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SUMMARY  

It is shown that shock waves whose structure is determined solely by the effects 
of chemical reactions (reaction-resisted shock fronts) are possible and completely 
analogous to relaxation - resisted waves. A single dissociation reaction is considered 
and numerical results indicate that such waves could be observed experimentally. 
Bulk viscosities equivalent to reaction effects are possibly 10 2  or more times shear 
viscosity values. (Examples are based on Li ghthill's ideal dissociating gas). 
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LIST OF SYMBOLS 

a
e
, of 	Equilibrium and irozen speeds of sound 

c 	Atom mass fraction 

c
e
(p,$) 	Equilibrium atom mass fraction evaluated at local p and a 

See equation 19 

D 	Dissociation energy per unit mass 

h 	Enthalpy per unit mass 

k
f 

k
r 	

Specific reaction rate constants 

M
e' 

M
f 

Equilibrium and frozen Mach numbers 

p 	Pressure 

R 	Universal gas constant 

a 	Entropy per unit mass 

T 	Absolute temperature 

u 	Gas velocity 

W2 	Molecular weight of molecules 

x 	Streamwise co-ordinate 

'Ye' 71 	
Equilibrium and frozen "polytropic exponents" , see equations 30, 31 

Equivalent bulk viscosity 

See equation 22 

Shear viscosity 

Chemical potentials, atoms and molecules respectively 

p 	Density 

a 	See equation 12 

7 , T
I 

, 7
N See equations 16, 18 and 28 

Suffixes , and 2  apply to far upstream and far downstream conditions, respectively. 
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1. Introduction 

Inviscid flow theory shows that a plane compression wave in a gas will always 
steepen until, finally, the physically impossible condition is reached wherein three 
different values of pressure, gas velocity, etc. are predicted to occur at one point in 
the flow field at one and the same time. Before this state is reached of course, 
inviscid flow theory begins to lose validity and it becomes necessary to include the 
effects of viscosity and heat conduction. The diffusive effects of these phenomena act 
in such a way as to halt the convective steepening of the wave and eventually a shock 
front will be formed (so-called diffusion-resisted waves). The width of such a shock 
front is measured in units of a p u (p, p , u are shear viscosity, density and velocity, 
respectively). 

At least, this is true if viscosity and heat conduction are the only dissipative effects 
present in the gas. If the gas is polyatomic, relaxation of the internal degrees of 
freedom provides a further mechanism which will exert its influence on shock structure. 
Ordinarily, this influence is confined to regions behind the thin, viscosity-resisted 
wave (the relaxation zone), except for rapidly relaxing modes like rotation. In the 
latter cases, where the relaxation time may be less than ten molecular collision time 
intervals, the effective "viscosity" of the mode remains comparable with µ , and can 
frequently be included as a bulk viscosity factor, merely serving to widen the 
diffusion-resisted wave. For the modes with much longer relaxation times (many 
hundreds or thousands of collisions), the effective viscosity is very much greater and, 
as a direct result of the dispersive character of a relaxing gas, the possibility arises 
that a compression wave can be entirely resisted by relaxation effects alone. For this 
to happen, the equilibrium Mach number of the shock front must be less than the 
appropriate frozen to equilibrium sound speeds ratio. These facts, and the analysis 
to support them, have been given by Lighthill (1956), who called the resulting waves 
"fully-dispersed" shock waves. 

In broad terms, the dispersive power of a relaxing gas is measured by the sound 
speeds ratio mentioned above, whilst its absorptive power depends both on this and on 
the relaxation time. When a gas is reacting chemically, dispersion and absorption are 
still present and behave in a very similar way to that encountered in relaxing gases. 
However, the sounds speed ratio has the possibility of being much larger in a reacting 
than in a relaxing gas and, furthermore, the appropriate "chemical times" are larger, 
or certainly no smaller, than many practically encountered vibrational relaxation 
times. For these reasons we might speculate that "reaction-resisted" shock fronts 
can occur in chemically reacting gases and it is the purpose of the present paper to 
prove that this is indeed so. It is also shown that reaction-resisted waves may be two 
or even more, orders of magnitude thicker than diffusion-resisted waves, i.e. of 
thickness 102  pip u or more. 

We consider only plane waves in one dimension and, treating the flow as steady, 
find the conditions under which a purely reaction-resisted shock is possible. In this 
we follow Lighthill, but the method used here differs slightly from his in that here we 
start from the inviscid, non-heat conducting differential equations governing the gas 
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flow, whereas Lighthill's analysis started from the integrated forms of these equations. 
Briefly, the reason is that, in the reacting case, the behaviour of the concentrations 
is a little more difficult to handle than is that of the internal mode temperature in the 
relaxation problem. 

