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SUMMARY 

Using Oseen's approximation to linearise the Navier-Stokes equations, 
a solution to the problem of axisymmetric slip flow past slender bodies of 
revolution at zero incidence has been obtained, in a manner similar to that 
used by Laurmann in his paper on the slip flow past a flat plate(6). 

The drag coefficient has been evaluated for both incompressible and 
compressible flows, and this has been compared with normal boundary layer 
values. It is found that the skin friction drag is the dominant component of 
drag in the incompressible case and in the compressible case. 

This work was conducted at the College of Aeronautics, Cranfield, in partial 
fulfilment of the requirements for the Diploma of the College. 
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The full Navier-Stokes equations may be derived either from macroscopic 
arguments or from the kinetic theory of gases via the Boltzmann equation. 
Their use may therefore be extended into the field of semi-rarefied gas dynamics, 
in which slip effects occur at the boundaries of the fluid and even, to a certain 
extent, into free molecule flows where, however, they eventually cease to 
describe the physical conditions correctly and have to be replaced by other 
methods based on kinetic theory. 

It is the object of this paper to investigate an axisymmetric solution to the 
Navier-Stokes equations in the slip flow regime, employing Oseen's approximation 
to simplify the equations, and because it is suited to dealing with the velocity 
discontinuity which appears at fluid boundaries. 

The Oseen method linearises the equations by considering perturbations on 
a uniform stream, and allows the problem to be solved throughout the entire flow 
field, but the perturbations on the free stream must be everywhere small. 
Bodies must therefore produce only minor changes from free stream conditions, 
and the method is thereby restricted to slender configurations where the body 
cross-section is small compared with its length; in particular, the fluid velocity 
at boundaries, with such slender bodies, must be similar in magnitude to the 
free stream velocity, a condition which is not satisfied in boundary layer flows 
at normal densities but which, in slip flow, is permitted by the fluid velocity 
discontinuity at surfaces, which is characteristic of this regime. 

Use of Oseen's approximation, therefore, demands that the slip velocity be 
of the same order of magnitude as that of the free stream. Since this slip 
velocity is a function of molecular mean free path and body shape which, as 
noted above, is itself restricted, the problem is confined to one in which the mean 
free path is limited to a small range of values and must, in fact, be large compared 
with the dimensions of the body, i.e. the Knudsen number is large. This is outside 
the range of Knudsen number normally associated with slip flow, but theoretical 
work in the kinetic theory of gases, by Wang Chang and Uhlenbeck(8), shows that 
the slip form of boundary condition is valid for all values of mean free path, 
although numerical coefficients may change; there is also some experimental 
evidence that this is so. 

This work then, although ostensibly concerned with the slip flow regime 
(.01 < Knudsen number < 1.0), is actually a description of fluids at a somewhat 
lower density, which is approaching that of free molecule flows, but in which it 
is assumed that the Navier-Stokes equations still hold and in which the slip 
boundary condition is valid. 



2. The incompressible case 

(a) The equations 

The full Navier-Stokes equations for steady incompressible flow in 
three dimensions are 
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If u*, 	wand p*  are replaced by U(1 + u), vU, wU and p.(1 + p), where u, v, w 
and p are small non-dimensional perturbations on a uniform stream U, these 
equations become, neglecting second order terms and using a non-dimensional 
Cartesian co-ordinate system 
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Lamb(5) shows that,with cylindrical symmetry about the x-axis, the non-dimensional 
perturbation velocity vector cL= (u, v, w) may be split into two components, one 
irrotational being the gradient of a scalar potential function 0, and the other 
rotational being derived from a scalar vorticity function x, such that 
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where v
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is the non-dimensional radial velocity component in axisymmetric flow. 

and x satisfy the equations 
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The problem is reduced to finding solutions to equations (2.4) and (2. 5), which are 
derived from second order partial differential equations; four independent boundary 
conditions will therefore be needed, and will be provided by conditions on the 
normal and tangential fluid velocity components at the body surface, and by 
conditions at infinity. 

