a) 75º and (b) 60º 
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Figure C.14:  Longitudinal static pressure distribution in the working section across a screen of 

0.41 porosity at an angle of inclination of: (a) 90º and (b) 75º 
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Figure C.15:  Longitudinal static pressure distribution in the working section across a screen of 

0.41 porosity at an angle of inclination of: (a) 60º and (b) 45º 
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Figure C.16:  Variation of entry angle (in degrees) with screen angle of inclination (in degrees) 

for screen porosity of (a) 0.20, (b) 0.35 and (c) 0.41 
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Appendix D: Baffle calculations 
 

D.1 Estimation of baffle drag 

 

 In order to estimate the drag of each row of baffles, the following simplified 

calculation, proposed by Bennett (2011), was used. The following simplifications are 

assumed in the analysis: 

 

1) The baffles are solid two-dimensional flat plates – a reasonable assumption 

given the low porosity (γ = 0.2) of the baffle prototypes and the high width-to-

height ratios of the baffle rows, used in the field trials 

 

2) Each row of baffles is subjected a constant local jet velocity U and jet density ρ, 

neglecting the non-uniform velocity distribution within the plume and the 

presence of a boundary layer close to the ground 

 

 

 
 

Figure D.1: Schematic illustration of the wind loading on a baffle 

 

 

 The wind loading on a baffle of height h can be represented by a normal force FN 

acting normal to the baffle surface (Figure D.1). For a jet width W and a baffle slope 

height h' = h / sin(α), the normal force FN and drag D are calculated as follows: 
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Equation D.1 
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 hWCUFD NN

2

2

1
)sin(     

Equation D.2 

 

The normal force coefficient CN is a function of the baffle slope angle α. For a flat plate 

of infinite slenderness (i.e. height-to-thickness ratio) in a freestream at zero yaw, Cook 

(1990, Figure 16.20) gives CN ∞ = 2.10, 1.96 and 1.69, based on freestream velocity, for 

α = 90º, 60º and 45º respectively. For surface-mounted fences, ESDU (1989, Figure 7) 

gives CN = 1.15, based on the velocity at the height h of the fence, for α = 90º and w / h 

≥ 10. Similar value (CN = 1.2) is reported by Cook (1990, Figure 16.1) for α = 90º and 

2h / w ≤ 1. The normal force coefficient for an inclined surface-mounted baffle CN (α) 

can then be estimated with 
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N C
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C
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Equation D.3 

 

With CN (α = 90º) = 1.15, for baffles inclined at 45 and 60 to the flow, the coefficients 

are CN (α = 45º) = 0.93 and CN (α = 60º) = 1.07. 

 

The jet momentum flux per unit area, ρU
 2

, is in the order of Ft / (WH), where Ft is 

the total thrust of the BAe 146-301, i.e. 124 N, and W and H are the lateral and vertical 

plume spread, which increase with longitudinal distance x from the BAe 146-301 

engines. W and H were estimated from previous Lidar observations of the BAe 146-301 

during take-off at Cranfield Airport as W ≈ 0.243x and H ≈ 0.111x (Bennett, 2011). 

Thus, the following relationship is used to estimate ρU
 2

 with x: 

 

 
2

2

027.0 x

F
U t   

Equation D.4 

 

With W ≈ 0.243x, the drag of each row, located at distance x downstream of the BAe 

146-301 engines, is estimated from 
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Equation D.5 
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Alternatively, the single-row drag coefficients CF, obtained from the force balance 

tests (Chapter 5.3.1), can be used to estimate the drag of each row of baffles. Since CF is 

based on the flow velocity at the baffle height h and the projected frontal area, the drag 

is given by: 

 

 hC
x

F
hWCUD F

t
F

222.02

1 2     

Equation D.6 

 

For models of 90º, 60º and 45º (Figure 5.5) the obtained average values CF are 0.87, 

0.78 and 0.71 respectively. As discussed in Chapter 5.3.1, CF (α = 90º) = 0.87 is lower 

than the corresponding values given by ESDU (1989) and Cook (1990) of 1.15 and 1.2, 

which is mostly attributed to the boundary layer flow over the smooth surface in the 

working section. The reduction in CF with decreasing surface roughness (i.e. z0) is 

shown in Figure E.5 in terms of Jensen number, defined as Je = h / z0. For the purpose 

of this simplified drag estimation, the values of CF for 60º and 45º can be extrapolated 

similarly to Equation D.3, with the ratio (1.15 / 0.87) = 1.32, using the normal force 

coefficient at 90º given by ESDU (1989). This yields values of 1.03 and 0.94 for 60º 

and 45º respectively, which compare well with CN (α = 60º) = 1.07 and CN (α = 45º) = 

0.93. Thus, Equation D.5 and Equation D.6 would estimate practically the same drag 

values. 

 

 

D.2 Estimation of baffle maximum permissible width 

 

The width of the individual baffles wn of each row is calculated from the 

maximum permissible bending moment, i.e. MB max = 678 Nm, according to the design 

criteria for frangibility of elevated runway and taxing edge lights (ICAO, 2006b, p. 4-6). 

