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SUMMARY 

This report considers the estimation of statistical parameters and their 
al lication to production planning in the aero-engine industry. A similar pattern 
of behaviour to that already recognised as existing in the airframe industry is 
found to operate, though there are indications of quantitative differences. 

The build-up time to the planned peak rate of production in a particular 
situation is found to be about eighteen months but with variation between firms. 
The reduction in operator performance time, which occurs with repetition during 
the build-up period and afterwards, is discovered to be present in machining as 
well as assembly, but to a lesser extent. The logarithmic function generally 
descriptive of such a tendency is found to fit the actual man-hour content values 
rather than the cumulative average ones. The relationship between the logistic 
of output and the logarithmic function is established and made use of to estimate 
labour requirements from the commencement of production onwards. 

In addition to the above consideration of production variables, examples 
are given of the use of engine performance ratings to estimate costs. Finally, 
because of the importance of planning to productivity, a typical production 
programme has been included. 
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1 . INTRODUCTION 

The establishment of empirical relationships, the quantitiative estimation 
of parameters and the useful application of the results have an established history 
in air-frame manufacture. Little, however, of a similar nature has been 
attempted in respect of the production of the power unit of an aircraft. This 
seems to be due to the fact that airframe production is a younger technology. 

However, recent developments in the aircraft industry suggest that empirical 
planning parameters could be beneficially employed in aero-engine production. 
Aircraft are now much more costly than formerly with the power plant claiming 
a greater proportion of that cost and assembly itself playing a more important 
part in power plant manufacture. Furthermore, the emergence of more competitive 
conditions makes it essential to pay more attention to estimating and planning 
methods. 

It was with the intention of establishing planning parameters that the research 
forming the basis of this report was undertaken. Unfortunately, the statistical 
information obtained was not sufficient to treat the subject as rigorously as was 
desired; it prevented the consideration of many factors that could influence the 
situations examined and it made the use of more powerful statistical techniques 
impossible. Nevertheless, the results are considered valuable. Behaviour in 
the industry is revealed to be similar to that in the airframe industry, though 
there are indications of quantitative differences. 

Originality in the report is confined mainly to Sections 2 - 4. Section 5 was 
included to indicate other types of relationships that could be employed, the form 
of their behaviour and the data required to estimate the parameters in them. 
Significant differences were found in the results from different firms and, since 
sound production planning makes a difference to a firm's performance, Section 6 
was added, mainly to give an example of a typical production programme. 

An interesting feature of the research is the light it throws on the importance 
placed on statistical information by different countries. American industry has 
long since been recognised to be more statistically conscious than British industry. 
However, it is revealing to observe that the Germans had reduced the collection 
of detailed statistical information, its analysis and application to a routine procedure 
using standardised documents, for the purpose of furthering the war effort. 

The report is based on a thesis submitted by A. FL Atkinson in partial 
fulfilment of the requirements for a Diploma of the College of Aeronautics. 
We should like to convey our thanks for help received, particularly from the 
Ministry of Aviation, where Mr. S. Bentall has always been of very valuable 
assistance. Security reasons have prevented a more detailed description of the 
data employed but the statistical methods used enabled the data to be presented 
in a modified form. 
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2. PRODUCTION BUILD-UP RATES IN THE BRITISH AERO-ENGINE INDUSTRY 

This section considers the behaviour of the monthly rate of output of an aero-
engine in relation to the time from the output of the first of a series. 

(a) Statistical information  

Data were obtained in respect of nine turbo-jet engines built in Britain for 
military purposes, at seven different factories, in the early 1950's. As indicated in 
Table 1, five of the engines were of the same type. 

In view of the large amount of variation in the original data, each series was 
smoothed by a 5-month moving average. In addition, the output rates were adjusted 
to yield an attained peak production rate of 100 in each case. The data, so modified, 
are plotted in Figs. 1, (a) - (j). 