Inviscid flow equations, which are first order equations, are obtained when 
k = cc. (v = 0): equation (2.5) is then reduced to x = 0, and equation (2.4) 
gives Adams and Sears solution(1)  using the normal fluid velocity boundary condition 
only. In the following analysis, the solution will tend to the inviscid solution as 
k » m , except inside layers of order 1/k in thickness adjacent to the body surface; 
i.e. as Reynolds number becomes large, the viscous effects are confined to a 
boundary layer. The case k = 0 is of no practical interest, but provides a check 
on the solutions for 	and x , which should then be identical. 

(b) General solutions  

Equations (2.4) has been solved, using the exponential Fourier transform, 
by Adams and Sears(1)  as follows 
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Equation (2.5) becomes 
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As long as the previous restriction on r, required for equation (2.6), is observed, 
this restriction on kr does not limit the range of values of k that may be 
considered. k may always be as small as we please, but large k is equally 
acceptable, provided r is small enough. 

Inviscid conditions are, however, excluded since, as k or. 	(viscosity 4 0), 
r must tend to zero i.e. only extremely thin bodies may be considered and, in 
the limit, the trivial flow of a uniform stream past a 'line is obtained. 
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b i(x) and b2(x) may be expressed in the alternative forms (derived in Appendix A) 
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(c) The boundary conditions 

The boundary conditions will be applied to a slender body of revolution, 
pointed at both ends, of length L, and maximum thickness 2 5L, making the 
usual slender body assumptions concerning the body radius, slOpe of the body 
surface, etc. Let the radius of the body be L r1 (x), with the axis of symmetry 
along the x-axis and upstream end at the origin. 

S(x) = 	7/ 	(X)1 2 	and 	2 6 = t 

The normal velocity condition gives 
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where 	c1  = a constant, (approximately equal to unity) 

7 = the non-dimensional mean free path of the molecules 
= Knudsen number 

q = component of the fluid velocity parallel to the body surface 

n is in the direction normal to the body surface. 
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Since the bracket contains terms of order t, it follows that e must be of 
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 i.e. the Knudsen number must be large. This restriction is a 
consequence of the use of Oseenis approximation, which requires the fluid velocity 
at all points to be of the same order of magnitude as the free stream velocity. 

The large Knudsen number does not prevent the use of slip boundary conditions. 

The second boundary condition therefore gives 
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For a general pointed body, 133(x) will contain logarithmic singularities at 
x = 0 and at x = 1, and the local velocity and pressure at the nose and tail will 
be physically untenable and contrary to the small perturbation hypothesis. The 
effect is, however, confined to a restricted region and its net influence on drag 
force is negligible. 

The singularities may be removed by the imposition of the additional 
restriction that the nose and tail should be cusped, i.e. no streamwise 
discontinuities in curvature, but since this paper is ultimately concerned with 
drag force, the more general analysis of a pointed nose has been followed. 

(d) Drag 

The drag may be evaluated by considering the pressure, momentum flux and 
viscous stresses at the surfaces of a cylinder of length L and radius R which 
just encloses the body. Let Si  and Si  denote the upstream and downstream plane 
faces of this cylinder, and S2  the curved surface. 

The drag due to the viscous stresses at the cylinder surfaces is 

D
v _ 	4p I

S 

 (Du 	
dS + -22— f (au 

pUL 	Vx j 
1 pU2 	 x=0 	I 	pUL 	Br 

i  

1 r  r1 (x) , -12 + Sll(x)  J 2ir = 	........ 
k 	f L _____ei7  ÷ [ri(x 	2n. 	dx + 0 (t 4log t) 

0 

+ — 	dS + ( 
a 	

LI) dS 
x 	 pUL 

S
:3  

r=R 	 f , x  X=1 3  

21r f l  

0 

0(t 2) 

[r:( XI 2 

j dx 
	 (2.32) 

The drag due to pressure and momentum change through the cylinder is 

Using the continuity equation, and equation (2. 2) this becomes 
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Total Drag D is given by 
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This total drag is due to the normal and tangential viscous stresses at the body 
surface. 

