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SUMMARY

The equations of the steady compressible two-dimensional laminar boundary
layer with foreign gas injection through a porous wall are solved, using an
extended form of Lighthill's approximate method, for arbitrary main stream
pressure gradient, wall temperature and injection velocity. The wall shear
stress and heat transfer rate are obtained in the form of equations suitable
for iteration.

It i8 shown that substantial reductions in skin friction and heat transfer rate
can be obtained by the injection of a light gas instead of air.
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LIST OF SYMBOLS

a speed of sound
A, A, A, constants

B, B,, B, constanis

c concentration of foreign gas
ot concentration gradient (g—;—) at the wall
Cp specific heat at constant pressure
C ke P,
H.p OP
]:)12 the binary diffusion coefficient
. 1
f dimensionless injection parameter = m (x/p p u ) *
w X a’a a
GX,9  Z- f Sz, ) d U? (z)
)
h specific enthalpy
hEl stagnation enthalpy
X 8G
X)) —
H(X, )  G(X,p) + f V() 55 dX
o
k thermal conductivity
Le Lewis number g EpDn[k
m injection mass flow rate per unit area
m(x) 1+X ; L mx)
M Mach number
P pressure
q normal energy flux due to injection
Qw{x) rate of heat transfer per unit area
O‘wo rate of heat transfer for zero injection
: i
sw(x) Qw(x) [xlpapaua] , the modified heat transfer rate

s 1 -h/h,



Sc Schmidt number ufpD,,

tw(x) non-dimensional wall shear stress, rW(x} [—-J-‘———:—]%
Pata"a

two non-dimensional wall shear stress for zero injection

£ 5 temperature

u, v velocity components in the compressible flow

IV velocity components in the transformed flow

V! Vw normal velocity at the wall in the compressible and transformed flows.
respectively

X, ¥ co-ordinates in the compressible flow

X, Y co-ordinates in the transformed flow

Z u, - v’

¥ ratio of specific heats Cp,’C‘r

A l(L,e‘—l){h - h,)
o e i

u viscosity

v kinematic viscosity

[ density

o Prandtl number u Cplk

] stream function

T wall shear stress

Subscripts

o stagnation value

q value outside the boundary layer

w value at the wall

a reference condition

e mainstream

i injected gas

A bar over a quantity denotes its Laplace transform



1. Introduction

Recent studies™ have suggested that injection of a gas into the boundary
layer through a porous wall can be used to reduce the skin friction and the rate
of heat transfer to the wall. The majority of the work on the laminar boundary
layer with injection is theoretical and considers mainly the injection of air into
air. The analyses are restricted severely by the assumption of particular siream-
wise and injection velocity distributions in obtaining solutions of the equations.
Since it is difficult to maintain a laminar boundary layer there is very little
experimental evidence but such as exists (Ref. 2) lends support to the theoretical
results.

Injection of a foreign gas into a two-dimensional laminar boundary layer has
been considered by Srnith(3), Eckert and Schneider(‘” and Faulders(ﬁ). Each shows
that injection of a light gas is much more effective than injection of air in reducing
skin friction. Smith's solution does not give values of the wall shear stress
explicitly but these can be found from the velocity profiles which are presented.
Each solution is subject to some restrictive assumptions. Smith solves the
boundary layer equations and the diffusion equation with the boundary conditions
appropriate to the impermeable wall, The solution takes account of the foreign gas
(the conceniration of which is taken to be large at the wall) but paradoxically considers
the injection velocity to be zero.

The solutions of Eckert and Schneider and of ¥Faulders are restricted to the cgse
of zero heat transfer and assume that the injection velocity varies inversely as x2.
A further assumption in Faulder's treatment is that the viscosity of the binary
mixture is independent of concentration and varies linearly with temperature. The
Schmidt number is taken to be unity.

. . (18) .

The case of non-zero heat transfer is considered by Korobkin in a study
to determine which of the properties of the injected gas is of most importance in
reducing skin friction and rate of heat transfer. Using the simple rigid sphere
model for the molecular collision processes, the equaticns of motion are golved
numerically for the case when the injection velocity varies inversely as x2. In the
results presented two of the three properties of the mixture, molecular weight,
molecular diameter, and specific heat at constant pressure are given the value for
air and the third is varied taking the value corresponding to the calculated concentration.
This solution (io an approximate physical problem) shows that variations of Cp have

a negligible effect on skin friction. The greatest reduction in skin friction is to
be expected when the injected gas has low molecular weight and large molecular
diameter. These properties coupled with high specific heat per unit mass should
give the greatest reduction in the rate of heat transfer.

A more general formulation and solution of the problem of gas injection into
a laminar boundary 1a{er is possible using an approximate method originally
developed by Lighthill 6) for the incompressible layer and extended to the

compressible layer by L.illeyﬁ). Both these solutions are for the impermeable
wall, Stevenson!8) has used Lighthill's approach to solve approximately the
equations of the incompressible laminar boundary layer with either suction or air
injection through a porous wall. Arbitrary distributions of main stream velocity,

A comprehensive bibliography is contained in Ref. 1.



wall temperature and normal velocity at the wall are included in the solution
which is extended in the same paper to the compressible case.

The present paper uses Lilleys simplified theory for a compressible
laminar boundary layer as the starting point to consider foreign gas injection.
Approximate solutions are obtained for the diffusion equation and the equations
of the compressible laminar boundary layer with arbitrary external pressure
gradient, wall temperature and injection velocity distributions. Expressions
for the wall shear stress and heat transfer rate to the wall are obtained in the
form of integral equations involving the concentration of the injected gas at the
wall (which is obtained from a third integral equation). These integral equations
are in a form suitable for numerical iteration.