(b) The logistic  

The symmetrical logistic 

Y ■ k /(1 + 10 a + bX )  

or, in another form, 

log i  (-
k 

 - Y) a a + bX 0 

where Y is the output rate of month X(X a 1 being the earliest month of any output) 
and a, b and k are constants to be determined, was found to be descriptive of the 
general trend of each series, though in three of them it was confined to a section of 
the original data only. 

The decision to fit the logistic to part only of the original data in certain of the 
series was justified by the behaviour of that series itself. It reflects a change of 
programme which is liable to occur in the industry. The fitted logistics are inserted 
in each of the figures. 

(c) The meaning of the constants  

(i) The constant k is an asymptote of the logistic and, since b is negative in 
these studies, it becomes the upper asymptote. It is the value that Y approaches 
as X tends to p . In a similar way, the value Y = 0 is the lower asymptote, 
which is approached as X tends to -.0 . 

(ii) The constant a locates the logistic on the time scale and it will accordingly 
be positive and finite. It determines the value of the logistic at X a 0. As such, 
it will not reflect reality as no output occurs in month 0. This is, however, 
small consequence. 

(iii) The constant h describes the rate of approach to peak production and the 
smaller it is in absolute value, the longer the build-up period. In view of this 
inverse relationship and its negative sign, Stanley(7)  proposed the use of B 
where 

B  x  - 1/b (3) 

(1)  

(2)  



- 3 - 

the build-up period is then directly related to B and the steeper the logistic 
in its central part, the smaller the value of B. 

(d) The fitted values of tilt. constants  

The values of the constants obtained by fitting the logistic to the several 
series are shown in Table 1. In aildition, those of B and M - the time to achieve 
the peak output rate - are included. 

CO The values of M vary generally between 15 and 21 with a well defined 
mode at 18 months. 

(ii) The values of k vary generally between 101 and 107 with a mean of 104. 

(iii) The values of the constant a vary between 1.24 and 2.01 but without a 
defined average. 

(iv) The values of -b vary between 0.091 and 0.212, again without a well 
defined average. 

(e) Factors affecting the results 

The sample cannot be considered sufficient in size to investigate the many 
factors that could be expected to influence the results. Certain tentative conclusions 
can be drawn, based on the results and on additional information made available 
with the original data. These are that :- 

(i) Neither the scale of output nor the size of the unit manufactured affected 
the results significantly. 

(ii) The variation in results between factories was greater than that within 
factories. 

Section 4 will reveal that the logistic can be influenced by other factors, namely 

the reduction coefficient, 
the rate of labour build-up, 
the cycle time of production and 
the average working week. 

These will not only in general affect b but also the constant a, since the 
amount of work-in-progress will itself be influenced by them. 

Finally, there will be, in addition to the usual unexplained variance, the effects 
of subjective errors of fitting. 

(1) Use of the logistic for planning  

(i) The values k = 104, a = 1.40, -b = 1.55 yield a value of Y = 100 at 
X = 18 and can be considered as representing average behaviour. 

(ii) In view of (e) (ii) of this Section, quantitative values for the parameters 
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derived from a factory's own historical data would be subject to smaller 
standard errors than those obtained from the average behaviour of a 
number of firms and they would be accordingly more satisfactory for its 
own planning. 

(iii) The earlier an estimate is made, generally the less reliable will be the 
value obtained. However, once deliveries have begun, an increasing 
amount of data will become available for comparison with the estimated 
standard and for purposes of extrapolation. To this end, a set of curves 
with a range of values for the parameters could be drawn on transparent 
material, placed over observed data and the placing adjusted to reflect 
the trend in that data. 

(g) Fitting the logistic curve - the method of three selected points  

The equation for the logistic curve is usually quoted as 

Y = k/(1+e
a+bX ) 	

(4) 

but since, in practical computati on, it is much more convenient to take logarithms 
to the base 10, as tables of these are usually readily available,the curve fitted to 
the data will be 

Y = k 1(1 + 10
a + bX

) 
	

(5) 

Select three points, not necessarily included in the data, through which the curve 
is to pass. Denote these by (Xi  , Y1), (X 2, Y2) and (X3, Y,) where X 3 > X, > X,. 
A restriction placed on these points is that they must be equally spaced on the X 
co-ordinate, 1 . (X3  - X) = (X2  - Xi ) = n. 

