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SUMMARY

A novel procedure for the optimization of aircraft
autostabilizer systems is presented, The procedure is
straightforward, and its application does not result in
demands for autostabilizer systems of prohibitive complexity.
Many important norn-linear effects may be included with only
slight extra complication in the required calculations. The
procedure is applicable, in the first place, to piloted aircraft,
~ the essenccu of the procedure being the assumption that the
purpose of thé autostabilizer is to reduce the effort demanded
of the pilot in executing a given manoeuvre or attaining a
given response, Although the presence of the pilot is
explicitly taken into account in the calculations no form
of pilot's transfer function need be specified.

It is shown how the procedure may be modified to form
en aprroximate procedure for the optimization of autostabilizers
for pilotless aircraft having linear autostabilizer character-
istics and linear aircraft dynamics., The results of some
calculations presented herein support a suggestion that this
approximate optimization procedure may also be frequently
applied with success to pilotless aircraft having certain
non-linearities, either in the autostabilizer system or in
the aircraft dynamics.
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LIST OF SYMBOLS

DERIVATIVES

The cenventionsl British system of non-~dimcnsionalized derivatives
of Ref, 1 is emplcyed with the following medificatiens,

(1) “1 , is written simply as u
(ii) The derivative me. is p times that of Rel.q.

. . : . s AP : A
(ii1) The ncn~dimensionalized rate of pitca, rrE woitten as g .

For Leterel Btability the supplementary nototion cf Mitchell
(Ref_".fe.) is empleyed (with trifling alierations), In tais system,
e i JAT N, y

= = i £ ¥r o= e n — 75 = =
1 " e T 1 s T B S iy Ty
ILJ " "xf i ' i ?
) c/ c
U n F u o
N = 2.Y o L=-5% -
3. 1,
ol ity

C@E e u ‘C’; E CI‘ it e u .nz 3 etc.,

Al \ c!
OTHER SYMBOLS
LOVFR CLSE
a (i) see Bquation 2,48

} a negative constant
(ii) see Equation 3.23

8,8 .0, .8, B¢ Equation €.8,.

0 3

2,8 ,a ,0 Coefficients of the polynomial P(x)
52"y

e ,e ,e ,e sece Bquation &.6.

0’17273

h m,  With cutostebilization / basic m,

h. ,h‘ ,1'12 ,};J see Bguation 6.9.

k (?) Cnyz
(:Li) IS/'J!’ZM

¥ m, with autostabilization / basic m,



a (i)
(i1)

5 ()

ii)

€ (i)

an impulsive pitching moment

see Bguation Z.44.

see Equation 3,28,

see Equation 2.15. (a positive constant)

The Laplace Transform Variable

A meagure of tims (s:e Equaticn 35.34 and Chapter 4)
sce BEquation 3,27,

The Input signal to the autostabilizer,

The moxdman value of X that need be considered,

The value cf X at which saturation cccurs,

I general concrol surface deflection due to the
autostabilizer

The autostabilizer characteristic.
The limiting value cof y

ingle of incidence
see Equation 6.14.

(for Time Vectors) = -=v , where v = sideslip angle.
see Equation 3,28

the Cardinal Spectrum Interval

an arbitrarily short time
PE) -y,

an elevator deflection produced by the pilot

a step elevator deflection of magnitude & n
see A n(r)

an elevator deflection due to the autostabilizer

the amplitude of N for flicker autostabilization,



CAPITALS

111 ,fzs ,;‘u_s ,I-A? . generalized forms of a ., 8, 8,0
@ a cardinal spectrum
D the differentiation operator
E defined from Equation 6,1Lk.
H,H = n_ with autostabilization / bawic n
&
X an integral, a3 defined iz the text
Ie it " L] i i} it LL]
Ii an intepral of the 4st kind (see Chapter 3.S8ection L)
12 " 1" n noo,.q3 " ( " " " )
L, see Loaxtion 3,30,
Iﬁ sce Equation 3,31.
J (1) = K -1
id = H~ R =
(i1) \] vhere H = ~Hm o+ mq Z.

KRS = 1, with autostabilizaticn / basic n
P defined by Bquation 3,28
2 = O (g [ -77.050] ) (from Equation 3.22)

1
B Bl B Coefficients of A

27 4 -3 8 i |
P (x) The polynomial approximation to the autostabilizer

characteristic
Q see Equaticn 3,20
Qa’Qa’Qe’Qs Coefficients of by
Q (s) a guadratic expression in s
~m - 1,

R ] % ( w - zw)

2

R (7) a general response

|



RD(T) a general desired response
R ,R ,R ,R Coefficients of A

5,3 ,5 ,8 Ccefficients of £
2?4’ %6’ 8

&
T (1) a measure of time (frequently 14.51 7)
(ii) 2 convenient (fixed) time

}<_ denctes polymultiplication
A (s) a quartic erpression in s
A n(r) a step elevator deflection cf ncpnitude § n
SUFFICES
D a quantity associated with the desired response,

(eog- ?J'.D s WD s)
] a control surfuce deflection due to the autostabilizer

(e.g.”s)

(This should not be confused with the Laplace transform
of an elevator deflection n(r) , which is written n(s) )

P a control surface deflection due to the pilot (eaits HIQ

P (e.g.ﬂP ) the control surface deflection demanded of the
D

pilot to attain the desired response.

A few other transient symbols are defined as necessary in the text,
The notation of Cardinal Spectrum Analysis is explained in Chapter 4.,
Footnotes are not employed: superfixes in the text thus1
refer to the section headed 'Notes on Chapters',



Chapter 4. INTROTUCTION
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It will be generally agreed that the subject of airecraft
autcgtabilization has rapidly grown in importance in recent years.
The rcason for this is not hard to find; it is simply that recent
great advances in aireraft performance have demanded aircraft con-
figuratiorswhich often have irherently poor stebility and response
characteristics, Examples of this are legion; to quote only three,
the adoption of sweepbeck as a means of insreasing critical Mach
number hag led in some cases to an undesirably high value of Gv
at high CLB ; the hipgh operational altitudes now common, result in
poor damping of the lateral and longitudinsl oscillations; and the
inertia distribution of many modern hizh performence aireraft is such
that inertial cross-coupling in roll is readily induced, The reader
will doubtless be familiar with many further exomples of this trend

of reduced stability with increased performance.,

The problem that confronts us is, then, how we mey improve an
aircraft's stability and response characteristivs without sacrifice
of performance. some improvement can be achieved by careful design
of the basic airframe., For cxample, the above-mentioned excessive
@v_dng to sweep may be reduced by the adeoption of anhedral, and a large
fin may alleviate the undesired cffects of inertisl cross-coupling in:
roll, However, the gains that can be attained in this manner are
limited by the restricticn that the aircraft's performence must not be
reduced, and in mony cases autostabilization must be rescrted to if

satisfactory response and stability cheracteristics are to be attained,

If on autostebilizer system of unlimited weight, complication
and expense were permitted the stability and response characteristics
of a given aircraft could certainly be made quite satisfactory mnder
all conditions. 1n practice, of course, all threc of the ebove
factors will Le limited and it should be appreciated that any
discussion which fails to take into account the possible effects of
such limitations may be somewhat unrealistic, Thus, for example,

a study of the effects of changing latere) derivatives may show that



satisfactory leteral stability characteristics may be cobtained with a
value of n_ severzl times that of the basic (i.e, non-autostabilized)
aircraft., But it may be that the power available for the autostabilizer
system is inadequalc to generate the control surface deflections required
to attain this value of n_ at moderate and larpe angles of sideslip.
Bven if sufficient power is available, the aireraft designer may well
decide to limit the maximum amplitudes of the control surfsce deflections
due to the autostabilizer so that in the event of a run-away catastrophic

divergence will not occur.

One important reason why comparatively little attention has been
given to the more practical considerations of autostabilizer design such
as the ebove-menlioned, is simply that the problem is non-linesar; i.e.
the mathemntical formulation of such a problem reduces to a set of non-
linear differential equations. Whereas linear dynamic systems of great
complexity mey be described by differential equations having fairly
straightforward methods of solution, the corplications involved in solving
even a simple non-linear equation may be considerable. For aircraft
motion having several degrees of freedom it is frequently found that no
analytic sclution of the resulting set of non-lincar equations is known,
Step-by-step numerical sclution is usually a tedious process and recourse
has usually to be made to analogue computation., The procedure then
adopted &s to solve the equations of motion for different valucs of the
adjustable autostabilizer purameters within the preselected limits. The
acjustable parameters of the autostabiliger system are then fixed at those
values which have been shown to yield response characteristics acceptably

close to the desired response characteristics,

The above procedure suffers the disadvantage of demanding analogue
computer equipment - perhaps of ccnsiderable expense - and the procedure
has a certain crudity in that the final (optimum) values of the adjustable
autostabilizer parameters cannot be attained directly but are arrived at
by trial and error., Nevertheless, for the design of autostabilizers
for pilotless aircraft having non-linesr equations of motion with several

degrees of freedom this procedure is prcobably the best practical technique



available, Analytic mefhods are cnly likely to prove superior in

prcblems of very limited complexity.

For piloted aireraft even the recourse of anslogue computation
may fail, It is well known that the stability requirements for piloted
and pilotless aircrafi differ. For example, spiral instability may be
quite acceptable in a pilcted aircraft, whereas in a pilotless aircraft
it would be catestiophic., In a piloted airecraft, longitudinal or
lateral oscillations having a very short period may cause confusion and
discomfort to the pilot whereas in a pilotless aircraft these characteristics
may be quite unobjectionable - or even desirable, since such short pericds
are usually associated with rapid rates of response. Considerations such
as these show that we cannot simply assume that the cptimum setting of the
adjustable parameters of an autostabilizer calculated on the assumption of
pilctless flight will necessarily be suitable for piloted flight. The
above-mentioned analogue computer equipment may (with further expense) be
extended to form a flight simulator, but the representation of flight in such
a device may be too limited to be satisfactcryﬁ Aetual flicht tests using
the autostabilizer equipment can, of course, only be undertaken when the
aircraft is complete and it is obviously desirable to have the design of
the autostabilizer equipment finalized (at least within limits to allow
for possible inaccuracies in the data used for computation) well before the
completion of the aircraft. Might we then attempt an analytical soluticn
of the problem of optimizing the autostabilizer system of a piloted
aircraf't by representing the pilot mathematically by a suitable transfer
function in the equations of motion ? For a purely linear system (i.e.
linear aircraft and autostabilizer characteristics) this would be possible,
but for a non-linear system the equations of motion would be even more
complicated than in the case of a pilotless aircraft and the chances of
an analytic sclution being known even less, Apart from these consider-
ations, however, at the present time nc satisfactory transfer function
to describe the pilot is available,though it has recently been shown
that an expression for the transfer function of a pilet mey be obta%ned

for certain very restricted types of manceuvre such as pure yowing.
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Uor more complicated manocuvres it seems that the human pilot is
actually able to vary his transfer function to suit the conditions

of flight and the demands made on him, In view of this, the com~-
plications of such an analytical soluticn starting from the equations

of motion, as suggeslcd in this paragraph, become formidable,

From the above survey it might seem that an analytical solution
of the problem cf optimizing the autostabilizer system of a piloted
airfract bhaving non~linear characteristics (either in the aivcraft
dynamics, or in the autostebilizer system, or both) is, at present,
hardly to be hoped for., In fact, this is not the case, and the
purpose of this thesis is to present a straightforward technique
developed by thie present writer which yields emact sclutions for the
optimum values of the adjustehble paremeters of a speeified auto-
gtabilizer system fou: iinear cases and approximate solutions of good
accursey for many ncn-linear cases of importance, This techniqgue
is &g licable to bg%ingi%{fgés aireraft having linear characteristics
(including the autostabilizer system) and tc pilcted aircraft having
certain non-linear choracteristics (either in the aireraft dynamics,

the autostabilizer, or both).

CHAPTER 2,
2.1, THE OPTIMIZATION PROCEDURE FOR PILOTED fIRCRAFT

The most general procedure consists of a number of steps as
detailed below. In any particular example it will usually be possible
to telescope two or more of the steps into one.

Step 1.

The response of the basic aircrar’t (the aireraft with no
autostabilization) to a specified input is caleulated. This response
is called the 'basic response’,

Shep 2.
The desired vresponse to the input is specified, and compared

with the basic response, In general the basic response will differ



sppreclably from the desired response and autostabilization will be
required if the desired reswonse is to be attained or closely
approached,

Step 3.

The type of autostabilization to be used is selected (i.e.
tﬁrgq,f\ n_, bn_, etc.) and any limitations or non-linearities specified.

It is assumed that the desired response is attained exactly,
through the combined actions of the autostabilizer and the pilot.
Step 5.

