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The twin composition plane in graphite is a 200  tilt boundary between 
lattices which are rotated, relatively, about an axis In the basal plane. 
Previous work has led to the proposition that sone special type of structure 
must necessarily exist in the neighbourhood of the bounaxy which violates 
the normal hexagon arrangellent of the carbon atoms. It is demonstrated that 
a tilt boundary of the required form can be expinined as an array of partial 
dislocations, such a boundary being possible in either the hexagonal or the 
rhombohedrol form. A boundary of this type is mobile, and can, by its 
movement, introduce or eliminate stacking faults and thus change the volume 
of rhobbohedral graphite present in the normal hexagonal lattice. Such 
effects have been reported previously. The true twinning plane in this model 
is not the composition plane, which is the plane OTOis ereferred to the 
structural (not the morphological) axes, but the plane 



The graphite structure consists of parallel layers of aromatic 
carbon rings, the C_C spacing in the rings being 1.42 	the hexagon 
width a 2.456 X and the layer spacing c 3.348 X. 

The standard work on the twinning features in graphite is that of 
Palache (1941), which identifies the twin composition plane as1:11n'l 
with respect to the morphological axes. We shall throughout this note 
use the hexagonal structural axes (zee Fig. 1) in which system the 
indices of the composition plane become: 1T01 r . The angle of tilt 
between the twins vas determined by Palache as 20036', which is very 
close to tan-l a/2c, (20°9 /using the above values) and equivalent to the 
insertion of one hexagon width in every other basal plane. We shall use 
the value 2009' throughout in the following discussion. The true 
twinning plane (as distinct from this twin composition plane) is not 
established: this may, or may not, be k,1101f . The theory advanced by 
Platt (1957) for the structure of the twin boundary results in the 
twinning plane and the composition plane being the sare. To produce 
this result, quite special structures must be created in every ether 
atomic plane of the type illustrated in Fig. 2, which Platt refers to 
as 8-4-8 structures. It is, in fact, unnecessary to adoet such a special 
arrangement to explain the observed structure as this may be interpreted 
more satisfactorily in dislocation terms. 

Graphite may exist in either the hexagonal, ABABAB.., stacking 
sequence, or in the rhonbohedral ABCABC.,. stacking seeeence. Consider 
first the hlxagons drawn in Fig. 3(a) which shows the relative positions 
of the A, B and C planes. The C position may be achieved from the B 
position by a translation along, say, XY. A partial dislocetion with 

a Burgers vector XY, that is 1/3 a/2 F1000], can therefore constitute a 
boundary between hexagon sheets in the B and C positions. Such a 
dislocation can, of course, be either positive or negative: the 
hexagons in the region of the partial dislocation may be either compressed 
or extended, the overall lateral strain being V2, which is the shift 
involved in the translation illustrated in Fig. 3. In Fig. 3(b) a line 



of hexagon nets is shown in the transition region between the B and C 

stacking positions from which it will be evident that, in this case, 

an extension of a/2 has been introduced (as well as a shear, of course). 

For siliplicity the distortion is shown relative to an undistorted A 

layer; in fact the strain is distributed sy,onetrically over both layers, 
but the relative strain is the sane as that shown. Let us suppose the 
B-0 line of hexagons to be cut at 00', and the strain released. This 

results in the arrangement of Fig. 3(c). Suppose nou that the hexagons 
of both layers are rotated about Od so that the gap PQ, of width a/2, 
is closed by the rotation. The angle of tilt required to achieve this 

is tan 1  V2c, or 2009 r  . Thus a boundary is forned which is equivalent 

to the insertion (or removal) of an extra half-hexagon on each successive 

plane (or a full hexagon width on every alternate plane). The operation 

of the dislocations, 1:59/2 [11000jand 130/2 DOTO], in sequence on 
successive planes is obviously equivalent to the perfect dislocation 
a [iOTO] on alternate planes in the hexagonal stacking. 

The structure which will satisfy the observed tilt angle is drawn 
in detail in Fig. 4., for the case of both hexagonal graphite (above the 
dotted line) and rhombohedral graphite (below the dotted line), and again 

the A plane has been taken, for convenience, as an undistorted reference 

plane. In each case a partial dislocation of the typo discussed is 

introduced into the intermediate layer of hexagons (wavy lines), as 

evidenced by the difference in position between extreme loft and right, 
but with the strain removed by an operation of the type illustrated in 
Fig. 3(b) and (0), the gap created being shown in black. For both the 

hexagonal and rhombohedral cases, the tilt required to close such 
gaps in the planes is the sari, namely 20091. In each case the original 

typo of structure can be preserved: hexagonal ABABAB... twins to 

hexagonal ACACAC... and rhombohedral ABCABC.... can tviin to rhombohedral 

BACBAC... In Fig. 4. the rhombohedral transformation illustrated shows 

ABC... twinning to ACB... and the exact sequence obviously depends on 

Vie direction of the Burger's vector, as any plane (say A) may be 
transformed to either of the other tuo possibilities (B or C) by a similar 



vector of different direction. Stacking faults can therefore exist. 

