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SUMMARY 

Newtonian theory, both in the form of the Modified-Newtonian and the Newton-
Busemann pressure laws, is used to find the shape, cloth area and drag of the 
axisymmetric canopy of a hypersonic parachute, whose only load-carrying fibres 
are longitudinal ones. As an example, an estimate is made of the size of canopy 
needed to give a drag of 20,000 lb. in flight at a Mach number of 10 at 100,000 feet 
altitude. 
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List of Symbols  

A 	 total area of cloth in canopy 

C
D 	

drag coefficient of canopy 

D drag of canopy 

free-stream Mach number 

p 	 pressure 

stagnation pressure behind a normal shock 
Po 

q free-stream dynamic pressure 

(r, z) 	cylindrical polar co-ordinates 

r 	 radial co-ordinate 

s 	 arc length along canopy generator, measured from the leading edge 

T 	 longitudinal tension in cloth per unit radian 

longitudinal co-ordinate 

0 	 local angle of canopy generator 

Subscripts 

L leading edge 

T 	 trailing edge 

co 	 free stream conditions 



1. Introduction  

The canopy of the parachute we consider here is a surface of revolution and 
in impermeable. Its shape, cloth area and drag are calculated using Newtonian 
theory, on the assumption that the load in the canopy is carried by longitudinal 
fibres only. Results derived from the Modified-Newtonian pressure law (the 
"uncorrected" parachute) and from the Newton-Buserriann pressure law (the 
"corrected" parachute) are compared. Two possible canopy shapes, one for a 
drogue parachute, the other for an umbrella-shaped parachute, are examined. 

One example is given. The size of the canopy, which offers 20,000 lb. drag 
in flight at 	10 at 100,000 ft. is calculated. 

2. Equilibrium of parachute element 

We assume that the parachute is a surface of revolution and examine two 
possible canopy shapes, one fay' a drogue parachute, the other for an umbrella-
shaped parachute. The drogue canopy is formed by revolving the generator shown 
in Fig. I about the z axis. The generator of the umbrella canopy is shown in 
Fig. 2. 

The hypersonic parachute is in a Newtonian flow, so that a thin shock layer 
coincides with its forward-facing surface. To allow the flow in the shock layer 
to stream away, the umbrella-shaped canopy must be vented at the crown. The vent 
area need only be infinitesimal for the shock layer approaching it is infinitesimally 
thin because of the infinitely large density ratio across the shock. The shock layer 
is free to leave the trailing edge of the drogue canopy. The leading edge may be 
considered vented or blanked off, Here, for algebraic simplicity, we take the drogue 
generator to have a zero radius at the leading edge. 

Now consider the canopy element formed by revolving an arc of length ds about 
the z axis; Flo. 1 and 2. The pressure p on this element of area 2rrds is normal 
to the forward-facing surface and depends on the local slope. For very high Mach 
numbers (M,„ y 4.) the pressure on the rearward-facing surface is zero. The load 
on the canopy is in equilibrium with the tension in the canopy cloth. Further we 
assume that the load is carried by the longitudinal fibres only. A circumferential 
fibre will, of courses not be in tension if its length equals the optimum length given 
by the radial co-ordinate we calculate below. There is no friction between the 
shock layer and the parachute so that the longitudinal tension is constant. Thus for 
equilibrium of the canopy element we require that 

2r prcosdds = d(27, T sin 0) = 2 T cos 0 dO ~ZU T E 0 

••••• 
rc`c.) 

ai LIBRARY ;: 
where 0 is the local slope, 

p the pressure difference across the element, 
and 	T the longitudinal tension in the cloth per unit radian. 

Simplifying we have 

p r ds 	T ds 	 (1) 

Substituting for p in terms of the local slope we can find from this equation 
the shape of the canopy generator. When p is given by the Modified Newtonian 
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pressure law, p = po  sine  0, the resulting shape is labelled in the following the 

"uncorrected parachute". The "corrected parachute" follows from the Newton-
Bus ernann pressure law, 

0 
n 	dO p = p

o 
(sins 
	si 0 

dr 
8 + 	 r'cos dr') 

r 
0

1, 

In this result we correct the ordinary Newtonian sine-squared law for the 
centrifugal pressure difference across the shock layer due to the curvature of 
the streamlines on the concave forward-facing surface of the canopy. 

