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                         ABSTRACT 

 

   The effect of buoyancy on the production and dissipation of turbulent kinetic energy is 

investigated in variants of the popular k-ε  turbulence model. The standard gradient 

diffusion model is considered for the scalar flux as well as a generalised gradient 

diffusion model. Also, the addition of the non-isotropic component of an algebraic stress 

model for the Reynolds stresses is assessed. The relative significance of the various 

models and terms are demonstrated using different combinations of the models, including 

the important flux Richardson correction term. The generalised gradient diffusion and 

algebraic stress models are shown to give a strong increase in turbulence production, 

although the effect on the flow can be largely controlled by the coefficient of the flux 

Richardson term. Recommendations are made regarding optimum models and 

coefficients. 
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                                      NOMENCLATURE  

 

B            buoyancy model term 

Cvarious      various constants 

g            gravity vector 

G           production of turbulent kinetic energy due to buoyancy 

k            turbulent kinetic energy   

P            reduced pressure term (static –  hydrostatic) / production turbulent kinetic          

              energy due to shear  

Rf            flux Richardson number 

t              time 

U            velocity 

x             direction  

 

β             thermal expansion coefficient 

δ              Kronecker delta 

ε             rate of dissipation of turbulent kinetic energy 

µ             viscosity 

ϕ             scalar 

Φ            scalar 

ρ             density 
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σ             Prandtl number 

 

subscripts 

 

ASM      from the algebraic stress model of buoyancy 

B            from the Boussinesq assumption 

i,j,k         vector direction 

t               time 

0              reference point 

 

superscripts 

 

x ′          fluctuating value                        

x           average value 
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                                           INTRODUCTION 

The Reynolds-averaged Navier-Stokes (RANS) equations are commonly employed 

as a basis for the solution of turbulent flows, although Large Eddy Simulation (LES) 

based approaches are increasingly used as significant computing resources become more 

readily available.  

The process of Reynolds-averaging the Navier-Stokes and scalar transport equations 

introduces additional terms containing correlations of the fluctuating velocity 

components, which must themselves be modelled in order to effect closure. A large 

number of models have been proposed, many based on the Boussinesq assumption, which 

relates the Reynolds stresses to the mean velocity gradient via a turbulent viscosity. 

Typically these models have been classified into zero, one and two equation models, 

referring to the number of additional transport equations to be solved. Direct second 

moment closure models are also available, although these tend to be computationally 

more expensive and less robust and have consequently found less widespread application. 

The Boussinesq based two equation models have demonstrated a good balance between 

accuracy and efficiency. In particular, the k-ε turbulence model of Launder and Spalding 

[1] has been widely adopted, where transport equations are solved for the turbulent 

kinetic energy (k), and the rate of dissipation of the turbulent kinetic energy (ε).  

Computational fluid dynamics (CFD) is being increasingly employed to investigate 

internal building flows, for heating, ventilation, and fire safety, where buoyancy effects 

due to thermal gradients become significant. Various authors have proposed and tested 

modifications of the standard turbulence models appropriate to buoyant flows, including 
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[2,3,4,5,6,7]. Initial developments utilised the standard Boussinesq gradient diffusion 

hypothesis (SGDH) to represent buoyancy induced turbulence generation, which has 

since been shown to be a significant component in the governing equations [2,3,4]. More 

recently, the general gradient diffusion hypothesis (GGDH) of Daly and Harlow [8] has 

been investigated, as has the algebraic stress model (ASM) of Davidson [5].  

The effect of Richardson number, the ratio of buoyancy forces to inertial forces, is 

not well understood in the production of turbulence, so an empirical term, the flux 

Richardson term, was introduced into the ε equation to account for this. Rodi [3] gives 

what is now the standard format for this term. 

Hossain and Rodi [2] demonstrated that the SGDH gave significant improvement 

over the standard k-ε model without a buoyancy model, although Shabbir and Taulbee [9] 

later found the axial heat flux to be inaccurately modelled with the SGDH.  

Rodi [3] suggested that the coefficient of the flux Richardson term should vary 

between 0 and 1 dependent upon the flow. Markatos et al. [6] found the flux Richardson 

term to be insignificant in smoke simulations.  