The first term, D, = 2— 
k c,+' 

result for a flat plate (Ref. 6). 

j
r1  (x)dx, may be compared with Laurmann's 

0 

1 

j
It gives a drag coefficient, based on body surface area S = 271- 	ri  (x) dx, 
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which is exactly the drag coefficient for one side of a flat plate. The situation is 
similar to that of laminar boundary layer theory where skin friction drag 
coefficient for one side of a flat plate 1.328  is the same as that for a slender 

body of revolution (Ref. 3). 

C 	will remain finite as Reynolds number increases to large values because 7 
is proportional to 1 

k 	 1 2 
The second term, D2  = 

2 11 	
[r:(x)] dx, is a viscous term which becomes 

small at high Reynolds numbers. It is, therefore, a low Reynolds number term, 
due to the three dimensional body shape. 

3. The compressible case  

(a) The equations 

The steady three-dimensional Navier-Stokes equations and the continuity equation 
for compressible flow are 
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These, and the equations of energy and state, may be linearised by considering 
small perturbations from conditions in a uniform stream defined by 
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The non-dimensionalised linearised energy equation becomes 
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equation vanishes and there remains the pressure equation 
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Elimination of p and p from (3.5), (3.6) and (3.9) gives 
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The solution of this, the temperature equation, will be a linear combination of the 
solutions to 
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As in the incompressible case, with cylindrical symmetry the perturbation velocity 
vector may be split into two components, derived from a potential function and a 
vorticity function. Now, however, the potential (unction s6 is divided into two 
pa:ts, itSi  and 02 , each associated with one of the two temperature equations 
(3.10) and (3.11). 

Thus q = q i  + q + q 3  = (u, vr ) 

= V 	-f-  V 02+ 	f (x) 

This splitting of the linearised flow equations was first carried out by Lagerstrom, 
Cole and Trilling") . They neglected the effect of thermal conductivity and so 
did not divide the potential function into two parts, but they obtained separate 
solutions in the form of waves for id and x, which they termed 'longitudinal' 
and Itransverse' waves respectively. Trilling(7) showed how thermal conductivity 
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could be included, to give a method of solving a linearised flow field problem 
in terms of the three functions 95, , 02  and x defined above; Laurmann(6)  
follows this method in his paper on slip flow over a flat plate, calling the three 
solutions of 	, 4,2  and x , pressure, temperature and viscous waves 
respectively. 

Details of this splitting process are given in Appendix B and result in 
the following equations for 01 , sb, and x , and the associated non-dimensional 
perturbation velocity vectors, pressures, temperatures and densities in axi-
symmetric flow. 

Pressure wave 

M2 8296, 

8x2  

2 0± 
2k a 	ax 

= 0 	 (3.12) 

801 	80, 
q, 	ax 	ar 

m2 [ 2 v2 - 8 
P, = 7 	3k 	8x 

= 	- ( -y - 1)1\4 	
ao 
ax 

	

[2.-Y  V2 	
a  

p1 	2 -
3k 	 ax 

with 	cr 
3 
4 

Temperature wave  

V2  952  3k a0, _ 
- 2 ax (3.13) 

q2 
a

2 	a 02  
= — 

3x 	ar 

P, 	0 

3k 
T2  

2 7'2 

3k 
2 2 952 



a 2 0 	a 20 
2 	r ar 

ao 
- M 2 ) _t 0 

ax 
 

8r 
 

1 
r 

a 0, 
ar Then 

8x 
a 
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Viscous wave 

8 x 
Vx - 2k 8x — - 0 	 (3.14) 

ax 
(1 3

ax ) 
- 2k x, 

er 

P3 	0 

T = 0 3 

p3 
= 0 

The viscous wave is therefore independent of compressibility. 

