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Abstract 

 

A major problem for obtaining target reflectance via hyperspectral imaging 

systems is the presence of illumination and shadow effects. These factors are 

common artefacts, especially when dealing with a hyperspectral imaging 

system that has sensors in the visible to near infrared region. This region is 

known to have highly scattered and diffuse radiance which can modify the 

energy recorded by the imaging system. Shadow effect will lower the target 

reflectance values due to the small radiant energy impinging on the target 

surface. Combined with illumination artefacts, such as diffuse scattering from 

the surrounding targets, background or environment, the shape of the 

shadowed target reflectance will be altered. In this study we propose a new 

method to compensate for illumination and shadow effects on hyperspectral 

imageries by using a polarization technique. This technique, called spectro-

polarimetry, estimates the direct and diffuse irradiance based on two images, 

taken with and without a polarizer.  The method is evaluated using a spectral 
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similarity measure, angle and distance metric. The results of indoor and 

outdoor tests have shown that using the spectro-polarimetry technique can 

improve the spectral constancy between shadow and full illumination spectra.  
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1. Introduction 

 

Hyperspectral imaging system (HSI) uses a spectrometry technique to record 

the electromagnetic energy from the visible to middle or far infrared region. 

The energy is captured in a narrow slice of wavebands of approximately 5-20 

nm.  Each recorded pixel in each waveband contains the spatial and spectral 

information that can be extracted as target reflectance or signature as a 

function of wavelength. The radiometric properties can be used for target 

classification or identification on hyperspectral imageries (1). HSI has been 

employed extensively in all applications, such as agriculture (2, 3), 

surveillance (4), remote sensing (5, 6), medical (7, 8) and military (9).  

 

HSI system records energy that is reflected or emitted from an object in the 

scene. Within the visible to near infrared region object surface reflectance 

dominates the sensor analysis, whereas emissivity is captured in the infrared 

region. Atmospheric effects, such as scattering and absorption, negatively 

impact the accuracy of target reflectance or signature. This is especially true 

for long range applications at a distance of a hundred meters or more. The 

transmission of an illumination source through the atmosphere can be 

scattered, absorbed or reflected. This is due to atmospheric aerosol, smog or 
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smoke particles and the amount is dependent on wavelength (10). This 

atmospheric modulation also distorts the energy that is reflected by objects in 

the scene and background, resulting in a mixture of direct and diffuse 

irradiance entering the sensor. It has been reported that scattering and 

absorption from gases and particles in the atmosphere are predominant 

factors that may complicate the target reflectance accuracy (11).   

 

Determination of target reflectance is also complicated by shadow. Regions of 

shadow occur when a direct source is blocked by an object. The reflected 

energy recorded by the HSI system from the target under shadow would be a 

low non-zero reflectance. This low non-zero value is due to the diffuse 

irradiance scattered by the adjacent targets or background that impinges on 

the target under shadow. If a multiple mixture of diffuse irradiance exists in the 

scene, the reflectance of target under shadow would not only have a lower 

reflectance value, but also a change in its reflectance shape compared to 

target under direct illumination.   

 

Much research has been conducted to prove that the interpretation of target 

reflectance is strongly dependent on the illumination of a scene (12). Atjay et 

al. have shown that the shadow cast by cloud introduced a distortion to target 

reflectance in the visible region, thus leading to an error in the Normalised 

Vegetation Index (NDVI) (13). Ibrahim et al. showed that shadow and 

illumination artefacts can lead to an error in classification by up to 30% (14). 

The diminished reflectance by a target under shadow can reduce the contrast 
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between targets and background leading to an error in target detection and 

classification (15). 

 

A large amount of research has also been reported for illumination invariance 

and shadow compensation on hyperspectral imageries. Band ratio and 

normalization techniques were the first approaches introduced (16, 17). These 

techniques are simple but strongly dependent on the variation of targets in the 

image. Proper selection of bands is also important for target or background 

enhancement. Boardman has introduced linear and nonlinear unmixing for 

shadow correction. In order to overcome shadow effects the choice of 

endmembers should be selected properly for better shadow pixel 

characterization (18, 19). The latest work has been reported by Friman et al. 

for illumination and shadow compensation on hyperspectral imageries (20). 

This work segments the illumination invariance map using the Digital Surface 

Model (DSM) generated from an airborne LIDAR (Light Detection and 

Ranging). Upon the establishment of the map, the shadow pixel is identified 

and corrected using the non-linear squares estimation. Another approach 

uses matched filter (MF) detection (21, 22 and 23). This technique calculates 

the covariance of the image for background characterization and locates the 

dark pixels on the scene. This work will be compared with the MF technique 

proposed by Richter which has been employed together with ATCOR 

atmospheric correction modelling (24). 