Then the parameters of the curve are calculated from the following expressions. 
2 

2 Y1 YZ Y3 - Y2 (Y1 + Y3 )
k 	 (6) 

Yi  Y3  - Y: 

Y(k -Y)2  
b = 	log

in 
	 (7) 

n 	10 Y2(k - Yi ) 

k Y 
a = logio ( 	y 1) 	 (8) 

Sufficient points can be calculated using the expression 

log so 
( k - Y 

Y 
= a + bX 	 (9) 

to enable the curve to be fitted 



(h) The growth index B  (Ref. 7) 

Equation (4) can be expressed in the form 

log 	
(  k  

Y 
Y) 
	

= a + bX 	 (10) 

Let (X1, Y1 ) and (X 2 - , Y2  ) he two points on the logistic. Substituting the values 
in (10) and subtracting, we have 

fAX2  X1 	
\ 

) = log ( k   
Y

log ( 
Y2  ) 

Y, (k - Y2 ) 
(X2 X1 ) = lit,  log 

Y2  (k - Y1  ) 

Hence, if Y, and Y2 are fixed quantities, (X2  - X,) is inversely proportional to 
- b; i.e. the time taken to increase from Y1  to Y2  is proportional to 

- 1/b = B 

3. TIME REDUCTION IN AERO-ENGINE MANUFACTURE 

This section considers the behaviour of the manufacturing man-hour content 
of an engine in relation to the cumulative number produced. 

A. BRITISH PRODUCTION 

(a) Statistical information  

Data were obtained in respect of two different turbo-set engines manufactured 
under differing circumstances. Information was provided in respect of the details 
of manufacture as indicated in Table 2. 

Actual man-hours are not recorded but only an index of them. The value to 
which each series tended, after a considerable number of components had been 
produced, was chosen as a base and given a value of unity in each case. Certain 
of the series are proportional to the actual man-hour content of the given item (unit) 
whilst others are proportional to the average man-hour content for production, up 
to and including the given item (cumulative average). The data, as such, are plotted 
in Figs. 2 (a) 	(q). 

(b) The time reduction curve  

The mathematical function generally descriptive of this is given by 

Y = a X 
	

(13) 

where Y is the man-hours for the Xth unit and a and b are constants to be 
determined. Where Y is the unit value, it is denoted by Yu  and where it is the 

cumulative average, it is denoted by Y. The function can be put into the form 

- 5 - 

(12) 
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log Y = log a b log X 	 (14) 

so that by plotting the observed values of Y against those of X on a log-log 
scale, it can be readily determined to what extent the function will prove a 
satisfactory fit. The fitted functions, excluding certain values in some cases, are 
inserted in each of the Figs. 2 (a)-(q). 

(c) The meaning of the constants  

(i) The constant a is the value of Y at X = 1, reflecting in this study the man-
hour content of the first of a series as a multiple of that of a high cumulative 
value. 

(ii) The constant b describes the slope of the line on log-log scale. It will 
be negative and the greater its absolute value, the greater the rate of time 
reduction. Directly from it we have the coefficient of time reduction, 
given by 

L = (100/ 2
-b

)% 
	

(15) 

It represents the value of Y for a given X as a percentage of that of X/2. 

If the function fits either form of the series satisfactorily, then it will fit the 
value obtained by transforming that series into the other form, provided certain 
initial values are excluded. The value of L will remain significantly unaffected 
by this procedure. 

(d) The fitted values of the constants  

(i) The values of the constant a vary widely where the cumulative average is 
employed and between 2.3 and 3.2, without a well defined mode, where unit 
values are considered. 