In the analysis to follow, relaxation effects are ignored (but commented upon in 
Section 5) and the reaction is assumed to be the dissociation and recombination of a 
symmetrical diatomic molecule. That is to say, 

k
f 

(1) A
m 

 + AO 
	

2Aa + Ao . 
k
r 

A
m 

and A
a 

are chemical symbols for molecules and atoms, respectively, and (in the 
pure gas mixture) the "catalyst" in this reaction, A

o
, may be either Am  or A. 

Either is assumed to be equally effective. k
f 

and k
r are the appropriate rate constants. 

In examples below numbers are used which are appropriate to an oxygen-like ideal 
dissociating gas (Lighthill, 1957). 

2. 	The Basic Equations 

The mass conservation equation in steady one-dimensional flow is simply 

p u = Q 

where Q is a constant, or, in differential form, 

du 
dx 

u 	
dx 

p -= 0 . 

(2)  

(3)  

Since p is a function of pressure, entropy and mass fraction of atoms (p, s and c, 
respectively) we can write 

s 

 u 
u  (2L) '14a  ( 2-) — dx 	 Bc 

de 
ep 	dx 	as 	dx 	 dx s, c 	 13,c 

u 	
P,  

The energy equation is 

dh 	dp 
p U

dx r  
u

dx 	
0 , 

where h is the specific enthalpy, and the entropy equation becomes 

T u dx 	 de 
dx 	(Pa -pm). u  r 	' 

(4)  

(5)  

(6)  
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(p
a 

and ).4na  are the chemical potentials, per unit mass, for atoms and molecules, 

respectively). Making use of the results in equations 4 and 6, and manipulating some 
of the thermodynamic derivatives which appear in the course of the analysis it can be 
shown that equation 3 leads to 

dp 	2 du 	2 	dc 

	

u
dx  +p of dx 

— + paf 
	dx 
au— =u. 

(Details of the derivation of this equation can be found in Clarke, 1958). The quantity 
of

2   is identifiable with the frozen speed of sound and 

of 	aa  4, ) 
s , c 

The momentum equation in a one-dimensional steady flow is 

du 	dp 
Pu  dx 	dx 	' 

which can be integrated at once to give 

p + U.2  = F = p + Qu 	 (10) 

where F is a constant. Alternatively equation 9 can be used as it stands to eliminate 
u (dp/dx) from equation 7, resulting in 

du 	dc (a2 	u2) 	aa a u 	= 0  . 
dx 	dx 

The quantity a which appears here and in equation 7 above, is a purely thermo-
dynamic function. In general, for the dissociating diatomic gas, 

a 	
P 

 g
f 

pf \8c ) 
	

+O)p, T 	P ac p, T 
	 ( 1 2 ) 

gf 	8T = (232  ) 	Pf 1) c   
8h 

= (8.7)
p, c 

If we treat the gas as an ideal dissociating gas (Lighthill, 1957), a can be evaluated 
analytically. We find that 

a = [DW2 /11T + [4 cr 	+ cr , 	 (13) 

where D is the dissociation energy per unit mass, W is the molecular weight of the 
molecules and R is the universal gas constant. We note for future reference that the 
combination e a has the following value for an ideal dissociating gas, 

(7) 

(8)  

(9)  
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a;cr = [D(1 + c)/3] - RT/W2  , 	 (14) 

(since a = [(4 + c)/3] (pip) and p 	p(1 + c)(F I W 2 )T) 

The atom continuity equation, with atoms being produced according to the reaction 
described in the Introduction, can be written in the form 

T U 
dc 
— = K (1 - c) c 2 	 (15) 
dx 

where T is the "chemical time" 

2 
T 	= 	W 2  / 4kr  p2 (1 	c) 	 (16) 

and 
K 	(Wk

f
/4 p k

r
) . 	 (1'7) 

kf 
and k are the forward (dissociation) and reverse (recombination) specific reaction 

rate constants measured in terms of moles per unit volume (raised to appropriate 
powers) per unit time, respectively. We shall shortly demonstrate that a reaction-
resisted shock wave is necessarily a weak wave. In that event, the mass fraction c 
will not change greatly from the free stream to downstream regions, and it seems 
legitimate to linearise the reaction rate term on the right-hand side of equation 15. 
Indeed we shall go a little further and assume a constant value for the chemical time 
(and write it as T , so that equation 15 now appears in the form 

dc 
T U 	= c

e 
(p, s) - c . 

dx 

c
e 

is an arbitrarily chosen local equilibrium value and c
e
(p,$) above indicates that we 

have chosen local pressure and entropy for the evaluation of ce. We shall subsequently 

be able to evaluate both the difference c
e
(p,$) -c and c itself, so that T°  can be found 

from the mean value of Eic (1 - c) - c 21 [c
e
(p,$) -c] across the shock wave. 