Davidson [5], and Yan and Holmstedt [7], found that the GGDH in conjunction with 

the ASM gave significantly improved results.  Yan and Holmstedt [7] investigated these 

terms and found optimised values for the empirical constants when applied to a thermal 

plume. 

The thermal plume represents an important benchmark simulation for any buoyant 

flow code as well as being a relevant flow in its own right, for example in atmospheric 

simulations, and fire simulations. Considerable experimental work has been carried out in 

this area, against which it is possible to validate turbulence models.  
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Chen and Rodi [4] gave an extensive review of the experimental work before 1980, 

and gave recommendations of the velocity and temperature spreading rates, and also 

centreline values. Later experiments including Papaniolaou and List [10], Shabbir and 

George [11], Ramprian and Chandrasekhara [12], and Sangras et al. [13], have found 

alternative values. These works [10,11,12,13] have questioned previously accepted plume 

statistics, complicating optimisation and selection of model components. However, the 

relative significance of the individual terms can be clearly demonstrated. Future 

optimisation may be eased with these considerations. 

 

This paper follows the work of Yan and Holmstedt [7] and investigates the 

mechanics of the different models for buoyancy induced turbulence generation and 

dissipation in the k-ε model. The results of Chen and Rodi [4] are used for validation of 

the models, as applied to a thermal plume.  
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                                    GOVERNING EQUATIONS 

 

The density weighted Reynolds-averaged Navier-Stokes equations are given below. 

The pressure term represents the static pressure minus the hydrostatic pressure. The 

hydrostatic pressure is taken into account through the reference density. 
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The Reynolds stresses in the momentum equations must be modelled, as must the 

scalar fluxes, which using the Boussinesq assumption become: 
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where the turbulent viscosity, tµ , must be modelled, and the turbulent Prandtl 

number, tσ , is typically a constant of O(1). This model of the scalar fluxes is referred to 

as the standard gradient diffusion hypothesis (SGDH) in this paper. 
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In the k-ε model the turbulent viscosity is defined as: 

ε
ρµ µ

2kCt =                            (7) 

where k is the turbulent kinetic energy, ε is the dissipation of the turbulent kinetic 

energy, and µC  is a constant with a standard value of 0.09 [1]. 

The transport equations for k and ε are given by: 
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where 
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∂
′′−=  is the production of turbulent kinetic energy due to shear, 

jj gTuG ′′−= β  is the production of turbulent kinetic energy due to buoyancy, fR  is the 

flux Richardson number, ε3C  , an empirical correction term for the ε equation as defined 

by Rodi [3] for buoyant flows, and the thermal expansion coefficient is defined as 

( )
T∂

∂
−=

ρρβ /1 . The constants ε1C  and ε2C  are given the standard values of 1.44 and 

1.92. 

 G can be formally derived in the k equation (see appendix 1). In the original k-

ε model of Launder and Spalding [1], the turbulent production term was adopted in the 

modelled ε-equation, and has been included in a similar manner here. Amongst the earlier 

authors to use this format was Rodi [3]. 
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This paper investigates the relative significance of the modelled production terms, P 

and G, and the flux Richardson term fR . 
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                              BUOYANCY MODELS 

 
The standard buoyancy modified k-ε model [2] uses the Boussinesq assumption in 

the P terms, and the SGDH model in the G terms. 
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Shabbir and Taulbee [9] have shown that the axial heat flux (the flux perpendicular 

to the gravity vector) of the G term is considerably under-predicted when the SGDH is 

incorporated. This term is expected to have a significant effect on the spread rate of a 

thermal plume. 

The general gradient diffusion hypothesis (GGDH) model was proposed by Daly and 

Harlow [8] as an alternative to the standard gradient diffusion model for the scalar fluxes. 

The model was derived from the second moment closure equations, and is defined by: 
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Using this model the G term becomes 
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Davidson [5] proposed an alternative model to the Boussinesq assumption for the 

Reynolds stress terms for buoyant flows, derived from the algebraic stress model of Rodi 

[3]. In this model the Reynolds stress tensor is split into two parts – that due to shear 
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production, which is again modelled with the Boussinesq assumption, and a non-isotropic 

part due to buoyancy. That is that ASMkjkkjkj uuuuuu )()( ′′+′′=′′ −ε      (14) 
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There are three ways of representing the scalar fluxes in the B term, in this model: 

i) The SGDH (Eqn. 11). 

ii)  The GGDH with the Boussinesq assumption in the Reynolds stresses. (Eqns. 