(ii) The average value of -b, for machining, is approximately 0.185 and, for 
assembly, approximately 0.250. The corresponding coefficients of time 
reduction are approximately 88% and 84% respectively. 

(e) Discussion of results  

The sample itself is too small for other than tentative conclusions. 

(1) Time reduction is experienced in machining, as well as assembly, but to 
a lesser extent. 

(ii) Differences between firms are likely to be significant. Engine B, in 
particular, was produced under war-time circumstances. 

(iii) The logarithmic function describes more satisfactorily the trend of unit 
data values than that of cumulative average data. The greater scatter of unit 
data around the fitted trend is due to the smoothing effect of averaging. 

(iv) A discussion of the values of the constant a serves little purpose in view 
of the subjective element in the choice of the index base. However, it indicates 
that a reduction to about one-third of the man-hour content of the first of a 
series is at least possible. 



(16)  

(17)  

B. GERMAN PRODUCTION 

(a) Statistical information  

A number of war-time standard statistical documents was obtained, showing 
detailed breakdown in terms of cost, weight, time and man-hours for raw material, 
components, processes and performance, as they applied. One of these documents, 
representing an overall summary for a number of types as indicated, is shown in 
Fig. 3. A semi-logarithmic scale has been employed and 85% time reduction curves 
superimposed. 

(b) Discussion of results  

(i) Close accord with an 85% law is observed generally. The agreement between 
this and engine B of the British data indicates that this law applies, very generally, 
under war-time circumstances. 

(ii) The Germans recognised the importance of detailed statistical information 
for historical and planning purposes. The more data that are available, the 
more reliable the parameters essential for estimating future requirements. 

C. GENERAL 

(a) The employment of the coefficient of time reduction in planning  

(i) The unit function, rather than the cumulative function, should be employed. 

(ii) Different coefficients of time reduction apply to machining, as against 
assembly and for differing circumstances. 

(iii) Pre-planning requires that an estimate of the constant a, in man-hours, 
be obtained by consideration outside the scope of this section. When the first 
of the series is known, a rough estimate of the constant a is obtained. When 
further data become available, curve fitting can be employed and comparison 
with an estimated standard and extrapolation undertaken. For this purpose, 
various coefficients can be plotted on transparent material. On log-log scale, 
Curves having the same coefficient of time reduction will be parallel. 

(b) The least squares method of fitting 

b 	
Ewv 

E v 2  

a = W - bV 

where: 
wv = EWV - W E V 

E v2  = E v2  - V Ev 

= 

	

E W 	 EV 
, v 

	

W = log Y 	V = log X 	 (21) 

n = number of pairs of readings 

7 



EXAMPLE - Figure 2(b)  

X Y W V WV V
2 

1 3.64 0.5611 0.0000 0.0000 0.0000 

2 3.42 0.5345 0.3010 0.1609 0.0906 

5 3.05 0.4842 0.6990 0.3385 0.4886 

. . . . . . 

. . . . . . 

. . . . . . 

. . . . . 

. . . . . . 

. . . . . . 

100 1.33 0.1239 2.0000 0.2478 4.0000 

115 1.15 0.0607 2.0607 0.1251 4.2465 

TOTALS 3.9835 17.8594 3.8015 27.9630 

W 

V 

E wv = 

3.9835 
0.2845 

1.2757 

- 	(0.2845)(17.8594) 

14 

17.8594 

14 

3.8015 

- 1.2795 

Eve 	 27.9630 - (1.2757)(17.8594) 

5.3744 

b 

log a 

a 

= 

= 

1.2795 
- 	0.2381 

(- 0.2381)(1.2757) 

5.3744 

0.2845 

0.5882 

3.875 

-8 
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4. THE TIME CYCLE OF PRODUCTION ".NTD LABOUR BUILD-UP 

This section considers the relationship between the logistic of output, the 
time reduction coefficient, the cycle time and the rate of build-up of man-power. 