3. 	Shape of canopy generator 

3.1. Drogue parachute  

The arc length s is measured from the leading edge. From Fig. 1. 
ds = dr/sin 0. Substituting this is equation (1) we have 

E2- dr = sin 0 dO 
	

(2) 

3. 1. 1. Uncorrected parachute  

Substituting for p in (2) from. the Modified Newtonian pressure law gives 

Po 
dr = 

from which we find 

1 	
r = 	in 	

TVVV(tan O
L  

otan 0 	
(4) 

Now 

dz = dr cot 0 
	

(5) 

so that 

de 

 

(3) sine 

using (3) and (4). 

Integrating (0) yields 

P fr  0 
z 	cot OL  er 

1 \. 
- tan 0L  erf

ro. 
r) (7) 
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where 

erf x = 	e-u du , 	 (8) 

s 
e

u 
erfi x 	 du . 	 (9) 

Equation (7) defines the shape of the generator of the uncorrected drogue 
parachute, and this is plotted in Fig. 3. 

3. 1. 2. Corrected parachute 

Putting the Newton-Busemann pressure law in equation 2, we obtain 

r t) 

p
o 
 (sins  0 

4.  sin 8 dB 
dr di 	

r' cos 0' de)r dr = T sin& dB 

or 
0 

dr 	 d 
de  
r' 

r sin 	+ 	r' cos 0' — d0' = de  
0

L 

(10) 

Differentiating (10) yields 

CI79 r 
 dr 	+2cot 6 
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Inte.4rating (11) gives 

dr 
r 	= dr) 

k 

sin 0 
, 	here k is a constant. 	 (12) 

Now from (10) we have, when 0 = 0
L • 
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Hence 

1 	7o 	 sin BL 
T  r 	cos 0_ cog 	sin  0 

Again dz = dr cot B 

T sin  9Lcot 0 d0 , using (14). 
Po 	r sin 0 

	

rf-) 	sin 0 cosec 8 cot  0  d0 
dz 

(cos 0 - sin 0  cot 0)i  

This integrates to 

ir—Po 	1 IT)  : 

	

z 	7  \ 	r (cot + 2 cot BL) 

Finally eliminating cot B from equation (17) by using (15), 

FP-0 r 	
n r2 

	

T.,-  z 	sin BL 
(3 cos B L  

The shape of the generator of the corrected drogue parachute is a cubic, and 
is shown in Fig. 3. 

3.2. Umbrella parachute 

As the arc length s is measured from the leading edge it follows from 
Fig. 2, ds = -  drb3in 0. Substituting this in equation (1) we have 

Pr dr = - sin  0 de . 	 (18) 

3.2.1. Uncorrected parachute 

Integrating (19), with the pressure given by the Modified Newtonian law, yields 

1 ji-3  o r 
T  

(tan* BT In tar75 (20)  

The z co-ordinate follows as in section 3.1 from dz = dr cot B and is given by 

11 -2  
jr3 

	

	\ 
z a cot4 BT erfi(

\  
 — ° r) -tan* 0T  erf( — = r ) viz T 

j17 

(21)  

where erf x and erfi x are defined in equations (8) and (9). 

The generator of the uncorrected umbrella parachute, described by equation 
(21), is shown in Fig. 4. 
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3.2.2. Corrected parachute 

Substituting the Newton-Busemann pressure law in (19) yields 

0 
dr 	 ,.„ dr' r sin 0 a- + 	r' cos 	CM' a, 	 (22) 

0
L 	

de" 	Po  

The method for reducing this has already been given in section 3.1.2. Thus we 
find 

dr 	T 
sin 0L  

I  de 	p
o sin' e 	 (23) 

 

so that 
1 a T 

r 	— sin 0
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(cot 0 - cot 6T) 
2 	Po  

. 170  
T  r 	(2 sin 0

L
)I  (cot 0 - cot 6

T
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Substituting from (23) for dr in dz dr cotO and using (25) gives finally for 
the z co-ordinate 

o 
T 

1 fo z 	—3  —T  r (cot 0 + 2 cot 0
T) 

using (24) allows us to eliminate cotO and find 

\p-30  
z 	

\pro 	1 Po r 2  
+3 cot 0

T i 	 sin 0
L 

The shape of the generator of the corrected urabr-Ila parachute is the cubic 
shown in Fig. 4. 

4. 	Canopy cloth area  

The cloth area A of the canopy is 
0
T 	 T 

d9 
A 	1 	

0 

2w r ds .. 2w T j 	, using equat"- - (1). (20) 
p 

°L 	 0 L 

Clearly, since pressure p depends on the local slope. the el' th area will depend 
only on the initial and final angles 9

L 
and 0

T' 
and not on whi, t,i1r °!,..a. parachute is 

drogue or umbrella-shaped. 