(b)  General solutions 

(i) The pressure wave equation (3.12) is 

2  a
2 	

711-12  va o2  - M 01 	a  2kcr 	ax 8x 2  
2 

=  A 
2k 0- 

Let 

(3.15) 

Clarke
(2) 

solves a similar equation in his paper on relaxation effects on slender 
bodies; he uses Fourier transforms to get equation (3.15) in the form 

a 2(11 

ar t  

P
z (1 - M2 - i 	—

951 	0  1 - i pX 

Again,this is a Bessel equation of zero order giving 

01 = A5 (p) K 	
\I 1 - 11112  - pX 

-ipX 
ri 

For small values of r, 

0,= -A3(p) [r +  log [ 	r 	M2  - PX  
1 - ipx 

and there are no restrictions on M, k or A in making this approximation. To 
obtain the inverse transform, it is necessary to consider two cases depending 
on whether M < 1 or M > 1. 

+ 0(r 2) 



a5(y) e-0 
2(x -y)/ 

log(x-y) dy 

2 \ 0x 1- 
1 	

f
a 5(y) e - (x-Y)/X  log(x-y) dy 

X 
2 

f

as(y) e -131 tx -0/ 100.x -Ddy -(x -y)/X a5(y) e 	log(x-y)dy 
fo  2X 

0 
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Case 1 	M < 1 

Now , t;Ic must be ex ressed as 

_ A5(p) 	r + log y PI r 	p + 
1 	I 	 p + ii3 /X 

where g2 
= 1 m2 

and, from Clarke's paper, the inverse transform is 
x 

	

1 a 	 1 a 

	

= a5(x) log 
2 - 2 ax 	

as(y) log (x-y) dy + 
2 ax if  

X 

a5(y) log (y-x) dy 

If 	a5(x) = 0 for x i 0 at x 1 

0 

r ▪ a (x) lo 	- 5 	g 2 
	2  

as 

3y 	
1 

log(x-y)dy + —
2 

1 as 

f
B 	

logy-x) dy 
y 

x 	 x 
1 I 8a 

5 	
e

-P 2(x-y)/Xlog(x-y)dy + 1 f 8a5 e  -(x-y)/X 
log(x-y)dy 

o 
- 2 	ay 	 a y 

	

x 	 1 
r 

	

f 	
aa5 

ay  log(x-y)dy + —
2 	

log(y-x) dy = a5(x) log 
I as 11 

8y 

1 	a5(y) r 132(x -y)1X -e -(x-y)/X 
2 .1o  (x-y) 1 e 

• a5  (x)log 	+ b5  (x) (3.16) 

1 
where b5  (x)- 

x 
Oa5 
ay 

log(x-y)dy + 
aa5 

i
x 

8y 
log(y-x) dy 

x 

	

f 	a5(y) 	e -02 (x -y)/X -e-(x -y)/X 

	

2 J
0 	

-y) L 

 

dy 

(3.17) 

dy 
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Case 2 

Now, 

where 

M > 1 

- A5(p) [r + 

B2  = M2  - 1 

   

1- log [ pr 
p - i B2/ X  ji 
p + i/A 

Again, from Clarke, the inverse transform is 

x 

0, = as(x) log 
r  - ax 	as(y) log(x y)dy + 

a5(y)e 
 -B(y-x)X log(y-x)dy 

x 
+ 	(57a  + 5:1) r as(y) e

-(x-y)/X 
log(x-y) dy 

as(y) 
-B 	

x 
8a 

e
2 (y -x)/ 

log(x 	 Xdy + 	as(Y)  e 	
dy 

Z 	
-(x-y)/X 

= a
s
(x) log 7--  - 

8y 	 y - x 	 x - y 

= a (x) log 	+ b (x) 
5 	 2 

L. 	
5 
	 (3. 18)  

where b (x) 
I 8a 

By 
log(x-y)dy - 

x 
as(Y) 	-B2 (y-x)/X 	f as(Y)  e-(x -Y)/X dy  dy + 2 y - X 	 x-y

0 

(3.19) 

(ii) The temperature wave equation (3.13) is 

( 2 	a  C7  - 	8x)S62  = ° 

This equation was solved in section 2(b) giving 

log -121  + b6(x) C6 2 	a6(x)  

as 
where b (x) = 	—6  log (x-y) dy + 

6 	 ay 

0 

   