(a) Statistical information  

Data were obtained of cycle times in respect of one turbo-jet engine. These are 
not sufficient to establish empirical parameters but they will serve to illustrate 
the use that can be made of such material. The data are recorded in Fig. 4, where 
it will be observed that detail. for processes have also been made available. 

(b) Time cycle reduction  

A reduction in the time cycle of manufacture can be expected, following the 
reduction in man-hour content. However, it cannot be expected to be so strong 
and our example is, in fact, one with a reduction coefficient of approximately 90.2%. 
There is, too, variation between processes. 

(c) Time cycle chart 

This can be obtained by the following procedure. 

(i) Derive a delivery schedule by cumulating the values of the relevant logistic. 

(ii) Derive the time cycle for the first of the series by the use of parameters 
or by production control methods. 

(iii) Apply the relevant time cycle reduction coefficient to the above to obtain 
the starting schedule for the process. 

The chart will readily yield the number of partly processed units at any one 
time. Thus Fig. 4 indicates that, eight months after the start of production, 37 
engines have commenced and 33 have completed the first engine build-up process, 
making five engines in the partly processed stage at that time. 

(d) Man power requirements chart  

The cycle time reduction chart can be used in conjunction with the time 
reduction coefficient and an estimate of the man-hour content of the first of a 
series to establish the manpower requirements at any one time during production. 

(1) Obtain the average unit man-hour content of those in process at any one 
time by means of the reduction coefficient and an estimate of the man-hour 
content of the first of the series. 

(ii) Obtain the average cycle time for the stage considered. 

Proceeding with the example above we have 

No. 	of engines at first engine build 

Average cycle time in hours 

Average man hours per engine 

Therefore, number of operators required 
at this stage 

5 

72 

430 

5 x 430 
- 	30 

72 
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By this means, manpower requirements can be obtained for the total period 
of production as shown in Fig. 5. 

5. PERFORMANCE AND COSTS 

This section considers the improvement in performance with time and its 
relationship with costs, cloth monetary and physical. 

A. AMERICAN STUDIES 

(a) Source, purpose, procedure and definitions  

The empirical relationships set out below are taken directly from Ref. 33. 
They are based on the experience of turbo-jet manufacture before 1950. The 
purpose of the studies was to relate costs to military effectiveness. The 
procedure adopted involved, firstly, obtaining the time trend of performance factors 
and then relating costs to deviations from the trend. Certain common terminology, 
generally employed in the studies, is 

N = the number of observations 
r = correlation coefficient 

S.E. = the standard error of forecast 

Other terms employed are defined with the relationships. 

(b) The relationships  

(i) Trend of engine thrust with time  

T = 9584 (1.127)
t 

T = thrust in lbs. military rating 
t = time in units of six months, to design initiation 

Range of T = 1560 to 16400 
Range of 	t = 1943 to 1950 

N = 8, r = 0.945 

(ii) Trend cf specific fuel consumption with time  

S.F.C. = 0.9531 (0.9897)-t 

S. F.C. - Specific fuel consumption in lbs/hr/lb. thrust 
Range of 	S.F. C. = 1.14 to 0.85 
Range of 	t 	= 1943 to 1950 

N = 13, r = 0.684 

(iii) Development costs and performance 

C
D 

= 3301.0 	( OT)°.220  (A S.F.C.)
0.0356 

C
D 

= development costs ($ 0001 s) at 1948 prices. The costs are those incurred 
from the initiation of design, after the award of an experimental contract, 
to the first bench test of an experimental engine. 



A T = the percentage increase over the thrust trend 

S.F.C. = the percentage decrease from the S. F. C. trend 

Range of AT = 0 to 92 

Range of A S.F.C. = 0 to 11.1 

N = 8, S.E. = 1.43 

(iv) Improvement development costs and performance 

C
DM 

= 394.1 (AT )
0.164 

( A S. F. C. M)
0.141 

CDM = development costs for improvement of basic engine ($ 000's) at 
1948 prices. 

AT 	= the percentage increase in thrust over previous model of series. 

Where A TM 	1 	TM  = 1 is employed. 

