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Abstract

An extension of the Hill-Clohessey-Wiltshire equations is presented. The equations
refer to the relative motion of two satellites as seen by a Chief undergoing a circular
Keplerian motion. Both the Earth oblateness and the air drag are included. The new
set of equations is then used to study a simple 100m Leader-Follower formation in
a near polar orbit at 600Km of altitude. As the system shows to be linear with time
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and the relative trajectory. Poincaré exponents are also determined and discussed.

Introduction

Dealing with formation-flying issues always arise the question whether it is more
convenient to describe the trajectories with a full non-linear model or to use the lin-
ear model given by the Hill-Clohessey-Wiltshire (HCW) equations. Arguments in
favour of both approaches can be easily given. The non-linear model has so much
of the dynamic into it that the results given are clearly more accurate and precise,
on the other hand, due to it complexity, it gives little insight into the physics of the
plOUlem and it makes quuc difficult to generate control algoriuﬂub The HCW cqua-
tions, on the other hand, are very simple and can be fitted into the well established
linear control theory but do not provide, in their classical formulation, any descrip-
tion of non Keplerian forces. Many articles have been written on how to overcame
this problem extending the equations to more general cases. Schweighart and Sed-
wick [2] wrote the HCW equations with an averaged J, term and speeding up the
Chief motion. Hughes and Mailhe [3] used the linear HCW equations to validate a
more COi‘ﬂpleX non-linear model. An 11‘1‘1p01 tant buggeSuOﬁ comes from Wiesel | [5]
who uses Floquet theory in conjunction with an extended set of HCW equations to
model the dynamic of relative satellite motion. In the work of Vadali-Vaddi-Alfriend
et al. [4] HCW equations are modified considering a perturbed mean motion (in-plane
equations) and an analytical J, perturbation (out-of-plane). In the present paper we
present an extension of HCW equations accounting for the drag force and the J, term.
The equations found are linear with time-periodic coefficient and are used to study

the stability of a Leader-Follower formation in a LEO near polar mission.




Equations derivation

Let us introduce the Local Vertical Local Horizontal (LVLH) frame relative to a Chief
satellite undergoing a Keplerian motion on a circular orbit and its associated vectrix
T (Fnr an exnlanation of vectrix notation see Hugches [1]) We then consider » satel-

for an explanation of vectrix notation see Hughes We then consider
lites moving in a close orbit so that their position is “not too far away” from that of
the Chief. The satellites are feeling both the ., perturbation and the drag. We can
write the equation of the i-th satellite in the form:

-

rp, :g(?Pi)+fD(?Pi)+J2(?P1) i=1l.n (1)
where T is the drag acceleration, J, and g represent the gravitational acceleration. If
we linearize the terms in the second hand of the previous equations with respect to
the reference state of the Chief (subscript ) and we subtract any two of the obtained
equations we get:

St = Vg[z,8F + Via|z, 8% + Vip ;¥ 2)

where OF is the relative position vector of the two chosen satellites. In order to be
able to evaluate the analytical expression of the gradients we must choose our state
variables. A natural choice is to use the coordinates in ¥, of 8F and their derivates
(this is the choice that leads to write the HCW when the drag and the earth oblateness
are neglected).

Let us begin with the evaluation of the drag acceleration gradient. We consider the

expression fp(¥) = —%pCD% F|f. As the velocity vector Tp depends on the whole
state variable q = x,y,2,%,7,2/1 the drag force gradient will be the following 3 x 6

matrix:

o 1 0O —n*R 0 nR 0 0
Vip(fp) = —EpCDA 27R 0 0 0 2nR O 3)
0 0 0 0 0 =nR

The following expressions were used to compute the gradient:
) X—ny
Yp = beT y+nx+nR
z

and

|?P| = \/xz +32 4+ 22 +n?(y? +x%) + R?n? + 2Rn’x + 2n(xy — yx) + 2Rny
Eventually, the following expression is found:
—n?Ry + nRx

— he 1 A
Vipl; ¥ = —2pCp=Fy | 2Rw*x+2Rny | +0(2)
nRz



It is convenient to define the parameter x := ] pCDAR . Expressing equation (2) in terms

of the frame ¥, (neglecting the J, term) and premultiplying for the corresponding
vectrix ¥p, we obtain the system:

X —2ny + 2nyx — 3nPx — 2n’yy =0
V4 dnyy +2nx + dnPyx =0
F42qnz+n*z=0

If we compare these equations to the the classical HCW we immediately observe the
introduction of some viscous term in the z axis motion. Due to the extreme rarefaction
of the air the damping ratio y is always very poor resulting in an under damped system
for the z motion. Putting the equation in a non dimensional form, we get:

E—2mM+20E—38—2ym =0
M+4yn+26+43E=0
C+29+EC=0

We observe here that the dynamic matrix Ap of the previous system is:

0 0 0 1 0 0
0 0 0 0 1 0
0o 0 0 0 0 1
Api=1" 3 2y 0 =2y 2 0 )
—4y 0 0 -2 —4y 0
0 0 -1 0 0 -2 |

whose determinant 8y is not zero although very small. There is not any zero eigen-
value nor any secular term, the system is therefore Lyapunov stable and the transient
phase will therefore eventually vanish.