From Figure D.1, the bending moment about the base is 
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For a maximum bending moment MB max, the maximum individual baffle width is 
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Appendix E: Force balance 

measurements 

 
α = 45º 

Row No. 
1:50 scale [mm] Full scale [m] 

h'M hM wM hFS wF 

1 16.6 11.8 292.1 0.59 14.61 

2 20.1 14.2 351.4 0.71 17.57 

3 28.4 20.2 421.7 1.01 21.09 

4 34.3 24.4 506.0 1.22 25.30 

5 41.4 29.3 606.3 1.47 30.32 
 

(a) 

 
α = 60º 

Row No. 

1:50 scale [mm] Full scale [m] 

h'M hM wM hF wF 

1 15.6 13.3 291.2 0.67 14.56 

2 19.7 17.1 351.8 0.86 17.59 

3 24.0 20.5 420.5 1.03 21.03 

4 27.5 24.1 505.8 1.21 25.29 

5 33.1 28.8 606.5 1.44 30.33 
 

(b) 

 
α = 90º 

Row No. 
1:50 scale [mm] Full scale [m] 

h'M = hM wM hF wF 

1 14.1 293.0 0.71 14.65 

2 17.2 351.2 0.86 17.56 

3 20.5 421.0 1.03 21.05 

4 24.6 505.8 1.23 25.29 

5 29.6 607.0 1.48 30.35 
 

(c) 

 

Figure E.1:  Rows of baffle models at 1:50 scale 
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Figure E.2:  Calculated relative errors of CT and absolute errors of FT (in N) from the minimum 

and maximum measured forces during repeatability runs at U∞ = 6 m/s and U∞ = 14 m/s 
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Figure E.3:  Percentage variation of drag coefficient for configurations of reduced number of 
baffle rows compared to all 5 rows 
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Figure E.4:  Overview of baffle configurations tested in a nozzle jet 
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Figure E.5:  Effect of ground roughness on the normal force acting on an infinitely long solid 

fence of height H (taken from Cook, 1990) 
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Appendix F: ABL calculations 
 

 
 

Figure F.1:  Values of the roughness length z0 for different types of terrain 

(taken from ESDU, 1982) 
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Table F.1:  Calculated velocity and turbulence intensity profiles for the Atmospheric Boundary 

Layer (z0 = 0.03 m) at 1:100 scale 

Height Uz 

measured 

m/s 

Iu 

measured 

- 

Uz / U10 

measured 

- 

ln(z / z0) 