13,5).  

iii)  The GGDH with the ASM model incorporated into the Reynolds stresses. 

(Eqns. 13,14). 

In a numerical scheme, the last becomes recursive, and can be implemented using the 

values from the previous iteration. All were tested, but only the first alternative, the 

SGDH, substituted back into the GGDH gave sensible results.  

Rodi [3] found that the algebraic stress model showed no loss of accuracy when 

using the equilibrium assumption, where the production is equal to the dissipation. i.e 

01/)( =−+ εGP . This is assumed here also. In equation 15 this is 01/)( =−+ εBP . 
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There is not a consistent literature on the flux Richardson term, fR . The fR  term is 

the ratio of the rate of removal of energy by buoyancy to its production by the shear, 

PGR f /= . [14]. An alternative definition given by Rodi [3] can be expressed as 

)/( PGGR f += , in conjunction with the empirical constant ε3C  set to 0 in buoyant 

vertical shear layers and 1 in buoyant horizontal shear layers. Heindel et al. [15] let 

)/tanh(3 VUC =ε  for mixed flows (where U is the local horizontal velocity, and V is the 

local vertical velocity). In the present work, the definition of Rodi [3] was employed with 

ε3C  as a constant to be optimised. 

The fR  term has previously been found to be insignificant in buoyant vertical shear 

flows. Markatos et al. [6] found that the G term in the k equation is far more important 

than the coefficient of the fR   term in fire simulations, and that buoyancy has no effect on 

the ε-equation. Cox [16] references Bos et al. [17] as finding the fR  term to have little 

effect, also in fire simulations. These findings have all used the standard buoyancy 

modified k-ε model.  

This paper investigates the relative significance of the P and G terms using the above 

models for the Reynolds stress and scalar fluxes. The following combinations of the 

above models were tested. The acronyms are used throughout this work to refer to the 

various models.  

 

ORIGINAL: The P term is modelled with the Boussinesq assumption, and the G 

term is not modelled and set to zero. The fR  term becomes zero in this case. P=PB. G=0. 



    13

SGDH: This is the standard buoyancy modified k-ε model. The P term is modelled 

with the Boussinesq assumption and the G term uses the standard gradient diffusion 

hypothesis. P=PB. G=GB. 

GGDH: The P term uses the Boussinesq assumption and the G term uses the general 

gradient diffusion hypothesis. P=PB. G=GG. 

ASM: Davidson`s [5] algebraic stress model is applied. The G term is neglected. The 

P term is broken into the two parts; the PB (the Boussinesq part), and the PASM 

(Davidson`s algebraic stress model part). P=PB+PASM. G=0. 

ASMSGDH: This is as the ASM model but the G term is modelled with the standard 

gradient diffusion hypothesis. P=PB+PASM. G=GB. 

ASMGGDH: This is as the ASM model but the G term is modelled with the general 

gradient diffusion hypothesis. P=PB+PASM. G=GG. 

 

For the ASM term, the SGDH model has been re-substituted back into the remaining 

Reynolds stress terms. Only terms in the k and ε equations were modelled. The Reynolds 

stresses in the RANS equations were modelled in all cases using the Boussinesq 

assumption. 
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             NUMERICAL IMPLEMENTATION AND SIMULATIONS 

 

The numerical simulations were carried out using the code SOFIE (Simulation of 

Fires in Enclosures), specifically developed at Cranfield for compartment fire predictions 

[18,19]. SOFIE is based upon a finite volume procedure utilising an underlying general 

non-orthogonal coordinate system with co-located velocities, momentum smoothing and 

a pressure correction algorithm. Dependent variable interpolation has a choice of 

schemes. A second order accurate TVD scheme was used in this work. 

The planar plume was simulated in a rectangular domain of 2m base by 2.7m height, 

with a 0.06m entrance width. For speed of calculation a mirror symmetry boundary was 

used along the centreline of the plume. A solid wall boundary was specified at the bottom 

of the domain. Static pressure boundaries were employed on the remaining boundaries, 

allowing flow into and out of the domain.  