It is rather more convenient to work in terms of the quantity cg , defined as 

c‘ = c - ce(p,$) • 

Then equation 18 can be written as 

dc' 	dce  
T U dx 	u—d7 	= 

Now we may write 

dce 	8c 	 Oc 	ds 
u 

dx = 	u  dxdP  +(8s 
u

e 	dx 

(18) 

(19)  

(20)  
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Audi 
   Ce e) 

- m )T -1  .  (e'/T1 ) 

p 
Bs (21)  

by using equations 6 and 18. We have written 

X =1e 1 

a)s 
-a 

for brevis 	It has been shown elsewhere (Clarke, 1958, 1960) that (ma  - In)T is of 

order (R/W2)c' and that the derivative (Bce
/Bs)

P 
is less than order (W2 /R). 

Consequently it is legitimate to use equation 21, together with these results, to write 
equation 20 in the form 

, de
.  

T U 	 71 U
dp 
	0 	 (23) 

dx 	dx 

The approximation involved in neglecting the last term in equation 21 when this result 
is used in equation 20 is no worse than that leading to the linear rate law involved in 
equation 20. 

It is important to note that in adopting equation 23 as the atom continuity equation 
we have not in any sense "linearised" the problem. We have merely made as 
convenient an approximation to the dissipation effect as possible. The convective, 
steepening effect, remains with us in the presence of the udidx operators etc. 

3. 	The Fully Dispersed, Reaction-Resisted, Wave 

The chemical reaction rate equation (equation 15 or its "linear" version 
equation 18) shows that u dcidx 	0 as equilibrium is approached. The shock 
transition takes place between two states of equilibrium and we must have du/dx 	0 
on either side of the wave. Also, u doidx must remain finite everwhere. In order 
for the solution of the equations in the preceding section to be meaningful in the present 
context, clearly duidx must remain finite during the transition from one equilibrium 
state to the other. It follows at once from equation 11 that u must be less than of  

everwhere. Since u decreases and o
f 

increases in passing, with the flow, through the 

shock front, it is sufficient to specify that ui  < af,  (suffix i signifying the "upstream" 

equilibrium state). 

Using equations 18 and 19 with equation 11 we have 

(a
;  - 0) 

d 
d

u c, 
a 

	

- a
f 

n 	-4 0 . —x   
Equations 10 and 23 show that 

dc' 	, 	du 
T U 	 T f ArtU

2 	
0. 

dx 

(22)  

(24)  

(25)  
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and elimination of c' between these two equations leads to an equation in derivatives 
of u only. 

d 	-1 	) du 
T U - (ai.o) (a 2  - u

2 
 — 

dx 	 dx 

_1 du 
+ (a z cr) 1 [ a2 

- U
2
(1 + Pa 

2 
cr X)—

x 
= 0 

Equation 26 is still somewhat awkward to handle as it stands and we intend to make 
two more approximations, which are not, however of a very drastic nature. In the 
first place we recall the result in equation 14. The dominant term there is 13/3, since 
DW2/R is c,  6 x 10 4

o 
 K for a typical gas (oxygen, for example) of the type that we 

are considering. Typically, T may be of order 4 x 103  K in the "interesting" 
dissociation range and we are concerned with relatively small variations of T about 
the mean value through the wave (of order 10 2  K say, but see the example below). 
Variations of c will also be small and we may fairly take the term (Ou)- ' as constant 

in equation 26. 

It has been shown (Clarke, 1958) that, if all of p, a
f' 

a and A are evaluated in an 

equilibrium state, then 1+ peaA. is equal to the square of the ratio of frozen to 

equilibrium sound speeds in that state. In equation 26, P , of  and a are evaluated at 

actual values of the thermodynamic variables, which are not equilibrium values in 
general. A is evaluated in terms of ce(p,$). We remark that the maximum value 
of the sound speeds ratio squared seems to be about 1.4, roughly speaking, whence it 

	

follows that any variations in the product p of 	are relatively (about 0.4 : 1) less 

important here. In fact it seems reasonable, firstly to treat 1 + p 4 o. A. as constant 

everywhere and secondly, to write it as (a
f
/a

e
)2, where ae  is the equilibrium sound 

speed. This latter approximation becomes exact far in front of and far behind the wave. 