- 

Uz / U10 

ESDU 

- 

Uz 

ESDU 

m/s 

σu / u* 

ESDU 

- 

Uz / u* 

ESDU 

- 

Iu 

ESDU 

- 

zM zF 

mm m 

7 0.7 1.213 0.171 0.778 3.150 0.542 0.846 2.379 7.939 0.300 

10 1 1.249 0.149 0.801 3.507 0.604 0.942 2.471 8.859 0.279 

15 1.5 1.276 0.142 0.818 3.912 0.673 1.051 2.572 9.919 0.259 

20 2 1.317 0.136 0.844 4.200 0.723 1.128 2.637 10.684 0.247 

25 2.5 1.367 0.132 0.876 4.423 0.761 1.188 2.683 11.288 0.238 

30 3 1.357 0.143 0.870 4.605 0.793 1.237 2.715 11.790 0.230 

35 3.5 1.452 0.124 0.931 4.759 0.819 1.278 2.739 12.222 0.224 

40 4 1.426 0.117 0.914 4.893 0.842 1.314 2.755 12.602 0.219 

45 4.5 1.367 0.125 0.876 5.011 0.863 1.346 2.767 12.942 0.214 

50 5 1.414 0.144 0.906 5.116 0.881 1.374 2.774 13.252 0.209 

55 5.5 1.488 0.118 0.954 5.211 0.897 1.399 2.779 13.536 0.205 

60 6 1.496 0.123 0.959 5.298 0.912 1.423 2.780 13.800 0.201 

65 6.5 1.537 0.109 0.985 5.378 0.926 1.444 2.780 14.046 0.198 

70 7 1.466 0.109 0.940 5.452 0.939 1.464 2.778 14.278 0.195 

75 7.5 1.564 0.112 1.003 5.521 0.950 1.483 2.774 14.496 0.191 

80 8 1.558 0.109 0.999 5.586 0.962 1.500 2.769 14.704 0.188 

90 9 1.568 0.121 1.005 5.704 0.982 1.532 2.756 15.091 0.183 

100 10 1.560 0.115 1 5.809 1 1.560 2.740 15.446 0.177 

110 11 1.605 0.096 1.029 5.904 1.016 1.586 2.722 15.777 0.173 

120 12 1.640 0.106 1.051 5.991 1.031 1.609 2.703 16.087 0.168 

130 13 1.616 0.090 1.036 6.072 1.045 1.630 2.683 16.379 0.164 

140 14 1.652 0.090 1.059 6.146 1.058 1.650 2.662 16.657 0.160 

150 15 1.616 0.119 1.036 6.215 1.070 1.669 2.641 16.922 0.156 

160 16 1.675 0.090 1.074 6.279 1.081 1.686 2.619 17.176 0.152 

170 17 1.736 0.084 1.113 6.340 1.091 1.702 2.598 17.419 0.149 

180 18 1.741 0.085 1.116 6.397 1.101 1.718 2.576 17.655 0.146 

190 19 1.711 0.099 1.097 6.451 1.110 1.732 2.554 17.882 0.143 

200 20 1.659 0.091 1.063 6.502 1.119 1.746 2.533 18.103 0.140 

210 21 1.713 0.089 1.098 6.551 1.128 1.759 2.512 18.317 0.137 

220 22 1.682 0.09 1.078 6.598 1.136 1.772 2.490 18.526 0.134 

230 23 1.749 0.084 1.121 6.642 1.143 1.784 2.469 18.729 0.132 

240 24 1.800 0.080 1.154 6.685 1.151 1.795 2.449 18.928 0.129 

250 25 1.803 0.077 1.156 6.725 1.158 1.806 2.428 19.122 0.127 

270 27 1.784 0.070 1.144 6.802 1.171 1.827 2.387 19.500 0.122 

290 29 1.780 0.079 1.141 6.874 1.183 1.846 2.347 19.863 0.118 

310 31 1.751 0.084 1.122 6.941 1.195 1.864 2.308 20.214 0.114 

350 35 1.798 0.072 1.153 7.062 1.216 1.896 2.230 20.887 0.107 

400 40 1.800 0.074 1.154 7.195 1.239 1.932 2.135 21.683 0.098 

450 45 1.843 0.061 1.181 7.313 1.259 1.964 2.041 22.439 0.091 

500 50 1.845 0.068 1.183 7.419 1.277 1.992 1.948 23.164 0.084 
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Table F.2:  Calculated velocity and turbulence intensity profiles for the Atmospheric Boundary 

Layer (z0 = 0.03 m) at 1:200 scale 

Height Uz 

measured 

m/s 

Iu 

measured 

- 

Uz / U10 

measured 

- 

ln(z / z0) 

- 

Uz / U10 

ESDU 

- 

Uz 

ESDU 

m/s 

σu / u* 

ESDU 

- 

Uz / u* 

ESDU 

- 

Iu 

ESDU 

- 

zM zF 

mm m 

7 1.4 1.213 0.171 0.858 3.843 0.662 0.935 2.572 9.750 0.264 

10 2 1.249 0.149 0.883 4.200 0.723 1.022 2.653 10.703 0.248 

15 3 1.276 0.142 0.902 4.605 0.793 1.121 2.729 11.819 0.231 

20 4 1.317 0.136 0.931 4.893 0.842 1.191 2.766 12.640 0.219 

25 5 1.367 0.132 0.967 5.116 0.881 1.245 2.781 13.299 0.209 

30 6 1.357 0.143 0.960 5.298 0.912 1.290 2.784 13.857 0.201 

35 7 1.452 0.124 1.027 5.452 0.939 1.327 2.778 14.344 0.194 

40 8 1.426 0.117 1.008 5.586 0.962 1.360 2.766 14.780 0.187 

45 9 1.367 0.125 0.967 5.704 0.982 1.388 2.750 15.176 0.181 

50 10 1.414 0.144 1.000 5.809 1.000 1.414 2.731 15.542 0.176 

55 11 1.488 0.118 1.052 5.904 1.016 1.437 2.710 15.882 0.171 

60 12 1.496 0.123 1.058 5.991 1.031 1.458 2.688 16.201 0.166 

65 13 1.537 0.109 1.087 6.072 1.045 1.478 2.666 16.503 0.162 

70 14 1.466 0.109 1.037 6.146 1.058 1.496 2.643 16.790 0.157 

75 15 1.564 0.112 1.106 6.215 1.070 1.513 2.619 17.065 0.153 

80 16 1.558 0.109 1.102 6.279 1.081 1.528 2.596 17.328 0.150 

90 18 1.568 0.121 1.109 6.397 1.101 1.557 2.549 17.826 0.143 

100 20 1.560 0.115 1.103 6.502 1.119 1.583 2.502 18.293 0.137 

110 22 1.605 0.096 1.135 6.598 1.136 1.606 2.456 18.735 0.131 

120 24 1.640 0.106 1.160 6.685 1.151 1.627 2.411 19.157 0.126 

130 26 1.616 0.090 1.143 6.765 1.164 1.647 2.367 19.560 0.121 

140 28 1.652 0.090 1.168 6.839 1.177 1.665 2.323 19.949 0.116 

150 30 1.616 0.119 1.143 6.908 1.189 1.681 2.280 20.326 0.112 

160 32 1.675 0.090 1.185 6.972 1.200 1.697 2.237 20.691 0.108 

170 34 1.736 0.084 1.228 7.033 1.211 1.712 2.195 21.046 0.104 

180 36 1.741 0.085 1.231 7.090 1.221 1.726 2.153 21.393 0.101 

190 38 1.711 0.099 1.210 7.144 1.230 1.739 2.111 21.732 0.097 

200 40 1.659 0.091 1.173 7.195 1.239 1.751 2.070 22.064 0.094 

210 42 1.713 0.089 1.211 7.244 1.247 1.763 2.028 22.389 0.091 

220 44 1.682 0.090 1.190 7.291 1.255 1.775 1.987 22.710 0.087 

230 46 1.749 0.084 1.237 7.335 1.263 1.785 1.946 23.024 0.085 

240 48 1.800 0.080 1.273 7.378 1.270 1.796 1.905 23.335 0.082 

250 50 1.803 0.077 1.275 7.419 1.277 1.806 1.864 23.640 0.079 

270 54 1.784 0.070 1.262 7.496 1.290 1.824 1.782 24.240 0.074 

290 58 1.780 0.079 1.259 7.567 1.303 1.842 1.700 24.826 0.068 

310 62 1.751 0.084 1.238 7.634 1.314 1.858 1.618 25.401 0.064 

350 70 1.798 0.072 1.272 7.755 1.335 1.888 1.454 26.519 0.055 

400 80 1.800 0.074 1.273 7.889 1.358 1.920 1.250 27.872 0.045 

450 90 1.843 0.061 1.303 8.006 1.378 1.949 1.045 29.185 0.036 

500 100 1.845 0.068 1.305 8.112 1.396 1.974 0.841 30.467 0.028 
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Figure F.2:  Graphical calculation of the friction velocity u*: (a) 1:100 scale, (b) 1:200 scale 
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Appendix G: ABLWT experiments 
 