4.1. Uncorrected parachute 

P 	p0 '*-'1  0 

(24)  

(25)  

(26)  

(27)  
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= cot 0L  - cot BT . (29) 

4.2. Corrected parachute 

With equation (14) or (23) and the appropriate expression for ds it is easy 
to show that for both the drogue and umbrella parachutes 

T sin B
L de  

Po 	sin = B 
 

so that 
BT 

2

opo  A 

T 
sin 0

L 	
dB 

 
O 	sin

s 
0 

1 	
L 

sin 8 	 cot+ 01 

• 	2 
cot 0

L 
 - cot 9

T 	L 
+ sin 0 	 (31) 
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The non-dimensional cloth areas, p0A/T, given by (29) and (31), are 

compared in Fig. 5, for OT  =90°. 

5. 	Canopy drag 

The longitudinal tension per unit radian is constant so that the drag follows 
most easily from resolving the attaching forces. The same result can be found 
by integrating the pressures on the canopy. Thus the drag D of the canopy Is 

D = 2z T (cos BL - cos 0T) 
	

(32) 

The corresponding canopy drag coefficient, which refers only to the wave 
drag for the frictional drag is not evaluated here, is defined by 

C = 
D 	q„,, A 

p 	(cos 0L - cos 01,) = o 	
(33) q. 	(p0A /21 

The drag coefficients of the uncorrected and corrected parachutes are 
compared in Fig. 5, for OT  =90 . 

8. Results 

The calculated shape of the generator of the drogue canopy is shown in 
Fig. 3 for OL  = 10°. The drogue canopy is produced by revolving this about the 
a axis, and can be seen to be practically conical along most of its length. 
Clearly the corrected parachute requires a smaller area of cloth than the uncorrected 
one if both work at the same tension. This is confirmed in Fig. 5 which shows that 
this difference in cloth area rapidly falls as BL  becomes large. 

r ds (30) 

D 
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Fig. 4 shows the shape of the generator of the umbrella canopy, and compares 
the corrected and uncorrected parachutes for OL  40. Again the large difference 

in cloth area is clear. The effect of changing the leading edge angle from 9
L 

= 4
o 

to 0
L 

10o 
can be seen by comparing the two corrected canopies. 

Fig. 5 yields the expected result that, for a given cloth area, the drag increases 
as the surface becomes more normal and flat to the stream. However the figure also 
shows that at the same time the tension becomes very large, and, of course, in the 
limit as 0

L 	
90

o
, T • 	. The variation in T is got most simply from the 

result that, when 07, = 90°, the canopy drag equals 2v T cos OL. 

To achieve a given drag from the corrected and uncorrected canopies, working 
at the same tension, we must make OL  the same for both. In this case the cloth 
area required for the corrected canopy is much smaller than for the uncorrected 
canopy. See Fig. 5. 

For a given drag from a given area of cloth, CD  is fixed. Here the advantage 

of the corrected parachute is that the tension in the cloth is much smaller, though 
the difference is less marked when q.CD/po  is less than 0.3 or near 1.0. Again 
see Fig. 5. 

To give some estimate of the size of the quantities involved we consider a 
canopy which offers a drag of 20,000 lb. We must keep 0L  small to keep T small. 

It is convenient to choose 0
L

o 
where, see Fig. 5, q.CD/p

o 
= 0.3 and p

o
A/T = 20 

for the corrected parachute. Now for M. = w, po/q. = 1.839 and it is close to this 

limiting value for M. >4. Using these values we find that for flight at 	10 at 

100,000 ft. the cloth area required to produce a 20,000 lb. drag is approximately 
A = 20 sq. ft. Thus ,F7rf =1 and we can read the size of the canopy directly from 

Figs. 3 and 4, using the values for OL  = 10°. Both the drogue and umbrella 

parachutes have a maximum radius of 1.4 ft. The axial length of the drogue 
parachute is 5.3 ft. , and that of the umbrella parachute 2.7 ft. The tension around 
the maximum circumference would be of the order of 2,000 lb/ft. 

7. Conclusions 

We have compared the uncorrected parachute, derived from the Modified-
Newtonian pressure law, with the corrected parachute, derived from the Newton-
Busemann pressure law, which corrects for the centrifugal pressure drop across 
the shock layer. The corrected parachute offers a better performance than the 
uncorrected one. If both are working at the same tension the corrected parachute 
requires less cloth for a given drag, particularly at small leading edge angles 0L. 

L will be small so that the tension in the cloth is kept as small as possible for a 

given drag. 

Two canopy shapes, for drogue and umbrella-shaped parachutes, have been 
derived. A particular example has been included to give an estimate of the size 
of canopy required. 
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