(3.20) 

   

2 
e
3kx/2 

:y 
[ 

e 
 -3ky/2

a
6
(y)] log(y-x)dy 

(3.21) 

(iii) The viscous wave equation (3.14) has the solution 

= 	a (x) log 2 — + b 
7
(x) 

 

(3.22) 

 

where b7(x) 
8a7 	 e2kx /1  a  
a-77 log(x-y)dy + 

z  
;-,- 

y x 
8  

o 	
y 
[

e 
 -2ky 

a7(y)1 log(y-x)dy 

(3.23) 

The two slender body solutions above restrict k to finite values; this restriction 
was discussed in section 2(b) and the same conclusions hold here. 
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ao 802  ax 
u 	

ax 
+ ax 

 + 
ax 
— - 2 k x 

= L 5  (x) 	6  ai (x) + (x) - 2k a1(x) 	log y + F5(X) + b6(x) + bc(x) - 2 k b7(x)] 

(3. 24) 

= ao(x) log 	be(x) 	say 	 (3. 25) 

v
r 

= a961 42 ax — — + 
Or Or Or 

= [a (x) 	a6(x) 
	

a7(x ) 	
r 
	 (3.26) 

a (x) 

  

say (3.27) 

  

and 	 2 DOI 	3k 

	

T = -(y - 1) M ax 	2 

..x 	2  

	

- (7- 1)M2  [0.15(x) log 	I ..)5  'r 	+ "k  [a6(x) log 2 i b,(x)] 

= 	to (x) log I 	bio  (x) 	say 

(3.28) 

(3.29) 

(c) The boundary conditions  

The same slender body of revolution as that described in section 2(c) will be 
considered here. Three boundary conditions are now available, viz. normal and 
tangential velocities, and temperature jump at the surface. 

The normal condition gives 

dr 
vr   = 	dx (1 + u) 

and the tangential condition gives 

U
s 

= (1 + u) cos a + v
r 

sin a 

The temperature discontinuity AT is given by 

A T = (1 4- Ts) - Tw  

where T is the non-dimensional perturbation temperature of the fluid adjacent 
to the wall and T

w 
is the non-dimensional wall temperature. 

By considering orders of magnitude, these equations can be simplified to 

dr 

r -7  dx 

U
s 

= 1 

and 
AT = 1 - Tw 

(3.30) 

(3.31) 

(3.32) 



(3.27) and (3.30) show that 

 

a9(x)  = (x)  (3.33) 

As before, ( 	v 
r dr ) au 	a 	1 U

s ar 	Or • dx 

 

ignoring the term in temperature gradient along the surface. 

From (3.25) and (3.31), 

r (x) 	 2 

as(x) = 	+ P(x) 
c 

The temperature jump AT = ca  t (LT) 	+ 0(t alog t) 
" r=r 

(3.34) 
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From (3.29) and (3.32), 

a10(x) - (1 
	Tµ ) r (x) 	

(3.35) 
C2 

Finally, from equations (3.24) to (3.29), (3.33), (3.34) and (3.35), u, vr 
and T 

nay be deduced and a5(x), a5(x) and a7(x) may be expressed 

ri(x) 	- 2 
U - 	 [r:(X) )log 	+ b

e
(x) 

c, 

St(x) 

(1 	-T  w) ri(x) 
T = 	  log 2b10(x) 

ca 

V 
 r 	2 irr 

(3.36) 

(3.37) 

(3.38) 

 

ir( 	2w 
1 [ so(x) 	ri(x) 

[ral(x)1 

2k [ ri(x) rim  (x) 	
rt (x) 

c i 

a7(x) = 

 

a (x) 	e
-3kx/2(-y-l)m- x f 

e
3kx/2(7-1)M2  

(-y 1)M2  

[ 3k (SI (x) 
2 	2/r 

r
1--- 
(x) r'(x) 
--- 

2k 

	

r (x) 	(1 - T
w

) ri (x) 
dx 

	

2k c, 	 c 7 
2 

S'(x) 	ri(x) r:(x) 	ri(x) 

as(x)  = [ 27/- 	2k 2k c, 



1 

Io +[ri(
x)] dx 

, 	2 D 	2r 

p 
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(d) Drag 

As before, the viscous and pressure drags, associated with a cylinder of 
length L and radius R enclosing the body, will be considered separately. 