 
(a) 

 

 

(b) 

 

Figure G.1:  Baffle models, used in the ABLWT experiments: (a) schematic (side view and 

isometric view), (b) image of the models on the force balance plate (isometric view, flow 

direction is from bottom left) 

 

 

Table G.1:  Parameters of the baffle models in 1:200 scale, used in the FID and HWA 

measurements 

Baffle 

row label 

Arc 

radius 

[mm] 

Slope 

height 

h’ [mm] 

Vertical 

height 

h [mm] 

Slope 

angle 

α [º] 

Total row 

width 

w [mm] 

Individual 

baffle width
*
 

wn [mm] 

A 180.0 7.0 4.5 40 241.5 21 

B 266.5 8.5 6.5 50 294.0 21 

C 370.0 10.0 8.7 60 346.5 21 

* Row A has ten baffles of 21 mm width and three baffles of 10.5 mm width; Row B has fourteen baffles 

of 21 mm width; Row C has sixteen baffles of 21 mm width and one baffle of 10.5 mm width 

h 

h' 

15 mm 

α 

0.5 mm 

wn 

α 
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Figure G.2:  Examples of velocity data measured at 40 mm height during Sortie 10 and Sortie 

11 

 

x-axis shows the time from the start of the run (data from 40 s onwards shown only), y-axis 

shows velocities measured at 40 mm height with the Schiltknecht MiniAir6 vane anemometer 

 

 

Mean velocity: 0.395 m/s 

30 s time period 

Mean velocity: 0.507 m/s 

30 s time period 
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Figure G.3:  Schematic illustration of the FID measurement points used in the 1:200 scale 

replication of the field trials; arrangement for Sortie 10 shown (ε = 35º, b0 = 285 mm) 
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Longitudinal coordinates: 

Different for each sortie, all measurement points included in Table I.5 to Table I.16 

Lateral coordinates: 

1   y = 39 mm   2   y = 20 mm   3   y = 0 mm    4   y = -20 mm        

5   y = -39 mm   6   y = -80 mm   7   y = -117 mm    8   y = -160 mm     

9   y = -200 mm    10   y = -240 mm    11   y = -275 mm    12   y = -355 mm 

13    y = -430 mm 

Vertical coordinates: 

z = 25 mm, z = 50 mm, z = 75 mm and z = 100 mm 
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Table G.2:  FID concentration measurements for Sortie 10 at 1:200 scale at z / d = 4.2 

Sortie 10 

z = 25 mm 

1
st
 line 2

nd
 line 3

rd
 line Fence line 5

th
 line 6

th
 line 

x = 200 mm x = 300 mm x = 400 mm x = 505 mm x = 605 mm x = 908 mm 

No. y [mm] [ppm] [ppm] [ppm] [ppm] [ppm] [ppm] 

1 39 25.4 8.7 - - - - 

2 20 138.8 82.6 - - - - 

3 0 479.9 175.4 67.4 - - - 

4 -20 633.0 462.5 205.7 16.4 - - 

5 -39 778.5 613.4 288.8 33.2 5.5 - 

6 -80 806.2 759.1 557.3 209.0 70.5 - 

7 -117 515.1 654.4 616.5 398.8 271.3 - 

8 -160 237.3 407.6 562.0 528.8 377.5 7.3 

9 -200 91.1 236.7 402.1 506.8 460.8 79.3 

10 -240 22.2 123.9 237.9 330.9 429.8 156.7 

11 -275 - 62.6 143.5 229.2 293.3 266.0 

12 -355 - 0.6 20.5 112.1 143.8 327.9 

13 -430 - - - - - 183.2 

 

 

 

Table G.3:  FID concentration measurements for Sortie 10 at 1:200 scale at z / d = 8.3 

Sortie 10 

z = 50 mm 

1
st
 line 2

nd
 line 3

rd
 line Fence line 5

th
 line 6

th
 line 

x = 200 mm x = 300 mm x = 400 mm x = 505 mm x = 605 mm x = 908 mm 

No. y [mm] [ppm] [ppm] [ppm] [ppm] [ppm] [ppm] 

1 39 - - - - - - 

2 20 25.7 7.5 - - - - 

3 0 87.7 45.3 16.3 - - - 

4 -20 214.2 146.3 82.6 9.7 - - 

5 -39 304.9 313.0 153.4 31.6 2.2 - 

6 -80 584.5 509.8 414.1 193.8 38.0 - 

7 -117 479.2 473.1 519.9 350.5 243.7 - 

8 -160 125.4 290.1 459.3 471.6 367.5 4.7 

9 -200 32.0 138.2 298.1 444.8 438.8 58.4 

10 -240 6.3 57.1 141.0 276.5 388.0 131.2 

11 -275 - 18.5 77.0 186.1 253.4 227.3 

12 -355 - 1.2 10.3 48.9 86.4 294.9 

13 -430 - - - - - 172.4 
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Table G.4:  FID concentration measurements for Sortie 10 at 1:200 scale at z / d = 12.5 