Accepting these approximations, the gas velocity u satisfies the differential 
equation 

( T, 	
e`2 

u 	(a2 u)  du 

3 

+ (a2 - el  du . 0  . 
a

f 	
dx 	

f ... 	
dx 	e 	' dx 	

(27) 

We note that although (a
f
Ja.

e
)2  is treated as a constant here, so that we shall write 

a 
T  
, ( ae 

)2 

	

= TH  = constant 	 (28) 

in what follows, a and a
e 

separately will vary from one side of the wave to the other. 

(26) 
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It can be shown that 

	

of 	3  

	

2 	4 +  c (29)  . 

for the ideal dissociating gas, but it is quite consistent with the previous approximations 
to write 

2 

	

of 	if  p 

and also 
az 

 = ye .  	, 	 (31) 
p 

and to treat 7f  and 7e  hereafter as constants, (or better still, as constant suitable 

mean values). 

Proceeding on this basis we find from equation 10 that 

a 
o f  = 7f 	- u)u , 	 (32) 

	

with a similar result for a2 	Then equation 27 can be integrated once to give 

du 
7.(a2  - u2)+ 

-Ye 	u 	
( ye  + 1) y =  Constant 	(33) 

ciTc.   

Since o
f 

u2 # 0 and we expect to find du/dx 0 upstream and downstream of the 

wave, the integration constant can be found when u = u1, the upstream value (which 
we can take as given at x - co ). Then clearly the term 

u2 	 u2 
-  

	

(  -Ye +  1) 	+ -Ye 	u  "e 	(  -Ye + 1) 	
(34) 

must be zero again (at x = + Q0), where u = u2  say. It follows that we can now write 
equation 33 as 

IF 	 (  -Y I- 1)  L 
Q 

T 	7 	U ( 7 f  + nua ] 
f 	 dx 	

e 
2 

Making use of the fact that 

(u 	u,)(u - u2).  (35) 

2 	2 a
fn 

 - u
n 

% [

7f 

.yf + 1 	un 	
=  	:  n= 1 or 2 

' Q 	7f  + 1 

equation 35 can be integrated to give the result 
2 	2 	 2 	2 

- U 

u

) 
( afi 

- u  1 
 log  (u 4  u) 	

f2  U2 
log(u - u 2  ) = (7

e 
 + 1) --,.. 	

i 
3,% + (7, + 1)u + Const. 	(36) 

z•r 1 	2 	 us  

(30)  



- 8 - 

The constant here is arbitrary and merely serves to locate the origin of x. This 
result may be compared with Lighthill's (1956) result for the relaxation resisted 
shock. Not unnaturally, in view of the constant 7 and -y

e 
assumptions implied in 

equations 30 and 31, the results are similar: in fact the term (7f  + 1)u does not appear 

in Lighthill's equation, but since u is restricted to an even smaller range of variation, 
in his case no serious error would be incurred by writing u a ut  there and absorbing 
(7f  + 1)u, in the arbitrary constant. 

We reiterate Lighthill's remarks here, that the coefficients (a2 	)(u 	U
2
) 

_1 

fn 	I 
(where n = 1 or 2) are the scale factors for the rate of change of u near the head and 
tail of the shock front. In particular we see that if u 

aft, 
 the changes in u with x 

in the head of the wave become extremely rapid. Since u„ will approach aft before 

u
2 

'a aft, it follows that the fully-dispersed wave begins to break down near the head 

first, this part of the wave being governed by relaxation*  or viscous effects. Some 
examples of the velocity profile through a fully dispersed wave are given below (see 
also Griffith and Kenny, 1957). Once the velocity profile has been found, the density 
profile follows at once from equation 2. 