The drag due to the viscous stresses at the cylinder surfaces is 

D
v avr  vr) 2 	au 	 2 r + 	+ 	dS - 	 dS 

I U2 

	

	 , 1- — 3k f 	ax Or 	r 
p 	 x=0 	 x=0 

S i 	 Si  

2 f  (au 	avr 
+ 	dS -i- 

	

vr 	 2 	(au) 
3 	 dS 

3k 	axar 	
x=1 	

Ox 
 x=1 

S3 	 jS3  

a v 
4_ 

ax 	
dS2 

r=R 

2i 
k 

ri (x) 

c
' 
i 

0  

2 S
27 
H 

+ r:(x)1 + 
(X) 

dx + 0(t 4 log [  

Irai(x)] 
2 

j 
dx 

which is identical with the incompressible case. 

The drag due to the momentum flux and the pressure at the cylinder surfaces 

is 0(t's log t), as in the incompressible case, giving for the total drag 

27/ 

0(t2 ) 

L 

r (x) 

c i  Z 

(e) Heat transfer rate  

By Fourier's law, the rate of heat transfer to the body surface is 

K
* 

L 	
OT) 

qw 	 8n 
wall 

K T. 
_ 	 

L   
)

wall 

+ 0(t2log t) 

Thus the Stanton number = 
qv, 

 

with h = C T 
Uthw  - hJ  

c2
K0,  

Lp U 0. 	r 

1  

c 2icy U 
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which is a constant for all regions of the body surface and decreases with 
increase in mean free path t . 

(f) Drag - an example 

Finally, a few calculations will be made in order to compare the drag 
of a slender body under continuum flow conditions with drag under slip 
flow conditions. 

A specific example of a body of length L with meridian shape given by 

r,(x) = 4S (x - x2) 	, a parabola, will be considered. 

is small. 

For boundary layer flow , Goldstein
(3) 

gives 

1.328 
Cf 	

r 

e 

for the laminar skin friction drag coefficient, based on surface area S, 
of a slender body of revolution; form drag may be neglected. 

At a typical continuum Reynolds number of 10
6

, 

C
f 

= .0013 

At supersonic speeds, the wave drag is 

giving 

	

D
w 	 1 

	

2 	27 
Z p U  

1 	1 

f

S" (x) 3" (y) log lx -y1 dx dy 

0 0 

CD = 
w 

D 
w 

P 2 S 

= 32 V 	for our example. 

Thus at normal densities, the supersonic pressure drag coefficient is appreciably 
larger than the skin friction coefficient for values of 8 of order .1. This is the 
reverse of the situation in slip flow where, as we have seen, pressure drag 
is small compared with viscous drag. 

For slip flow 

13 	27r 
k 

P U 2  

r (x) 
 	+[r:(Xd 2  ]dx 

c 

which, for the parabolic body, gives 

1 	86 	26 	1 cD 	 - 

AUKS keli k Re c1 ES  
÷ 

8] 



5  

cf  Rc  (ALL 5) 

Cow  

32 6' 
= 05 

-03 
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It has been shown in section 2(c) that t = 0(t 1) i.e. the mean free path is 
large compared with the body length and so t for the purposes of this 
example, will be taken to be 1  ; also cn 1 

8 	1 

• 
186 

CD 	Re 
(3.39) 

For a typical slip flow Reynolds number of 1, 

C
D 

= 18 5  

2 
Using the relation 	M = 	Re 17; , which is derived from kinetic theory, 

equation (3. 39) may be expressed in the form 

C
D 

M --r•k• 12 

These results are plotted in the following graph of log to  CD  against logto  Re . 