At the plume source, inflow velocity was specified as 0.01m/s with small values 

(1.0e-6) for the turbulent kinetic energy and dissipation rates and a temperature of 1000K. 

Flow into the calculation domain across the static pressure boundaries was specified 

with a fixed temperature of 298.15K, turbulent intensity of 0.5%, and turbulent length 

scale of 0.01m. Flow out is evaluated to ensure local continuity at the boundary cells. 

The computational grids were uniformly spaced across the plume entrance, and 

uniformly spaced along the remainder of the horizontal axis, with a single uniform grid 

spacing in the vertical axis. Four grid distributions were used, labelled A, B, C, D. Unless 

otherwise stated grid A was used. Grid A had 4+50x50 cells where there are 4 cells 
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across the plume source and 50 cells across the rest of the base of the domain. B, in a 

similar manner, had 4+70x70 cells, C had 6+100x100 cells, and D had 10+200x150 cells. 
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                                       PLANAR PLUMES 

 

Chen and Rodi [4] presented a detailed review of experimental data up to 1980, and 

recommended spreading rates of 0.12 measured by the velocity half-width and 0.13 for 

the temperature spread measured by its half-width. These figures are frequently used as 

the reference data with which to optimise models (Yan and Holmstedt [7], Hossain and 

Rodi [2]). Spread rates are measured in terms of the half width where the half-width in 

each case is defined to be that distance from the centre where the value (velocity or 

temperature here) is half of its centreline value. Values ranging from 0.08 to 0.147 for 

velocity spread and from 0.098 to 0.14 for the temperature spread were reported by Chen 

and Rodi [4]. More recent experiments have supported these values. Ramaprian and 

Chandrasekhara [12] found a velocity spread of 0.11 and temperature spread of 0.13. 

Sangras et al. [13] found even lower values.  

The velocity centreline values can be clearly evaluated for the planar case, since the 

velocity centreline asymptotes to a constant value away from the source. Different 

authors give different values again. For this configuration Chen and Rodi [4] would have 

given a maximum velocity of 0.31m/s, Ramprian and Chandrasekhara [12] of 0.34m/s, 

and Rouse [20] of 0.29m/s. 

The cross-stream profile of any characteristic variable (such as velocity or 

temperature) has been empirically shown to approximate a Gaussian (normal) 

distribution. Empirical constants and terms can be altered to suit the experimental data as 

will be shown. 
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                                               RESULTS 

 

Preliminary solutions were obtained to quantify grid dependence, and secondly to 

confirm that the plume spread rates were genuinely evaluated in the self-similar region. 

  

Grid independence was demonstrated using the ASMGGDH model on four grids, as 

shown in Table 1. This shows a tendency for a very slight increase in spread rates with 

grid refinement. The change is sufficiently small to be considered grid independent. Grid 

independence was also shown for the SGDH model, and the other models were assumed 

to be grid independent from these. Based on these comparisons grid A was used for 

model evaluation in the following sections. 

 

The self-similarity and Gaussian distributions of the characteristic profiles are shown 

in Figures 1 and 2. The overlapping curves demonstrate that the plume has adopted a self-

similar profile in this region. The curves are normalised in the vertical axis to the 

centreline velocities and in the horizontal axis with the distance to the half-centreline 

velocity. 

 

It is important that the spreading rate is determined in the self-similar region. Table 2 

presents results from the models with ε3C , the coefficient of the flux Richardson number, 

fixed at 0.6, as recommended by Yan and Holmstedt [7], whose initial work this follows. 

The spread rates were evaluated using the half-width, both at a vertical distance between 

1m and 2m from the source, representing the self-similar region as demonstrated 
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previously, and between the source (0m) and 2m from the source. As the results 

demonstrate, misleading conclusions can be drawn if the inappropriately specified spread 

rate is utilised. Spread rates are evaluated in the self-similar region throughout the 

remainder of this paper. 