 

Most of the research mentioned above compensates for shadow and 

illumination invariance based on image processing. In this research we 



 5 

propose a new technique of shadow compensation for hyperspectral images 

by employing a mixture of hardware and image processing. The hardware 

method is based on the polarization of a HSI system, known as spectro-

polarimetry technique. Our focus is on the hyperspectral images that are 

illuminated by a single direct source primarily the sun and diffuse sources 

from the surrounding targets and environment. In this work we employ 

Spectral Angle Mapper (SAM) algorithm to differentiate between shadow and 

full illumination pixels. SAM measures the angle for each pixel for all bands 

between the non-polarized and polarized images. These values represent the 

state of polarization across the images. This map is then used for correcting 

for illumination invariance and shadow pixels on hyperspectral imageries. 

 

The polarization technique has been used widely in standard (non-

hyperspectral) image processing. The earliest work investigated separating 

the diffuse and specular components of reflection from an objects surface (25, 

26). This technique was developed to improve the colour and intensity of a 

targets surface. Lin et al. developed a method to work with a polarization 

sensitive camera to separate shadows from different sources in colour images 

(27). For hyperspectral imaging systems the polarization technique is fairly 

new. Wellems and Bowers have reported that the polarization technique has 

improved the target spectro-polarimetric signatures (28). This achievement 

can lead to better separation of target signatures and thus enhanced 

hyperspectral image classification accuracy.  
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2. Target Reflectance Model 

 

The irradiance of an object is defined as the radiation energy per unit time 

(power) impinging on the surface, normalized to the surface area (Wm
-2) (29). 

Radiance is the normalization of irradiance to the solid angle of the 

observation of the reflected light (Wm
-2

sr
-1) (29). In any hyperspectral 

application the target reflectance or signature is the property of interest. 

Based on Figure 1, given the sun as the source of illumination, the illumination 

spectral power distribution, E (Wm
-2

sr
-1) is expressed as,  

iSE  cos             (1)  

For this equation, S  is the solar spectral irradiance (Wm
-2

sr
-1) and i  

is solar 

zenith angle. When the source radiation hits the surface the bidirectional 

reflectance distribution function (BRDF) is given as the ratio of the reflected 

radiance to incident irradiance,  
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The relationship between the target reflectance,   and BRDF is given by, 
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Combining equation 1, 2 and 3, the target reflectance is expressed as: 
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The radiation from sun or any light is expected to be unpolarized. However, 

when the angle between the incident direction of the light and the normal to 

the surface becomes smaller, the reflected irradiance becomes partially 

polarized (30). This research utilizes this information by using the spectro-
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polarimetry technique to separate the direct and diffuse irradiance form target 

reflectance to compensate for illumination and shadow effects.  

 

Figure 1 Depiction of the BRDF nomenclature (10). 

 

The surface of targets will reflect the incident radiation partially in the form of 

direct reflectance and partially in the form of diffuse reflectance, regardless of 

the direction of the incoming light (31), illustrated in Figure 2. Direct 

reflectance occurs when the angle of reflected radiation is normal to the 

incident radiation and is reflected in only a single direction (32). This type of 

reflectance is sometimes called perfect specular reflectance. Shiny surfaces, 

such as mirror-like surfaces, have high specular reflectance which will also be 

highly polarized. Diffuse reflectance relates to scattered light where the 

irradiation is reflected in many angles (33). If the reflected angles are equal in 

all directions then the surface is termed a Lambertian source (34). Objects 

such as paints, cloths and wood that are not shiny are examples of 

Lambertian surfaces (10). Diffuse surfaces, or groups of objects that have 

highly scattered reflectance, will have low polarized reflectance.  
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Some reflected energy from the ground, either direct or diffuse, may influence 

the pixel quality as recorded by the HSI system in two ways. One is by energy 

diffusely scattered by the ground and environment to the sensors field of view. 

The second is the light diffusely scattered by adjacent objects to the targets, 

then reflected upward to the sensors field of view, which is called sky 

radiance. Only direct reflectance is of importance for retrieving accurate target 

reflectance.  

 

Figure 2 (a) Specular and (b) diffuse reflection (35). 

 

The amount of illumination received by an area can also be reduced due to 

shadow effects (36). Shadows may be caused by clouds or any obstacles that 

block the illumination from hitting the target surface. The sensor detects very 

small non zero reflectance values from targets under shadow due to diffuse 

irradiance from adjacent targets, background or environment. Edward et al 

reported that shadow effects do not simply lower the reflectance energy; they 

also cause a change in the reflectance spectral shape (37). This phenomenon 

depends on the surroundings that scatter the reflected energy onto the 

sensors field of view. For scenes that contain uniform background the shape 

alteration of the shadowed target is not an issue. However, for a scene that 

contains high variations in targets, the shape alteration appears to be 

dominant. For hyperspectral target classification and identification, the 
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reflectance values and shape are of importance. Both should be corrected to 

avoid an error in target classification and identification.  