The optimum adjustment of the variable parameters of the
autostabilizer system is assumed to have been made when the effort
demanded of the pilot is a minimum. Ve use the term 'effort' in a
broad sense to include mental strain es well as physical exertion.

The mathematical representation of effort by means of an 'effort
function' is discussed later.
Step 6.

With this criterion equations for the optimum values of the
adjustable paremeters of the autostabilizer system are produced
and solved, -

Step 7.

The time history of the control surface deflecticns demanded
of the pilet with the optimum autostabilization is calculated, If
these sppecr difficult to attain it is necessary to proceed to Step 8.

Step S,

“he response to the specified input with the coptimum autostab-
ilizaticn but with no pilot action (other than such as may be included
in the specified input) is calculated, This response is then compared
with the desired respense, If it is acceptably close to the desired
response the optimum sutostabilization mey be regarded as satisfactory;
if not, we conclude that the type of autostabilization chosen is
inherently incapable of producing a satisfactorily close approximaticn
to the desired response even when adjusted to its optimum value, and

scme other type of autostabilization must therefore be selected.



o

Discussion of the above procedure is delayed until the end of this
chapter, Four examples now follow, In each we assume a piloet

oo
effort function of the form f I:n (1) ]2 dr, where n_ (1)
Pp Pp

o
is the elevator deflectien that must be applied by the pilot to

attain the desired response, andr is a measure of time. Thus we
shall assume that the optimum autostabilization is that which
minimirnes this integral, (The procedure is by no means restricted
to effart functicns of this type and the use of other types of effort

function is described later).

2.2, FEYAMPIF 41, TIONGITUDINAL SHORT-PERIOD RESPONSE
TO AN IMPULSIVE PITCHING MOMENT

The standard non-dimensional equations ef motion for short-

period lengitudinal response are
(D=-2)w(r) —.?1 (v) = {2:1)

0
m, m
ki B, _d) A
-(\“ D-|.mW w('r) +(U D Ju)q(?')zm(‘l') (2.2)
assuming z(7) to be negligible |
d

rith D= —

ar
A ad
and g (T) = a7

We assume that an :'meulsive‘pi‘tching moment (due to, for example,
gun recoil) is applied such that m(7) dr = 10~> where € may be

made as smell as we please. .

LApplying the Laplace transform to Equations 2.1 and 2.2 we

ebtain
(s-z)w(s) - d(s) = 0 (2.3)
(rzwm) w(s) (3}_39_) () = 107 (2.4)
H i 7! G
whence w(s) = 1 O":j
i m (2.5)

s° +QRS+R2+J2



s

m T, m

vhere s + 2Rs +R2 +J3%° =g + s (—“?‘g—"‘.:; —z___) wy S aoh B (86)
‘B g ¥ B ¢V

Por the aircraft of Appendix I, flying at M=0,9, 50,000' with the C.G,

T 3 3 ] 3 .
at 28 s.m.c., the following derivatives apply:-

B, # 2w Iy m o= -0.108, mq = ~0,2263, I, =-0,0895,
i, = 0,298, u = 65,0,

B

H

1,706, J = 11.51,

vihcnce R

5 ]

Applying the inverse Laplace transform to Equation 2.5, we obtain

=RT
W(T} = ‘[-j? & 10—3 e sin :ZI_‘ (2 7)
"B g . -
wl 7067
c. Wy = 1.225 e sin 11,51 7 (2.8)

T

Equation 2.8 describes the basic response (i.e. the response to

the selected input with no autostabilization) in W  of the aireraft,
Fxarinotion of the groph of Equation 2.8 (¥ig. 1) shows that the
response is merkedly oscillatory and only moderately damped. Iet us
suppoee that the desired response in W is described by

-5 5
207 oin 44,517 (2.9)

B e

WD( 7 =1.225 ¢
11 .51

Ve assume that the sutostabilizer availeble is of such a type
thet an elevator deflection proporticnal to ‘E}_ may be produced., Thus
(neglecting ternms in 8, ) the derivative mq is at our disposal,
In addition to the normal zssunptions of linear theory implicit in
Lguations 2.1 and 2,2 we 2lso assume that the motion is sufficiently
smcll for saturation and limitation of control surface deflection effects
in the cutostabilizer system to be neglected,

total m with autostabilization
Let X/ = ks

s

:‘.1q of the bosic sdrcroft



The problem is to determine the optimum value of k.

-5, 0T

We have W, (r) = 0.4064 e sin 19.51 7 (2.9)

whence D w(r) = ¢ 2*% (~0.532 sin 11.51 74 1.225 cos 11.51 7) (2.10)
From Equations 2.1, 2.9, and 2,10, we obtain

8(r) = e (0,28 sin 24,51 7 + 1.225 cos 11,51 )  (2.11)
-5, 0T, . =

whence DaD(T) o @0 rL-”lQ.E:j sin 11.51 7 = 9.%85 cos 11,51 7) (2.12)

Equation 2,2 may be written in the form

" . B} K n _ W Hr
_anj;) o) +(p-" ) DN ) =00 By ),

where M is the (non-dimensionalized) applied

impulsive moment

and TJP is the elevator deflection that must be
b applied by the pilot to attain the desired response,

Substituting the numerical values of the derivatives into Equation 2,13,

we obtain after some reduction,

by P (1] = o D-07 [(+1.25 sin 11.51 7 = 8,982 cos 11.51 T)
"B + k' (=0 2135 sin 11.51 T + 0,930 cos 11,51 7) ]
* “_“_"g_ (1) (2.44)
B

Now cur Cl‘iubI‘iOl‘l for the optimum value ef k dis that the integral
1
I= [-YEU : ﬂP () ]2 ar, should be a minimum,  As

or TS €, Wher'e € may be as small as we please, we may c¢liminate
mG(T) frem the remainder of the calculation (with consequent simplification
ef the expressions to be dealt with) by the device of changing our criterion
from that of k' being chosen to minimize I te the following criterion:

k' is chosen so as to minimize the integral 1, , where



With negligible error, the following relations hold for € arbitrarily

small.
[ e gp . L (2.15)
P
e o
'e“pt. sinwt dt = —2—-3-';-
P4 W (2,16)
£ Lo
[3 ﬁpt. cos? gt At = P2 4 2 w®
¢ P (P? + 4uw?) (2.17)

Squaring Equation 2,1%: and integrating the result between limits of

1

€ and « , meking use of Dquations 2,15, 16, 17, yields after some reduction

an expression for I, of the form ZIZE = C.448 k'*~ 0.854 k' + terms not
involving k'’ (2.18)

s . - BIe i Il
For I_ stationary 7 = Owhen k' _k bl 9.53

We must now ascertain the nature of the control deflection demanded

of the pilot with the optimum value of k'’ (Step 7).

Tb (1) is obtained from Equation 2,14, noting that because of the impulsive
D

nature of mG( 7) the solution for "_ (7) is, strictly, valid only for 7 > € .

Thus we obtain

-5 A
B m, (1) = €™ (-0.806 sin 11,51 T- 0.122 cos 11,51 )
‘B~ (2.19)

Equaticn 2,19 is graphed in Fig.2. It will be seen that the required

n, (7) con hardly be attained, if only because the initial (7 >€) amplitude
is non-zero. However even if the pilot holds the stick quite fixed

(Step 8), substitution of k/ = 9.53 in Equation 2.15 et.seq. yields

w(7) = 4.295 &~ gin 44,477
k= 9.55.m, =0, M7 (2.20)

which, as may be seen from the greph (Fig,2) is a close approximation
to the desired response,

We conclude that a satisfactory approximation to the desired response
is attained even if the pilot holds the stick quite fixed., The optimum

autestabilization may, therefore, be regarded as satisfactory.
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2.3 EXANIIE 2, TONGITUDINAL SHORT-IPERTOD RESPONSE TO A
SHARP-TDCED GUST

(It is irportant to avoid the appearance of divergent integrals
in the expression for the effort function, This, and the next example
show how this may be accomplished even with specified inputs of infinite
duration, )

It is assumed that att = O the aircraft flies into a sharp-edged
downgust of constant magnitude and infinite duration, The limited
realism of this assumption should be appreciated -~ use of such a
simplified representation leads to straightforward working, however,
and there is no essential difficulty in extending the technique illustrated
by this example to deal with more complicated forms of gusts,

If the initial change in incidence due to gust is - WO, then
application of the Laplace transform to Equations 2.1 and 2.2 yields,

for the response in W(7) of the basic aircraft.

(s = 2W) wis) - ,c}(s) = -"WO (2.21)
- (i"j{ 8 4 mw) w(s) + (n_B s - ?2) 2 (s) = m(s) + Hp W (2.22)
" m”ﬂ' T u
q ¥ Ty
vhence w(s) = ["S o iz

1'-!"Ic:l 5% 4208 B 4 0 (2.23)

with the same notation as the previous example
for m(s) = 0 (i.e. no applicd moment by the
pilot or autostabilizer)

Using the same numerical data as Example 1, and applying the

inverse Iaplace transform to Equation 2,23 we obtain

(7 -1, 7067 ’

:f—i—-) = eAi 706 (=cos 11.51 T+ 0,E45 sin 14,517) (2.24)
o}

Equation 2,24 describes the response of the basic eircraft,

The calculation now proceeds in a similar manner to Example 1,

Note how in formulating the initial conditions for Equations 2,21

and 2,22 we have chosen the crigin of w such that w, 3= 0.



e 2 .

In this way the appearsnce of divergent integrals in the expression for
F n (l 24 T is avou.ded.
J| Pp
°© " There is no further new point to be made by completing the example,
so we pass on to Example 3, in which there is rather more difficulty in

eliminating divergent integrals.

2.4, EXAMPIE 3, TONGITUDINAL SHORT-PERIOD RESPONSE TO A STEP
CEPLECTTION OF FELEVATCR

(This monoeuvre is of some importance as it may represent a
streesirz case, As we shall show, the stecady-state response must be
considered separately frun the trensient response due to the appearance
of divergent in%tegrals in the expression for -L'E:) {7) ]2 ar .

"D

We write the equaticas of motion as s

(D=2 )w (r) - (1) _0 (2.1)
—(gn +mW>W(r) +(1p D —3,1)’:1 (1) =mp o Bp(7) #m 80 (r) (2.25)
U [P H

whereA n (7) represents the step deflection of the elevator,
An=0forr <0, An=06n for7T> 0
and np (.} is the additional 2levator deflection due to the pilot.

Application of the Laplace transform to Equations 2,1, 2.25 yields for n = O
p

(68 ) ¥ () = ale} s 0 2.3)
-<%S+mw)\?(s)+<ﬂjs-r_ng>ﬁ(3) = m.b, (2.26)
U H u s
S e B by
plaf w2 e ¥ 4 ) (2.27)

Applying the inverse Laplace transform to Equation 2,27 with the same

notation as Example 1., we obtain for the basic response in w(r),

w(r) = f_fn 67}. 4 I:'l - e-RT(cos Jr 4.:]}-{- sin J 7):I (2.28)
B B 43
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Using the numerical data of Example 1., we obtain,

w(7) = 9.13 i: i = G0 ST

(cos 11,51 7+ 0,1482 sin 11.51 TE] (2.29)
0“1 ° ?O6T (

= W - .

oo [as]

cos 11.51 7+ 0.1482 sin 11.51 7) (2.320)
where W, 1is the steady-state response in W

Now for the steady-state, Equations 2.1 and 2,25 become

- EW. woo -,é]*rn =0 (2031)
“ g ¥ =My, 9, =m, Sy (2.32)
u

Thus
1 0 1
l o ....1"‘
W o= m_.On T _g
L n u gliop B R
m_ & pym_-m_ &

0¥ =m w g W (2.33)
u

(i.e. the steady state change of incidenece is inversely proportional
to the mancecuvre margin), Now re-writing Equation 2,25 in terms of
the desdired response,

m, . M (7) =—<If_f_c_r D +mw> '-'-‘D(r) +<E‘§_D—m_g_)%(r) - mp . 5 n (2.34)

D
- " . y
For E? (1) ]2 ar  to exist n_ (7= ») must equal zero.
P B

Thus ¥ _ and 5n must satisfy Equation 2.33
A

5 " ~

1.€. WDCJ = Wo:.‘ > qD ) qDO
Hence, the steady-state response must be adjusted to the desired
value by autostabilization or other means before attempting to improve

the transient response,

Let us suppose this has been done, so that wua in Equation 2,30
is equal to the desired steady-state incidence change W Thus
(strictly) the manoeuvre margin has been fixed and any further auto-

stabilization that may be intrcduced to improve the transient response
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must leave the value of the manoecuvre morgin wnchenged, Hence the
derivatives contained in the expression for the marceuvre margin are
nc longer at our c?_.w'_:r.}'fa.fsa«_lAI and any autcstabilization that we may wish
to introduce must either consist of the varistion of , Or the eff'ective
introduction of derivatives such aa m@_ s n;-(-ie . ete, In practice, howcver,
it is unlikely that the steady-state response will be specified exactly,
as we have assumed here, - it is morc likely that the static mergin
only will be specified, leaving derivatives other than m  at our
disposal for autostebilization purpozces, In these clrcumstances the
desired response should be specified in such @ marmer that its steady
state is zero (e.g. D WD(T:: should be specified, rather than wy (T) as

in this example,

- . . . s 4 .
Equation 2,29 is graphed in Mig.3. The basic response in w(r) is

g

seen to be markedly osciliatory with a large initial overshoot, Ve

assume a desired response of the form
w.(7) r s B '
2 L 913 ERE 540 (cos 11,547 & 0.1504 sin 11.51 T)] (2.34)
Me 7
whence DWD(T) 5 o
—=g— = &~ (112,0 #in 11.51T 4 30.8 cos 11.51 T) (2.35)
-—ln. T?