2. The Boundary Layer Equations appropriate to Injection

It is assumed that both the injected and the mainstream gases are perfect
and that chemical reactions are absent. Consequently we may consider the
enthalpy h of the binary mixture to be related to the enthalpies of the two
constituents by the equation

h = (1L-¢c)h +ch (1)
e

i
where h.3 is the enthalpy of the mainstream gas f C!p dT
e

QO
hi is the enthalpy of the injected gas [TCp dT
i

and ¢ is the concentration of the injected gas expressed as a mass fraction

C_ and C_ are functions of T only.
e i

If suffix , denotes local conditions outside the boundary layer, the equations
governing the steady two-dimensional compressible boundary layer in the
presence of a pressure gradient are

(1) continuity

8 a a
a—;(p u) + i (pv) = 0O (2)
(1i) motion LB L Bu ii_ij ) l( 3._"‘) (3)
P oy P y Py Y dx 8y “By
ap
—— = 0
5 (4)
(ii1) energy . oh i oh F—_— d_u-‘ i (?.‘il_?_'i -
PUBx T PV By Pv%ax T H\by/ "oy
(iv) diffusion . pc , . dc _ __Q_( = _;3_—9.) _ 8 (u 8c

where the Schmidt number Sc is defined as ,u/pD”
and D,,is the binary diffusion coefficient for the mixture



q in equation (5) is the normal component of the energy flux component.
In terms of the diffusion velocities of the two species, § may be written in
the form

aT

q = pcvihi+p(1—c)vehe-k5-§ (7)

where vy and v, are the diffusion velocities of the injected and main stream
gases respectively.
In terms of the concentiration and the concentration gradient the diffusion

velocities raay be written, if pressure and thermal diffusion effects are
neglected,

_ ac
Yy = D, 8y
a
{1 - c)ve = 'Da;ﬁ(l -c) = D‘zg—;— since D, = D,,

L
Furthermore we may express L in terms of enthalpy and concentration gradients.
From (1) By

5h 8T 8T ac 8c
— = (1 - - + — - ~— +h, —
57 ( C}Cpe 3y ‘::Cpi i h, By 10y
C8—T+(h—h)-a——(-:-,c = ¢C_ +(1-¢c)C
p oy 1 e 9y P P; P
o R8T L moh o o oo Be
8y g 3y i e o dy
uC
where the Prandtl number o = P
k

Substituting these forms in (7) the normal energy flux can be written

& = 4 oh  p b = 8¢

g = == 5y * o {Le - 1) (he hi) 3y

: 4 8h dc

=T e = 8

or q G ay +uaay (8)
where A = >(Le-1)(n_-h)
vher & (Le e Tl
and Le is the Lewis number p Ep D‘z/k

The boundary conditions are

(i) atthe wally =10, u =0
v = vw(x)
(9)
c = ¢ (x)
w
T = T (%)
w

where the suffix w denotes the wall value.



(ii) at y= u = uf(x)
c =0 {10)
T = T (x)
n n n
9 u _ 8;{‘ -8 ¢c_ g, 8% 1

oy"  8y" a8y
If we define the stagnation enthalpy hs by

h = h+u?2
8

it is possible to eliminate the pressure gradient in the energy equation by

multiplying (3) by u and adding it to (5}). The resulting equation for the
stagnation enthalpy is

dh ah 2y
u ——--—S + v —-—-S — -a.._ i. (E)
PR B 7 PV By T ey My \2

or, on substituting for g from (8)
uah = V?'-]:j?— & &?ﬁlﬂ) _.......[_. 0-] ( )]- ._E_,..( BC
PY Bx 3y 8y \ o ay 5 8y 3 By

wowme  RELY

The external flow is assumed to be isentropic so that
a® u? :

1 1 °
—_— + — = =
i 4 2 hSt Y- (12)

W

where < is the constant ratio of the specific heats in the external flow.

3. TheStewartson- Illingworth transformation

In the compressible flow the equation of continuity (2) can be satisfied by a
stream function § defined by

A%
)

o [z

. &
s PV -, vw(x) = =g, 5%— {13)

(o

where the suffix o denotes some constant reference condition and pw(x) is the

density of the binary mixture at the wall.
(9) ; (10)
Following Stewartson' ' and Illingworth , the x,y co-ordinates of the
compressible flow field are transformed to X,Y co-ordinates related to x,y by

X

fx a (X) p,(x’)
_ dx’
a P
(14)

a (x)

] Lﬂ.dy



The velocity components {U, V) in the X, Y plane are now related to those in
the x, y plane. Thus

pr _ 8 _ 8y B8X 9y OY _ P By

Pe 3y 98X 8y 8Y 8y ap oY

and defining U as a4 we have

ay
aou
U = ;‘Tx—) {15)
L % _ 8y 8X 8y B
Aleg Py (pv pwvw) “8x @ x 8Y a8x
Y
atp‘ 8y a0u a (al f X, ¥') ‘
T e— o i e dy
a X a, 9x a ]
oo e] o
and therefore
ap au
8y o0 0 [:] 1
"Bk “Thp |7 & e T a“;(a-f"df’)
1p‘lp0 E o po
If we define
-
V-V = ax
it follows that
-y
ap pv au a
ve 2o [R0 .0 b | = ')
a, p, o a, 9x a, 5 Py
and X (16)
- oPoPw
w ap e, W

Writing suffix o to denote stagnation conditions in the mainstream, equation
(15) with u =u_ substituted into (12) yields

UE
a? =a;/(1+-1'2—1. ;.ét) (17)
(8]

Using the transformation equations (14 - 16) the equation of motion (3)
bec omes
U su _ " sy, Po o [ pu 8U
— — D it § porfaiy e ot
UBX + VaY hs U, - + = v, aY(pg“o 8Y> (18)

1

which can be simplified by putting

S = l_hsihSt {19)
P, PH
d CiX,Y) =
an ( ) 5 o (20)



giving e aU an 8 (C E.g) i

Usx + Vay = U -9 Uz +v, 55\ Csv

Similarly transformed the diffusion equation (6) becomes

8c dc  _
Usx * Vay Yo ¥ (Sc BY) (22}
The transformed equation for the stagnation enthalpy is {from 11)
2 2
U a
E) 88 _, 8 |C : i( * )
Usx * Vay " Yoy | by ] aY g - 22 h ]
0 81
] CaA 8c
Vo By [hs‘ 2y (a2)

In equation 20 we can, by virtue of (4), replace p, by p. For the case of
air injectlon C can be written

()

if p is taken to be proportional to ™. For foreign gas injection pand p are
conceniration dependent as well as temperature dependent, and thus no
gimplification of C is possible.