 

3. Description of Method 

 

All light consists of two wave components that are orthogonal in the plane 

perpendicular to the direction of light. By transmitting the light through a linear 

polarizer, the magnitudes of these properties can be measured. This paper 

presents a new method for illumination invariance and shadow compensation 

on hyperspectral imageries, based on a polarization technique called spectro-

polarimetry. The technique involves placing an absorptive polarizer filter at the 

front of the HSI system which absorbs the highly polarized radiation from 

direct target reflectance (38).   

 

The polarization technique was first used for stellar and planetary astronomy 

applications (39). It has been extended to colour constancy on RGB images 

where the polarizer is used to model the reflected radiance distribution of a 

target (40). Currently, lots of conventional cameras have been fitted with a 

polarizer filter to improve image quality, such as reducing sky light effect or 

glare. Polarized sun glasses are also common and help to minimize the suns 

reflectance entering our eyes.  
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3.1 Illumination invariance and shadow compensation  

 

Two images taken at the same time with and without the polarizer are denoted 

by INP and IP. Let x be the pixel vector for images INP and IP for N bands, then 

the Spectral Angle Mapper (SAM) algorithm is given by, 
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SAM measures the angle between the non-polarized image, INP, to the 

polarized image, IP. This value is scaled to be between 0 and 1 using the 

equation, 
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Scaled_SAM map represent the polarization state on the image. The shadow 

pixels are corrected by normalizing the shadow image with the Scaled_SAM 

values and adding the polarized values, 
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3.2 Correction assessment 

 

To assess the effectiveness of the correction method angle and distance 

similarity metrics are used. Given 2 spectra vector, v1 and v2 , the angle 

similarity metric can be defined as (41), 
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A small angle represents the closeness of match between the two spectra and 

shows the spectral shape similarities of the two vectors.  The second 

assessment is a distance measure and is given by (41), 
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4. Equipment and data set 

 

Two sets of data, indoor and outdoor, are taken with and without the polarizer 

filter. A Headwall VNIR hyperspectral camera is used which has a spectral 

sensitivity between 400 and 1000 nm; camera shown in Figure 3. The camera 

employs a diffraction grating as a spectrograph and the polarizer filter is 

placed on the lens of the camera, seen in Figure 4.  

 

Figure 5 (a) shows the illumination source for the indoor data and (b) 4 

different coloured t-shirts imaged in the lab with predominantly white and 

yellow walls. The light was shinning on the left of the image and the t-shirts 

are block by an object on the left to cast the shadow. The outdoor data, 

namely Field Data and Bunker Data shown in Figure 6 and Figure 7, was 

taken on a clear and sunny day. Calibrated panels, white and black 

spectralons, are placed in indoor and outdoor data to estimate the irradiance 

of the scene, shown in Figure 8. All the data used in this research is converted 
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to ‘apparent’ reflectance using the Empirical Line Method (ELM). The word 

‘apparent’ used in the ELM approach does not consider other possible effects, 

such as topography of the scene, in estimating the targets reflectance. Given 

at sensor radiance image as L, and the recorded brightness or digital number 

DN, the linear equation for reflectance conversion is given by (10), 

DNccL 10                                                                                        (10) 

Where 
oc  and 1c  are the calibration coefficients, measured from the black and 

white spectralons that are placed in the scene.  

 

 

Figure 3 The Headwall Visible Near Infra-red (VNIR) imaging system. 

 

 

Figure 4 The polarizer is placed on the camera lens. 
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   (a)       (b) 

Figure 5 (a) illumination from the left side of the image and (b) the shadow 

cast on the t-shirt data. 

 

 

Figure 6 The outdoor field data taken during midday on sunny day. 
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Figure 7 The outdoor bunker data taken during midday on sunny day. 

 

 

Figure 8 The calibrated panel used in this research. 

 

5. Results 

 

The main objective for this method is to compensate for illumination 

invariance and shadow effects on hyperspectral imageries. Figure 9 (a) shows 

the RGB image before correction, (b) the scaled_SAM result between vectors 

of image INP and IP for the indoor scene and (c) the RGB image after 

correction. Based on the Scaled_SAM map, the shadow area (denoted in blue 

scale) can easily be detected using the SAM algorithm. The illumination 
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invariance of the blue t-shirt (on the right of the image), is also detected by 

SAM. The RGB images shown in this paper are false colour images 

generated from the red, green and blue wavelengths. Figure 10 shows the 

plots of reflectance versus wavelength for the 4 t-shirts to compare the 

reflectance of shadow pixels before and after correction to the direct spectra. 