From Equations 2,1, 2.34, 2.75,

A7) .
% ks f I -
——5~ = 2145 +e 2:0T0109, 81 sin 44,517 4+ 9,35 cos 11.517) (2.26)
“nn

whence

Dd

“D B D TPy o e .
e A 2 (1,218,2 cos 11.51 T= 656.5 sin 11,51 T) (2.37)

-

We assume that the autostabilizer available is of such a type
that an clewator deflection proportional to Dw may be produced, Then

mo . .
39 w with svtestabilizer -~ 2 :
putting h = avtestabilizer may scive Bquaticn 2,25 for

.

n }'__".D (T) W basic



T

Ml
J...J..-\..J’
; wb OF = } oy
Bogom (1) = % [(45.81 + 9,26 b) cos 11,517 +(=760.9 + 33.7 h)
T
B m P S sin 1.5 ¥
+ a negligible constant term due to rounding-sff errors (2.38)

Putting T = 11.511 we cbtain after some reduction

B oo o Ty (T)12 = (2.93.6 h + 85.75 h‘?)e“'%ST cos® T
[:B g—n 4 ]

_L'J‘"'r‘l 4
+ (<51,300 h + 1,136,0 h*) ™ %" gin" T

)e_'868T sin 2 T

1l

(-6,473 h + 312,0 b°

+

+ terms not involving h (2.39)

Integrating Bquaticn 2,39 between 0 and <, making use of the
integral formulae of Equations 2,15, 2.16, 2.17 with €y 0 we
obtain eventually
(=]
Bes1s0 (07 =70HK - 27,525 h
A
s + terms not involving h (2.40)

For this integral to be stationary

- i mnr s 0 ]
B=Byying = 2052 = 19.6 (2.41)

Substituting this value of h in Equation 2,38, the elevator
deflection demanded ¢f the pilot with thke optimum autostabilization,

n_ (7), is given by
£p

B T g
K W, 45) e 198,71 cos 11.517 = 100.9 sin 11.517
T D

1.
.5 , . (2.42)
] 'n
Owing to the non-zerc initial amplitude this deflection cannct be
attained, However, proceeding to Step 8, we find that the stick-fixed
response with the optimum autostabilizeticn is described by
- G P =4, 50T ; il
w(7 = 942 |1 ~¢e b 507 cos 10,87 » 0,447 sin 40.87 f1 (2.43)
m 3 e 3 ,-c‘}-l-.a
non
Fquation 2,43 is grapned in Fig.lL. It will be seen that it
approximates well to the desired response, The eptimum autcstabilization

may, therefore, be regarded as satisfactory.
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2.5, EXAVPIE L, SHORT-PERICD LONGITUDINAL RESPONSE TO AN TMPULSTVE
PITCHING MOMENT OF AN ATRCRART HAVING A NON-LIWFAR VARTATION
OF PITCHING MCWENT WITH INCTDENCE

(This example illustrates how the optimization procedure may be
extended te deal with non-linear derivatives and serves as an intio-
duction to the technique used in the succeeding chapters for the

cptimizatior ef autestabilizer systems having non-liiiear characteristics, )

Let the static variation ef pitching moment coefficient with
incidence be of the form Cm = Ax 4 Be® |, where A .and B are constants,
Then, for a canventional aircraft having the wing positioned near the
C.G., we may allow for this non-linearity in the equations eof motion simply
by replacing the term m . w(7) in Equation 2,2 by a cubic expressisn in
w(7). VWith this exceptien, we use the numerical data of Example 1.

m

The equations eof motion become

(D - Zw) wi(r) -9 (1) =0 (2.1.)
-me owir) + ™ w(r) + B . '»‘«'3(7') + (lB D~ 2{.1) ﬁ (1) = m (7) (2_1,1_,_)
u 2y 7

For the same specified input as Example 1, and with the same desired

response in w

wD(T) - 0,106L o287 sin 11.547

e i

the static variction of Cr'l with @ is of the form shown in Fig.5.

Choesing H m o= 132,53 and M m = ~13,230.0

(This form is chosen in crdsr to represent the characteristics of
‘pitch-up'). The elevator deflection demanded of the pilot if the
desired response is to be altained exactly is given by
Hn » T (r) = e, Dw(r) +m ow(7) + w.(r) 13 + Dg.(7)
iy D -lg ‘ 1" D m, ¢ [ D ] D

xe. 1{'f I

Ty . 4 (1) - emg (r)

5 i (2.45)
‘1’

Substituting the numerical data of Example we obtain
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0. 34T

o (7) [ (1.23 sin T - 8,982 cos T)4k’ (=0.2135 sin T
- Pp

g + 0.930 cos T)
- 15,98 8-1'302T s5in”T - & 5 mG(T)
i (2.46)
where T = 41.54 T

As in Example 1, our criterion for the optimum ¥ is that

[ [#Ji‘n.”pn (T)]2 d T  is to be a minimgm, with € as
small as we please,

Squaring Equation 2,46 we obtain after some reductirn

I" my My (T)T = (e mF (-0.8205 K% + 16.476 ')
i o o 0-86ET (0,866 k'? - 16,7 &' )

+ e'0‘868T sin 2T (3,06 k' - 0,198 k'?)
+ 2.96 k' e-1'736T sin® T cos T (2.47)
+ terms not invelving k'
With negligible ecrror, for very small € ,
,f[ e-pt dt = % - f e—pt sin wt dt = W
) ) p? 4 ©° (2.15,16)

-pt . fn
Lo(e .sin t dt may be evaluated by means of a
teble of Leplace transforms or may be read from the graphs (Figs. 18 & 19).

The remaining integral is evaluated by integrati-n by parts, thus:

_5.‘;‘1.1.'» _— = > ant o ok
[g «83in ‘b] = La, e . 3in't @t
L " L (2.48)

-2 [ (eEth sin t) dt
E

I

./’cl*m'.sins t.oos 4. 4t
€

]

(2.49)
which last integral is evaluated =s described above,
Integrating Equation 2,47, meking vse of the above integrals,

we obtain after reduction
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* Fd _., i o S ;
j |’EE&, y (T)3 = 0.5255 ¥2 - 40.755 k
it el n :
 FrEd FEL .I.
£ + terms net inveolving k/ (2,50)

whence k’ ; =10,785 = 40.25
optimum 5%0. 525

Substituting this valuc off k’ in Equation 2.43 ve find that the elevater
deflection demanded of the pilot if the desired response is to be attained

exactly is given by,

m, n (1) o e (0,558 cos T - 0,955 sin T)
™ P oo
S 15,98 ¢~ 149025403 o (2.51)

This is graphed in Fig,.5. The required n_ (T) can hardly be attained,
mainly because the initial (7 >€} amplitudc is non-zero, It is necessary,
therefore, to proceed to step 8 of the eptimization procedure.

Step 8 presents more ditficulty thon hitherto due to the non-
linearity of the equations of motion, The procedure adopted is as
follows.

Bguations 2.1, 2.44 arc combined to give

[+ (P -PqK ~2)Duim +7q ¥ % Jr(r)wm W(r) = im, (1)
.. T L iy i i
(2.52)
where mG(T) is the (non-dimensionalized)
~applied impulsive Tgmﬁnt :
Since fm (r) & =107, | () ar = 1.225 (2.53)
T j T
e v 2

bubstituting the appropriate numerical data in Equaticn 2,52 we obtain
| 7 + 10,04 D+ 150.6 | w(r) - 13,230 % (7) =1.225 L -
- 2.54

where hL_denotes a unit impuise

Equation 2,54 is sclved by Tustin's regression equation technique
(see Ref, 8) - =n extension of Cardinzl Spectrum fAnalysis - using o

step intervel of ?b nf an airsecond and replacing the -anit impulse

by a triangular pulse of equal strength (i.e, 'area') and of base ?6

airsce, The solution is graphed in Fig,é. Owing to the limitations
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of finite-dif'fersnce techniques such as that employed, the initial
value is in error ss (4o a leszer extent) is the second value.
f1lowance has been mode for this in drawing the curve describing the
solution of Hquation 2.04. These errors could be reduced (but
never elizninated) by toking a smeller step-interval.

Comparison of the desirced response {Fig,41) with that graphed
in Fig.6, shows good agrecauent between the two. We conclude therefore

that the optimum autostabilization is satisfactory.

Discussion of the Optimimation Prrcedurs

The purpose of this step is merely to confirm the necessity
for autostebilization, For non-linear cascs the calculation required
for this step may be considersble snd if it is reasonably certain that
the basic response is unsatisfaccory this step may be omitted. Thus
in Example 4 since thc non-linearity is mild for small w it is
reasonable to suppose that the basic response of the aircraft will be
somewhat similar to the basic response of Example 1., and Step 1 may

paluly be cmitted,

Sten 2.

There should be little difficulty in specifying the form
of the desired response ~ though there may be congiderable difficulty
in assessing the merit of any pacticular form of response chosen.
For example, the author chose the form of the desired response in

Example 1.
W (1) = 0.1064 € 2" sin 11,54 7

sinply because it is smooth and highly damped and therefore likely
to be pleasing to the pilot. Wanr other similar forms of response
would have been equally acceptable and it is not easy to formulate
a numerical criterion fer the relative merits of the possible response
forms,

It is true that (military) aircraft specifications frequently

deman? that certain response and stability criteiia should be met -



for example, a minimum value of the logarithmic decrement ef the

longitudinal end lateral osciliations is comonly specified.

Criteria of this kind are chosen on the basis of pilots experience

and preferences, (see for sanple Ref, 5) but although these criteria
define the poundaries hotween acceptable and unacceptable response
characteristics they provids little guidence on the relative merits

of variocus acceptable responses, Optimum forms of response are
comrenly specified for servamechanisms (see Ref. 10) usuelly forms

vhich minimize a certain function of output error (£) such as
[+a]

l B a7
- but owing to the large number of freedoms possessed by an aircraft
and the wide range of {light conditions under which it may operate it
hardly seems practiceble to extend this concept of optimum response to
aireraft flight, Certeinly any attempt to do so would be beyond the

scope of this prescnt report,

Whilst this difficulty of assessing the merit of a given response
should not be overleoked, we believe that it is of a philosophical
rather than of practical importance, For any given aircraft one will
alweys be able to suggest a suitable form for the desired response,
even though one may be unable tc define the optimum response.

Step 3.

It is obviously desirable that the type of autostabilization
chosen should be capable of attaining the desired response without
meking excessive demands on the pilot, Otherwise, effort will have
bean wasted in fruitless calculation. For linear systems the time
vector methed of presentation provides an excellent means of predicting
the prcbable effects of various types of autostabilization, The
vector poiygons for the short period longitudinal oscillation of the
aircraft of Exompies 1 to 3 are given in Fig.31. Fram inspection
of these polyscns one can deduce the typs of autostzbilization most
likely to achieve the high damping assccliated with the desired response.
Although for the short period longitudinal oscillation onc could deduce

as wuch from the coefficients of the auxiliary eguation
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m m, pm
— L s [ — V 1 z —_
A2 (--9* 3 -l-"-r-"r * 25 -j-—-i * By o g
;) 3 B

for the more complicated latersl osecillation this is hardly possible
and the use of time vector presentation is very desirable if an
intellirent approach is to be mede to the problem of choosing the

type of avtostabilization most likely to achieve the desired response,

b

Q- e ¥
SLED L,

For reneral {i.e, non-optimum) autostabilization this
assurption must be regarded as a mathematical artifice rather than

an assertion of what is physically feasible, A check on the validity
of this assumption with the optimum adjustment of the autostabilization

is provided by Step 7.