The von Mises transformation

i) a i}
(%), ~ (%), - (s
Y v X
0 = i)
(aY)X ~H By
is now applied to transform from the "pseudo-incompressible" space co-ordinates

{X,Y) to independent variables (X, ).
Putting

(24)

Z(X, 9 = UNX) - U (X,9)

the equations of motion {21), diffusion (22) and stagnation enthalpy (23) become
respectively

av’
ax * Yubp "X Y% U5 Ny (25)
o,y e, b (UC 50)
83X * Vway ~Vody \Sc 8y a8
k)
85s 8s » [uc as 9
X v Vway voa_EI: o Bw]+voﬂw = (1 o) % ( a hg, ]

Vo 8:;1 8y

2 2L 3—“‘] (27)
S|



Equation {27) can be written alternatively in the form

5
85 s 8 (uc as)_ Yo ac
53X ¥ Vwap Yoy \ o 83/" i aqb(UC“
ag(l+l£—.ea—')
a
] Uz o (28)
o [231

1

2 ucC
3| oy [ (B0 -2%)
3

In these equations the Prandtl number o, the Schmidt number Sc, the Lewis
number Le (in A) and the parameter C are concentration dependent. v is the
ratio of the specific heats of the mainstream gas and is a constant.

4. An approximate solution of the transformed equation of motion

The first term on the right hand side of the transformed equation of
motion (25) can be written

X
d U (x) 9 ] .
S(X, ) _’T"’ # o2 ) S(z,¥) d U,(z).
and thus (25) becomes
B, X 2 B BZ 9Z
X Z - f S(Z,g{i)dUl‘(Z))'—'uoUﬁ(Lﬁ)—vw% (29)
o
Let us now consider the equation
9S (X,9) =v_ U (ca—(—} o (30)
o o 8y Y w 8y

where

b4
G(X,p) = Z —f S{z,p) d Uf(z}
o

If we replace S(z,3) by some suitably chosen average value $*(z) for small values
of y and by zero for large values of i then equation (30) reduces approximately
to (29) with

X
G4, = Z f 5%(z) d UXz)
o]
and = 2 (31}
GUX, ), %’ gf, Ty

One further simplification can be made to equation (30). We may expand
= (C E) so that (30) becomes
a

8y \~ 8p
8C ) W
—iatx.qw + [v (X) -v U?] X.9) = v, eSS (X, ») (32)



Consider the term ¥ U Iaf . Reverting back to the original space co-
ordinates (x,y)
acC Yo %P0 8 P, PH
vV Um— = — e —
o8y agp 8y \Pp H,
.1 P 8,
pe, ap, 8y

Now p and u are functions of temperature and concentration. Thus

ay \F aT PW 5y T Bc PH by

It is shown later (equation 75) that g?- is small being directly proportional to

the injection mass flow. From tables of properties of gas mixtures (Refs. 13, 14)

it is seen that 8u is very small for small concentrations of injected gas and it can
9¢ g p 8T

be inferresd that 7 (pp) is not large. 5T {(pu) is small and iy which is

related to the heat transfer rate, is known to be reduced by air injection. It is
assumed (and proved by the later analysis) that a greater reduction is obtained
by light gas Injection. The condition under which it is possible to ignore

vo U %: can be assessed by considering the concentration profiles found by

FEckert and Schneider(4} for hydrogen injected into air at zero heat transfer in
incompressible flow. In terms of the similarity parameter 5= %y(U, Jv ox)

A%
aCc _ w 1 aC
L VOUS_E - U‘[U‘ 3 Bn]

‘Plotting C against p for different wall concentrations of injected hydrogen
(Fig. 1) it can be seen that 3C is not greater than 0.2. voU 8C can be

&n 3y
neglected in comparison with Vw when

we may write

R V

1
2
X W
»>> 0.1
U, )

We may therefore approximate to C(X,) in (32) by its value at some value
of . In other words we will assume that C 1s a function of X only, its value
having to be determined later. The equation of motion (32) becomes

3 ” 8°G ) 8G

5% G(X.9) =v U CX) aa-‘(x'm V) 5 ) (33)
with the boundary conditions s of AE
(1) at the wall, =0, G(X,$) = U (X) -[ $¥(z) d U (z)

o]



(ii) atg= = G(X,$) = 0

(iii)) as X » O G{X,p) = 0

{iv) near the wall . . [X h: (z) ,
G(X,p) = U,{0+) - U (X,p) + . W d U‘ {z)

W
where '"the intermediate enthalpy" h: is given by S* = 1 - h_B-
51

Provided complete velocity profiles are not required we may use the
approximation to the velocitysglistribution near the wall used by Fage and

Falkner{l1) and by Lighthill'\"/ namely
r (X)Y 2 7 (X) 5
U =" =] = $? (34)
Ho “0

With this substitution the equation of motion (33) becomes

2p 1 2
8G _ (o] 2 7 8G _ 8G

with the boundary conditions
(1) asp »w , G = 0

(ii) asX »* , G =~ 0

i = 6
) s we x 1*(2) TH R g O
G=U‘{O)+j o aui(z) - —=——yp +0@")
h 1 7]
S1 o
o
For small values of injection velocity, g_zpq can be approximated by its value at

the wall and we may regard it as a function of X only. Thus the second term on
the right hand side of equation 35 is taken as a function of X only.

it

Putting VW(X) 0 in (35) gives the equation for the impermeable wall

2u 1 B
aG o 2 s 8G
8% ?— TW(X) C (X) ¢ B—q'.vz

o
. 2“0 2
or, if t = — 7 _(X) C (X) dX,
p w
0 o
1 dc

] | .
Evt—-G(t.:;b) = 3 -;-t—-;{t.i') i7)

with the boundary conditions at the wall



- 10 =

X %
2 hs (z) a
G = F(X) = U, (0) +f h d U,(z)
o S1
2r_(X)
8G _ e W
o BT

(38)

Following Lighthill and using the Laplace transform method, in which

L]
F(p,y) [ e_pt F(t,p)dt, the solution of this equation is

o
12 1
2)3 2

($p%)°

-2
3

G

o 1 1 -
r(3) 1z F +GpH) %y r(%) Iy(@) F,

where I, and I are modified Bessel Functions

d
£
3

win

-2
3

P™ ¥

o

and q =

(39)

The solution of the complete equation of motion (35) for injected flow can be

obtained from (39) by the method of variation of parameters.