Sortie 10 

z = 75 mm 

1
st
 line 2

nd
 line 3

rd
 line Fence line 5

th
 line 6

th
 line 

x = 200 mm x = 300 mm x = 400 mm x = 505 mm x = 605 mm x = 908 mm 

No. y [mm] [ppm] [ppm] [ppm] [ppm] [ppm] [ppm] 

1 39 - - - - - - 

2 20 - - - - - - 

3 0 3.3 9.6 - - - - 

4 -20 17.5 33.4 33.2 - - - 

5 -39 48.0 93.8 67.1 24.5 - - 

6 -80 120.2 218.2 277.2 177.3 30.9 - 

7 -117 90.3 219.5 319.1 293.7 124.2 - 

8 -160 27.6 121.5 250.3 343.3 247.0 - 

9 -200 6.5 41.2 141.5 274.6 338.0 30.6 

10 -240 - 11.4 57.9 190.3 315.4 126.3 

11 -275 - - 25.7 101.3 244.2 216.4 

12 -355 - - - 16.0 58.5 272.7 

13 -430 - - - - - 174.7 

 

 

 

Table G.5:  FID concentration measurements for Sortie 10 at 1:200 scale at z / d = 16.7 

Sortie 10 

z = 100 mm 

1
st
 line 2

nd
 line 3

rd
 line Fence line 5

th
 line 6

th
 line 

x = 200 mm x = 300 mm x = 400 mm x = 505 mm x = 605 mm x = 908 mm 

No. y [mm] [ppm] [ppm] [ppm] [ppm] [ppm] [ppm] 

1 39 - - - - - - 

2 20 - - - - - - 

3 0 3.3 9.6 - - - - 

4 -20 17.5 33.4 33.2 - - - 

5 -39 48.0 93.8 67.1 24.5 - - 

6 -80 120.2 218.2 277.2 177.3 30.9 - 

7 -117 90.3 219.5 319.1 293.7 124.2 - 

8 -160 27.6 121.5 250.3 343.3 247.0 - 

9 -200 6.5 41.2 141.5 274.6 338.0 30.6 

10 -240 - 11.4 57.9 190.3 315.4 126.3 

11 -275 - - 25.7 101.3 244.2 216.4 

12 -355 - - - 16.0 58.5 272.7 

13 -430 - - - - - 174.7 
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Table G.6:  FID concentration measurements for Sortie 11 at 1:200 scale at z / d = 4.2 

Sortie 11 

z = 25 mm 

1
st
 line 2

nd
 line Fence line 4

th
 line 5

th
 line 

x = 315 mm x = 505 mm x = 670 mm x = 770 mm x = 1073 mm 

No. y [mm] [ppm] [ppm] [ppm] [ppm] [ppm] 

1 39 - - - - - 

2 20 54.1 - - - - 

3 0 227.3 20.5 - - - 

4 -20 552.2 85.4 - - - 

5 -39 809.2 204.4 1.1 - - 

6 -80 871.0 477.5 72.2 4.8 - 

7 -117 495.6 600.4 226.5 34.7 - 

8 -160 154.9 538.4 401.0 153.9 0.7 

9 -200 26.0 313.8 459.4 281.1 14.9 

10 -240 - 142.7 387.3 368.4 95.9 

11 -275 - 75.5 254.1 379.4 226.6 

12 -355 - 7.8 78.5 154.0 326.2 

13 -430 - - 26.3 57.7 198.9 

 

 

 

Table G.7:  FID concentration measurements for Sortie 11 at 1:200 scale at z / d = 8.3 

Sortie 11 

z = 50 mm 

1
st
 line 2

nd
 line Fence line 4

th
 line 5

th
 line 

x = 315 mm x = 505 mm x = 670 mm x = 770 mm x = 1073 mm 

No. y [mm] [ppm] [ppm] [ppm] [ppm] [ppm] 

1 39 - - - - - 

2 20 1.8 - - - - 

3 0 34.8 1.9 - - - 

4 -20 244.8 30.1 - - - 

5 -39 474.3 92.0 0.2 - - 

6 -80 660.8 342.9 26.6 3.3  

7 -117 391.7 533.9 147.4 16.1  

8 -160 111.7 505.0 325.5 98.8 1.0 

9 -200 13.6 291.8 417.6 227.9 9.2 

10 -240 - 128.2 381.4 333.6 59.0 

11 -275 - 53.1 266.0 356.5 179.0 

12 -355 - 2.7 66.3 166.9 298.0 

13 -430 - - 11.2 39.6 219.7 
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Table G.8:  FID concentration measurements for Sortie 11 at 1:200 scale at z / d = 12.5 

Sortie 11 

z = 75 mm 

1
st
 line 2

nd
 line Fence line 4th line 5

th
 line 

x = 315 mm x = 505 mm x = 670 mm x = 770 mm x = 1073 mm 

No. y [mm] [ppm] [ppm] [ppm] [ppm] [ppm] 