L good discussion of the effects of pilot effort on aircraft
respons€ is contained in Ref, L which see. Thig supports our view
that the purpose of the autostabilizer is to relicve the strain on the
pilot so that more of his attention may be devoted to tasks such as
navigaticn, weapon aiming, etc., and so that he may have greater
rescrves available for emergencies, Unless this view is accepted it is
hardly possible to cptimize the autostabilizer system of a piloted
aireraft as such, and one is reduced to improving the response character-
istics of the (same) aircraft in the (supposed) absence of a pilot.

8 shovm in the Introduction this procedure may be somewhat unrealistic,
(in optimization procedure for pilotless aircraft is developed later in
this report. )

The choice of effort function must be made on empirical grounds,
a8 there is insuflicicnt data at present available on the psychological
and physical strain experienced by a pilot in attempting a given task.
In Example 1 to 6 an 'integrated displacement-squared' effort function

of the form [npr () ]2 dr was employ=d. Although the
. B

pilot actions demanded to attain the desired response wece in each

example physically unattainsble, with the optimum autostabilization the
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emplitude of n_  in each cxeuple was so small that the stick-fixed
Tesponse was véfy close to the desired response, This state of
affairs is more likely to be achieved by the use of an effort
function which is a function of control deflection rather than by
the use of a more refined effort function dependent on time deriva-
tives of the pilot's control deflections. MFor this reason the
writer prefers to use simple 'displacement' c¢ffort functions rather
than more refined typcs, Use of a more refined type of effort
function would result in a more physically feasible npD tut the
results of the pilot failing to achieve this would, in general,

be less satisfactory.

However, many other types of effort functions may be
cmployed. Duddy (in Ref, L) sucgests that the best control system
(autostabilizer system in the present context) would be that which
demands the simplest transfer function of the pilot. This criterion
is much less easy to use as a basis for optimizing a given type of
autéstabilizer systoam since ihere is grest difficulty in formulating

Fad

a quantitative criterlion for the carplexity of transfer functions,
The minindzation of the effort functions of Exmamples 1 to

6 has been performed by the standard procedure of the differential

coleulus, This will generzlly be possible(as we later demonstrate)

even if the desired response is specified in a non-analytic manner,

lrﬁw;dbd the cffort function is of an analytic form, e.g.

JG ’n¥l(r)_j d7 rather than, say j? n (T) da 7 i With

a nen-anilytic effort function recourse may have to be made to

iterative methods of minimization.
Step 7.

Although the main purpooe of this step is to examine the
feasibility of the demanded pilot action, it also checks that the
stationary value of the effert function cbtained in Step 6 is a
minimum and nct a maximum.

In Examples 1 to 6 inspection of n _ (7) reveals the



amplitude to be so small that one might well surmise that the effect
of the pilot taking no action whatsoever would be to cause only a
slight divergence from the desired response, However it is always
desirsble to prove this by proceeding to Step 8, particularly so for
nen-linear systems, where a pilot input of small amplitude may produce
an unexpectvedly large change in the aircraft response.
Step 8.

It is worthy of remark that, for non-linear systems,
Step 8 (together with Step 1) will probably be the most tedious
part of the calculation.

More general comments on the procedure as a whole and
comparisons vith published work are given towards the end of this

report,

CHAPTER 3,
3,1. OPTIMIZ/ATION (F SCME NON-LTNELR AUTOSTARILIZER SYSTEMS

INTRODUCTICN

In general, the amplitude of the control surface deflection

generated by the autostabilizer system will be limited. The limits
may be chosen deliverately so as to avoid catastrophic divergence

in the event of an autostabilizer run-away, or may arise through
limitations of available jack effort, or through installation
difficulties, Provided the control surface deflection required

to attain the desired responsc does not exceed the limiting value

th

]

methods of the previous chapter may be applied, and the limits and
thz non-linearities arising therefrom need not he taken into account,
In this clapter we show how the general optimization

procedure for piloted aircraft may be used to obtain the optimum
values of the adjustable parameters of such a 'limited' autostabilizer
system for the more general case when these non-linearities cannot be
excluded from the analysis, The procedure is applicable both to
'limited' or 'saturable' autostabilizer systems of the type described
above, and to 'flicker' or 'flip-flop' autostabilizer systems in which

the magnitude of the control surface deflection is constant, its sign,
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at any instanl, being tho same as that of some proaerlected response
parameter. In the latter case; we assume that the system parameter
to be cptimized is the magnitude of the control surface deflection,

We adopt the term 'Adtostabilizer Gharacteristic' to denote
the graph of the autostabilizer output (i.e. control surface deflection)
against the input signal to the autostabilizer, It is first necessary
to derive a family of continuous characteristic curves which approximate
to the discontinuous characteristic of the actual autostabilizer, The
seventh-power polynomial approximation presented in the following section
has peen found to give solutions of good accuracy without introducing
too great complication intc the calculation required for the optimization

procedure,

3.2 To deternineg the Ccefiicients of the Polynomial Approximation

to the Autosivchilizer Character stie,

\ e
FIG,3.1.
In Pig.5.1.
y = the control surface deflection due to the
autostabilizer
x = the input signal to the autostabilizer (Thus for, say,

mq_autostabilization, y would be elevator deflection,
and x, rate of pitch)



¥, 1s the actual autostabilizer characteristic,
Yy is the limiting value of y,

X is the maximum value of the input signal 2t need be
considered in any particular example, (Thus for mq
eutostabilization, Xy would be the maximum value of

a0 )

x, is the 'saturation' x ,

If the maztimm arplitude of conbrol surfuce deflection is limited
to preveni catastrcphis divergence ensving from antostabilizer failure

and run-asy, then Tt is fixed and the cnly parameter of Ip at our
disposal is =z_ . for 'Plicker' cr 'flip-Tlcp! autostabilization we
assume thab the parancl v at our disposal is Yype

In this section we seek to obhain expressions for the
coefficicnts of the polymomial approximations to Yy - We select
a pcl mondel approximation cf the form

Y=ax+a x° +a % 4 2 x' = P(x) (3.1)

Cur criterion for the czoice of a , & , & , a , is that
7

o 1 3 5
’ : ] s
rPL’.\c) - | dr = a rinimum % ¢3.2)
. '
Putting P(x, - ¥y o#moe , it will Le geen that J €° dx must be
. ' J.‘. “ o]
evaluated in iwo sheps, O to x , and 2 to X s because of the
° & = N
discontinuvous nature of Vo
For 0 € x s Xy
2 S = 7 |2
e® = (a === )x+2a x +2 X +2 X (3.3)
= X, 3 5 7
[
whence
e dx = + (a T x 3, oa (a o) ¥ e (a J ) ai x'
t= g . -'+T-"‘" . ) %5+ 5 a, ¥+ _3 i
x o X, { X F i
(] — o 3
.'2 a a t-\? + & o {7{9 + .g_ a a + az x 11
9 7 V7 ']"c'" z“sls 1 sz 8 '8
s 11
2a a 13 15 )
57 ¥, +8 X (3.4
=il g 7 '8
13 b i
5



For X, € X« xM

25~

R 2 . P
et =[BT+ 5 - 25, PO (3.5)
whense
s 2 RTINS RN LR
jm e dx = yM xM yMD} XM 2 31'-1 as }:M 3 31‘& as XM L yM a? 1
s +a1am:+231a3yis+[2aa B A xl?*'g e w5 ng
ks it 1R __1.._.2_..___2} I _[ ' :[
3 b A ? 9 i 2 5
o, o, 5 R 15
19 15 15
2 s 1 ¥t 8
Vg Tt H Y N T K TR YL %
5, . 2 2
- a "X =28 . ¥ = = raa a x
s TG B ma BB Tl S L Ra
i
o 2 13 2 15
2 11 2a a x =T <
—[: -;_11 - 85 7 .98 i 0 T - [
s 13 15 (%)
Summing Equations 3.4 and 3.6 we obtain
X,
il
szedez-‘}rng*za}:13+2a x5+?ax?+2ax +}"°‘(X"X)
= z 4 8 = 3 8 =z 5 8 3 7 B m
e S b I 2 ]
) s
w. T a T R . 6 (1 3
T d® R YE %Wy *HE Ny 8 Xm]
M %% % Yoty Y% PES 3:‘
I 3 2
2 28 a 22 a + a
+_1 3 43 5 l— 5 3:[ 7 2
5 M fT 5 otk . N *9[a1a +aa]xM
25 8 4a % . 2a a 13 a? x5
e e e
11 | 13 15

3]

oI

da -

1

o
P

(3.8
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Difflerentinting Fquation 3.7 we obtain

-

aI 2 2 “-L'\
Ta T ogdy iy Ay v
1
oT i 4 1 4
'52{3 =2y 2V t
ox 1 5 gl 6
E"a5="35’14"'}e1 tI X, ¥
0T 1 8 1 8
'5’5{?“ T YT K
PFox
1 o4 o2 2 [
3 5 i A ;
1 4 41 4.
5 T 9 ¥
[
2 2 % 1 ]
£ 5 1 33 )
1
4 4. 2 :r_J
e A 43 15 I8

This equaticn

28. 5 2a

3 P 1 5 7 T .9
o T Yy FTT Xy vy
211 On, oa
AR e 7 .M__! i
5 Ay R E ANy
= 7 ?a} 9 233 11
T YT ¥y Yy Ny
2a 2a 2a
___1_ 9 3 x“li o 5 13

g M *17 % *33

» sbatiouary T, the folllowing matriz ecuation resulis.

- =

2

R Y -j—-%‘
3 4

a = i) k
s XM e
B X 1=
5 T 12
T a8

a 1 k
TxM“_ -—"8"-77‘2"

w3y e genowlised for all x . and y by

2a

2a
T

& ea—
1..

-

.

% M “s M
putting = P B o, s ﬂh , ¢tc, The solutions for
Il\‘I “h
£, by, etec. may be weiticn In the form
A = P +P ¥ 4P 1* «P ¥ +P 1f
2] 0 2 3 & 8
2 8
.{.\.3 - Qﬂ &4 Qz k + ¢ e e & =8 & o QE k
a8
-i"\-s = R‘ 4+ « & 8 & & & 8 » 8 8 8 "4 RS k
-{L = S <+ ® . ® Y s @ . s & e + S kB
7 o 8

1

xl\‘lﬁ'!

(3.13)

(3.1L4)

(3.15)
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The ccefficients E; . Pz 5 eeseeeS, o S are given in Table I both

as fractions and as numbers correct to 4 decimal places, It will

be observed that the determinants required for the solution of Egquation
3.13 by Cramer's rule ars ill-conditioned -henze the elements of these
determinants are left as frachions throughout the solution off Equation

S

3.13, only the final solutions for the coefficients P , P, ..... S, S,

being convorted to decimal form.

Graphs of ¥y = A&x + Asxs 4 333?4.L?x? are plotted in Figs., 7-16
for k& = O ¥ 25 o3 oy o8, 36, o7 »8, «9 It will be seen that
except for the lowest ks the polynomial approximation to the exact
avtostabilizer characteristic is very close and we believe that the
accuracy of this approximation is sufficient for most practical calcul-
ations. We later give an example for the k =0 case (flicker auto-
stabilization), for which the approximation is least accurate, the results

of which support this view,

3.3 Example 5, Longitudinal Short-Fe¢riod Pesponse to an Impulsive

Pitching Moment with Flicker mq- Autostebilization

(This example illustrates how a flicker autostabilizer system
may be optimized using the same type of cffort functicn used in the
previous exsmples.)

We chall employ the numerical data of Example 1 and the same
magn-tude of the applied dmpulsive pitching moment as in Example 1.

The non-dimensicrnalized equations of molion may be written as

1 aw) w(r) -4 @) = 0 (2.1)
m /i m
- Dam (r) 4B D - 2 () = wlr) vms 107} bq . nlr)
(u Y >w i T ;"Tg> ¢’ m Tt nz();%)

where mG(T) is the impulsive moment
Ws is the elcvator deflection due to the autostabilizer
?p is the elevator deflection due to the pilot
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From Exerpple 1 the basic response in w(7) is known to be

w(7) = 0.1064 1O i 19450 T (2.8)

We assume a sinilar desired response to Example 1, i.e.
= IO : =
WD(f) = 0.1064 e 2T gin 11.547 (2.9)

. . - - A Al P
The associaveld respenses in Dw. (1), pe.(r) & ao.{r) are as given
D L e ) 0
S : : A =5.
in Equaticns 2,10, 2,11, 2.12, In particular we have{:qD(T) - e 5407

(=0.28)4 sin 14.517 + 1.225 cos 11.51 T}a}

-— A

lring the maxi val * the desired recponse i q
By talring the maximum ue of the siy erponse in q,1qD ——
as 1.4 (the exact velue 23 1.225 but this is not criticel) the
coefficients of the polynomisl approximetion to the auvtostabhilizer
characteristic are given by

n N N ~ AN
s = 7 [ 5.3083 Zp_-19.7388 (D N 4+ 307925 B § - 45.7100 (D Y]

¢ Teds 1.4 1.4 1ok
(3.17)

where 7 = oo amplitude of the elevator
F ] 1 o R Ao -
ceflention generatsd by the
avtostabilizer

jF is the system parameter at our disposal for optimization purposes.