Let the solution of (35) be

ol
"

B @G, +B @G,

1
2

where p° I ,{(q)
-3

ol
1

= 1
G, = P2 Ig_(q)

The equations for E, and F, are then
e ek
dP -G F_yp?
1 2 3
y—— i = il
dy G1 GE* G1 G:
and 1
=
_(fi B 1 3 w
&) == 2= =
G, G, -G, G

where, from (35) and (34)

F, (X) =

.....

and the prime ’ denotes partial differentiation with respect to @.

It can readily be shown that

& G, G = - sin-z-:;—r

p 3
V (X)(g_g) ( 9 % ) = -
w 8 /50 \2uy T (X) C*(X)

(40)

povw(X)

Ho C(X)

(41)

27 (X)
' W
Mo



= o

and thus "
e j -
P1 = T Sinz—ﬂ. 5 I%(q) . i
3 o
B =+ —nziz-m [ F I ,(qdy
w 3 -3
3sin 'T o]

giving the operational form of the solution of the equation of motion in the
form

Y
‘ .
G(p.,yp) = - 21; aﬁflj(q) j Fy, Ip(q)dyp
3sin—§r- & o 3
1 ¥
# 2-; ¥? I(q) ] E, 1,(q) dy (41)
3 3
35111—3“ (e}

(=

1 X
+ Ay’ 1;5_~(qJ + Byp?® I_g_(q)

where A and B must be determined from the boundary conditions.
In the limit as 3§ =< 0, and comparing with (38), equation (41) gives

- 1 .8
E = A(3p®) 3/ r{3)

1

Differentiating (41) and taking the limit as 3 = 0

1z
E = BG 92)3/ (3

Hence {41) becomes

_ % 'f,; N b i
G(pl <B) il Pl !I'z [ I_g'(Q) [ IZ(Q) d'f’ - 1;((1) [ I_g(q) d¢’]
3 sinZl 8 3 » o
3 o o (42)
12 _. 2 . I |
+( p®)°r(d) 2 $% 1 5(q) + (3p%) ° r(3) o p? I%(q)
-3

Since G - 0 as p =, the coefficients of I,{q) &I ,(q) must be equal in
3 3
magnitude and opposite in sign yielding

2w F o B ) )
-3sin;_'-‘f j (I%‘q) 'I-giq’) gﬁ‘dq +GP T E + (3 oty 3 TAF - o0
3 s}

..... (43)
Now [* dy _ _2 . 2w _3_%‘ = U R ;
f[1§(q! 1| §haa = -ZemF P [T ot Kyl aq
) z 5 O
- (P sin 2T p7E Tl (44)

K,(q) is a modified Bessel function of the third kind.
3



|

Using (44), (43) becomes
- F‘B 2 _4/3 _g I‘(i_] =
F‘ + "5* = ~-{%) p P(ﬁt) Fz (45)

Taking the inverse transforms of (45) we have

2 h’*(z] 2 2
O+) + £ d Uatz) - — / V (z) r_(z)dz
U‘( h R ,uo W w

o 51 o
3 X 3 X 3 -3
- 22, j C{X,)rw,"(x,)[[ r2 (2) c(z)dz] ax
r(d)op ) .
1 CECE ] (46)

Equation (46) is an integral equation for the wall shear stress in terms of the
external flow conditions, and the intermediate enthalpy distribution.

5. An alternative solution for the equation of motion
X G
If we put H(X,p) = G(X,) +f V_ (X} = dx

8y
o

in equation {35), the equation of mction becomes

2,(.1 1 2
oH _ o] 2, s 0 H
5% E-i— T W(X) C(X)y qua (47)
with boundary conditions
(i) as P - @ H-0
(ii) as X+ 0 H=-0
(iii) asyp ~ 0
3 - h: (z) 4 A v (27 (2) 27, 3
H=U1(0+}+f h d Ulz) - 2 dz-# p + 0"
(o] S ] 'uO ]

= H,(X) + Hy(X)p .

In defining H(X, ) it is assumed that g—;} is given its wall value and is thus a

function of X only.
Using the operational techniques of the previous section, (47) becomes

3,
- ?°H
pH = p?

which has the solution
1

— i 2 i == e
g- @by Ig() H, + (3 p")7° ;b%r(’;) Is(a) H,



-13 -

and since H=» 0 as p» = the coefficients of the Bessel functions must be
equal in magnitude and opposite in sign.
Thus

_ Lo -
B o= -Gpn P T g (48)
r@

Taking the inverse transforms we obtain

% n? () XV (@ (2)
Sions] oo adie 8] EoVlim
1 h u
o 51 (o] (o]
i
3 X 3 X 3 -3
wrautl C(XJrW!‘(X')[f r;(z) C(z)dz] dx
1
I‘(s)(ﬂoﬂo) X‘
which is identical with equation (46).

6. The wall shear stress

We now transform equation (46) for the wall shear stress into its compressible
form by using relations stemming from the Stewartson-Illingworth transformation (14)

.3y-1
2(y-1)
dx : ye1 o
= - [m‘(xa where m (x) = 1+ 3 M1 (x)
3y -1
. PyVw 2);'-1}
U' (X) = aoMi(x) . VW(X) = g m, (49)
2y-1 2
T_(x) s, p o _p
oo W y-1 < oW W
TW(}x) T ™ where Cw(x) s peame
W P AMo
Consistent with the previous approximations we put Cw = C.
Equation {48) becomes
X% X 2y-1
; h’ (z) b w 7 {&) (s
az [1\,,1:(0) + j F; d Mf (z)] & f w 2’{‘;’ m‘Y 1 dz
o =T Ho P % 0o %
3 = 1 L 4
3 X T "(x ) EX—;E— * 72(z) C%(z) §
.28 woo o 2(y-D) f W dz| 4
(_L)( )3 '[ Cz{x ) 1 x m}'/ 2(Y‘1) x'
PlsiH, P, o 1 3 1
..... {50)
We define a wall shear stress parameter tw(x} by
. 3
tw(x) = Tw(x) (x/p : u’) (51)

aaa

and an injection parameter fw(x) by

1
f (x) = m(x e i P v (52)
W ( fpa“aua) woow



where the suffix a refers to an arbitrary reference condition in the external
stream and m(x) is the mass flow of injected gas per unit area.