We now evaluate the J, gradient in the same coordinates. The J, vector is given by:
1 —3sin?isin® y

ff 25sin? isiny cos y
P 2sinicosisiny

2

Jp=—

We have introduced the symbols Ry for the earth equatorial radius and used the well
known coordinate system 7\, i and its natural basis . The origin of ¥, will be
denoted in this coordinates, by the triple R,J,i. As what we need is the expression
for Jz in the ¥, reference frame, we have:

1 —3sin?isin® y
3 JouR>?
Fy S, = sz 2f4Ebe 2sin? isiny cos y (5)

2sinicosisiny

where J», represents a vector containing the components of J, in the F, reference
frame. The matrix Cp s is defined by the equation ¥, = Cp ¢ ¥ and can be supposed to



be the sum of two infinitesimal rotations around axis z and the line of the nodes. The
mathematical form of this matrix is:

1 —(y—¥)  —(i—i)siny
Cor=1{ (v—) I —cosy(i—1i) (6)
(i—1)siny  +cosy(i—1) 1

Substituting expression (6) into (5) we finally have an expression for J,, in terms of
our state variables (note that the coordinates r,i,y depend on x,y,z). It is therefore
possible to evaluate the desired expression for the gradient evaluated in R\, i:

Vj:.’,|l’Q n n n
1 —3s%is™\y s2is2\y S\s2i .
= 4% s2is2g —3 +s%i(1s \p——) s )
s(s2i C\V:z’ —3 452 (5 + 2520)

2
with k£ = % gf Schweighart and Sedwick in [2] evaluated this gradient: their result
is slightly different from the one we obtained here, we will assume that our expression
is correct. We note that as the reference orbit is circular \y = 71 (initial conditions are
supposed to be given at the ascending node).

We have expressed all the term in eq.(2) with respect to the reference frame %5, we
therefore can get the following ODE:

q=(dp+4K4))q (8)

where the matrix 4p is defined by e€q.(4) and A4; is:

Ay =
i 0 0 0 0 0 07
0 0 0 0 0 O
0 0 0 0 0 O 9)
1 —3s2is21 s2is2t sTs21 0 0 O
s 1321: 4+s 1(7 2 %) —A”fi 0 0 0
STS2i — ”jz’ —% + 520 (% + %szr) 0O 0 0 |
We introduced a non dimensional parameter K = LR 3J2 (RE) . Although linear

the equation has a time dependent dynamic matrix. The time appears only through
periodic functions and the dynamic matrix is therefore periodic too. Floquet theory
could be used to study this problem, as suggested by Wiesel [5] but we will here first
attempt a numeric simulation. The main problem with this approach is the accuracy
and the stability of the numeric integrator, the extreme difference in the magnitude of
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Figure 1: 2-D plot of the relative position of the two satellites. The distance difference
between the actual position and the desired 100m Formation Flying is also shown.

the various terms appearing in the equation make it non trivial to pursue the numerical
simulation. We considered a simple 100m Leader-Follower formation in a circular
reference orbit inclined of 82¢ and having a semi-major axis of 6978Km. The results
are shown in figure 1. We observe that leaving the satellite uncontrolled results in an
oscillating relative distance with a fundamental frequency of roughly 10 orbits. The
satellites, initially separated by 100m would begin to get closer and closer (up to 6m)
to then invert the formation to a “Follower-Leader” one. The simulation was run for
roughly 150 orbits, after this time length numerical instability begins to corrupt the
solution.

Poincaré exponents in LEO near polar case.

In this section we will approach the solution of eq.(8) using Floquet theory. We
evaluate Poincaré exponents ®; and discuss the stability of the system, that is of the
Leader-Follower formation-flying. We get:

©1, = +0.04498;
®3.4 = +0.001356
056 = +0.0005619i

The exponent ®3 is placed in the right half of the complex plane determining the
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wi corresponds to roughly 120 orbits, that is why instability is not visible in the

trgtjectory plotted in figure 1.
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Figure 2: Instability rise in the relative position of the uncontrolled leader-follower
formation, y,x plot. The plot was done by using Floquet analysis. It would not be

possible to get the same result by direct numerical integration as the algorithm would
he unctahle after 150 orbhite
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If we prolong the integration time to 200 — 300 orbits instability begins to be visible
as shown in figure 2. The periodic terms that will form the solution comes from the
periodic matrix /' of the Floquet transition matrix decomposition and from the com-
plex Poincaré exponents. The periods of these terms is easily found and correspond
to 1, % orbits those associated with the F* matrix and 22, 1785 orbits those associated
with Poincaré exponents. The term with a 22-periodicity is the one responsible for
the distance fluctuation plotted in figure 1. The linear system is therefore Lyapunov
instable, such a result extends to the non linear case. The instability is visible after
roughly 200 orbits as shown in figure 2.

Conclusions

An extension of Hill-Clohessey-Wiltshire equations is presented. Both the Earth
oblateness and the air drag are taken into account. The resuiting linear system has
time-periodic coefficients and its solution is presented both via numerical integra-
tion and Floquet analysis. The studied case, a Leader-Follower formation at 100m
distance, in a circular near polar orbit, is found to be unstable, the instability mani-
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for the design of a control strategy. An introduction to the control of time-periodic
systems is given by Calico-Wiesel in [6].
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