For T > € ( € is the duration of the impulsive moment) substitution
of the numerical data in Equetion 3,16 yieids, for m, = - 0.205, and

for ¥ - T

g0 (@) _ .30t €0 FMT (L0 532 sin T 4 1,225 cos T)

% 138,35 b0ty o ekt

8in T
3 e_O’AShT (12,68 sin T ~ 9.385 cos T)

+ 0.760 e 0- 43T

3
251,01 [5.3833 j‘p__) = 19.7388(_?%)
Tk 1.

A 5 A 7
- 30.7925(3;[) - 15,7104 j‘f@_)]
T. 1.5

(=0.284 sin T 4 1.225 cos T)

+

(3.18)
. e-o'h3hm(1.0165 sin T - 8,052 cos T)

+ 251.0 1 [5.3833 Q - 19.7388 Q° 4 30.7925 Q® - 15,7104 Q7
(3.19)

]
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where Q = o 0T (0,875 cos T - 0.2039 sin T) (3.20)

whence,
- n, (T) = - 0,003387 o OHIE o T & 1, 0%66605 ®
D 3
- g [5.3835 x (0.808 B ) - 19.77288x(0.898 B, )
+ 30,7925 =(0.898 B ¥ - 15,7104 x(0.898 P )7]
(3.21)

(3.22)

1
oD

o = e O W an (v - 77.09)

with P =
1

O
r\

Squaring Bquation 3,21 we obtain

I:nPD(T)T =ng (23.3695 P *- 138.2968 £, 5786233 E
- 5865, 605;- P + 536, 0218 P " - 266.7702 P112
+ £1..0029 P"’*
+ Mg (=0.455493 1*‘ + 0.470428 Pi* - 0,592057 P
+ 02436978 P® 4 046375 B & " B3R 4n 0 ﬁ
- 0.04843 B* & 0BTy 1 L 0.060978 P’ AT a

1
- 0.0250995 7 ¢ =0e43hT 31 1)

{3.25)
+ terms not 1nVOlV1ng"
To obtain the effort function I:Tb T) dT it is necessary
to evaluate integrals of the form °P 2" aT, and of the form
1

fu P, 211_1. e--O'L"‘"ﬂ‘:[| sianTaT . ° In order to avoid too great
a éigression at this point, description of the evaluation of these
integrals is held over to the next scction of this chapter. Suffice
to state that general formulae and graphs are given therein for the
evaluatign of integrals of the forms

. PZn dT and Pzﬂ"l} em' 2in T d T where

P = & sin (T +8), & andp being constants,

Using the results of the next section with P = ]?1 we obtain,

f P ar 1.097,_/ p,° dT=0.908,_/mP16 arT
[ ]

[e=] coe

Q
f P* 4T = 0.807, fP1‘°deo.774, '/mP112dT 0,737

e N e a
P aTs 0,705,

0.852,

4l
il

i
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oo o0

r
r’ 3 -0 43T

f P e O inrar 20,2461, P” e "™ minTa T = 0,366,

1

5 .

- 2 z1m

f P°.e O-L2T inma T = 0.4405, jm p7.e O.L3WT oin 7 am = 0,422
o 2

Integrating Equation 3,23, making use cf the abeve integrals, we obtain

after some reduction,

n_ (r)|® 4T=27352 nt? -0,54959 n
f“ i ny ] I F (3.24)

o
+ terms not iaveliving g
whence
0,54959 x 57.296 . ., 0,67°
p optimm = 2 x 2.3500 (3.25)

(The positive sipn indicates that the sign of g at any instant is
the same as that of '3 )

Since the fotal clevator deflection, n  +7n_  , must be
of a smooth nature in order to cbtain the desired response exactly,
and since ns(r) is discentinuous, it follows that n_ (7) must also be
discontinuous, Th&. pilot will certainly be unable to provide such
a discentinuous HPD(T), so we may proceed at once to Step 8 of the
optimization procedure, without actuzlly calculating the time history
of T!pD , with the optimun adjustment cf ??F
The stick-fixed recponse for T?F = 0. 67° and with the exact
ausostabilizer characteiistic (not the polynomial spproximation)
has been calculated by piecewise application of standard linear
response thecry, the 'pieces' being the intervals between succcssive
zeroes of q(7). The resulting time histories of w(r), and Q(7)
are plotted in Fig,17. It will be seen that the response in w(7)
approximates well to the desired response and the optimum autostabilization

may therefore be regarded as satisfactory.



4 s : A
It will be cbeerved that the solution for g 'ends' at the
) P IR S G s 1 P
seccrd zere of 4 (7)) Thie is a femiliar phonomenon in discaubinucus
auturatic contrel systans mey be explained as foilowns,
Dac to the preszcnce of (waavoifzhle) time lags in the
sutostabilizer circuit 'switching' of the elevator does nol ogpur

Ay

R " ; ~ .
until a short time A T afier 4 {T) ehonges sign enge the

J.t.v

T

-~

Al . - 4 . .
grarh of q (T) againat T at the sccond zero of ’c} is of the form
drean below, -

2
!
g
i L]
- S
.
Y

i
- H
\
b

Switelime cccuvs od the point B, when the Q (T) graph commesces
tc follow the path BOR, Put switching in the opposite sense cecurs
at pcint D, 'u'u'herct.p;il. ¢ (20 comrences to follew the path DFHG, which
it does as far as the nowt svitching peint H, The conditions at H
are similor to those at B 2nd sc the eyelic varjation cof 'a is
repeated ad iptivdtunm, This phenomewcn 18 known as 'chatteriag! and,

for this exenple, is of theoretical rather thaa practical interest

since an exact flicker cheracteristic is not practically attainable,
and the presence of unavoildable iuperfections such as dead-bards
(see below) in the autostabilizer choracteristic generally obviates

chattering.
4

; aput Slignal
1
'
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The time history of w(r) with chattering in '& (T), and‘ﬂ(T), may
be f'ound from Equation 2,4, =:'suming that the chattering amplitude
of a is negligible in comparison with m(T), and Dw (7).
With this assumption Equation 2.1 becomes

@D-2z)w(r) =0 (3.26)
This has the sclution

w &) = W, etey T

(3.27)
where i, is the amplitude of w at the

conmencement of chatter

and T is measured from the commencement of
chatter

3,4, TFvaluaticn of Scome Integrals Required for the Optimization

of None=linear futostabilizer Systems

4s demonstrated in Example 5 we require to evaluate iubegiols
[va)
of two kinds, (i) Pt a9,

P2"™ e sin T AT, where P = > sin (T +58)

and (di)
Tt will be found that inteprals of these kinds are frequently
required when optimizing non~linear systems in which the non-linearity
is expressible as a finite power series in some response parameter and
it is convenient to evaluate these integrals once and for all for a

n

range of &, B, & n rather than separately for each example,

Tvaluation of Integrals of the First Kind

Dencting these by 11, we have

. fﬁ“ AT = [ AL 4™ (p LB A (3.28)
1 a
The substituticn t = T + B yields
1= (1 -1 ) (3.29)
where I = (eat sin t)2n dt (3.30)

Iﬁ

H

f?®“EMtFndt (3.31)

2
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I_ may be cbtained from a teble of Laplace transforms (e.g. Ref,18) as
co

vl
Im = [eznat Siﬂznt dt = S (2? *}___.__2 2 S R
! (=2ra)(2nn” « 2 )(2na + & )evv.(Zna + 2n )
(3.32)

I 1is plotted for n = 1,2,3,4,5,6,7 and -0,5 < & < -0,05 in Figs. 18 & 19.
Iﬁ has been evaluated by graphical integration for the same n and a
as I , and for 0<pB < om, Carpets of the variation of Ig with

these parameters are given in Fig,s 20 - 26

Evaluntiocn of Integrals of the Second Xind

Dencting these by I2 , we have

£ je PO B8 n (0 ) @ = /m 8t 303 (p . ). sinD. & T

o . (3.33)
The substituticn t = T + g yields
I = o2 e gin 2071 ¢, sin (+-8) at (3.34)
= e-2naﬁ'/me2nat [sinzn t cosf - sin FA. sin2n“ﬂt. cost] dt (3.35)
- ones zc.-s g (1, - Ig )
- e-2n&ﬁ gin B fj 2™t 5in®1 ¢, cost.at (3.36)

The last integral is evaluated by integration by parts which yields

with a<o (i.e. a stable desired respense)
<O

oo

f e2nat s:i_nzn_1 t cost dt = = s:'r.nznﬁ. e2na€ - a f ezhat si_nzm t dt
B

2n
g (3.37)
Thus substituting from Equation 3,37 in Equation 3.36 we obtain
e (S g (1 - ﬁ,) % -%-5 sin®™1 B 4 a sin B, o2l (I, - Iﬁ)
2 oo
(3.38)
f = JQE sin2n+1ﬁ i3 e-?nnﬁ (cos £ + 2 sinf ) (I_ - Ig ) (3.39)

This equation enables us to express the integrals of the second kind
in terms of inteprals of the first kind, as below

T 1?1’1- sinzn”ﬁ’ + (ccs B+ asinf) I (3.40)
2 1
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It will sometimes be found that for large a, n, and for F close to

ar Im - Iﬁ is given as a small difference between two approximately
equal numbers, and in such circumstances difficulty will occur in
evaluating I1 and 12 accurately, Rather than attempting great accuracy
in the evaluation of I_ and Iﬁ , the beft procedure is then to
replace B by a negative angle = 2 4+ f = £ and to evaluate

I§ X (eat
B

3,5. Exemple 6, Longitudinal chort-period Response to an

gin t)2n d t graphically or numerically.,2

Trrulgive Moment with ldmited ™My Autostabilizaticn,

(This example illustrates how a 'limited' or saturable
autostabilizer system may be optimized by the use of the seventh-
power polynomial approximetion develcped earlier in this chapter.
in effort function similar to that of the previous examples is

émployed. )

With the numerical data, and desired response, of Example 1,
and assuming a limiting elevator deflection of £ 1.050, the calculation

proceeds similarly to Example 5, except that Equation 3.47 is replaced

by
1,05 . A Fal N 7.
nsz—s"-‘?“é';’_ PO (EQ)*‘P kz(ﬁ> + sse00 +SB ks(iqp- )J
. 1ok 2 1ok okt

AL
where k = L 3 SAT. being the X (3.42)
' 'saturation' value of

and the ccefficients Po eves S are as listed in Table I
&

The problem is to find the optimum k . Putting k¥° = h the
equation corresponding to Equation 3,21 of Example 5 is

s 57,296 57.296 -0, 43,7
i (T)x-‘l.OS = -1.05

: 3 5 oy
+[POZ+QOZ +RZ + 82 ]

(-0.003387 e sin T + 0,040827 Z)
T
+h[r_>zz+sz’ +R 7 +szz]
+h2[PZ+QZJ+R 2 + 8 z’]
4 4 4 4
+h’[Pz+Qz’+R7f + 87 ]
13 6 & 6

3 EPBZ +Q% +RZ +8.2 :I (3.42)
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where = 0,898 P i P being def'ined by Equation 3,22,
To evaluate the eflort fUnctlon L'Uq ﬂf)} ad P
we write Equation 3.42 as

-n_ (T) 4 57.296

PD _1.05 — T S o) ( )
& 3.43
shere  a = ?»;7“026 (=0.003387 ¢ 0+* gin 1 4 0,040827 2)
end b = the remainder of the r.h.s. of Equation 3.42
Tiien - ”
e - -
;anb('r) x??6§9012d1'=jmasz+f2ade +fb2dT
- o o : (3.44)

2® @& T need not be evaluated sincc it dces

o3

In Equation 3,44
not involve h , and therefore will not appear in the equation for
- 5} 3 e
the optimum h, == [n (T) ] adT = O.
dh jF Ppy

The evaluation of 2ab is straightforyard since the integrals
o
required are of the forms P

o

e - p2! e 0T sin 1 oar,

and these may be read from the list on Page 29 or more generally, for
other problems, evaluated by means of the carpets of Figs, 20 to 26
Using these integrals jd b24d T 1is easily calculated once b? is
known, However, b isacomprised of no less than twenty terms and it
would be very tediocus tc have to evaluate b? anew for each problem,
©b? has therefore been evaluated once and for all, for a general Z,
the result being tabulated in Table II.