AS.F.C. M  = the percentage decrease in the S.F.C. from previous model 

Where S. F. C. m  c 1, S . F. C. m  = 1 is employed. 

Range of ATM  = 7.7 to 27.2 

Range of AS. F. C. m  = 0 to 9.3 

N = 8, 	S.E. = 1.40 

(v) Development time and performance 

T
D 

a 10.6 (AT)
0.118 

T
D 

= peace-time months between design initiation and first bench 

Range of AT = 0 to 92 

N = 8, S.E. = 1.16 

(vi) Production cost and performance 

Cp  = 8.069 T
0.233 

( A S. F. C. )
0.0357 

m  \ -0.152 

500 ) 

C 	= cumulative average cost per engine for M engines ($ 000's) at 1948 prices. 

M = cumulative number of engines produced 

Range of T = 1560 to 16400 

Range of AS.F.C. = 0 to 11.1 

N a 10, 	S.E. = 1.18 

test. 
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(vii) Production time and performance 

No significant relationship found to exist. 

Production time (P) = elapsed time from the date of the first test to peak 
production. 

	

Range of P 	5 to :35 
Mean of P =17.6 

	

N 	11 

(e) Discussion of results 

The relationship between costs and performance, as defined, are revealed to 
be logarithmic, i.e. a given proportionate increase in a given determining variable 
is associated with a given percentage change in the level of costs. The effect of 
the thrust, in this respect, is greater than that of the specific fuel consumption. 
However, the range of the latter is much smaller than that of the former. 

B. GERMAN STUDIES 

(a) Source, purpose and definitions 

The empirical relationships in graphical form are shown in Figs. 6 and 7 and 
have been taken directly from the original German documents. They were used 
by the Germans for production planning purposes. 

(b) The relationships 

(i) Direct production manhours and engine dry weight 

The reduction factor of direct production manhours per engine, in 
relation to engine dry weight, was 87%. 

(ii) Direct production manhours and engine horse power  

The reduction factor of direct production manhours per engine, in 
relation to engine nominal H.P. rating, was 85%. 

(c) Discussion of results  

The relationships established are revealed to hold over more than 20,000 
engines. However, the reduction factor, including engine dry weight, is higher 
than that including H.P. rating, the latter being the same as the manhour reduction 
factor. The reason for the difference arises from the tendency of an engine to 
increase in weight during a production programme because of modifications or the 
use of heavier materials to overcome shortages. 

It is observed that the value of direct manhours per kilogramme (pound) at 
20,000 engines was in the range 2.2 - 3.2 (48-70) and that the value of direct 
manhours per H.P. at the same stage was between 1.7 and 2.1 for radial engines 
and between 1.25 and 1.9 fur in-line engines. 
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C. BRITISH STUDIES  

Lack of data enabled only a superficial examination of British production costs. 

Six samples of 1954 data showed values between 1.6 and 2.8 of direct manhours 
per lb. of engine dry weight for piston engines and between 2.7 and 4.2 direct 
manhours per B. H. P. for the three radio! cngines of the samples. Compared with 
the German values, the former are very much reduced and the latter higher. The 
reduction is due to improved technology and the increase due to greater complexity. 

6. PRODUCTION PLANNING AND OPTIMUM DECISIONS  

This section gives a typical production programme and considers the implications 
of timing and scale of operation. 

(a) Production planning  

Sound production planning enables a realistic delivery date to be established 
and early corrective action and adjustments made. A typical example, treating 
the first production model of a turbo-jet engine, is shown in Figs. 8 - 11. 

Fig. 8. Items susceptible to delays, those requiring special equipment and those 
with long cycle times, are given attention before the release of the design to 
production. The specification of materials and sub-contracting policy needs to be 
established at an early stage. 

Fig. 9. When the design has been released to production, more information 
will be available to enable parts to be treated in detail. 

Fig. 10. Each long dated item, or a group of similar items, is given separate 
treatment. Details of special equipment are included and its history recorded by 
filling in the relevant triangles. 