 

Table 3 demonstrates that the SGDH model shows no or little improvement on the 

ORIGINAL model. This is because the value of the SGDH term is small as can be seen in 

Figure 3. This is contrary to results given by Hossain and Rodi [2] who show the SGDH 

to be a great improvement on the ORIGINAL model. This could be due to the method of 

evaluation of spread rates as demonstrated in Table 2. If the spread rates are measured 

from the source, then there is the appearance of good improvement. The effect of the 

SGDH model is for the plume to widen rapidly at the source before settling into the self-

similar region, where the spread rate is not altered by the SGDH model as compared to 

the ORIGINAL model.  

The fR  term, when in conjunction with the SGDH model, has previously been found 

to have little effect (Markatos et al. [6], Bos et al. [16]). This work is in agreement with 

these findings. It makes sense that the fR  term has little effect with the SGDH model 

since GB is almost negligible. Markatos [6] suggests removing the G term from the 

ε equation altogether. This is equivalent to letting ε3C  equal unity. It would still make 

little difference to the SGDH model, but the GGDH and ASM would be affected it as 

shown below.  
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It is clear from the results shown in Table 2 that the GGDH and ASMGGDH models 

gave the most significant increases in spread rates. Conversely, the SGDH, ASM, and 

ASMSGDH showed little increase on ORIGINAL (the unmodified k-ε model), indicating 

the significance of the GGDH model assumption. 

Figure 4 shows the relative magnitude of the production terms in the k-equation for 

the ASMGGDH model. It can be seen that the overall production is increased by about 

25%, over half of which is generated by the PASM term. The magnitude of the PASM term 

was found to be similar in the ASM model even though there is no comparable increase 

in the spread rates. This difference is attributed to the controlling effect of the buoyancy 

production term in the ε-equation and the fR  multiplier. 

 

The effect of the flux Richardson term, fR , is to decrease the turbulent dissipation 

rate with increasing buoyancy, resulting in an overall increase in the net turbulence 

production, and hence increase the spread rate. In the ASM model the fR  term is 0 by 

definition (since G is not modelled), whereas in the ASMGGDH the value is 

approximately 0.15. This implies that overall, the fR  term in the ε-equation has 

considerably more direct effect than the production terms in both the k and ε equations. 

 

The results from the GGDH model were also significantly affected by the fR  term. 

Table 4 shows the variation of spread rates of the GGDH and the ASMGGDH models 

with ε3C  varying.  
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When ε3C  is 0.7 the two models give equivalent results. The PASM term in the 

ASMGGDH model can be considered to be a damping function on the fR  term in the 

GGDH model around this value. This makes sense since adding the PASM term into the 

fR  term decreases the value of the fR  term. 

 

Table 5 gives the centreline velocities for the ASMGGDH and GGDH models, again 

with ε3C  varying. There is little difference between the two models and both models 

predict these values qualitatively correctly. i.e. the greater the spread rate, the less the 

velocity, keeping the buoyancy flux constant at all distances from the source. The models 

are equivalent for the spreads and the maximum velocity with ε3C  = 0.7. These fit Chen 

and Rodi’s [4] proposed values well. 

 

Whilst the ASMGGDH gives no advantage over the GGDH in this simulation, it 

does not increase the computing time by any significant margin and may offer benefits 

for other flows. The ASM can be used in the momentum equations also, although Yan 

and Holmstedt [7] found this unstable in the simulation of buoyant fire plumes. 
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                                     CONCLUSIONS 

 

The results from the present work have confirmed that for a plane plume the SGDH 

model makes very little difference to the spread rates in comparison to the ORIGINAL 

model, although the plume does expand more rapidly in the near field of the source 

before the self-similar region. 

The primary positive conclusion drawn from this work is that the GGDH and 

ASMGGDH models in conjunction with the fR  term give significantly improved results 

over the ORIGINAL and also the SGDH model, and that the fR  term is a necessary 

factor for this improvement. Furthermore, that greatest contribution to this improvement 

can be attributed to the use of the GGDH to model the scalar fluxes in the buoyancy 

production term combined with the fR  term. The ASM model has a beneficial effect in 

conjunction with the GGDH and fR  but does not offer any significant improvement 

when used by itself. Rodi [3] recommends not using the fR  term for vertical shear flows. 

However, in combination with the above models it has been found to be very important, 

to the extent that without it the GGDH and ASMGGDH models would show very little 

improvement. 