3 

-4 
0 	I 	2 	3 	4 	5 

	
6 

SLIP FLOW 	 UDG,0  Re 	CONTINUUM BL. FLOW 

LOG,0  CI; 
or 

ILIGio  

-2 

THIS GRAPH SHOWS CLEARLY THE DIFFERENCE BETWEEN 

THE ORDERS OF MAGNITUDE OF THE DRAG COEFFICIENTS. 
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APPENDIX A 

Alternative forms for the functions b i(x) and b2(x) 

Use is made of the boundary condition that 

al(x) = a2(x) = 0 
	

for 	x c 0 , 	x 	1. 

From equation(2.11) 

x 
as 

= a1(x) [ r + log ki 	2 - 	f a-7 i 	. E 1 [-k(x-yd dy + -A. i 

o '7 	 x 
ai(y) e -k(x-y) 

= ai(x)[ r + log k] - 2 e 
1 1,1 	

1 
 [

a (y) Ei [-k(x-y) 0 	

]-i 

o + j 	x - y 

x-e ,x-e 

o 
r 	 1 	1 	at(y) e -"Y-x)  

+ 1 Lt
0 
 i [ 	

x+6 

a
1  (y) Ei[-k(y-xd f b. L lx+b- 	y - x 

dyi 

dy 

I 8a, 
ay Et [k(y-x)] dy 

Lt 
T 26.0 

1 ai(y) e - k(y-x) 

- a (x t 6)( 	log k + log 5) f 	  dy y - x 

x-i-b 

Lt [a x  
2 e- 0 	i`

i 
 

x -e 	 7-e 

- e)loge + 	log(x-y) (y) 
e k(X-y) 	

e
-kx 

 

log(x-y)dy [ai (Y) e 	dY i 

  

1 kx fl  
log(y-x) a1(y) e -"Y-x)  1 	4- e 

x+b x-fo 

log(y-x) dy —d [ aI (y) e 
-ky

I dy  J  

+ 
2 

Lt 	- a 
S•0 x +6) log5 - 

  

e -kx 
_ 

2 
0 

log(x -y) 
d a2(y) 	ekx 	dy + 

dy  

1 

x 

log(y-x) dy — [a (y) e 
- 2ky 

x 
da2 	 e2kx Fa (..,)e -2kylog,y _ 

and 	b 2(x) = ekx bi(x) 	- 	— log(x-y)dy + 	 x)dy. ma y2 dy L 2 j  
0 	 x 
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APPENDIX B 

Fluid velocity, pressure, temperature and density in linearised  

viscous flow in terms of the functions 0,, 02  and x 

q 	
q2 + 

+ VO2  + f (x) 

f(x) may be expressed in the form Cbuo where w is a vector function related to x 

8p 
0 , and so from the continuity equation, 

8x
3 = 0 

 

It may be assumed that pi  = 0, and p3  and T3  may also be taken to be zero. 

Equations (3.1) then give for q3  

8u
31 

	

= - 	V2  U
3 ex

e  

8v 

	

3 	 1 
= 

	

a x 	
V a  V

3 
e 

	

a w3 
	2 

— v W
3 

	

8x 	R
e 

which are the same equations as those obtained for the rotational component of 
q in incompressible flow (Ref. 5). 

x therefore satisfies 

( Vz  - 2k —
a

) x = 0 
a x 

where 
2k 

3 

UL 

8x 
8x 

R
e 

- 	2k x 

ax V 	= 
r3 
	-- 

8r 

From equations (3.10) and (3.11) 

8 T 
1 	2 	 • 	2 	1 

• V 	 V 
1 	cr R

e 	
8x 

V q 
3 

a 2T,  

8x2  
(1) 
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8T 

	

2 	1 	
V2  T 

	

8x 	oft
e 

(2)  

and from (3.6) 

OT2 	 ap 

37 	- 1) 8x 	crR V 2  T2  (3)  
e 

 

Combining (2) and (3) 

Op 
2 4.  

Ox 	Ox 

T2  + pa 	= constant 
	

(4) 

pa  = constant = 0 say. 