The variation of the concentration difference c' follows from equations 24, 28 
and 33, which give 

( .y e 
+ 1) 

c' 	 (u, 	u) (u - 	. 	 (37) 
2 a2  cr 

e 

With the assumptions of constant -y
e 

and 7
f 

it follows that we may, as with a2
f  a, treat aaa 

as constant Whence the maximum value of csoccurs when 2u = u + u and has the value 
(-y

e 
+ 1) 

c' 
max 	

- u2
)2 

8 a2 a 
el I 

We can find the velocity increment u, - u2  by solving the quadratic equation obtained 
on setting expression 34 equal to zero. Thus 

2(u2 - a 2 ) 	2(a2  - u2) i 	e 	e 	2 	 1%39) U i  - U2  = 

See below 

1 	2 

(38) 

(7e + 1 )u 	(7e  + 1 )u 2  
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and it follows from equations 38 and 39 that 
_ 	\ 2 

c - (Mel - Me, ) 
max 

2a,(ye  + 1) 

If we take Me i= 1.2 (about the maximum possible) and  a, a 1 (which is conservatively 

small for a large part of the dissociation range), then c' lax  . 0.04, which is small 

enough for a linear rate law approximation to appear reasonable. 

It is interesting to observe that c' (at a given u) is independent of the reaction 
rate (as summarised in the chemical time 	). Since the significant thickness of the 
shock is clearly measured in some multiple of T u, (see equation 36), the entropy and 
reaction equations show that the entropy rise is independent of Ts . In other words, the 
connection between initial and final equilibrium states is independent of the shock 
structure and merely requires that some dissipative mechanism shall be present to 
resist the convective steepening effects. That mechanism is provided by the chemical 
reactions in this case. 

We may use the result in equation 21 (neglecting the last term there) in order to 
estimate the changes in ce(p,$). Assuming a suitable mean value for A (A,  will do as 

a first approximation) we can readily show that 

ce(p,$) 	1 X i(p - p,) = A,Q (u, u), 	 (42) 

using the momentum equation (equation 10). The maximum value of ce  - ci  occurs 

when u = u2  (since u decreases monotonically). Whence equations 39 and 42 show that 
T 	P 	,„„ 2 (c

e
(p, s) - c )m 	

c2 - C1 cu 2A1 . — uvi
el 

- 1) . 	 (43) 
ax 	 y

e 
+ 1 

e 
 

The value of p,A, can be found in Clarke (1960) and is very roughly of order (RT1 /W2 D). 
-1 

or about 10 , to give it some numerical magnitude. Thus with M
el 

 = 1.2 it follows 

that c2  - c, —0.04.*  Changes in atom mass fraction are therefore extremely small 
throughout the wave and the assumptions involving constant yf , -ye , a2fa etc. are 

apparently quite justifiable. (Note that p2p1  /p,p2  = 1 i-(2/7e  1)(Mei  - M;:)(-ye Me;M:,) 
T 2  /T 1(1 + c2 /1 + c ) so that T varies only a little across the wave  too). 

It should be emphasised that these estimates are quite crude, so that not too much 
significance should be attached to the similarity between c2  - ci  and cm ax. 

(40) 
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4. Numerical Example 

To illustrate the results just obtained we consider the following situation. The 
upstream (suffixi) flow is assumed to be at a pressure of one atmosphere and a 
temperature of 4,250°K. With an oxygen-like Lighthill gas, it follows that c l  = 0.78. 

Also (a
fi 

 /a 
e

) = 1.35. We may therefore take Y
f 

= 1.59 and 'y
e 

= 1.18. The value of 

p Al  for these conditions is 0.086. 

By a suitable choice of the constant in equation 36 the velocity profile equation 
can be written in non-dimensional form as 

- 1)log(1 - qu i) - 	- 1)log(u/u1  - u2/u i  ) - (-yf. + 1)(u/u) 

= (-ye  + 1)(1 - u2/11,)(7f/7e)(x/2-r i tid • 

The ratio (u/us) calculated from this expression is plotted against (x/T' u1) in Fig. 1, 

for two values of M
2 

, namely 1.1 and 1.2. The sharpening up of velocity variations 
ei 

in the head of the wave as M2
ei 

 .• (a
f,

/a
ei

)2  is apparent, as is the decrease in wave 

width in terms of (x/T' ) units under the same conditions. Under the chosen 

conditions u = 1.6 x 105 cm/sec when M2  = 1.1 and 1.67 x 105  cm/sec. when Ma  = 1.2. 
ei 	 el 

The wave thickness is roughly given by (x/T' u1) —10, so that practical wave thickness 

will be — 1.6 Ti  cm. if T i  is measured in microseconds. In fact it would seem that r'  
is in the region of 1µ sec for oxygen dissociation in the range of variables considered 
in the present example (see below). It seems that measurable profiles could 
therefore occur with a judicial choice of initial conditions. 