Chow and Mok [21] investigated a number of buoyancy models including the 

ASMGGDH model in fire simulations. They found it offered no significant improvement 

upon the SGDH model. This is in agreement with these results since they did not 

incorporate the flux Richardson number.  



    22

Optimal values for ε3C  can be given for each model depending on which 

experimental data is used, and 0.7 is found for the GGDH and ASMGGDH using the data 

of Chen and Rodi [4]. However, using the more recent data, for example [13], then the 

ORIGINAL and SGDH models give reasonably accurate results, suggesting that the use 

of the fR  term with the GGDH and ASM models is not necessary to improve the spread 

rates. Consistent experimental data is needed to truly optimise relevant coefficients. 
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                              APPENDIX 1 

 
Derivation of the k-equation with buoyancy terms. For simplicity, the incompressible 
equations are used. 
 
Let  
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( ) 00

2

=−−
∂

′′∂
+

∂∂
∂

−
∂
∂

+
∂
∂

+
∂

∂
=Ν ρρρµρρ )

i
k

ki

kk

i

ik

i
k

ia
i g

x
uu

xx
U

x
P

x
U

U
t

U
 

 
 be the Reynolds-averaged incompressible momentum equations. 
 
Take moments about each equation and subtract in this manner: 
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Take each part of the summed equation in turn. 
 
Time derivatives: 
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    Note:     2
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Pressure terms: 
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Viscous diffusion terms 
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Turbulent stress terms: 
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Buoyancy terms: 
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Assembling all the terms gives: 
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The first three terms are recognisable as the standard terms in a transport equation. The 

time derivative, the convection and the diffusion of k. The next term is modelled by the 

dissipation rate, ε. The pressure term and the triple correlation are modelled and added to 

the regular diffusion term to make the turbulent diffusion term. The final terms are the 

production due to shear, P, and the production due to buoyancy, G, respectively.  

 

Use has been made of 0≈
∂

′∂

j

j

x
u

. 

 

 

 



    26

                                           REFERENCES 

1. B. E. Launder, D. B. Spalding, The numerical Computation of Turbulent Flows, 

Comput. Meth. Appl. Mech. Eng., vol. 3, pp. 269-289, 1974. 

2. M. S. Hossain, W. Rodi, A Turbulence Model for Buoyant Flows and its Application 

to Vertical Buoyant Jets, in Turbulent Buoyant Jets and Plumes, 1982. 

3. W. Rodi, Turbulence Models and their Applications in Hydraulics-A State of the Arts 

Review, University of Karlsruhe, Germany, 1984. 

4. J. C. Chen, W. Rodi, Turbulent Buoyant Jets: a review of experimental data, HMT, 

vol.4, Pergamon, 1980. 

5. L. Davidson, Second-order correction of the k-ε model to account for non-isotropic 

effects due to buoyancy, Int. J. Heat Mass Transfer, vol. 33, pp. 2599-2608, 1990. 

6. N. C. Markatos, M. R. Malin, G. Cox, Mathematical Modelling of Buoyancy-induced 

Smoke Flow in Enclosures, Int. J. Heat Mass Transfer, vol. 25,no. 1, pp. 63-75, 1982. 

7. Z. Yan, G. Holmstedt, A two-equation model and its application to a buoyant 

diffusion flame, Int. J. Heat Mass Transfer, 1998. 

8. B. J. Daly, F. H. Harlow, Transport equations of turbulence, Physics Fluids, vol. 13, 

pp. 2634-2649, 1970. 

9. A. Shabbir, D. B. Taulbee, Evaluation of Turbulence Models for Predicting Buoyant 

Flows, J. Heat Transfer, vol. 112, pp. 945-951, 1990. 

10. P. N. Papanicolaou, E. J. List, Investigation of Round Vertical Turbulent Buoyant 

Jets, J. Fluid Mech., vol. 209, pp. 151-190, 1988. 

11. A. Shabbir, W. K. George, Experiments on a Round Turbulent Buoyant Plume, 

NASA Technical Memorandum 105955, 1992. 

12. B. R. Ramaprian, M. S. Chandrasekhara, Measurements in Vertical Plane Turbulent 

Plumes, J. Fluids Engineering, vol. 111, pp. 69-77, 1989. 