1 39 - - - - - 

2 20 - - - - - 

3 0 5.2 - - - - 

4 -20 44.3 - - - - 

5 -39 147.4 40.0 - - - 

6 -80 295.8 231.7 10.4 - - 

7 -117 191.9 413.5 103.5 11.6 - 

8 -160 35.5 394.7 307.8 76.3 - 

9 -200 - 247.4 373.5 230.9 - 

10 -240 - 107.7 251.9 311.1 30.0 

11 -275 - 28.1 52.2 337.8 115.8 

12 -355 - - - 223.9 260.0 

13 -430 - - - 41.6 239.4 

 

 

 

Table G.9:  FID concentration measurements for Sortie 11 at 1:200 scale at z / d = 16.7 

Sortie 11 

z = 100 mm 

1
st
 line 2

nd
 line Fence line 4th line 5

th
 line 

x = 315 mm x = 505 mm x = 670 mm x = 770 mm x = 1073 mm 

No. y [mm] [ppm] [ppm] [ppm] [ppm] [ppm] 

1 39 - - - - - 

2 20 - - - - - 

3 0 - - - - - 

4 -20 - - - - - 

5 -39 4.9 9.7 - - - 

6 -80 31.3 70.5 2.3 - - 

7 -117 27.0 212.8 50.0 2.9 - 

8 -160 5.8 247.9 183.4 39.7 - 

9 -200 - 154.3 274.3 156.0 - 

10 -240 - 61.1 278.0 238.0 17.1 

11 -275 - 12.5 211.1 276.9 71.8 

12 -355 - - 38.1 211.4 217.0 

13 -430 - - - 36.0 227.3 
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Table G.10:  FID concentration measurements for Sortie 12 at 1:200 scale at z / d = 4.2 

Sortie 12 

z = 25 mm 

1
st
 line 2

nd
 line 3

rd
 line 4th line 5

th
 line 6

th
 line 

x = 295 mm x = 395 mm x = 505 mm x = 603 mm x = 700 mm x = 904 mm 

No. y [mm] [ppm] [ppm] [ppm] [ppm] [ppm] [ppm] 

1 39 90.0 40.2 - - - - 

2 20 320.9 197.3 23.8 - - - 

3 0 517.2 397.0 123.9 34.4 17.7 - 

4 -20 631.9 509.8 289.7 108.0 51.8 - 

5 -39 696.5 580.8 419.1 213.1 116.2 1.5 

6 -80 624.8 612.2 549.0 432.4 361.8 58.8 

7 -117 393.5 493.6 524.3 481.8 432.6 172.5 

8 -160 186.6 329.1 411.4 427.9 434.9 346.9 

9 -200 72.2 194.7 283.6 333.6 359.7 366.4 

10 -240 16.3 101.8 207.0 263.7 293.9 332.8 

11 -275 - 41.6 135.4 206.8 238.1 293.2 

12 -355 - - 30.8 81.7 145.1 213.3 

13 -430 - - - 24.8 61.9 157.0 

 

 

 

Table G.11:  FID concentration measurements for Sortie 12 at 1:200 scale at z / d = 8.3 

Sortie 12 

z = 50 mm 

1
st
 line 2

nd
 line 3

rd
 line 4th line 5

th
 line 6

th
 line 

x = 295 mm x = 395 mm x = 505 mm x = 603 mm x = 700 mm x = 904 mm 

No. y [mm] [ppm] [ppm] [ppm] [ppm] [ppm] [ppm] 

1 39 4.8 5.5 - - - - 

2 20 38.9 42.8 6.5 - - - 

3 0 92.6 120.6 41.5 13.3 8.6 - 

4 -20 169.9 200.6 129.9 43.0 28.1 - 

5 -39 238.9 258.4 202.8 110.9 72.9  

6 -80 281.3 323.8 315.7 284.5 257.4 42.7 

7 -117 152.5 253.4 320.3 324.7 309.3 146.5 

8 -160 42.6 135.7 235.8 284.5 313.1 274.1 

9 -200 10.1 55.2 127.2 195.0 236.9 288.4 

10 -240 2.2 18.9 69.4 133.4 179.1 264.2 

11 -275 - 6.0 38.2 88.4 128.2 212.7 

12 -355 - - 8.1 25.9 50.4 133.6 

13 -430 - - - 6.9 24.8 73.9 
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Table G.12:  FID concentration measurements for Sortie 12 at 1:200 scale at z / d = 12.5 

Sortie 12 

z = 75 mm 

1
st
 line 2

nd
 line 3

rd
 line 4th line 5

th
 line 6

th
 line 

x = 295 mm x = 395 mm x = 505 mm x = 603 mm x = 700 mm x = 904 mm 

No. y [mm] [ppm] [ppm] [ppm] [ppm] [ppm] [ppm] 

1 39 - - - - - - 

2 20 - - - - - - 

3 0 - - - - - - 

4 -20 - - 49.3 - - - 

5 -39 - 37.6 78.4 66.7 36.1 - 

6 -80 17.0 59.0 102.2 159.6 145.5 23.1 

7 -117 33.9 57.8 106.9 160.2 199.7 121.0 

8 -160 28.7 24.6 73.9 128.8 179.4 216.9 

9 -200 - - 33.9 85.1 151.0 233.0 

10 -240 - - 12.2 52.5 96.7 200.8 

11 -275 - - - 24.8 57.4 155.6 

12 -355 - - - - 15.9 67.1 

13 -430 - - - - - 29.8 

 

 

 

Table G.13:  FID concentration measurements for Sortie 12 at 1:200 scale at z / d = 16.7 