After removal of terms dependent on x from the x-component of 
equations (3.1), we have 

a ( 	 1 	OP, 	 1 	a 	8 , 	, 8 
k
, 

+ 1 1 ) 	— a -- 	v (u +u)=+ u) = 	 I —u + uz) —v v ) 
8x 	1 	2 	TM 8x 	 3R 8xOx 8x i 	a  y 	 2 

, 
+ 	w + w 

	

8z
8 t 
	

2 

and since q i  0¢ and q = 	0 1 	2 	2  

(0
2
- 3k 
	8 

2 8x 

From the continuity equation (3.2) 

81)2 	2 
V = 

2 

3p 
3k 

8x + 2 from (6) 

3k 
p 
	

- 2 C62  

and from (4) 
3k 

T
2 2 2 

0 

(5)  

(6)  



- 25 - 

The 4)1  dependent terms of equation (5) are 

824)1 = 	i 
2 
 bpi 

4 
v2 8±,  

8x2 	 Bx 4-  3R 
e 	

8x 

a ti 	4 
Pi 	7m2 [ 07( 	5T--e  v2  961 

But pi  satisfies (3. 9) 

a2 p, - 
2 

ax
2 

V2  pi  = 	v2  Bp 

o- R
e 	

ax 

ve - 	a2  8  ) 	
4 

V2 - 	2311  
e ax2 	 o R 	Bx 

satisfies the second bracket. 

v2  - M2 
82
— 

 

exa  

+  
crli

e 
V 8x) 

0 

Equation (7) gives pi 	as 

pt  

From (3.6) 

= 	- 1) ax 

and 
Bpi BT. 

+ 	• 
ax 	Bx 

Elimination of pi 	and 	pi  

2 	v2 0 _ 	8—
co

t 
3k 	8x 

ap.  
+ 	V2  T 

(9) gives 

8x 	o- R
e 

ap t  
from (3.5) 

8x 

from (7), (8) and 

2 ai6  

	

Ti  = - 	- 1)M 
8
2 

Finally, from (7) (9) and (10) 

itir  2 

	

' 	3k v201 - 8x 
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APPENDIX C 

The inverse transform of 

Equation (2.10) gives 

= - Ai(p)cr + log 	a k2 r ) 

The inverse transform is 

1 
27r 

e
-ipx 

dp 

- — 
I 	

1 
A (p)(r+ log r + log (p2  + k 2) e-i" dp 

27r  

▪ a (x) log z  r -7r J A 
1
(p) 	+ 1- log (p 2  + k2  e-i" dp 

c"' 
where 	a (x) 	- 	A.1(p) 

e-ipx 
dp 

1 
27r 

Now 	- —
2w

A i(p)(r+ log (p2  + k2))e 1 	 ipx dp  

2 
	A1(p) [ 

r+ log (p2 k2)1 
 e

-ipx a dp 
a 	

- ip - p 
LOG 

• a i(y) 

8 Y 
f (x-y) dy 	by the Fultung theorem 

where f ( x ) = 
II log (p2  + k2)  e -ipx dp  

2w 	 - p 

27 	

° [r + 2 log (p 2  + 	l e -iPxdp  
- p 

log(p 2  4 kle -ipxdp  
i p 

Change the dummy variable p to -u in the first integral and to -tu in the second. 

f(x) = 
	

P+ log(u2  + 0)1
c

iux
du 	

r+ log(u2 + k2)  e
-iux

du 
2wi 

0 

	

I 	i 	(114 log(u2 + 	-lilX ei UX 

- 27ri 
40 

	

2i 	r+ a  19stu2  +  sin u x du 
27ri 
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[r+ 2  log(u2  + k2)] 

f 0 

	

= 	
1 — sgn x L ( r+ log k) 
7T 

	

= 	
1 sgn x [ (I' + log k ) —s.  

8 t 

	

where 	El (0) = f 	dt 

sin u ix I dx 	sgn x 

2 )  
sin u lx1 	 sin u + 1  I log (1 + u 

k2  
0 
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giving equation (2.11). 
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