13. R. Sangras, Z. Dai, G. M. Faeth, Mixing Structure of Plane Self-Preserving Buoyant 

Turbulent Plumes, J. Heat Transfer, vol. 120, pp. 1033-1041, 1998. 

14. J. S. Turner, Buoyancy Effects in Fluids, Cambridge University Press, 1973. 



    27

15. T. J. Heindel, S. Ramadhyani, F. P. Incropera, Assessment of Turbulence Models for 

Natural Convection in an Enclosure, Numerical Heat Transfer, Part B,vol. 26, pp. 

147-172, 1994. 

16. G. Cox, Combustion Fundamentals of Fire, Academic Press, 1995. 

17. W. G. Bos, T. van Den Elsen, C. J. Hoogendoorn, Comments on ‘Numerical study of 

stratification of a smoke layer in a corridor’, Combust. Sci. Technol. 46, 333, 1986. 

18. P. A. Rubini, SOFIE - Simulation of Fires in Enclosures, Proceedings of 5th 

International Symposium on Fire Safety Science, Melbourne, Australia, IAFSS, ISBN 

19. M. J. Lewis, J. B. Moss, P. A. Rubini, CFD modelling of combustion and heat 

transfer in compartment fires, Proceedings of 5th International Symposium on Fire 

Safety Science, Melbourne, Australia, March 1997, International Association for Fire 

Safety Science, ISBN 4-9900625-5-5. 

20. H. Rouse, C. S. Yih, H. W. Humphreys, Gravitational Convection from a Boundary 

Source, Tellus, vol. 4, pp. 201-210, 1952. 

21. W. K. Chow, W. K. Mok, CFD Fire Simulations with Four Turbulence Models and 

their Combinations, J. Fire Sciences, Vol. 17, pp. 209-239, 1999. 



    28

        Table 1 
 
 
 
 
 
 
Grid: A B C D

V 0.114 0.115 0.115 0.116

T 0.116 0.117 0.118 0.118

 

 

Table 1: Grid independence on ASMGGDH 
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                            Table 2 

 

 

 

V spread ORIGINAL SGDH GGDH ASM ASMSGDH ASMGGDH 

1m:2m 0.076 0.078 0.112 0.080 0.083 0.114 

Source:2m 0.076 0.097 0.131 0.080 0.103 0.132 

T spread   

1m:2m 0.079 0.080 0.115 0.083 0.086 0.116 

 

 

Table 2: Spread rates of all models with ε3C =0.6 
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Table 3 

 

 

 

Spread rates ORIGINAL SGDH, C3ε=0 SGDH, C3ε=0.6 

V 0.076 0.076 0.078

T 0.079 0.079 0.080

 

 

Table 3: Velocity and temperature spread rates of the SGDH model 
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                               Table 4 

 

 

 

ASMGGDH  

C3ε 0 0.5 0.6 0.7 0.8

V 0.084 0.107 0.114 0.122 0.132

T 0.087 0.109 0.116 0.125 0.134

 

GGDH 

 

C3ε 0 0.5 0.6 0.7 0.8

V 0.080 0.104 0.112 0.122 0.134

T 0.082 0.106 0.115 0.125 0.137

 

 

Table 4: Variance with  ε3C  of spread rates. 
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Table 5 

 

 

 

C3ε 0 0.5 0.6 0.7 0.8

ASMGGDH 0.365 0.327 0.318 0.309 0.301

GGDH 0.371 0.328 0.319 0.310 0.300

 

 

Table 5: Variance with ε3C  of centre-line velocities. 
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                                                                                 Figure 1 
 

 
 
 
Figure 1: Normalised velocity profiles for ASMGGDH, C3ε =0.6, at various distances from the source. 
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                                                                             Figure 2 
 

 
 
Figure 2:Normalised temperature profiles for SGDH, C3ε=0.6, at various distances from source. 
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                                   Figure 3 

 

 

Figure 3: k production term profiles 1.5m from source for SGDH with C3ε=0.6.                               
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                                     Figure 4 

 

Figure 4: k production term profiles 1.5m from source for ASMGGDH with C3ε=0.6.  
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