Fig. 11. This records the time span for sub-assemblies and subsequent stages 
and the dates at which the relevant rigs and the fixtures are required. 

(b) Time and scale  

An aero-engine passes through many distinct phases in its journey from the 
initial idea to quantity production. Two important problems arise in this time span. 
It is necessary to decide, firstly, the extent to which the phases should overlap and, 
secondly, the intensity or scale at which each phase is to operate. 

The more a phase overlaps a subsequent one, the less complete or finalised the 
information available for decisions in respect of that subsequent stage and thus the 
greater the probability of wastage through incorrect decisions. The economies of 
a reduced overall time span have thus to be set against the wastage. 

There are also economies and diseconomies of scale. A greater rate of output 
at a lower unit cost can generally be achieved by more capitalistic methods of 
production. The decision as to which method of production to adopt will depend on 
expectations in respect of the market. However, a larger output may mean a greater 
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loss, so that a careful appraisal of the market is necessary to decide the optimum 
scale of production. 

Evaluation is not a straightforward procedure. Many of the values made use 
of will be based on expectations. Intangibles will need to be considered. Finally, 
firms operate in differing circumstances and what is best suited to one need not 
necessarily be the optimum solution for another. 
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Figure 1. Engine Factory k a -b B M 
(months) 

(a) 1 A 104 1.66 0.167 5.99 16 

(b) 1 B 113 1.51 0.120 8.31 21 

(c) 1 C 107 1.97 0.207 4.83 15 

(d) 1 D 105 1.44 0.148 6.76 18 

(e) 1 E 101 1.51 0.163 6.12 20 

(f) 2 F 107 1.37 0.142 7.05 18 

(g) 3 D 103 1.24 0.106 9.42 18 

(h) 4 G 101 2.01 0.091 10.95 33 

(j) 5 A 101 1.72 0.212 4.71 18 

TABLE 1. VALUES OF THE CONSTANTS OF THE FITTED  

LOGISTICS AND THE TIME TO ACHIEVE PEAK  

OUTPUT BATES 
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Fig. 
2 

Operation 	:Engine Sample 
size 

Man-hour 
content 

a -b L 

(a) Total direct B 14 Cum. ay. 3.57 0.196 87.3 Ex. 1st 2 

(b) Total machining B 14 Unit 3.87 0.238 84.7 

(c) Motor component 
machining A 12 Unit 3.08 0.155 89.8 

(d) Total fitting B 14 Unit 2.27 0.162 89.4 

(e) Total assembly B 13 Cum. ay. 4.11 0.227 85.4 Ex. last 1 

(0 Assembly & sub- 
assembly A 7 Unit 4.04 0.264 83.3 Ex. last 3 

(g) Final erection B 13 Cum. ay. 5.69 0.241 84.6 Ex. 1st 2 

(h) Total testing B 13 Cum. ay. 16.72 0.437 74.4 Ex. 1st 2 

(j) Compressor casing 
machining B 14 Unit 2.85 0.199 87.1 

(k) Rotor sub-assembly 
machining B 14 Unit 2.35 0.172 88.7 

(1) Rotor sub-assembly 
machining A 12 Unit 2.60 0.133 90.3 

(m) Turbine sub- 
assembly machining B 7 Cum. ay. 5.30 0.278 82.5 Ex. 1st 7 

(n) Turbine blades 
machining A 10 Unit 3.15 0.138 90.9 

(p) Gearbox machining A 13 Unit 3.52 0.190 87.6 

(q) Gearbox machining B 13 Cum. ay. 8.87 0.400 75.7 Ex. 1st 2 

TABLE 2. THE VALUES OF THE CONSTANTS FOR TIME 

REDUCTION CURVES FITTED TO BRITISH DATA 
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FIG, 11. TYPICAL CYCLE RELATIONSHIPS FOR ASSEMBLING AND TESTING 
A TURBO-JET ENGINE (FIRST PRODUCTION MODEL) 
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