Sortie 12 

z = 100 mm 

1
st
 line 2

nd
 line 3

rd
 line 4th line 5

th
 line 6

th
 line 

x = 295 mm x = 395 mm x = 505 mm x = 603 mm x = 700 mm x = 904 mm 

No. y [mm] [ppm] [ppm] [ppm] [ppm] [ppm] [ppm] 

1 39 - - - - - - 

2 20 - - - - - - 

3 0 - - - - - - 

4 -20 - - 3.0 - - - 

5 -39 0.2 1.7 7.6 6.8 6.9 - 

6 -80 0.7 2.7 15.9 33.9 38.4 10.3 

7 -117 1.3 4.1 19.2 40.0 76.6 47.4 

8 -160 - 1.5 14.3 33.5 72.6 126.3 

9 -200 - - 5.0 21.9 49.6 143.1 

10 -240 - - 1.6 9.7 29.9 117.3 

11 -275 - - - 5.2 18.0 82.6 

12 -355 - - - - 4.1 25.3 

13 -430 - - - - - 7.9 
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Figure G.4:  Schematic illustration of the 8'×4' ABLWT working section arrangement in the 1:200 

scale FID and HWA measurements without cross flow (top view) 

 

 

 

Table G.14:  Parameters of the ‘double’ baffle array arrangement, tested with modelled jet and 

Atmospheric Boundary Layer at 1:200 scale 

Baffle 

row label 

Arc 

radius 

[mm] 

Slope 

height 

h’ [mm] 

Vertical 

height 

h [mm] 

Slope 

angle 

α [º] 

Total row 

width 

w [mm] 

Individual 

baffle width
*
 

wn [mm] 

A 360 14 9.0 40 241.5 21 

B 480 17 13.0 50 294.0 21 

C 690 20 17.3 60 346.5 21 

* Row A has 10 baffles of 21 mm width and 3 baffles of 10.5 mm width; Row B has 14 baffles of 21 mm 

width; Row C has 16 baffles of 21 mm width and 1 baffle of 10.5 mm width  
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Figure G.5:  Variation of measured mean velocities with height (z / d) for various lateral locations 

at x / d = 170 
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Table G.15:  Parameters of the baffle models at 1:100 scale, used in the force balance 

measurements 

Baffle 

row label 

Arc 

radius 

[mm] 

Slope 

height 

h’ [mm] 

Vertical 

height 

h [mm] 

Slope 

angle 

α [º] 

Total row 

width 

w [mm] 

Individual 

baffle width
*
 

wn [mm] 

A 360 14 9.0 40 483 42 

B 533 17 13.0 50 588 42 

C 740 20 17.3 60 693 42 

* Row A has ten baffles of 42 mm width and three baffles of 21 mm width; Row B has fourteen baffles of 

42 mm width; Row C has sixteen baffles of 42 mm width and one baffle of 21 mm width 

 

 

Table G.16:  Drag results at 1:100 scale without wind tunnel flow for nozzle positions as in 

Sortie 10 and Sortie 11 

Measurements b0 = 570 mm b0 = 240 mm 

Wind tunnel (ambient wind) velocity 0 m/s 0 m/s 

Total measured drag, FT 

Test 1 0.066 0.083 

Test 2 0.070 0.082 

Test 3 0.069 0.082 

Measured balance plate drag Fb 

Test 1 0.029 N 

Test 2 0.028 N 

Test 3 0.027 N 

Average baffles drag in % of jet thrust 23.8% 32.3% 

 

 

Table G.17:  Drag results at 1:100 scale for nozzle positions as in Sortie 10 and Sortie 11 with 

wind tunnel flow velocity of 0.7 m/s and 0.5 m/s respectively  

Measurements b0 = 570 mm b0 = 240 mm 

Wind tunnel (ambient wind) velocity at z = 80mm 0.7 m/s 0.5 m/s 

Total measured drag, FT 

Test 1 0.083 0.089 

Test 2 0.083 0.089 

Test 3 0.082 0.092 

Measured balance plate drag Fb 

Test 1 0.032 0.031 

Test 2 0.030 0.030 

Test 3 0.032 0.030 

Average baffles drag in % of jet thrust 30.4% 35.6% 
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Figure G.6:  Variation of drag coefficient with wind tunnel velocity at z = 80 mm for nozzle 

positions as in Sortie 10 and Sortie 11 and without the baffles (balance plate only) 

 

The y-axis shows the drag coefficient CT, calculated with the measured total drag of the 

balance, the exit jet dynamic pressure (Uj = 36 m/s) and the summed frontal area of all three 

baffle rows, equal to 0.02398, and multiplied by a factor of 100 
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Appendix H: BAe 146-301 field trials 
 

 
 

Figure H.1:  Drawing of a general BAe 146 Series 300 aircraft (adapted from Jane’s All The 

World’s Aircraft, 1993, p. 384) 

 

 

Table H.1:  Some BAe 146 Series 300 characteristics (data taken from Jane’s All The World’s 

Aircraft, 1993, p. 385) 

Length overall 30.99 m 

Height overall 8.59 m 

Wing span 26.21 m 

Wind aspect ratio 8.57 

Maximum take-off weight 44225 kg 

Maximum landing weight 38328 kg 

Maximum zero-fuel weight 35607 kg 

Operating weight empty 24835 kg 

Take-off distance to 10.7 m with max take-off weight 

(standard conditions at mean sea level) 
1509 m 

Landing distance from 15m with max landing weight 

(standard conditions at mean sea level) 
1228 m 

 