If, then, the lattice is rotated as described above, the structure will 

now fit along the cut planes when the angle of rotation is 20o  9 f  . This 

is illustrated diagrammatically by the diagram at the foot of Fig. 1-. 

Thus a sequence of partial dislocations can give a tilt boundary of 

the observed angle. The twin boundary in such a structure is thus an 

array of partial dislocations, forming a tilt boundary, and is evidently 

mobile, which is consistent with experimental observations (Laos and 

Baskin 1956). 

Once this possibility is recognized, a number of characteristics of 
the graphite structure become resolvable. It follows that twinning in 

the hexagonal structure does not necessarily involve any transformation 
to the rhombohedral form (as was deduced by Laves and. Baskin from x-ray 
measurements), although rhombohedral stacking faults could be perpetuated 
through the twinned structure, or even created. Apart from the twinning 
question, such partial dislocations can obviously constitute the 
boundaries of stacking faults, and thus the g  iding of those dislocations 
under stress can increase (or diminish) the amount of rhombohedral 
graphite. This necessary association of gliding with rhoMbohodral 
development has already been noted by Laves and Baskin. 

The dislocation structure of the twin composition plane il.yoses 
certain restrictions on the possible junctions of such boundaries. For 
example, as in Fig. 5(a), too boundaries may conform if their common 
vector lies along the third possible boundary lino. One such boundary 
may terminate either on another or at a straight-forward dislocation 
boundary which is not of the twinning type; see Fig. 5(b). Three boundaries 
may also conform, but the sign of the tilt is important. In sone cases, 
instead of three twin lamellae meeting, one of these nay be split into 
two of opposite tilt (Fig. 5(c)). In any case, because of the tilting 
condition, there will always be very special restraints in the neighbourhood 
of nodes and at the ends of lamellae and the adaptation of graphite in this 
respect presumably depends on the readiness with which partial dislocations 
may be formed. This derives from the relatively weak interplanar (van der 
Vinnls)  bonding in graphite. 



It is not at once evident why the composition plane observed is 1121

rather than ,1TW p as the creation of the latter requires the same 
type of transformation: in this case the insertion of a hexagon length 

into every other plane (see Fig. 4) leading to a tilt angle across the 

1T01 1  plane of tan-12073c, or 22°57'. One of the differences between 

these two possible pianos is that, for a tilt of a given sign, there is 

only one possible partial for each layer plane in the .11.0.1 case, whereas 

in the case of 11.2.1,  there may be two possibilities. Thus suppose the 

positions of a given plane in the original structure and the twinned 
structure to be symbolized by B-0: this is the case, for example, in 

the second plane drawn in Fig. L. Rhombohedral stacking sequences of 
r 

the following type are possible across i11211,  : B-C, C-A, AZ,... or 

B-C, 0-B, A-0 ... Using similar notation for the (theoretical) case of 

the .11O1' composition plane, these alternatives do not arise. The 

sequence must be B-C, 0-A, A4E. In the simple hexagonal twinned lattice, 

AmA, T3. , A-A,... there is no distinction, as one possibility only 

exists for both cases. For A.-13, B-C, A-B, however, which is also pure 

hexagonal stacking in each twin, another possibility arises in the -;1121‘ 

case, narely A-B, B-A, A- B. This is again a structure which could not 

conform with a --,1T01t tilt boundary. Particularly where stacking faults 

exist, then, the .:1121; boundary is much less restrictive in the necessary 

conditions it imposes, and would appear to be much more likely to form in 

lattices containing a distribution of stacking faults. :To cases of 

the observation of a 4,1T011  composition plane appear to have been reported, 

although it may be possible to produce such twins in thin flakes of very 

perfect graphite. 

The point of this discussion is, then, that the principal  tvthuning 
characteristics of graphite can be explained in dislocation terms, and 

that, an this basis, the true twinning plane (as distinct from the twin 
conposition plane) is Olnc in the structural (not the morphological) 

system ofaxes. An experimental confirmation of this proposition would 
be valuable. 
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Figure 1. The relation between the 
structural and the morphological 
hexagons. The twin composition 
plane is {1101} with respect to 
the aia2a 3  and c axes. 

Figure 2. The boundary structure 
proposed by Platt. 
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Figure 3. (a) The relative positions of hexagons in the A, B and C planes. (h) The 
distortion introduced into a row of hexagons in the neighbourhood of a partial 
dislocation, taking the A layer as a rigid reference network. (In fact, both layers 
are sheared similarly, of course.) (c) The B—C row of hexagons showing the gap, 
of width a/2, closed by the lattice rotation of 20°  9'. 
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Figure 4. Successive layer planes in graphite showing the twin 
boundary dislocation structure for(a) hexagonal and 
(b) rhombohedral graphite. The lower diagram dem-
onstrates (for the hexagonal case) how a rotation of 
20°9' closes up the lattice in the required way. 
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Figure 5. Possible twinning forms : (a) two lamellae with common boundary vectors, (b) 
a single lamella terminating at a dislocation boundary, and (c) the possible split into 
two lamellae of opposite tilt. 