The corrected spectra (green curves) have improved and are almost 

consistent with the direct spectra for all t-shirt colours. The angle and distance 

similarities for all 4 t-shirt data with comparison to direct reflectance are given 

in Table 1. Based on the angle similarities in Table 1, the metric for t-shirt 

classes 3 and 4 are higher after correction due to high polarization within 450 

to 550 nm bands. This can be seen by referring to Figure 10 where the 

shadow reflectance after correction is skewed within this band.  

 

In order to evaluate the inter-separability of target spectra after the correction 

the Maximum Likelihood (QD) classifier has been used, with the direct spectra 

as the training data.  Figure 11 shows the QD result (a) before and (b) after 

the shadow correction compared to (c) the target map. The target map is 

generated from the image that has no shadow effects and the accuracy is 

calculated using the following equation, 

N
NPPNPNAccuracy

100
)(%                  (11) 

PP, PN, NP and N are positive-positive, positive-negative, negative-positive 

and the total number pixels in the class respectively. It can be seen that the 

QD result after correction has achieved a better accuracy (98%) compared to 

the QD result before correction (48%). This result proves the enhanced inter-

class separation of targets after the shadow correction. 
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(a)      (b) 

RGB Image after correction
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(c) 

Figure 9 (a) the RGB image before correction, (b) the scaled_SAM result 

between vectors of image INP and IP and (c) RGB image after correction.   
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Figure 10 Comparison of shadow spectra before and after correction to the 

full illumination spectra for (a) t-shirt 1 (Green), (b) t-shirt 2 (Red), (c) t-shirt 3 

(Yellow) and (d) t-shirt 4 (Blue). 
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   (a)      (b) 

 

(c) 

Figure 11 Show the QD result (a) before correction with accuracy 48%, (b) 

after correction 98% and comparison to (c) the ground truth image.   

 

Table 1 Spectra similarity of shadow reflectance before and after correction 

with respect to full illumination spectra for indoor data. 

Indoor 

Data 

Angle  Distance 

Before 

correction 

After 

correction 

Before 

correction 

After 

correction 

Green 0.1846 0.0958 0.2622 0.1220 

Red 0.0880 0.0492 0.3371 0.1680 

Yellow 0.0305 0.0588 0.2217 0.1236 

Blue 0.0718 0.0968 0.0969 0.0567 
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The method proposed shows good consistency on the outdoor Field data, 

seen in Figure 12, where the SAM algorithm is able to detect the shadow 

pixels between vector image INP and IP. The shadow reflectance has improved 

significantly after the correction, shown in Figure 12 (d). This experiment has 

been compared to the work proposed by Ritcher for shadow correction on 

hyperspectral images. Table 2 shows the spectral similarities for before 

correction, after correction via spectro-polarimetry technique and after 

correction via matched filter (MF) technique proposed by Ritcher. From the 

table the spectro-polarimetry technique and matched filter (MF) technique 

have shown an enhancement for target spectra under shadow region 

compared to the direct spectra. The spectro-polarimetry technique shows 

better similarities in angle and distance metric to direct spectra in comparison 

to the MF technique. This work has also been repeated for other outdoor 

Bunker data. Figure 13 shows the result of target spectra before and after 

correction.  
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(a)           (b) 

RGB after correction
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(c)           (d) 

Figure 12 (a) the RGB image before correction (INP), (b) scaled_SAM result, 

(c) the RGB after correction and (d) the plot of shadow spectra before and 

after correction with respect to direct spectra.  
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(c) 

Figure 13 (a) the RGB image before correction (INP), (b) after correction and 

(c) the plot of shadow spectra before and after correction with respect to direct 

spectra.  
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Table 2 Spectra similarity of shadow reflectance before and after correction 

with respect to full illumination spectra for Field data. 

Field    

Data 

Before 

correction 

Spectro-polarimetry 

technique 

Ritcher MF 

technique 

Angle 

Similarities 
0.1047 0.0784 0.1047 

Distance 

Similarities 
0.2950 0.0533 0.0833 

 

 

Table 3 Spectra similarity of shadow reflectance before and after correction 

with respect to full illumination spectra for Bunker data. 

Bunker 

Data 

Before 

correction 

Spectro-polarimetry 

technique 

Ritcher MF 

technique 

Angle 

Similarities 
0.1649 0.1349 0.1648 

Distance 

Similarities 
0.2722 0.0944 0.1414 

 

 

6. Conclusion 

 

This paper has presented a new method for illumination invariance and 

shadow correction on hyperspectral imageries. The spectro-polarimetry 
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technique is able to locate the shadow pixels by measuring the angle between 

vectors of the polarized and unpolarized images using SAM. The SAM values 

prove that direct and diffuse irradiance can be estimated using the polarizer 

technique. The correction shows an improvement on the shadow pixels for 

both indoor and outdoor scenes. Further improvement is needed particularly 

in direct and diffuse estimation for the development of a more robust shadow 

compensation algorithm.  
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