Furthermore i &t u T 2y-1
Paty a a o y=1
T ” T / m (53)
oo o Hota
e s o I
p_p_a u T =
a"a a _( a o)/ms(y 1) (54)
g~ =
PoFoo ”oTa 2
Substituting in (50) we obtain 2y-1
M (o) j" hi(z) M *(2) [ £ (2) t, (2) dz
. i (2)
M2 o 51
a ;s 3y -2 ;
2.3% j‘x o <X,> (m Ph) [[ chlanits) , m Y121 3
+ e g -l —“—“fr——-( -——) dz dx
r) o x*C*x) “Ma * z4 ™ ’
] a 1
..... (55)
P, o u 3
where o T M S 1+}-’-—-1- M" (x)
a P, p_H a 2 a
1 g
M, T

If we put Ca equal to its wall value for air injection, i.e. , equation (55)
a w
is identical .with Stevenson's equation B.6 (Ref. 8). For the impermeable wall

fw = 0 in which case (55) becomes the same as Lilley's eguation 30 (Ref. 7).

Equation (55) can be simplified by approximating to the value of the inner
integral in the second term on the right hand side by writing

X

f F(z)dz = (x - x) F(x)
x'I

The equation for tw{z} becomes

Sy
M, (o) f‘ h;{z) M‘(z} f £ (z)t (z) m(z} dz
M * o h ) zC‘ {z} (
a S5y
+ 2-3% : !B(X / ‘(m jeiim )3
r(s) o x:‘(x - :»1:‘)i C (z)
..... {(56)

An alternative form of the wall shear stress equation can be obtained by
writing (45) as



& 5

1 1‘ﬁ j 1
f‘z=—w(§p71 E —1(}{) p® E
r(3) r®
or equation (48) as
- 1Y 1y _
H = -(%p? ) g
I

Taking the inverse transforms of either equation, we obtain

(x) - (D “ ) 5 1 "'% X‘ h* (Z’
Tw N [ f ( Clz) 73(2) dz) d [U‘(X ) + j - d U‘(z)]
W ek & h 1

3 r( ) S1
X X z
1 i |
. [ T (X)V{X}(f C(z) r ° (z) dz dXJ
Mo W W 4 w 1
o] X

 mERa {(57)
Reverting to the compreésible flow co-ordinates (x, y) using the relations (49)

and introducing the shear stress and injection parameters defined in (51) and
(62), equation 57 becomes

t (x) = x? C o) ( ) [ %j (j C (z)tz(z) ( j’lz(y-”dz )_3

3? I‘( ) St 2y-1
z X =8 X y 1
M1{x‘) +f 1 h:(z) ) Mi(z,) -f t (x) ( ) fw(x‘)
1 o Pa (Ma) xC(x)
a &

2(z)t o HEFH
a
( f (——) dz) dx

m 1
1

..... (58)

or, again approximating to the inner integrals, we have an expression for
the wall shear stress which 1encls itself to an lterative evdluation.

xfca(xl [m (x)] x'f‘ m (x )W'S(y 1)
t ‘X) = =7 { j 3{x )t S(X ) ( )
= 3 ppy Lm0 x-x i\

7y3
Ma(x ) _X' h#(z) M?(Z) i(x ) f (x‘) 3{ y-—l)
TEERRLNCC e O S NES
M o 4 M Prx) " xkxx )t
a a “
..... {59)

If conditions in the free stream are known together with the knowledge of the
injection mass flow and intermediate enthalpy, equation (59) can be solved only
when Ca. is known. This requires a solution to the diffusion equation, for with
the concentration of foreign gas determined, it is then possible to calculate the
values of density and viscosity at the wall and from these to obtain Ca'
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T. An approximate solution of the diffusion equation

Again taking a value of C and Schmidt number independent of
diffusion equation {(26) becomes

dc _ C{X) ( )
ax‘LV(X) ;;. Yo Bc 8y

The velocity near the wall has previously (eqn. 34) been taken as

27 _(X)
o W e
U ‘ = "

(o)

e

leading to the diffusion equation in the form

dc _ C(X)

P Bc pe o 'B_E-
55 pos 27 (X},uo 8 (xp ) = VW(X) T (60)
for which the boundary conditions are
(i) asyp =, c- 0
(ii) as X - 0, c-+ 0
1
(iii) asp -0, c=c (X)+c(X}( (X) v+ ..
; 8c
where ¢(X) = — i.e. at the wall.
Y
¥=0
X
_ C(z) ’
If t = f e 2rw{z) Mo dz, (60) becomes
o o
2 oty - 23—5 - IR (61)
Bt v B;b ¥ A
VW(X) c'(X) P Sc
where F4(X) = - 5 TW{X) ) (62)

In the notation of the Laplace transform

C 2 (pE). 4 g
Y ("b ap/" ¥ Flp)

{(63)
The solution of

-~ _ 8 ( % 8C
P 'aab(‘f’ BT)

is given by Lighthill as

E"=a1;:-k

S

3
4 L
where a and b are constants to be found from the boundary conditions. Using
Lighthill's solution for the homogeneous equation we can solve (63) by the method

i
I ,(q + byp* L@ ; q =
3

of variation of parameters.



Let the solution of {(63) be

P, and P4 are

Now

c = Py{y) T

R flmt

I,(q)

where 51 = 3

(A1

1
—62 s E'f)‘1 I_.l-_(q)
3

= 8

+ P4 (z‘[r} Ez

derived from the equations

S
aB, Ty Fw)
Y E;Ea - El ‘Ezf

-1 =
d I: 5 t‘,1 /] Fa(p)
W §IT, - T, T
2 1

Thus, from (65),

and the

c(p,y)

i i
+ A 91 4(q) + B ¢*1.(q)
1 =3 E 3

1
] w‘ I—

C1C3~CtC2-_¢
v 2
_ 2 s
PJ__,%‘, ‘?Tf 4
& .smB 5
Be
P‘ - 381113.[ ¥
3" o

solution of (63) is

af=

¥ 24 F (p) .
%(Cl)f e P

o 3sink

V]

1.
E.'T; E:-lﬂ’!rj3

F(p) 13(q) dy
3

-

F(p) I_,(q) dy
3

1
Li(g) dyp - ¢* I,(q)
3 3

(64)
(65)
(66)
¥ 24F (p) i
2 p *1_i(q) dy
o Ssin% 3
(67)

where A and B, have to be deiermined from boundary conditions.