Meking use of this table, we eventually obtain

. .2 6 - 2
f ! 5;7_055’ npD(T) | ar - _50.50289m 1 328.9616@° + 2,512.19225 K
P +2,293,68167 b - 2,828.8175 1’

+2,098,11575 h® - 861.2662 h'

+ 150.35609 h°
(3.45)
(Note that it is desirable to leave rounding-off until late in the
calculation, as far as pecssible, This is the reason for the appearance

of such a large number of significant figures in the coefficients of the
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above equation,)
Differentiating Equation 3.45 with respect to h, and equating
the result to zero, the only solution between 0 and +1 is h = 0,0484

. k= 0,22 (*e By = 1.h =0.22 = 0.308)
The total elevator deflection demanded to attain the desired response,
iRD + ns is of a smocth nature. Since n, is discontinucus it

“ollows that HPD must alsc be discontinuous, It is presumed that
the pilot will be unable to provide such a discontinuous npD( ),
(although the discontinuity is less severe than in Example 5) and we
therefore proceed at once to Step 8 of the optimization procedure,
omitting Step 7.

The stick-fixed response for Q%AT = 0,308 is calculated by
piecewise application of standard lincar response theory, the time
histories of ‘Q(T) and w(T) being graphed in Figs. 27 - 28.

The autostabilizer is initially (7 < o) unsaturated, but owing to

the impulsive nature of the applied moment the saturation Q is

attained in a very short time (7 < €). Thus for purposes of calculation,

only two 'pieces' are necessary,e < 7 < ?;82? airsec, and
0,886 _. : A i i 0.886 ’
11,59 oirsec, since ‘qq,, is not attained for v > T1.51 airsec,

It will be seen that the stick-fixed response in w closely
approaches the desired response, and the optimum autostabilization may,

therefore, be regarded as satisfactory.
CHAPTER

4.1. A BRIFF EXPOSITION OF CARDINAL SPECTRUM ANALYSIS

The purpese of this chapter is twofold. Firstly, it is

intended to provide the reader having no previous knowledge of cardinal
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spectrum analysis with sufficient backgrcund to follow the application
of this technique in the following chapters, and secondly it serves to
introduce the nomenclature and symbols used therein. The treatment is
a highly condersed version of that cf Ref. 7 with such changes in
ncmenclature and symbelism as have been found to be desirable, For

a more rigorous and extensive discussion of Cardinal Spectrum Analysis
Refs, 6 and 7 should be consulted,

Basic Theory of Cardinal Sypectrum Anzlysis

1. Definition of a Cardinal Spectrum

The cardinal spectrum of a function of time is sirply a
series of numbcrs cerresponding to the heights of successive crdinates

of the functicn measured at equal time intervals,

Thus, denoting the oy
3 I“{‘,..;n2 FIG‘-L|-311
cardinal spectrum e
/—"‘" N B o _‘-“‘.
of F(t) vy {C) F(t), f | If. P L f3
we have, l& z & 55 4%
* & i )G .

CBE) s, T,8, o)

1

2, Triangular Pulse Interpolation

Wie may approximate to the area under the curve F(t) by
swaming a series of triangles of base 28> as shown in Fig.l4.2.
It is advantageous to FIG.L4. 2.
define not only the Fir)
arca under the curve

but the curve itself

by summing a series of



triangles in this way, because it enables us to describe a curve

numerically and uniquely. Using cardinal spectra alone, this is

not possible, For example, given Q@) P(2) = (3.5,6,8.k; «iss) ome

could draw F({) as any curve passing through these pcints, Defining

F(t) as the sum of a series of triangular pulses is equivalent to

Joining up the successive ordinates of the spectrum by straigh$ lines,
Expressed mathematically this is the equation

K=
F(t) - X £ ﬂk(t)

k=0 '
where f, .4 k(t) denotes the triangular pulse having its peak at

t=kd. The 'value' of the interpclation pulse fk.a o 18

def'ined as fk‘ ., This is an approximation to the area under

<

F(t) from t = (k - D)8 tot = (k +3)8

2 (a) Examples

(i) T F@E)

(2’1’3,1'-,4,.-:-.) ‘:: 46 t!
Fle
(ii) ////A\\\\\
t,
(3,0,0,2,0,0,5v504) S A T YA T

3. Pulse Admittance of a Physical System

This is defined as the respcnse of the system to an
impulse having the form of a traingular interpolation pulse of

value 8 occurring at or #exy near t = o, We use the symbol M(t)
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to dencte the pulse admittance of a given system and, where necessary,
we shall represent it by its cardinal spectrum, Ve use the notation

\:(_3) M(t) = (m_, mo, M, M, eosss)s If the instant cf application
of the input pulse occurs at t - nd , the response of the system is
the 'displaced pulsc admittance' denoted by M(t - nd )
In this case

@ e ~n8) = (0; 0, 05 sneil m, m,m, nmmn)

m is here the nJCh term in the cardinal spectrum,

L, To cbtain the Response of a Linear System to a General

Input., (Pclymultiplication)

We shall now describe how the response G(t) of a linear
system, having a known pulse aémittance ¥(t),"to an input F(t) can

be determined,

fo
LS

®

F(t) = (fo’ f“’ f2"C.l..)

P(t) 2 >_}:;1 Zoer Ak(t)

&O produces the response spectrum (C) M(t) _ (mo,m m ...).

Hence the impulse £, m. produces the respcnse spectrum \f‘ f

0”0 o> L™

mea’ I (assuming the system is linear).

Similarly, f1 m, produces the response spectrum

(O f.}“O! ].1“-115 -‘4:—'12,00¢-0) &nd, in general, the impulse fi ﬁi
procduces the response spectrum
(0,0,0,..a...,o fimo, f’i 1,....!.) beginn]'_‘l‘lg at t = k 6-
The superposition of these partial response spectra at

= k 6 is the
is € Sum e

g = > f‘. Pt
{0
Thus, the calculation of O ¢(t) = (gjo, Eys Eos anuse)

can be tabulated up to t=k & as follows:-



@ }\'E(‘t) 1'110 R1_1 m2 LR r‘“k LR
ORO £, 2, B wonmn By vmimnis
@ M(%) £ £, £ty «oevssfflrsses
n'-\\

@j I’I{(t) s f1m0 f‘tm" cooc--f1n]k_1t.o
N

() M(t) : " Ty eeveeefm oo

LI B

) u(s) : ;

L] ..lol'fkmo ceoee

o |
G =B,  Tgn + e, Z Mg
n " =0 ]
&9 g, &y

This tabulated process is rather analogous to the multiplication

of two polynomials since

- o 2 . k £ ,9 k
(fo e f1X -+ 12K = seew ka ) kiflo + In1x +lin21» + pss0s I?kx )
\ k
= fomo + (f1mo = fom_1)x 4+ soseoe Z firnk"'i X

i=0
For this reason we call the process by which (C) M(%) is combined

with () F(t) to yield (0)¢(t), polymiltiplication, and we describe
the process sywhbcolically thus :-
© at) = O ®t) x © ult).

5, To Obtain the Pulsc Admittance of a System from its

Eesponse to a kncwy Input, (Dolydivision)

i.e., Kncwing G(%) and IF{%) we require to find M(t).

we have () G(t) ={C) P(t) X (©) M(t)
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Let us define Polydivision from the equation

© ut) - n—%—%a

(+ 4 denotes polydivisicn, as usual

denotes

ordinary division). Hence polydivision means the process

tabulated below ;-

R = (0) u(t)
¢ B(t) = 50,0, )fomo, g, o iy, Tgiefmsfmo = €) a(t)
£4m9 £
f0m1 f0m2"‘f1m1
Ty £
fom2 "8 80000000
f0m2

Of course, in any realistic problem (C) G(t) will not
be given in the cbvious form (fomo, £, +f‘1mo.......)
but in the form (g_o, g g2......) and the process of

polydivision must then be tabulated as fcollows :-

- &y = Bofy - © we)
.
8 f02
(© F(t) = B By B
FO g, g,
g g
go ._._Q_. f -'Ql f [ ]
1 £ 2
0 0
&n &q
(g1 —Z,B'. f1) (gz _'f.-a . f2) sese e

'.l..--ETCn EI'G.



The poiydivision process is continued until the required number

of terms in C M(t) has been obtained.

6. Addition and Subtracticn of Cardinal Spectra.

Simply add (or subtraci) the corresponding terms

tis, 20 (@) BOE) = (g5 G Bpsavannans)
o
and (¢} H(t) - (ho, hy, hpovennn. i
then ©)(®(+) HE)) = (B, Ty, B, Thy £ Hpvnrs)

Note that the commutative, associative and distributive laws hold
for the pclymultiplication, polydivision, addition and subtraction
of cardinal spectra.
e.g. (0) M(t) X ©)(P(+) + H()) = @ ut) x €)F(t) +

@) u(t) x ) H(t)

7. Integration and Differentiation of Cardinal Spectra,

It may be shown thut the cqrdlnal spectrum operation
(4,44)
( O, _‘I h2, ..I.) = 2 (1 X‘ , _1’ fz, '0..0)
is an approximation to tge integration cperation
H(t) = P(t).dt

The cardinal spectrum cperation
a  Klaed)

5. Tfj*TT}((h » by, by, il

may similarly be shown to be an approximation tc the differentiation

(255 £,5 fopeee) =



operation
a H(t)
B} - —
dat

Repeated integration and differentiation may be performed by the

use of such expressions as

a2 5 £ (1,-1)® L (1, =2, +1)
- = e g et e
at & (1,+)* 8 (1, 42, +1)

or with greater accuracy by the following expressions

Ff = 6 (1, "1)2

pe g B ¢ e ey

Da gl_" (1; "'1)3
8% A, +1, 1, +1)

The appropriate reciprocal may be used for repeated integration.

CHAPTER 5. 5.1, THE APPLICATION OF CARDINAL SPECTRUM

ANALYSIS TO THE CPTIMIZATION PROEFDURE

If the desired respcnse is specified as an exponential
function of time cue eutostabilizer system is most conveniently
optimized by the procedure illustrated in the previous examples,
in which the effort function was in the form of an infinite integral.
Because of the rapid attenuation of the integrand (due to the high
damping of the desired response) the unrealism of such an effort
functicn was not cbjectionable. However, snould it be desired to
employ an effort function having the form of a finite integral it
will generally be found to be more convenient to perform the

optimization by means of Cardinal Spectrum Analysis.  Should the



desired response not be given in a convenient analytical form, Cardinal

Spectrum Analysis must be employed in the optimization procedure, and

in such cases the effort function must have the form of a finite

integral,

The following example illustrates how a lateral autostabilizeér

system may be optimized. Effcrt functions for lateral response may

be more complicated than those sppropriate to longitudinal response

since the aircraft mey be controlled by independent deflections of

ailerons and rudder, and a lateral, rather than a longitudinal,

autostabilizer is selected so that this consideraticn may be

examined, The Cardinal Spectrum technique used in this example

is however, equally applicable to longitudinal response.