(If we choose to define wave thickness as the change in x/7' u1  in going from 
velocity ui  - 0.05 (ui  - u2) to velocity u2  + 0.05 (u1  - u2) we find that A (x/7' u) = 15.23 

at M2  = 1.1 and = 7.69 at M2  = 1.2). 
ei 	 el 

Some values of mass fraction c and the equilibrium mass fraction ce(p,$) have 

also been calculated for the one case of M2  = 1.1, using equations 37 and 42. They 
ei 

are plotted in Fig. 1 as a difference from c1  (which equals 0.78). 

The temperature change through the wave whose equilibrium Mach number is 
can be found from the expression at the end of the previous section, and turns out to 
be given by (T2  /T1 ) - 1 = 0.0195. The small variations of both c and T through this 
wave are ample confirmation that some of the averaging approximations made in the 
analysis are justifiable. 

(44) 



The value of T'  in equation 18 can be obtained via the method proposed in the 
paragraph following that equation. Carrying out an order of magnitude, slide rule, 
calculation for the Met 

 = 1.1 case using three points at u/u = 0.97, 0.95 and 0.93 

it is found that 'T°  —109/k
r
, where k

r 
is measured in (mole/c. C)-2  sec-  . An 

acceptable value for kr  seems to be about 10" in these units, confirming that T' is 

indeed of the order of 1 gsec in the present problem. 

5. Weak Reaction-Resisted Shocks 

Following Lighthill (1956), we may ignore the difference between (ali  - u2i) and 

(.2
fit 

- u2) when the shock is very weak (i.e. M
el 

= 1). We may also write 

(7
f 

+ 1)u i= (-y
f 

1)u1  on the right-hand side of equation 36, whence the velocity profile 

is approximately given by 

U U 

U - U2  

(-y + 1) Cu , 	u2)x 
exp 	  

2 7 11  (a2 	a2  ) 
ft 	el 

J 

(45) 

having put u a in the denominator of the exponential term. The profile of a shock 
el 

wave of similar velocity amplitude which is resisted by a bulk viscosity at is given by 

U - U ( -ye  + 1) (u t  udx 
exp 2(K, 

1p,) 

 

(46) 
U U 

  

assuming the same -y
e. 

in both eases. It follows that the action of the chemical 
reactions here is similar to that of a bulk viscosity Ki  given by 

	

, 2 	2 
K 	 'r "  taf 	as s) 	

(47) 

With the values given in the numerical example above, this implies that xi  —0.3 T '  

gm/cm. sec. if T' is measured irynicroseconds. The ordinary shear viscosity 
probably has a value of about 10 	gm. /cm. sec. , so that if T I  is about 1 psec. , we 
see at once how very much more powerful the reactions are in resisting the 
convective steepening than is shear viscosity (and indeed also thermal conduction, 
which is comparable in effectiveness with the latter). 

The strong dependence of lc on the difference between aft 	e 
and a2

t 
 is clear from 

equation 47. An exactly similar result to this holds for relaxation effects in like 
circumstances (Li ghthilI, 1956) and we note that, if vibrational relaxation in a 
diatomic molecule is considered, so that -y

e 
= 9/7 and -y

f 
= 7/5, the maximum value 

2 
of (a

1 
 /a 

ei
) then is only 1.09, compared with 1.35 in our chemical example. It seems 

reasonable to speculate that vibrational relaxation will not be very significant in a 
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chemically-resisted wave front (under the conditions of our numerical example, 
anyway) since we do not expect the vibrational relaxation time to be much greater than 
the chemical time r°  -  Rather do we expect it to be somewhat smaller than 7' ; and 
it must be remembered too that only 22% of the mixture consists of molecules in this 
case When the "chemical (a

fi
/a

el
) 2  " begins to fall off and the atom mass fraction 

decreases too it is possible that vibrational relaxations play a larger role in deter-
mining u vs. x profiles. Presumably one must always consider the "secondary" 
effect which vibrational relaxation may have on the chemical time 7 1. Such detailed 
considerations are most interesting, but outside the scope of the present, heuristic, 
discussion however. 

6. Conclusions 

The foregoing analysis demonstrates that reaction-resisted shock fronts are 
possible and that their general character is precisely the same as that of Lighthill's 
fully dispersed, relaxation resisted, shock. This in itself is not perhaps a very 
startling conclusion; one would suspect as much without the need for analysis to prove 
the point. However, the numerical orders of magnitude in the present case are 
interesting since they suggest that a reaction-resisted shock should be observable 
experimentally without undue difficulty. 
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