The boundary condition as # . 0 can be written in the transform notation as

clp,p) =
where F, (X) =

F (X) =
6

i
f‘ﬁ(p) + 2p°

CW(X)

. 'uO
C'(X’JW
w

E (p)

(68)
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From (67) and (68) in the limit as 3 - 0

A
~——p—x = Tlp.0} =} (p)
r(%) p® (2)° '
2 (69)
Bpl @, , _
T =y T c(p, p) = F‘(p)
3

Furthermore as 3 «», ¢ =0 and hence the coefficients of I ,(q) and Ik(q}
-3

must be equal in magnitude and opposite in sign, i.e.

2arF (p)
A‘-I"B‘ + jc(l (q) - I 1(q)) = 0
3 sin-—
Now fu(ll(q) = ¥ l(q))dq B ¢ VB ) RN
3 =5 L
o

and therefore
— -1
A+ B,=§ F(p *r@ ri

or using (69)

2 T T 25 '3 -3 =
F,(P) = ($rE)p F, (p) - (3) ) P F‘(P) (70)

Taking the inverse transforms of (70) gives an equation for the wall concentration
of foreign gas

X

% 0 5
(o )® j V(X)C(X) i
_ P pd f e, 3
CW(X) = —'—':3—%—'— I‘_(;i_) o (X } ( w(z) dz) dX’
*3 X "(X,) C(X,) -5 .
) '(3% 0 Sc =, Pe Tl#)dz ) dX,
maE
7 dc 8c d p o3 2(y-1)
Now (X)) = 2= == SL - of(x) =%
8Y ,_,  dy dY o b M

and, using the transformations (49) from (X, Y) to (x,y) co-ordinates, equation
(71) becomes

1 X
c (x) = R 90)3. r(3) [ melx) Pfy/aty-1) C¥(x,)
3° r{s) o P Pybls, r:(x‘)
([ C%(z)r%(z) dz)_% 3 f‘ sy B
W dx ( ) a1 C'(x)
y aty-l) . (] 3" o SC PoPo !
A %(Zirz(z) ~§
(.[ lz(y ) &< (72)

xScm
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It is now necessary to determine another equation for the concentration
gradient ¢’(x). The diffusion equation (6) can be written

2 B opoa o BF R BC
Bx(‘mm) N ay(mc) - ay(Sc ay)

which at the wall becomes

U ac) :
p VvV c ‘-(—,—-u- =p, v (73)
W W W Sc 3y =0 il
for the injected species, and
u B8 = ’
LI {1 cw} (Sc 5 (1 C))y-[] = 0 (74)

for the stream gas.
Adding (73) and (74) shows that

m = V. = p.V,
ﬂww pil

i.e. the mass flow normal to the wall at ithe wall in the boundary layer is
equal to the mass flow through the wall.

Subtracting gives

ac Scw
e'(x) =(._._. = — 1 (c_(x) - 1) (75)
By. y=0 Mo w

Eliminating c(x) in {(72) and introducing the wall shear stress and injection
parameters tw and fw defined by (51) and (52) the equation for the wall

concentration is . . v/ 2(y-1)
S 5 oL n(3) f £yi% ) [1 i cw{"’] Se (“ﬂ)
xX) = % Z E: : % gy
S g7 W& I, e t7 (x) Ccix,) \Ma
W a’t
1 1 2y
Yawm Uk opm AU 4 * 1 )
([ B g (—-3- dz) B & e [ et
x, Sc ZI I']!'l1 1 33‘1‘(;;_) o x%——
X 1 L .
_ Cz(z) i Z(Z) m Y/z()’ 1) "%
[1 Cw(x1)] = . -‘i;— : (--—E-l) dz i R (76)
Xy Be 78 m, 1
and, approximating to the interior integrals, 2y
B 3y-1)
1oy | fw‘:x1) L= cw(x‘)] sob m,(x}
Cw{X) =TT M) z Tz * 2 “Nm dx
3 3 0 xi(x = x‘)sts(x ) ¢l &) a
woi a

v e o

) _Y
. £ )[1 - cw(x‘i] s (m1{x)) 3(y-1)
390(3) Yo xI(x-x)%t3x) Clx) et (77)
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which with equation {5Y) makes possible the iterative process to determine
the wall shear stress.

8. An approximate solution of the stagnation enthalpy equation

Considering the function C, the Lewis number and Prandtl number to be
dependent on X only, being obtained from the intermediate enthalpy, the
equation for the stagnation enthalpy (28) is

v C v {y-1)C

8S o” @ (Uas)+v 8s o

on oL N =it 2 — = ....a...(Uaa_‘.:_
3
8x 89 ) w 99 a? 1*3::2.1 yz‘-) ) 3y
2o
e (78)
© gu® u? 9y a9y
1 y-1 1
1+ 4= &
2 a2
with the boundary conditions
(i) atp = o, S(X,=) =0
(il) as X ~0, S « 0 .
h’(X) M
i - = - H i L . —EL
(iii) as g =0, S 1 o + = = QW(X) T + ..
81 51 W o W
..... (79)

where the rate of heat transfer from the wall to the boundary layer is, in the
X,Y co-ordinates,

: o 2 87T
Qw‘X) - (kw 8Y)Y=0

The right hand side of equation 78 can be written

BT (oele) - 2 (29 & (v2)] oo
hs1 2y 3 2 o 2y oy
o]

2a

&
@ & 2
since hs =—:-‘—-1 (1+y IU‘)
k L4 232

Consider UA§~§~ near the wall. U has been assumed (eqn. 34) to be

1
2 rW(X) ®
( " gb) and A has been defined in equation (8) as
o
Le -1

o

(b, -b)

which can be rewritten in the form



w8 =

} a¥x)
s =1~(L" 1)(}1_5— L z)
= a By o a,
where, near the wall, the concentration of injected gas is given by equation (60)
2 % 3
- ' i /2
g = CW(X) + c'(X) ( TW(X) !‘b) + 0(yp™)

and 8 is given in equation (79)