5.2.  EXAMPIE 7. TATERAT. RESPONSE TO A SHARP-EDZED SIDEGUST

With the portmanteau notation of Ref., 2 the non-dimensionalized

equations of motion can be written as,

D+, -k 1 ;

i P 2 i
i D= + 11D EﬂD + 12 %
N pF n D D+n :

To cbtain the basic response to a sharp-edged sidegust we assume

that at 7 = 0, ¢ =T =D $ =0, v = ¥

o]

Applying the Laplace transform to Equaticn 5.1 we cbtain

2

v(r)

¢ (7)

? (7)

!

with v = 0 for 7 < O

(5.1)



-LH=-

e B - G
s+ 5, -k : [ ) || F
i §* & 1 s €8s + 1 ¢ (s) =| O
N €5 +ns 5 +n P(s) 0 (5.2)
= J ol & J
where v(s) = v, [(sz +18) (s +n ) - (gﬂs + 12)(8032 + n‘s):](5 5
& (s)
where & (s) is the determinant of the s -matrix.
The time history of v(7) may be cbtained by means of a
partial fraction expansion or, more easily, by use of Interprctation
Formulae such as those listed in Ref. 9. The basic respcnse in v is
graphed in Fig, 29, It will be seen that the response is lightly
damped with a large initial overshoot, The desired respcnse in v
is graphed in Fig.29. The desired response may be obtained by means
of rudder and aileron deflections ZD and ED’ where
@(_\_rD < ;basic) = @ Pulse Admittance of v to Z,K@Z_',D (5.4)

+ (3) Pulse Admittance of v to £X Q&

The Pulse Admittances are those appropriate to the basic
aircraft and are conveniently evaluated by use of the Laplane
transform, Note that if the spectrum interval 0 is small the
form of the impulsive admittance closely approximates to that of
the pulse admittance, which may be deduced therefrom by multiplication
by a factor of & ,

It is now necessary to select the effort function. Three
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possible effort functions are,

7 ;4 T 2
(1) f EpD*dr ,(ii)f ‘Z'pD2 ar . Cadi) f(ng*q-épD)

where T dis a convenient time
and q is a constant

The most realistic of these is (iii), but there is difficulty in
assigning a value to q which, in effect, describes the relative
preference of the pilot for aileron and rudder movements. For well
chosen autostabilization we may expect to be able to reduce the
magnitudes of the contrel deflections demanded of the pilot to very
small values, so in these circumstances a less realistic effort function
may be tolerated. In this example we shall, therefore, employ (14,

& 1is then assumed to be zero throughout the motion, when from Equation

5.4 we obtain,

@ cné. éD(r) = (0, -23:162, -11°36, 19-70, 414:128, 5496, -3+033,
~5°355, =1.737, 2:338), 279, 1009, =0:782,...)
with a & of 0.1 airsec.,

From the time vector polygons of Fig, 32 we see that the increased

damping of the oscillatory mode that characterises the desired response

is likely to be achieved by an autostabilizer system which provides a

rudder deflection of sucli phasing that the derivatives n, and nP are

effectively changed as follows,

(a) n_ is multiplied by kK, I 1

or (v) n, is multiplied by -H, H»> 1

dT

(5.5)
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= . ! I Py o P - _ P
nr () n, and n, are multiplied by K' & H' with n nPI £ | <.{’nrH'nP |r|

Solving for the optimum X in (a), we have,

(© rD(T) -(C) Basic response in T 4 ©)Admittance of T to & X @Z’D

(5.6)

whence

(5.7)
© n, 2,(r) = (0, 5:95, 3445, —1+18, =3:32, ~1.18k, 0409,

1.208, -0:506, -0:452, -0-727, -0-3668, 0:0536,...)

Since
H n z S | A
2 : % s g = (K ) ____3_::' . I‘D (5.8)
i =
c C

where & 4 1s the rudder deflection due to the autnstabilizer,

6\ H 2 né Z) = a H - Ilé % n A
© et A © = ey ail@ &-1) . *p (5.9)
i af i

(¢] c C

T
2
The effort function f ( ;.12 n; v & ) ar is evaluated by
7 Pp

n 4

c

squaring each element of the right-hand side of Equation 5.9.,
(approximate) integration being performed by summing the elements

of the resulting Cardinal Spectrum,

For a T of 1-2 airsecs,
T

Z R
/’ < P ™% épD ) dr == (0)*, +(-23°162 + 5.95 K ),
To G LoAta 56 4 PIS T )° ¢ wives vansives oo

(5.10)

0

ceeaccasan.od(=0°782-0-0536 K-1 )*2

= =534:51(K=1) + 63°932(K-1)? + a constant term (5.11)
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Therefore, for 0 j. fz By ¥ s o @ 5541
6\\_1{-—1) A i p.D ’ K1 = ""—""2‘{65-:—9--:5—2-——- = 1{"18’

Thus the optimum value of X is 5+18.

As the effort function is admittedly unrealistic Step 7 may be omitted.
The response in v to the specified input with no pilot actien and
with the optimum adjustment cf the autostabilizer is graphed in Fig. 30,
It closely approximates to the desired response and the cptimum
autostabilization may, therefore, be regarded as satisfactory. A
- 8imilar preccedure may be employed to obtain the optimum value of H
{or np autostabilization.

For combined nP and n, autostabilization (which can be

produced by canting the axis of the autostabilizer rate gyro) the

rudder deflection demanded of the pilot is given by:

O L% 5,.05% 540 @D GG 5y
o 54 3.0 i ! 41
c (& c c

(5.12)

The optimum H’ and K’ arc obtained by solving the simultaneous
equations for H/ and K’ which result from equating to zero the
appropriate partial derivatives of the effort function,

It is more difficult to formulate a realistic effort function
for lateral response than for short-period longitudinal response,
since both ailercn and rudder control is available to the pilot.
The effort function selected should, therefore, be of the 'integrated
displacement-squared' type so that the effect of the pilot failing to

provide the demanded control surface deflections will be to induce
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only a slight divergence frem thc desired response.

5.3, COPTIMIZATION OF NOMN-LINEAR SYSTHMS BY MEANS OF CARDINAL

SPECTHUM ANELLYSIS

Cardinal Spectrum Analysis may be¢ cmployed to optimize non-
linwar autostabilizer systems by a similar procedure to that of
Pxomplesh, 5 and 6, Thus, for example, in Example 5 Equation
3.23 would be replaced by:-

?“) [, @7

(5.13)
ng (23°3695 }c, P? - 138-2968 Tj RS

eese+ 5479029 u P“‘ )
g (=0"158493 /OP ot 5
v s .=0:0250995 Y@ P:e-o'lél"'l‘ sin T)

+ terms nat involving 7

il

+

EI

where I © dernietes the sum of successive ordinates of the
eppropriate cardinal spectrum,

The precedure for minimizatien ef the effort function is theuceforwnrd

similar to that illustrated in Example 7.

OIP, 6 6.1. THE OPTIMIZATION OF AUTOSTABILIZER SYSTEMS

TOR PILCTLESS ATRCRAFT

Let the desired response to a specified dinput ef a pilotless
aircraft be RD(T). Ve may regard the eptimum values of the
adjustable parameters of the autostabilizer system as having been
attained when the actual response R(r) mest closely approaches

'E—TP( 8 Hez%cc a suitable criterion for eptimization would be,

£ f |BD(T}—R(T) l dT = a minimum (6.1)



B

or, alternatively
x

| f [P.D(T)-—R(T)]z d 7= a minimum

2 where T 1is any cenvenient time

(6.2)

It will generally be found that R(r) is a function of the adjustable

parameters of the autostubilizer k1 .

k; , etc., of such a nature

that differentiation of Equation 6.2 yields complicated expressions

feor & s o1 , ¢tc., the zeros of which are difficult to

ok ok
q 2

obtain. A simpler meth>d of optimization, employing an approximate

ferm of the criterion of Equatien 6,1, has therefore been develeped

and is presented below, The method is, strictly, only valid for

completely linear systems (i,e. linear aircraft and autostabilizer

dynemics) but, as we shall explain, it appears that it may often be

applied te non-linear systems with success.

Consider (for example) the langitudinal motion of an aircraft

fitted with mq autostabilizaticn. For a specified input & M(7)

we have in Cardinnl Spectrum Analysis notation,

©) 2 =) pdmittance of § to 1 X ) n+ (© Admittance of §

to A MX@& M(7)

© % = © Admitsance of 4 to TREQ) ny+ © sdmittance of §

to & MA@ 8 1(7)
Yhence, with n = Xq

€ (4, @) = © admittance of § to 1K @ (1 - X4)
Adopting the criteEgon of Equation 6,1, the optimum k is that
which minimizes I aD - a ‘ d T
0
A

The Cardinal Spectrum »f —'a_ may be written as:

9

(6.3)

(6.4)

(6.5)
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© @~ = (e,58 4 © joeasssnss ) (6.6)
‘.‘.‘heﬁgeana
= . B e i )
| S je == el fopx (s} + o) soos] 5,
o (6-7)
In Equation 6.5, we put
\C} Admittance of q to7 = (ao, g2 Bga wecees ) (6.8)
and
o~ A
© (1y~kg) = (b, B, h, ... <) (6.9)
Then
-, ~ P %
“T(-_"J_; (qﬁ -q) = (a, By B yeeees ) A (ho, h,h, .. ) (6.10)
and
(5] = a h
0 ] n
& wa b v o & (6.11)
:1 (o] 1 1 o]
?n =a h + a, hn___1 teeeese + 2 h
.é =a h
2N n
« iel s |8 * [eul o . (!ho| + lh1I+F;i +eo.e+ |By| )
+ | a]C |By| + | B #| By| +ees | By )
Hoag] () Be| + B, ] + | By| +eeees| B} )
A (| h°| + |h1| + [ h2| Foocoot f hn| )
where A = | | + |a1 | £ e wenah |an |
T=
Hence z |QD - q ' ar is minimized when k n%s chosen so as

to minimize |h0! +

Feor well-chosen

=
-

°+|hn|

~
j‘ | nD -kq | ar
o]
autostabilization with the adjustable parameter k

5| o | By s
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close to its optimum value, WD -k a:’.‘:.’? -k TG

n
Therefore, by choosing % such that [ | n- kg |ar is minimized,

an approximate value for the optimum k (as defined by Fquation 6,1)
is obtained., It is interesting to note that for a piloted aircraft

weashould have N =7 -k ‘c‘lD and k would then be chosen to minimize
n

jﬂ 'HPD | d7 (or some other effort function).
The optimization procedures for piloted and pilotless aircraft are
therefore s:i.:rm_*i.lc'ﬂ"1 in many respects, although the procedure for pilotless
aircraft is essentially approximate, and Step 7 is supcrfluous.

As an example, let us consider a pilotless aircraft having similar
characteristics to that of Example 7 with n, autostabilization,

From Equations 5.5 and 5,9, we have,

© 2% (25 - 2) = (0, -23°162 + 5:95 3, ~11+36 4 3405 J,....)  (6.12)

i where J = K = 1
and
1.2
'uan
[ ——éi ; [Z’D - ES! dr = |-25‘162 + 5*95 J| s |-11'36 + 3°LA5 T 4.
0 c

scoeP i-o'?82 o 0‘0536 J l
Each term en the right-hand side of Bgquation 6,13 is of the form
= 1
lar + br J | . It can be shown that 5_ |ar + br J ] is stationary

when J = _al'._ where i 1is a particularfor to be found. Thus the
o5
possible optimum values of J are,

3+8927, 3:2975, 162695, 42554, L+642, T°416, 4433, =3.432, 5:473,
3-8432, 2+731, 14+5896,
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12
u
For brevity we put f -1-2 & =& dar = E
i, l D 8 I
o]

Equation 6,13 may then be written in the form

E = |a "]-b Jl +| a +b l._T| +s o000 sd I a +b Jl (6-1}4-)
0 7 1 1 12 s
:ﬁo IJ-aD|+£‘?1 |J-a1| -1A-.....+f512 | 7 = a12|
with g = [b|l , a-= -_%

Rearranging the terms of the right-hand side of Equation 6,13 in
order of decreasing o we obtain
E = 1.18] J - 16:695| + 0°0536| J ~ 14.5896| +...40:0506] J + 3-432|

P

The minimum of E dis found by examining the sign of % for successive
values of J
Thus for J > 16°695,

E = J (41418 + 0.0536 4.,.4 0-0506) - (118 x 16-695 $ee. =0°506 x 3°432)
4B
‘E"].' = 18'830&-,}0
For 46.695 > J> 414*5896
£ - 18830 - 2x1.18,> 0
For 44+5896> J > 7°416
aB

35 = 18°830h - 2(1:18 4+ 0-0536), > O
Continuing this process we find that % becomes negative

at J = 3' 8927a
This is the oplimum J within the accuracy of the calculation; for
greater accuracy a smaller spectrum interval should be employed. The

corresponding optimum K-1 in Example 7 is 4°48.
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6.2, A SUGGESTED PROCEDURE FOR THE CPTIMIZATION OF AUTOSTABILIZER

SYSTEMS FOR PILOTIESS ATRCRAFT WITH NON-LINEARTTIES.

It will be observed that in Examples 1 to 7, the use of effort
functions which are functions of displacement only yields optimum
values of the adjustable constants of the autostabilizer system such
that the stick-fixed response (with the optimum adjustment) is close
to the desired response., The analysis of Chapter 6.1 indicates why
this should be so for linear systems, since it has been shown that
the approximate optimization procedure for pilotless aircraft is
formelly similar to the optimization procedure for piloted aircraft
with a certain choice of effort function,

For non-linear systems the above-mentioned analysis is
inapplicable: nevertheless the stick-fixed responses obtained in
Step & of the Non-linear examples (Examples 4, 5 and €) were in each
example close to the desired response, and it appears likely that
this will frequently be the case for practical non-linear systems.