30.99 m 

26.21 m 

8.59 m 
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Figure H.2:  Erected baffles at the Runway End Safety Area (RESA) of Runway 21 at Cranfield 

Airport, photo by Bennett (2012) 

 

 

Figure H.3:  Lidar vehicle used for plume dispersion measurements during the field trials at 

Cranfield Airport 

Row A Row B 
Row C 

Taxiway 

Laser source 

Vane anemometer mast 

(retracted) 
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Figure H.4:  Satellite image of Runway 21, including the locations of some of the measurement 

equipment, as planned before the field trials (taken from Christie, 2011) 

 

The Osiris particle counters are shown to be arranged symmetrically with respect to the runway 

centre line. During the actual field trials, the arrangement was changed to account for the 

prevailing west-south-westerly wind 

 

 

 
Figure H.5:  Schematic illustration showing the relationship between measured ambient wind 

direction, magnetic north, grid north and the Runway 21 centre line 

 

Runway 21 

Measured ambient 

wind angle (averaged) 
211º 

3º 

Magnetic 

North 

Grid 

North 

Ambient wind 

direction 
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(a) 

 
(b) 

 

Figure H.6:  Lidar data for Sortie 9: (a) 0.7º elevation, (b) 4.5º elevation (data by Bennett, 2012) 

Plot contours are given as excess concentration relative to the measured ambient concentration 
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(a) 

 
(b) 

 

Figure H.7:  Lidar data for Sortie 10: (a) 0.7º elevation, (b) 4.5º elevation (data by Bennett, 2012) 

Plot contours are given as excess concentration relative to the measured ambient concentration 
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(a) 

 
(b) 

 

Figure H.8:  Lidar data for Sortie 11: (a) 0.7º elevation, (b) 4.5º elevation (data by Bennett, 2012) 

Plot contours are given as excess concentration relative to the measured ambient concentration 



 
Appendix 

- 279 - 

 

 
(a) 

 
(b) 

 

Figure H.9:  Lidar data for Sortie 12: (a) 0.7º elevation, (b) 4.5º elevation (data by Bennett, 2012) 

Plot contours are given as excess concentration relative to the measured ambient concentration 
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(a) 

 

 

(b) 

 

Figure H.10:  Contours of Lidar scan height above the ground for elevation of: (a) 0.7º, (b) 4.5º 
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Appendix I: UAV turbine field trials 
 

 

Figure I.1:  Olympus HP gas turbine (image taken from AMT Netherlands, 2014) 

 

 

 

Table I.1:  Olympus HP gas turbine specifications (taken from AMT Netherlands, 2014) 

Engine outer diameter 130 mm 

Engine length 374 mm 

Engine weight 2.9 kg 

Maximum thrust 

(at standard pressure and temperature) 
230 N 

Maximum RPM 108 500 

Pressure ratio 3.8:1 

Mass flow rate at max thrust 0.45 kg/s 

Fuel flow rate at max thrust 0.64 kg/min 

Specific fuel consumption 46.4 g/(kNs) 
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Froude number scaling 

 

This scaling method is based on Froude number equality, where the Froude number Fr 

is defined as 

 
gl

U
Fr    

Equation I.1 

 

For a scaling, defined as λ = lM / lF, the velocity ratio is expressed as 
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Equation I.2 

 

The ratio of sub-scale and full-scale mass flow rates is then 
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Equation I.3 

 

For ρM ≈ ρF, the scaling is calculated as 
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Equation I.4 

 

With ṁM = 0.45 kg/s (from Table I.1) and total mass flow rate of all four ALF502-R5 

engines ṁF = 349.5 kg/s (from Table 8.1), the scaling is equal to λ ≈ 0.07, or λ ≈ 1:14.3.  

 

Accelerated source 

 

For a full-scale and model source moving at a constant acceleration, the ratio of the 

accelerations is given by 
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Equation I.5 

 

where a is the linear acceleration, U is the speed and t is the time. 
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Similarly to Equation I.2, a relationship for the time at full scale and sub scale can be 

derived as follows: 

 

 


1


M

F

t

t
  

Equation I.6 

 

From Equation I.2 and Equation I.6, the ratio of the accelerations from Equation I.5 

equals unity or 

 

 FM aa    

Equation I.7 

 

 

Table I.2:  Parameters of the baffle array for the planned UAV turbine field trials (by Bennett, 

2012) 

Row 

label 

Distance 

to trailer 

[m] 

Slope 

angle 

[º] 

Slope 

height 

[m] 

Vertical 

height 

[m] 

Row 

length 

[m] 

Estimated 

plume width 

[m] 

A 4.00 60 8.0 6.9 2.1 0.98 

B 4.96 60 9.9 8.6 2.6 1.21 

C 6.15 60 12.3 10.6 3.2 1.50 

D 7.63 60 15.2 13.2 4.0 1.86 

 

 

 

Figure I.2:  Test location at Cranfield Airport, chosen the for UAV gas turbine trials; 

(satellite image produced with Google Maps, 2014) 
 

The size, location and orientation of the Lidar vehicle, trailer and baffle array are approximate 
and not to scale 

Runway 03/21 

Grid North 

Trailer 

+ 

UAV gas 

turbine 

Lidar vehicle 

50 m 

Baffle array 
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Figure I.3:  Test arrangement of the field trials of November 2013 at Cranfield Airport 
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