. "
a (X) . O'QW{X)IJO 3 1

8c Lie -1 s 1
Ua — = 1B, sh e e P+
% e b o 2a ’ M “orw a
o o
WX :
---(log c)

Expanding log c as a power series,

vags = L2 (27)[;_‘-'_ _...)( -h -%——-U)
[;-(‘“‘) e [T (__‘f.‘; 51-h-_’.u)]+m{|
and thus i

g 2
- M coQ RN a _
%(va%) s Led l (2:’) [C u LS 2(95-)(%'- n -4 U:)]:p LN
W W w 2a0

Al B Z, 2¥ (7 ¢
80 ) = ol w
wlen) =0 )

Substituting from (81) and (82) into (80), the right hand side of (78) becomes, .
near the wall,

vC

hB [e-l(zr ){ " 2(~>(h “h -—EU)J
\ (1 -o’)( )J A (83)

and the stagnation enthalpy equation can be written, using (79)
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1
r C Q (X))o H = ] 1
as "o i} ( ) ) c'(X) (Le-l) -3
% o 55' ( 27 (X)) !:UOC(X) cw(X) o - VW{X) b °

v C(X) ) 2 1
Le - c(X) % 2\ -3
+ ( )(21‘) (c (X))<91 s'__; U’)'p ’

S ao
2
N VOC{X} ?—-1- 1 - T——W la _%
2% h ’ a2 ’ o o R (84)
s1 o

The last term in (84) is put zero by Lilley for the impermeable wall on the
assumption that the recovery enthalpy is independent of the wall temperature
distribution.
Taking the approximate form for U given by equation (34) and putting
X
1
£ = f pC(Z) (2;.: Ty (z))® dz

and . ‘
L A{ v, X (Le N 1) ¢ (X) ]o"'i-!o Q,(X)
= 1 I
Wi v OC(X) cw(X} TW(X)
u B at(X}

) (85)

o (Le -1 o (c(X) *
"h ( o ) T (c (X) (h51 millg -
S W W

2,
1 - 3 T X)

. 5 .
2h81 a I“Cl

the approximate stagnation enthalpy equation (84) is

88 38 ) _ -3
st (o) - ("’za;b) N g (86)

which, in the notation of the Laplace transform, becomes

= 8 ( % a§) TR
pS 55(&’2 o/ = Elp)y (87)
where F_f(t) = -VW'(t)

This equation is similar to the transformed diffusion equation (63) and its solution
is, similarly,

P
Y i 27 En -t 3
Slp,9) = 951 4 7] EW® T 1 (q) E(p)w I_gla)dq
Z 351110 o 351n§ o

1 1
+ A, 9" I 4(q) + By* I,(q) wa i & (88)
~3 3
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where Ag and B‘z have to be determined from the boundary conditions.

Now, asy = 0,

h_(X)
S*1 - —= F (X)
h.‘.H(X} 8
and thus, from (88)
A
-———'—,. . = S(p, 0) = E(p) (89)
r(¥) p" (%)®
Also, as p = 0,
3
Q (%) 1
BS o 7 . "%
W*H;<2r (X)) i ) -F‘(x);,b
and thus, from (88)
]ES‘!I-;/6 (':—); 1 -
L N A (}ﬁ 5= Slp, -J = F(p) (90)
r{3) v ¥=0

Furthermore as § = ®, S » 0 and hence S(p, ») » 0. This implies that the
coefficients of I 1}(q) and I;{q) in {88) must be equal in magnitude but opposite
= 3

in sign.

-3 . i
i.e. A, + B, = §p " T(NT(F) Flp)

or using (82) and (90)

1 A, Y
F,(p) = (3)° r(3)p"° F{p) -3 p§‘L “ﬂ F (p) (91)

Taking the inverse transforms of {31) we obtain an integral equation for the
rate of heat transfer in the X,V co-ordinates

(3up> h(X’
=2 g o0 = T wmumf(f cle) é’(mdz) [h(X)]

”w
: % ; X
o\ Be®) pyy 3 C(X’ 3
A5 ) —o B | L)
X ctz) 4 -4
U _;.ri(z)dz) ... (92)

X
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: aT
Now Q {X) = (—k —
W wayY v=0
- (ni), 69
w8y i) 8Y 0
p_P ap
- (I o o
= Q“Sx} T a,p,
i 3}:— 1
;UO i QW(X) 2(},_1)
and hence ;1; QW(X) T m, (93)

Therefore, substituting for V\m (X) in (92) from (85) and reverting to the

compressible flow co-ordinates (x,y) using equations {49) and (93), the equation
for the heat transfer rate from the wall to the flow is

; 11 s
Qw(x) (3# oy )3 i (x)h f f( Cé(z) rafz) dz ) g h {x )
I letv-l) ( y?zty 1) d hsu “%

T *(x) O‘I‘()

"

W
3
e (3;.:0 )§o-m”2(y -1) mj.j Yfz(}"'l} ) _E- )h
P
1-¢ > ) 'uc(X) (Le— > S-hs—u1l2
- -EF'TW{X‘-F c(x} ' T
o (x)
W
27 Hx) o cw(x‘) wow
e 5 e (94)
It has been shown in equation (75) that
c' (x) e ol 1
B ¢ (®) ik Sc[l ) ﬁ;)]
w w
Hence i
2 = o
( '(x))(Le—l) 151-h8—utl2+c'Qw(x1)[Le_l ”w‘"(xt) . ]
T T
w c (x) ‘;(x1) 27\:(}:') o cw(xi) Wow
’ Q (x) -
-3 {(mSc)a le -1 2 %, mSc ~ . W J
-Tw( ) c, p S (l-cw) (h|_hs)+ w(l Le c) 5

and equation (94) becomes
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E x x i 1 -1
Q. _(x) (3u R »? C3*(x) ' e e) rols) dey ?
‘f S e j (j e ) d [h*(x ) -h ]
r‘f;(x) o_r(;)mrm(y -1) 1 G_mzq‘z(y—l) 5 1 S1
1 X X 1 1 z 2
. 2C%0) r(%) U C*(z)7 () dz>3 g
yl2(y-1) r(3) T o ——
(Bu_p, )crm - ’ o_mz,/z(y 1) Fox)
mSc¥ Le -1 2 * m Se Q {X)
: ( ) .y {1 -ec )th~-h)+ (l—Le-—c)———-—r——-
& | e W e c W z
w or “(x ) W 27 =(x)
w1 w1
1 - f
"2 Tw (x,) }dx‘
..... (95)
We now put Qw(x) in a modified form s (x) defined by
g 4
sw(x) = Qv(x)[xlpapaua 2 (96)

and introduce the non-dimensional wall shear stress and injection parameters
tw anii ,"w defined in equations (51) and (52). In this manner (95) becomes,