In view of the redicus and complicated nzture of non-linear response
calculations starting from thes equations of motion, and the possibility
that these calculations msy have to be repeated many times to locate
the optimum values of the adjustable parameters a simple (even if
approximate) method of optimization for non-linear pilotless systems

is highly desirable, It is therefore suggcsted that before attempting
a rigourous coptimization procedure for a non-linear pilotless system
the procedure for piloted aircraft should te applied (omitting Step 7)

with a suitable choice of effort function. Despite the basic
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unrealism of this artifice, the relative simplicity of the calculations
invelved meke this procedure one of considerable utility. It must

be clearly understood however, that this procedure is at best approximate,
and thac for ill-chosen autostabilization (i.e. autostabilization that

is inherencly incapable of providing a response close to the desired
response even when at its optimum adjustment) the approximation may

be ponr,

CHAFTER 7.
7.4, SOME ALTERNATIVE METHODS OF OETIMIZATION

In this report we have treated piloted and pilotless aircraft
separately. In most published work om zircraf't autostabilization no
subh clear distinction is drawn between the two - generally it is
tacitly assumed that the aircraft discussed is piloted, although the
presence of the pilot is not explicitly taken into account in the
calculations. Some difficultytherefore exists in drawing a comparison
between the optimization procedures developed herein and relevant published work,
It is, howéver, desirable that some such comparison should be made, and
in order to provide a basis for comparison it is assumed throughout
this secticn that the aircraft referred to are piloted.

Vie give below a brief assessment of relative merits and demerits
of some¢ published methods of optimizing aircraft autostabilizer systems
vis-a-vis the proccdure of the present work, The altcrnative methods
are described only briefly, in order to avoid lengthy digressions:
reference should be made to the works cited for a fuller description

of each method,
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7.2. THE METHOD OF V/ARTIATION OF DERIVATIVES

This is probably the most widely used method cf optimizaticn,
The type of autostabilization to be employed is first selected
(8n, & mq_etc.) and thc optimization is performed by trial
and error - repeated response or stability calculaticns being carried
out with varying values of the adjustable parameters of the auto-
gtabiliger until the desired response is most closely approached,
Complete linearity is usually assumed.

Variation of derivatives has the follewing advantages over ocur
procedure:

(1) 'Stability' (i.e. frce motion) cslculations may be used,
rather than the more complicated 'response' calculations,

(ii) In finding the optimum autostabilization by trisal and error
the off-optimum performunce of the autostabilizer has been investigated.
The disadvantages relative to our procedure are as follows:

(i) The procedure is one of trial and error, and is therefore
likely to be tedicus, particularly for complicated autostabilizers with
several adjustable parameters.

(ii) Non-linearities can only be taken into account by means of
calculations starting from the equations of motion, Such calculations
are tedious and complicated even for gquite simple nor-linear systems.
For non-linear systems advantage (1) also disappears,

(i1i) The presence of the pilot is icnored.

It is also possible to estimate the effects of variation of

derivatives on the free motion of the aircraft by
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(a) constructing relative demping dingrams (Ref, 12) and

(b) The approximate method of Mitchell (Ref, 17)
Both these techniques are applicable cnly to linear systems and would
appear to demand rather more tedicus caleulations than thc procedure
of this report,

(Disadvantage (iii) alsc applies).

7s3. OPTIMIZATION OF FHECUENCY RESPONTE

This procedure consists of adjusting the aircraf't frequency
response by means of trial and error voriations in cne or more
derivatives until 1 satisfactorily close approximation to the desired
freguency responsc is attained, Cempared with cur procedure, this
has the advantage that the result of the precedure is in graphical
form, which consideration will assist rapid convergence on the
optimum values of the autostabilizer adjustable parameters,

The disadvantages are:-

(i) Tne method is applicable only to frequency response,
Since we are primarily concerned with transient respcnse it would
seem to be mcre simple and realistic to work in terms of transient
response throughout rather than in terms of the frequency response
associated with the dosired transient response.

(ii) It is difficult to include non-linear effects in the
analysis,

(iii) The presence of the pilot csn only be taken into sccount
by assuming a form of transfer function for the pilot. Thie is, in

fact, attempted in Ref, 13, However, it appears that the human pilot
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is sufficiently adaptable tc be able te vary his transt'er function
to suit the demands made upon him; the choice of transfer function
is, therefore, scmewhat arbitrary and possibly unrealistic., Vhilst
(as has been shown) it is quite possible to choose an unrealistio
effort function (within reason) and yet achicve a satisfactory
autostebilizer system by straightforward applicaticn of cur precedure,
an unrcalistic choice of transfer function may lead to unrealistic
values for the optimum adjusteble parameters,

(In this ccnnection, it appears to the writer that although
the human pilct is able to vary his transfer function considerably,
the pessible variation of effort function would be less marked and
it might be possible to successfully determine the truc effort
function experimentally., A possible experimentel procedure would
be to measure some physiclogical parameter of mental and physical
effort, such as, perhaps, blink rate, while the pilot is piloting
a flight simulator under carefully controlled and repeatable conditions,
Extranecus disturbances would be simulated and the control deflections
supplied by the pilot recorded and correlated with the selected

physiological parameter,)

Lok THE NETHOD OF STANDARD FORMS

4 full discussicn of this technique is given in kef.410
In the present context, a standard form is a particular numerical
ferm of a given aircraf't transfer function. Thus in Zxample 7,

from Equation 5.3,



hircraft Transfer Funetion ¥(s) = 4(s)
s "ERE)
0
where Q(s) is a quadratic expression in s
A(s) is a quartic expression in s
Since each possible form of response is associated with a given form
for Q(s}/ g(s) it fcllows that the 'optimum' response is associated
with a certein standard form of the aircraft transfer function, In
this context the ‘optimum' response is that for which a certain
specified response parsmeter (for example ]m ¥ dr7 ) is 2 minimum,
9

Lists of coefficients of Q(s) and A(s) for various 'optimum' forms
of response are available, and are usually referred to as 'standard
form coefficients’,

Compnred with our technicue the method of standard forms has
the advantage of greater simplicity and ease of working.
The relotive disadvantages are;-

(i) & prohibitively complicated autostabilizer system may be
demanded to attain the standard form exactly, ¢.g. simultaneous
variation of a large number of derivetives may be dcmanded.  With a
practical autostabilizer system it riey well be impossible to attain
the standard form exactly; in such circumstances it is difficult to
forminte a systematic procedure for optimizing the available auto-
stabilizer system, since the relaticn between the standard form
ceefficients and the time history of the response is generally
complicated.

(ii) The desired response must be a (published) ‘optimum' form,

(ii1i) The method is not applicable to non-linear systems,
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(iv) The presence of the pilot can only be taken into account
by assuming a pilot's transfer function, The disadvantages of
such an assumption are similar to those discussed in Section 7, 3.

7/.5. OTFSR METHCDS.

It will be found that (with two exceptions) most of the
remaining published methods of optimization are variants of cne
of the methods described above, The exceptions are:-

(1) Phase-plane methods of optimization
and
(ii) Methods appropriate to statistically-described inputs.

Neither of these methods are readily comparable with the procedure
cf this report. Phase-plane methods of optimization are at present
virtvally restricted tc systems of one degree of freedom.1 Small-
perturbation aireraft motions usually possess two or three degrees
of freedom and the representation resulting from removal of one or
more degrees of freedom is generally of too limited realism to he
suitable for optimization purposes. Optimization for statistically
described inputs has not been attempted in the present work and no
comparison can therefore be made,

From the foregoing comparisons, the procedure of this report
is seen to possess some important advantages over those hitherto
available, and the author believes that it will be found to be of

considerable utility in practical calculations.



—61-

7.6. CONCIIISIONS

1. A novel procedure for the coptimization of aireraft cutcstabilizer
systems has been developed.

2. The procedure is straightforward and its application does not
result in demands for autostabilizer systems of prohibitive complexity.
3. Many important non-linear effects mny be taken into account, with
only slight extra complication in the ealculation required,

4., The procedure is applicable to piloted airecraft, but may be
modificd to form an approximate optimization procedure of geod
accuracy for pilotless aircrzft without non-lincaritics,

5. The results of some examples prescnted herein support a suggestion
that this approximate procedure may frequently be applied with success
te pilotless aireraft having certain non-lincaritics, either in the

autostakdilizer, or in the sireraft dynamics.
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NOTES ON CHAFTIRS

CHPTER 1
1. (Page 3). For a full discussion of some of the problems of
simulator presentation see Ref,16,

2. (Poge 3). Sce (for example) Ref.3.

CHIFTFR 2

1. (Page 13). Simultanecus variation of m, M and z_ so that the
manoeuvre margin is kept constant whilst the damping of the
longitudinal oscillation is increazsed is possible, but hardly

practicable,

1. (Page29) Note that zlthough, in this exemple, the maximum
value of the desired response (in'%) occurs at 7= 0, this
will not generelly be the case., In g(;n(ar'al"t\g,D max may be
assigned a value slightly higher than the true volue with
negligible loss of acecuracy. No special significance
attaches to the value of 1.4 chcsen here,

2, (Page3h) This was, in fact, nccessary in Examples 5 and 6

due to the large f and a of the desired response,

CHAPTER 6
1. (Page 52) Although the demonstration of this fact has been
effected by means of Cardinal Spectrum Analysis it is

generally true for linear systems since the approximation



inherent in Cardinal Spectrum Analysis can be removed by allowing

the spectrum interval to tend to zero.

CHAPTER 7.

1. (Page60) Our authority for this statement is Ref.11.
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APPENDIX 4 -~ TIST OF DERTVATIVES.

The derivatives are calculated for a Light Fighter type of

aireraf't, flying at M = 0.9, 50,000'.

Span = 22¢0' Wing hrea = 136°6 '
Tail Moment Arm = 40-39! LU, = 6,000 1b.
m_ = -21C8 My = -+ 0895 mq = = 2063 jB = +298
z, ==2°35 me = ~: 205 u=u = 365°0
¢, = —0733 n. = + .0825 ¥, = =393 CLO = 0,32
6p = =40 nP = =, 0148 y? = 0 (assumed)
6r = +.1085 n, = - 214 Y. = 0 (assumed)
€g =+ .0128 n, = - 071 Ty =0 (assumed)
6€ = =14 ny = -.0172 yg = O (acsumed)

1/ = +.0446 17 = 4,28, ip = -, 016l B = BbB3.5



TABLE I,

TABULATED VATUES OF THE COEFFICTIENTS PO,P

2 L 62-8*
Coefficient Fractional Decimal Coefficient I'ractional
value value value
PO +35.45,7 % 536355 RO +49.99.13
32,64 32,64
Py ~25:49.9 ~21,5332 R, ~15,63.143
16,32 B 52
P4 +4S.81.11 +4,2.6357 R4 +49, 124,117
32,52 5050
15 =15:.99,4153 =37, 7051 R 122377.162
6 16,32 6 16.32
P8 +5,143,35 +12,2192 R8 $+21:121.13.45
32,5k 32,64
P +1 + 0.9999 ZR 0
Q -21.55.35 -19. 7388 S -33,15.6
“ 32. 6l 2 32, 64
Q +15.49.99 +142.1191 3 +35:143.15
& 16, 32 2 16,52
Q2+ -_3.':'.810121 ‘33‘!4-0 9951 Si{. —21013651@_
3052 32,52
QG +25.39.121 +322.5879 86 +121:117.15
16,32 16,52
Q ~30.33.15.15 =109.9734 S ~-121,169.15
8 32, 6l 8 22,6,
ZQ 0 0, 0000 Zs 0

Decimal
value

+ 30,7525

~263.9355

+677.4346

-686.2321

+241 . 9409

+ 0,0001

= 15. 7104

+146.6309

~395.203%

+414.. 7559

-149.7729

+ 0.0002



LS

COEFFICINNTS OF b

constant

28.97992

~212.51976

721.45077

~1,384. 76160

1,568. 28754

967,524,598

246, 81667

2

-231.83936

2,380,21910

-9,778.33106

21,427.25150

-26,508, 59960

17,323. 32854

-4, 607.26018

522.72022

-11,440,47136

54, 708, 74350

=13k, 341. 76210

179,214, 98722

=125, 069, L 15y

33,940, 21923

]

-2, 24,2, 12201,

31,507.4093%

-169, 3hly 67772

462,241.16108

=637, 141 34688

451,756, 27416

=-129,135,27656

TABLE II

3,573.18507

~54, 84485454

318,835.18010

=900, 241.96470

1,323,174, 37802

-973,4L06. 28854

283,077.46909

he

=3, 70140362

60,978.87828

=373,860,4,870

1,098,909. 41662

-1,665,600.43308

1,255,316.13220

=372,329.1292k

+2,163,62287

—41,890,72252

266,678, 83201

-807,561.14910

1,253, 727.45165

=963, 730. 96396

290,643,62730

n’

=921,45232

16,176.62560

-105,967.21632

328,458.99734

=519,509. 20432

406,250, 86470

-124, 238, 36788

149, 30885

-2, 687, 56660

18,006, 73122

=56,874.19162

91,477.37934

~72,472, 38044,

22,431,92157
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