1 y/2(y-1) y/2(y-1)

slw{x) ] 3% L1 C()(m> j U cu)tztz)( ) )%

t;(x) or(3)

1 -

. R B 5 (r-1) U CE@tim mX 2
d["‘s‘w -1, ]+ =7 B0 m, ./ (;r) az)
mle(Y“‘l) x:"& f SC Le 1 A fw Sc Sw(x )

(r_nla) : + [(c ) ; (l-cw) {lli-h:) i = (1 —Le—cw)—l—'-—
C;(X,) w crt‘;(zc‘J w 2t‘:(x1)
3
;L ey / 2 :{
RECHRRAS I 5 (97)
Approximating to the inner integrals
LT N =
\; }_(I ( )< m_(x) : 3 ‘/"’1 |‘/‘ = a4 El*‘:(x1)“h51 :l
t“ﬁ(x) () m, X o (x-x)® Cl{x)t. (x) "
ylz(y 1) 5 v ﬁ?f_rT
2% rs) [ o’C (x)t *(x) ,m
i e C ( }l— F(—_l_—} a 1 (—_1')
3o ) ©(x -x )3 l"‘ My
f Sc.z f Be s (x)
JIE VAL b Yo% B fi-1e }——1“’——‘~ "
6 2 w 4 5 c W "f
o O'tw(x1) w b (x,)

!
1 -0 F 2
+ 5o tw(x1)ua ]dx1
..... (98)
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Thus the heat transfer rate can be obtained by an iterative process from the
given external flow conditions once the wall shear stress and wall concentration
of injected gas are known.

9. Numerical solutions for the wall shear stress and heat transfer rate

The wall shear stress and the heat transfer rate must now be found from
equations (58) and (98) with (77) using an iterative process. Stevenson ) was
able to obtain, for air injection, relations between fw’ tw and Nusselt number

in precise form when it is assumed that the free stream speed, the wall shear
stress and the wall temperature vary as some power of x. This is possible
since the viscosity in the boundary layer can be related to the temperature only.
In the analysis presented in this paper such a treatment is not possible since
the density and viscosity of the boundary layer are dependent also upon the
concentration of the injected gas.

To assess the accuracy of the method the value of tw has been calculated

for hydrogen injected into an incompressible layer with zero heat transfer and
zero pressure gradient. The injection velocity is assumed to be proportional
1

to x 2 and C_‘1 is given iis value at the wall since, in the absence of complete

concentration profiles, it is not possible to obtain its value elsewhere. The
relation of t [t to fw is compared in Fig. 2 with the result due to Eckert

and Schneider(ﬂ, It is seen that the difference between these results is
approximately the same as that b(etuseen the exact results for air injection
found by Donoughe and Livingood 12) and the approximate results obtained

by Stevenson{g). The agreement between the two solutions for hydrogen
injection can be improved if the value of Ca is increased by some 40% above
its wall value. Values of tw calculated on this basis are given in curve 3

of Fig. 2. Even closer agreement would be possible if the percentage increase
of Ca was changed with increase of the injection parameter. Using the curves

puf oM, obtained from the concentration profiles of Ref. 4 it is seen that the

required 40% increase in Ca is obtained when n = 0.8 approximately.

For helium injected into the laminar boundary layer on a cooled wall at
M = 6, the results of the present paper are compared in Fig. 3 with those of

Korobkin(m) obtained by considering the variation of the molecular weight of
the mixture. Since Korobkin's results are approximate it is not possible to
assess, in this case, the error of the method at M =6 or to estimate the
alteration necessary to the value of Ca'

The process of iteration is started by substituting in the concentration
equation (77) the value of t for air injection corresponding to the chosen
value of f and the external flow conditions. Such substitution gives an
integral of'the form

[] xm-l (1 - x)n-l dx

o
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which is the Beta function, the value of which is immediately obtainable

from tables of the gamma function. The resulting value of the wall concentration
ig then used to determine the first approximation for wall values of density and
viscosity by methods given by Hirschfelder et al 13) These density and viscosity
values are substituted in equation (59) to give a second approximation to tW and

in (98) to obtain a second approximation to the heat transfer rate. The higher
order approximations are obtained similarly. It was found that five iterations
gave an accuracy of convergence of better than five per cent. In Fig. 2 the

values of tw for helium injection are also given. In this calculation the values

of viscosity, Prandtl number and thermal conductivity were obtained from tables
recently calculated by Eckert, Ibele and Irvine(14),

To illustrate the order of magnitude of the reduction in skin friction and
heat transfer rate tc be obtained at supersonic speeds with foreign gas injection,
the ratio tw“wo has been calculated for M = 4 with zero heat transfer (Fig. 4)

and for the cooled wall, Tw =T (Fig. 5). For the cooled wall the ratio of heat
iy . 1
transfer rates Qv‘leo is shown in Fig. 6. In each case the pressure gradient
is zero. The corresponding exact results for air injection due to Lew and Fanucci
and Stevenson's approximate results are shown for comparison.

10. Conclusions

The equations for foreign gas injection into a compressible steady laminar
boundary layer have been solved approximately for arbitrary pressure gradient
and arbitrary distributions of wall temperature and injection velocity.

It is shown that substantial reductions in skin friction and heat transfer rate
can be obtained by injection of a light gas instead of air.
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